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Abstract

Sepsis is a leading cause of mortality and significantly strains healthcare systems worldwide. Im-

proving sepsis care and outcomes depends on appropriate risk stratification and timely identifica-

tion of the causative pathogen to guide patient management and treatment. Enormous efforts have

been made to identify diagnostic and prognostic biomarkers to aid decision making, but to date,

they have failed to identify candidates with acceptable accuracy and precision to have an impact

in the clinic. Past studies have often focused on individual biomarkers without considering the po-

tential benefit of multi-marker panels incorporating deep immunological phenotyping. This work

addressed this issue with a cross-disciplinary approach that integrated sepsis biomarker discovery,

cytometry bioinformatics, and supervised machine learning.

Firstly, a novel framework for cytometry data analysis was developed, along with a new ensemble

clustering algorithm that reduced the risk of biasing exploratory analyses with the application of

a single clustering technique. Secondly, the analysis framework was applied to a study cohort of

severe sepsis patients, and their early immunological profile consisting of cellular and humoral

parameters (within 36 hours of diagnosis) was determined. The captured immunological param-

eters were then combined with routine clinical data and lipid plasma concentrations to generate

interpretable machine learning models for predicting mortality and the underlying cause of in-

fection. The generated models discriminated between survivors and non-survivors, and between

Gram-negative and Gram-positive infections, and identified potential combinations of biomarkers

with predictive value.

Keywords— Sepsis - Biomarkers - Unconventional T cells - Clustering - Cytometry

- Bioinformatics - Machine learning
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1 | Introduction

1.1 Sepsis

Sepsis is a devastating disease with high mortality and lasting effects on individuals, their

families, and their communities. Within the UK, a rising incidence of sepsis was observed

before the COVID-19 pandemic, and conservative estimates suggested that over 46,000

deaths were attributed to sepsis in 2018 alone. Sepsis-related deaths in 2018 exceeded the

estimated number of deaths from breast, prostate, and bowel cancer combined [1]. Inter-

nationally, 11 million sepsis-related deaths were estimated to have occurred in 2017, with

an in-hospital mortality rate of 27%, increasing to 47% in intensive care patients. Among

those who survive sepsis, one in three will die within a year, and one in six will experience

significant long-term morbidity [3, 2]. During the coronavirus disease 2019 (COVID-19)

pandemic, respiratory failure, septic shock, or multiple organ dysfunction were observed in

approximately 5% of symptomatic patients. Clinically these patients met the criteria for sep-

sis and had high mortality rates, reflecting the burden of sepsis during the global pandemic

[4]. – The financial burden of sepsis is significant, with an estimated cost of £15.6 billion

per year for the UK economy [5]. In the United States, sepsis is ranked as the most expen-

sive condition to treat, with an aggregated cost of $24 billion in 2013, amounting to 6.2%

of all hospitalisation costs in that year [6]. Compared to non-sepsis admissions, survivors

of sepsis experience a greater risk of re-hospitalisation, increased risk of infections, a higher

prevalence of mental health issues, and a 3-fold increase in the prevalence of moderate to

severe cognitive impairment [7, 8]. The range of symptoms that can arise following sepsis

has been termed ‘post-sepsis-syndrome’ and is associated with a decline in quality of life

[9]. Despite the devastating impact, historically, the public and professionals have a poor

understanding of sepsis, and the past decade has seen many efforts to improve awareness.

Examples include the Global Sepsis Alliance [10] and the launch of ‘World Sepsis Day’,

an annual event running since 2011, the establishment of the UK Sepsis Trust in 2012 [11],

and a global initiative from the World Health Assembly to strengthen efforts to recognise,

prevent, and treat sepsis [12]. In the face of growing efforts to tackle sepsis, the incidence

continues to rise, and there has been little success in reducing mortality [2, 3]. To make

significant progress in improving clinical outcomes, translational research must continue to
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CHAPTER 1. INTRODUCTION

push the boundaries of our understanding, and this thesis will help contribute to the field of

biomarker research for sepsis care.

1.1.1 Definition

Sepsis has been recognised since antiquity, appearing in the Greek poems of Homer with the

word "sepo", meaning "I rot.", and discussed amongst the writings of Hippocrates, thought

to be the first use of the term "sepsis". The 1800s saw the establishment of ‘germ theory’

through the work of Koch and Pasteur, and simultaneously ‘antiseptic’ techniques were pio-

neered by clinicians such as Semmelweiss and Lister. The first modern definition of sepsis

dates back to 1914 from the writings of Hugo Schottmüller, linking the condition to persis-

tent or transient bacteraemia. Research continued through the 20th century, revealing the

role of the coagulation system, cytokines, and nitric oxide in the pathophysiology of sep-

sis. However, it was not until 1991 that the international community agreed on a formal

definition of sepsis [14, 13]. The ACCP/SCCM consensus conference committee, recognis-

ing the importance of the host immune response to sepsis, defined systemic inflammatory

response syndrome (SIRS) and sepsis as a "systemic response to infection, manifested by

two or more of the SIRS criteria as a result of infection" [13]. Subsequent advancements

in the understanding of cell biology, biochemistry, and the immune response have led to re-

peated revisions of the sepsis definition (Figure 1.1), culminating in the most recent formal

definition, "Sepsis-3". Under Sepsis-3, sepsis is defined as "a life-threatening organ dysfunc-

tion caused by the dysregulated host response to infection", accompanied by the sequential

(sepsis-related) organ failure assessment (SOFA) score to assist identification of sepsis (Ta-

ble 1.1). Clinical criteria for sepsis under Sepsis-3 are defined as "suspected or documented

infection with an acute increase of ≥2 SOFA points". The work presented in this thesis

adopts the Sepsis-3 criteria for the recruitment and study of the immunopathology of sepsis.
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Figure 1.1: Evolution of modern sepsis definitions, adapted from Gyawali et al. [13].
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CHAPTER 1. INTRODUCTION

Figure 1.2: The loss of homeostatis during sepsis and septic shock as a result of pro- and
anti-inflammatory response to infection; figure taken from [15]. HLA-DR, human leuko-
cyte antigen-D related; IgM/G, immunoglobulin M/G; IL, interleukin; IFN-γ, Interferon γ;
PAMPs, pathogen-associated molecular patterns; TNF-α, tumor necrosis factor alpha; TLR,
Toll-like receptor.

1.1.2 Pathophysiology and the immune response in sepsis

Our understanding of the molecular pathobiology of sepsis has evolved considerably in re-

cent decades. Once thought to be primarily a hyperimmune response to infection, it is now

understood to be a complex dysregulation of the immune response involving both inflamma-

tory and immunosuppressive mechanisms, resulting in a loss of homeostasis [13]. Figure 1.2,

adapted from [15], describes the temporally dynamic state of sepsis resulting from the induc-

tion of both pro- and anti-inflammatory signalling pathways. Complex molecular cascades

drive the loss of homeostasis, partially depending on the virulence factors of the causative

pathogen and any pre-existing inflammatory or non-inflammatory co-morbidities, resulting

in an immunological profile that remains highly individualised and difficult to diagnose and

manage [13, 15, 16].
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1.1.2.1 The innate immune response

The series of events in the pathobiology of sepsis starts with the activation of the innate

immune response, involving chemical mediators, the complement system, and specialised

cellular compartments. Examples of the main innate immune cell populations include mono-

cytes, neutrophils, and natural killer cells. Monocytes migrate from the blood into the site of

inflammation, differentiating into either macrophages or dendritic cells (DCs). These cells

phagocytose pathogens and particles and are often termed ‘professional’ antigen-presenting

cells (APCs) due to their ability to process and present elements of antigen on their sur-

face along with a class II major histocompatibility complex (MHC). They are also potent

producers of specialised molecular signals called ‘cytokines’. Another important phagocyte

is neutrophils, known (along with eosinophils and basophils) as polymorphonuclear cells

(PMNs) due to their distinct lobed nuclei and granulocytes due to the presence of granules

in their cytoplasm. Neutrophils are crucial for microbial clearance through phagocytosis,

oxidant generation, and the release of neutrophil extracellular traps (NETs), networks of

chromatin fibres containing granules of antimicrobial peptides and enzymes [18, 16, 17].

Natural killer (NK) cells are another lymphocyte involved in the innate immune response

with both cytotoxicity and cytokine-producing effector functions. NK cells detect ligands on

cells in ‘distress’ and recognise the absence of constitutively expressed ‘self’ molecules on

target cells. In response, they act to destroy compromised host cells and have an important

role in the innate immune response to viruses and intracellular bacteria [19].

Activation of the innate immune system occurs as a response to pathogen-associated molecu-

lar patterns (PAMPs) such as bacterial exo- and endotoxins, fungal β-glucans, viral DNA/RNA,

or in response to host-derived damage-associated molecular patterns (DAMPs), such as ATP,

high mobility group box protein 1 (HMGB1), or mitochondrial DNA [13, 15, 16]. PAMPs

or DAMPs bind pattern recognition receptors on antigen-presenting cells (APCs) and some

epithelial cells. Examples of pattern recognition receptors include Toll-like receptors (TLRs)

and C-type leptin receptors found on the surface of innate immune cells, or NOD-like recep-

tors and RIG-1-like receptors found in the cytosol. NOD-like receptor groups can aggregate

into larger protein complexes called inflammasomes, which are involved in producing potent

cytokines such as IL-1β and IL-18, as well as caspases involved in pyroptosis, a specific

form of cell death triggered by proinflammatory signals [13, 15].

7
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The binding of pattern recognition receptors results in up-regulation of early response genes

and the release of type-1 interferons and pro-inflammatory cytokines such as TNFα, IL-1β,

IL-5, and IL-12, resulting in the activation and proliferation of leukocytes, activation of the

complement system, upregulation of adhesion molecules on endothelial cells, and chemokine

expression [13, 15, 16].

In sepsis, neutrophil migration is impaired through increased nitric oxide production, known

to inhibit neutrophil migration through binding of β2-integrins and selectins [18]. Addi-

tionally, impaired recognition of pathogens and reduced antimicrobial functionality of sepsis

neutrophils has been reported [20]. Down-regulation of CXCL12 during sepsis leads to

a large release of both mature and immature forms of neutrophils from the bone marrow

through emergency granulocyte maturation [15]. Immature neutrophils (often termed "band

cells") show reduced phagocytosis, oxidative burst capacity, and greater resistance to sponta-

neous apoptosis [18, 21, 15]. Excessive quantities of immature neutrophils in the peripheral

blood of sepsis patients have been associated with worse outcomes [22].

1.1.2.2 Unconventional T-cells

Independent of the mechanisms above are unconventional T cells with innate-like capacity.

γδ T cells expressing a Vγ9Vδ2 receptor are unique to humans and primates and have been

shown to expand dramatically in response to infection [23, 24]. They differ from ‘conven-

tional’ αβ T cells in their ability to be directly activated by the microbial metabolite (E)-

4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), an essential metabolite in most

Gram-positive and Gram-negative bacteria [25]. Patients with acute sepsis with a confirmed

infection caused by an HMB-PP-producing pathogen are shown to have elevated levels of

circulating activated Vγ9Vδ2 T cells [23]. Activated Vγ9Vδ2 T cells produce cytotoxic

mediators and interact with monocytes leading to the rapid production of TNF-α and IL-

6. Additionally, HMB-PP stimulated monocyte-γδ T cell co-cultures, compared to con-

trols, displayed increased quantities of chemokines that target monocytes and neutrophils

such as CXCL8 (IL-8) and CXCL10 (IP-10), important in the recruitment of effector T

cells. Vγ9Vδ2 T cells can also promote the generation of mature dendritic cells via a TNF-

dependent mechanism [26]. It is also now widely recognised that circulating Vδ2+ T cells

can display flexible APC functions and provide co-stimulatory signals that stimulate αβ T

cell proliferation and differentiation [27].
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Mucosal-associated invariant T (MAIT) cells are an innate-like population of T cells, remark-

ably abundant in human tissues, and characterised by a semi-invariant T cell antigen recep-

tor (TCR) with specificity for microbial riboflavin-derivative antigens presented by HLA-1b

major histocompatibility complex (MHC)-related protein 1 (MR1) [28, 24, 29]. MAIT cells

exhibit specificity towards microbial vitamin B metabolites [30], have an intrinsic effector-

memory phenotype, and are capable of rapidly secreting several pro-inflammatory cytokines

[24]. MAIT-deficient mice in experimental sepsis models demonstrated greater mortality

and bacterial load. Additionally, MAIT cells isolated from sepsis patients within 48 hours of

ICU admission showed a reduced abundance of circulating MAIT cells compared to healthy

controls and reduced capacity for IFN-γ production [31].

1.1.2.3 Immunosuppression

Anti-inflammatory cytokine pathways are activated even in the first hours of severe sepsis.

Eventually, the inflammatory state is superseded by a prolonged state of immunosuppression

driven by overwhelming anti-inflammatory mechanisms (Figure 1.2). Interleukin 10 (IL-

10), a cytokine produced by a variety of leukocytes such as CD4+ Th2 cells, monocytes, and

B cells, suppresses the production of the pro-inflammatory cytokines IL-6 and IFN-γ and

stimulates the production of soluble TNF receptor and IL-1 receptor antagonists. The effect

is neutralisation of potent TNF-α and IL-1 signalling [32]. In sepsis, it has been reported

that IL-10 production is significantly increased, and concentrations in serum correlate with

severe outcomes and mortality [33]. Another anti-inflammatory cytokine indicated in sepsis

immunosuppression is transforming growth factor beta (TGF-β). TGF-β regulates several

different immune cells and, importantly, is necessary for the induction of thymic and periph-

eral regulatory T cells. TGF-β levels in plasma have been reported to be increased in sepsis

and associated with adverse outcomes [34].

A well-documented phenomenon in sepsis is T cell depletion, largely a result of T cell apop-

tosis [16, 13, 15]. Postmortem studies of patients that succumbed to sepsis demonstrated

a global depletion of CD4+ and CD8+ T cells, most notably in the lymphoid organs such

as the spleen, and the remaining splenocytes also showed a reduced capacity for cytokine

stimulation. Amongst the remaining T cell population, exhaustion and functional defects of

sepsis T cells were reported [13]. Post-septic CD4+ T cells exhibit a global state of anergy

and decreased ability to proliferate. There are also marked changes in the composition of

9



CHAPTER 1. INTRODUCTION

CD4+ T cell subsets, with a pronounced increase in circulating Treg cells [35]. The loss

of T cell populations and suppression of functionality ultimately result in a condition that

severely affects the patient’s ability to combat secondary infections.

A hallmark of immunosuppression in sepsis is reduced expression of the major histocompat-

ibility complex (MHC) class II cell molecule HLA-DR on the surface of circulating mono-

cytes. The family MHC molecules consist of specialised host-cell glycoproteins responsible

for delivering antigens to the cell surface for recognition by T cell receptors (TCRs). The

TCRs of αβ T cells respond to short, continuous amino acid sequences, often buried within

the native structure of the target protein. Consequently, the processing and presentation of

antigens by MHC molecules are vital for antigen recognition. MHC class II molecules differ

from MHC class I molecules in their peptide-binding cleft, and whilst MHC class I molecules

are recognised by CD8+ T cells, MHC class II molecules are recognised by CD4+ T cells

[17]. Expression of HLA-DR on APCs is a sign of immune competence, and the decreased

expression of HLA-DR on septic monocytes reflects a reduced antigen presentation capac-

ity. This disrupts the Th1- and Th2-mediated response, and the inability to restore HLA-DR

expression is associated with endotoxin tolerance in the early stages of sepsis [15]. Now

widely accepted as a marker of severity in sepsis and risk of secondary infection [36], mono-

cyte HLA-DR (mHLA-DR) is being adopted for monitoring sepsis patients in the clinic [38,

37] and is being implemented as a screening tool for enrolment in sepsis clinical trials [39].

Another key feature of septic monocytes is immune reprogramming, and the impaired capac-

ity to produce pro-inflammatory cytokines [40, 41]. For example, Reyes et al. described a

CD14+ monocyte population they named MS1, which displayed an immunosuppressive phe-

notype and, upon ex vivo stimulation with LPS, were unable to activate NF-κB and produce

TNF-α [42].

Our understanding of the immunosuppressive phenotype observed in sepsis has been histor-

ically driven by the application of cytometry to characterise immune populations in the days

and weeks that follow the initial hyperinflammatory response. As previously mentioned,

mHLA-DR is progressively becoming a popular immunomonitoring tool, but flow cytome-

try is also being adopted to characterise immature neutrophil subsets, myeloid-derived sup-

pressor cells, and alterations in regulatory lymphocytes with implications in the clinic [38].

It is worth noting, however, that these efforts often focus on quantifying the abundance of

cell populations that are progressing through state changes in a dynamic system. Therefore
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the effectiveness of such monitoring will be highly dependent on the patient’s progression

and their current immune state, something that is subject to natural variation. Technological

advances in the field of single-cell RNA sequencing (scRNA-seq) and cell trajectory analy-

sis could arise as a solution to this problem, allowing for more accurate identification of the

precise course of a patients septic pathway [42, 43].

1.1.2.4 Coagulopathy and organ failure

Dysregulation of the coagulation pathway and the profound alterations to the endothelium

have multifactorial aetiology, but ultimately contribute to tissue damage and subsequent or-

gan failure. A study of 1895 patients from Japan emphasised the extent of coagulopathy,

showing that 29% of sepsis patients were diagnosed with sepsis-induced coagulopathy, with

a clinical picture synonymous with disseminated intravascular coagulation (DIC) [44].

Hypercoagulation is driven by the release of tissue factors from damaged endothelial cells,

resulting in systemic activation of the coagulation cascade. The process is exaggerated by

the collateral damage caused by a hyperinflammatory innate immune response, resulting

in the release of reactive oxygen species (ROS), such as the hydroxyl radical and nitric

oxide, which can damage cellular proteins, lipids, and DNA. Activation of the complement

system further increases the generation of ROS. The release of intravascular tissue factor,

combined with NETs and tissue factor expression by monocytes in the blood, results in

‘immunothrombosis’ trapping invading pathogens and attracting activated leukocytes and

can impair microvascular function and cause organ injury [16, 15].

There is also a decrease in plasma levels of protein C and antithrombin in sepsis. Activated

protein C has potent anti-inflammatory effects by inhibiting pro-inflammatory cytokines such

as TNF-α and IL-6 and by limiting endothelium adhesion of monocytes and neutrophils. Re-

duction in protein C levels causes failure to control the coagulation cascade. Simultaneously,

a reduction in fibrinolysis is observed, resulting from increased TNF-α and IL1β production

that induce the release of tissue plasminogen activators and subsequently increases the pro-

duction of plasminogen activator inhibitor type 1 (PAI-1). The cascading effects are a reduc-

tion in fibrinolysis and fibrin removal, further worsening the effects of hypercoagulation [16,

13].
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DIC, tissue damage, and multiple organ dysfunction are some of the most devastating effects

of sepsis. They are responsible for high mortality and a reduction in the quality of life for

those that survive [45, 16]. The resulting tissue damage from DIC causes a breakdown of

endothelial and epithelial barriers in the lungs, gastrointestinal tract, and liver. The increased

permeability of these tissues causes more systemic inflammation and further exacerbates the

condition.

1.1.3 Biomarkers in sepsis

With a greater understanding of the pathophysiology comes the hope of diagnostic and prog-

nostic biomarkers that will help identify sepsis earlier, offer personalised care and triage

patients to maximise hospital resources, and identify the underlying cause to reduce the risk

of empiric broad-spectrum antimicrobial therapy. The primary objective of this thesis was to

conduct a broad observational study of patients with sepsis and leverage immunophenotyping

combined with statistical pattern recognition techniques to identify informative biomarkers

that correlate with the outcome and underlying cause. In this section, a summary of the ex-

isting body of work around identifying biomarkers for sepsis will be discussed. The current

state of sepsis biomarker research will be broadly summarised into diagnostic biomarkers,

prognostic biomarkers that correlate with mortality or increased hospital stay, and finally,

those biomarkers that indicate the aetiology of the disease.

Throughout this summary, reference will be made to the area under the receiver operating

characteristic curve (AUC) score. It is common for biomarkers to be reported according to

their AUC score, which captures the relationship between the false positive rate (one mi-

nus the specificity) and the true positive rate (sensitivity). An AUC of 0.5 indicates that a

biomarker is no better than a random classifier. In contrast, a higher AUC indicates that the

biomarker has both good sensitivity and specificity, with a maximum score of 1.0 represent-

ing a perfect biomarker. It is generally accepted that an AUC score of between 0.7 and 0.8 is

fair, between 0.8 and 0.9 is good, whereas an AUC greater than 0.9 is ideal and is suggestive

of a very promising biomarker [46].
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1.1.3.1 Diagnostic biomarkers

The positive acute-phase proteins (hepatic derived inflammatory mediators), C-reactive pro-

tein (CRP) and procalcitonin (PCT) are the two most widely studied biomarkers in severe in-

fectious disease and sepsis. They are actively used in a clinical setting. CRP is a non-specific

marker of inflammation and although it retains a high sensitivity for identifying bacterial in-

fection, its low specificity makes it unsuitable for differentiating infection from noninfectious

causes of inflammation [47]. PCT concentrations in serum increase significantly in the first

hours of a bacterial infection [48]. Although it has been previously suggested as a diagnostic

biomarker in sepsis, revised recommendations suggest it only has prognostic value [49].

Other than acute-phase proteins, pro-inflammatory cytokines have been suggested as possi-

ble diagnostic biomarkers. The most widely studied one for its diagnostic potential in sepsis

is IL-6. Experimental models of sepsis in mice demonstrated that IL-6 could be an early

marker of inflammation due to infection, albeit with poor sensitivity despite the promising

specificity [50]. Subsequent human studies showed that IL-6 could discriminate sepsis from

healthy controls with an AUC score of between 0.83 and 0.94. IL-6 could also differentiate

septic shock from sepsis, albiet with a slightly reduced AUC score of between 0.71 and 0.89

[51]. In a multi-centre observational study of 306 patients presenting with suspected infec-

tious illness, IL-6 was employed to predict those with confirmed infection, resulting in an

AUC score of 0.71 [52].

Along with soluble components of the innate immune response, the expression of activation

markers on cellular components has also been of interest. The most promising of these for

sepsis diagnosis is CD64 expression of neutrophils. CD64, also known as Fc-γ receptor 1

(FcγR1), binds IgG with high affinity and increased expression on neutrophils is considered

an early activation marker. A prospective observational study of over 500 patients found

that amongst the 103 diagnosed with sepsis, there was a higher expression of CD64 on neu-

trophils upon hospital admission. Neutrophil CD64 mean fluorescence intensity (MFI) was

able to identify sepsis with a sensitivity of 89% and specificity of 87% [53]. Such evidence

has encouraged some authors to suggest that CD64 expression of neutrophils should be con-

sidered a diagnostic biomarker, arguing that superior sensitivity and specificity compared to

biomarkers such as CRP warrants adoption [54].
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During acute inflammation, the N-terminus of CD14 is cleaved and secreted as soluble CD14

(sCD14), also known as ‘presepsin’. sCD14 is thought to play a role in bacterial phagocytosis

and lysosomal cleavage of invading pathogens and could form another immune-cell-derived

diagnostic biomarker. Notably, sCD14 levels in plasma are elevated before those of PCT or

IL-6. A multi-centre study of 207 suspected sepsis patients found that sCD14 had a greater

AUC score than IL-6 and procalcitonin for predicting sepsis [55]. Other studies have reported

sCD14 as significantly different between infected and non-infected groups with a diagnostic

accuracy greater than PCT, IL-6, and high-sensitivity CRP [56]. Multiple meta-analyses

highlighted the potential of this sCD14 as a diagnostic biomarker [57, 58].

1.1.3.2 Prognostic biomarkers

As with diagnostic biomarkers, the acute-phase proteins CRP and PCT have been the most

popular candidates for prognostic biomarkers. Lee et al. conducted a study of over 500

patients admitted to the emergency department with suspected sepsis and measured their

admissions biomarkers to study their ability to identify early (within five days of admission)

or late (between 6 to 30 days after admission) mortality [59]. They found that the AUC

score for levels of CRP in plasma was relatively poor, with an AUC score of 0.68 for early

mortality and 0.63 for late mortality. PCT levels showed slightly better performance with

an AUC score of 0.76 for early mortality and 0.70 for late mortality. On the other hand,

multivariate analysis that included age, SOFA score, and PCT, suggested that PCT plasma

levels are an acceptable prognostic biomarker with a favourable odds ratio of 2.004 and initial

PCT plasma level was significantly higher within the group of non-survivors compared to

survivors [49]. A meta-analysis from 2015 supports this finding, reporting that plasma levels

of PCT were significantly lower in the early stages of sepsis amongst survivors but found this

difference was lower when observing severe sepsis and septic shock. Conclusive evidence

was also hindered by considerable heterogeneity amongst the studies investigated [60].

Another acute-phase protein with potential is pentraxin-3 (PTX-3), which is expressed by

various cells of the innate immune system, such as dendritic cells, monocytes, and neu-

trophils, in response to IL-6, TNF-α, IL-1, and interferons. PTX-3 plasma level had the

highest AUC of 0.798 amongst diagnostic biomarkers when comparing sepsis to a healthy

group [61, 62] and significantly correlated with the degree of organ dysfunctions [63]. PTX-3

plasma level has also shown a reasonable AUC score of 0.78 for predicting 28-day mortality,
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greater than both procalcitonin and lactate levels [64], and both initial and subsequent PTX-3

plasma levels measured during ICU stay were significantly higher in non-survivors [51].

A study of multiple acute phase proteins and cytokines in 47 critically ill patients sampled

within 24 hours of their sepsis diagnosis found that CD64 expression on circulating neu-

trophils and CXCL8 (IL-8) levels in plasma were the only biomarkers that could differentiate

sepsis, severe sepsis, and septic shock. CXCL8 and neutrophil CD64 were also significantly

associated with 28-day mortality in a multivariate logistic regression analysis, and neutrophil

CD64, CXCL8, and IL-6 correlated with Acute Physiology and Chronic Health Evaluation

II (APACHE-II) severity score [65]. IL-6 plasma concentration, as well as neutrophil-to-

lymphocyte (NLR) ratio, correlate with APACHE II and SOFA scores. In cox-regression

models, IL-6 and NLR predicted mortality with an odds ratio of 1.017 and 1.281, respec-

tively [66]. Other potential prognostic cytokines include the family of IL-1, which play an

essential role in immune regulation and inflammatory response. Excessive production of IL-

1 cytokines has been linked to hypotension, shock, and multi-organ failure in sepsis, SIRS,

and septic shock [67, 68].

sCD14 was identified as a possible prognostic biomarker in the Albumin Italian Outcome

Sepsis (ALBIOS) trial [69], which enrolled 997 patients with severe sepsis or septic shock

and randomised treatment with albumin or crystalloids. They found that baseline sCD14

positively correlated with SOFA score and frequency of organ dysfunction, and increasing

concentrations of sCD14 from day 1 to day 2 predicted 90-day mortality [69].

Monocyte HLA-DR has been cited in over 200 publications for its potential as a prognostic

biomarker and has been adopted in the clinic as an indication of increased mortality and risk

of secondary infections [70]. HLA-DR expression on monocytes has seen the greatest suc-

cess of all the biomarkers studied for their prognostic potential. Other worthy mentions with

growing evidence of their application in sepsis prognosis include adrenomedullin (ADM),

TNF-related apoptosis-inducing ligand (TRAIL), and heparin-binding protein (HBP). ADMs

are produced mainly by endothelial cells and vascular smooth muscle cells and help medi-

ate vasodilation and systemic circulation. Mid-regional proadrenomedullin (MR-proADM)

has been identified in several studies as a predictor of mortality in sepsis and septic shock

[71]. TRAIL helps regulate the immune response in sepsis by inducing apoptosis of activated

cells. In three independent cohorts of critical care patients, lower concentrations of TRAIL
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in plasma were associated with increased mortality [72]. Finally, HBP has been linked to

neutrophil-derived induction of vascular leakage and is a potential marker for severe out-

comes in sepsis. A study of over 500 emergency department patients found that HBP was a

good predictor of either admittance to ICU, death, or persistently high SOFA scores, with an

AUC of 0.87 (95% CI 0.77–0.99).

1.1.3.3 Biomarkers of aetiology

The early identification of the causative pathogen is important for directing therapy and

source control. The current gold standard for identifying causative pathogen is bacterial cul-

ture, which can take days to yield a positive result [73], culture conditions and low bacterial

load can negatively impact the quality of results, and bacterial culture has reduced speci-

ficity when anti-microbial treatments are employed before sampling [74, 75, 76]. The per-

centage of suspected sepsis yielding negative culture results can range from 28 to 89% [77].

Although molecular techniques offer the potential for rapid identification of the causative

pathogen, many proposed solutions either require some bacterial growth on culture media or

are expensive and require technical expertise [73]. Early intervention with empiric broad-

spectrum antibiotics is recommended in treating suspected sepsis [76] with the risk of mor-

tality increasing with each hour that antibiotics are delayed [78]. However, initial antibiotics

were found to be inappropriate in up to a third of patients diagnosed with sepsis and were

associated with an increased likelihood of mortality and more extended hospital stay [79,

80]. Furthermore, inappropriate antibiotic use is of concern as the incidence of multi-drug

resistant (MDR) pathogens continues to grow [81].

To this end, biomarkers that could reliably identify causative pathogens in sepsis prior to

lengthy bacterial culture would be of great value. The causative pathogen in sepsis results

in distinct molecular characteristics in the immune response [82] and therefore, one can

theorise that a host-derived biomarker (or set of biomarkers) might exist that correlates with

the underlying cause.

PCT plasma levels have been associated with differentiating bacterial infection from other

sources of inflammation [84, 83] and as a possible biomarker for Gram-negative bacteremia

[87, 83, 85, 86]. PCT levels have also been suggested as a means to guide antibiotic de-
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escalation, however, a recent systematic review and meta-analysis warned against successful

claims of this application given low certainty in the evidence presented [88].

In a study of immunocompromised patients, PCT in plasma, combined with CRP and sCD14,

was found to accurately identify invasive fungal infections with an AUC score of 0.962 (95%

CI 0.868 to 0.995) [89]. Admission sCD14 plasma levels in patients with suspected sepsis

were significantly lower in those with a nonbacterial infectious disease compared to those

with a confirmed bacterial pathogen [55]. sCD14 levels were also found to decrease during

ICU stay in patients with negative blood cultures and those with positive blood cultures and

appropriate antibiotic therapy [69].

There have been mixed reports regarding the clinical value of cytokines for identifying bac-

terial infections. Oever et al. [90] reported that lipopolysaccharide-binding protein (LBP),

PCT, IL-6, IL-18, or soluble triggering receptor expressed on myeloid cells-1 (sTREM-1)

combined with CRP offered no additional improvement in differentiating bacterial and viral

infection amongst emergency department admissions with suspected sepsis. Meanwhile, a

prospective study comparing Gram-negative, Gram-positive, and fungal bloodstream infec-

tions found utility in IL-3 plasma levels for identifying Gram-positive infections [91] and a

study of 132 patients with fever found that IL-6 and CXCL8 levels were significantly higher

in bacterial infection compared to viral infection [92].

LBP, an acute-phase protein, has also been suggested as a diagnostic biomarker for infection.

Although LBP levels in plasma were found to be significantly higher in patients with infec-

tious endocarditis compared to noninfectious heart valve diseases [93] and was increased

in bacterial gastroenteritis compared to viral cause [94], it failed to demonstrate diagnostic

value in post-operative sepsis patients [95].

1.1.3.4 Multi-parameter biomarker panels

Despite the progress in the study of biomarkers in sepsis, no biomarker has been approved

with specific application to sepsis diagnosis, and the accurate prognosis is still a challeng-

ing task [76]. A recent review found that many studies had considerable limitations. Only

26 biomarkers had been evaluated in populations of greater than 300 patients, and the def-

inition for sepsis varied greatly [96]. The same review also identified that the number of

new biomarkers discovered has decreased despite the increase in studies dedicated to iden-
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tifying biomarkers for sepsis. Therefore, new strategies must be explored, including an in-

creased effort in exploring multi-parameter panels that combine the benefits of the individual

biomarkers whilst offering flexibility to account for the heterogeneity in sepsis.

Some studies have attempted to combine multiple markers, starting with Kofoed et al. [97]

who showed a linear combination of soluble urokinase-type plasminogen activator (suPAR),

sTREM-1, macrophage migration inhibitory factor (MIF), CRP, PCT, and neutrophil count

produced a desirable AUC score of 0.88 (95% CI 0.81 to 0.92), significantly greater than the

AUC of the individual markers. A more recent study identified optimal thresholds for PCT,

sCD14, galectin-3, and soluble suppression of tumorigenicity 2 (sST2) using ROC analysis

and combined markers to predict 30-day mortality with an AUC score of 0.769 (95% CI

0.695–0.833) [98]. Taneja et al. deployed machine learning algorithms combining multiple

novel biomarkers (IL-6, nCD64, IL-1ra, PCT, MCP1, and G-CSF) with routine electronic

health data, identifying sepsis patients in early to peak phase of sepsis (classified on clinical

judgement) using a support vector machine and reported an AUC score of 0.81 [99]. The

same authors demonstrated in 2021 that a random forest model combining PCT, CRP, and

IL-6 with routine electronic health data could identify patients with sepsis (according to the

sepsis-3 criteria) with an AUC score of 0.83 [100]. Several studies in recent years have tried

to capitalise on the power of statistical machine learning models to identify combinations of

biomarkers that could predict sepsis or outcomes from sepsis. Due to the quantity of existing

data, most studies in this domain focus on electronic health records, with the hope that com-

binations of informative biomarkers are present in existing data. Although some successful

reports exist, with AUC scores far exceeding what is observed in traditional biomarker stud-

ies, results must be interpreted with caution due to low comparability, reproducibility, and a

lack of conformity in sepsis definitions used [102, 101]. For those less familiar with machine

learning, a comprehensive introduction is provided later in this chapter (see 1.3).
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1.2 Cytometry bioinformatics

In the previous sections, I discussed how the pathophysiology of sepsis had been dissected

over the decades, giving rise to the study of numerous biomarkers to try and help identify

sepsis, determine its cause, and predict outcomes. A key player in this progress has been the

application of cytometry, a technology widely used for the numeration and characterisation

of biological material. The main application is the study of the immune system. When inves-

tigating immune cells by cytometry, whether with traditional flow cytometry or the recently

introduced advanced techniques of mass cytometry and spectral flow cytometry, large single-

cell data are generated with hundreds of thousands to millions of observations per sample.

Historically, such data have been analysed using manual gating strategies in software such

as FlowJo [103], and FCS Express [104]. The manual gating process involves observing

data in two-dimensional plots and hand-drawing polygons (referred to as ‘gates’) around

data regions to separate out data of interest. Gates can be generated in complex sequences

(termed ‘gating strategies’) by alternating the variables of two-dimensional plots and adding

additional gates to selected data regions. Whilst gating has been highly effective in the past,

the knowledge of the immune system has grown substantially, and cytometry technology ex-

panded to allow more parameters to be measured in a single experiment. Consequently, more

extensive gating strategies formed and the process of manual gating has grown to a state of

exceedingly high labour per experiment, introducing risks of subjective bias and poor repro-

ducibility [105]. As a result, the field of cytometry bioinformatics has arisen, where mod-

ern computational algorithms and statistical machine learning methods have been applied to

circumvent the need for manual gating, address quality control concerns, and improve our

ability to make sense of high dimensional cytometry data.

1.2.1 The start of a golden age for cytometry bioinformatics

The rise of cytometry bioinformatics is a culmination of simultaneous advances in open-

source software development, data science, advances in machine learning, and cross-discipline

collaboration. Although attempts to use computer algorithms as a replacement for manual

gates date back to the early 1990s [106], it is only since 2007 that progress has been made in

delivering practical solutions.

19



CHAPTER 1. INTRODUCTION

Figure 1.3 provides a summary of open-source solutions published over the past decade.

The font size given to each tool/algorithm reflects the impact measured by uptake and cita-

tions. The areas of development in cytometry bioinformatics overlap significantly with other

single-cell technologies. They can be broadly categorised into infrastructure and frame-

works, automated gating, supervised classification, clustering, and dimension reduction for

data visualisation.

It can be argued that Raphael Gottardo and Ryan Brinkman started a new age in cytome-

try bioinformatics with the introduction of flowCore [108], one of the first comprehensive R

programming libraries to offer data structures specific for cytometry data analysis. Early suc-

cess in automated analysis followed with algorithms such as flowClust, utilising mixtures of

t-distributions following a box-cox transformation for automatic selection of subpopulations

[109]. FlowMeans followed this, an adaption of the traditional K-means clustering algo-

rithm, modified to handle concave cell population and implemented a change point detection

algorithm to detect the optimal number of subpopulations [110]. Around this time, SPADE

[111] was developed, which deployed agglomerative clustering to density-dependent down-

sampled data to ensure that underrepresented cell populations are not merged into larger

populations. SPADE also offered a minimum-spanning tree of identified clusters to help

visualisation and exploratory analysis. Other notable examples were FLOCK, which used

a grid-based density clustering algorithm [112] and samSpectral, a spectral clustering algo-

rithm designed to handle large cytometry data [113].

In what appears as a compounding effect, additional algorithms were developed, often im-

proving on previous attempts that utilised mixture models [114], or K-means clustering

[115]. The developments in the field culminated in the first-ever critical assessment of au-

tomated cytometry analysis titled “The Flow Cytometry: Critical Assessment of Population

Identification Methods (FlowCAP)" [116], extending two challenges to the field: firstly,

present algorithms that could accurately replicate the labels generated by expert manual gat-

ing, and secondly, demonstrate analysis pipelines that could accurately predict external vari-

ables such as clinical outcomes using only cytometry data as input. Multiple algorithms

reported F1 scores of about 0.85 and on some challenges as high as 0.98, with the authors

concluding that automated methods had reached a significant level of maturity and accuracy

for more widespread use. Despite the optimism, the data used in FlowCAP were not repre-

sentative of the extensive high-dimensional data that modern instruments obtain. The largest
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Figure 1.3: A timeline of developments in the field of cytometry bioinformatics between
2007 and 2022. Tools and algorithms are categoried into: infrastructure and frameworks,
automated gating, supervised classification, clustering, and dimension reduction & visuali-
sation. The font size given to each tool or algorithm reflects the impact measured by uptake
and citations. The bar plot at the bottom of the figure shows the number of publications
per-year using the search term “Machine learning and cytometry". Data were obtained from
the PubMed search engine [107].
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FlowCAP dataset consisted of only 100,000 events, and no more than ten parameters were

captured in any single FlowCAP dataset.

1.2.2 The promise of automated gating

The field continued to develop, with significant progress around 2014-2015 in developing

more approachable technologies that aimed to directly replicate manual gating in a way that

could be recognised by traditional analysts. The flowDensity package [117] was a similar

approach to the earlier Density-Based merging (DBM) [118] and generated gates in one- or

two-dimensional space by first estimating the probability density function, then applying a

peak finding algorithm, before applying the bounds of a gate based on regions of high and

low density within the data. Around the same period, a similar approach was introduced

by flowType used in combination with the RchyOptimyx algorithm [119]. The approach

used flowMeans clustering to search for positive and negative subsets in two-dimensional

space with an exhaustive search across all possible combinations of markers. RchyOptimyx

measured the importance of these cell types by the correlation of cell population abundance

with external outcomes such as disease state.

Significant impact was made with the first substantial autonomous gating framework, Open-

Cyto [120], built upon the flowCore architecture. OpenCyto presented the first end-to-end

analysis framework emulating common gates found in manual analysis, explicitly designed

for autonomous gating frameworks in one- or two-dimensional space. In the years that fol-

lowed, the field continued to develop, with tools such as BayesFlow [121] and flowLearn

[122], addressing issues of global variance, GateFinder [123], a back-gating algorithm that

presents the optimal gating strategy for identifying a population found in N-dimensional

space, and cytometree [124], an exhaustive search strategy that utilises Gaussian mixture

models.

1.2.3 A supervised approach to classifying cytometry data

Autonomous gating might be easy to comprehend and validate but is still quite labour-

intensive. It often requires optimising for each dataset due to its sensitivity to biological

variation and technical noise. Cytometry data lend themselves well to another strategy: su-

pervised machine learning. In brief, supervised machine learning algorithms are trained on
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labelled data to predict the labels of unlabelled data. The ‘training’ part of this process often

involves optimising a function (more specifically, the parameters of that function) that dif-

ferentiates the labels. In the context of cytometry data, example data can be labelled with

manual or automated gating and presented to a supervised machine learning algorithm to

learn the association between the data and the labels. As a result, a method is generated

whereby populations can be easily identified in new data.

Success in this area has mostly been found by applying multi-layer neural networks. Deep-

CyTOF [125] introduced a solution that first accounted for inter-sample variation with a

residual neural network that tried to minimise the maximum mean discrepancy (MMD; a

measure of similarity between two distributions) between a reference sample and subsequent

batches. The reference sample was assumed to be manually gated and was also used to train

a deep neural network in a supervised manner to classify cell populations. New data were

aligned to the reference sample and labelled using the trained neural network. The SAUCIE

algorithm [126] built on the concept of batch correction by minimising MMD with an addi-

tional autoencoder reconstruction penalty, forcing the preservation of the original structure

in each sample.

An alternative approach was presented with the CellCNN algorithm [127], negating the need

for manually gated reference data. CellCNN combined multiple instance learning and con-

volution neural networks (CNN) in a supervised representation learning approach. Data from

all samples were pooled, and each event in the cytometry data was labelled by some exter-

nal label of interest, such as disease state or patient outcome. A CNN (a particular type of

neural network initially developed for analysing image data) was trained to predict the ex-

ternal label. The learnt filter weights corresponded to the molecular profiles of relevant cell

subsets that are important for predicting the external label. CellCNN identified populations

of cells of importance to broader questions rather than characterising all cell populations

in a more traditional sense. The approach presented by CellCNN was extended further to

demonstrate robust classification in the face of high variability between data obtained from

different studies [128].

23



CHAPTER 1. INTRODUCTION

1.2.4 Clustering continues to improve

Clustering analysis has arisen as the most popular automated approach to cytometry analysis,

primarily because it offers an exploratory aspect to analysis, allowing the investigator to

categorise events by their phenotypic similarity and then perform hypothesis testing on the

acquired groups. The approach is similar to traditional manual gating but is not biased by

prior assumptions about the expected cell populations and is less labour-intensive.

After the FlowCAP competition, innovations continued, starting with ACCENSE [129], a

peak detection algorithm applied to a kernel density estimate of a reduced feature space

using t-distributed stochastic neighbour embedding (t-SNE). The development of dimension

reduction technologies was a significant contributor to the field of cytometry bioinformatics

and is discussed in length in the next section (see 1.2.5).

Arguably, the most significant leap forward in the development of cytometry clustering al-

gorithms came in 2015 with the publication of FlowSOM [130] and PhenoGraph [131].

FlowSOM clustered data using self-organising maps (SOM), a specific type of unsupervised

neural network. A SOM distributes a grid of nodes in N-dimensional space (often randomly

initiated), where each node represents a point in the given feature space. During clustering,

a data point is classified with the node that is its nearest neighbour. The grid is trained so

that the nodes closely connected via the observed data resemble each other more than nodes

connected via a longer path, capturing topological information about the data. PhenoGraph

instead utilised graph theory to describe populations in single-cell data. First, a nearest

neighbours graph was constructed, and then the problem of density detection was addressed

by identifying communities of similar cells as highly connected regions within the graph.

The idea was borrowed from the field of social network research and utilised the Louvain

community detection algorithm to partition the graph in a way that maximises modularity.

FlowSOM and PhenoGraph offered exceptional computational efficiency compared to their

earlier counterparts and performed well on single-cell data. The impact of these methods is

reflected in the thousands of citations accumulated by both and the adoption of these tech-

niques into traditional software as plugins. The computational performance of the FlowSOM

algorithm stands out with its ability to cluster millions of data points in a few minutes but re-

quires the user to define the expected number of clusters and is, therefore, best suited to tasks

where the investigator has some prior knowledge of the expected populations. Phenograph,
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on the other hand, does not require the desired number of clusters to be known and does an

excellent job of describing small populations, but is computationally expensive and can re-

sult in fragmented clusters [132, 133]. Despite the success of FlowSOM and PhenoGraph in

solving many of the challenges in clustering cytometry data, development did not cease, and

new tools that optimised nearest neighbour density estimation and selection of an optimal

number of clusters followed [134], as did novel ways of framing the analysis of clustering

results, such as differential abundance and differential state analysis, as seen in the diffcyt

package [135].

1.2.5 Seeing is believing: how dimension reduction changed the game

No single technology can be credited as solely responsible for the maturation of cytometry

bioinformatics, but the development of dimension reduction technologies certainly comes

close. The ability to visualise multi-dimensional cytometry data has offered a tool of com-

munication that has helped bridge the gap between bioinformatics and other disciplines. The

story starts with t-SNE [136], a manifold learning technique that modelled the similarity

between pairs of data points as joint probabilities. A similar probability distribution was

then constructed in low-dimensional space, and the t-SNE algorithm tried to minimise the

Kullback-Leibler divergence between the two probability distributions with respect to the

location of the original data points.

The original t-SNE algorithm was computationally expensive, and in 2013 viSNE was pub-

lished, a fast distributed implementation of the t-SNE algorithm improved for single cell

analysis. A notable divergence from the original t-SNE algorithm was the absence of prin-

cipal component analysis (PCA) in the pre-processing steps. However, the fundamental

approach to t-SNE was criticised for its computational complexity, stochastic behaviour, and

loss of global structure in favour of conserving local structure. The Uniform Manifold Ap-

proximation and Projection (UMAP) algorithm [137] addressed these issues using Rieman-

nian geometry, resulting in significantly faster runtimes and improved conservation of global

structure. At the same time, the Potential of Heat-diffusion for Affinity-based Trajectory

Embedding (PHATE) algorithm was developed [138]. Unlike UMAP, which was developed

for general purposes, PHATE was specifically designed to analyse biological data. PHATE

acknowledged that biological data tends to contain progressive branching structures, which

are often non-linear and reflect underlying biological processes. PHATE preserved the pro-
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gressive structure in data by modelling the problem with heat-diffusion processes to compute

cell-cell affinities. A diffusion-potential geometry captured the high-dimensional trajectory

structures within the data. The resulting embeddings accurately depicted complex trajecto-

ries and data distances.

1.2.6 Moving forward

Cytometry bioinformatics has come a long way in the past 15 years, bringing not just au-

tonomous means by which to identify cell populations but also dedicated programming

frameworks for specific applications [123, 127, 139, 140, 141] and tools to improve the qual-

ity of our raw data prior to analysis [142, 143, 144]. However, widespread adoption of the

more advanced techniques in cytometry bioinformatics is still lacking. Broad open-source

programming frameworks that offer structure and guidance to analysis help newcomers to

the field and reduce the barrier of entry for those lacking experience with programming lan-

guages [108, 120].

Despite the ongoing efforts, much work must be done to increase the accessibility of tools

further. Most cytometry bioinformatics solutions are implemented in the R programming

language. However, in recent years, there has been a spike in the popularity of other pro-

gramming languages, notably Python. Python is ranked amongst the most desired program-

ming languages in recent surveys of developers [145, 146, 147], is popular across domains

(meaning guidance and resources are abundant) and offers improved debugging and a sim-

pler syntax to R. It is no surprise that Python has rapidly been adopted in other areas such

as genomics [148] and single-cell RNA sequencing analysis [149]. In recent years more

cytometry-specific tools have arisen that were developed in Python [125, 127, 128, 131, 138,

150, 151] and this reflects the adoption of deep learning neural networks, where Python

is the preferred programming language due to the availability of open-source tools such as

TensorFlow [152], and PyTorch [153].

More work is required to deliver low-code interfaces for the tools developed in the past

decade. Additionally, the overwhelming choice of technologies will require a pathway to

quick validation and consolidation of results that benefit from the advantages of each tool

without overlooking their limitations. In improving access to these tools, cytometry bioin-

formatics will also substantially impact biomarker work. The exploratory analysis that clus-
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tering offers opens the potential for identifying novel biomarkers that have been overlooked

in the past. In combination with statistical machine learning technology, combinations of

biomarkers could potentially be found to overcome the limitations that individual biomark-

ers of sepsis have presented.
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1.3 Pattern recognition for biomarker discovery

Traditionally, biomarker discovery in sepsis has followed deductive reasoning driven by the

observations of the pathophysiology of sepsis derived from experimental models and clinical

trials. The failure to identify individual biomarkers in sepsis [155, 154, 96], combined with

the overwhelming amount of data that can be obtained from the combination of electronic

health records (EHR) and multi-omic platforms, questions whether biomarker discovery is

better placed in an inductive framework of pattern recognition. The inductive pattern recog-

nition approach does not assume that a single biomarker is capable of prediction. Instead,

a combination of biomarkers and their interaction with one another is required for suitable

accuracy. A limitation of an inductive approach is that the logic depends on the quality of the

observations and how well they generalise to a broader population. Therefore, the objective

should be to generate a hypothesis such as “does the identified combination of N biomarkers

accurately predict X" from the data observed. The resulting hypothesis should be tested on

larger populations to see if the chosen biomarker pattern generalises.

The next question is, how do we identify such a pattern? Pattern recognition or ‘classifica-

tion’ is fundamental to supervised machine learning. As mentioned in the previous section,

supervised machine learning allows us to ‘train’ a function using some labelled data and then

apply the optimised function to new data to classify unknown events (Figure 1.4). The train-

ing step involves an optimisation algorithm that searches for the parameters of a function that

obtain the best predictions in the training data. Many types of decision functions and algo-

rithms can be used, ranging from simple linear models such as ordinary least squares logistic

regression to more complex models such as support vector machines, tree-based classifiers,

and deep neural networks.

1.3.1 Feature selection for pattern recognition

In the field of biomarker study, the objective is to ascertain the most relevant variables from

N input variables. Such a task is synonymous with a process known as feature selection in

the statistical literature. Feature selection is necessary for several reasons. Firstly, the prac-

tical application of biomarkers in the clinic requires the minimal possible combination for

classification accuracy to reduce cost and simplify the interpretation of results. Secondly, it
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Figure 1.4: Schematic of the general concept behind supervised machine learning.

is well known that reducing the number of variables can help improve the performance of

classifiers [156, 157] and reduce the risk of overfitting. Overfitting occurs when a model

performs well on training data but does not generalise well when exposed to new data, and

therefore performance will be poor. Overfitting is especially important for biomarker studies

since clinical research tends to reduce the size of available training data. Reducing the vari-

able space helps reduce the complexity of models and lowers the risk of overfitting. Finally,

a reduced number of variables can lower the likelihood that variables are highly correlated.

Multi-colinearity amongst the input variables can break the assumption of independence re-

quired for some models, negatively impact classifier performance, and create issues with the

interpretation of variable importance in model decisions [158].

Feature selection can be broadly categorised into filter, wrapper, and embedded methods

[159]. Filter methods include t-tests, information gain, correlation testing, and more ad-

vanced methods like Relief algorithms. Filter methods are model-independent and tend to

be computationally simple, offering fast performance. Most filter methods have the disad-

vantage of ignoring feature dependencies but are independent of the downstream model and

can therefore be seen as unbiased [159, 161, 160].

Wrapper and embedded methods are classifier-dependent, and the retention or elimination of

a feature is driven by the impact that the feature has on the classifier’s performance. Wrapper

methods perform some form of iteration around a classifier, modifying the input variables

according to changes in model performance. Examples include backward and forward fea-

ture elimination, genetic algorithms, and randomised hill climbing. Wrapper methods take

into account feature interactions but are more prone to overfitting and are computationally

intensive. Embedded methods offer better runtimes than wrapper methods. In embedded
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methods, the characteristics of a classifier are employed for the task of feature selection.

Examples include feature importance in tree-based learning algorithms, the weight vector of

support vector machines and regularisation methods such as Least Absolute Shrinkage and

Selection Operator (LASSO) [159, 161, 160].

The use of feature selection is quickly becoming the norm amongst biomarker studies ex-

ploring high-dimensional data, and this trend will likely continue as more extensive pro-

teomic, genomic, and transcriptomic data are acquired [162, 163]. Examples already ex-

ist for the successful application of feature selection for identifying biomarkers in sepsis.

A whole-genome transcriptomic analysis of messenger RNA isolated from urine employed

four independent feature selection techniques to identify an optimal subset of probes for dif-

ferentiating sepsis from non-infected controls, with an AUC score of 0.86 (0.77–0.93) [164].

Parthasarathy et al. identified novel deferentially expressed immature neutrophil subsets

in sepsis patients, using LASSO for feature selection prior to generating a Random Forest

model to differentiate sepsis patients and healthy controls [165]. Lukaszewski et al. applied

the Boruta algorithm (a wrapper method for Random Forest) to select a gene expression

signature that could differentiate sepsis from non-infected controls with an AUC of 0.897.

1.3.2 Moving beyond the ‘black box’: the promise of interpretable ma-

chine learning

As reliance on more complex statistical models becomes necessary to make sense of the

high-dimensional data explored for biomarker signatures, the risk of creating ‘black box’

models arises. When a model’s decisions cannot be interpreted, the risk of unchecked bias in

the training data occurs, and the ability to explain model outputs is completely diminished.

Therefore, it is of the utmost importance that steps are taken to generate transparent and

well-understood models.

Interpretable machine learning can be achieved through several techniques. The most straight-

forward is to ensure that the models are naturally interpretable, an example being linear

models. In a linear model, the prediction is a weighted sum of the variable inputs, and the

optimised weights can be interpreted as the contribution a variable makes to the prediction.

Simplistic models tend to underfit when there are complex non-linear relationships between

variables and the target class, encouraging the application of more complex models that
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are harder to describe. Some complex models still offer insight into their decision-making;

examples include ensembles of tree-based learners, like Random Forest. Since decision

trees split data at nodes using a chosen variable, the impurity measure at each node can be

weighted by the probability of reaching that node, giving a value for the importance of a

variable; this is commonly referred to as feature importance. For other complex models,

model-agnostic methods can be used, such as partial dependence plots, permutation testing,

and local surrogate models [166].

A recent advance in the development of interpretable machine learning technologies has

been the introduction of SHapley Additive exPlanations (SHAP) [167]. The SHAP frame-

work uses Shapely values to estimate the contribution of input variables to a model. The

Nobel prize-winning economist Lloyd Shapely first formulated Shapely values to answer the

question “given a coalition of actors that generate some output, what is the contribution of

each actor?”. The problem is complicated by interactions between individual members of

the coalition. Shapely values are computed for each coalition member to find an acceptable

answer to this question whilst considering the interaction terms. A Shapely value is calcu-

lated by first taking a sample of the coalition that contains the member of interest and then

compare to the same permutation with that member removed. The outcome value is calcu-

lated for both permutations, and the difference between these values represents the marginal

contribution of the missing member to the coalition where this member is absent. The proce-

dure is repeated across all possible coalition permutations, and each permutation’s marginal

contributions are calculated. The mean marginal contribution is the Shapely value for that

member. The SHAP authors took this concept and applied it to the context of machine learn-

ing, treating the input variables of a function as members of the coalition. To account for

the computational intensity of computing Shapely values, they introduced the Shapely kernel

to approximate Shapely values through much fewer permutations [166, 167]. SHAP values

were used recently to explain the outputs of an in-hospital mortality prediction algorithm for

critically ill patients with sepsis, identifying the importance of Glasgow Coma Score, blood

urea nitrogen, respiratory rate, urine output, and age to an XGBoost model [168]. SHAP

values are computationally inexpensive, offer transparent explanations relative to the aver-

age prediction, and can be extended to global model interpretations. SHAP values will be

explored further in Chapter 6 to explain the choice of biomarker signatures in sepsis.

31



CHAPTER 1. INTRODUCTION

1.4 The scope of this thesis

This thesis demonstrates comprehensive immunophenotyping followed by the application

of supervised machine learning models for identifying prognostic and diagnostic patterns in

sepsis. Novel contributions to cytometry bioinformatics are demonstrated and then applied

to a small yet complex dataset of patients sampled within 36 hours of their sepsis diagnosis.

The software developed as part of this work and the findings that I present have implications

beyond the study of sepsis and the identification of multi-biomarker panels but are broadly

applicable to all researchers performing cytometry data analysis. The work demonstrates

how to characterise the immune response with cytometry bioinformatics and use those in-

sights as input for a supervised machine learning framework. The final results chapter pro-

vides an end-to-end solution for utilising supervised machine learning algorithms to identify

combinations of informative biomarkers when faced with challenges such as class imbalance,

missing data, and multicollinearity. Descriptive analysis and statistical modelling focused on

identifying biomarkers that correlate with patient mortality and the underlying cause of in-

fection. The outputs presented here suggested new concepts for stratifying patients, directing

care, and delivering improved prognoses. Additionally, recognising biomarker combinations

that predict the causative pathogen within the first 36 hours of sepsis diagnosis has implica-

tions for delivering personalised care. The thesis delivered these elements in the following

sections:

Chapter 2 provided an overview of the methods used throughout this thesis. The Innate-like

T cells in sepsis (ILTIS) study was described. ILTIS was a comprehensive observational

study of sepsis patients identified according to the Sepsis-3 criteria and was the main subject

of this thesis. Additional data utilised for the validation of new methodologies was also

described.

Chapter 3 introduced CytoPy, a novel cytometry data analysis framework developed in the

Python programming language. CytoPy formed a foundation for reliable and practical analy-

sis of cytometry data in Python, creating data structures specifically designed for autonomous

analysis of cytometry data. Features included automated gating, batch correction, and clus-

tering analysis. CytoPy was validated on data from dialysis patients diagnosed with acute

peritonitis.
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Chapter 4 builds on the previous chapter by introducing a novel ensemble clustering algo-

rithm for cytometry data analysis. There are currently an overwhelming number of clus-

tering algorithms for cytometry analysis, each with its benefits and disadvantages. These

algorithms also include complex hyperparameters, and the outputs can differ significantly

between models. Inspired by the ‘wisdom of crowds’ approach, this chapter introduced the

geometric median clustering with weighted voting (GeoWaVe) algorithm, a novel ensemble

clustering algorithm to combine multiple clustering results.

Chapter 5 described the early immunological changes in severe sepsis patients and their

electronic health record data captured within 48 hours of their enrolment in the ILTIS study.

CytoPy and GeoWaVe were applied in an exploratory analysis that describes the phenotypes

of neutrophils, monocytes, conventional CD4 and CD8 T cells, and the unconventional T

cell populations of MAITs and Vδ2+ γδ T cells. The descriptive and univariate statistical

analysis explored the relationship between immune system variables and patient outcomes,

as well as the underlying cause of infection.

Chapter 6 detailed the creation of advanced statistical machine learning models that com-

bine all data from the ILTIS study to predict mortality and the underlying cause of infection.

A comprehensive machine learning pipeline was generated, including multiple imputation of

missing values, feature selection, model selection and evaluation, and interpretation of model

predictions with SHAP values. The work here demonstrated how biomarker signatures can

be identified from small yet complex data of severe sepsis patients and help generate new

hypotheses regarding potential combinations of biomarkers.
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2.1 Innate-like T cells in sepsis (ILTIS) study

The “Innate-Like T cells In Sepsis” (ILTIS) study was the primary focus of this work and the

subject of Chapter 5 and Chapter 6. Data generated from this study also appear in Chapter

4 for bench-marking ensemble clustering methods. The principal investigator was Professor

Matthias Eberl, and patients were recruited by the clinical lead Dr Matthew Morgan and the

research team at the critical care directorate within the Cardiff and Vale University Health

Board. Sample processing was performed by Dr Löic Raffray, Ms Sarah Baker, and myself.

Data acquisition in the laboratory, electronic data collection from the clinic, and data analysis

were performed by myself.

2.1.1 Ethics and consent

Recruitment of sepsis patients was approved by the Health and Care Research Wales Re-

search Ethics Committee under reference 17/WA/0253, protocol number SPON1609-17 and

IRAS project ID 231993, and conducted according to the principles expressed in the Decla-

ration of Helsinki. All participants provided written informed consent for the collection of

samples and their subsequent analysis. A waiver of consent system was used when patients

were unable to provide prospective informed consent due to the nature of their critical illness

or therapeutic sedation at the time of recruitment. In all cases, retrospective informed consent

was sought as soon as the patient recovered and regained capacity. In cases where a patient

passed away before regaining capacity, the initial consultee’s approval would stand. Recruit-

ment of healthy adult volunteers was approved by Cardiff University’s School of Medicine

Research Ethics Committee under reference 18/04.
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Inclusion criteria Exclusion criteria
Acute severe sepsis patients

Age > 18 years.
Pregnant, breastfeeding or females of
childbearing age in whom a pregnancy
test has not been performed.

Diagnosis of sepsis according to the
‘Sepsis-3’ criteria.

Severe immune deficiency, for example:
a diagnosis of AIDS, anti-rejection trans-
plant drugs, long-term high dose corticos-
teroid treatment (> 10mg prednisolone/-
day or equivalent).

Cared for in the intensive care unit.
Severe liver failure (Childs-Pugh III or
worse).

Within 96 hours of presumed onset of in-
fection.

Patient judged by admitting clinician un-
likely to survive for 3 days regardless of
treatment.

Patient already has or will require arterial
cannulation as part of standard treatment.

Patients admitted post-cardiac arrest.

Healthy volunteers

Age > 18 years.
Pregnant, breastfeeding or females of
childbearing age in whom a pregnancy
test has not been performed.

Any long term chronic disease or medica-
tion use.

Currently suffering from an acute illness
however minor.

Table 2.1: The inclusion and exclusion criteria for recruitment into the ILTIS study.

2.1.2 Patient recruitment

Sepsis patients over the age of 18 years old with a diagnosis of sepsis, according to the Third

International Consensus Definitions for Sepsis and Septic Shock (‘Sepsis-3’), were cared for

in the intensive care unit at the University Hospital of Wales in Cardiff and were recruited

within 36 hours of the presumed onset of infection when they already had or would require

arterial cannulation as part of standard treatment. Healthy controls were recruited through

institutional advertisement, with all donors signing a consent form and being presented with

a participant information leaflet. The inclusion and exclusion criteria for acute severe sepsis

patients and healthy donors are detailed in Table 2.1.
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2.1.3 Sample and data collection

A day 1 sample of 30 ml of peripheral blood was taken from an arterial line within the first

36 hours of sepsis diagnosis with suspected infection. Samples were taken in an EDTA

vacutainer collection tube and transported to the laboratory on ice.

Patient demographics, body mass index, and the unit outcome was obtained from the Cardiff

and the Vale University Health board critical care Ward Watcher software. All clinical data

were collected retrospectively from the Cardiff and the Vale Health Board Clinical Portal,

including patient mortality, captured as either death within 30 days or 90 days after enrol-

ment.

Haemotology, biochemistry, blood gas analyser, and other point-of-care testing data were

extracted from the web interface as HTML files and processed following the Data Protec-

tion Act (DPA) 2018, General Data Protection Regulation (GDPR), and Cardiff and the Vale

Health Board data protection policy. Consent to access electronic medical records was ob-

tained during patient recruitment, and only data relevant to this study were accessed and re-

tained for analysis. Data were extracted in a secure environment within the hospital computer

network and anonymised prior to analysis. Python version 3.8 [169] and the Beautiful Soup

package [170] was used to process electronic health records and generate an anonymised

tabular database. Electronic health records from seven days before and after enrolment were

included in this database. A patient could have multiple physiological and biochemical mea-

surements for the same variable within the 14-day window. Therefore, to avoid biasing our

observations by including events outside the episode of sepsis, data were summarised as

follows:

• The median value within 48-hours prior to enrolment and 8-hours after enrolment.

• The value obtained closest to the enrolment date and time.

Microbiology data were captured within the hospital laboratory information management

system (LIMS) and accessed through the patient’s electronic medical record. The primary

causative pathogen was obtained from a positive microbiological culture of pure growth or

positive virology in any sample from 72 hours preceding recruitment to 72 hours follow-

ing recruitment in the critical care unit. The microbiological techniques used in the study

hospital for diagnostics included standard microscopy and culture, Matrix Assisted Laser
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Reagent Constituents
FACS buffer 2% v/v foetal calf serum (Invitrogen)

0.02% Sodium azide (Fisher Scientific)

PBS (1x)

Blocking buffer 1% Human Purified IgG (Kiovig; Baxter)

FACS buffer (1x)

Table 2.2: All solution based reagents used including their constituent parts.

Desorption/Ionization Time-of-flight Mass Spectrometry (MALDI-TOF) for bacterial iden-

tification, viral PCR studies, and urine Legionella antigen testing. The causative pathogen

was checked against clinical notes and discharge summaries for clarification and confirmed

by a critical care consultant. Patients whose infectious source and causative pathogen could

not be obtained were labelled culture negative. Infections were grouped into Gram-positive

and Gram-negative groups.

2.1.4 Reagents

The solution-based reagents used are described in Table 2.2. All reagents were kept under

the conditions specified by the manufacturer and added constituents filtered using a 0.22 µm

pore size hydrophilic polyethersulfone membrane filter. Stock tests were performed on new

batches before use in experiments.

2.1.5 Isolation of leukocytes, peripheral blood mononuclear cells, and

cell-free plasma from whole blood

The procedure for isolating leukocytes, peripheral blood mononuclear cells (PBMC), and

cell-free plasma is detailed in Figure 2.1. For the analysis of monocytes and neutrophils, 3

ml of peripheral blood was subjected to red blood cell lysis: whole blood was exposed to 1:10

RBC lysis buffer (eBiosciences - Thermofischer, ref 00-4300-54), gently mixed, incubated

for 12 minutes at room temperature, and centrifuged at 400 × g at room temperature. The

supernatant was discarded, and the leukocyte fraction was retained and washed with PBS.
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The remaining sample of whole blood was centrifuged at 300 × g at room temperature,

and the supernatant was removed, centrifuged again, and then stored at -70◦C. This cell-free

plasma was analysed at a later time point for the quantification of cytokines and chemokines.

PBMCs were isolated from the remaining content of the samples using density centrifuga-

tion: whole blood was layered onto 15 ml of Lymphoprep™ density gradient medium (Stem-

Cell Technologies, ref 07801), centrifuged, and the mononuclear layer carefully harvested

using a pipette and washed with PBS.

Figure 2.1: Schematic of sample processing: isolation of leukocytes, peripheral blood
mononuclear cells (PBMCs), and cell-free plasma.
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2.1.6 Flow cytometry

Three monoclonal antibody-fluorochrome staining panels were applied for cell surface stain-

ing. Two staining panels were applied to PBMCs for the identification of T lymphocyte sub-

sets (Table 2.3): classical T cells and non-classical T cells (MAITs and Vδ2+ γδ T cells).

The first of these two staining panels (labelled ‘T1’) identified memory subsets, and the sec-

ond (labelled ‘T2’) identified activated subsets. The third staining panel (Table 2.4) was

applied to the lymphocyte fraction of whole blood after the removal of erythrocytes by RBC

lysis and identified monocytes and neutrophils and activated subsets of each.

The T cell panels (Table 2.3) included CD3, CD4, CD8, Pan-γδ, and Vδ2 for the identifi-

cation of conventional CD4 and CD8 T cells, as well as Vδ2+ γδ T cells. The surrogate

markers CD161 and Vα7.2 were included to identify MAIT cells. In the dump channel

(V500 conjugate), CD14 and CD19 were included to eliminate monocytes and B cells. The

markers CD45RA, CCR7, and CD27 enabled memory subsets of T cells to be differenti-

ated, and CD57 was included as a marker of T cell senescence. The markers CD25, CD69,

HLA-DR, and CXCR3 allowed the identification of activated cell states.

The panel for the identification of monocytes and neutrophils (Table 2.4) consisted of CD14

and CD15, which, when combined with forward and sideward scatter, allowed for the dif-

ferentiation of monocytes and neutrophils. The costimulatory receptor CD86 combined with

the MHC class II molecule HLA-DR served as activation and antigen-presenting capability

markers. CD11b (also known as ITGAM) modulates cell adhesion, migration, and phagocy-

tosis, and its expression is increased upon activation of monocytes and neutrophils. CD62L

(also known as L-selectin) is a cell adhesion molecule important in leukocyte trafficking and

is shed upon activation [17]. These markers, combined with CD40 (a member of the TNF

receptor superfamily) and CD64 (an early activation marker), were used to characterise acti-

vated states of monocytes and neutrophils and evaluate their antigen-presenting capabilities.

For each staining panel, a pellet of 2× 106 cells was stained with 3µl live/dead stain (fixable

Aqua; Invitrogen) and incubated at room temperature for 15 minutes in the dark. Follow-

ing incubation, cells were washed with PBS and re-suspended in FACS buffer. Cells were

blocked for non-specific antigen binding using 1% human IgG (Kiovig; Baxter) diluted in

FACS buffer and incubated for 15 minutes on ice in the dark. The cells were rewashed with

FACS buffer before staining with the relevant monoclonal antibodies.

39



CHAPTER 2. MATERIALS AND METHODS

Antigen Conjugate Clone Isotype Manufacturer
CD3* APC/FIRE SK7 Mouse IgG1, κ Biolegend
CD4* PE-Cy5.5 S3.5 Mouse IgG2α, κ Life Tech

(Thermo Fisher)
CD8a* BV711 RPA-T8 Mouse IgG1, κ Biolegend
CD14* V500 M5E2 Mouse IgG2α, κ BD
CD19* V500 HIB19 Mouse IgG1, κ BD
CD25† PE-Cy7 M-A251 Mouse IgG1, κ BD
CD27ˆ PE-Cy7 M-T271 Mouse IgG1, κ Biolegend
CD45RAˆ PE Dazzle HI100 Mouse IgG2b, κ Biolegend
CD57ˆ FITC NK-1 Mouse IgM, κ BD
CD69† PE-CF594 FN50 Mouse IgG1, κ BD
CD161* APC 191B8 Mouse IgG2α, κ Miltenyi
CD197
(CCR7)ˆ

BV421 G043H7 Mouse IgG2α, κ Biolegend

CXCR3† FITC 49801 Mouse IgG1, κ R&D
HLA-DR† BV421 G46-6 Mouse IgG2α, κ BD
TCR-pan-γδ* PE-Cy5 IMMU510 Mouse IgG1, κ Beckman Coulter
Vα7.2* BV605 3C10 Mouse IgG1, κ Biolegend
Vδ2* PE B6 Mouse IgG1, κ BD

Table 2.3: Antibody-fluorochrome cocktails applied to PBMCs for identifying subsets of T
lymphocytes.
*Linage markers included in both staining panels (T1 & T2).
ˆ Memory and effector markers included in T1 staining panel.
†Activation markers included in T2 staining panel.

Antigen Conjugate Clone Isotype Manufacturer
CD11b BV421 ICRF44 Mouse IgG1, κ Biolegend
CD14 PE-Cy7 M5E2 Mouse IgG2α, κ Biolegend
CD15 BV605 W6D3 Mouse IgG1, κ Biolegend
CD19 V500 HIB19 Mouse IgG1, κ BD
CD40 PE MAB89 Mouse IgG1, κ Beckman Coulter
CD62L PE-Cy5 DREG-56 Mouse IgG1, κ BD
CD64 APC-H7 10.1 Mouse IgG1, κ BD
CD86 FITC 2331 Mouse IgG1, κ Biolegend
HLA-DR BV711 L243 Mouse IgG2α, κ Biolegend

Table 2.4: Antibody-fluorochrome cocktail for cell-surface staining of Leukocytes, after red
cell lysis, for identifying subsets of monocytes and neutrophils.

Cells were acquired using an 16-colour BD LSRFortessa™flow cytometer (BD Biosciences,

Wokingham, UK) and the BD FACSDiva™software. The flow cytometer was calibrated

using BD FACSDiva™CS&T research beads (BD Biosciences, ref 650622) prior to acquisi-

tion to verify optical path and stream flow. Compensation for spectral overlap was accounted

for using BD CompBeads (BD Biosciences, positive control ref 51-90-9001229 and negative
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control ref 51-90-9001291) and a spillover matrix generated using the FACSDiva™software.

Compensation was checked for errors using the FlowJo software (TreeStar) prior to analysis.

The CytoPy software, described in full in Chapter 3, was used for all subsequent analyses

of cytometry data. T cells, monocytes, and neutrophils were gated on their appearance in

side and forward scatter area/height and exclusion of live/dead staining (fixable Aqua; Invit-

rogen). This pre-processing step was performed using a mixture of manual and autonomous

gating. An example of the gating strategy for T cells is given in Figure 2.2, and for mono-

cytes and neutrophils in Figure 2.3. The exclusion of monocytes and B cells from PBMCs

in T cell staining was ensured by the inclusion of CD14 and CD19 in the live/dead staining

channel. When identifying monocytes and neutrophils in the leukocyte fraction of whole

blood, T cells were removed by their appearance in side and forward scatter area/height, and

B cells were excluded by including CD19 in the live/dead staining channel.

Before analysis with the CytoPy software, quality control checks of the flow cytometry stan-

dard (FCS) files were performed using the FlowAI software [142] in the R programming

language version 4.0. The FlowAI package removes unwanted events from cytometry data

by detecting abrupt changes in flow rate, instability of signal acquisition, and outliers in the

lower and upper limits of the dynamic range. The FlowAI software was run using the default

parameters, and each file was checked manually using the R shiny interface.
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Figure 2.2: Gating strategy applied with the CytoPy software for the identification of single
live T lymphocytes, conventional CD4+ and CD8+ subsets, and unconventional T cells.
Gates were generated using autonomous gating as discussed in chapter 3.3.3. T lymphocytes
are provided as input for downstream clustering analysis.
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Figure 2.3: Gating strategy applied with the CytoPy software for the identification of single
live monocytes and neutrophils. Gates were generated using autonomous gating as discussed
in chapter 3.3.3. Monocyte and neutrophils populations were then combined and provided
as input for downstream clustering analysis.
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2.1.7 Luminex™ and ELISA

As described in 2.1.3, frozen cell-free plasma was obtained from whole blood and thawed

in two batches. Cytokines and chemokines (Table 2.5) were quantified according to manu-

facturer guidelines using Luminex™standard sensitivity magplex assays based on the xMAP

(multi-analyte profiling) technology. This technology uses micro-sphere beads labelled with

monoclonal-fluorochrome conjugate antibodies to capture multiple analytes simultaneously.

A compact flow cytometer is then used to quantify beads with bound analytes. Data were

acquired on a Luminex 200™compact analyser. A standard panel of cytokines, chemokines,

and acute-phase proteins was constructed as per the manufacturer’s guidelines. The chosen

analytes reflect anti-inflammatory and pro-inflammatory markers of interest and acute-phase

proteins previously implicated in sepsis.

Concentrations were obtained by fitting a standard curve using the Python programming

language [169], and SciPy version 1.7.1 [171]. A five-parameter logistic fit using the gener-

alised hill equation for standard dose-response curves [172] was used per the manufacturer’s

guidelines. Data quality was assessed by observing the coefficient-of-variation and standard

recovery. Where less than three observations fall within the standard range, the majority of

observations (>50%) had a CV greater than 50%, or the standard recovery was outside a

range of 75% to 125%, analytes were deemed of poor quality and excluded from subsequent

analysis (reasons for exclusion are detailed in Table 2.5).

TNF-α (eBioscience; ref:88-7346), IFN-γ (eBioscience; ref:88-7316), and IL-6 (R&D Sys-

tems; ref: DY206) were measured using single ELISA, as per manufacturer guidelines. Un-

like with the multi-plex Luminex™ assays, ELISAs were performed in a single batch.

Batch effect in Luminex™ multi-plex assay experiments was addressed with posthoc correc-

tion and data alignment. Using the Python programming language [169] data were log base

2 transformed and values replaced with a z-score, as previously described by Tomic et al.

[173] and Whiting et al. [174].
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Analyte Method Avg.
standard
recovery (%)

Reason for exclusion (if excluded)

CXCL8 Luminex™ 101.2
CXCL10 Luminex™ 108.2
CXCL13 Luminex™ 97.4
CCL2 Luminex™ 98.7
CCL3 Luminex™ - All observations outside standard range
CCL5 Luminex™ 100.2
CCL7 Luminex™ - All observations outside standard range
CCL11 Luminex™ - > 90% of observations outside standard

range
CXC3CL1 Luminex™ - Average coefficient of variation > 50%
FLT3
Ligand

Luminex™ 99.2

G-CSF Luminex™ 100.1
GM-CSF Luminex™ - All observations outside standard range
IFN-γ Single ELISA 125.1
IL-1α Luminex™ 99.5
IL-1β Luminex™ - All observations outside standard range
IL-2 Luminex™ - > 90% of observations outside standard

range
IL-4 Luminex™ 98.7
IL-6 Single ELISA 100.0
IL-10 Luminex™ 98.9
IL12 p70 Luminex™ - All observations outside standard range
IL-15 Luminex™ 99.9
IL-17 Luminex™ - > 90% of observations outside standard

range
IL-21 Luminex™ - All observations outside standard range
MMP-8 Luminex™ 96.7
MMP-9 Luminex™ 96.7
Oncostatin
M

Luminex™ 100.4

Procalcitonin Luminex™ 99.0
TNF-α Single ELISA 100.0
TNF-β Luminex™ - All observations outside standard range
VEGF Luminex™ 99.3
PD-L1 Luminex™ 100.5
Ferritin Luminex™ 98.6
Lactoferrin Luminex™ 100.1

Table 2.5: Cytokines and chemokines identified in cell-free plasma in this study using either
Luminex™ multi-plex assays or single ELISA. Where an analyte is excluded from down-
stream analysis, reasons are given in this table.
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2.1.8 Lipid analysis

Lipid concentrations in thawed cell-free plasma were captured by mass spectrometry. Analy-

sis was performed by Ms Linda Moet and kindly provided for inclusion in statistical machine

learning models described in Chapter 6. Normalised concentrations for the following lipids

were provided: C4 carnitine, C6 carnitine, C8 carnitine, C10 carnitine, C12 carnitine, C2

carnitine, C14 carnitine, C16 carnitine, C18 carnitine, C3 carnitine, C18:1 carnitine, C12-

2OH/3OH, C22:6, C18:2, C18:3, C20:5, C18:1, C8:0, C10:0, C12:0, C20:4, C14:0, C16:0,

C18:0.

A calibration curve was prepared with concentrations of lipids in the range expected to be

encountered in the samples. The calibration curve included internal standards at the same

concentration as when added to the samples. Samples were extracted batch-wise in ran-

domized batches. Per batch, five blanks (10 µl methanol) were extracted in parallel with

the samples. 10 µl of the sample were mixed with 250 µl of methanol containing internal

standards. Samples were sonicated in iced water for 1 minute, vortexed at 1400 rpm for 10

minutes at 4◦C, and then centrifuged at 13000 rpm for 10 minutes. 100µl of supernatant

were derivatized by adding 50µl 3-NPH solution and 50 µl EDC and pyridine solution and

subsequent incubation for 30 minutes at 40◦C in a water bath. The reaction was quenched

by adding 100µl 0.5% formic acid solution in 75% methanol and incubating for 30 minutes

at 40◦C in a water bath. Until measurement samples were stored at -20◦C. Before quantifi-

cation on the machine, samples were spun down, and the supernatant was transferred to be

measured. A QC sample was prepared by pooling aliquots from all extracted samples. The

QC sample was measured after every ten other measurements on the machine.

Peaks were integrated using the MultiQuant software (SCIEX), and concentrations in sam-

ples were calculated based on internal standards using Microsoft Excel. For lipids with a

corresponding deuterated lipid included in the analysis, concentrations were calculated based

on the lipid to IS ratio and internal standard concentration. A calibration curve of the lipid to

a similar deuterated lipid ratio was used for other lipids. All further analysis was conducted

using R and GraphPad Prism version 8.4.3 for Windows (GraphPad Software, San Diego,

California USA) and MetaboAnalyst 4.0 and higher (metaboanalyst.ca).
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2.2 Patient immune responses to infection in Peritoneal

dialysis (PERIT-PD) study

Data obtained as part of the “patient immune responses to infection in peritoneal dialysis

(PERIT-PD)" study were used in this work as a validation for the CytoPy software described

in Chapter 3 and a novel ensemble clustering algorithm described in Chapter 4. The principal

investigator was Prof. Matthias Eberl, and patients were recruited by the clinical lead, Dr

Kieron Donovan. Sample processing was performed by Dr Raya Ahmed, Ms Sarah Baker,

and Dr Simone Cuff. Electronic data collection was performed by Dr Raya Ahmed and Dr

Simone Cuff, and data analysis by myself.

2.2.1 Ethics and consent

All methods were carried out in accordance with relevant guidelines and regulations and

written informed consent was obtained from all subjects. Recruitment of peritoneal dial-

ysis (PD) patients was approved by the South East Wales Local Ethics Committee under

reference number 04WSE04/27, and conducted according to the principles expressed in the

Declaration of Helsinki. The study was registered on the UK Clinical Research Network

Study Portfolio under reference numbers #11838 “Patient immune responses to infection in

Peritoneal Dialysis" (PERIT-PD).

2.2.2 Patient recruitment

The study cohort comprised 21 adult individuals receiving peritoneal dialysis (PD) who were

admitted between October 2016 and October 2018 to the University Hospital of Wales,

Cardiff, on day 1 of acute peritonitis, before commencing antibiotic treatment (47.6% fe-

male; median age 53.0 years, range 30.0-86.0 years). 30 age and gender-matched individu-

als receiving PD and with no previous infections for at least three months served as stable,

non-infected controls (53.3% female; median age 59.7 years, range 39.7-84.3 years). Sub-

jects known to be positive for HIV or hepatitis C virus were excluded. Clinical diagnosis

of acute peritonitis was based on abdominal pain and cloudy peritoneal effluent with >100

white blood cells/mm3. According to the microbiological analysis of the effluent by the rou-

tine Microbiology Laboratory, Public Health Wales, episodes of peritonitis were defined as
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infections caused by Gram-positive or Gram-negative organisms. Cases of fungal infection

and negative or unclear culture results were excluded from this analysis. A summary of the

bacterial culture results for patients with peritonitis is shown in Table 2.6.

Culture result N
Coagulase-negative
Staphylococcus

6

Alpha-haemolytic Streptococcus 3
Staphylococcus aureus 1
Escherichia coli 1
Streptococcus agalactiae 1
Corynebacterium amycolatum 1
Pseudomonas aeruginosa 1
Yeast 1
Mixed growth 2
No growth/unknown 4

Table 2.6: Summary of microbiological culture results for peritoneal dialysis patients with
acute peritonitis.

2.2.3 Sample and data collection

Peritoneal leukocytes were harvested from overnight dwell effluents and processed as previ-

ously described [175]; samples were treated with DNase (Sigma; 1:2,500 dilution) when

excessive debris was visually apparent. Mononuclear cells from peritoneal effluent and

PBMCs from whole blood were obtained with density gradient centrifugation using Ficoll

(Ficoll-Paque PLUS; Fisher Scientific).

2.2.4 Flow cytometry

Peritoneal leukocytes were stained using monoclonal antibodies against CD1c, CD3, CD14,

CD15, CD16, CD19, CD45, CD116, HLA-DR and Siglec-8 (Table 2.7) and identified as

CD45+ immune cells, CD3+ T cells, CD19+ V cells, CD15−CD14+ monocytes/macrophages,

CD15+ neutrophils, CD15−CD14±CD1c+ dendritic cells, and CD15−SIGLEC-8+ eosinophils.

T cell subsets in peritoneal mononuclear cells and PBMCs were identified using monoclonal

antibodies against CD3, CD4, CD8, TCR-Vα7.2, TCR-Vδ2, TCR-pan-γδ, CD45RA, CCR7,

and CD27 (Table 2.8). Cell acquisition by flow cytometry was performed using a 16-colour

BD LSR Fortessa cell analyser (BD Biosciences). Live single cells were gated based on side

and forward scatter area/heigh, and live/dead staining (fixable Aqua; Invitrogen).
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Autonomous gating, supervised classification, and clustering analysis discussed in Chapter

3 were compared to expert-driven manual gating. Gating was performed using FlowJo v10.7

(TreeStar) by two independent experts. The total number of events for each gate of interest

were exported as a CSV file. The average number of events between the two independent

analysts was used for comparison to autonomous methods.

Antigen Conjugate Clone Manufacturer
CD45 Alexa Fluor 700 2D1 Biolegend
CD14 FITC 63D3 Biolegend
CD16 Per-CP Cy5.5 3G8 Biolegend
CD3 APC/Fire UCHT1 Biolegend
SIGLEC-8 APC 7C9 Biolegend
CD1c BV421 L161 Biolegend
CD15 BV605 SSEA-1 Biolegend
HLA-DR BV711 L243 Biolegend
CD116 PE 4H1 Biolegend
CD19 PE-Cy7 HIB19 Biolegend

Table 2.7: Flow cytometry staining panel for pertioneal leukocytes.

Antigen Conjugate Clone Manufacturer
CD3 APC/Fire UCHT1 Biolegend
CD4 PE-Cy5.5 OKT4 Biolegend
CD8 BV711 RPA-T8 Biolegend
CD161 APC 191B8 Miltenyi Biotec
Vα7.2 BV605 3C10 Biolegend
TCR-pan-γδ PE-Cy5 IM2662 Beckman Coulter
Vδ2 PE B6 RUO BD Biosciences
CCR7 BV421 G043H7 Biolegend
CD27 PE-Cy7 M-T271 Biolegend
CD45RA PE Dazzle HI100 Biolegend

Table 2.8: Flow cytometry staining panel for T cell subsets in peritoneal mononuclear cells
and PBMCs.
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2.3 Critical assessment of population identification in cy-

tometry data by supervised classification

Supervised classifiers discussed in Chapter 3.3.6 were compared using the Critical Assess-

ment of Population Identification Methods (FlowCAP) challenge data [176]. The FlowCAP-

I data consist of four human studies (graft-versus-host disease, diffuse large B-cell lym-

phoma, symptomatic West Nile virus infection, and healthy donors) and one mouse study

(hematopoietic stem cell transplant). Data were labelled and pre-processing performed (re-

moval of debris, dead material, and fluorescence compensation applied) at the source labora-

tory responsible for acquiring the original data. Here, classifiers were trained on 25% of data

and classification performance was tested on the remaining 75%. Performance was reported

as the average of macro F1 scores across all five datasets, where the F1 score for data with

|C| set of possible classes is given as:

macro F1 score =
2

|C|
∑
c∈C

precisionc · recallc
precisionc + recallc

(2.1)

Six supervised machine learning algorithms, housed within the CytoPy software, were com-

pared without hyperparameter tuning:

1. Logistic regression with balanced class-weights; implemented in Scikit-Learn version

0.24 [177]

2. Linear discriminant analysis without any shrinkage and number of components equal

to either the number of classes or number of features, depending on which is minimum;

implemented in Scikit-Learn version 0.24 [177]

3. Support vector machine with a radial basis function kernel without regularisation and γ

as 1
n

where n is the number of available features; implemented in Scikit-Learn version

0.24 [177]

4. K nearest neighbours classifier with k equal to 30; implemented in Scikit-Learn ver-

sion 0.24

5. XGBoost using default parameters; implemented in xgboost version 1.2 [178]
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6. Feed-forward neural network with three hidden layers of size 12, 6, and 3 nodes, L2

penalty of 1×10−4, softplus activation function on the hidden layers, softmax activa-

tion function of the outer most layer, and categorical cross-entropy as the loss function;

implemented in Tensorflow Keras version 2.4 [152]
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2.4 Statistical analysis

2.4.1 Statistical hypothesis testing

Throughout this thesis, statistical analysis was performed using the Python programming

language version 3.8. Hypothesis testing was performed using the Scipy (v1.7) [171] and

Pingouin (v0.5) [179] libraries. Graphical representation of data and illustrations were gen-

erated using Matplotlib (v3.5) [180], Seaborn (v0.12) [181], and edited using Inkscape (v1.2;

inkscape.org). Where required, the R programming language (version 4.1) was employed,

and its use is described in the text where appropriate.

All variables were visualised using quantile-quantile plots and tested for univariate normal-

ity by the Shapiro-Wilk test. Non-parametric testing was employed for univariate compar-

isons of survivors and non-survivors, culture-positive and culture-negative sepsis, and Gram-

negative cause versus Gram-positive cause in sepsis, in Chapter 5. The Mann–Whitney U test

for comparison of independent samples was used to test for statistical significance. Through-

out this thesis, a p-value equal to or less than 0.05 was considered significant, but original

p-values are reported for transparency. Where the number of comparisons was low (less than

15), p-values were adjusted to control the family-wise error rate using Bonferroni–Holm ad-

justment. This step-wise procedure reduces the risk of a type I error (falsely rejecting the null

hypothesis, i.e. false positives). The Bonferroni–Holm is a conservative method and offers

lower statistical power when making many comparisons [182]. Therefore, the Benjamini-

Hochberg adjustment was adopted for the analysis presented in Figure 5.6, 5.8, 5.9, 5.10,

and 5.11. The Benjamini-Hochberg procedure controls the false discovery rate when per-

forming many comparisons. It reduces the risk of a type II error at a slightly increased risk

of type I errors (i.e. it reduces the risk of false negatives at a slightly increased risk of more

false positives).

Fisher’s exact test was used for comparing proportions of patient categories in sepsis in

Chapter 5.3.1. The Fisher’s exact test was also used for generating odds ratios when com-

paring cytokines and chemokines above and below detection thresholds in Chapter 5.3.3.

Where only two groups were compared, the Scipy implementation was used. Otherwise, the

fisher.test function in R was employed.
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2.4.2 Statistical machine learning

The statistical machine learning models described in Chapter 6 were developed using Python’s

Scikit-Learn (v1.1) library. Models were compared by cross-validation and holdout perfor-

mance and tested for a significant difference in variance using the non-parametric Friedman

test. Where significant, pairwise post hoc analysis was performed using the Nemenyi test.

Exact training, testing, and evaluation methodologies are described in full within the results

section of Chapter 6.
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3 | Development and validation of CytoPy, an open-

source framework for cytometry data analysis in

Python

3.1 Introduction

Cytometry data analysis has undergone a paradigm shift in response to the growing number

of parameters observed in any one experiment. As the field evolves, the traditional method

of manual gating by sub-setting single-cell data into populations and encircling data points

in hand-drawn polygons in two-dimensional space has proven laborious, subjective, and dif-

ficult to standardise. This limitation was realised during data collection for the ILTIS study

discussed in the methodology section. The ILTIS study consists of three flow cytometry

staining panels, each with 12 or more parameters, collected over three years to characterise

the innate immune response in severe sepsis. The complexity of this study presents a sig-

nificant challenge for timely and accurate data analysis. Other researchers have identified

equivalent challenges resulting in a cross-disciplinary effort often termed “cytometry bioin-

formatics” that addresses such concerns. This new discipline seeks to leverage complex

computer algorithms and machine learning to automate analysis and improve the investiga-

tor’s ability to extract meaning from high-dimensional data.

Where cytometry is used for data acquisition, the typical objective is to discern differences

between groups of subjects or experimental conditions or to identify a phenotype that cor-

relates with an experimental or clinical endpoint. To this end, a computational approach

to the analysis of cytometry data can take one of two strategies: to group events based on

similarity (e.g. cell populations), which then form the variables (often descriptive statis-

tics of the obtained groups) the investigator uses to test their hypothesis, or directly model

the acquired multidimensional distribution with respect to a chosen endpoint. Classifica-

tion strategies can be further subdivided: autonomous gating replicates traditional gating

through the use of algorithms (flowDensity [117], OpenCyto [120]); high-dimensional clus-

tering groups events according to their individual phenotypes (FlowSOM [130], PhenoGraph

[131], Xshift [134], SPADE [111]); and supervised classification where training on an ex-
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ample of manually gated data produces a classifier capable of distinguishing cell populations

(FlowLearn [122], ACDC [183], DeepCyTof [125]). Modelling strategies have been suc-

cessfully adopted in applications such as ACCENSE [129] CellCNN [127], CytoDX [184]

and in the work described by Hu et al [128]. This approach has the benefit of removing any

subjectivity and can be considered truly automated but requires the pooling of sample data

and is, therefore, sensitive to batch effects.

In addition, various pieces of software have been developed for data handling, transfor-

mation, normalisation and cleaning (e.g. flowCore, flowIO, flowUtils, flowTrans, reFlow,

flowAI), visualisation (e.g. ggCyto, t-SNE, UMAP, PHATE), and pipelines for specific ap-

plications (e.g. Citrus, MetaCyto, flowType/RchyOptimyx) [186, 132, 105, 185]. However,

there is no widespread adoption of these methods yet, nor is there a consensus on apply-

ing such techniques, with much of the analysis pipeline left to the individual investigator

to establish. This inconsistency results in projects amassing collections of custom scripts

and data management that are not standardised or centralised, making reproducing results

difficult and making for a daunting landscape for newcomers to the field.

The aforementioned difficulties were faced when addressing the large quantities of single-

cell data generated in the immunophenotyping of patients with severe sepsis. In response

to this, I developed “CytoPy”, a novel analysis framework that aims to address these issues

whilst granting access to state-of-the-art machine learning algorithms and techniques widely

adopted in cytometry bioinformatics. CytoPy is developed and maintained in the Python

programming language, which prides itself on readability and a beginner-friendly syntax.

CytoPy incorporates popular data science and machine learning libraries such as Pandas

[187], Scikit-Learn [177], and Tensorflow [152], with an application programming interface

(API) designed to help expand cytometry bioinformatics in the Python ecosystem. In addi-

tion, CytoPy provides convenient access to algorithms that have already gained popularity

amongst the cytometry community, such as Phenograph [131], UMAP [137] and FlowSOM

[130].

In this chapter, the design and implementation of CytoPy are discussed. The performance of

supervised classification of cell populations is benchmarked using the Flow Cytometry: Crit-

ical Assessment of Population Identification Methods competition (FlowCAP), a collection

of data curated for the assessment of cytometry bioinformatics methods previously used for
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validating supervised methods [116]. The FlowCAP competition provides example data that

have been heavily pre-processed and is not representative of data encountered in extensive

clinical studies. Therefore, CytoPy was also challenged with identifying T cell subsets in

PBMCs obtained as part of the “Patient immune responses to infection in Peritoneal Dial-

ysis" (PERIT-PD) study led by Prof. Matthias Eberl at Cardiff University. Data from this

study was generated by Dr Raya Ahmed, Dr Simone Cuff and Ms Sarah Baker. This study

was chosen because of local expertise regarding the data, prior publications from the group

forming a ‘ground truth’ for comparison of findings, and the challenging data with a mixture

of staining artefacts and batch effect. After validating individual components, the CytoPy

framework is applied in its entirety to characterise the local immune response of patients

from the PERIT-PD study.
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3.2 Aims

1. Design and implement a novel programming framework for cytometry data analysis

with the following qualities:

(a) A data-centric design with a dynamic database that can scale, and facilitates an

iterative analytical environment that tracks the output of multiple complex tasks

for improved data standardisation

(b) Facilitates the implementation of state-of-the-art machine learning algorithms for

characterisation of cells based on cell-surface marker expression

i. Must allow for the use of multiple methodologies and handle the results in

such a manner that they can be saved and compared

ii. Generate an analytical environment that promotes transparency of autonomous

results and provides the necessary tools for exploring and criticising results

(c) Provides seamless integration of clinical/experimental metadata into exploratory

data analysis

(d) Provides a “low-code” interface that reduces the analytical burden of complex

cytometry analysis

(e) Demonstrate that this novel programming framework is capable of fundamental

tasks such as handling *.fcs files, applying compensation, and cleaning data of

cellular debris and artefacts

2. Provide a strategy for assessing experimental batch effect and methods for reducing its

impact on autonomous analysis

3. Critically assess the capabilities of: autonomous gating, supervised classification, and

unsupervised classification of cell populations

4. Validate this novel programming framework on real-world data, demonstrating that:

(a) This new framework meets all the specifications laid out in aim (1)

(b) This new framework can, at a minimum, confirm the findings of multiple prior

immunological studies, thus validating its use
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3.3 Results

3.3.1 Design & implementation

Data analysis depends on reliable data management, ensuring reproducible findings and fos-

tering collaboration. A typical cytometry project consists of many Flow Cytometry Standard

(FCS) files, clinical or experimental metadata, and additional information generated through-

out the analysis (e.g. gating, clustering results, cell classification, sample-specific meta-data).

A further complication is the iterative nature of cytometry data analysis. To account for this,

CytoPy is anchored on a document-orientated database, MongoDB [188]; in this database,

data are stored in JavaScript Object Notation (JSON)-like documents in a tree. This design

choice has many advantages, including a simplified design, dynamic structure (i.e. database

fields are not ‘fixed’ and therefore resistant to unforeseen future requirements), and ease to

scale horizontally, thereby improving integration into web applications and collaboration. In

this respect, CytoPy depends upon MongoDB being deployed either locally or via a cloud

service, and MongoEngine [189], a Document-Object Mapper based on the PyMongo driver.

An overview of the CytoPy framework is given in Figure 3.1 including the recommended

pathway for analysis and the pattern followed in subsequent analysis in this thesis (although

the modular design allows for individual elements of CytoPy to be used independently). Cy-

toPy follows an object-orientated design with a document-object mapper for commitments

to and collection from the underlying database. The user interacts with the database using

an interface of classes, each designed for one or more tasks. To accommodate expansion

and changing requirements, CytoPy is data-driven whilst algorithm-agnostic, meaning new

autonomous gating, supervised classification, clustering, or dimensionality reduction algo-

rithms can be introduced to this infrastructure and applied to cytometry data using one of

the appropriate classes. CytoPy makes extensive use of the Scikit-Learn [177] and SciPy

[171] ecosystems. Throughout an analysis, whenever single-cell data are retrieved from the

database, they are stored in memory as Pandas DataFrames that are accessible for custom

scripting at any stage.

Following the steps in Figure 3.1, a typical analysis in CytoPy would be performed as follows

(functions shown in italics and class names are shown in italics with title-case):
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Figure 3.1: Single cell data and experiment/clinical metadata (1) are used to populate a
project within the CytoPy database (2). The CytoPy database models analytical data in
MonogDB documents (cylinder), and an interface of CytoPy classes retrieves and commits
data to this database (dotted rounded rectangle). Utility modules perform regular tasks such
as data transformations and sampling throughout the framework. The components of this
interface can be used independently, but the recommended workflow is as follows: (3) au-
tonomous gates identify a "clean" population of interest from where to start analysis, (4)
batch effect is visualised, quantified and corrected using the Harmony algorithm, (5) su-
pervised and unsupervised algorithms classify cells into groups of similar phenotype, and
finally (6) a feature space of cell population descriptive statistics is generated and feature
extraction/selection methods deployed to identify a predictive signature that characterises an
endpoint of interest.
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1. Data are generated and exported from the cytometer; CytoPy supports FCS files ver-

sion 2.0, 3.0, and 3.1, but additionally supports the introduction of data using a Pandas

DataFrame object, therefore supporting wider formats, although this requires that the

end user generate this object with suitable formatting. Experimental and clinical meta-

data are collected in tabular format (Microsoft Excel document or Comma Separated

Values (CSV) files), with the only requirement being that metadata be in ‘tidy’ format.

2. A Project is defined and populated with the cytometry data and accompanying meta-

data. A Project houses one or more Experiment documents, each defining a set of

staining conditions. Each subject (e.g. a patient, cell line, or animal) and their asso-

ciated meta data are contained in a Subject document; this document type is dynamic

with no restriction’s applied to the data they store. A Subject can be associated to

one or more FileGroup documents. The FileGroup contains one or more FCS files (or

DataFrames) associated to a single biological sample collected from the subject; bio-

logical samples often have primary stains and then multiple controls such as isotype or

Fluorescence-Minus-One (FMO) staining controls, the FileGroup is used as an entry

point to these related data. Along with the event data, the FileGroup stores ‘gated’

populations, clusters, and meta-information that attains to a single ‘sample’, including

the spill-over matrix for compensation. It should be noted that data are stored on a lin-

ear scale with a variety of transformations available during subsequent analysis; this

provides flexibility in analysis as the user can compare the effects of different transfor-

mations, including the commonly used biexponential (logicle) and hyperbolic arcsine

transformations (transformations are implemented using the FlowUtils package [190]).

3. The first step in any cytometry data analysis is cleaning data of debris and artefacts.

The FlowAI [142] package provides a preliminary step for removing artefacts and

its use is described in full in Flow Cytometry section of the Materials & Methods

(2.1.6); throughout this thesis FlowAI is applied prior to using CytoPy. Within Cy-

toPy, manual or autonomous gates can be employed to identify cell populations in one

or two-dimensional space, replicating traditional manual analysis conducted with tools

such as FlowJo™. The autonomous gates implemented in CytoPy can reduce the time

required to perform this initial cleaning and provide a starting population for down-

stream analysis. Autonomous gates are applied with the GatingStrategy class and cell

populations are then stored within the database as Population documents embedded
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within a FileGroup. These Population documents record the index of events belonging

to a population, detail how they were identified, and the conditions in which they were

identified such as transformations applied to linear space e.g. biexponential or inverse

hyperbolic sine transformation of axis.

4. A complication in large studies collecting biological material over a lengthy period

is batch effects, which must be addressed prior to analysis. If the batch effect can be

minimised by the experimental protocol then the investigator can consider pooling data

and modelling the distribution of the event data directly. If batch effects are consid-

erable and cannot be avoided (e.g. material is collected over months or years and the

integrity will be compromised by freeze-thawing) then computational methods must

be used to alleviate batch effect. CytoPy provides tools for visualising and addressing

batch effect in the Variance module.

5. Classification of events based on a common phenotype can be achieved through a vari-

ety of strategies. Methods such as autonomous gating and supervised classification are

biased by the training data provided whereas high-dimensional clustering is an unsu-

pervised method that groups cell populations according to their phenotype but can be

computationally expensive and outputs are dependent on complex hyperparameters.

CytoPy offers a framework where multiple strategies can be applied, contrasted, and

compared. The CellClassifier class provides an entry point for supervised classifica-

tion whereas the Clustering class offers popular clustering algorithms. These classes

are algorithm-agnostic, allowing any function to be applied to data derived from File-

Group’s providing they follow specific signatures. Many convenient methods are also

provided from visualising and critiquing results; this includes but is not limited to,

cross-validation, learning curves, heatmaps, plotting with dimension reduction, and

common metrics. Importantly, the results of either strategy generate common Pop-

ulation documents that are committed to the database and can be used as input to

additional analysis and visualisations.

6. Once cells have been classified, the user can test their hypothesis. Data are sum-

marised into a ‘feature space’ with summary statistics describing Populations. Ad-

ditional meta-data can be introduced through the FileGroup and associated Subject

documents thanks to the database design. This generates a large number of variables,
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many of which will be either uninformative or redundant. Filter and wrapper methods

are available through the feature_selection module finding only those variables that are

important for predicting a biological or experimental endpoint. This module deploys

methods from the discipline of interpretable machine learning such as L1-regularised

linear models and feature importance derived from ensembles of decision trees.

3.3.2 Identifying batch effect in blood T cell subsets

To validate the individual components of CytoPy, I sought to identify T cell subsets in

PBMCs from 14 individuals from the PERID-PD study (chosen based on available data); 4

presented with symptoms of acute peritonitis, whereas the remainder were stable and asymp-

tomatic, providing a mixture of inflammatory and stable immune landscapes, and a class

imbalance. The objective was to identify T cells (single live CD3+ cells) in the first instance

then subsequently identify CD4+ T helper cells, CD8+ cytotoxic T cells, Vα 7.2+ CD161+

mucosal-associated invariant T (MAIT) and Vδ2+ γδ T cell subsets. These populations were

chosen to test a range of functionality: the ability to identify large and easy-to-distinguish

cell populations (CD4+ and CD8+ T cells) and more complex cell types that can be rare in

some patients and difficult to identify reliably in two-dimensional space (Vδ2+ γδ T cells

and MAIT cells). Performance was compared to manual gates decided by user expertise (see

Methods & Materials section 2.1.6).

Before any extensive analysis can be conducted, it is important to check for batch effects that

could influence the results. Batch effects are best addressed in the experimental protocol,

ideally by reducing the number of batches performed, achieved by either processing on the

same day or freezing material for bulk analysis. In the PERIT-PD data, batch effects were

suspected, given that data were collected over 24 months by multiple personnel. Observation

of individual fluorochromes (Figure 3.2A) show “drift” in fluorescent intensity of multiple

channels and UMAP plots (Figure 3.2B) demonstrates how this extends into the multivariate

space. In each plot, data are transformed into the same space and compared to a reference

(blue); the reference was chosen by computing the pairwise Euclidean distance of the set

of variance matrices for each sample and selecting the sample with the smallest average

distance to all others [125]. The UMAP plots revealed common structures shared between

patients but a lack of alignment, suggesting noise infiltration from technical variation. Batch
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effects, like the example in Figure 3.2, have impeded autonomous cytometry data analysis

and must be addressed with a data transformation step.

3.3.3 Autonomous gates

The most straightforward approach to the autonomous analysis of cytometry data is a repli-

cation of traditional manual gating by applying computer algorithms to data in sequences

of one or two-dimensional space. Such methodologies have been demonstrated previously

[120, 117] and are improved upon in CytoPy. The Gate object is used to implement a single

algorithm for identifying one or more populations in one or two dimensions. Gate objects

can then be ‘stacked’ within a GatingStrategy, saved to the database, and applied in sequence

to subsequent data. Each Gate is defined using example data, and an algorithm is chosen

that best encapsulates the population of interest. Figure A gives an example of a polygon

gate, which can leverage any clustering algorithm (e.g. K-Means, hierarchical clustering,

DBSCAN etc.) or probabilistic models that can divide data into components (e.g. mixture

models). The example in Figure 3.3 (left) uses K-means clustering to define five polygon

gates, the red gate is chosen, and its information is saved within the Gate and committed

to the database. The shape that forms this gate is created by computing the α shape of the

cluster. The α shape is a straight line graph that captures the ‘crude shape’ of a finite set

[191] and the behaviour of this graph can be modified by changing the α parameter (Figure

3.3B); a value of 0 creates a convex-hull, equivalent to wrapping an elastic band around the

points of a cluster, but as α increases, the shape takes a ‘tighter’ fit. By default, CytoPy will

set α to 0, which helps prevent biasing the shape formed by the reference data.

Upon exposure to new data (Figure 3.3A; right), K-means is reapplied, polygon gates are

generated, and the gate most similar to the original reference is chosen. The similarity is

measured by comparing the Hausdorff distance between the reference gate and newly gener-

ated gates and selecting the gate of minimal distance to the reference:

min
G1...Gn

(h(R,Gn)) (4.1)

Where R is the reference gate (a gate being a set of two-dimensional coordinates defining

the polygon) and G is a newly generated gate, of which there can be n.
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h(R,Gn) = max
r∈R

(min
g∈G

(
√∑

(r − g)2)) (4.2)

The Hausdorff distance, given in equation 4.2, defines the distance between the reference

gate and some other gate as the maximum distance of the reference set to the nearest point

in the comparison set; where the euclidean distance is used to compare two points.

Figure 3.3C provides an example of a reference gate (left), and the same gate overlaid on two

gates defined using new data (right; green and black). Choosing the gate that best fits the

population of interest, as defined in the reference data, is a complex task; the green gate is the

obvious choice, yet computationally both shapes overlap the reference gate, and the centroid

of both are comparable to the reference. However, by minimising the Hausdorff distance

as described above (1.596 for the green gate and 3.574 for the black; units reported after

transformation of the space by inverse hyperbolic sine), the most suitable gate is chosen.

As an alternative to polygon gates, CytoPy also implements threshold gates (Figure 3.3D)

that divide data within one or two-dimensional space based on properties of the probability

density function (PDF; as estimated using a fast convolution-based kernel density estimation

[192]). CytoPy uses an adaption of flowDensity [117]. After estimating the PDF, a peak

finding algorithm identifies major landmarks (this can be tuned by hyperparameters that

control the peak detection limit) and applies a threshold at either the local minima between

two peaks or the inflection point on either side of a peak (controlled by a hyperparameter) if

only one peak is identified. If more than one peak is identified, the PDF is smoothed using

a Savitzky-Golay filter [171] until two or fewer peaks are identified. Similar to the polygon

gate, the threshold gate is defined using reference data. The algorithm is run when exposed to

new data, generating new thresholds. The resulting populations are matched to the reference

based on definition, e.g. a population right of a threshold is labelled “positive”. Therefore, a

population right of the threshold in new data would also be labelled “positive”.
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Figure 3.3: (A) An example of autonomous gating using polygon gate’s generated by a K-
Means clustering algorithm. Reference data provides a template for expected populations
(left) and one or more are chosen to match the identification of the equivalent population in
new data (right). Polygon gates are defined by the α shape of the clustered set and the α
parameter can be adjusted (B) to control how tight a gate fits to a population. (C) Example
of a polygon gate (left) and the same gate (right; red) alongside two gate’s covering a similar
region (right; green and black) that are compared using Hausdorff distance. (D) Threshold
gate’s are an alternative method that can be used to identify similar populations to polygon
gates but divide events purely on properties of their probability density functions.
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3.3.4 Autonomous gates can reliably identify T cell subsets by address-

ing batch-effect with hyperparameter search and landmark reg-

istration

A challenge when defining autonomous gates is the choice of hyperparameters that will

generalise beyond the chosen example data; batch effects further exacerbate this. CytoPy

employs two techniques to overcome this issue: hyperparameter search and landmark regis-

tration. Hyperparameter search allows the user to specify a range of hyperparameters when

a Gate is applied to new data. An exhaustive search is performed across all permutations

of chosen hyperparameters resulting in a set of populations. In the case of a polygon gate,

each population’s α shape is computed and matched to reference α shapes by minimising the

Hausdorff distance. Regarding a threshold gate, the euclidean norm is computed for all pairs

of reference populations and populations generated by hyperparameter search. Reference

populations are then matched to populations where this norm is minimum.

Batch effects can introduce significant variation in the distribution of populations in the one

or two-dimensional space where a Gate is applied. A strategy for mitigating batch effect

during autonomous gating was proposed by Hahne et al. [193]. They describe the use of

landmark registration, a technique in functional data analysis that can align two functions

according to some shared landmark(s). Following this example, landmark registration was

implemented in CytoPy to align data to some common reference data prior to applying a

gate. Landmarks are identified as points of maximum density and grouped by a K means

algorithm [193]. Once typical landmarks are identified between the target and reference data,

a warping function is found using monotonic cubic interpolation (Figure 3.4) and function

composition used to ‘adjust’ the data. Hahne et al. [193] applied landmark registration to all

available data and then gated populations. However, this can distort smaller sub-populations,

so CytoPy follows the method described by Finak et al. [194]; a localised approach, with

landmark registration, applied prior to applying each gate.

Autonomous gates were applied to identify T cell subsets in PBMCs, whilst employing land-

mark registration and hyperparameter search to address variation between biological speci-

mens (Figure 3.5). The number of events identified by autonomous gates (Figure 3.5B; x-

axis) was compared to the same population identified by manual gates (Figure 3.5B; y-axis);
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Figure 3.4: The original PDFs (left) show two landmarks that points of maximum density,
located at the CD4- and CD4+ populations. Landmark registration identifies a warping func-
tion (middle) that, when taken in composition with the original functions, generates a aligned
distributions (right) that mitigate batch effect.

three experts gated populations, and the average events per population was taken as the man-

ually gated result. Each data point is an individual patient. Autonomous gates showed good

conformity with manual gates for live CD3+, CD8+, and CD4+ T cell subsets and reasonable

performance for Vδ2+ γδ T cells and MAIT cells, although more varied.

3.3.5 Addressing batch effect with the Harmony algorithm

Despite the success of autonomous gates for identifying T cell subsets in the wake of sig-

nificant batch effect, they are heavily biased by choice of example data when defining Gate

objects and by choice of reference for landmark registration. An alternative approach to

addressing batch effects is to align cell populations between individual subjects in high di-

mensional space prior to analysis. Several methods have been proposed with this objective

[195], most prominently applied to single-cell RNA sequencing data, although some exam-

ples such as SAUCIE [126] demonstrated application to cytometry data.

The Harmony algorithm [196, 197] algorithm was chosen for implementation in CytoPy,

given its ability to scale to data of modest size (≈106 events on a personal laptop) and

its transparent hyperparameters. Harmony was initially described as being applied to low-

dimensional embeddings. Embedding with methods such as PCA is necessary for RNA

sequence data where the number of available features can be in the thousands or tens of

thousands but is not necessary for cytometry data with only a dozen or more parameters.

Therefore, in CytoPy, the original data were exposed to Harmony after removing debris,
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Figure 3.5: Each symbol depicts results obtained with cells from an individual patient.

doublets, and dead cells. Biexponential (logicle) transformation followed by scaling each

parameter to unit variance (subtracting the mean and dividing by standard deviation) was

performed prior to batch effect correction.

Harmony then attempts to mix batches within the same space whilst maintaining the purity

of cell types within each population. Harmony achieves this through an iterative algorithm

of soft clustering, centroid identification, correction, and data movement based on soft clus-

tering membership. The original authors propose the local inverse Simpson’s Index (LISI)

to quantify the integration of batches, which defines the effective number of batches rep-

resented in a local neighbourhood; a value of 1 would indicate that cell neighbourhoods

consist of a single batch (poorly integrated) whereas a value of say 5, would indicate that the

neighbourhood is a mixture of 5 batches (better integration).

The performance of Harmony when applied to our T cell population (as identified by au-

tonomous gates) from PBMCs is shown in Figure 3.6. Harmony has a range of hyperparam-

eters that influence its behaviour. The default values for most of these parameters provided

good performance but varying σ further improved performance; this hyperparameter influ-

ences the entropy regularisation term of the soft-clustering step of the algorithm, and as it
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approaches zero, clustering is more alike to hard K means clustering. For the T cell data

discussed here, an optimal value of 0.2 for σ was chosen whilst limiting the number of itera-

tions to 5. The quality of batch correction was determined by visual inspection of batches in

embedded UMAP space before and after correction and by comparing the LISI before and

after correction (Figure 3.6A). The objective here was to redistribute LISI such that the local

neighbourhood around a cell contains a greater representation of different batches without

over-correcting and distilling biological variation that differentiates groups of subjects.

The UMAP plots in Figure 3.6A show that large communities of cells consist of single

batches before applying Harmony. In contrast, these communities are diffused after applica-

tion yet maintain a topology of separate cell populations. The concern with batch correction

is over-correction that disrupts the biological meaning within the data. However, batch cor-

rected data embedded in UMAP plots was coloured by fluorescent intensity for markers that

can identify T cell subsets (Figure 3.6B), and not only do large populations such as CD4+,

and CD8+ T cells remain identifiable but smaller and harder to distinguish subsets such as

Vδ2+ γδ T cell and MAIT cells are also visible.

3.3.6 Supervised methods for classification of cytometry data

Cytometry instruments are capable of generating millions of data points for each experi-

ment. Such extensive data offers the opportunity to leverage supervised machine learning

techniques that require significantly large training data sets. The limitation of this method

is that data must be accurately labelled to provide an objective for the learning algorithm.

A labelled example can be produced through autonomous or manually gating. However, the

resulting model will not generalise if there are significant batch effects, so data was corrected

using Harmony before training a supervised model.

Supervised classification of cytometry data is available in CytoPy through the CellClassifier

class. Objects of this class can accept any classifier that conforms to/supports the Scikit-

Learn API (such as XGBoost), or a Keras [198] model. Many convenient methods are pre-

built into those objects (including methods for evaluating classifier performance such as

cross-validation, learning curves, and confusion matrices; Figure 3.7), and predictions can

be saved as Population objects, providing compatibility with all other tools in the CytoPy

framework.
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Figure 3.7: Learning curves (A) compare training and cross-validation score, giving insight
into potential over-fitting and the benefit brought by introducing more training data. Confu-
sion matrices (B) help identify cell subsets that are miss-classified, a problem exacerbated
by class imbalance (rare cell subsets).

To benchmark this supervised approach, classifiers were applied using CytoPy and compared

to those reported in the Flow Cytometry: Critical Assessment of Population Identification

Methods competition (FlowCAP) [116]. Using CytoPy, four native classifiers from Scikit-

Learn (logistic regression, linear discriminate analysis, support vector machine with radial

kernel, and K-nearest neighbours), XGBoost [178], and a deep feed-forward neural network

(architecture as described by Huamin et al. [125]) were chosen for comparison. Algorithms

were chosen from a range of classifier families based on their popularity in the literature.

Table 3.1 reports the F1 score weighted by support (the number of true instances) for each

classifier across the five example datasets from FlowCAP. The deep neural network showed

good performance as previously reported [125]. However, XGBoost was the superior method

when applied to FlowCAP data and highlights the ability of this classifier to generalise to a

wide range of use-cases.

I then tested the utility of XGBoost on ‘real-world’ data by classifying T cell subsets and

comparing the outputs to expert manual gating. Since Harmony accounted for batch effects,

data were pooled from all available samples to generate training data manually labelled using

the gating infrastructure within CytoPy. Figure 3.8 demonstrates the capability of XGBoost

to identify T cell subsets. Since the computational complexity of batch effect correction with
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CHAPTER 3. DEVELOPMENT AND VALIDATION OF CYTOPY

Harmony requires a down-sampling step, comparisons are shown as the percentage of T cells

observed by manual gates vs populations identified by XGBoost. The output of XGBoost

is comparable to manual gating and the results obtained from autonomous gates, although

there are some discrepancies for Vδ2+ γδ T cell and MAIT cells; this reflects an inability

for supervised models to generalise in some instances, especially where abnormal staining

or artefacts disrupt the distribution of populations.

Figure 3.8: Each symbol depicts results obtained with cells from an individual patient.

3.3.7 Unsupervised clustering of cytometry data

Autonomous gates and supervised classification can identify known populations of interest

but are biased by the investigator’s understanding and expectations of the immune landscape.

CytoPy encourages using unsupervised techniques where discovery and exploratory analysis

are the objectives to diminish this bias. However, nothing stops an investigator from using

both directed and undirected analysis. The data-driven design of CytoPy is such that multiple

methods can be executed in parallel and generate comparable Population objects.
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CHAPTER 3. DEVELOPMENT AND VALIDATION OF CYTOPY

Unsupervised clustering has gained popularity in single-cell data analysis, and methods such

as FlowSOM [130], and Phenograph [131] appear regularly in cytometry data analysis. Sim-

ilar to the CellClassifier class, a Clustering class offers an algorithm-agnostic infrastructure

for the application of clustering algorithms and generates the same common Population ob-

jects for compatibility with other tools in the framework. FlowSOM and Phenograph are

implemented within CytoPy for convenience, but any algorithm that follows the signatures

of the Scikit-Learn ecosystem can be applied, future-proofing CytoPy; this design choice

reflects the rapidly changing landscape of cytometry bioinformatics and was chosen so new

techniques can easily be integrated into existing infrastructure.

The Clustering class offers two different approaches to analysis: the data from multiple

subjects can be pooled, and the clustering algorithm applied to this joint space or data from

each subject can be clustered independently and clusters matched with a meta-clustering

approach as described by [131]; in brief, the centroid is found for every cluster from every

subject, and then centroid’s are clustered further to generate the final clustering consensus.

Clustering requires that the entire data be held in memory during computation. Since meta-

clustering offers a per-subject clustering step, this is more accessible to those with modest

computers with limited memory. The cost of this approach is reduced sensitivity because of

information loss when reducing clusters to centroids.

Unsupervised clustering using the CytoPy software was validated by identifying T cell pop-

ulations in batch corrected data using FlowSOM and Phenograph. The results of meta-

clustering of Harmony corrected T cells are shown in Figure 3.9. The UMAP plots (left)

show individual clusters as obtained from individual subjects but plotted in the same two-

dimensional space and coloured by meta-cluster membership; the data point size corresponds

to the proportion of events as a percentage of T cells in each individual.

A comparison of the proportion of cells obtained by FlowSOM and Phenograph to the same

cell type identified by manual gates (Figure 3.10) showed that Phenograph and FlowSOM

could reliably identify CD4+ and CD8+ T cells for the majority of instance but struggled

with rare cell populations such as MAITs and γδ T cells; MAITs are under-represented

by FlowSOM and Phenograph overestimated the proportion of Vδ2+ γδ T cells in several

patients.
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CHAPTER 3. DEVELOPMENT AND VALIDATION OF CYTOPY

Figure 3.9: Meta-clustering results for FlowSOM (top) and Phenograph (bottom) when ap-
plied to blood T cells after batch effect correction with Harmony. Heatmaps show the nor-
malised expression of cell surface markers for meta-clusters (clustered centroids of individ-
ually clustered patient samples). In the neighbouring UMAP plots, clusters from all patients
are shown in the same embedded space and coloured by their meta-cluster membership. The
size of each data point corresponds to the percentage of T cells this cluster represents in the
patient it was derived from.

3.3.8 Implementing the CytoPy framework to identify an immune sig-

nature that differentiates patients with acute peritonitis from sta-

ble controls

The application of CytoPy to an immunophenotyping project was demonstrated with the

investigation of the peritoneal effluent of patients undergoing peritoneal dialysis, some of
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CHAPTER 3. DEVELOPMENT AND VALIDATION OF CYTOPY

whom presented with symptoms of acute peritonitis, with the objective to distinguish pa-

tients with acute peritonitis from stable controls based on their peritoneal immune signa-

tures. The data were chosen based on our group’s long-standing expertise and published

findings demonstrating the significance of the local immune response in peritonitis, recog-

nising pathogen-specific infection patterns [199], and the correlation between changes in

myeloid populations and treatment failure [200].

Peritoneal effluent was stained using two flow cytometry panels (see Materials & Methods

section 2.2.4) to quantify major leukocyte subsets and, more specifically, T cell subsets.

CD45+ fraction of cells from total effluent and T cells were obtained by autonomous gating

prior to batch correction with Harmony (Figure 3.11). Following batch correction, XGBoost

classification using manually gated training data and FlowSOM and Phenograph clustering

were performed to quantify cell subsets. All three methods agreed on significant differences

in the proportion of neutrophils, monocytes, and T cells in peritoneal effluent when compar-

ing stable controls with those with peritonitis (Figure 3.12). The proportion of T cell subsets

was not significantly different between stable controls and those presenting with acute peri-

tonitis (Figure 3.13).

The live CD45+ fraction (for T cells, B cells, monocytes, neutrophils, and eosinophils) and

T cell fraction for CD4+, CD8+, Vδ2+ γδ T cells, and MAIT cells) across the three classi-

fication methods were pooled and averaged using the feature_selection module to generate

a feature space representative of the local immune profile of the peritoneum. Age and gen-

der were included in this feature space as potential confounding variables. High collinearity

was observed between the fraction of CD4+ and CD8+ T cells, monocytes and DCs, and T

cells and B cells (Figure 3.14A). CD8+ T cells, DCs, and B cells showed low variability and

were therefore removed from the analysis. With the remaining features, principal component

analysis (PCA) was performed, showing that patients with acute peritonitis were highly dis-

cernible from stable controls along the axis of the first principal component (Figure 3.14B).

The absolute value of the coefficients for this component showed that neutrophils contributed

the most to the observed variation. I generated a linear support vector machine with an L1

regularisation term to confirm these findings. The regularisation parameter, C, was varied,

and the coefficient of each feature was plotted; as the value of C decreases, a sparse model

is encouraged, eliminating features that do not contribute to the prediction. Figure 3.14C

demonstrates that the neutrophil fraction is the only feature to persist in a constrained model.
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CHAPTER 3. DEVELOPMENT AND VALIDATION OF CYTOPY

Figure 3.12: Leukocyte subsets in peritoneal effluent as a fraction of CD45+ cells as identi-
fied by an XGBoost classifier (top), Phenograph clustering (centre) and FlowSOM clustering
(bottom). Mann-Whitney U test were applied for comparisons between patients with acute
peritonitis and stable controls, and p-values are reported after correction for multiple com-
parisons using Holm’s method.
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Figure 3.13: T cell subsets as a fraction of CD3+ lymphocytes as identified by an XGBoost
classifier (top), Phenograph clustering (centre) and FlowSOM clustering (bottom). Mann-
Whitney U test were applied for comparisons between patients with acute peritonitis and
stable controls, and p-values are reported after correction for multiple comparisons using
Holm’s method.
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CytoPy’s feature_selection module contains interpretable models for classification and re-

gression problems, and its DecisionTree class can be used to demonstrate how the fraction

of neutrophils alone can classify acute peritonitis (Figure 3.14D).
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Figure 3.14: (A) Multicollinearity was addressed before generating linear models with re-
dundant features removed prior to further analysis. (B) Principal component analysis shows
that patients with acute peritonitis are discernible from stable controls. (C) L1 restricted
modelling with a linear support vector machine reveals that neutrophils are the most predic-
tive feature. (D) A simple cutoff applied to neutrophils is predictive of acute peritonitis in
this cohort and is demonstrated by a shallow decision tree, where gini index is the chosen
criterion for measuring the quality of split.
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3.4 Discussion

CytoPy represents a framework for analysing cytometry data that facilities the application

of machine learning algorithms whilst introducing robust data management and an iterative

analytical environment. In this chapter, the ability of CytoPy to characterise cell populations

is demonstrated, and the entire framework was validated by identifying a known immune

phenotype that distinguishes patients with acute peritonitis. This dataset was chosen based on

our group’s extensive experience with this sample type for over a decade. Initially acquiring

such samples on a four-colour BD FACSCalibur flow cytometer with two lasers and simple

FSC/SSC settings [26], they later utilised an eight-colour BD FACSCanto with three lasers,

and FSC/SSC area/height channels [175]. Now in the data presented in this chapter, taking

advantage of a 16-colour BD LSR Fortessa with four lasers and FSC/SSC area, height, width

and time [199], thus illustrating the technological advancements in the field but also the

increasing complexity of the data acquired.

CytoPy exposes multiple techniques for classifying cell populations in cytometry data with

a simplistic design and a low-code interface. Autonomous gates provide a familiar interface

with cytometry data whilst reducing the labour cost of analysis. Nevertheless, they are bi-

ased by the investigator’s expectations of the data and sometimes may not generalise well

to new data. Following the work in this chapter, I recommend that autonomous gates be

employed for pre-processing, generating a clean starting population for downstream analy-

sis, and producing training data for supervised classifiers. Supervised classification offers

a more efficient method for guided analysis but requires that batch effects be addressed

up-front using methods such as the Harmony algorithm discussed in section 3.3.2. Simi-

larly, unsupervised clustering also requires the attenuation of batch effects. In contrast to

supervised classification, it is unbiased. It offers an exploratory analysis that can allude to

discovering uncharacteristic cell populations or features that correlate with disease or exper-

imental endpoints. This chapter demonstrates how clustering algorithms such as FlowSOM

and Phenograph could not identify rare cell populations for a small fraction of our cohort,

highlighting the importance of not relying on a single method when engineering features

from cytometry data. A cornerstone of CytoPy’s design is to expose multiple methodologies

with minimal friction and provide consistent data structures to pool results. This strategy

was employed for immune phenotyping peritoneal effluent and confirmed a striking increase
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in total neutrophils at the site of infection and a parallel decrease in the proportion of mono-

cytes/macrophages, dendritic cells and T cells, in agreement with previous findings [199,

175], thereby validating the utility of CytoPy. In the chapters that follow, additional method-

ologies will be introduced, capitalising on the design principles within CytoPy, to diversify

analysis and reduce bias.

I have chosen to develop and maintain CytoPy in Python, a programming language with

growing popularity in the bioscience domain. To date, Python has been lacking a frame-

work for generalised cytometry data analysis offered by counterparts in R. CytoPy extends

cytometry bioinformatics into the Python ecosystem by presenting an object-orientated in-

frastructure that is algorithm-agnostic and ready for deployment in the cloud. Compared to

current frameworks in R [120, 140], CytoPy offers an end-to-end analytical interface that

addresses common issues such as data cleaning and batch effect, and its data-centric design

promotes iterative analysis for comparing multiple methodologies. Another popular solution

for cytometry data analysis is CytoBank, which, whilst supporting many popular algorithms

and an accessible graphical user interface, is a propriety product that could limit uptake. In

contrast, CytoPy is open-source and, whilst offering popular algorithms, is also designed for

expansion by the open-source community; new algorithms can be introduced with straight-

forward wrapper functions to match existing signatures and expected data types. CytoPy

has also been designed with an open infrastructure that recognises the importance of main-

tainable code for software longevity. The code is accompanied by a documentation website

(https://cytopy.readthedocs.io/en/latest/), Jupyter notebooks with examples on how to use

the framework for analysis (https://github.com/burtonrj/CytoPyManuscript), and is deploy-

able with Docker, a containerisation solution that can help manage complex dependencies

and replicate analytical environments.

This chapter details CytoPy v2.0, which offers the most popular aspects of automated cy-

tometry data analysis, with autonomous gating, high dimensional clustering and supervised

learning, whilst also implementing Harmony [196, 197] for batch effect correction. In later

chapters, CytoPy v3.0 is applied to the ILTIS study (see Materials & Methods section 2.1) to

test the hypothesis that predictive phenotypes of innate immunity can be identified in acute

severe sepsis patients.
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As high-dimensional cytometry analysis continues to grow in popularity, there is increasing

demand for an analytical framework that is friendly for those new to programming, provides

a database that directly relates experimental metadata to single-cell data, and scales in a fash-

ion that encourages collaboration and expansion. CytoPy meets all these criteria whilst re-

maining open-source and freely available on GitHub (https://github.com/burtonrj/CytoPy).
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4 | Ensemble clustering of cytometry data

4.1 Introduction

Clustering is an unsupervised method for identifying structure in unlabelled data. In the con-

text of cytometry, the objective here is to categorise events into groups of similar phenotypes.

The previous chapter demonstrated clustering analysis as a successful alternative to manual

gating, a finding corroborated by others in the field who regard clustering as an acceptable

alternative to manual analysis [116, 132, 201]. Despite this increased uptake, the choice

of algorithm appears to be driven either by availability in commercial software, the ease of

use or is not discussed at all. Clustering algorithms differ in the assumptions made of data,

performance tends to be highly data-specific, and results can vary widely depending on the

chosen hyperparameters [203, 204, 202]. In this chapter, I propose ensemble clustering as

an alternative solution.

Ensemble clustering (also called consensus clustering) aims to combine the partitions of mul-

tiple clustering algorithms run on the same data to identify a consensus informed by multiple

‘views’, thereby reducing the dependence on any individual algorithm. Unlike ensemble

methods in supervised classification, ensemble clustering has many challenges: the number

of clusters may differ amongst the base partitions, the optimal number of consensus clusters

is often unknown, and it is necessary to solve the correspondence issue of matching clusters

between individual partitions [203, 205]. A thorough review of the literature has revealed

that ensemble clustering methods with specific applications to cytometry data analysis have

yet to be proposed. Therefore, this chapter discusses methods from the single-cell RNA se-

quencing (scRNA-seq) literature and broader computer science and statistics literature in the

context of cytometry data analysis.

Ensemble clustering methods can be grouped into co-association methods, feature-based

methods, and methods using graph representations [203, 205, 206]. Co-association methods

act on the pairwise similarity of clusters sourced from different algorithms. Consensus solu-

tions can be derived from simple techniques such as agglomerative clustering of the binary

co-association matrix (N × N matrix, where N is the number of events, e.g. the number

of single cells) [204] or the Cluster-based Similarity Partitioning Algorithm (CSPA), that
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forms partitions on the derived similarity graph using the METIS software [207]. Methods

that act on co-association are burdened by space complexity and are therefore intractable for

large data where such a matrix exceeds the available computer memory [203]. Feature-based

methods offer an alternative by presenting the problem as a label-association matrix (m× n

matrix, where m is the number of unique clusters). Consensus solutions can be formulated

with iterative voting, finite mixture models, the pairwise agreement between clusters, or ag-

glomerative clustering of this label-association matrix [205].

Another popular consensus clustering approach is using graph based methods, where a

weighted graph of the clusters contributing to an ensemble is generated and then partitioned

into k parts using a graph partitioning technique [203, 205]. Strehl and Ghosh [207] intro-

duced the Hyper-Graph Partitioning Algorithm (HGPA) and the Meta-CLustering Algorithm

(MCLA), both heuristics that represent the clustering ensemble as a hypergraph. Later the

Hybrid Bipartite Graph Formulation (HBGF) algorithm was introduced as an alternative ap-

proach that models clusters and observations in the same graph, and consensus partitions are

constructed from a subsequent bipartite graph [208]. The advantage of the graph methods

is their heuristic approach that avoids the need for a co-association matrix, making them

applicable to large data.

Ensemble clustering methods have been successfully adopted in the scRNA-seq literature.

However, the methodologies adopted are in accordance with the size of the data generated by

this technique and do not address the space complexity issues that arise from larger datasets,

such as those encountered during cytometry data analysis. Sc-GPE [209] is an example

of a solution deploying co-association to the problem of ensemble clustering. Here, a co-

association matrix is weighted by contributing clustering methods’ similarity (adjusted rand

index). Unfortunately, the dependence on a co-association matrix makes this technique in-

tractable for cytometry data. The same limitation applies to SC3 [210], another consensus

approach for scRNA-seq employing CSPA for ensemble clustering. SAFE-clustering [211]

avoids the need for generating a co-association matrix by applying graph-based methods in-

stead, but the implementation only allows a limited number of contributing algorithms to the

consensus and is exclusively designed for scRNA-seq.

In contrast to these advances in scRNA-seq data analysis, ensemble clustering methods

have yet to be developed specifically for cytometry data analysis. Weber et al. [132] ex-
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plored generic techniques from the graph-based ensemble clustering family for cytometry

data analysis but failed to find additional benefits over existing algorithms. Aghaeepour et

al. [176] demonstrated an ensemble methodology that utilised the label-association matrix

and showed improved performance compared to individual algorithms. However, that pub-

lication did not disclose a readily available implementation of the methodology, making it

difficult to reproduce their approach.

The work described in this chapter directly addresses the absence of techniques designed

specifically for cytometry data analysis. Expanding on the work of Weber et al. [132], the

graph ensemble clustering techniques with a strong track record in scRNA-seq data analysis

and the capability of scaling to large data will be compared to popular clustering algorithms

for cytometry data analysis. A novel ensemble clustering methodology based on geomet-

ric median clustering with weighted voting, named GeoWaVe, will also be introduced. Its

performance will be compared to the graph ensemble clustering methods. Unlike previous

ensemble clustering techniques, GeoWaVe is explicitly designed for cytometry data analy-

sis and offers a computationally inexpensive heuristic approach, permitting the analysis of

large data. The performance of GeoWaVe is presented on different sets of high-dimensional

data generated using cytometry by time of flight mass spectrometry (CyTOF), spectral flow

cytometry, and traditional multicolour flow cytometry.
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4.2 Aims

1. Benchmark graph ensemble clustering methods in the application of cytometry data

analysis, comparing results to the performance of state-of-the-art clustering algorithms

used for cytometry data analysis.

2. Propose alternative methods for ensemble clustering in the context of cytometry data

analysis and apply them to external and internal bench-mark data.

3. Demonstrate whether alternative methods for ensemble clustering of cytometry data

outperform existing graph ensemble clustering methods.
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4.3 Results

4.3.1 GeoWaVe: a novel heuristic ensemble clustering algorithm

Graph ensemble methods address computational complexity issues using a heuristic, de-

riving the consensus from graph representations of the label-association matrix rather than

the unmanageable co-association matrix. Taking inspiration from this approach, I sought

to develop a novel alternative heuristic ensemble clustering method that incorporates infor-

mation about the original feature space: geometric median clustering with weighted voting

(GeoWaVe), where the clusters generated by base clustering algorithms contributing to an

ensemble are summarised by their geometric median. The geometric median (implemented

with the hdmedians package; [212]) was chosen over other measures of central tendency

because it is robust to outliers, is not necessarily a point from the original data, can handle

negative values, and is defined in any dimension.

A summary of the expression profile of all clusters contributing to the consensus is generated

using the geometric median, which can subsequently be clustered into consensus clusters

(Figure 4.1 heatmap); a consensus cluster is a collection of clusters of similar phenotypes.

Since each cluster is treated as an individual contribution, differences in the number of clus-

ters provided by each input algorithm are not consequential, meaning GeoWaVe can accept

the outputs of any combination of clustering algorithms.

The clusters that contribute to a consensus are overlapping sets, given that each base clus-

tering algorithm is exposed to the same data. Therefore, an event can be assigned to more

than one consensus cluster. Assignment to multiple consensus clusters will occur more fre-

quently for events on the boundary between clusters. Therefore, where an event is assigned

to multiple consensus clusters, a score is calculated for each consensus cluster, and the event

is assigned to the consensus with the maximum score.

The consensus cluster score is calculated as follows: given that a consensus cluster can be

defined as a set of clusters c ∈ C, and a single cluster c is a finite set of n-dimensional

vectors, the geometric median û of each cluster c can be calculated according to Equation

4.1 [212]:
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û = argmin
x ∈ R

n∑
i=1

||x− xi||2 (4.1)

For each event t assigned to more than one consensus cluster C, the Manhatten distance

between the event and the geometric median of each member cluster of C is computed.

The sum of these distances normalized by the size of the consensus |C| (i.e. the number of

clusters within the consensus) gives a weighting factor p for the consensus cluster C relative

to the event t (Equation 4.2):

p =

∑
c∈C
||t− û(c)||1

|C|
(4.2)

The consensus cluster score for C relative to an event t is then calculated as the size of the

consensus |C| divided by the weighting factor p (Equation 4.3):

score =
|C|
p

(4.3)

Not all clusters are equally defined; some may be a poor fit for a given event. Therefore, the

majority voting algorithm is weighted by the distance from an event to the centre of each

cluster that contributes to a consensus. This method ensures that the consensus an event

is assigned to is informed by the number of supporting algorithms and the quality of the

clusters in that consensus.

The choice of clustering algorithm applied to the geometric medians of clusters is ambigu-

ous in that any number of existing methods may be suitable to the task. The advantage of

geometric medians as a heuristic is that the expression profile can be visualised easily as a

heatmap (Figure 4.1), and different clustering methods can be applied and critiqued. The op-

tional visualisation step allows the investigator to introduce prior knowledge, such as known

phenotypes expected to occur in the data. The ambiguity of the clustering algorithm applied

to the geometric median matrix allows for the use of methods such as the ConsensusCluster-

Plus method [213], choosing an optimal number of clusters from a given range. Therefore,

an investigator can visualise the geometric medians and choose a range of clusters based on

an intuition driven by the biological question.
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Figure 4.1: Schematic diagram of the GeoWaVe algorithm. (A) Clusters generated by multi-
ple clustering algorithms are pooled, and (B) the geometric median for each cluster is calcu-
lated to create a matrix of c clusters. (C) This matrix of cluster geometric medians (example
shown using the Levine-13 data introduced in section 4.3.2) is clustered into consensus clus-
ters; groups of clusters within similar expression profiles. Consensus cluster labels are then
assigned to individual events and overlapping consensus assignments handled with a score
that accounts for the distance of the event to the members of each consensus cluster.
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GeoWaVe is available as part of the CytoCluster package, developed for Python version

3.8 or greater. The CytoCluster package is available on the Python Package Index (PyPI).

It offers popular cytometry clustering algorithms, graph ensemble clustering, and GeoWaVe

ensemble clustering, as well as numerous utilities and plotting tools delivered through a

simple object-orientated application programming interface.

4.3.2 Graph ensemble clustering methods fail to outperform individual

clustering algorithms for cytometry data analysis

Diversity amongst the members of an ensemble can enhance results [205]. Ensemble clus-

tering solutions should also take input from informative algorithms suited to the analytical

task in question. I therefore chose algorithms that have reported good performance for cy-

tometry data analysis, are well understood, have differing underlying methodologies, and are

computationally efficient.

The following base clustering algorithms were considered individually, and their outputs

served as input to ensemble clustering discussed in this chapter: FlowSOM [130], PHATE

[138] with K-means, SPADE [111], Phenograph [131], and PARC [214]. The chosen algo-

rithms have reported good performance for cytometry data analysis and are computationally

efficient. Multiple input parameters were tried for each base clustering algorithm to give the

best possible performance. The number of clusters generated for each method was deter-

mined as a property of the clustering method (as is the case with Phenograph and PARC),

selected from a suitable range using the popular ConsensusClusterPlus method [213], or a

suitable fixed value was chosen. The choice of the desired number of clusters, either as a

range of values or a fixed value, would be driven by an existing biological understanding of

the data in general use. For all benchmark data, a range of 5 to 30 was chosen to capture an

extensive range of possible clusters. In the case of PHATE combined with K-Means, clus-

tering was performed with k selected using ConsensusClusterPlus and then performed again

with a fixed k of 20, a decision to increase the diversity of input clusters to the ensemble

algorithms.

Base clustering algorithms and ensemble methods were tasked with clustering six datasets

with available ground-truth labels: Levine-13, Levine-32, Samusik, OMIP, Peritoneal Dialy-

sis (PD), and Sepsis data (Table 4.1). The public CyTOF datasets Levine-13, Levine-32, and
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Samusik, were obtained from open-source repositories [132] and arc-sinh transformed with

a standard cofactor of 5. Doublets, debris and dead cells were removed, and ground-truth

labels were taken from the original publications, with manual gating performed by the orig-

inal authors [131, 134]. The Levine-13 data described bone marrow cells from two healthy

human donors and included 13 parameters (Figure 4.2), whilst the Levine-32 data described

bone marrow cells from a single healthy human donor but a higher resolution of 32 param-

eters (Figure 4.3). Some challenges presented by these data include overlapping monocyte

subsets differentiated by CD11b expression in the Levine-13 data and small subsets of B-cells

differentiated on IgM and IgD expression in the Levine-32 data. The Samusik data described

bone marrow samples from 10 C57BL/6J mice and identified 24 populations using 39 pa-

rameters (Figure 4.4), including many small subsets with similar expression profiles.

In addition to the three CyTOF datasets, the OMIP-44 28-colour spectral flow cytometry

dataset for identifying human dendritic cell compartments was included, available from an

open-source repository [215]. Data were arc-sinh transformed with a standard cofactor of

150 and manually gated according to the gating strategy described by the original authors.

Of the 28 parameters, 15 were retained to identify the manually gated subsets (Figure 4.5).

Two in-house datasets acquired with a 16-colour BD LSR Fortessa were included to examine

the performance on traditional flow cytometry data: Sepsis and Peritoneal Dialysis (PD). The

Sepsis data (see Materials & Methods 2.1 for details) was included for the identification of

conventional and non-conventional T cell subsets from peripheral blood mononuclear cells

(PBMCs) from patients diagnosed with sepsis. Data were arc-sinh transformed (standard

cofactor of 150) and batch effect corrected using the Harmony algorithm as discussed in

Chapter 3. Each sample was manually gated for single live CD4+ and CD8+ T cells, Vδ2+

γδ T cells and CD161+ Vα7.2+ mucosal-associated invariant T (MAIT) cells (Figure 4.6A).

The identified lymphocyte populations then served as ground truth for comparing results

from the clustering algorithms. The PD data (see Materials & Methods 2.2 for details) were

derived from a single adult receiving peritoneal dialysis with no previous infections for at

least three months prior to sampling. Data were arc-sinh transformed (standard cofactor

of 150), and debris and dead cells were removed prior to analysis. Leukocyte populations

in peritoneal effluent were identified as live CD45+ immune cells and manually gated for

CD3+ T cells, CD19+ B cells, CD15− CD14+ monocytes/macrophages, CD15+ neutrophils,

CD15− CD14+/− CD1c+ DCs, and CD15− SIGLEC-8+ eosinophils (Figure 4.6B). The
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identified populations then served as ground truth for comparing results from the clustering

algorithms. Both the Sepsis and PD data offered a unique challenge because of relatively

small and ambiguous populations being present amongst a backdrop of more predominant

cell types (Figure 4.7). The OMIP, Levine-13, and Levine-32 had overlapping populations

and the Samusik data had a branching topology. The six chosen datasets offered diverse

challenges and featured representations from various source technologies.

The output of the base clustering algorithms was used to generate a label-association matrix

(m clusters ×n observations) which served as input for three graph ensemble clustering al-

gorithms that have reported successful application in the scRNA-seq literature [211]: HGPA,

MCLA, HBGF. The graph ensemble algorithms were implemented using theClusterEnsembles

Python package [217].

For graph ensembles, a required hyperparameter is the number of final partitions in the con-

sensus solution. This problem was addressed in the base clustering algorithms by searching

a range of possible clusters and using the ConsensusClusterPlus. This approach requires

sub-sampling the feature space and computing the co-association matrix for each value of k

(the number of clusters). The cumulative distribution function (CDF) for each co-association

matrix is generated, and the optimal k is chosen where the CDF is maximum. Although ap-

plicable to methods such as FlowSOM and SPADE that use a heuristic or down-sampled

feature space, such an approach is intractable for the graph-based consensus clustering tech-

niques that construct graph representations of a M ×N label-association matrix. Therefore,

the optimal number of consensus partitions was chosen using internal metrics (metrics that

use internal information from the clustering process to evaluate the quality of a clustering e.g.

the variation within clusters or the degree of overlap between clusters). Ensemble clustering

was repeated over a range of k, chosen as the smallest and largest number of clusters amongst

base clustering algorithms. Four internal metrics, implemented in Scikit-Learn [177], were

chosen for their ease of interpretation:

1. Calinski-Harabasz score is the ratio of the sum of between-cluster dispersion and the

sum of within-cluster dispersion. Higher values correspond to better defined clusters

[177].
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Figure 4.6: Expression profile of conventional flow cytometry data Sepsis (A) and Peritoneal
Dialysis (B) and the total number of observations for each ground-truth population. Heatmap
shows expression intensity of cell surface markers and normalised to a range of 0 and 1.

2. Davies-Bouldin index compares each cluster to every other cluster measuring similar-

ity as the ratio of within-cluster distances to between-cluster distances. Lower values

indicate better define clusters [177].

3. Distortion score provides a measure of the compactness of clusters, measured as the

average squared distance between each point in a cluster and the cluster centroid [177,

218].

4. Silhouette coefficient is measured for each observation and calculated as the distance

between the observation and nearest cluster the observation is not a member of (a),

minus the mean intra-sample distance (b; the distance between the observation and all

other observations in the same cluster), divided by the maximum of a and b. Values

are reported between 1 and –1, with values near to 0 indicating overlapping clusters,
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Figure 4.7: UMAP density plots show the topology of the six benchmark datasets for the
evaluation of ensemble clustering. Colour intensity corresponds to the density of observa-
tions in a region of events.

and negative values generally indicating that an observation was assigned to the wrong

cluster [177, 218].

An example is given in Figure 4.8 for HGPA clustering of the Levine-13 data. Internal

metrics were measured for 1000 events with 100 re-samples, and the distribution was plotted

for each k. The optimal k (chosen as k=6 in the example shown) is visually determined as

the value where Calinski-Harabasz score and Silhouette coefficient are maximised, whilst

Davis-Bouldin index and distortion scores are minimised.

The performance of the base clustering algorithms and the ensemble methods was evaluated

using the following external metrics (metrics that compare cluster results to ground-truth

labels) implemented in the Scikit-Learn library [177]:

1. Adjusted Rand Index (ARI) provides a measure of similarity between clusters and

ground-truth labels by considering all pairs of observations. Pairs assigned to the

same or different clusters in the predicted and ground-truth populations are counted
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Figure 4.8: Internal metrics for a range of final consensus clusters (k) as generated by HGPA
clustering of Levine-13 data.

and contrasted to mismatched pairs. The Rand Index can be described as a measure

of the percentage of correct classifications by the clustering algorithm and is adjusted

for chance by estimating the expected rand index using a permutation model and then

normalising by this expectation. The ARI scores clustering results between -1 and

1, where random label assignment would be negative or close to zero, but perfect

clustering would have an ARI close to 1[177, 218].

2. Adjusted Mutual Information (AMI). Mutual Information is derived from informa-

tion theory and aims to quantify the amount of shared information between the pre-

dicted clusters and the ground-truth populations. Mutual Information is not adjusted

for chance and will tend to increase as the number of clusters increases, regardless of

the quality of additional clusters. To remedy this, AMI first calculates the expected

value for mutual information and adjusts for chance similarly to the Adjusted Rand

Index. The AMI scores clustering results between 0 and 1, where random label as-

signments would give a score of 0, but perfect clustering would have a score of 1 [177,

218].
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3. Fowlkes-Mallows Index (FMI), calculated as the square root of the product of pair-

wise precision (for each ground-truth label, the number of true positives over the num-

ber of true positives plus the number of false positives) and pairwise recall (for each

ground-truth label, the number of true positives over the number of true positives plus

the number of false negatives). FMI is, therefore the geometric mean of pairwise pre-

cision and recall, and scores clustering results between 0 and 1, with higher values

indicating similarity between cluster results and ground-truth labels [177].

Figure 4.9 shows the ARI performance of the base clustering algorithms (the algorithms used

to contribute to ensemble clustering) and the graph ensemble clustering algorithms. MCLA

offered greater performance than the other graph ensemble methods in most cases, a finding

corroborated by FMI and AMI (Figure 4.10). Although in the Levine-13 and Levine-32 data

graph ensemble methods improved on the performance of algorithms such as SPADE or

FlowSOM, in only one of the six datasets (OMIP) did any graph ensemble outperform the

base clustering algorithms. This evidence makes it difficult to justify using graph ensemble

methods for cytometry data.

Figure 4.9: Adjusted rand index (ARI) for base clustering algorithms (left), graph ensemble
methods (middle) and GeoWaVe ensemble (right) for the six benchmark datasets. The best
ARI score for each dataset is shown as a dotted orange line, and the best performing method
for those data is coloured in orange. * the optimal number of clusters, k, was chosen using
the ConsensusClusterPlus method [213].
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Figure 4.10: Fowlkes-Mallows index (FMI) (A) and Adjusted Mutual Information (AMI)
(B) for base clustering algorithms (left), graph ensemble methods (middle) and GeoWaVe
ensemble (right) for the six benchmark datasets. The best score for each dataset is shown as
a dotted orange line, and the best performing method for those data is coloured in orange. *
the optimal number of clusters, k, was chosen using the ConsensusClusterPlus method [213].
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It was questioned whether the performance of graph ensemble methods was a direct result

of the method employed for selecting k, the number of final consensus clusters (i.e. the use

of internal metrics as shown in Figure 4.8). Therefore, the performance of a graph-based

clustering algorithm was examined across different values of k using external evaluation

metrics. HBGF was chosen for this experiment because it had the best runtime of the three

graph ensemble methods. The performance of HBGF for the four datasets is shown in Figure

4.11 across a range of values of k. Performance was optimum for low values of k despite

the number of ground-truth populations being much larger for data such as Levine-13 and

Samusik. Therefore, the choice of k was assumed not to be a factor in the poor performance

of graph ensemble methods in this case.

Figure 4.11: Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI), and Fowlkes-
Mallows Index (FMI) when the number of consensus clusters (k) is varied for HBGF ensem-
ble clustering.

4.3.3 GeoWaVe outperforms graph ensemble methods and improves

upon the performance of base clustering algorithms.

The GeoWaVe algorithm was compared to the performance of base clustering algorithms

and the graph ensemble clustering algorithms. As discussed in section 4.3.1, GeoWaVe is

flexible when clustering the geometric medians of the input clusters and allows the user to

choose from many clustering algorithms for this task. Multiple algorithms for clustering the
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geometric medians were tried during the validation of GeoWaVe. Affinity propagation and

mean-shift were compared because of their ability to select the optimal number of clusters

from the characteristics of the data. K-means and agglomerative hierarchical clustering were

also tested, with the optimal number of clusters chosen from a range of clusters using the

ConsensusClusterPlus method [213]. Agglomerative hierarchical clustering offers an addi-

tional advantage to the end user because consensus clusters can be easily visualised as a

dendrogram and clustered heatmap, allowing the investigator to choose an appropriate range

for the number of consensus clusters driven by their understanding of the underlying biol-

ogy. For agglomerative hierarchical clustering, various linkage methods and distance metrics

were tried.

GeoWaVe performance was compared to base clustering algorithms and graph ensemble

methods using the external evaluation metrics discussed in the previous section (ARI, AMI,

and FMI). GeoWaVe outperformed all other methods in five of the six datasets when compar-

ing ARI (Figure 4.9) and FMI (Figure 4.10). GeoWaVe also outperformed graph ensemble

methods when comparing ARI, FMI and AMI but failed to outperform base clustering meth-

ods in terms of AMI in the Levine-13 and Samusik data.

The effect of the choice of clustering algorithm applied in GeoWaVe was data specific. For

the Levine-13, Samusik, and OMIP data, the choice of the algorithm was negligible, whereas

hierarchical clustering for the Levine-32 data was sensitive to the choice of distance met-

ric. Affinity propagation gave an inferior performance for Sepsis data. Likewise, affinity

propagation, along with K-means and Ward clustering, resulted in poor performance for PD

data.

4.3.4 GeoWaVe outperforms graph ensemble methods for the detection

of under-represented populations.

External evaluation metrics used in the prior section offer performance criteria independent

of the labels, i.e. they do not require a like-to-like matching of cluster and ground-truth la-

bels. Instead, measures of similarity between the cluster labels and ground-truth labels were

used. Aghaeepour et al. [116], Samusik et al. [134] and Weber & Robinson [132] alterna-

tively framed such problems in the context of a classification task: a one-to-one mapping of

ground-truth labels to clusters was achieved using the Hungarian algorithm such that the sum
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of F1 scores across ground-truth labels is maximised, and the precision (positive predictive

value), recall (sensitivity) and F1 score (harmonic mean of precision and recall) for each

ground-truth label are reported.

This procedure was repeated for the clustering algorithms benchmarked in previous sec-

tions and the ensemble clustering solutions. Figure 4.12 shows the average F1 score for

the base clustering algorithms, graph ensemble methods and GeoWaVe, along with the stan-

dard deviation (error bars) showing the variation in F1 score between populations. The F1

score, precision, and recall are reported in Figure 4.13. GeoWaVe continued to outperform

graph ensemble methods across the six benchmark datasets but failed to match the F1 score

obtained by methods such as PHATE combined with K-means in the Levine-13 data and

Phenograph in the Samusik data. While MCLA graph ensemble clustering was more com-

parable to GeoWaVe in the Sepsis data when observing F1 score, GeoWaVe clustering still

outperformed MCLA in terms of precision, recall and F1 score. GeoWaVe clustering offered

optimal average F1 scores for Levine-13, Sepsis, OMIP, and PD data and outperformed graph

ensemble methods across all datasets.

Figure 4.12: Performance of base clustering algorithms, graph ensembles and GeoWaVe
ensembles, after matching cluster labels to ground-truth labels using the Hungarian linear
assignment algorithm (as described by [132]) and maximising the sum of F1 scores across
ground-truth label and cluster label pairings. Median F1 scores are reported with error bars
showing the standard deviation either side of the average. * the optimal number of clusters,
k, was chosen using the ConsensusClusterPlus method [213]
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Figure 4.13: F1 score, precision, and recall of base clustering algorithms, graph ensembles
and GeoWaVe ensembles, after matching cluster labels to ground-truth labels using the Hun-
garian linear assignment algorithm (as described by [132]) and maximising the sum of F1
scores across ground-truth label and cluster label pairings. Mean scores are reported with
error bars showing the standard deviation either side of the average. * the optimal number of
clusters, k, was chosen using the ConsensusClusterPlus method [213]

An advantage to matching clusters to ground-truth populations using the Hungarian algo-

rithm was the ability to compare the performance at the population level. The F1 score for

ground-truth populations for the top performing algorithm from the base-clustering, graph

ensemble clustering, and GeoWaVe ensemble clustering are shown as heatmaps in Figure

4.14 and 4.15. Each row includes a measure of the population size as an additional heatmap

on the y-axis. The heatmaps demonstrate the superior performance of GeoWaVe compared to

graph ensemble methods for the identification of under-represented populations such as plas-

macytoid dendritic cells (pDCs) in the Levine-13 dataset, plasma cells, basophils and pro-B

cells in Levine-32, pDCs in OMIP data (Figure 4.14), B cells and dendritic cells (DCs) in the

PD data, and MAIT cells in Sepsis data (Figure 4.15).
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Figure 4.14: Heatmap of population F1 scores for the Levine-13 (A), Levine-32 (B), Samusik
(C), and OMIP (D) data. Population level F1 scores are shown for the top performing algo-
rithm amongst base clustering, graph ensemble, and GeoWaVe algorithms. Ground-truth
populations (rows) are coloured by F1 score in the central heatmaps, with darker colours in-
dicating a lower F1 score. On the right y-axis each row is labelled with an additional heatmap
that describes the normalised size of the population (total number of events) relative to other
populations within the same data.
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Figure 4.15: Heatmap of population F1 scores for the the Sepsis (A) and Peritoneal Dial-
ysis (PD) (B) data. Population level F1 scores are shown for the top performing algorithm
amongst base clustering, graph ensemble, and GeoWaVe algorithms. Ground-truth popula-
tions (rows) are coloured by F1 score in the central heatmaps, with darker colours indicating
a lower F1 score. On the right y-axis each row is labelled with an additional heatmap that
describes the normalised size of the population (total number of events) relative to other
populations within the same data.

GeoWaVe matched the performance of base clustering algorithms for under-represented cell

populations, whereas the graph ensemble clustering algorithms failed to do so. GeoWaVe

also showed improved performance over base clustering algorithms for identifying popula-

tions such as monocytes, and subsets of T cells in the Levine-32 data, myeloid DCs (mDCs)

in the Samusik data, MAIT cells in the Sepsis data, and eosinophils in the PD data. Despite

the success of GeoWave in comparison to graph ensemble methods, it still failed to identify

some rare subsets completely, such as immature B cells in the Levine-13 dataset, CD16+

NK cells in the Levine-32 dataset, and plasma cells in the Samusik data. In contrast, base

clustering algorithms showed either good performance or identification of at least some of

the population.
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4.3.5 GeoWaVe is computationally efficient.

Across all variations of the GeoWaVe algorithm run on the four benchmark datasets, the

longest recorded runtime was for the 40 parameter Samusik data with 300,000 observations,

at a runtime of 2 minutes and 12 seconds. All algorithms were run on an Ubuntu 20.04

operating system with an Intel i7-12700K processor with 12 cores and 32 gigabytes of RAM.

The runtimes for all algorithms on benchmark data are reported in Table 4.2, 4.3, 4.4 and 4.5.

The maximum number of observations in the performance comparison experiments dis-

cussed so far was limited to 300,000. To assess the ability of GeoWaVe to scale to larger

data, it was exposed to synthetic data of increasing size and complexity.

The runtime performance of the GeoWaVe algorithm is affected by two attributes of the

data: the total number of observations and the overlap between clusters obtained by base

clustering algorithms. Increasing overlap between clusters results in more observations being

assigned to multiple consensus clusters, and the consensus cluster score (described in section

4.3.1) must be computed for each event assigned to multiple consensus clusters, therefore

increasing the computational burden.

Synthetic data were generated using the make_blobs function from the Scikit-Learn li-

brary [177]. Data were generated with 15 dimensions (features), ranging from 500,000 to

4,000,000 observations in four batches, with increasing cluster standard deviations from one

to four. The increasing variation would result in greater overlap between clusters, therefore

challenging the performance of GeoWaVe (Figure 4.16). In total, 32 datasets were gener-

ated each containing ten Gaussian clusters. The synthetic datasets were clustered using three

separate K-means algorithms, each with a different random seed and number of expected

clusters (8, 10, and 12, respectively). Mini-batch processing with a batch size of 1024 was

used to scale the K-means clustering to large data. The outputs of the K-means clustering

algorithms served as input to a GeoWaVe clustering algorithm using Euclidean Ward hierar-

chical clustering of geometric medians.

The consensus cluster score is a simple calculation, and GeoWaVe employs multiprocess-

ing to distribute these calculations across the available cores of a machine, resulting in an

excellent performance, as demonstrated in Figure 4.17. GeoWaVe could generate ensemble
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Dataset No. of obs.
No. of
parameters

MCLA HGPA HBGF

Levine-13 167,044 13 35.3s 14.7s 14.7s
Levine-32 265,627 32 55.8s 22.6s 22.6s
Samusik 300,000 40 11.9s 25.5s 25.5s
OMIP 300,000 15 14s 25.7s 25.7s
Sepsis 300,000 6 15.6s 25.8s 25.8s
PD 300,000 9 8.6s 25.4s 25.4s

Table 4.3: Runtime performance of graph ensemble clustering algorithms on benchmark
data.

Figure 4.16: UMAP embeddings show the distribution of 10 Gaussian ‘clouds’ of syntheti-
cally generated data points with an increasing standard deviation (from 1 SD to 4 SD) causing
increasing overlap.

clusters in less than 10 minutes, even for data scaling to millions of observations. With such

reasonable runtimes, the investigator can easily experiment with different hyperparameters.

Dataset
No. of
obs.

No. of
params.

Ward Manhattan Euclidean Cosine
Cheby-
shev

Levine-
13

167,044 13 57.7s 30.1s 52.7s 42.8s 47.3s

Levine-
32

265,627 32 53.6s 31.7s 47.8s 43.3s 47.4s

Samusik 300,000 40
1min
57s

1min 25s 1min 55s
1min
54s

1min 43s

OMIP 300,000 15 44.2s 25.9s 25.7s 15.9s 26.7s
Sepsis 300,000 6 14.3s 13.4s 12.4s 14.6s 14.6s

PD 300,000 9
1min
36s

6.2s 6.39s 8.9s 9.2s

Table 4.4: Runtime performance of GeoWaVe ensemble clustering algorithms on benchmark
data, using Agglomerative hierarchical clustering.
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Figure 4.17: Runtime performance of GeoWaVe algorithm on randomly generated synthetic
data consisting of ten Gaussian data point clouds with an increased number of observations.
Four synthetic datasets are shown each with an increasing standard deviation (SD) used for
the generation of Gaussian data point clouds resulting in more overlap between clusters.

Dataset
No. of
obs.

No. of pa-
rameters

K-Means Mean shift
Affinity
Propagation

Levine-13 167,044 13 84.9s 43.6s 33.2s
Levine-32 265,627 32 47.2s 58.6s 55.3s
Samusik 300,000 40 2min 12s 1min 55s 1min 56s
OMIP 300,000 15 47.3s 37.6s 48.2s
Sepsis 300,000 6 13.1s 10.5s 18.3s
PD 300,000 9 1min 22s 8.2s 1min 13s

Table 4.5: Runtime performance of GeoWaVe ensemble clustering algorithms on benchmark
data, using K-means, Mean shift, and Affinity Propagation.

4.4 Discussion

In this chapter, ensemble clustering was developed as a solution to reduce the variance

commonly observed amongst clustering methods in the cytometry literature, where results

depend upon hyperparameter choice and the particular context in which they are applied.
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Presently, there is an absence of a “one size fits all” solution to clustering cytometry data,

leaving scientists to rely on exploratory analysis that risks biasing results through data dredg-

ing [202]. Ensemble clustering offers an alternative by finding a consensus informed by the

results of multiple clustering algorithms exposed to the same data. This multi-view ap-

proach theoretically offers robust, consistent, and stable solutions [206, 203] without biasing

the analysis with the assumptions of a single algorithm. Employing ensemble clustering also

forces the analyst to compare and contrast the results of multiple algorithms, which can be

an informative exercise.

Ensemble clustering presents many challenges that come to bear when applied to complex

data such as those generated with cytometry. Unlike supervised classification, no defined

number of classes are provided by labelled examples. Different algorithms may generate

different quantities of clusters, which must be compared and consolidated into consensus

clusters. Cytometry data also tends to generate large data that can be difficult to handle with

conventional computer resources. A challenge of increasing relevance as studies attempt to

phenotype hundreds or thousands of subjects.

An existing ensemble approach that can scale to large data is the graph-based methods, such

as HGPA, MCLA, and HBGF. These techniques were benchmarked against four indepen-

dent datasets but failed to outperform individual clustering algorithms such as FlowSOM,

PhenoGraph, or SPADE.

In response, an alternative heuristic ensemble method named GeoWaVe was suggested, suit-

able to the nature of cytometry data. Given that the dimensions of cytometry data are not

beyond the comprehension of the investigator and meaningful phenotypes can be determined

by considering sets of features, it is proposed to summarise each cluster contributing to a

consensus by its geometric median in the feature space. The geometric medians can be

visualised in a heat map as was shown in Figure 4.1. It was demonstrated in this chapter

that clustering the matrix of these geometric medians can generate informative consensus

clusters. GeoWaVe is novel in its computational efficiency, ability to handle millions of

observations and communication of the consensus clusters to the investigator in a familiar

manner that reflects the underlying biology.

GeoWaVe outperformed the graph methods of HGPA, MCLA, and HBGF. Using geometric

medians also provides a helpful visual aid when choosing the number of consensus clusters
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to be formed. One can estimate a suitable number of partitions by visualising the heat map

of geometric medians in combination with UMAP, tSNE or PHATE embeddings. The vi-

sualisation allows the investigator to introduce informative priors and select clusters based

on knowledge of the underlying biology. If uncertain, a range of partitions can be searched

using the ConsensusClusterPlus method [213].

The use of geometric medians as a heuristic is not without limitations. Summarising a cluster

using the geometric median tells nothing of the topology. A significant loss of information

could result in misinformed consensus clusters that are not representative of the data. Addi-

tionally, the optimal choice of clustering method applied to the matrix of geometric medians

is not immediately apparent and performance can vary depending on the data. It should be

noted, however, that the use of a heuristic means that the run-time of GeoWaVe is fast enough

to accommodate hyperparameter tuning. The investigator should therefore experiment with

different clustering algorithms and hyperparameters and inspect the partitions on the geo-

metric median heat maps and embeddings generated from a suitable dimension reduction

technique. Although this fails to remove the exploratory approach to clustering cytometry

data, it introduces the multi-view consensus necessary for robust results.

Weber & Robinson [204] performed a similar assessment of clustering algorithms without

the focus on consensus methods and framed their assessment as a classification problem,

inspired by the work of Samusik et al. [134]. They chose to use F1 score by first map-

ping clusters to ground-truth labels using the Hungarian algorithm and maximising F1 score

across reference populations. This methodology was repeated in the present chapter and

supported the conclusion that GeoWaVe ensemble methods outperform the graph ensemble

methods of HGPA, MCLA, and HBGF. Closer inspection of individual population F1 scores

revealed that graph ensemble methods often did not identify rare cell populations. Although

identifying these subsets was improved in GeoWaVe, performance was worse than individ-

ual clustering algorithms in certain cases, and some populations, such as Platelet cells in the

Levine-13 data, remained unidentified. The performance of the base clustering algorithms

for many rare cell populations was also poor, possibly impacting the performance of en-

semble outputs. Further work is needed to generate clustering methodologies that directly

address this limitation.
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There is a significant flaw in assessing clustering performance through F1 score. Mapping

clusters to ground-truth labels in such a way implies that a one-to-one relationship must

exist between the clusters generated and the reference populations. Clustering analysis can

be complicated by sub-structures in data captured as clusters but absent in the ground-truth

labels. If the purpose of clustering cytometry data is to identify a precise number of clusters,

then this form of evaluation seems justified, but one could argue in such a scenario that a

supervised classification approach is more suitable. Clustering analysis tends to be applied

in the interest of discovery when the number of clusters is unknown. Despite this flaw,

it was deemed necessary to replicate the methods of Webber et al. [204], identifying the

role population size plays. It showed that although the consensus clustering of geometric

medians outperforms graph-based methods, there is still work to ensure rare cell populations

do not go undetected. It would be advisable that if rare cell populations are suspected to be

present, the consensus is formed by methods with high resolution, such as those formed on

nearest-neighbour graphs [131, 134, 214].

Future work should focus on more diverse ensemble clustering. In this work, four algorithm

classes were chosen based on their popularity in the cytometry literature and their available

implementations. However, a wide variety of clustering algorithms could be explored for

inclusion in ensemble clustering. The use of ensemble clustering is more prevalent in the

scRNA-seq literature with examples such as SC3 [210], SAFEClustering [219], and SCENA

[220]. As discussed, some of these methods might not scale to the size of data encountered

in cytometry data analysis, which can be hundreds of times greater than what is encountered

in scRNAseq analysis. There are efforts to address the computational complexity, such as

improvements to SC3 that currently exist as a pre-print publication [221]. Other solutions to

the computational complexity may come from advances in the statistical and computational

literature, such as consensus formed on heuristics of cluster similarity using metrics e.g.

Jaccard index [222]. In the meantime, clustering on geometric medians could be a viable

solution for cytometry data analysis and has been implemented in a manner that is compatible

with the CytoPy software described in Chapter 3.1 of this thesis.
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5 | Phenotypes of severe sepsis patients and their

relationship with mortality and causative pathogen.

5.1 Introduction

Sepsis is a life-threatening syndrome characterised by organ failure caused by a dysregulated

host response to infection requiring complex patient management and care. Timely diagno-

sis of sepsis is vital, but identifying those at risk of higher mortality is also imperative for

triaging intensive care. Early prediction of patient outcomes has implications for resource

allocation and personalised care. Historically, it has been the role of severity scores to direct

care, which can be broadly categorised into those that indicate the risk of in-hospital mor-

tality e.g. Acute Physiology and Chronic Health Evaluation (APACHE) or Simplified Acute

Physiology Score (SAPS), and those that also define the degree of organ failure as well as

indicating the likelihood of mortality e.g. Sequential Organ Failure Assessment (SOFA) and

Multiple Organ Dysfunction score (MODS) [223]. These tools rely on routinely collected

clinical data and observations, yet their performance for predicting in-hospital mortality is

relatively poor [225, 224].

Novel prognostic biomarkers derived from the pathophysiology of sepsis could be more

informative for clinicians and help guide the treatment and monitoring of the disease. Several

biomarkers have been proposed, the most well-studied being C-reactive protein (CRP) and

Procalcitonin (PCT). Elevated plasma level of CRP on admission has failed to present itself

as a reliable predictor of mortality [59, 227, 226], and although meta-analysis has shown that

early levels of PCT plasma levels significantly differ between survivors and non-survivors,

high heterogeneity between study populations puts the general applicability of these findings

into question [60].

Many biomarkers have been proposed for prognostic use in sepsis, covering multiple biolog-

ical systems. Biomarkers of cardiovascular function and circulation have shown potential;

for example, pro-adrenomedullin levels in the blood (a marker of vascular permeability, in-

flammation, endothelial barrier regulation, and stabilisation of micro-circulation [228]) sig-

nificantly predicted mortality with an AUC of 0.87 [154, 71]. An active research area with

potential is the study of microRNAs (miRNAs), known to regulate the pathophysiology of
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sepsis, such as pro-inflammatory cytokine pathways, with several studies reporting AUC

scores >0.8 [71]. Biomarkers of the innate immune response have shown promise as predic-

tors of mortality. CD64 expression on neutrophils has a reported AUC score for predicting

mortality of 0.75 [65, 229], although definitions of outcome differ between studies. IL-6

potentially shows high specificity for predicting early mortality [50], but its ability to predict

mortality at later time points is poor [230, 51]. Lymphopenia is a hallmark of sepsis, is as-

sociated with bacteremia, and is inversely correlated with outcome [231]. The neutrophil to

lymphocyte ratio is also increased in sepsis, possibly due to lymphocyte apoptosis, and has

been implicated as a potential diagnostic biomarker [232].

Most biomarker research in sepsis focuses on diagnosis rather than prognosis, given the im-

portance of early interventions, such as anti-microbials, on survival [233, 78, 76]. The reality

of sepsis is that the causative pathogen and appropriate antimicrobials are unknown at the

time of diagnosis, and therefore broad-spectrum antibiotics are often administered. Broad-

spectrum antibiotic use is a controversial topic with arguments for [234] and against [235] the

rapid use of empirical broad-spectrum antibiotics in sepsis. Whilst some argue that the risk

to a patient by withholding antibiotics in suspected sepsis whilst awaiting confirmation of the

causative pathogen is substantially greater than the risk of using empirical broad-spectrum

antibiotics, others highlight the risk of creating the conditions for multidrug-resistant organ-

isms to thrive and the adverse drug effects of overly broad treatment regimens. What remains

clear, however, is the need for more specific identification of causative pathogens without

requiring lengthy bacterial culture that could take up to 72 hours to yield results. Earlier

recognition of the causative pathogen could lead to more targeted therapy and contribute to

improved antibiotic stewardship [236].

As highlighted by a recent technology review, multiple molecular diagnostic methods for

pathogen identification have come to market, potentially reducing the time needed to identify

the causative pathogen by up to 30 hours [73]. Many technologies require a positive blood

culture, yet the sensitivity of blood cultures is negatively impacted by antibiotic use, and the

incidence of culture-negative sepsis is reported as anywhere between 28 and 80% [77].

Several biomarkers have been investigated for their ability to distinguish Gram-positive and

Gram-negative infections, the most notable being PCT. In one study, plasma levels of CRP

and PCT were reported to have AUC scores of 0.79 and 0.68, respectively [237], and other
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studies have reported plasma concentrations of PCT being higher amongst those with Gram-

negative infections compared to Gram-positive [85, 87, 83, 238]. Other biomarkers that have

shown promise are soluble CD14 (sCD14 or ‘presepsin’), which may be increased in Gram-

negative bacteremia [69], and the cytokines IL-1β, IL-6, and IL-18, with concentrations

significantly higher in patients with Gram-positive infection [82].

Another potential biomarker for identifying aetiology in sepsis is unconventional T cells

such as Mucosal Associated Invariant T cells (MAIT) and γδ T cells, which are capable of

microbial pattern recognition and bridging the innate and adaptive immune system by or-

chestrating acute inflammatory responses. MAIT cells are an abundant population of T cells

characterised by a semi-invariant T cell antigen receptor (TCR) with specificity for micro-

bial riboflavin-derivative antigens presented by HLA-1b major histocompatibility complex

(MHC)-related protein 1 (MR1) [28, 29]. The cell specificity towards microbial vitamin

B metabolites makes this population an interesting candidate for predictive signatures of

infectious disease [30, 28, 239]. γδ T cells are invariant T cells with a TCR composed

of a γ and δ chain and are capable of antigen recognition independent of MHC presen-

tation. Vγ9/Vδ2 γδ T cells are highly responsive to the microbial isoprenoid precursor

(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), a molecule produced by the

majority of Gram-negative pathogens, some Gram-positive pathogens, but notably absent

from staphylococci, streptococci and fungi [25]. These unconventional T cells’ innate func-

tionality and specificity could potentially contribute to the pathogen-specific signatures that

have already been shown to successfully characterise patients with acute peritonitis [175,

240].

In this chapter, I provide a descriptive overview of the comprehensive data captured from

patients diagnosed with sepsis and sampled within 36 hours of diagnosis. Comparisons are

made between survivors and non-survivors, culture-positive and culture-negative sepsis, and

amongst those with confirmed infection, the differences observed between Gram-positive

and Gram-negative causative pathogens. The routine clinical data available for these patients

are described first, summarising the cohort and giving perspective on the value of existing

data in the clinic. Then soluble analytes and the immunophenotype of those patients are

characterised, focusing on monocytes, neutrophils, conventional CD4+ and CD8+ T cells,

γδ T cells, and MAIT cells. The data described within this chapter provides the basis for

input variables for multivariant modelling discussed in Chapter 6.
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5.2 Aims

1. Evaluate the performance of routinely available clinical parameters and biomarkers for

predicting mortality, positive bacterial culture, and/or the causative pathogen.

2. Define the difference in soluble components of immunity, such as cytokines and chemokines,

during early sepsis comparing survivors and non-survivors, and Gram-negative and

Gram-positive causative pathogen.

3. Define the phenotype of classical and unconventional T cells, monocytes, and neu-

trophils in early sepsis.

4. Identify cellular phenotypes that are correlated with either mortality, positive bacterial

culture, or causative pathogen in early sepsis.
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5.3 Results

5.3.1 Characterising a cohort of acute severe sepsis patients.

A total of 77 severe sepsis patients in the intensive care unit (ICU) in Cardiff, UK, were

enrolled in the ILTIS study (see Material & Methods section 2.1) between 2018 and 2021.

Figure 5.1 provides an overview of the sampling and phenotyping of these patients. Whole

blood was obtained within the first 36 hours of sepsis (defined as a SOFA score greater

than 2 with suspected infection) from each patient, and flow cytometry was employed to

capture the phenotype of monocytes, neutrophils, classical T cells, and unconventional T

cells. Cell-free plasma was obtained and frozen within the first hour of sample collection

and later analysed with LuminexTM multi-plex assays and standard plate-based ELISA to

quantify soluble biomarkers.

Patients were categorised based on mortality and underlying causative pathogen (Figure

5.2). Within each category, the number of patients with available data for activated T

cell subset staining, memory T cell subset staining, monocyte and neutrophil staining, cy-

tokine/chemokine LuminexTM multiplex assay/ELISA, clinical parameters, and lipid data are

shown by coloured boxes beneath each category. Cytometry staining data are absent where a

technical error occurred during sample processing or the sample integrity/volume prevented

acquisition. LuminexTM multiplex assay/ELISA results are absent for seven patients because

of insufficient sample volume. Mortality at 30 and 90 days captured short- and medium-

term outcomes. The causative pathogen was determined from the patient’s discharge letter

and cross-checked with their microbiology results. Twenty five patients were excluded from

comparing the causative pathogen because the cause of infection could not be ascertained.

Table 5.1 and 5.2 show a comparison of patient demographics, admission criteria, and clini-

cal observations between survivors and non-survivors at 30 and 90 days after sepsis diagno-

sis. A mortality rate of 22.1% and 27.3% was observed at 30 and 90 days after sepsis diag-

nosis, respectively. Mortality was lower than the international average of 24.4% and 32.2%

reported by a recent meta-analysis [2]. Compared to national statistics, the intensive care

national audit and research centre reported critical care unit mortality as 27.6% for England,

Wales, and Northern Ireland in 2012 [241]. A multi-centre prevalence study of sepsis on

general wards and emergency departments in Wales in 2016 reported a 22% mortality rate at

124



CHAPTER 5. PHENOTYPES OF SEVERE SEPSIS PATIENTS

Fi
gu

re
5.

1:
O

ve
rv

ie
w

of
IL

T
IS

st
ud

y
da

ta
ca

pt
ur

e.
To

ta
l

le
uk

oc
yt

e
fr

ac
tio

n
an

d
PB

M
C

s
fr

om
w

ho
le

bl
oo

d
in

E
D

TA
w

er
e

ph
en

ot
yp

ed
by

flo
w

cy
to

m
et

ry
to

ch
ar

ac
te

ri
se

m
on

oc
yt

es
,n

eu
tr

op
hi

ls
,a

nd
T

ce
lls

.C
el

l-
fr

ee
pl

as
m

a
w

as
si

m
ul

ta
ne

ou
sl

y
is

ol
at

ed
an

d
fr

oz
en

at
-8

0◦
C

an
d

la
te

ra
na

ly
se

d
fo

r
so

lu
bl

e
bi

om
ar

ke
rs

us
in

g
L

um
in

ex
T

M
M

ul
tip

le
x

as
sa

ys
.

D
at

a
w

er
e

co
m

bi
ne

d
w

ith
ex

te
ns

iv
e

cl
in

ic
al

in
fo

rm
at

io
n

ob
ta

in
ed

fr
om

th
e

pa
tie

nt
m

an
ag

em
en

ts
ys

te
m

an
d

st
or

ed
in

a
lo

ca
lC

yt
oP

y
da

ta
ba

se
.

125



CHAPTER 5. PHENOTYPES OF SEVERE SEPSIS PATIENTS

Fi
gu

re
5.

2:
St

ra
tifi

ca
tio

n
of

ac
ut

e
se

ve
re

se
ps

is
pa

tie
nt

s
an

d
av

ai
la

bl
e

da
ta

w
ith

in
ea

ch
su

bc
at

eg
or

y.
Pa

tie
nt

s
w

er
e

di
vi

de
d

in
to

su
rv

iv
or

s
an

d
no

n-
su

rv
iv

or
s

at
30

an
d

90
da

ys
af

te
r

se
ps

is
di

ag
no

si
s.

T
he

to
ta

ln
um

be
r

of
pa

tie
nt

s
w

ith
av

ai
la

bl
e

da
ta

so
ur

ce
s

is
sh

ow
n

by
co

lo
ur

bo
xe

s
w

ith
in

ea
ch

ca
te

go
ry

.P
at

ie
nt

s
w

er
e

al
so

ca
te

go
ri

se
d

in
to

th
os

e
w

ith
an

d
w

ith
ou

tm
ic

ro
bi

ol
og

ic
al

ly
co

nfi
rm

ed
in

fe
ct

io
n,

an
d

am
on

gs
tt

ho
se

w
ith

a
po

si
tiv

e
cu

ltu
re

,o
n

th
e

G
ra

m
-s

ta
tu

s
of

th
e

ca
us

at
iv

e
pa

th
og

en
.

126



CHAPTER 5. PHENOTYPES OF SEVERE SEPSIS PATIENTS

Survivors (n=60) Non-survivor (n=17) P-value

Age (Years) 65.5 [18 - 86] 71.0 [47 - 84] 0.149
Male (%) 51.7% 70.6% 0.268
BMI 28.7 [17.3 - 51.6] 29.4 [22.4 - 52.2] 0.751
APACHE II Score 17.0 [0 - 30.0] 19.0 [0 - 33] 0.294
Days in critical care 9.0 [0.8 - 64.8] 9.4 [1.5 - 34.4] 0.980
Mechanically ventilated (%) 53.3% 76.4% 0.103
Renal Rt (%) 35.0% 47.1% 0.404
Trauma/Emergency surgery 23.3% 23.5% 1.000
Microbiology confirmed 68.3% 64.7% 0.776

Table 5.1: Comparison of survivors and non-survivors at 30 days after diagnosis of sepsis.
Continuous values are reported as the median [range] and P-values reported using two-tailed
Mann-Whitney U test. P-values for proportions were generated using Fishers Exact test.

Survivors (n=56) Non-survivor (n=21) P-value

Age (Years) 65.0 [18 - 86] 71.0 [47 - 84] 0.067
Male (%) 51.8% 66.7% 0.307
BMI 28.7 [17.3 - 51.6] 29.4 [22.4 - 52.2] 0.496
APACHE II Score 17.0 [0 - 30.0] 19.0 [0 - 33.0] 0.132
Days in critical care 7.83 [0.8 - 64.8] 9.9 [1.5 - 55.1] 0.403
Mechanically ventilated (%) 51.8% 76.2% 0.070
Renal Rt (%) 32.1% 47.6% 0.120
Trauma/Emergency surgery 23.2% 23.8% 1.000
Microbiology confirmed 67.9% 66.7% 1.000

Table 5.2: Comparison of survivors and non-survivors at 90 days after diagnosis of sepsis.
Continuous values are reported as the median [range] and P-values reported using two-tailed
Mann-Whitney U test. P-values for proportions were generated using Fishers Exact test.

30 days and 31.5% at 90 days [242]. Survivors appeared slightly younger than non-survivors

when comparing both 30- and 90-day mortality, although not significantly. Statistics on med-

ical interventions during the patient’s ICU stay but after their sepsis diagnosis were collated.

The proportion of patients undergoing renal replacement therapy or mechanical ventilation

was less among survivors, but those differences were not statistically significant.

A total of 52 patients (67.5% of the cohort) had a microbiologically confirmed infection,

which was slightly higher than previous descriptions of 30 to 40% of sepsis diagnoses yield-

ing a positive bacterial culture [243]. Three patients had a mixed culture result with an

undefined causative pathogen, two patients had an Influenza A infection with no bacterial

isolates identified, and one had candidiasis (Figure 5.2). The remaining cohort could be

divided into Gram-negative, Gram-positive, and culture-negative sepsis (Table 5.3). Pa-
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tients with a microbiologically confirmed infection were of greater age, and the majority

were Gram-negative (63.5%). Fewer patients with a Gram-positive or Gram-negative cause

had undergone emergency surgery or were admitted due to traumatic injuries compared to

culture-negative sepsis patients. No significant difference in patient demographics, severity

score, therapeutic intervention, or mortality was observed between Gram-negative, Gram-

positive, and culture-negative sepsis.

5.3.2 Insights from routine clinical data in sepsis patients

Before extensive immunophenotyping, routine clinical data such as full blood count, liver

profile, and blood gas analyser data were explored. Individual biomarkers were compared

between the patient subsets described in Figure 5.2. Variables captured for less than five

unique patients were removed, leaving 63 routinely collected variables. Average and in-

terquartile range for each variable are detailed in the appendix, Table A.1.

Routine clinical data collected retrospectively are not driven by a study design that would

ensure conformity between patients but rather by the patient’s clinical condition at the time

of sampling. The consequence is exclusive variables for some patients resulting in missing

data for others and varying time points for sampling. The complication of different sampling

time points drove the decision to summarise routine clinical data as follows:

• The sample closest to the study enrolment time was chosen and all other time points

were ignored, or

• Samples taken 48 hours prior to enrolment or 8 hours after enrolment were averaged.

The time window for averaging was chosen to capture measurements in the hours prior to

diagnosis of sepsis, with an 8-hour delay after enrolment to account for sampling delay.

Routine data readily available for the majority of subjects in this study (i.e. less than 10%

missing data) included extensively characterised biomarkers such as CRP and arterial lactate

concentration. CRP is used clinically as a marker of inflammation and is recognised as a

diagnostic marker in sepsis [155]. As shown in Figure 5.3, all patients had an elevated blood

CRP level (above the local hospital laboratory reference value of 5 mg/L). While there was

no significant difference between survivors and non-survivors or between culture-positive

and culture-negative patients, CRP was significantly increased in Gram-positive infections
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compared to Gram-negative infections. Arterial lactate concentration (captured by blood gas

analysers) is a marker of tissue hypoxia and is clinically used as a measure of severity [244].

Despite this, lactate was only significantly increased in those who died 90 days after enrol-

ment and was only significantly different when considering the sample closest to enrolment

time and not the average within the 48-hour window (Figure 5.4).

Figure 5.3: C-reactive-protein (CRP) concentration in blood taken from patients diagnosed
with sepsis and enrolled into the ILTIS study. Values are shown for samples taken closest
to enrolment time (top) and the average concentration within a window of 48 hours prior
enrolment up until 8 hours after enrolment (bottom). P-values report comparison using two-
tailed Mann-Whitney U test. Dotted line represents the reference range used for CRP by
Cardiff and Vale Health Board and values above this line are considered ’raised levels of
CRP’.

Additionally, cell counts for major immune cell populations were available for most subjects.

No significant difference was observed amongst these subsets when comparing the most

recent sample relative to the enrolment time (Figure 5.5).
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Figure 5.4: Lactate concentration in blood taken from patients diagnosed with sepsis and
enrolled into the ILTIS study. Values are shown for samples taken closest to enrolment time
(top) and the average concentration within a window of 48 hours prior enrolment up until 8
hours after enrolment (bottom). P-values report comparison using two-tailed Mann-Whitney
U test. Dotted line represents the reference range for blood lactate used by Cardiff and Vale
Health Board and values outside this range are considered ‘abnormal’.

The approach taken in this study of broad data mining of all available routine clinical data

provides an overwhelming number of possible biomarkers. This situation is best addressed

with feature selection and multivariant modelling that will be explored in Chapter 6. Before

this, however, it was valuable to ascertain if any particular biomarker successfully differ-

entiated the subgroups of interest amongst sepsis patients. All biomarkers were considered

individually and compared between patient subsets by a two-tailed Mann-Whitney U test,

with correction for multiple comparisons made using the Benjamini–Hochberg procedure

to control false discovery rate at an α of 0.05. Biomarkers were excluded if less than five

observations were available for any patient subset.
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Figure 5.5: Concentration of lymphocytes, neutrophils, and monocytes in blood from pa-
tients diagnosed with sepsis and enrolled into the ILTIS study. Values are shown for samples
taken closest to enrolment time. Dotted line represents the reference range for cell counts
used by Cardiff and Vale Health Board and values outside this range are considered ‘abnor-
mal’.

Figure 5.6A shows the common language effect size (CLES) vs the corrected p-value for

all biomarkers routinely collected under the null hypothesis that values are similar amongst

patient sub-groups. The CLES gives the probability that a random observation from the dis-

tribution of non-survivors will be higher than a random observation from the distribution
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of survivors. The p-value for each variable was generated using a Mann-Whitney U Test

with the Benjamini-Hochberg procedure applied to control the false discovery rate. The

only routinely collected variable that showed a significant difference between survivors and

non-survivors was the venous fraction of inspired oxygen (FiO2) value taken closest to the

diagnosis of sepsis, with increased levels amongst non-survivors compared to survivors, cor-

roborating findings by Dahl et al. [245]. No other biomarkers demonstrated a significant

difference relative to mortality. Figure 5.6B demonstrates the same is true for identifying

those without identification of causative pathogens or when comparing Gram-positive and

Gram-negative infections.

Figure 5.6: Comparisons of variables captured in routine clinical data and their ability to
differentiate mortality, culture-positivity, and the Gram status of the causative pathogen in
sepsis. Data are summarised as either the most recent value relative to enrolment time or the
average value within a window of 48 hours prior to enrolment and 8 hours after enrolment.
On the left panel (A), survivors at 30 and 90 days after enrolment are compared to non-
survivors, whilst on the right (B), those with confirmed microbiology are compared to those
without. Where microbiological confirmation is present, Gram-positive and Gram-negative
pathogens are also compared (B). P-values are reported using a two-tailed non-parametric
Mann-Whitney U test with Benjamini–Hochberg procedure to control the false discovery
rate at an α of 0.05. Values below the horizontal red line have a p-value greater than 0.05.
The vertical red line represents a CLES of 50%.

5.3.3 Quantifying soluble biomarkers from plasma of sepsis patients.

Routine clinical practice does not currently quantify the various immunophenotypes and sig-

nalling cascades present in acute severe infectious diseases such as sepsis. As described in

Figure 5.1, cell-free plasma was obtained from whole blood samples and analysed for cy-
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tokines and chemokines to identify potentially valuable biomarkers. Samples were analysed

using multi-plex LuminexTM assays (see 2.1.7 for complete methodology) in two batches.

Batch effects were minimised by converting to log base two followed by computing the z-

score (by subtracting the mean from each value and dividing by the standard deviation) as

previously described by Tomic et al. [173]. Figure 5.7 shows the improved overlap in the

distribution of biomarker concentration before and after applying the aforementioned batch

correction technique.

The differences amongst analytes measured by Luminex multiplex assays and ELISAs for

survivors and non-survivors 30 days after sepsis diagnosis are shown in Figure 5.8. It should

be noted that for many analytes data crowd at the bottom or top of the analytical range (most

obvious for TNFα, IL-10, and IL-1α), this reflects the number of samples where concentra-

tions of analytes were outside the detectable range of the assay. The issue was later addressed

by converting measurements to discrete variables above and below detection limits.

CXCL10 levels in plasma were significantly decreased in non-survivors when observing

30-day mortality (Figure 5.8). CXCL10 is a chemokine produced by T cells, a ligand for

CXCR3, and is important for the recruitment of lymphocytes to the sites of infection [17].

IL-15, a ‘bi-directional’ cytokine with both pro-inflammatory and immunoregulatory effects

[246], was significantly increased in non-survivors. Over 80% of patients had levels below

the detection limit, so the significance of this finding should be treated with caution. The

statistical significance of the trends seen for CXCL10 and IL-15 was diminished when ob-

serving 90-day mortality (Figure 5.9). Although this could suggest that these analytes are

more informative for early mortality, class imbalance (the ratio between survivors and non-

survivors) is less severe for the 90-day mortality endpoint, and therefore a larger sample size

would be needed to clarify that the relationship is different between 30- and 90-day mortality.

No other analytes were significantly different between survivors and non-survivors.

The same analytes were compared amongst patients with and without microbiologically con-

firmed infections (Figure 5.10). Flt3L (FMS-related tyrosine kinase 3 ligand) and it’s corre-

sponding tyrosine kinase receptor (Flt3) regulates dendritic cell (DCs) development in steady

state, and is required for the generation of non-migratory, lymphoid-tissue-resident conven-

tional DCs and interferon-producing plasmacytoid DCs [247]. Flt3L levels were moderately

increased in culture-positive sepsis compare to those without a confirmed infection. No other
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Figure 5.8: Concentration of soluble analytes in cell-free plasma isolated from sepsis pa-
tients, comparing survivors and non-survivors 30 days after sepsis diagnosis. Batch cor-
rected concentration of analytes measured by LuminexTM multiplex assays (left panel) and
concentrations measured by ELISA (right panel) are shown. Significance testing was per-
formed using a two-tailed Mann-Whitney U test with correction for multiple comparisons
made using the Benjamini–Hochberg procedure to control false discovery rate at an α of
0.05.

Figure 5.9: Concentration of soluble analytes in cell-free plasma isolated from sepsis pa-
tients, comparing survivors and non-survivors 90 days after sepsis diagnosis. Batch cor-
rected concentration of analytes measured by LuminexTM multiplex assays (left panel) and
concentrations measured by ELISA (right panel) are shown. Significance testing was per-
formed using a two-tailed Mann-Whitney U test with corrections for multiple comparisons,
with correction for multiple comparisons made using the Benjamini–Hochberg procedure to
control false discovery rate at an α of 0.05.
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analytes significantly differed between those with and without microbiologically confirmed

infections.

Figure 5.10: Concentration of soluble analytes in cell-free plasma isolated from sepsis pa-
tients, comparing those with and without a microbiologically confirmed infection. Batch cor-
rected concentration of analytes measured by LuminexTM multiplex assays (left panel) and
concentrations measured by ELISA (right panel) are shown. Significance testing was per-
formed using a two-tailed Mann-Whitney U test with corrections for multiple comparisons,
with correction for multiple comparisons made using the Benjamini–Hochberg procedure to
control false discovery rate at an α of 0.05.

When further sub-setting those with microbiologically confirmed infections into Gram-positive

and Gram-negative causative pathogens (Figure 5.11), Ferritin was significantly decreased in

Gram-negative compared to Gram-positive infections, Ferritin is produced by macrophages

during infection in response to IL-1, and TNF-α nuclear factor kappa B (NFκB) activa-

tion [248]. Other trends included higher oncostatin M (OSM) levels and lower PCT levels

in Gram-negative infections. However, neither observation was statistically significant (p-

values were greater than 0.1 for both).

Unfortunately, the detection limit of the assays introduced ‘floor and ceiling effects’ that

severely limited the analysis and made it difficult to draw conclusions about the analytes

measured. Figure 5.12 shows the proportion of samples below, within, and above the de-

tection limit of their respective assay. In an attempt to obtain the maximum information

from the available data, an additional analysis was performed using the detection limits as

thresholds to create binary variables. To answer the question as to whether the proportion

of patients above or below these thresholds were significant, IL-6, ferritin, and PCT were
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Figure 5.11: Concentration of soluble analytes in cell-free plasma isolated from sepsis pa-
tients, comparing those with a Gram-positive and Gram-negative infection, amongst those
with a positive bacterial culture. Batch corrected concentration of analytes measured by
LuminexTM multiplex assays (left panel) and concentrations measured by ELISA (right
panel) are shown. Significance testing was performed using a two-tailed Mann-Whitney
U test with corrections for multiple comparisons, with correction for multiple comparisons
made using the Benjamini-Hochberg procedure to control false discovery rate at an α of
0.05.

separated into those below and above the upper bound of the detection limit, and IL-15,

OSM, VEGF, IL-10, IL-1α, MMP-8, CXCL8, G-CSF, IL-4, CXCL13, CCL2, TNFα, Flt3L

and IFNγ were separated into those below and above the lower bound of the detection limit.

CXCL10, CCL5, Lactoferrin, MMP-9, and PD-L1 were excluded because more than 90%

of samples were within the detectable range.

Figure 5.13 shows the odds ratio for mortality at 30 days after sepsis diagnosis (top left),

mortality at 90 days after sepsis diagnosis (top right), odds of culture-negative sepsis (bottom

left), and odds of a Gram-negative causative pathogen amongst those with a microbiologi-

cally confirmed infection (bottom right). Categories were compared for significance using

Fisher’s exact test and confidence intervals for odds ratios were calculated as described by

Tenny and Hoffman [249]. Although an IL-6 concentration greater than 500 pg/ml, an IL-15

concentration greater than 6.3 pg/ml, and an OSM concentration greater than 369.7 pg/ml

appeared to show a greater odds of 30-day mortality, once accounting for multiple compar-

isons with the Benjamini–Hochberg procedure at an α of 0.05, none of the analytes had a

statistically significant odds ratio.
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Figure 5.12: Proportion of samples above, below, or within the detectable range of the assay
used for the measurement of an analyte.

5.3.4 Immune cell profiling in acute severe sepsis patients demonstrates

phenotypes that correlate with mortality and causative pathogen.

The PBMC and red cell-free fraction of whole blood were analysed by flow cytometry as de-

scribed in Materials & Methods section 2.1.5 and 2.1.6. Figures 2.2 and 2.3 show the gating

strategies applied using autonomous gates to identify starting populations for downstream

clustering analysis. Autonomous gates identified the major cell subsets of monocytes, neu-

trophils, and T lymphocytes, as well as the main subsets of T cells of interest in this study:

CD4+ and CD8+ conventional T cell subsets, mucosal-associated invariant T cells (MAIT

cells), and Vδ2+ γδ T cells.

The first observation was a significant reduction in T cells as a percentage of PBMCs in non-

survivors compared to survivors at 30 days following enrolment (Figure 5.14) and 90 days

following enrolment (Figure 5.15). There was no significant difference in monocytes and

neutrophils as a percentage of leukocytes between survivors and non-survivors, although

some extreme values were observed; for example, in two non-survivors, more than 20%

of leukocytes were monocytes. Upon further investigation, these patients appeared to be

neutropenic, with less than 30% of their leukocytes consisting of neutrophils. Amongst the
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Figure 5.13: Odds ratios for death within 30 days of enrolement date (top left), death within
90 days of enrolement date (top right), culture-negative sepsis (bottom left), and Gram-
negative causative pathogen (bottom right). For the analytes IL-6, ferritin, and procalci-
tonin, patients were grouped into those above and below the upper detection limit of the
assay. Whereas IL-15, oncostatin M, VEGF, IL-10, IL-1α, MMP-8, CXCL8, G-CSF, IL-
4, CXCL13, CCL2, TNFα, Flt3L and IFNγ were separated into those below and above the
lower bound of the detection limit. Comparisons between groups were tested for significance
using Fisher’s exact test and corrected for multiple comparisons with Benjamini–Hochberg
procedure at an α of 0.05. 95% confidence intervals for odds ratios were approximated as
previously described by Tenny and Hoffman [249]

T cell subsets, a trend in the reduction of CD8+ T cells was visible amongst non-survivors,

but to a greater extent when observing 30 days post enrolment compared to 90 days post

enrolment. The observations could suggest that a reduction of the proportion of CD8+ T

cells is an indicator of early mortality, but it could also be an effect of a more balanced ratio

of survivors and non-survivors for the 90-day mortality endpoint. No significant difference

was observed amongst subsets of unconventional T cells.
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Figure 5.14: Comparison of the proportion of T cells, monocytes and neutrophils, and con-
ventional and unconventional T cell subsets in survivors and non-survivors of sepsis 30 days
after sepsis diagnosis. P-values were generated using a two-tailed Mann-Whitney U test with
Bonferroni-Holm correction for multiple comparisons.

The primary immune compartments of T cells, monocytes, and neutrophils, as well as the

subsets of T cells, were comparable between those with and without a microbiologically

confirmed infection (Figure 5.16) with no significant differences seen. In contrast, when

comparing Gram-positive and Gram-negative causative pathogens in those with confirmed

infection, there was a significant increase in the proportion of neutrophils as a percentage of

leukocytes in Gram-negative infections and a significant decrease in MAIT and Vδ2+ γδ T

cells as a percentage of T cells in Gram-negative infections (Figure 5.17).

After identifying the main subsets by autonomous gating, the discovery of differentiating

subsets was driven by unsupervised clustering. However, recruitment for the ILTIS study

spanned years and practical limitations around the desire to capture the phenotype of mono-

cytes and neutrophils required that each patient sample be measured independently, intro-
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Figure 5.15: Comparison of the proportion of T cells, monocytes and neutrophils, and con-
ventional and unconventional T cell subsets in survivors and non-survivors of sepsis 90 days
after sepsis diagnosis. P-values were generated using a two-tailed Mann-Whitney U test with
Bonferroni-Holm correction for multiple comparisons.

ducing batch effects. As with the PERIT-PD study discussed in Chapter 3.1, the Harmony

algorithm was applied to ILTIS data using CytoPy version 3.0 to align samples whilst re-

ducing the risk of losing biological information. A suitable starting population was chosen

depending on the staining panel (i.e. T cells, monocytes, or neutrophils) and a sample of

30,000 cells taken from each patient. A sample size of 30,000 was chosen to limit the risk of

undersampling rare cell populations whilst reducing the computational burden of subsequent

procedures.

Figure 5.18 shows the outcome of batch correction using Harmony for T cell staining for

markers of activation (top row) and memory subsets (second from top), monocyte staining

(second from bottom) and staining of neutrophils (bottom row). Of note is the reduction of

regions in UMAP embedded space dominated by individual patient samples. Figure 5.19
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Figure 5.16: Comparison of the proportion of T cells, monocytes and neutrophils, and con-
ventional and unconventional T cell subsets in sepsis patients with and without a microbio-
logically confirmed infection. P-values were generated using a two-tailed Mann-Whitney U
test with Bonferroni-Holm correction for multiple comparisons.

shows the shift in the distribution of the local inverse Simpson index, a measure of the diver-

sity of batches seen in the neighbourhood surrounding an individual cell (a detailed explana-

tion was given in Chapter 3.3.2 where the Harmony algorithm was introduced). Successful

batch correction should demonstrate a shift in this distribution as cell neighbourhoods be-

come more diverse, evidenced by a greater representation of batches within each neighbour-

hood. Additionally, Figure 5.20 demonstrates that major linage markers in T cells remain

distinct following batch correction.

As an additional validation to verify that Harmony data integration was retaining biologically

distinct cell populations within the sepsis T cell subsets, manually gated CD4+, CD8+, Vδ2+

γδ T cell, and MAIT cell populations were compared before and after Harmony correction

(Figure 5.21). The proportion of cell populations across the 77 sepsis patients was consistent
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Figure 5.17: Comparison of the proportion of T cells, monocytes and neutrophils, and con-
ventional and unconventional T cell subsets in sepsis patients with a Gram-positive or Gram-
negative infection, where sepsis was microbiologically confirmed. P-values were generated
using a two-tailed Mann-Whitney U test with Bonferroni-Holm correction for multiple com-
parisons.

before and after batch correction, indicating that Harmony batch correction was a reliable

methodology that did not distort the data through over-integration.

MAIT cells and Vδ2+ γδ T cells were of particular interest given their ability to recognise

bacterial metabolites, and therefore their potential use as a biomarker of infection [28, 250],

therefore, MAIT cells and Vδ2+ γδ T cells were studied individually for activation and mem-

ory subsets. Down-sampling was unnecessary, given their respective population size, and all

available events from each subject were included during batch correction and subsequent

downstream analysis. Figure 5.22 shows the outcome of batch effect correction using the

Harmony algorithm for both Vδ2+ γδ T cells (Figure 5.22; first and second row) and MAIT

cells (Figure 5.22; third and fourth row).
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Figure 5.19: The distribution of Local Inverse Simpson Index (LISI) for a sample of 10000
events before (blue) and after (orange) the Harmony algorithm was applied to correct batch
effect.

GeoWaVe ensemble clustering (introduced in Chapter 4) was performed on batch-corrected

data for T cells, monocytes, and neutrophils. Ensembles were informed using multiple clus-

tering algorithms popular for analysing cytometry data, providing diverse input for ensem-

bles and preventing biased analysis driven by a single method. The FlowSOM [130], Pheno-

graph [131], and SPADE [111] algorithms were chosen as input for ensembles due to their

popularity in the cytometry literature. Additionally, K-Means and FlowSOM clustering of

PHATE embeddings were included to offer the opportunity for improved clustering perfor-

mance gained from a dimension reduction technique.
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Figure 5.20: UMAP scatterplots show the preservation of population structure before and
after the application of the Harmony algorithm to T cells acquired in many batches. Each
pair shows the fluorescence intensity (red for high expression) of CD4 (top left), Vα7.2 (top
right), CD8 (bottom left), and TCR Pan γδ (bottom right).

Monocytes are one of the main effectors of innate immunity, with the capacity to ingest mi-

crobes, present antigens to prime T cells, and produce inflammatory mediators [17]. Figure

5.23 shows GeoWaVe consensus clusters identified amongst monocytes. The heatmap shows

hyperbolic arcsine transformed fluorescence intensity for markers of activation and adhesion

for each of the consensus clusters. The same clusters are shown in embedded UMAP space

in the accompanying scatterplot.

Clusters 0 and 3 could be differentiated from clusters 2, 1, and 4 based on HLA-DR expres-

sion, with the former exhibiting higher expression of HLA-DR. Cluster 3 was the smaller

of the two HLA-DRhi clusters and was distinct from cluster 0 with a higher expression of

CD62L and lower expression of CD64. The largest cluster was cluster 1, and when com-

pared with the other HLA-DRlo clusters (2 and 4) showed a higher expression of CD40 and a

lower expression of CD62L. Most monocytes exhibited subdued expression of HLA-DR and

the co-stimulatory molecule CD86, a phenotype known to be prevalent in sepsis [251, 253,
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Figure 5.21: Proportion of manually gated T cell populations (as a percentage of CD3+

cells) before (x-axis) and after (y-axis) Harmony batch correction. CD4+ (top left), CD8+

(top right), Vδ2+ γδ T cells (bottom left), and MAIT cell (bottom right) populations are
shown.

36, 252, 70]. Comparisons between patient subsets (Figure 5.23, left panel) failed to demon-

strate any significant difference in monocyte clusters between survivors and non-survivors,

microbiologically confirmed infections or Gram-negative vs Gram-positive infections.

It was not apparent that survivors and non-survivors could be differentiated on monocyte

clusters, even though some clusters could be grouped into those with an activated profile of

higher CD40, HLA-DR, and CD86 expression (clusters 0 and 3) versus those with lower ex-

pression of these markers (clusters 1, 2, and 4). Despite this, the mean fluorescence intensity

of batch-corrected monocytes showed a decrease in HLA-DR expression in non-survivors

148



CHAPTER 5. PHENOTYPES OF SEVERE SEPSIS PATIENTS

Figure 5.22: Before and after correction of batch effects with the Harmony algorithm, applied
to Vδ2+ γδ T cells stained for activated subsets and stained for memory subsets, and MAIT
cells stained for activation subsets and memory subsets. The left UMAP scatterplots show
individual batches coloured separately and the distribution before and after correction. The
right histograms show the distribution of Local Inverse Simpson Index (LISI) for a sample
of 10000 events before (blue) and after (orange) the Harmony algorithm was applied.
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Figure 5.23: GeoWaVe ensemble clustering of monocytes. The heatmap and accompanying
UMAP scatterplot (right) show the identified consensus clusters and their expression profile.
Fluorescence intensity is shown as hyperbolic arcsine with a cofactor of 150. The proportion
of each cluster as a percentage of total number of monocytes (left) is shown, with compar-
isons between survivors and non-survivors at 30 and 90 days after sepsis diagnosis. Ad-
ditionally, comparisons are shown for those with and without microbiologically confirmed
infection (culture negative) and, for those with a confirmed infection, the difference between
those with a Gram-positive versus a Gram-negative causative pathogen.
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compared to survivors at both 30 and 90 days post sepsis diagnosis (Figure 5.24). Interest-

ingly, a trend was visible for the cell adhesion molecule CD62L (L-selectin) with increasing

expression of this marker in non-survivors. However, this was not reflected in cluster 0

despite CD62L being a defining feature of this cluster.

Figure 5.24: The mean fluorescence intensity (MFI) of HLA-DR, CD86, CD46, CD40 and
CD62L on monocytes in sepsis.. Comparisons between survivors and non-survivors 30 (top)
and 90 (bottom) days following a diagnosis of sepsis are shown. P-values were generated
using a two-tailed Mann-Whitney U test with Bonferroni-Holm correction for multiple com-
parisons.

Unlike with the monocytes, GeoWaVe consensus clustering of neutrophils revealed sim-

ple clusters almost entirely differentiable on the expression of CD62L alone (Figure 5.25).

CD62L expression formed a gradient across the four clusters identified, with the smallest

cluster, cluster 1, having the lowest expression, followed by cluster 3, then cluster 2, and fi-

nally, the largest cluster, cluster 0, with the greatest expression of the cell adhesion molecule.

Cluster 1 represented a smaller proportion of all neutrophils in survivors compared to non-

survivors and was significantly different when comparing 90-day mortality.
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Figure 5.25: GeoWaVe ensemble clustering of neutrophils in sepsis. The heatmap and ac-
companying UMAP scatterplot (right) show the identified consensus clusters and their ex-
pression profile. Fluorescence intensity is shown as hyperbolic arcsine with a cofactor of 150.
The proportion of each cluster as a percentage of total number of neutrophils (left) is shown,
with comparisons between surviviors and non-survivors at 30 and 90 days post diagnosis
with sepsis. Additionally, comparisons are shown for those with and without microbiolog-
ically confirmed infection (culture negative) and, for those with a confirmed infection, the
difference between those with a Gram-positive versus a Gram-negative causative pathogen.
P-values were generated using a two-tailed Mann-Whitney U test with Bonferroni-Holm
correction for multiple comparisons.
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CD45RA CD27 CCR7 CD57 Subtype
CD4+

Cluster 0 ↓ ↑ ↑ ↓ Central Memory [255]
Cluster 2 ↓ ↓ ↓ ↑ Effector Memory [255]
Cluster 4 ↑ ↑ ↑ ↓ Naïve [255]
Cluster 14 ↑ ↑ ↑ ↓ Naïve [255]
CD8+

Cluster 1 ↑ ↑ ↑ ↓ Naïve [256]
Cluster 3 ↑ ↓ ↓ ↑ Terminally differentiated

effector memory [256]

Table 5.4: Summary of GeoWaVe T cell cluster phenotypes stained for differentiating mem-
ory subtypes. Arrows represent the expression of a cell surface marker relative to the expres-
sion amongst all other T cells. The complete expression profile is shown in the heatmap of
Figure 5.26.

Figure 5.26 shows the GeoWaVe consensus clusters for T cells, stained for the identification

of memory subsets (Figure 5.26 left heatmap and UMAP scatterplot) and activated subsets

(Figure 5.26 right heatmap and UMAP scatterplot). In both staining panels, MAIT cells and

Vδ2+ γδ T cells were identified; clusters 6 and 9, respectively, in the memory staining panel,

and clusters 17 and 11, respectively, in the activation staining panel.

Within the panel for memory subsets, two clusters were identified as CD8+ T cells (clusters

1 and 3) and four clusters as CD4+ T cells (clusters 0, 2, 4, and 14). However, the relatively

small cluster 4 had an interesting phenotype with high expression for Vα7.2 and CD161,

meaning they might constitute a CD4+ MAIT cell population similar to those described by

Gherardin et al. [254]. A summary of the expression profiles shown in the left heatmap of

Figure 5.26 is given in Table 5.4. Amongst the CD8+ T cells, naïve and terminally differen-

tiated effector cells were identified, whereas CD4+ T cell clusters consisted of naïve, central

memory, and effector memory T cells.

Within the activated subsets, six clusters were identified as CD8+ T cells: 5, 16, 7, 1, 8,

and 10. These subsets were distinguished primarily on the expression of CD69, CD25, and

CXCR3. The clusters 5, 16, and 10 had high expression of CD69, an early activation marker

induced by T cell receptor signalling [17]. Cluster 10 differed by high expression of the

chemokine receptor CXCR3. The binding of the CXCR3 ligands CXCL9 and CXCL10

recruits cytotoxic CD8 T cells to the site of inflammation to coordinate the cell-mediated

killing of intracellular pathogens [17]. Another six clusters were identified as CD4+ T cells:

6, 2, 4, 0, 13, and 14, and CD69, HLA-DR, and CD161 expression appeared to be the
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defining markers. The majority of T cells belonged to the inactive CD4 T cells cluster 0. The

smaller yet still prevalent cluster 6 displayed an activated phenotype with high expression

of HLA-DR and CD25. The second largest CD4 cluster was cluster 4, with low expression

of activation markers but high expression of CD161, a hallmark for IL-17 producing cells

[257].

T cell clusters 5 and 10 amongst the memory subsets had a double negative (CD4− CD8−)

phenotype and could not be fully characterised with the chosen staining panels. Two dou-

ble negative clusters (other than Vδ2+ γδ T cells) were identified amongst the activation

subsets as well (cluster 3 and 9). The populations could constitute a natural killer T cell or

double negative regulatory T cell population [258], however, further work is needed to fully

characterise these populations.

The major subsets are outlined in the UMAP plots and were combined to provide proportions

as a percentage of T cells (Figure 5.27A). Identifying major subsets provided additional val-

idation and could be compared to the findings from autonomous gating as shown in Figures

5.14-5.17. The clustering results confirm observations from autonomous gating: CD8+ T

cells were significantly reduced in non-survivors 30 days after sepsis diagnosis, and MAIT

cells and Vδ2+ γδ T cells were reduced in Gram-negative infections compared to Gram-

positive infections.

When observing memory subsets, the predominant cluster of CD4+ T cells was a central

memory phenotype (cluster 0). In contrast, similar proportions of TEMRA and naive pheno-

types existed for CD8+ T cells (clusters 3 and 1, respectively). For activated subsets, in both

CD4+ T cells and CD8+ T cells, the dominant clusters were inactive populations (cluster 0

for CD4+ T cells and cluster 1 for CD8+ T cells). Comparisons between patient groups were

made for each of the CD4+, CD8+, and smaller undefined T cell clusters as a percentage of

total T cells (Figure 5.27 B and C), but no significant differences were observed. When com-

parisons were made within the groups of CD4+ and CD8+ clusters, however, CD8+ T cells

with a TEMRA phenotype (cluster 3) were decreased in culture-negative sepsis compared

to those with an identified pathogen, whereas naive CD8+ T cells (cluster 1) were increased

(Figure 5.28). The same trend was observed when comparing Gram-positive versus Gram-

negative causative pathogens, although this difference was not statistically significant.
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Figure 5.26: GeoWaVe ensemble clustering of T cells. The left heatmap and UMAP scat-
terplot shows T cells stained for identification of memory subsets whereas the right shows T
cells stained for identification of activated subsets. The heatmaps and accompanying UMAP
scatterplots show the identified consensus clusters and their expression profile. Fluorescence
intensity is shown as hyperbolic arcsine with a cofactor of 150.
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Figure 5.27: Proportion of GeoWaVe consensus clusters as a percentage of T cells. Clusters
were combined into major subsets and averaged across the two experiments (memory and
activation subset staining) to provide proportions of CD4+, CD8+, MAIT cells, and Vδ2+

γδ T cells (A). Individual clusters from staining for the identification of memory subsets are
shown (B), alongside clusters stained for the identification of activated subsets (C). Com-
parisons between survivors and non-survivors at 30 and 90 days post diagnosis with sepsis
are shown (top row and second row, respectively). Additionally, comparisons are shown for
those with and without microbiologically confirmed infection (culture negative; third row)
and, for those with a confirmed infection, the difference between those with a Gram-positive
versus a Gram-negative causative pathogen (bottom row). P-values were generated using
a two-tailed Mann-Whitney U test, with Bonferroni-Holm correction for multiple compar-
isons.

Clustering of all T cells identified unconventional T cell subsets of MAIT cells and γδ T

cells but did not generate the resolution to identify subclusters of these populations. Un-

conventional T cell populations were of particular interest due to their ability to recognise

metabolites of bacteria [28, 259, 250]. They were identified by autonomous gating (Figure

2.2) so that in downstream analysis, detailed clustering could be performed on these popula-

tions independent of all other T cells without the need for downsampling.

GeoWaVe consensus clusters of Vδ2+ γδ T cells were generated using the staining panel for

memory subsets (Figure 5.29) and activated subsets (Figure 5.30). The majority of Vδ2+

γδ T cells expressed high levels of CD161, but a small cluster with distinctly low CD161

expression was found in both staining panels (clusters 5 in Figure 5.29; cluster 3 in Figure

5.30). The largest cluster amongst memory subsets was cluster 4 (Figure 5.29, blue cluster)

with a CD45RAhi and CCR7lo phenotype, the next largest clusters are 1 and 3, cluster 3 is

similar to cluster 4 but is distinct from all other clusters with expressing CD57. Cluster 1,

however, can be characterised as CD45RAlo, CCR7lo, and CD57lo. Comparisons between

patient sub-groups for these clusters as a percentage of Vδ2+ γδ T cells (Figure 5.29 box-

plots) did not demonstrate any significant differences.

Amongst Vδ2+ γδ T cells stained for activation markers (Figure 5.30), clusters exhibited

moderate expression of CD25, a marker of activation on lymphocytes, also known as interleukin-

2 receptor alpha chain. Meanwhile, all clusters exhibit low expression of the chemokine

receptor CXCR3. The clusters were almost exclusively differentiated by their expression of

CD161, HLA-DR, and CD69. The two largest clusters (cluster 0 and 2, the orange and blue

clusters in Figure 5.30, respectively) had a phenotype of HLA-DRlo and CD69lo. Clusters

1 and 4 showed relatively higher expression of CD69 and HLA-DR, respectively. As with
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Figure 5.28: Proportion of CD8+ GeoWaVe consensus clusters from PBMCs stained for
the identification of memory T cell subsets, as a percentage of total CD8+ T cells. Com-
parisons between surviviors and non-survivors at 30 and 90 days post diagnosis with sepsis
are shown. Additionally, comparisons are shown for those with and without microbiolog-
ically confirmed infection (culture negative) and, for those with a confirmed infection, the
difference between those with a Gram-positive versus a Gram-negative causative pathogen.
P-values were generated using a two-tailed Mann-Whitney U test, with Bonferroni-Holm
correction for multiple comparisons.
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Figure 5.29: GeoWaVe ensemble clustering of Vδ2+ γδ T cells, stained for identification of
memory subsets. The heatmaps and accompanying UMAP scatterplots show the identified
consensus clusters and their expression profile. Fluorescence intensity is shown as hyper-
bolic arcsine with a cofactor of 150. The proportion of consensus clusters as a percentage
of the total Vδ2+ γδ T cells are shown in accompanying box plots, with comparisons for
survivors and non-survivors 30 and 90 days post sepsis diagnosis, patients with and without
microbiologically confirmed infection, and patients with a Gram-negative vs Gram-positive
causative pathogen.
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Vδ2+ γδ T cells stained for memory subsets, comparisons between patient sub-groups of

interest for these clusters (Figure 5.30 boxplots) did not yield any significant differences.

GeoWaVe consensus clusters of MAIT cells were also generated using the staining panel for

memory subsets (Figure 5.31) and activated subsets (Figure 5.32). MAIT cells were identi-

fied as CD3+ Vα7.2+ CD161+ lymphocytes, and in both staining panels, a smaller CD4+

CD8− population was identified alongside the majority CD4− CD8+ population. These

CD4+ MAIT cells amongst memory subsets were identified as clusters 0 and 5 (Figure 5.31

red and pink clusters, respectively). These clusters differed by their expression of CD27

and CCR7, with lower expression in the much smaller cluster 5. All MAIT cells showed

low expression of CD57. The CD8+ MAIT cells, clusters 2, 1 6, and 4 differed by their

CD45RA and CD27 expression, but the predominant cluster (blue cluster 2 Figure 5.31) had

a phenotype of CD45RAmi CCR7mi CD27hi. The smaller but moderately sized cluster 3

(orange in Figure 5.31) showed an identical phenotype to this majority cluster, except for not

expressing CD4 or CD8.

When comparing patient sub-groups for differences in memory subset MAIT clusters as

a percentage of total MAIT cells (Figure 5.31 boxplots), survivors and non-survivors were

similar in the composition of clusters, as were those with and without microbiologically con-

firmed infections. Comparisons of Gram-negative versus Gram-positive pathogens in those

with a confirmed infection showed interesting trends but ultimately no significant differ-

ences; cluster 0 (the CD4+CD8− cluster) exhibits a trend of increased proportions amongst

Gram-negative infections but with a p-value of 0.11 after correction for multiple compar-

isons. In contrast, cluster 2 was slightly decreased amongst Gram-negative infections but

again without statistical rigour, with a p-value of 0.16 after correction for multiple compar-

isons. It is also worth noting that the analysis presented here described peripheral T cells,

and the phenotype of tissue-resident MAIT cells in sepsis may differ significantly.

Only one CD4+ CD8− cluster was identified amongst MAIT cells stained for activated sub-

sets (green cluster 0 in Figure 5.32) and showed an inactive phenotype. The majority of

CD4− CD8+ clusters 2, 4, and 3 were largely subdued in the expression of activation mark-

ers CXCR3, HLA-DR and CD25 and only differed in the expression of CD69. Similar to

the staining panel for memory subsets, a CD4− CD8− cluster was identified (red cluster 1 in
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Figure 5.30: GeoWaVe ensemble clustering of Vδ2+ γδ T cells, stained for identification of
activated subsets. The heatmaps and accompanying UMAP scatterplots show the identified
consensus clusters and their expression profile. Fluorescence intensity is shown as hyper-
bolic arcsine with a cofactor of 150. The proportion of consensus clusters as a percentage
of the total Vδ2+ γδ T cells are shown in accompanying box plots, with comparisons for
survivors and non-survivors 30 and 90 days post sepsis diagnosis, patients with and without
microbiologically confirmed infection, and patients with a Gram-negative vs Gram-positive
causative pathogen.
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Figure 5.31: GeoWaVe ensemble clustering of MAIT cells (CD3+ Vα7.2+ CD161+ lym-
phocytes), stained for identification of memory subsets. The heatmaps and accompanying
UMAP scatterplots show the identified consensus clusters and their expression profile. Flu-
orescence intensity is shown as hyperbolic arcsine with a cofactor of 150. The proportion
of consensus clusters as a percentage of the total MAIT cells are shown in accompanying
box plots, with comparisons for survivors and non-survivors 30 and 90 days post sepsis di-
agnosis, patients with and without microbiologically confirmed infection, and patients with
a Gram-negative vs Gram-positive causative pathogen.
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Figure 5.32); this cluster showed low expression of all activation markers present within the

staining panel.

When comparing patient sub-groups for differences in MAIT cells clustered by activation

markers (Figure 5.32 boxplots), as with cells stained for memory subsets, survivors and non-

survivors were similar in the composition of clusters, the same was true for those with and

without microbiologically confirmed infections. However, comparisons of Gram-negative

versus Gram-positive pathogens in those with confirmed infection showed a significant in-

crease in the CD4+ CD8− cluster 0 in Gram-negative infections. There was also a trend with

a slight decrease in the CD8+ CD69lo cluster 2 amongst Gram-negative infections. Albeit

with a p-value of 0.14 after corrections for multiple comparisons, therefore it is not possible

to claim any certainty about this difference.

In the observations of MAIT cells and Vδ2+ γδ T cell clustering of activation markers, it was

evident that some markers had greater influence over clustering than others; CD161, HLA-

DR, and CD69 appeared informative for Vδ2+ γδ T cell clustering whilst CXCR3 and CD25

did not convey any differences (Figure 5.30), and CD69 appeared to be the only informative

activation marker amongst MAIT cell clusters (Figure 5.32). It was, therefore, questioned

whether the mean fluorescent intensity (MFI) of activation markers considered in isolation

would be informative variables. No significant differences were observed for comparisons

of survivors and non-survivors. However, the MFI of CD69 on both MAIT cells and Vδ2+

γδ T cells appeared to differentiate Gram-positive from Gram-negative infections (Figure

5.32). The MFI of CD25 on MAIT cells was also informative, with greater expression in

those with a Gram-negative causative pathogen, despite similar expression of CD25 across

identified clusters.
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Figure 5.32: GeoWaVe ensemble clustering of MAIT cells (CD3+ Vα7.2+ CD161+ lym-
phocytes), stained for identification of activated subsets. The heatmaps and accompanying
UMAP scatterplots show the identified consensus clusters and their expression profile. Flu-
orescence intensity is shown as hyperbolic arcsine with a cofactor of 150. The proportion of
consensus clusters as a percentage of the total MAIT cells are shown in accompanying box
plots, with comparisons for survivors and non-survivors 30 and 90 days post sepsis diagnosis,
patients with and without microbiologically confirmed infection, and patients with a Gram-
negative vs Gram-positive causative pathogen. P-values were generated using a two-tailed
Mann-Whitney U test, with Bonferroni-Holm correction for multiple comparisons.
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Figure 5.33: The mean fluorescence intensity (MFI) of HLA-DR, CD86, CD46, CD40 and
CD62L on MAIT cells, with comparisons between sepsis patients with a Gram-positive ver-
sus a Gram-negative infection. P-values were generated using a two-tailed Mann-Whitney U
test, with Bonferroni-Holm correction for multiple comparisons.

5.4 Discussion

In this chapter, the phenotype of 77 patients with a diagnosis of sepsis within 36 hours of the

presumed onset of infective illness was detailed. The objective was to identify significant

differences in the presentation of survivors compared to non-survivors and identify pheno-

types that identify the causative pathogen. Survivors of sepsis in the ILTIS cohort consisted

of a slightly younger population with a greater representation of females with fewer inter-

ventions such as mechanical ventilation and renal replacement therapy. However, the two

population demographics did not significantly differ.
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It is estimated that for anywhere between 28 to 89% of patients with sepsis, the causative

pathogen is not identified and there are contradicting findings amongst retrospective studies

as to how the severity of illness, length of stay, and in-hospital mortality compare between

‘culture-negative’ and ‘culture-positive’ sepsis [77]. It is still uncertain whether ‘culture-

negative’ sepsis represents a different clinical entity with the possibility of the absence of in-

fection entirely. Unfortunately, the picture is blurred by antimicrobial intervention reducing

the yield of bacterial culture [75, 74]. An increased proportion of ‘culture-negative’ patients

in the ILTIS study had been admitted with some traumatic injury or emergency surgery.

Although not statistically significant (p-value of 0.320), this could have influenced antimi-

crobial intervention and contributed to the inability to identify the causative pathogen. The

distinction between ‘culture-negative’ and ‘culture-positive’ sepsis within this cohort was an

essential comparison before investigating the differences between Gram-negative and Gram-

positive infection. Significant variation in the immunophenotypes of culture-negative and

culture-positive sepsis would be expected if clinically distinct.

This thesis aimed to identify variations in immunophenotypes that would provide informa-

tive features for multi-variate models tasked with predicting mortality and the underlying

cause (discussed in-depth in Chapter 6). Retrospective studies such as ILTIS allow deep

clinical data mining of routine data collected prior to sepsis diagnosis. Routine clinical data

provides additional information for models whilst also granting perspective on the value im-

munophenotyping provides beyond readily available clinical biomarkers.

A total of 63 variables derived from routine clinical data were compared amongst patient

sub-groups. Nevertheless, amongst this large repository, only inspired oxygen (FiO2) dif-

fered between survivors and non-survivors after correcting for multiple comparisons. Dif-

ferences in FiO2 were only realised for values measured closest to the diagnosis of sepsis;

its significance was reduced when values were averaged across samples taken 48 hours prior

to diagnosis. The observations are problematic as the sampling time could differ severely

between patients. It is also difficult to ascertain whether FiO2 is an informative biomarker

when considering confounding factors such as mechanical ventilation, hence the need for

multi-variant modelling. No other clinically available data were particularly informative,

including comprehensively studied biomarkers such as CRP and arterial lactate.
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The lack of informative biomarkers amongst routine clinical data identifies the need for

detailed phenotyping. Sepsis is understood as a dysregulation of the patient’s response to

infection, and therefore it makes sense that the early immune response could yield infor-

mative biomarkers. Multiplex assays and ELISAs were performed to investigate a broad

range of soluble biomarkers, including cytokines and chemokines that regulate the immune

response. Analytes included pro-inflammatory molecules, such as IL-1β, GM-CSF, IFN-γ,

and TNF-α, and anti-inflammatory molecules, such as IL-4, IL-6, and IL-10. Procalcitonin

was included for its reported prognostic utility [49] and potential value in differentiating

Gram-positive and Gram-negative infections [85]. Other promising biomarkers were in-

cluded, such as ferritin, the hallmark of hyperferritinemic sepsis that poses a greater risk

of mortality [260, 248]. Ferritin is also a crucial biomarker for identifying Haemophago-

cytic lymphohistiocytosis (HLH). HLH is a syndrome of severe immune dysregulation with

a very similar presentation to sepsis but is often under-recognised and exhibits a high rate of

mortality [261].

Of the 19 analytes measured, only CXCL10 and IL-15 plasma levels showed a significant

difference between survivors and non-survivors. CXCL10 levels were decreased in non-

survivors when comparing 30-day mortality, whereas IL-15 levels were increased for non-

survivors. The difference at this time-point is severe but then subdued when comparing

90-day mortality. The observed relationship could indicate that CXCL10 and IL-15 levels

are only informative for early mortality. However, it is suspected that this effect could also

result from a difference in the class imbalance between the two time points (given that more

non-survivors are seen at 90 days compared to 30 days). CXCL10, the ligand for CXCR3, is

produced in response to IFN-γ and is responsible for lymphocyte migration [246]. CXCL10

has been implicated in other types of severe infectious disease [264, 262, 263], and CXCR3

blockade has been suggested as a potential therapeutic target in sepsis [265]. The findings of

this study do not support the claim that increased levels of CXCL10 in plasma are associated

with increased mortality, but rather the opposite, and the loss of effect seen at the later 90-day

time-point makes it challenging to conclude the findings here. The observations for IL-15

are equally suspect, given that most patient values for IL-15 were below the detection limit

of the Luminex assay.

Flt3L was significantly increased in patients with a confirmed infection compared to those

with culture-negative sepsis. As far as I am aware, Flt3L has not been studied as an etiologi-
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cal biomarker in sepsis, but Flt3L is critical to the differentiation of DCs [247]. The absence

of bacterial culture is not definitive, and therefore Flt3L could benefit from comparison with

other indicators, such as severity scores. Flt3L was comparable between Gram-negative and

Gram-positive infections. In fact, the only analyte that demonstrated a significant difference

between Gram-negative and Gram-positive infections was ferritin, with decreased levels in

Gram-negative infections. Increased ferritin levels are associated with higher mortality, re-

sulting from “Hyperferritinemic Syndrome", a condition in which high concentrations of

iron poor ferritin induce both pro-inflammatory cytokines and immunosuppression [248].

The relationship with the causative pathogen is unclear, and I failed to identify previous

studies comparing pathogens in hyperferritinemic sepsis. Future studies should compare the

underlying cause in sepsis and whether this impacts plasma ferritin concentrations. Amongst

the other analytes, a trend was observed in PCT levels with lower values in Gram-negative

compared to Gram-positive infection. However, the findings were not statistically significant,

and therefore this study failed to confirm previous reports of PCT differentiating between a

Gram-positive and Gram-negative pathogen [83, 86, 85].

The primary limitation in the analysis of cytokines, chemokines, and acute phase proteins in

plasma was the detection limit on the chosen LuminexTM multi-plex assay, resulting in all

but six analytes being outside the detectable range for 20% or more of the tested samples.

Future analysis should include greater sensitivity when attempting to quantify these analytes

in plasma, especially when sampled from patients at such an early stage of sepsis when

concentrations might be low and difficult to detect. Contrarily, ferritin and procalcitonin

would benefit from individual assays with care taken to dilute samples sufficiently to avoid

the risk of concentrations beyond the upper limit of detection.

Samples were separated into those above and below the assay detection limits to help capi-

talise on available data. Comparisons were made as if these assays generated a binary result

with the upper and lower cut-off values. The resulting odds ratios showed large confidence

intervals due to the small sample size in the resulting contingency table but still identified

some familiar trends. Increased levels of IL-6 showed a trend toward increased odds of mor-

tality at both 30 and 90 days post sepsis diagnosis, which aligns with previous observations

for this anti-inflammatory cytokine [51, 66]. Higher levels of IL-15 showed a trend towards

higher odds of mortality at 30 days after sepsis diagnosis and, to a lesser extent, at 90 days.

IL-15 is described as a ‘bi-directional’ cytokine with both pro-inflammatory and immunoreg-
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ulatory effects and promotes the proliferation of CD8+ and CD4+ memory T cells and NK

cells [246]. This function has been implicated in the pathobiology of septic shock; therefore,

IL-15 could be a potential indicator of severity [266, 267].

After quantifying soluble factors, the phenotype of CD8+ and CD4+ T cells, MAIT cells,

Vδ2+ γδ T cells, monocytes, and neutrophils were described. The first observation was a

profound reduction in circulating T cells in non-survivors, a phenomenon well documented

in sepsis [268, 269, 270]. Amongst T cells, a trend towards a reduction in the CD8+ T

cell compartment is observed amongst non-survivors which supports the observation of an

immunosuppressive phenotype dominating in sepsis [270, 271].

In this work, the focus was given to monocytes and neutrophils as antigen-presenting cells

of the innate immune response, influenced by previous findings that Vγ9 Vδ2 γδ T cells can

induce an APC-like phenotype in neutrophils, with similar phenotypes observed in sepsis

patients [23]. Decreased monocyte HLA-DR expression as an indicator of severity in sepsis

is well understood [251, 252, 70] and confirmed by the findings in this study, albeit that the

reduction in HLA-DR MFI was small; possibly reflecting the very early time point of sep-

sis that was captured in this work. CD62L (L-selectin) expression differentiated monocyte

clusters, and CD62L monocyte MFI was slightly increased in non-survivors. This type-1

transmembrane glycoprotein functions in cell adhesion and has the unique feature of being

rapidly shed from the cell surface upon activation [272]. Subsequently, high levels of soluble

L-selectin in serum have been identified as a potential predictor of survival in sepsis [273].

Neutrophils were significantly increased in Gram-negative compared to Gram-positive infec-

tions. The opposite was observed for MAIT cells and γδ T cells, unconventional T cell pop-

ulations that have been described as having a microbe-specific response to bacterial infection

[23, 274]. In both automated gating and clustering analysis, both MAIT cells and Vδ2+ γδ T

cells were found to be significantly decreased in Gram-negative infection. The observations

were surprising given that most Gram-negative pathogens are producers of HMB-PP, a well-

described stimulant of γδ T cell activation and proliferation [275, 26]. In previous studies,

increased proportions of circulating γδ T cells were observed amongst patients infected with

HMB-PP+ pathogens in acute peritonitis [175] and sepsis [23].

Given that unconventional T cell subsets have been found to accumulate at the site of infec-

tion [259, 277, 276], it is possible that we are observing the diffusion of these populations
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into the site of infection. However, without local sampling and a comparison with PBMCs, it

is impossible to clarify from this study alone. Interestingly, the MFI of the activation mark-

ers CD69 and CD25 were increased in MAIT cells in Gram-negative infections compared to

Gram-positive. Again, it must be stressed that the differences observed are subtle. There-

fore, a larger sample size would be needed to clarify whether the reduction of these subsets

amongst circulating T cells and increased expression of activation markers is correlated with

Gram-negative aetiology.

When investigating distinct clusters of MAIT and γδ T cells, no significant differences were

observed between patient subsets apart from a CD4+ Vα7.2+ CD161+ cluster, which was

increased in Gram-negative infections compared to Gram-positive. The majority of MAIT

cells express a CD8+ CD4− profile, but a subset of CD4+ MAIT cells has been previously

described and noted to produce more IL-2 than other subsets [254]. However, to the best of

our knowledge, a CD4+ Vα7.2+ C161+ population has not been described in acute sepsis or

observed as increased in frequency in Gram-negative compared to Gram-positive infection.

The time points for all-cause mortality, 30 and 90-days, pose a significant limitation. Al-

though they reflect a time point common amongst clinical trials and therefore offer com-

parable findings, mortality is complicated by unobserved confounding variables such as

interventions and events occurring after the initial sepsis diagnosis. The methodology ap-

plied here also missed the opportunity for more granular comparisons of the time-to-death,

which could have been achieved with survival analysis utilising either Kaplan-Meier or a

Cox Proportional-Hazard models.

A significant limitation in this study and a possible explanation of the variation observed

within patient sub-groups is the heterogeneity of the cohort. Amongst the patients studied,

around 25% were admitted to ICU with trauma or following emergency surgery. There was

insufficient data regarding patient co-morbidity or history of infectious disease, and less than

70% of patients had a confirmed infection by positive culture. Heterogeneity in sepsis, with

its various patterns of presentation, has long been recognised as a barrier to the advancement

of diagnosis and therapy [279, 278]. The Sepsis-3 definition [243] alone does not distinguish

between the complex heterogeneity observed in the pathophysiology of sepsis [280]. There-

fore future studies should seek to recruit patients with more restrictive inclusion criteria.

Unsupervised clustering methods could drive the identification of endotypes for recruitment
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[281, 282], or simple strategies employed to limit recruitment to those of comparable aetiol-

ogy e.g. culture-positive urosepsis or pneumonia amongst patients in a defined age bracket.

In the next chapter, I will introduce multi-variant modelling that takes as input variables all

data sources described in this chapter (routine clinical data, soluble analytes in plasma, and

immune cell phenotypes), as well as some additional data from collaborators. Here, I will

attempt to address the heterogeneity of sepsis by modelling the complex interaction of the

observed variables to try and obtain generalised patterns predictive of mortality and cause.
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6 | Machine learning models identify biomarker

signatures correlated with mortality and causative

pathogen in sepsis

6.1 Introduction

Sepsis is a life-threatening disorder with complex pathophysiology that has yet to be fully de-

scribed. The multi-faceted nature of sepsis requires personalised care with rapid intervention.

For example, the administration of early antimicrobial therapy has been shown to reduce

mortality [233, 78, 76] and yet the inability to identify the causative pathogen could lead to

inappropriate antibiotic use and the development of multiple-resistant organisms [235, 283].

The need to identify the cause and then direct urgent care has driven an interest in identify-

ing diagnostic and prognostic biomarkers [155, 284, 96] and developing complex algorithms

that leverage existing electronic health record systems [286, 288, 287, 289, 285, 290, 291,

101]. The former has primarily focused on single biomarker studies with mixed results [155,

96] and only in recent years has the value of employing multiple biomarkers in combination

been demonstrated [293, 292, 294, 98]. The latter has focused mainly on diagnostic tools

to identify sepsis patients early in their disease pathway. They rely almost entirely on rou-

tine clinical data that do not capture the complex pro-inflammatory and anti-inflammatory

mechanisms that are now known to contribute significantly to sepsis pathology. The work

described in this chapter will combine routine clinical data with immunological profiling,

combining biomarkers in machine learning models to describe complex patterns predictive

of mortality or underlying cause. Mortality prediction is a valuable tool for prioritising care

in a resource-limited environment, and the ability to predict the underlying pathogen could

help direct targeted care and improve antibiotic stewardship.

Studies have only started incorporating a combination of clinically available data with novel

biomarkers to create predictive models for sepsis in recent years. Kofoed et al.[97] presented

a logistic regression model combining six biomarkers, including novel markers not routinely

collected and showed good diagnostic accuracy for differentiating a bacterial or non-bacterial

cause of inflammation. Langley et al. [295] demonstrated a model for predicting mortality
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in sepsis that combined clinical features with five metabolites, showing the potential for in-

tegrating metabolomics into predictive models. Taneja et al. [99] studied multiple machine

learning algorithms that combine clinical data with non-traditional biomarkers (including

pro- and anti-inflammatory biomarkers) and showed how a support vector machine could

stratify adult patients with sepsis based on severity. A follow-up study in 2021 from the

same authors [100] showed in a larger cohort that a combination of three non-routinely mea-

sured biomarkers combined with electronic health record (EHR) data had diagnostic and

prognostic potential. Another recent multi-centre study of over 500 sepsis patients identified

multiple machine learning models with prognostic capabilities, pooling EHR data with novel

biomarkers [296].

The collective weight of this work demonstrates the advantage of sourcing a diverse feature

space for predictive modelling. With the advent of multi-omics technology, there is a grow-

ing abundance of data, with the promise that a multi-layered approach to phenotyping the

immunological response to sepsis could help identify diagnostic and prognostic signatures

with direct application to the clinic [297, 298]. This landscape presents the challenge of

analysing extensive high-dimensional data from which informative biomarker combinations

must be found. Such a task is analogous to feature selection in machine learning. The min-

imal yet optimal variables are identified to help reduce model complexity, avert overfitting,

and improve performance [299]. Numerous feature selection methodologies already exist,

each with its benefits and disadvantages [159, 161, 160]. Typically, a single feature selection

method is employed, yet the choice of features to include in a multivariate statistical model

depends on the choice of algorithm. Since no single machine learning algorithm will be

optimal for every task [301, 300], it is advised to search across multiple solutions and make

conclusions based on the performance of observed data. Therefore, it is logical that no sin-

gle feature selection algorithm will be optimal. Experimenting with multiple methodologies

will reduce the risk of overlooking an informative signature or focusing on a single sub-

optimal solution. In this chapter, multiple feature selection methodologies will be explored

over a range of classification algorithms in a search strategy to identify optimal signatures

for predicting outcomes and underlying pathogens in sepsis.

Data-driven pattern recognition with feature selection has successfully identified predictive

signatures in cancer prognosis [302], pathogenic cause of peritonitis [199], diagnosis of psy-

chiatric disorders [303], prognosis and treatment response in traumatic injury [304], prog-
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nosis in COVID-19 [306, 305], and vaccine response [46]. This demonstrates the benefit of

multi-omic data mining and is the motivator for the work described in this chapter. The work

here will also intend to leverage the growing field of interpretable machine learning [166]

to interrogate the decision-making behind the signatures identified, the influence of individ-

ual biomarkers on predictive models, and the identification of patterns that warrant further

investigation into sepsis pathogenesis. The application of model agnostic methods for the

measure of feature importance was recently demonstrated for predicting multiple organ dys-

function in paediatric sepsis [307], resistance to ionising radiation in cancer therapy [308],

and the identification of risk factors in COVID-19 [309]. It is hoped that the inclusion of

explainable machine learning algorithms in this work will help increase the accessibility and

confidence in predictive models and encourage engagement with results for the generation

of studies that intend to validate identified signatures or investigate causal relationships.
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6.2 Aims

1. Develop an analytical workflow for generating interpretable machine learning models

exposed to data with complex challenges including small sample size, missing data,

and class imbalance.

2. Identify minimal and optimal feature sets that could present opportunities for predic-

tive signatures and help derive hypotheses for future studies.

3. Create and critically assess the performance of binary classification models tasked with

predicting:

(a) Death 30 days after diagnosis with sepsis (30-day mortality).

(b) Death 90 days after diagnosis with sepsis (90-day mortality).

(c) Gram-negative sepsis vs Gram-positive sepsis.

4. Interrogate the influence of individual features on machine learning models and iden-

tify potential predictive signatures that may warrant additional study.
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6.3 Preparing multi-omic clinical data for multivariate

modelling

Throughout the analysis of the ILTIS data, detailed in Chapter 5, a MongoDB database was

populated with clinical parameters, Luminex and ELISA results, and summary statistics of

immunological populations acquired by flow cytometry1. In addition, collaboration with

Ms. Linda Moet and Prof. Peter Ghazal provided lipid data for 52 patients, acquired with

mass spectrometry analysis of cell-free plasma (see Methods & Materials 2.1.8 for details).

Before the development of statistical models, the predictor variables generated from these

activities (referred to as ‘features’ from this point forward) had to be collated and prepared.

Data were combined into a table of 267 features (complete list available in Appendix Table

A.2), which could be broadly categorised into physiology (e.g. age, gender), interventions

(e.g. ventilation, renal replacement therapy), point of care testing (e.g. blood gas analy-

sis), clinical laboratory results (e.g. full blood count, liver profile), cytokine and chemokine

plasma concentrations (e.g. IL-6, IFNγ, CXCL10), proportions of immunological cell pop-

ulations (T cells, monocytes, and neutrophils, and sub-clusters of each), mean fluorescence

intensity of activation markers of immunological populations, and the aforementioned lipid

measurements.

This data table, consisting of 77 patients (rows), also included three binary target variables:

mortality 30 days after diagnosis with sepsis (abbreviated to ‘30 day mortality’ in remain-

ing text), mortality 90 days after diagnosis with sepsis (abbreviated to ‘90 day mortality’

in remaining text), and Gram-negative sepsis (if a culture result was available). The four

variables served as the target for prediction by binary classification models. All 77 patients

had complete data available for mortality (both at 30 and 90 days), but only 46 patients had a

value for the Gram status of causative pathogens. Patients missing the Gram-status outcome

variable were excluded from models that predicted Gram-negative sepsis.

1Throughout this chapter, references are made to Chapter 5 and the clustering analysis that yielded variables
included within predictive models. For convenience, a summarised version of clustering results is provided in
appendix A.1 or accessed as a separate PDF from https://github.com/burtonrj/iltis_summary/blob/main/8_1.pdf
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Figure 6.1: Class imbalance amongst target variables for binary classification models.

All outcome variables demonstrated severe class imbalance, with the majority class repre-

senting more than 70 per cent of the total patients for each target (Figure 6.1). Resampling

methodologies such as SMOTEEN [310, 311] were considered. However, the need for im-

putation of missing values (addressed in section 6.4) combined with the small amount of

available data introduced concerns that the minority class could not be inflated accurately,

and this could introduce bias and reduce the ability of models to generalise. Equally, un-

dersampling techniques were considered inappropriate, given the limited data. Alternatively,

models were chosen that would allow for introducing a term to penalise the misclassification

of the minority class. Take as a simple example Logistic Regression for binary classification,

where the coefficients are optimised through an algorithm that seeks to minimise the negative

log-likelihood (called the ‘loss’ function):

1

N

n∑
i=1

(yilog(ŷi) + (1− yi)log(1− ŷi)) (6.1)

Where N is the number of values, y is the actual value of the target class, and ŷ is the

predicted value. In the case of binary classification, this loss function can be modified to

introduce weights for the negative (w0) and positive class (w1):

1

N

n∑
i=1

(w0(yilog(ŷi)) + w1((1− yi)log(1− ŷi))) (6.2)
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In this analysis weights were balanced according to the formula:

wi =
N obs

N classes × Nobsi
(6.3)

This penalises the misclassification of the minority class and encourages the model to search

for a more optimal solution. Class weights can be extended to other linear models and more

complex classifiers such as support vector machines and ensembles of decision trees [312].

Metrics for evaluating model performance were chosen to account for class imbalance. The

F1 score is the harmonic mean between precision and recall. It can provide a reliable evalua-

tion of model performance in the case of class imbalance by calculating the F1 score for each

class independently and taking an unweighted average (known as the ‘macro’ F1 score):

Precision =
tp

tp+ fp
(6.4)

Recall =
tp

tp+ fn
(6.5)

Where tp is the number of true positives, fp is the number of false positives, and fn is the

number of false negatives.

F1Macro =
2

C

∑
c∈C

PrecisioncRecallc
Precisionc +Recallc

(6.6)

Where c is a class in all possible classes C. This procedure can be repeated for accuracy

to give the ‘balanced accuracy’ which in the case of a binary classify is equal to the arith-

metic mean of sensitivity and specificity. The average is widely understood and is therefore

accessible to a broad audience:

AccuracyBalanced =
1

2
(

tp

tp+ fn
+

tn

tn+ fp
) (6.7)
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The area under the receiver operating characteristic curve (ROC-AUC) is a metric com-

mon to the medical literature and well understood by scientists and clinicians for reporting

biomarkers [313]. Due to its popularity in the biomarker literature and interpretability, it

was included alongside the macro F1 score and balanced accuracy. The macro AUC can be

calculated similarly to the F1 score and balanced accuracy, but the AUC score should still be

interpreted with care.

Given the small sample size (77 patients in total), the ‘curse of dimensionality’ [314] would

be a significant challenge with the 267 predictor variables. The aforementioned ‘curse’ refers

to problems when analysing high-dimensional data. As the feature space expands, the vol-

ume of available data rapidly becomes sparse and difficult to sample reliably, requiring ex-

ponentially more data. A series of steps were taken prior to modelling to reduce the feature

space (summarised in Figure 6.2) and are detailed in subsequent sections of this chapter:

1. Features that are obviously redundant were removed e.g. where information is dupli-

cated or all values are equal for for all patients.

2. Features removed with excessive missing data or where the assumption of ‘missing at

random’ is clearly violated.

3. Multicollinear features were identified and either replaced with an estimated latent

variable or the variables with the greatest mutual information with the target variables

were retained.

4. Feature selection methodologies were employed that would reduce the feature set to

the most informative variables driven by model performance.
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Figure 6.2: Summary of steps taken to reduce the complexity of the feature space prior to
development of binary classification models.
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6.4 Imputing missing values to maximise available training

data

Most patients were missing data for over 50 of the 267 available features (Figure 6.3A). A

combination of experimental error, issues of sample integrity, and the sporadic nature of clin-

ical data collection all contributed to missing values, visualised for the entire cohort in the

clustered heatmap of Figure 6.3B. The rows of this heatmap represent each unique patient,

and the columns the features. Where cells are black, this indicates data are missing. It can

be assumed that data are missing at random for most features. For example, only a sample of

the cohort was available at the time of lipidomic analysis, some patients were missing data

for immunological profiling due to sample integrity or laboratory error, and the technical is-

sues on the ward made point-of-care testing results unavailable for some individuals. Other

features present more pressing issues and cannot be assumed to be missing at random. The

large cluster of features on the right-hand side of the clustered heatmap of Figure 6.3B (la-

belled ‘Other laboratory measurements’) consists of clinical laboratory measurements that

have been obtained for only a few individuals. For example, the absence of Vancomycin

and Gentamicin serum concentrations is not random and depends on their value. Such vari-

ables cannot be imputed with confidence because they are likely not missing at random, or

the quantity of missing values is too severe. Therefore, they were excluded from further

analysis.
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Figure 6.3: Visualisation of missing data in the ILTIS study. (A) Number of variables with a
value missing for each patient, out of a total of 267 available variables; shown by the black
horizontal line. (B) Clustered heatmap with the 267 available features as columns and each
patient represented by a row. A black cell represents the absence of a variable for a given
patient. Rows and columns were clustered using Ward hierarchical clustering.

The remaining missing values were imputed using the MissForest algorithm [315], an iter-

ative imputation method that attempts to impute missing values using a series of Random

Forest models. The Random Forest algorithm offers many advantages. Firstly, they are non-
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parametric; therefore, there are no assumptions about the underlying sample distribution. It

also can handle mixed-data types, and because results are derived from the average of many

unpruned trees, it constitutes a multiple imputation methodology. Additionally, the out-of-

bag (OOB) error estimates of Random Forest allows for the imputation error for each feature

to be estimated. The OOB errors are reported as the proportion of incorrect classifications

for categorical features. For continuous features, the normalised mean root squared error

(NMRSE) is reported, normalised by the variance of each feature.

Another popular alternative for imputing missing values is Multiple Imputation by Chained

Equations (MICE). MICE generates multiple complete datasets. Each dataset is exposed

to any downstream statistical analysis, and the results are pooled using Rubin rules, cap-

turing the uncertainty introduced by the imputation procedure [316]. The original authors

of MissForest demonstrated how, on multiple datasets, their method outperformed MICE in

terms of accuracy and computational performance, and OOB error estimates were compara-

ble to the actual error [315]. MissForest also provides a single complete dataset, simplifying

downstream analysis.

Figure 6.4A shows the distribution of OOB NMRSE for continuous features, where each dot

is an individual feature. An NMRSE of 1.0 or greater indicates that a model is no better than

random imputation of feature values. When imputed with the MissForest algorithm, most

continuous features had an NMRSE greater than 0.8, and 40 features had an NMRSE greater

than 1.0. Furthermore, for some categorical variables OOB estimates showed greater than

30% of values being falsely classified (Figure 6.4B).

In response to this poor performance, other methods were investigated. The MissRanger

package [317, 318] in the R programming language is based on the same principles as Miss-

Forest but with improved computational performance. The MissRanger package also offers

Predictive Mean Matching (PMM). In PMM, the imputed value is matched to the closest

value amongst a ‘donor pool’ of complete data sampled from the original data, preventing

imputation with unrealistic values not observed in the original sample distribution and help-

ing increase the variance in the resulting conditional distributions to a realistic level. PMM

is advisable for multi-modal or skewed distributions, a characteristic of many features in the

ILTIS data. Imputation with MissRanger resulted in improved OOB error for both continu-

ous (Figure 6.4A) and categorical (Figure 6.4B) features; the median NMRSE was reduced
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from 0.92 to 0.68 and the percentage of categorical features misclassified reduced to less

than 20%.

Features with an NMRSE greater than 1.0 were removed from further analysis, as were fea-

tures with greater than 40 per cent missing data. A 40 per cent cutoff was chosen over

concerns regarding the estimation of OOB where more than half of the observations were

missing in the original data. This decision was also supported by a weak correlation (Pear-

son R2 of 0.43; p-value < 0.001) observed between NMRSE and the percentage of missing

data for each feature (Figure 6.4C), suggesting that the amount of missing data could be

detrimental to the accuracy of imputation by MissRanger.
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Figure 6.4: Out-of-bag (OOB) imputation error estimates when imputing missing values with
MissForest and MissRanger. (A) OOB Normalised Root Mean Squared Error (NMRSE)
estimates for continuous features imputed with MissForest (top) and MissRanger (bottom)
algorithms. (B) OOB proportion of falsely classified values for categorical features imputed
with MissForest (top) and MissRanger (bottom) algorithms. For both A and B, the gradient
of colour for each data point represents the percentage of missing values in the original data.
(C) The relationship between the OOB NMRSE of continuous features and the percentage
of missing values in the original data.
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6.5 Multicolinearity

At this stage in the analysis, missing values had been imputed, and features with excessive

missing data or unsuitable for imputation were removed (Figure 6.2). A total of 174 features

remained for predicting the binary target variables. The number of features at this point

still vastly outweighed the number of observations. Multiomic and clinical data have many

redundancies, with parameters often correlated. Therefore it was essential first to identify

and replace strongly correlated features. Reducing the multicollinearity helped reduce the

feature space and was also vital for model interpretation; highly correlated features can result

in misinterpretation of feature importance since a feature might be included in a downstream

model, not due to its relationship with the target of interest but rather its correlation with

some other informative predictor.

The multi-colinearity of the feature space was visualised using a clustered matrix of pair-

wise Spearman’s rank correlation coefficients (Figure 6.5A). There were multiple pairs of

heavily correlated features as well as large clusters of both positive and negatively correlated

features. A matrix of absolute Spearman’s rank correlation coefficient was clustered (Figure

6.5B) to identify problematic groups of features. A total of 15 clusters were identified with

one or more pairs of values with an absolute Spearman’s rank correlation coefficient greater

than or equal to 0.75.

Figure 6.5: Multicolinearity amongst features visualised using pairwise Spearman’s rank
correlation coefficient. (A) Clustered matrix of pairwise Spearman’s rank correlation coef-
ficient shows groups of highly correlated features. The absolute pairwise Spearman’s rank
correlation coefficient matrix was clustered and is shown before (B) and after (C) removal of
redundancies and replacement of highly correlated groups with latent variables.
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Lipid data were highly correlated and were grouped into three main clusters with pairs of

lipids with an absolute spearman rank of greater than 0.8. Each cluster was replaced with

a latent variable generated using PCA. The component generated by PCA for each cluster

described greater than 75 per cent of the total variance within each cluster of lipidomic

features. Other redundant and duplicated features were identified and removed. Calcium

serum level was removed in favour of albumin-adjusted calcium serum levels, considered

the more reliable of these two features. Neutrophil count was heavily correlated with white

blood cell count; neutrophils constitute the largest proportion of total circulating leukocytes,

so it makes sense that a correlation was observed here. The neutrophil count was retained,

along with features for other leukocytes, to offer more granularity in the feature space. Lastly,

where two variables were heavily correlated, but it was not immediately apparent which

variable should be retained, the variable with the greatest mutual information with respect

to the target variables was retained. Overall, the collinearity between features was reduced

(Figure 6.5C).
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6.6 Feature selection

With the removal of redundant and highly correlated features, 150 features remained (Figure

6.2). Of these 150 features, a set had to be chosen small enough to reduce the risk of over-

fitting, improve classification accuracy [156], and ensure models could be easily interpreted.

This problem is known as the ‘minimal-optimal’ problem [157], is well described, and has

influenced the generation of many feature selection algorithms. For this study, five feature

selection algorithms were chosen from the literature to obtain a reduced set of informative

features for each target variable, resulting in five independent feature sets for each target.

Including multiple feature selection algorithms prevented downstream analysis from being

biased by one feature selection methodology. The methods were chosen to include filter and

wrapper techniques and are popular in the biostatistics literature:

1. Univariate selection with permutation testing: a filter method that ranks features by the

inverse of their p-value when testing for a significant difference between the positive

and negative case of a target e.g. for 30-day mortality, the feature with the smallest

p-value when comparing survivors and non-survivors would be the highest-ranking

feature. Permutation testing was used for hypothesis testing, a non-parametric test that

computes all possible values of the sample mean under possible rearrangements of the

observed data using resampling. Due to the computational intensity of this task, an

approximation method was used with 1000 rounds of resampling [319].

2. ReliefF: another filtering method, relief-based algorithms (RBAs), have gained popu-

larity for their ability to capture feature dependencies whilst retaining the generalised

advantages of filter methods. RBAs are computationally efficient, and selected fea-

tures do not depend on the assumptions of a chosen model. RBAs generate a proxy

statistic for each feature referred to as ‘feature weights’. The feature weight scores the

relevance of a feature to some target outcome and ranges between -1 and 1. The algo-

rithm cycles through randomly selected training instances and calculates the distance

between that instance and all other observations. Two nearest neighbour instances are

chosen, one with the same class as the selected training instance (called the ‘nearest

hit’) and one with the opposing class (called the ‘nearest miss’). The feature weights

are then updated to reflect the distance in the feature value between the nearest hit and
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the nearest miss. Features with a different value between the randomly selected train-

ing instance and the nearest miss are assigned higher weights and therefore regarded

as more informative. Conversely, a feature with values that differ between instances

of the same class (the nearest hit) is assigned a lower weight. The ReliefF algorithm is

the best-known variant of the RBAs and was adopted in this study. The default param-

eter for k of 10 (the number of neighbours used when scoring nearest hits and nearest

misses) was used, a value based on preliminary empirical testing [320]. The ReliefF

algorithm was implemented using the skrebate Python package. [321].

3. Minimum Redundancy - Maximum Relevance (MRMR): unlike other feature selection

algorithms, the MRMR algorithm (first introduced by Ding & Peng [322]) focuses on

identifying not only the most relevant features but also the minimal-optimal subset in

the absence of redundant features. The objective of MRMR is not to identify all the

relevant features that individually have predictive power but rather the smallest subset

that collectively is most informative. MRMR iterates over each feature, computing the

relevance to the target, weighted by the redundancy of the feature relative to all other

features. The choice of relevance and redundancy functions varies [323]. However,

the simplest form uses the F statistic to measure relevance and the Pearson correlation

coefficient to measure redundancy. For categorical variables, mutual information can

be used. Given the mixed data types and the likelihood of feature interaction, this

study used a random forest classifier for the relevance function [323].

4. Boruta: the Boruta algorithm [324], unlike MRMR, concerns itself with identifying

all-relevant features using a wrapper approach built around the popular random forest

algorithm. In the Boruta algorithm, each feature is duplicated by a permuted copy

called a ‘shadow’ feature, such that the original feature space is doubled in length. The

z-score, calculated by dividing the average OOB accuracy by its standard deviation,

captures feature importance. The feature importance between a real feature and its

corresponding shadow feature is compared using a two-sided test of equality. Where a

feature is found to be significantly greater than its shadow, it is marked as important.

Unimportant features are removed, and the process is repeated until all features have

been classified or the maximum number of runs is reached. The class imbalance was

handled in the random forest model by assigning class weights as described in equation

6.3.
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5. Recursive Feature Elimination with Support Vector Machines (RFE-SVM): recursive

feature elimination (RFE) is a wrapper feature selection method developed for clas-

sification problems involving a small sample size [325]. Although not limited to one

classification model in theory, this methodology was developed with and often is cou-

pled to Support Vector Machines (SVM) [326, 327]. An SVM with a linear kernel

seeks to separate classes by a linear negative and positive hyperplane. The decision

boundary is determined by the instances (known as ‘support vectors’) on the edge of

these hyperplanes. Soft-margin hyperplanes are preferred as they provide a degree of

tolerance to the number of support vectors that violate the identified margin. Once

the optimal hyperplanes are found, the coordinates of a vector orthogonal to the hy-

perplane provide the coefficients for each feature. Recursive feature elimination, in

this context, is an iterative algorithm that eliminates the feature with the smallest abso-

lute coefficient (and therefore, the lowest contribution to the separation of classes) on

each cycle until the desired number of features is generated. Although a linear SVM

assumes that the classes are linearly separable and alternatives exist with non-linear

kernels [328], a linear SVM with a soft margin was chosen for this study for simplicity

and to reduce the chance of overfitting. A linear SVM was reasonable since other fea-

ture selection methodologies were also employed that did not make such assumptions

of a linear relationship between the target and covariates (i.e. ReliefF, MRMR, and

Boruta). The class imbalance was handled in the SVM by assigning class weights as

described in equation 6.3.
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After running each feature selection algorithm for each target variable, the top ten features

from each of the five algorithms were chosen to provide five independent feature sets for each

target. Several factors influenced the choice of the number of features to retain: artificially

reducing the available feature space helps reduce the risk of multicollinearity and prevents

the construction of complex models that are less likely to generalise to a broader population.

The downstream analysis also included validation of models on equivalent complete case

data, and constraining the number of features increases the amount of data available during

complete case analysis. Ultimately the objective of this study was to generate interpretable

models that identify a minimal feature set that correlates with outcomes and would help

generate new hypotheses. Limiting the feature space to a maximum of ten parameters ensures

at least five observations are available per feature and makes the interpretation of model

decisions easier. Nevertheless, using the top ten features could introduce redundancies. Since

the minimal predictive set is the objective, classifiers were generated for the top three features

to the top ten features and compared by classification performance (Figure 6.7 describes the

entire modelling pipeline).

The overlap between feature selection methods was measured using the pairwise Jaccard in-

dex and visualised as a heatmap for each target (Figure 6.6C). A Jaccard index of 1 indicates

that both sets are identical. Alternatively, if no common features are shared, the index is 0.

The univariate filtering method is most distinct as having virtually no overlap with the feature

sets generated by the other four methods, suggesting that the dependencies between features

in this data, as opposed to individual predictive power alone, were crucial in identifying the

optimal set of predictors. However, the overlap was still remarkably low among the other

selection methods, resulting in five distinct feature sets and demonstrating a large variance

between different feature selection algorithms when applied to this data. For 90-day mortal-

ity, most feature selection algorithms identified distinct sets. Although a moderate overlap of

features selected by ReliefF and Boruta is observed, and to a lesser extent, some overlap is

seen between Boruta and RFE-SVM. Moderate overlap of features from ReliefF and Boruta

algorithms was also observable for the Gram-negative target variable.
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Figure 6.6: Pairwise Jaccard Index measures the overlap of feature sets generated by five
independent feature selection algorithms. Feature selection was performed for three binary
target variables: mortality 30 days after diagnosis with sepsis (left), 90 days after diagnosis
with sepsis (middle), and a Gram-negative causative pathogen amongst those with a positive
culture (right).

With a significantly reduced feature space, one last check for multicollinearity was made

using the Variance Inflation Factor (VIF). An ordinary least squares regression model was

generated for each feature using all other features as predictors. The VIF was then calculated

as one divided by one minus the coefficient of determination (R2) to give the ratio of the

overall model variance to the variance of a model that includes only that single feature. A

VIF of greater than five was considered to exhibit high multicollinearity. Amongst the five

feature sets for each target, only the lipids C10:0 and C8:0 for 30-day mortality were of

concern, with a VIF of 16.8 and 17.6, respectively. C8:0 was retained over C10:0 because

it displayed more variance, had greater mutual information with 30-day mortality, and had a

smaller p-value when comparing class means with a permutation test.
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6.7 Multivariate models identify signatures that correlate

with outcome and causative pathogen

An overview of the modelling pipeline and evaluation of model performance is provided in

Figure 6.7. The first step was to obtain ‘holdout’ data that would be used to evaluate model

performance after model and feature selection (Figure 6.7A). Generation of a holdout set is a

crucial methodological decision that is often overlooked in biomarker and proteomics studies

[330, 329]. By randomly selecting 20% of the data, and keeping this data independent of

model and feature selection, over-fitting and inflated accuracy can be avoided.

Rather than limiting our analysis to a single classifier of interest, multiple classification al-

gorithms were used (Figure 6.7B). The ‘no free lunch theorem’ presented by Wolpert and

Macready [301], perpetuated by recent biomarker studies [46, 331, 332, 333], suggests that

no single algorithm can be optimal for all problems. It is, therefore, a requirement to experi-

ment with a range of diverse classifiers. In this study, eight groups of classifiers (referred to

as ‘classifier families’ from here onward) were drawn upon for the task of binary classifica-

tion:

1. Logistic regression: an extension of linear regression for classification tasks by mod-

elling the probability of the outcome variable using a logistic function. Logistic re-

gression supports lasso, ridge, and elastic net regularisation to reduce overfitting [158,

177].

2. Support vector machine with a linear kernel (Linear SVM): support vector machines

(SVMs) encapsulate a popular family of classification algorithms that are proven effec-

tive in high dimensional spaces, are memory efficient, and are highly versatile. With

a linear kernel, an SVM seeks to optimise a margin with two linear hyperplanes that

separate the positive and negative class [158, 334].

3. Support vector machine with a non-linear kernel (Non-linear SVM): SVMs can be ex-

tended to perform non-linear classification by mapping samples onto a high-dimensional

feature space in which linear classification is possible; this is known as the ‘kernel

trick’. Many kernel functions exist, but popular solutions include the polynomial ker-

nel, the Gaussian radial basis function kernel, and the Sigmoid kernel [158, 334].
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4. Naive Bayes: a family of supervised learning algorithms successfully applied in previ-

ous biomarker studies [173, 335]. Naive Bayes is based on Bayes’ theorem but adopts

the “naive” assumption that every feature is independent of all other features given the

value of the target variable [177]. In this study, a Gaussian Naive Bayes algorithm was

implemented, where the likelihood of the features is assumed to follow a Gaussian

distribution.

5. K-Nearest Neighbours (KNN): neighbours-based classification is a type of instance-

based learning because it does not construct a general model but rather stores training

data instances. Classification results from a simple majority vote of the nearest neigh-

bours of each point i.e. a newly encountered observation are assigned the class with the

most representation amongst k nearest neighbours. Therefore, this algorithm’s perfor-

mance is influenced by two hyperparameters, the choice of k and the distance metric

used to construct the nearest-neighbour tree [334].

6. Random Forest: the Random Forest algorithm is a popular ensemble technique to im-

prove the classification performance of decision trees. A perturb-and-combine strat-

egy is employed to generate randomised decision trees, creating a diverse ‘forest’ of

decision tree classifiers. The resulting prediction is drawn from the average of the

individual classifiers[158, 334].

7. Extra Random Forest: extremely randomised or ‘extra’ Random Forest introduces ad-

ditional randomness to the construction of decision trees. As with the random forest

algorithm, a subset of features is used when constructing each decision tree. However,

instead of splitting on the most discriminative thresholds, thresholds are drawn ran-

domly for each candidate feature. The best randomly generated threshold is picked as

the splitting rule, helping reduce the model variance at a slight expense of increased

bias [177].

8. Extreme Gradient Boosting (XGBoost): the XGBoost algorithm is an extension of the

gradient-boosted trees algorithm. Unlike a Random Forest approach, gradient boosting

algorithms use successive weak learners to solve the classification problem. With each

weak learner, more weight is put on instances that previous weak learners struggled

to classify. Predictions are generated by a majority vote across the weak learners

weighted by their accuracy [178].
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Classifiers were chosen to include simple linear models (i.e. Logistic regression and SVM

with a linear kernel) and models with greater complexity that would capture non-linear re-

lationships between the target and covariates (i.e. SVM with a non-linear kernel, KNN, and

ensembles of trees). All classifiers were implemented using the Scikit-Learn library [177].

Within each classifier family, a vast array of hyperparameters influence their behaviour. A

grid search strategy was employed to tune optimal hyperparameters. Hyperparameters in-

cluded L1 and L2 regularisation of varying strengths, polynomial and radial basis function

kernels for non-linear SVMs (with multiple degrees for the former and a range of γ for the

latter), different distance metrics and number of nearest neighbours for KNN, and multi-

ple hyperparameters for ensembles of tree-based learners controlling parameters such as the

depth of trees, number of splits, number of features, and sampling methods. The number of

models derived from each family is shown in Figure 6.7B and resulted in 216 classification

models.

Each model was trained on the 5 independent feature sets described in section 6.6 (Figure

6.7C). As previously discussed, the optimal number of features might be less than the top 10

ranked features presented by each feature selection algorithm. Therefore, iteratively, each

classifier was trained on the top 3 through to the top 10 features. For each classifier, eight

models were generated for each feature selection algorithm, totalling 40 models across all

possible feature sets and 8,880 models trained across all possible classifiers, repeated for

each target.

195



CHAPTER 6. MACHINE LEARNING MODELS IDENTIFY BIOMARKER SIGNATURES

Figure 6.7: (Continued on the following page.)
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Figure 6.7: Schematic of the modelling pipeline for selecting, comparing, and inspecting
classification algorithms. Data were split (A) into training and holdout sets, retaining 20%
of data for model evaluation. Data were exposed to eight classifier families (B), generating
216 classifiers in total after including multiple hyperparameters. Models were trained using
five independent feature sets (C) iteratively on the top 3 through to the top 10 features from
each feature set, producing 40 models for each feature set and 8,880 models for each target
variable. Models were trained and tested using leave-one-out and 5-fold cross-validation
(D), and the best performing model (measured by LOOCV macro F1 score) was selected
for each classifier family. Cross-validation performance and performance on the holdout set
were compared across classifiers using ROC curves, balanced accuracy, macro F1 score, and
macro AUC score (E). The top performing classifier(s) were tested against their equivalent
complete case data as an additional validation step before inspection of model decisions
using SHapely Additive exPlanations (SHAP) values.

Cross-validation was used to select the optimal model before validation on independent hold-

out data. Two cross-validation procedures were performed in parallel (Figure 6.7D). The

cross-validation methods were chosen due to the small amount of training data available:

1. Leave-one-out cross-validation (LOOCV): a form of cross-validation where the num-

ber of folds equals the number of observations in the data. Therefore, on each fold, a

single observation is kept out for testing, and all other observations are used as train-

ing data. Data splitting is repeated until every observation has been tested. LOOCV

maximises the available number of training instances across folds and is appealing

when the total sample size is small. The consequence is that the individual folds are

very similar, resulting in performance estimates with low bias but possibly greater

variance.

2. 5-fold cross-validation (5-fold CV): given that the condition of sepsis and the data

obtained by ILTIS exhibit heterogeneity, the impact of resampling within the cohort

on model performance was of interest. Therefore, stratified 5-fold cross-validation was

used, splitting the data into five independent non-overlapping sets, and iterating over

them using one set each round as testing data.

Within each classifier family, the model and feature set combined with the highest LOOCV

F1 score was chosen for evaluation and model inspection (Figure 6.7E). The cross-validation

and holdout performance for the optimal model from each classifier family were compared

using ROC curves, balanced accuracy, macro F1 score, and macro AUC score. Models were

first compared by 5-fold CV balanced accuracy using the non-parametric Friedman test, and

Nemenyi post-hoc testing [336] to test whether the variation in performance across 5-folds
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was significantly different between models. After selecting a model from each classifier

family using cross-validation, their performance was validated on independent holdout data,

and the best-performing model(s) were selected for inspection.

Before inspecting model(s) decisions, the performance of the chosen model(s) was compared

to the equivalent complete case data. For practical reasons, imputation was performed before

the generation of holdout data and is a possible source of data leakage. Additionally, impu-

tation introduces additional error, as quantified by OOB estimates and discussed in section

6.4. Therefore, testing on complete case data in the reduced feature space serves as addi-

tional validation to offset these redundancies. Since complete case data substantially reduces

the number of training instances, only LOOCV was used in the complete case analysis.

Finally, the top performing models were inspected using SHapely Additive exPlanations

(SHAP) [167]. The best way to explain SHAP values is by using a simple example. Since,

in this study, linear models were employed, we can use the simple example of explaining a

Logistic Regression model tasked with predicting 30-day mortality (Figure 6.8). Tradition-

ally, the standard way of interpreting a linear model is to examine the coefficients learned

for each feature. Whilst these are informative, linear and non-linear models are compared in

this study, and therefore a model-agnostic method for interpretation was desired.

To understand SHAP values, let us first try to understand how changing the value of a feature,

such as the percentage of T cells, affects the model output. Figure 6.8A shows a partial

dependency plot with T cells as a percentage of PBMCs on the x-axis and the expected

value of the model given the percentage of T cells on the y-axis. The distribution of the

percentage of T cells observed in the data is also visible as a histogram. The horizontal

grey dotted line shows us the baseline model’s expected value (equivalent to the observed

mortality rate), and the vertical grey dotted line shows the average value of our distribution.

The blue line describes the partial dependence and passes through the intersection of these

two grey dotted lines, known as the centre of the partial dependence plot, with respect to the

observed data distribution. Notice that as the percentage of T cells increases, the expected

value with respect to the percentage of T cells decreases, and therefore the likelihood of

mortality decreases.
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Figure 6.8: Partial dependency plot (A) shows the relationship between T cells (% of
PBMCs) and the outcome of a Logistic Regression model. The red arrow shows the dif-
ference between the expected value given the proportion of T cells (% of PBMCs) and the
baseline expected value for a single observation of T cells; for a linear model, this is equiva-
lent to the SHAP value for this observation. The SHAP values for all observations are plotted
as a scatterplot (B) where the same relationship as the partial dependency plot is observed.

SHAP values use cooperative game theory to allocate a score to each feature that reflects

their contribution to a model’s output. For a linear model, the SHAP values of a feature can

be calculated by simply comparing the difference between the expected model output and the

partial dependence plot at a feature value xi (demonstrated by the red arrow in Figure 6.8A).

If we plot the SHAP values across the entire data for a feature, the values closely follow the

relationship shown by the partial dependency plot (Figure 6.8B).

A fundamental property is that the SHAP values of all input features will always sum to

the difference between the expected model output (known as the baseline) and the observed

output for a prediction. We can therefore use SHAP values to visualise the impact of features

on the predictions of a machine learning model. Figure 6.9A and B show two observations

predicted to be a member of the negative and positive class by the same Logistic Regression

algorithm, respectively. The plots shown are known as ‘waterfall plots’ and start with the

prior expected output of our model E[f(X)] and add feature (y-axis) SHAP values until it

reaches the observed outcome.
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Figure 6.9: Waterfall plots for a negative (A) and positive (B) prediction by a Logistic Re-
gression model predicting 30-day mortality. The baseline expected value (mortality rate
observed in the training data; 27.3%) is shown as a grey horizontal dotted line. Features,
shown on the y-axis, have increasing SHAP values from the bottom of the axis to the top,
and their sum equals the difference between the baseline expected values and the predicted
value.
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6.7.1 A T cell dominant signature predict mortality at 90 days after

diagnosis of sepsis.

The first target variable investigated was 30-day mortality. There was no significant differ-

ence (p=0.303) between the optimal models chosen for each classifier family when compar-

ing 5-fold CV accuracy and F1 score (Figure 6.10A). Logistic regression and SVM’s showed

promise at first, with impressive LOOCV ROC curves (Figure 6.10B) and comparable per-

formance between training and testing data within the model and feature selection process

(Figure 6.10C). However, performance on holdout data was poor. None of the chosen mod-

els performed better than a random baseline (represented by the dotted diagonal line, Figure

6.10C) and individual performance metrics suggested that none of the models generalised

well when exposed to holdout data (Table 6.1).

Balanced
Accuracy

Macro F1
Score

Macro AUC
Score

Logistic regression - RFE-SVM - top 10 0.58 [0.50 –
0.67]

0.56 [0.49 –
0.60]

0.49 [0.44 –
0.58]

Linear SVM - RFE-SVM - top 10 0.59 [0.5 –
0.67]

0.57 [0.49 –
0.60]

0.52 [0.42 –
0.61]

SVM (cubic polynomial) - RFE-SVM - top 10 0.63 [0.54 –
0.71]

0.62 [0.53 –
0.66]

0.59 [0.53 –
0.64]

KNN - Boruta - top 7 0.63 [0.63 –
0.67]

0.65 [0.64 –
0.712]

0.68 [0.64 –
0.72]

Naive Bayes - RFE-SVM - top 9 0.50 [0.38 –
0.54]

0.50 [0.38 –
0.53]

0.52 [0.44 –
0.57]

Random Forest - Boruta - top 6 0.46 [0.46 –
0.50]

0.41 [0.40 –
0.42]

0.59 [0.55 –
0.64]

Extra Random Forest - Boruta - top 7 0.54 [0.42 –
0.58]

0.54 [0.40 –
0.58]

0.73 [0.64 –
0.83]

XGBoost - Boruta - top 7 0.50 [0.38 –
0.54]

0.50 [0.38 –
0.53]

0.48 [0.31 –
0.56]

Table 6.1: Holdout performance for the top-performing model selected within each classifier
family for predicting 30-day mortality in sepsis. Each model is presented as the name of
the classifier family, the feature selection method that generated the optimal feature set, and
the number of features selected for the top-performing model. The highest ranking metrics
are highlighted in bold font. Bootstrapped 95% confidence intervals are shown in square
brackets, generated using 100 rounds of resampling.

Prediction of 90-day mortality was more reliable (Figure 6.11). Although a comparison of

5-fold CV accuracy and F1 score (Figure 6.11A) showed a significant difference in per-

formance when applying Friedman’s test, posthoc pairwise Nemenyi testing did not yield
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Figure 6.10: (Continued on the following page.)
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Figure 6.10: Cross-validation and holdout performance for the top-performing model se-
lected within each classifier family for predicting 30-day mortality in sepsis. Each model is
presented as the name of the classifier family, the feature selection method that generated the
optimal feature set, and the number of features selected for the top-performing model. (A)
Balanced accuracy and macro F1 score for each fold of 5-fold cross-validation (5-fold CV)
are shown as boxplots. Models receiver-operating-characteristic (ROC) curves are presented
(B) for leave-one-out cross-validation (LOOCV), 5-fold CV, and testing on holdout data. The
dotted diagonal line represents a model with a random performance level. The difference in
training and testing performance within each cross-validation procedure is shown (C), where
error bars for 5-fold CV represent 95% bootstrap confidence intervals with 1000 rounds of
resampling.

significant p-values for any comparisons; the lowest p-value was 0.101 for the comparison

of SVM (quartic polynomial) and Random Forest. Therefore, we cannot conclude that the

models were significantly different. However, high 5-fold CV accuracy and F1 score were

observed for many models, with lower variance across folds compared to models predict-

ing 30-day mortality. The LOOCV and 5-fold CV performance was generally good across

all classifiers (Figure 6.11B and C). However, more complex models such as KNN and en-

sembles of tree-based learners exhibited more over-fitting compared to the simpler Logistic

Regression and Linear SVM, except for the Extra Random Forest model. The Extra Random

Forest model showed superior accuracy, F1 score, and AUC scores compared to all other

models when tested on holdout data (Table 6.2) and was chosen for complete case analysis

and inspection.
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Figure 6.11: (Continued on the following page.)
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Figure 6.11: Cross-validation and holdout performance for the top-performing model se-
lected within each classifier family for predicting 90-day mortality in sepsis. Each model is
presented as the name of the classifier family, the feature selection method that generated the
optimal feature set, and the number of features selected for the top-performing model. (A)
Balanced accuracy and macro F1 score for each fold of 5-fold cross-validation (5-fold CV)
are shown as boxplots. Models receiver-operating-characteristic (ROC) curves are presented
(B) for leave-one-out cross-validation (LOOCV), 5-fold CV, and testing on holdout data. The
dotted diagonal line represents a model with a random performance level. The difference in
training and testing performance within each cross-validation procedure is shown (C), where
error bars for 5-fold CV represent 95% bootstrap confidence intervals with 1000 rounds of
resampling.

Balanced
Accuracy

Macro F1
Score

Macro AUC
Score

Logistic regression - RFE-SVM - top 10 0.71 [0.63 –
0.79]

0.73 [0.64 –
0.79]

0.69 [0.58 –
0.78]

Linear SVM - RFE-SVM - top 10 0.71 [0.63 –
0.79]

0.73 [0.64 –
0.79]

0.67 [0.58 –
0.78]

SVM (quartic polynomial) - RFE-SVM - top 8 0.70 [0.63 –
0.79]

0.72 [0.64 –
0.79]

0.72 [0.67 –
0.77]

KNN - RFE-SVM - top 6 0.54 [0.42 –
0.58]

0.54 [0.40 –
0.58]

0.54 [0.44 –
0.64]

Naive Bayes - RFE-SVM - top 10 0.71 [0.63 –
0.79]

0.73 [0.64 –
0.79]

0.71 [0.61 –
0.94]

Random Forest - Boruta - top 3 0.67 [0.58 –
0.75]

0.67 [0.58 –
0.72]

0.80 [0.77 –
0.89]

Extra Random Forest - RFE-SVM - top 7 0.75 [0.67 –
0.83]

0.79 [0.71 –
0.88]

0.85 [0.81 –
0.86]

XGBoost - Boruta - top 6 0.54 [0.42 –
0.58]

0.54 [0.4 –
0.58]

0.58 [0.44 –
0.72]

Table 6.2: Holdout performance for the top-performing model selected within each classifier
family for predicting 90-day mortality in sepsis. Each model is presented as the name of
the classifier family, the feature selection method that generated the optimal feature set, and
the number of features selected for the top-performing model. The highest ranking metrics
are highlighted in bold font. Bootstrapped 95% confidence intervals are shown in square
brackets, generated using 100 rounds of resampling.

Figure 6.12 shows the LOOCV performance of the Extra Random Forest model when ex-

posed to complete case data. The ROC curve for the imputed data was comparable to that of

the complete case data, and the training LOOCV AUC was almost identical to the complete

case AUC. Balanced accuracy and macro F1 score were decreased in complete case analysis

compared to the training LOOCV scores, but both scores were still greater than 0.7.
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Figure 6.12: Complete case analysis for an Extra Random Forest model tasked with pre-
dicting 90-day mortality in sepsis. Performance is documented by a receiver-operating-
characteristic (ROC) curve (left) and a bar plot (right) showing balanced accuracy, macro
F1 score, and ROC area-under-curve (AUC) score. The dotted diagonal line accompanying
the ROC curves represents a model with a random performance level.

The chosen features and their contribution to the Extra Random Forest are shown in Figure

6.13. The beeswarm plot (Figure 6.13, top) shows the features ranked from the most impact-

ful on the model outcome to the least impactful. Each data point is a patient and is coloured

according to the value of the respective feature. The x-axis shows the SHAP value, with

greater values meaning a higher impact on a model’s prediction of death 90-days after sepsis

diagnosis. Lower SHAP values indicate that the feature had a higher impact on a model’s

survival prediction for that patient. The beeswarm plot is accompanied by a heatmap (Figure

6.13, bottom) with patients on the x-axis, the model features on the y-axis, and a bar plot

on the right-hand y-axis showing the overall impact of the feature on model output. The

individual cells of the heatmap show the SHAP values for each feature for a single patient.

Patients (columns) are clustered by their explanation similarity, providing insight into what

combination of features drives model predictions. Above the heatmap, the actual outcome of

the patient (orange line) and the predicted outcome (black line) are shown as a line plot. It

should be noted that the predictions reported here reflect performance on the complete train-

ing data and do not reflect how the model would perform when exposed to new data. The

purpose of the heatmap is to understand the decision function learnt by the algorithm when

exposed to training data.
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The proportion of T cells (as a percentage of total PBMCs) was the most noteworthy fea-

ture of the Extra Random Forest model. Lower values for T cells influenced a prediction

of 90-day mortality, as shown by the gradient for T cells on the beeswarm plot in Figure

6.13. Excluding the percentage of T cells, the most impactful features were: blood glu-

cose, CXCR3 expression on CD4+ T cells, and plasma concentration of Arachidonic acid

(a 20-carbon chain polyunsaturated omega-6 fatty acid; C20:4). Increased levels of both

blood glucose and CD4+ T cell CXCR3 expression encouraged the model to predict 90-

day mortality, whereas the inverse was true for Arachidonic acid, with lower values driving

prediction of 90-day mortality. The percentage of T cells was the dominant factor in the

Extra Random Forest model, but where the SHAP values were only moderately high, it ap-

pears that the influence of blood glucose, CD4+ T cell CXCR3 expression, and Arachidonic

acid encouraged the prediction of survival (Figure 6.13 heatmap). The remaining features

in the Extra Random Forest model, magnesium plasma concentration, APACHE II Score,

and CD25 expression on MAIT cells appear important for individuals rather than the wider

training cohort.
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Figure 6.13: SHAP (SHapely Additive exPlanations) values for an Extra Random Forest
model tasked with predicting mortality at 90 days after diagnosis with sepsis. The beeswarm
plot (top) shows each observation as a single data point coloured by the value of the fea-
ture for that instance. On the x-axis is the SHAP value, a lower value corresponds to an
instance having a more significant impact on the negative case for the model (i.e. prediction
of survival), and a positive value corresponds to having a more significant impact on the
positive case for the model (i.e. prediction of death). A barplot on the right-hand side of the
beeswarm plot shows the imputation error (with a maximum value of 1) and the percentage
of missing values observed in the original data. The heatmap (bottom) shows the SHAP
values for each patient. The bar plot on the right-hand y-axis shows each feature’s mean ab-
solute SHAP value and measures the impact of a feature on model prediction. The line plot
above the heatmap shares the x-axis and displays each patient’s predicted outcome (black
line) and the actual outcome (orange line). The dotted line between the possible outcomes is
the expected value, equivalent to the observed mortality.
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6.7.2 Neutrophils, CD8+ T cells, and unconventional T cells form a

predictive signature that differentiates Gram-negative and Gram-

positive infection in sepsis.

The top-performing models for predicting Gram-negative cause in sepsis are shown in Figure

6.14. There was no significant difference when comparing the model’s 5-fold CV balanced

accuracy and macro F1 score. However, the median 5-fold CV balanced accuracy for Lo-

gistic Regression, and Linear SVM was superior to other models (Figure 6.14A). Logistic

regression, SVM’s, and the Extra Random Forest model demonstrated the best LOOCV per-

formance (Figure 6.14B and C). The Logistic regression and Linear SVM models performed

well on holdout data, each with a balanced accuracy of 0.83 and a macro F1 score of 0.86,

but the Logistic regression model outperformed the Linear SVM in terms of ROC AUC score

(Table 6.3). The performance of the Extra Random Forest model deteriorated when exposed

to holdout data, however, the Random Forest model presented the best ROC AUC score

overall. The Logistic regression model and Random Forest were chosen for complete case

analysis. Both retained the same LOOCV performance on complete case data observed on

the imputed training data (Figure 6.15).

Four features appeared dominant in the Logistic regression model (Figure 6.16): T cells ac-

tivated cluster 1 (the largest of the CD8+ T cell clusters and characterised by low expression

of the activation markers CD69, CD25, HLA-DR, and CXCR3), neutrophil cluster 1 (char-

acterised by its low expression of CD62L), neutrophil count, and sodium concentration in

plasma. Higher values of T cells activated cluster 1 and neutrophil cluster 1 encouraged the

prediction of Gram-positive cause. In contrast, higher values for the neutrophil count and

sodium concentration in plasma influenced a prediction of Gram-negative cause. T cells ac-

tivated cluster 1 was calculated as a proportion of total T cells and could have possibly been

a surrogate marker for the percentage of CD8+ T cells. This feature was replaced with the

percentage of CD8+ T cells, and the training and holdout data performance was unchanged.

Therefore, T cells activated cluster 1 should not be judged on the expression profile but in-

stead treated as an indication of the effect the proportion of CD8+ T cells had on predicting

Gram-negative cause.

209



CHAPTER 6. MACHINE LEARNING MODELS IDENTIFY BIOMARKER SIGNATURES

Figure 6.14: (Continued on the following page.)
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Figure 6.14: Cross-validation and holdout performance for the top-performing model se-
lected within each classifier family for predicting Gram-negative cause in sepsis. Each model
is presented as the name of the classifier family, the feature selection method that generated
the optimal feature set, and the number of features selected for the top-performing model.
(A) Balanced accuracy and macro F1 score for each fold of 5-fold cross-validation (5-fold
CV) are shown as boxplots. Models receiver-operating-characteristic (ROC) curves are pre-
sented (B) for leave-one-out cross-validation (LOOCV), 5-fold CV, and testing on holdout
data. The dotted diagonal line represents a model with a random performance level. The dif-
ference in training and testing performance within each cross-validation procedure is shown
(C), where error bars for 5-fold CV represent 95% bootstrap confidence intervals with 1000
rounds of resampling.

Balanced
Accuracy

Macro F1
Score

Macro AUC
Score

Logistic regression - RFE-SVM - top 6 0.83 [0.75 –
1.0]

0.86 [0.80 –
1.0]

0.76 [0.64 –
1.0]

Linear SVM - RFE-SVM - top 5 0.83 [0.75 –
1.0]

0.86 [0.8 –
1.0]

0.71 [0.57 –
1.0]

SVM (cubic polynomial) - RFE-SVM - top 5 0.76 [0.68 –
0.93]

0.76 [0.68 –
0.86]

0.71 [0.57 –
0.92]

KNN - RFE-SVM - top 5 0.60 [0.43 –
0.68]

0.59 [0.4 –
0.68]

0.81 [0.71 –
0.93]

Naive Bayes - RFE-SVM - top 6 0.66 [0.50 –
0.75]

0.67 [0.44 –
0.80]

0.81 [0.71 –
1.0]

Random Forest - Boruta - top 6 0.67 [0.50 –
0.75]

0.68 [0.44 –
0.80]

0.86 [0.79 –
0.94]

Extra Random Forest - Boruta - top 6 0.69 [0.61 –
0.86]

0.67 [0.59 –
0.75]

0.62 [0.50 –
0.79]

XGBoost - Boruta - top 5 0.60 [0.43 –
0.68]

0.60 [0.4 –
0.68]

0.76 [0.71 –
0.89]

Table 6.3: Holdout performance for the top-performing model selected within each classifier
family for predicting Gram-negative cause in sepsis. Each model is presented as the name of
the classifier family, the feature selection method that generated the optimal feature set, and
the number of features selected for the top-performing model. The highest ranking metrics
are highlighted in bold font. Bootstrapped 95% confidence intervals are shown in square
brackets, generated using 100 rounds of resampling.

The other two features were T cells memory cluster 3 (a CD8+ cluster with a TEMRA

phenotype of CD45RAhi CD27lo CCR7lo CD57hi) and HLA-DR expression on MAIT cells,

with high values for both encouraging a prediction of Gram-negative cause. The heatmap

of SHAP values for the Logistic regression model in Figure 6.16 shows how many features

exert a conflicting influence on the model output. Although T cells activated cluster 1 has

the highest absolute mean SHAP value, we can see that other features drive the decision

with confounding SHAP values for certain patients. For example, on the left-hand side of
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Figure 6.15: Complete case analysis for a Logistic regression model (A) and a Random
Forest model (B) tasked with predicting Gram-negative cause in sepsis. Performance is
documented by a receiver-operating-characteristic (ROC) curve (left) and a bar plot (right)
showing balanced accuracy, macro F1 score, and ROC area-under-curve (AUC) score. The
dotted diagonal line accompanying the ROC curves represents a model with a random per-
formance level.

the heatmap, a cluster of patients with a gradient of low SHAP values for T cells activated

cluster 1 has moderate to high values for neutrophil cluster 1, neutrophil count, and T cells

memory cluster 3. Small clusters of patients have similar SHAP profiles, highlighting the

training data’s complexity and heterogeneity, hence the need for a multi-parameter model.

The Random Forest model selected features of T cells and the neutrophil count (Figure 6.17).

The feature with the highest absolute mean SHAP value was the proportion of Vδ2+ γδ T

cells (as a percentage of T cells). The relationship between the proportion of Vδ2+ γδ T
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cells and their SHAP values is unclear on the beeswarm plot of Figure 6.17. It is better

visualised as a scatterplot, as presented in Figure 6.18. A trend is obscured in the beeswarm

plot that is revealed by plotting the proportion of Vδ2+ γδ T cells versus the corresponding

SHAP values. As the proportion of Vδ2+ γδ T cells increases, the SHAP value decreases,

and therefore the impact on the prediction of Gram-positive cause increases. However, there

are two Gram-negative cases with high values for the proportion of Vδ2+ γδ T cells. The

model successfully identified the relatively abnormal relationship these outliers have with

the proportion of Vδ2+ γδ T cells, and this is reflected in their low absolute SHAP values.

Returning to the other features of the Random Forest model and their corresponding SHAP

values described in Figure 6.17, we see a relatively straightforward relationship. Increased

values for all other features were associated with higher SHAP values, influencing the model

to predict a Gram-negative causative pathogen. The additional features in the Random Forest

model included: neutrophil count, T cells memory cluster 2 (a CD4+ cluster characterised

by low expression of CD27 and CCR7, moderate expression of CD45RA, and high expres-

sion of CD57), CD25 expression on CD8+ T cells, a CD4+ CD8− MAIT cell cluster, and

the proportion of T cells (as a percentage of PBMCs). The SHAP heatmap in Figure 6.17

shows that features were, for the majority, cooperative in their impact on model predictions.

However, there were cases where features had contradictory SHAP values. For example, two

patients on the far left-hand side of the heatmap had moderate to high SHAP values for the

proportion of Vδ2+ γδ T cells but were countered by low SHAP values for the neutrophil

count, T cells memory cluster 2 and CD25 expression on CD8+ T cells. Ultimately, the

combination of the chosen features yields the correct prediction.
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Figure 6.16: SHAP (SHapely Additive exPlanations) values for a Logistic regression model
tasked with predicting Gram-negative cause in sepsis. The beeswarm plot (top) shows each
observation as a single data point coloured by the value of the feature for that instance. On the
x-axis is the SHAP value, a lower value corresponds to an instance having a more significant
impact on the negative case for the model (i.e. prediction of Gram-positive sepsis), and
a positive value corresponds to having a more significant impact on the positive case for
the model (i.e. prediction of Gram-negative sepsis). A barplot on the right-hand side of the
beeswarm plot shows the imputation error (with a maximum value of 1) and the percentage of
missing values observed in the original data. The heatmap (bottom) shows the SHAP values
for each patient. The bar plot on the right-hand y-axis shows each feature’s mean absolute
SHAP value and measures the impact of a feature on model prediction. The line plot above
the heatmap shares the x-axis and displays each patient’s predicted outcome (black line)
and the actual outcome (orange line). The dotted line between the possible outcomes is the
expected value, equivalent to the observed incidence of Gram-negative sepsis.
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Figure 6.17: SHAP (SHapely Additive exPlanations) values for a Random Forest model
tasked with predicting Gram-negative cause in sepsis. The beeswarm plot (top) shows each
observation as a single data point coloured by the value of the feature for that instance. On the
x-axis is the SHAP value, a lower value corresponds to an instance having a more significant
impact on the negative case for the model (i.e. prediction of Gram-positive sepsis), and
a positive value corresponds to having a more significant impact on the positive case for
the model (i.e. prediction of Gram-negative sepsis). A barplot on the right-hand side of the
beeswarm plot shows the imputation error (with a maximum value of 1) and the percentage of
missing values observed in the original data. The heatmap (bottom) shows the SHAP values
for each patient. The bar plot on the right-hand y-axis shows each feature’s mean absolute
SHAP value and measures the impact of a feature on model prediction. The line plot above
the heatmap shares the x-axis and displays each patient’s predicted outcome (black line)
and the actual outcome (orange line). The dotted line between the possible outcomes is the
expected value, equivalent to the observed incidence of Gram-negative sepsis.
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Figure 6.18: The proportion of Vδ2+ γδ T cells plotted against corresponding SHAP
(SHapely Additive exPlanations) values that explain the impact on a Random Forest model
tasked with predicting Gram-negative cause in sepsis. Each data point represents a unique
patient, coloured by the causative pathogen of their acute infection.

6.8 Discussion

In this chapter, the ILTIS data (as described in Chapter 5) was exposed to classification al-

gorithms to uncover multivariate patterns that correlated with outcomes of interest, namely

mortality and the identification of a Gram-negative infection as the underlying cause. Many

challenges arose during this analysis that reflect common issues when conducting a retro-

spective analysis of clinical and multi-omic data. The issue of class imbalance was addressed

by penalising the misclassification of the minority case and using metrics balanced by class

support. Missing data were also a significant issue, and this work proposed using the Miss-

Ranger algorithm (an extension of MissForest), which has the added advantage of capturing

OOB error for each feature, reflecting the impact of imputation. Imputation error was re-

duced by using MissRanger over MissForest, but still exceeded an NMRSE of over 0.5 for

most continuous variables. Therefore, as an additional validation, the identified multivariate

patterns were validated on complete case data. Some models experienced a loss of sensitivity

when exposed to complete case data, which could reflect the influence of class imbalance on

the imputation mechanism. It could also result from the reduced quantity of training data

available in complete case analysis.
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Solutions proposed for handling class imbalance in imputation tasks suggest applying sam-

pling techniques [337, 338]. However, it is questionable whether this would bias the training

data when only a small sample is available. An alternative approach could be introducing

class weights to the underlying Random Forest algorithm of MissRanger, but this is not

possible in the current implementation. Another strategy proposed by Tomic et al. [46] is

constructing complete case data by searching across all possible sets of feature and observa-

tion combinations, avoiding the need for imputation. However, this can limit the available

training data and potentially bias the analysis, resulting in classification algorithms only ap-

plicable to a particular subset of the population, an issue that would be exacerbated in highly

heterogeneous conditions such as sepsis.

A broad search strategy was employed to obtain informative feature sets, employing multiple

feature selection algorithms and exposing all top-ranked combinations to many classification

algorithms of ranging complexity and with a diverse choice of hyperparameters. Since no

single classification algorithm is likely to be optimal for every problem [301], it is necessary

to search across a wide range of classifiers, as is done in this study. Similarly, there are mul-

tiple feature selection algorithms [159, 161, 160], and no single approach is likely optimal

for every task. In this study, five feature selection methods were explored, but one could

stipulate that other methodologies could be included. It is essential to recognise, however,

that no single feature set and classifier combination will be globally optimal, and there could

be multiple patterns that correlate with the outcome.

The best-performing model and feature set combinations were chosen by LOOCV macro F1

score and validated against holdout and complete case data. The generation of independent

holdout data is the only mechanism to ensure that the ascertained model and feature set com-

bination is not overfitting to the chosen training data, other than the generation of an entirely

new patient cohort for validation. Rigorous testing on validation data is a concern within the

field of biomarker discovery, and feature selection in the absence of testing on a holdout set

is a source of error that has been well-documented [339, 340, 330, 329]. A critical limitation

of this study is the small sample size, increasing the risk that the holdout data was not repre-

sentative of a larger population. An alternative approach could be a nested cross-validation

methodology [341], with feature selection and hyperparameter tuning performed within each

fold. The training data would differ within each round of cross-validation; therefore, the cho-

sen features would likely differ. In order to draw any conclusion about the most informative
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combination of biomarkers, a strategy would be required for combining the contribution of

features within multiple independent models. Other suggestions include permutation stud-

ies, where models are trained and tested without feature selection or hyperparameter tuning.

The performance is compared between the original data and a randomly permuted surro-

gate [329]. However, others suggest that independent holdout data are always necessary for

meaningful evaluation of accuracy [339, 340, 329].

A model for predicting 30-day mortality could not be obtained, but an Extra Random Forest

for predicting 90-day mortality was identified with a holdout AUC score of 0.85 (0.81 –

0.86), a significant improvement on the majority of previously reported prognosis biomarkers

[96, 71]. It is not immediately apparent why models for predicting 30-day mortality did not

generalise compared to those tasked with predicting 90-day mortality. The class imbalance

observed for 90-day mortality was slightly less severe than 30-day mortality (Figure 6.1),

which could be a contributing factor.

The proportion of T cells (as a percentage of PBMCs) was the main contributing feature to

decision-making in the Extra Random Forest model (Figure 6.13). A comparison of T cells

showed a significant difference between survivors and non-survivors at 90-days in Chapter

5 (Figure 5.15), and lymphopenia is well-documented as a sign of increased severity and as-

sociated with higher mortality [231]. Additional features in the Extra Random Forest model

included CXCR3 expression on CD4+ T cells, plasma concentrations of Arachidonic acid,

and blood glucose. The importance of blood glucose levels is supported by the surviving

sepsis campaign international guidelines, which recommend tight control of blood glucose

levels, with hyperglycemia associated with increased mortality [76].

CXCR3 is a Th1-associated chemokine receptor upregulated rapidly upon cell activation and

responsive to three interferon-inducible ligands: CXCL9, CXCL10, and CXCL11. CXCL10

concentrations have been shown to correlate with severity in sepsis [343, 342]. However,

within the ILTIS cohort, concentrations of CXCL10 were decreased in non-survivors com-

pared to survivors when measuring 30-day mortality (Figure 5.8). Higher values for CXCR3

expression on CD4+ T cells contributed to a prediction of 90-day mortality, possibly suggest-

ing the recruitment of CD4+ T cells early in sepsis as being correlated with worse outcomes

when considered with the other features included in the Extra Random Forest model.
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Arachidonic acid had an inverse relationship with the prediction of 90-day mortality, with

increased values encouraging the model to predict survival at 90-days. The pro-inflammatory

eicosanoids, a family of bioactive lipids, are derived from arachidonic acid. Eicosanoid

lipid mediators have been implicated in the pathogenesis of sepsis [344], and a reduction

in arachidonic acid metabolism in sepsis patients compared to healthy controls has been

described [345]. In this study, lower values of arachidonic acid in plasma contributed to the

prediction of 90-day mortality in the Extra Random Forest model. The work discussed here

highlights the benefits of including variables that describe lipid metabolism in multivariate

models of sepsis.

Two models stood out from the rest when investigating the prediction of Gram-negative cause

in sepsis: a Logistic regression model (holdout F1 score of 0.86 (0.8 – 1.0) and holdout AUC

of 0.76 (0.64 – 1.0)) and a Random Forest model (holdout F1 score of 0.67 (0.59 – 0.75) and

holdout AUC score of 0.86 (0.77 – 0.94)). Cluster 1, from the investigation of activated T

cells, had the highest absolute mean SHAP score for the Logistic regression model. Lower

values for this cluster were associated with a prediction of a Gram-negative cause. T cell

activation cluster 1 encompassed the majority of CD8+ T cells in the activation panel and

was reported as the proportion of this cluster as a percentage of total T cells. Replacing this

cluster with the proportion of CD8+ T cells (as a percentage of total T cells) did not reduce

training or holdout performance. T cells memory cluster 3, another CD8+ T cell cluster

identified from the study of memory subsets, was also implicated in the Logistic regression

model. T cells memory cluster 3 demonstrated a "terminally differentiated" effector memory

phenotype (TEMRA) [346] of CD45RAhi CCR7lo and was also characterised by high CD57

expression and low CD27 expression. T cells memory cluster 3, therefore, represents a

replicatively senescent subset that could have a loss of functionality due to exhaustion, but

this cannot be confirmed in the absence of additional markers such as programmed cell death

1 (PD-1) or mucin domain protein 3 (TIM-3) [347]. The other CD8+ T cell parameter that

appeared in the Gram-negative models was the expression of the activation marker CD25,

which contributed to the Random Forest model, with increased expression influencing a

prediction of Gram-negative cause. The surface marker CD25 (IL-2Rα) is the alpha chain

of the IL-2 receptor, generated in response to specific antigen presentation along with co-

stimulatory signalling [17]. It functions to respond to IL-2 during lymphocyte activation and

remains elevated for several days [348]. Overall, the two models suggest that characteristics
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of CD8+ T cell activation could be informative for differentiating Gram-negative and Gram-

positive infection in sepsis.

Neutrophil count was identified as an informative feature in both the Logistic regression

and Random Forest model, with an increased neutrophil count associated with predicting

Gram-negative cause. The relationship with neutrophil count corresponded with the trend

observed in Chapter 5 and visualised in Figure 5.17. Neutrophil cluster 1 appeared in the

Logistic regression model as an important feature, with lower values encouraging a Gram-

negative prediction. Neutrophil cluster 1 was characterised by low expression of CD62L

(L-selectin) and high expression of CD11b. Bacterial clearance by neutrophils depends on

attachment to the microvasculature, controlled by the selectins and the integrins, two families

of adhesion molecules [349]. Initially, binding is controlled by L-selectin, but sustained

attachment requires the integrins CD11a and CD11b. Neutrophils from the blood of SIRS

and sepsis patients have previously shown a decrease in CD62L expression and an increase in

CD11b expression. The CD62Llo CD11bhi phenotype, combined with increased expression

of CD64 (a high-affinity receptor for IgG) is associated with neutrophil activation [350].

Neutrophil cluster 1 exhibits an increased expression of CD64 relative to other neutrophil

clusters, albeit fluorescence was low overall. Therefore, an increased neutrophil count but a

decrease in circulating activated neutrophils contributed to a Gram-negative prediction in the

Logistic regression model.

A compelling finding from this study was the importance attributed to parameters that de-

scribe unconventional T cells. In predicting 90-day mortality, increased expression of the

activation marker CD25 on MAIT cells influenced survival prediction in the Extra Random

Forest model. Previous studies have described MAIT cells as highly activated in clinical sep-

sis and protective during experimental sepsis [31]. Another activation marker on MAIT cells,

HLA-DR, was associated with the prediction of Gram-negative cause in a Logistic regres-

sion model when the expression was increased. A semi-invariant TCR characterises MAIT

cells with specificity for microbial riboflavin-derivative antigens presented by HLA-1b ma-

jor histocompatibility complex (MHC)-related protein 1 (MR1) [30, 28, 29]. All causative

Gram-negative pathogens implicated in this study have previously been described as capable

of Vitamin B2 synthesis [23, 28]. In contrast, less than half of the Gram-positive causative

pathogens observed were capable of Vitamin B2 synthesis. Subsequently, the biology that
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underpins their specificity could explain the contribution of MAIT HLA-DR expression to

the prediction of Gram-negative infection.

The proportion of Vδ2+ γδ T cells (as a percentage of total T cells) was an essential feature

in the Random Forest model. When combined with a high neutrophil count, parameters

of CD8+ T cells, and the total percentage of T cells, lower values for the proportion of

Vδ2+ γδ T cells encouraged the prediction of Gram-negative cause in sepsis. A reduction in

circulating Vδ2+ γδ T cells correlated with Gram-negative pathogens was also observed in

Chapter 5.

Across all models, at least one parameter describing unconventional T cell biology has arisen

in the top-ranking features and is included in the optimal models selected for further investi-

gation. The inclusion of unconventional T cells in machine learning models helped differen-

tiate the causative pathogen in patients with acute peritonitis [240] and have been identified

as critical players in multi-parameter immune signatures with implications in COVID-19

prognosis [351, 352]. The work presented in this chapter provides additional evidence that

extensive profiling of unconventional T cell populations could provide valuable contributions

to predictive models of acute severe infectious disease.

It should be noted that the inclusion of features in the models described here does not imply

causation, and their combined interaction in complex mathematical models identifies only

correlations that could be valuable for the task of prediction. Their identification does offer

the potential for new hypotheses and can help direct efforts of multi-parameter biomarker

panels with application in routine care. The use of SHAP to interrogate machine learning

models helps elevate the ‘black box’ nature of multivariate modelling [167, 166]. However,

they do not answer causal questions, and future analysis should take the additional step of

employing causal analysis methodologies. An example could be counterfactual explanations,

a seemingly human-friendly approach to model explanations but subject to the ‘Rashomon

effect’ that each instance will usually generate multiple counterfactual explanations [166,

353].

Further to the limitations regarding the interpretability of models, due to the small cohort

studied, any observations must be confirmed with an additional validation cohort. If re-

peatable, any translational application of subsequent models would also require additional

calibration to report on the confidence of subsequent predictions and to find the optimal prob-
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ability threshold for positivity. Despite these limitations, the findings here show promise for

a generalisable pattern for predicting 90-day mortality and underlying causes and exhibit the

value of including parameters of unconventional T cells.

222



7 | Discussion and future work

7.1 The role of cytometry bioinformatics in biomarker dis-

covery

At the beginning of this thesis, cytometry bioinformatics was introduced in response to the

challenges faced by observational studies that collect large amounts of cytometry data over

long periods to identify predictive biomarkers. The CytoPy software was developed, provid-

ing data structures for cytometry data analysis in Python and the first of its kind to anchor the

analysis to a document-based database. The design proved valuable for the immunological

profiling and biomarker discovery work discussed in later chapters because it allowed simple

meta-data integration, and experimentation with different methodologies was easy to imple-

ment. Despite this, some improvements would help the usability and extend the capabilities

of CytoPy, notably better integration with existing frameworks such as ScanPy [149].

The challenge of batch effects was addressed with the application of Harmony [196], imple-

mented in Python [197] and integrated into the data structures of CytoPy. Batch effects are

common amongst biomarker studies and were particularly challenging for the ILTIS study,

where patients were recruited over several years, and flow cytometry was performed on fresh

blood. If this work was to be repeated, there could be a potential benefit in the cryopreserva-

tion of cells and acquisition in a minimal number of batches. The cryopreservation process

could risk the loss of cell populations and activation maker expression and should be ac-

companied by adequate validation of samples from sepsis patients. Alternatively, another

technical intervention would be a repeat control, run with every sample and used as a refer-

ence during the post-hoc batch correction. The successful application of a reference control

was demonstrated by Van Gassen et al. [354] and Ogishi et al. [355]. However, the practical

implications of using a reference control throughout a prolonged observational study must

be considered, and a suitable control must be chosen.

CytoPy provides an extensive toolbox for identifying cell populations in cytometry data.

The autonomous gating methods are helpful but can still be quite labour intensive and may

struggle where significant inter-sample variation is present. Therefore, autonomous gates

should be limited to removing debris, artefacts, dead cells, or other simple gating strategies.
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However, autonomous gating can extend to more complicated gating strategies through the

use of dynamic time warping [122] if a more traditional analysis is preferred, and dynamic

time warping is available in the most recent version of CytoPy.

Supervised classification methods are better suited when the user knows the precise number

of populations to expect. New methodologies also continue to be developed at a staggering

pace. For example, Blampey et al. [356] recently demonstrated a probabilistic model that

can be directed with prior knowledge of the expected populations.

The exploratory nature of unsupervised clustering is valuable where the desired number of

populations is unknown and has application for immunological biomarker discovery. In

Chapter 4, a novel ensemble clustering method, GeoWaVe, was introduced. GeoWaVe was

shown to be computationally efficient, had greater accuracy than graph-based ensemble clus-

tering algorithms, and offered an interpretable visualisation step for the immunologist to in-

troduce prior knowledge for selecting the final number of clusters. Using an ensemble clus-

tering method such as GeoWaVe exposes the analysis to multiple clustering algorithms, each

with different underlying mechanisms, therefore reducing the risk of overlooking a particular

data partition or biasing the clustering results with the assumptions of a single algorithm.

Given more time, other paradigms of cytometry data analysis could be explored with poten-

tial application to biomarker discovery. Multiple instance learning was proposed by Arvaniti

& Claassen [127], and the principles extended by Hu et al. [128] for the identification of

latent cytomegalovirus infection. The concept removes the need to characterise the cell pop-

ulations in cytometry data and instead focuses on predicting the disease state of interest.

Inspecting the resulting model then identifies the cells that differentiate patients, which can

then be inspected to determine their phenotype. A similar principle of focusing on the dis-

ease state was demonstrated by Weber et al. [135], alternatively employing clustering but

intentionally identifying a large number of clusters (e.g. 100-400) and then selecting sig-

nificant clusters or cluster-marker combinations with differential abundance and differential

expression analysis.

Together, advancements in cytometry instruments and the methodologies for data analy-

sis discussed here could help expand our understanding of the mechanisms driving sepsis.

Current limitations regarding the number of parameters that can practically be included in

cytometry panels result in a bias towards immune populations of interest to a particular
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researcher e.g. in the analysis presented in this thesis, prior work towards predicting under-

lying cause in acute infectious disease [259, 199] introduced a bias for unconventional T cell

subsets. Advances in mass cytometry and spectral flow cytometry offer the opportunity to

measure multiple paradigms of the immune response [135, 183], and imputation techniques

offer the potential to characterise hundreds, perhaps even thousands, of markers in a single

experiment [357]. Future biomarker studies that follow the inductive approach presented in

this thesis could filter a vast immunological landscape without bias by utilising these new

technologies to identify patterns with clinical application.
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7.2 The immunopathology of sepsis and the role of uncon-

ventional T cells.

Before investigating the early immunological phenotype of sepsis patients, the available rou-

tine clinical data were reviewed. No individual routine biomarker successfully differentiated

survivors and non-survivors (except FiO2, although this difference was absent when values

were averaged over the 48-hour window before recruitment). The finding that routine clinical

data alone were insufficient encourages more comprehensive phenotyping in sepsis.

Some interesting trends were observed when investigating soluble biomarkers such as cy-

tokines, chemokines, and acute phase protein levels in plasma. CXCL10 was decreased in

those patients who died within 30 days, increased levels of IL-15 and IL-6 showed a trend

towards higher odds of mortality at 30 days, and IL-1α, OSM, and ferritin showed a trend to-

wards higher plasma concentrations in Gram-positive infections compared to Gram-negative.

Ultimately, however, limited data, class imbalance, and the detection limit of Luminex assays

made it difficult to reconcile these findings.

Importantly, investigation of immune cell populations in whole blood did confirm previ-

ously well-described observations, such as a reduced proportion of circulating T cells and

decreased HLA-DR expression on monocytes amongst non-survivors, and an increased pro-

portion of circulating neutrophils in Gram-negative infections compared to Gram-positive

infections.

The proportion of circulating populations of unconventional T cells was found to be de-

creased in Gram-negative infections compared to Gram-positive. Although it cannot be con-

firmed with the data presented in this thesis, one hypothesis is the possible recruitment of

unconventional T cell populations to infected tissues. In support, Liuzzi et al. [259] demon-

strated that Vγ9+Vδ2+ γδ T cells and MAIT cells accumulated at the site of infection where

HMB-PP and vitamin B2 producing pathogens were implicated. Future studies should try

to extend such work to confirmed infections in sepsis patients. Such a study would require

well-defined aetiology and a condition that warrants regular sampling, such as urinary sepsis

or an acute upper respiratory infection.
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In the ILTIS study described in this thesis, the sample obtained from sepsis patients was

whole blood. Whilst whole blood is a minimally invasive and convenient sample from sepsis

patients, it presents numerous limitations that limit our findings. Blood is a heterogeneous

medium that might poorly reflect the complex immunological processes occurring within the

tissue and at the site of infection. Biomarkers measured in the blood might be significantly

diluted compared to the tissue in which they were initially produced. Their concentration

in blood might be transient, making sampling time critical for their predictive value. Future

studies should consider the potential for more targeted sampling strategies that obtain tissue

from the site of infection or, alternatively, include multiple sampling points to model the

transient nature of biomarkers in whole blood.

7.3 Machine learning models for identifying potential

biomarker combinations.

The final results chapter collated the parameters described in Chapter 5, combined with addi-

tional data describing lipid concentrations in plasma, and created supervised machine learn-

ing models to predict mortality and underlying cause of infection. A modelling pipeline was

created that considered the small cohort size, class imbalance, and missing data. Rigorous

validation is a concern in biomarker discovery [339, 340, 330, 329] and it is essential to

distinguish between the data used for evaluating a model and the data used for model devel-

opment, especially the selection of biomarkers to be included. Although efforts were made

to reduce the risk of overfitting, a critical limitation in this study was the size of the available

dataset. If granted more time, an extensive resampling approach could be applied for feature

selection, with repetition over thousands of permutations of the data, and each exposed to

downstream models and tested against an independent holdout set. The computational in-

tensity of such a procedure would need to be addressed and each permutation would likely

derive a different set of interacting features, therefore a method would have to be devised to

search this space for the optimal features. Regardless of any change to methodology, more

data are needed, and any future study should expand on the existing data whilst identifying

a validation population of equal size.
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Models that generalised to the holdout data could not be obtained for 30-day mortality, but

an Extra Random Forest model for 90-day mortality showed good performance with an AUC

score of 0.854. The 90-day mortality model showed a diverse selection of input features, in-

cluding parameters that quantified immune populations, activation profiles of T cells, lipid

plasma concentrations and the APACHE II severity score. The diversity of the chosen fea-

tures highlights the benefits of capturing variables that describe multiple systems and how

their combination can contribute to the model’s performance.

A question proposed in this work was whether including immunological biomarkers in a fea-

ture selection and supervised machine learning framework would uncover predictive patterns

for determining the causative pathogen in sepsis. It is hypothesised that the specificity of

APCs for pathogen-associated molecular patterns and the resulting signalling cascades and

activation of the innate immune response would provide informative features for our mod-

els. The findings presented in this thesis are a step towards supporting this hypothesis, with

models for identifying Gram-negative causative pathogens showing good performance. A

logistic regression model with six parameters reported an AUC score of 0.76, and a Random

Forest model with a different six parameters reported an AUC score of 0.86. A combination

of features describing CD8 T cells, neutrophils, and unconventional T cells was valuable for

predicting Gram-negative causative pathogens.

Even amongst the diversity of available variables to select from, parameters that described

unconventional T cells arose in every model that performed well on holdout data. Increased

CD25 expression on MAIT cells was associated with increased survival in the 90-day mortal-

ity model, increased HLA-DR expression on MAIT cells was associated with a prediction of

Gram-negative causative pathogen, and the percentage of circulating Vδ2+ γδ T cells were

the most influential feature in the Random Forest model predicting Gram-negative causative

pathogen. Therefore, parameters describing unconventional T cells should be considered a

valuable contribution to the search for multi-parameter sepsis biomarker panels.

There was a particular focus on interpretability in the machine learning models described in

Chapter 6. The interpretation was facilitated using SHAP values. However, it is essential

to note that the selection of features in machine learning models and their associated SHAP

values do not imply causation. Their combined interaction identifies a correlation with the

predicted target. To identify the cause, additional experimentation and analysis would be re-
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quired. Machine learning models can, however, assist in narrowing the list of target variables

for investigation in subsequent experiments and is, therefore, a helpful hypothesis-generating

exercise. Additionally, the interpretability of machine learning models offers the potential for

identifying a more general sepsis model by identifying dysregulation patterns across multiple

interconnected systems. When interpretable models are combined with systems of ordinary

differential equations, there is the potential to gather insights that move beyond static dogmas

of ‘cytokine storms’ and ‘immune paralysis’ [358].

229



CHAPTER 7. DISCUSSION AND FUTURE WORK

7.4 Sepsis heterogeneity

A critical limitation in this study was the heterogeneity of the patients recruited to the ILTIS

study, reflecting the complex and poorly defined nature of sepsis pathology. Fewer than

70 percent of the patients enrolled on the ILTIS study had a confirmed infection, a rate

comparable to previous observations in sepsis [77]. It was impossible to identify whether

the cause was the failure of microbiological culture or the genuine absence of any bacterial

infection. Additionally, around 25 percent of patients were admitted to the ICU with trauma

or following emergency surgery. Although this was included as a categorical variable in the

machine learning pipeline to account for a confounding effect, the clinical condition and type

of care for such patients would differ from those that had not experienced trauma. There was

also insufficient data regarding patient co-morbidity and history of infectious disease before

admission to the ICU. Such data form important confounding variables for both prediction

of survival and the underlying cause of infection.

There is a solid case to be made that the current definition of sepsis is still inadequate. The

current definition draws focus to the dysregulated host response as the characterising fea-

ture of sepsis. Nevertheless, all major clinical trials that seek to subdue the host response

have either failed to show benefit or have proven harmful [359]. The complicated patterns of

presentation have been recognised as a barrier to the advancement of diagnosis and therapy

for some time [279, 278] and it is increasingly being recognised that the Sepsis-3 definition

[243] cannot distinguish the complex heterogeneity observed in the pathophysiology of sep-

sis [280]. Research associated with COVID-19, a condition that has drawn many parallels to

sepsis [360, 351], has reported success in uncovering immunological signatures associated

with poor outcomes with links back to the underlying biological mechanisms [351, 43, 228].

The COVID-19 research has demonstrated that focusing on a particular pathology within

sepsis can yield findings more readily associated with the underlying mechanism driving the

immune response. Any future study expanding on the work discussed in this thesis should

carefully consider the definition applied to recruitment. Reflecting on the success of im-

munophenotyping of COVID-19, simple strategies could be employed to limit recruitment

to those of comparable aetiology, such as culture-positive urosepsis or acute lower respi-

ratory infection. Alternatively, a robust recruitment approach might leverage unsupervised

clustering and the identification of endotypes that should be treated as distinct yet overlap-
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ping groups [281, 282]. In the future, sepsis will likely be recognised not as a syndrome but

rather as a group of related diseases, each characterised by cellular alterations and related

biomarkers [280, 281, 282].

231



CHAPTER 7. DISCUSSION AND FUTURE WORK

7.5 Conclusion

In conclusion, the work presented in this thesis shows the interaction between three distinct

but overlapping fields of study: cytometry bioinformatics, supervised machine learning, and

sepsis biomarker discovery. A comprehensive framework for cytometry data analysis was

introduced, along with a novel methodology for ensemble clustering. The methodology was

then applied to an observational study of severe sepsis patients, characterising the early im-

mune response and creating parameters for downstream statistical models. In recognition

of the potential for multi-parameter biomarker panels, supervised machine learning was em-

ployed with a diverse range of input data, including routine clinical data, immunological

parameters, and lipid data. The work here demonstrates the application of supervised ma-

chine learning for sepsis biomarker discovery and the potential contribution of parameters

that describe unconventional T cell populations.
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Figure A.1: Summary of clusters identified from flow cytometry analysis of whole blood
samples taken from patients with acute severe sepsis as part of the ILTIS study, described in
full within Chapter 5.
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Table A.1: Description of routine clinical data available for patients diagnosed with sepsis
and enrolled on the ILTIS study. The total number of patients with available data is shown
(N) along with the average value and interquartile range (IQR).

Variable Category N Average [IQR]

APTT Coagulation screen 72 32.61 [27.39 - 33.89]

Alanine transaminase Liver function test 71 112.5 [18.0 - 70.0]

Albumin Bone profile 72 23.23 [17.0 - 28.0]

Alkaline phosphatase Bone profile 72 119.03 [66.0 - 139.0]

Amylase Amylase 20 88.58 [24.25 - 92.88]

Base excess Blood Gas Venous 10 2.1 [1.02 - 2.82]

Base excess ecf Blood Gas Arterial 38 2.36 [0.9 - 2.9]

Basophil count Full blood count 69 0.06 [0.0 - 0.1]

Bilirubin Liver function test 68 26.37 [9.0 - 29.5]

Bilirubin Blood Gas Arterial 13 19.5 [2.33 - 22.0]

C-reactive protein

(CRP)

C-reactive protein 71 215.27 [131.0 - 289.25]

Calcium Bone profile 64 2.06 [1.93 - 2.17]

Calcium (adjusted) Bone profile 68 2.31 [2.19 - 2.4]

Calcium (ionised) Blood Gas Arterial 69 1.12 [1.08 - 1.19]

Carboxyhaemoglobin Blood Gas Arterial 71 1.04 [0.77 - 1.2]

Chloride Blood Gas Arterial 71 106.62 [103.0 - 109.83]

Clauss fibrinogen level Coagulation screen 72 6.46 [4.41 - 7.84]

Creatine kinase Creatine kinase 7 952.57 [60.5 - 482.0]

Creatinine Estimated GFR 77 176.86 [67.5 - 192.25]

Eosinophil count Full blood count 69 0.16 [0.1 - 0.2]

Estimated GFR Estimated GFR 54 39.72 [21.88 - 55.5]

Free T4 Thyroid function test 6 12.88 [11.5 - 13.42]

Globulin Bone profile 71 32.96 [28.0 - 37.5]

Glucose Blood Gas Arterial 71 8.88 [6.52 - 9.75]

Haematocrit (Hct) Full blood count 77 0.34 [0.28 - 0.38]

Haemoglobin (Hb) Full blood count 77 113.64 [94.0 - 126.0]
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Table A.1 continued from previous page

High Sensitivity Tro-

ponin I

hs-Troponin I time not

stated

21 265.91 [13.25 - 164.62]

Inspired oxygen Blood Gas Arterial 68 38.01 [24.31 - 45.76]

International nor-

malised ratio

International nor-

malised ratio

5 3.03 [1.6 - 5.0]

Lactate Lactate 18 2.79 [1.23 - 3.71]

Lactate Blood Gas Arterial 71 2.18 [1.18 - 2.82]

Lactate dehydrogenase Lactate dehydrogenase 5 608.3 [405.0 - 797.5]

Lymphocyte count Full blood count 69 1.0 [0.63 - 1.3]

Magnesium Magnesium 68 0.83 [0.65 - 0.94]

Mean cell haemoglobin

(MCH)

Full blood count 77 30.28 [28.57 - 32.05]

Mean cell volume

(MCV)

Full blood count 77 90.75 [86.5 - 94.0]

Methaemoglobin Blood Gas Arterial 71 1.15 [0.93 - 1.34]

Monocyte count Full blood count 69 0.98 [0.65 - 1.2]

Neutrophil count Full blood count 69 12.28 [8.0 - 15.9]

Nucleated red blood

cell (NRBC) count

Full blood count 23 0.05 [0.0 - 0.1]

Phosphate Bone profile 70 1.39 [0.93 - 1.66]

Platelet (PLT) count Full blood count 72 234.31 [134.0 - 273.54]

Potassium Urea and electrolytes 77 4.43 [4.0 - 4.7]

Potassium Blood Gas Arterial 71 4.3 [3.88 - 4.4]

Previous CRP Previous CRP 9 123.67 [2.0 - 199.0]

Protein Bone profile 71 56.88 [49.08 - 64.0]

Prothrombin time (PT) Coagulation screen 72 16.54 [12.92 - 17.8]

Red blood cell (RBC)

count

Full blood count 72 3.72 [3.25 - 4.1]

Red cell distribution

width (RDW)

Full blood count 77 14.71 [12.73 - 15.7]

SO2 Blood Gas Arterial 70 93.11 [91.74 - 96.88]
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Table A.1 continued from previous page

Sodium Urea and electrolytes 77 137.98 [134.0 - 140.5]

Sodium Blood Gas Arterial 71 136.65 [133.03 - 139.5]

Standard bicarbonate

(Arterial)

Blood Gas Arterial 69 22.31 [19.44 - 25.37]

TSH Thyroid function test 6 0.8 [0.41 - 1.11]

Temperature Blood Gas Arterial 69 37.22 [36.9 - 37.59]

Total Hb (calculated) Blood Gas Arterial 29 88.43 [82.5 - 93.2]

Urea Urea and electrolytes 77 12.58 [6.14 - 14.86]

White blood cell

(WBC) count

Full blood count 72 15.16 [10.09 - 19.29]

pCO2 Blood Gas Arterial 69 5.53 [4.59 - 6.26]

pCO2 Blood Gas Venous 36 5.93 [5.07 - 6.35]

pH (Arterial) Blood Gas Arterial 70 7.35 [7.29 - 7.42]

pO2 (Arterial) Blood Gas Arterial 69 12.25 [10.4 - 13.39]

pO2 Blood Gas Venous 35 5.82 [4.5 - 6.69]
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Table A.2: Description of all variables considered as potential features for machine learning
models. Where a variable was later removed, a reason for exclusion is given.

Feature name Category Reason for exclusion

Age (Years) Demographics

Gender Demographics

Body Mass Index (BMI) Physiology

APACHE-II Score Severity score

Days ventilated Interventions

Renal Replacement Therapy

(RTT)

Interventions

Emergency/Trauma Medical history

Actual bicarbonate (aHCO3) Blood gas analysis (Arte-

rial)

Actual bicarbonate (aHCO3) Blood gas analysis Only available for one patient

ASAMTS13 protease assay Clinical laboratory mea-

surement - ADAMST

Only available for one patient

Alanine Transaminase (ALT) Clinical laboratory mea-

surement - Liver function

tests

Imputation OOB error >= 1.0

Albumin Clinical laboratory mea-

surement - Liver function

tests

Alkaline Phosphatase Clinical laboratory mea-

surement - Liver function

tests

Amikacin Clinical laboratory mea-

surement - Amikacin

NMAR and only available for

one patient

Ammonia Clinical laboratory mea-

surement - Ammonia

Only available for one patient

Amylase Clinical laboratory mea-

surement - Amylase

More than 40% of patients

with missing data
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Table A.2 continued from previous page

Activated partial thrombo-

plastin clotting time

Clinical laboratory mea-

surement - Coagulation

screen

Aspartate Transaminase

(AST)

Clinical laboratory mea-

surement - Aspartate

Transaminase

Only available for two pa-

tients

Base excess of extracellular

fluid

Blood gas analysis (Arte-

rial)

More than 40% of patients

with missing data

Base excess of extracellular

fluid

Blood gas analysis (Ve-

nous)

Imputation OOB error >= 1.0

Base excess Blood gas analysis (Ve-

nous)

Imputation OOB error >= 1.0

Basophil count Clinical laboratory mea-

surement - Full blood

count

Bicarbonate Clinical laboratory mea-

surement - Bicarbonate

Bilirubin Blood gas analysis (Arte-

rial)

Imputation OOB error >= 1.0

Bilirubin Blood gas analysis (Ve-

nous)

Only available in seven pa-

tients and overlaps with liver

function tests

Bilirubin Clinical laboratory mea-

surement - Liver function

tests

C-Reactive Protein Clinical laboratory mea-

surement - C-Reactive

Protein

Albumin adjusted calcium Clinical laboratory mea-

surement - Calcium
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Table A.2 continued from previous page

Albumin adjusted calcium Clinical laboratory mea-

surement - Liver function

tests

Merged with calcium request

Ionized Calcium Blood gas analysis (Arte-

rial)

Ionized Calcium Blood gas analysis (Ve-

nous)

More than 40% of patients

with missing data

Calcium Clinical laboratory mea-

surement - Calcium

Carboxyhaemoglobin Blood gas analysis (Arte-

rial)

Carboxyhaemoglobin Blood gas analysis (Ve-

nous)

More than 40% of patients

with missing data

Chloride Blood gas analysis (Arte-

rial)

Chloride Blood gas analysis (Ve-

nous)

More than 40% of patients

with missing data

Chloride Clinical laboratory mea-

surement - Chloride

Only available for one patient

and overlaps with blood gas

analysis

Cholesterol Clinical laboratory mea-

surement - Cholesterol

Clauss Fibrinogen Level Clinical laboratory mea-

surement - Coagulation

screen

Cortisol Clinical laboratory mea-

surement - Cortisol

NMAR and only available for

one patient

Creatine Kinase Clinical laboratory mea-

surement - Creatine Ki-

nase

Only available for seven pa-

tients
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Table A.2 continued from previous page

Creatinine ratio (Urine) Clinical laboratory mea-

surement - Protein

Only available for one patient

Creatinine (Urine) Clinical laboratory mea-

surement - Protein

Only available for one patient

Creatinine Clinical laboratory mea-

surement - Electrolyte pro-

file

Merged with urea and elec-

trolytes request

Creatinine Clinical laboratory mea-

surement - Estimated GFR

Merged with urea and elec-

trolytes request

Creatinine Clinical laboratory mea-

surement - Urea and Elec-

trolytes

Digoxin Clinical laboratory mea-

surement - Digoxin

NMAR and only available for

one patient

Eosinophil count Clinical laboratory mea-

surement - Full blood

count

Estimated GFR Clinical laboratory mea-

surement - Electrolyte pro-

file

Merged with Estigated GFR

request

Estimated GFR Clinical laboratory mea-

surement - Estimated GFR

Factor Vii Level Clinical laboratory mea-

surement - Factor Vii

Only available in two patients

Ferritin Clinical laboratory mea-

surement - Ferritin

Only available in one patient

Folate Clinical laboratory mea-

surement - Folate

Only available in one patient

Free T4 Clinical laboratory mea-

surement - Thyroid func-

tion test

Only available in two patients
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Table A.2 continued from previous page

G-Glutamyl Transferase Clinical laboratory mea-

surement - G-Glutamyl

Transferase

Only available in one patient

Gentamicin Clinical laboratory mea-

surement - Gentamicin

NMAR and only available for

five patients

Globulin Clinical laboratory mea-

surement - Globulin

Glucose (Random) Clinical laboratory mea-

surement - Glucose (Ran-

dom)

Only available in four pa-

tients

Glucose Blood gas analysis (Arte-

rial)

Glucose Blood gas analysis (Ve-

nous)

More than 40% of patients

with missing data

Haematocrit (Hct) Clinical laboratory mea-

surement - Full blood

count

Haemoglobin (Hb) Clinical laboratory mea-

surement - Full blood

count

Haemoglobin (Hb) Blood gas analysis Only available for one patient

HDL Cholesterol Clinical laboratory mea-

surement - Lipid profile

Only available for one patient

HDL Ratio Clinical laboratory mea-

surement - Lipid profile

Only available for one patient

High Sensitivity Troponin I Clinical laboratory mea-

surement - High Sensitiv-

ity Troponin I

Imputation OOB error >= 1.0

Inspired Oxygen Blood gas analysis (Arte-

rial)
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Table A.2 continued from previous page

Inspired Oxygen Blood gas analysis (Ve-

nous)

More than 40% of patients

with missing data

Lactate Dehydrogenase Clinical laboratory mea-

surement - Lactate Dehy-

drogenase

Only available for five pa-

tients

Lactate Clinical laboratory mea-

surement - Lactate

Lactate Blood gas analysis (Arte-

rial)

Lactate Blood gas analysis (Ve-

nous)

More than 40% of patients

with missing data

LDL Cholesterol Clinical laboratory mea-

surement - Lipid profile

Only available for one patient

Lymphocyte count Clinical laboratory mea-

surement - Full blood

count

Magnesium Clinical laboratory mea-

surement - Liver function

tests

Merged with magnesium re-

quest

Magnesium Clinical laboratory mea-

surement - Magnesium

Mean cell Haemoglobin Clinical laboratory mea-

surement - Full blood

count

Mean cell volume Clinical laboratory mea-

surement - Full blood

count

Methaemoglobin Blood gas analysis Only available for one pa-

tient and overlaps with arte-

rial blood gas analysis
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Methaemoglobin Blood gas analysis (Arte-

rial)

Methaemoglobin Blood gas analysis (Ve-

nous)

Monocyte count Clinical laboratory mea-

surement - Full blood

count

Neutrophil count Clinical laboratory mea-

surement - Full blood

count

Non-HDL Cholesterol Clinical laboratory mea-

surement - Lipid profile

Only available for one patient

Nucleated red blood cell

count

Clinical laboratory mea-

surement - Full blood

count

Oxyhaemoglobin Blood gas analysis (Arte-

rial)

Only available for two pa-

tients

pCO2 Blood gas analysis (Arte-

rial)

pCO2 Blood gas analysis Only available for one pa-

tient and overlaps with arte-

rial blood gas analysis

pCO2 Blood gas analysis (Ve-

nous)

pH Blood gas analysis (Arte-

rial)

pH Blood gas analysis Only available for one pa-

tient and overlaps with arte-

rial blood gas analysis
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Phosphate Clinical laboratory mea-

surement - Liver function

tests

Merged with phosphate re-

quest

Phosphate Clinical laboratory mea-

surement - Phosphate

Platelet count Clinical laboratory mea-

surement - Full blood

count

pO2 Blood gas analysis (Arte-

rial)

pO2 Blood gas analysis Only available for one pa-

tient and overlaps with arte-

rial blood gas analysis

pO2 Blood gas analysis (Ve-

nous)

Imputation OOB error >= 1.0

Potassium Blood gas analysis (Arte-

rial)

Potassium Blood gas analysis (Ve-

nous)

Potassium Clinical laboratory mea-

surement - Electrolyte pro-

file

Imputation OOB error >= 1.0

Potassium Clinical laboratory mea-

surement - Urea and Elec-

trolytes

Procalcitonin Clinical laboratory mea-

surement - Procalcitonin

Only available for one patient

Protein (Urine) Clinical laboratory mea-

surement - Protein

Only available for one patient
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Protein Clinical laboratory mea-

surement - Liver function

tests

Prothrombin time Clinical laboratory mea-

surement - Coagulation

screen

Red blood cell count Clinical laboratory mea-

surement - Full blood

count

Red cell distribution width Clinical laboratory mea-

surement - Full blood

count

Reptilase clotting time Clinical laboratory mea-

surement - Reptilase clot-

ting time

Only available for one patient

Reticulocytes Clinical laboratory mea-

surement - Reticulocyte

count

Only available for one patient

SO2 Blood gas analysis (Arte-

rial)

SO2 Blood gas analysis Only available for one pa-

tient and overlaps with arte-

rial blood gas analysis

Sodium Blood gas analysis (Arte-

rial)

Sodium Blood gas analysis (Ve-

nous)

Sodium Clinical laboratory mea-

surement - Electrolyte pro-

file

Imputation OOB error >= 1.0
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Sodium Clinical laboratory mea-

surement - Urea and Elec-

trolytes

Standard bicarbonate Blood gas analysis (Arte-

rial)

Standard bicarbonate Blood gas analysis

Temperature Blood gas analysis (Arte-

rial)

Temperature Blood gas analysis (Ve-

nous)

Thrombin time Clinical laboratory mea-

surement - Thrombin time

Only available for two pa-

tients

Total CO2 Blood gas analysis Only available for one patient

Total Hb calculated Blood gas analysis (Arte-

rial)

Total Hb calculated Blood gas analysis (Ve-

nous)

Imputation OOB error >= 1.0

Triglyceride Clinical laboratory mea-

surement - Lipid profile

Only available for one patient

Triglyceride Clinical laboratory mea-

surement - Triglyceride

Only available for one patient

TSH (Thyroid-stimulating

hormone)

Clinical laboratory mea-

surement - Thyroid func-

tion test

Only available for six patients

Urate Clinical laboratory mea-

surement - Urate

Only available for three pa-

tients

Urea Clinical laboratory mea-

surement - Electrolyte pro-

file

Merged with urea and elec-

trolytes request
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Urea Clinical laboratory mea-

surement - Liver function

tests

Merged with urea and elec-

trolytes request

Urea Clinical laboratory mea-

surement - Urea

Merged with urea and elec-

trolytes request

Urea Clinical laboratory mea-

surement - Urea and Elec-

trolytes

Urine volume Clinical laboratory mea-

surement - Creatinine

clearance

Only available for one patient

Vancomycin Clinical laboratory mea-

surement - Vancomycin

NMAR and only available for

two patients

Vitamin B12 Clinical laboratory mea-

surement - Vitamin B

Only available for one patient

White blood cell count Clinical laboratory mea-

surement - Full blood

count

CCL-5 plasma concentration Luminex

CXCL10 plasma concentra-

tion

Luminex

IL-4 plasma concentration Luminex

Lactoferrin plasma concen-

tration

Luminex

MMP-8 plasma concentration Luminex

MMP-9 plasma concentration Luminex

PD-L1 plasma concentration Luminex

VEGF plasma concentration Luminex

IL-6 plasma concentration ELISA

CCL2 plasma concentration Luminex

267



APPENDIX A. APPENDIX

Table A.2 continued from previous page

CXCL13 plasma concentra-

tion

Luminex

FLT3-L plasma concentration Luminex

G-CSF plasma concentration Luminex

IL-10 plasma concentration Luminex

IL-15 plasma concentration Luminex

IL-1α plasma concentration Luminex

CXCL8 plasma concentration Luminex

OSM plasma concentration Luminex

Procalcitonin plasma concen-

tration

Luminex

Ferritin plasma concentration Luminex

IFNγ plasma concentration ELISA

TNFα plasma concentration ELISA

T cells (% of PBMCs) Flow cytometry - Major

subsets

Monocytes (% of Leuko-

cytes)

Flow cytometry - Major

subsets

Neutrophils (% of Leuko-

cytes)

Flow cytometry - Major

subsets

CD4+ CD8− T cells (% of T

cells)

Flow cytometry - T cell

subsets

CD4− CD8+ T cells (% of T

cells)

Flow cytometry - T cell

subsets

Vδ2+ γδ T cells (% of T

cells)

Flow cytometry - T cell

subsets

MAIT cells (% of T cells) Flow cytometry - T cell

subsets

T cells memory cluster 1 (%

of T cells)

Flow cytometry - Memory

T cell clusters
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T cells memory cluster 3 (%

of T cells)

Flow cytometry - Memory

T cell clusters

T cells memory cluster 14 (%

of T cells)

Flow cytometry - Memory

T cell clusters

T cells memory cluster 2 (%

of T cells)

Flow cytometry - Memory

T cell clusters

T cells memory cluster 4 (%

of T cells)

Flow cytometry - Memory

T cell clusters

Imputation OOB error >= 1.0

T cells memory cluster 0 (%

of T cells)

Flow cytometry - Memory

T cell clusters

T cells activation cluster 1 (%

of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 12

(% of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 5 (%

of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 14

(% of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 16

(% of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 2 (%

of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 7 (%

of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 6 (%

of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 4 (%

of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 10

(% of T cells)

Flow cytometry - Acti-

vated T cell clusters
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T cells activation cluster 0 (%

of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 13

(% of T cells)

Flow cytometry - Acti-

vated T cell clusters

T cells activation cluster 8 (%

of T cells)

Flow cytometry - Acti-

vated T cell clusters

Vδ2+ γδ T cells memory

cluster 3 (% of Vδ2+ γδ T

cells)

Flow cytometry - Memory

Vδ2+ γδ T cell clusters

Imputation OOB error >= 1.0

Vδ2+ γδ T cells memory

cluster 0 (% of Vδ2+ γδ T

cells)

Flow cytometry - Memory

Vδ2+ γδ T cell clusters

Vδ2+ γδ T cells memory

cluster 1 (% of Vδ2+ γδ T

cells)

Flow cytometry - Memory

Vδ2+ γδ T cell clusters

Vδ2+ γδ T cells memory

cluster 4 (% of Vδ2+ γδ T

cells)

Flow cytometry - Memory

Vδ2+ γδ T cell clusters

Vδ2+ γδ T cells memory

cluster 2 (% of Vδ2+ γδ T

cells)

Flow cytometry - Memory

Vδ2+ γδ T cell clusters

Vδ2+ γδ T cells activation

cluster 1 (% of Vδ2+ γδ T

cells)

Flow cytometry - Acti-

vated Vδ2+ γδ T cell clus-

ters

Vδ2+ γδ T cells activation

cluster 3 (% of Vδ2+ γδ T

cells)

Flow cytometry - Acti-

vated Vδ2+ γδ T cell clus-

ters

Vδ2+ γδ T cells activation

cluster 2 (% of Vδ2+ γδ T

cells)

Flow cytometry - Acti-

vated Vδ2+ γδ T cell clus-

ters
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Vδ2+ γδ T cells activation

cluster 4 (% of Vδ2+ γδ T

cells)

Flow cytometry - Acti-

vated Vδ2+ γδ T cell clus-

ters

Vδ2+ γδ T cells activation

cluster 0 (% of Vδ2+ γδ T

cells)

Flow cytometry - Acti-

vated Vδ2+ γδ T cell clus-

ters

MAIT cells memory cluster 1

(% of MAIT cells)

Flow cytometry - Memory

MAIT cell clusters

MAIT cells memory cluster 3

(% of MAIT cells)

Flow cytometry - Memory

MAIT cell clusters

MAIT cells memory cluster 5

(% of MAIT cells)

Flow cytometry - Memory

MAIT cell clusters

MAIT cells memory cluster 2

(% of MAIT cells)

Flow cytometry - Memory

MAIT cell clusters

MAIT cells memory cluster 6

(% of MAIT cells)

Flow cytometry - Memory

MAIT cell clusters

MAIT cells memory cluster 4

(% of MAIT cells)

Flow cytometry - Memory

MAIT cell clusters

MAIT cells memory cluster 0

(% of MAIT cells)

Flow cytometry - Memory

MAIT cell clusters

MAIT cells activation cluster

1 (% of MAIT cells)

Flow cytometry - Acti-

vated MAIT cell clusters

MAIT cells activation cluster

3 (% of MAIT cells)

Flow cytometry - Acti-

vated MAIT cell clusters

MAIT cells activation cluster

2 (% of MAIT cells)

Flow cytometry - Acti-

vated MAIT cell clusters

MAIT cells activation cluster

4 (% of MAIT cells)

Flow cytometry - Acti-

vated MAIT cell clusters

MAIT cells activation cluster

0 (% of MAIT cells)

Flow cytometry - Acti-

vated MAIT cell clusters
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Monocyte cluster 1 (% of

Monocytes)

Flow cytometry - Mono-

cyte clusters

Monocyte cluster 3 (% of

Monocytes)

Flow cytometry - Mono-

cyte clusters

Monocyte cluster 2 (% of

Monocytes)

Flow cytometry - Mono-

cyte clusters

Monocyte cluster 4 (% of

Monocytes)

Flow cytometry - Mono-

cyte clusters

Monocyte cluster 0 (% of

Monocytes)

Flow cytometry - Mono-

cyte clusters

Neutrophil cluster 2 (% of

Neutrophils)

Flow cytometry - Neu-

trophil clusters

Neutrophil cluster 3 (% of

Neutrophils)

Flow cytometry - Neu-

trophil clusters

Neutrophil cluster 0 (% of

Neutrophils)

Flow cytometry - Neu-

trophil clusters

Neutrophil cluster 1 (% of

Neutrophils)

Flow cytometry - Neu-

trophil clusters

Monocytes HLA-DR MFI Flow cytometry - Mono-

cyte activation marker

MFI

Monocytes CD86 MFI Flow cytometry - Mono-

cyte activation marker

MFI

Monocytes CD40 MFI Flow cytometry - Mono-

cyte activation marker

MFI

Monocytes CD64 MFI Flow cytometry - Mono-

cyte activation marker

MFI
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Monocytes CD62L MFI Flow cytometry - Mono-

cyte activation marker

MFI

Neutrophils HLA-DR MFI Flow cytometry - Neu-

trophil activation marker

MFI

Neutrophils CD86 MFI Flow cytometry - Neu-

trophil activation marker

MFI

Neutrophils CD40 MFI Flow cytometry - Neu-

trophil activation marker

MFI

Neutrophils CD64 MFI Flow cytometry - Neu-

trophil activation marker

MFI

Neutrophils CD62L MFI Flow cytometry - Neu-

trophil activation marker

MFI

CD8+ T cells CXCR3 MFI Flow cytometry - CD8+ T

cell activation marker MFI

CD8+ T cells CD161 MFI Flow cytometry - CD8+ T

cell activation marker MFI

CD8+ T cells HLA-DR MFI Flow cytometry - CD8+ T

cell activation marker MFI

CD8+ T cells CD69 MFI Flow cytometry - CD8+ T

cell activation marker MFI

CD8+ T cells CD25 MFI Flow cytometry - CD8+ T

cell activation marker MFI

CD4+ T cells CXCR3 MFI Flow cytometry - CD4+ T

cell activation marker MFI
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CD4+ T cells CD161 MFI Flow cytometry - CD4+ T

cell activation marker MFI

CD4+ T cells HLA-DR MFI Flow cytometry - CD4+ T

cell activation marker MFI

CD4+ T cells CD69 MFI Flow cytometry - CD4+ T

cell activation marker MFI

CD4+ T cells CD25 MFI Flow cytometry - CD4+ T

cell activation marker MFI

MAIT cells CXCR3 MFI Flow cytometry - MAIT

cell activation marker MFI

MAIT cells HLA-DR MFI Flow cytometry - MAIT

cell activation marker MFI

MAIT cells CD69 MFI Flow cytometry - MAIT

cell activation marker MFI

MAIT cells CD25 MFI Flow cytometry - MAIT

cell activation marker MFI

Vδ2+ γδ T cells CXCR3 MFI Flow cytometry - Vδ2+ γδ

T cell activation marker

MFI

Vδ2+ γδ T cells CD161 MFI Flow cytometry - Vδ2+ γδ

T cell activation marker

MFI

Vδ2+ γδ T cells HLA-DR

MFI

Flow cytometry - Vδ2+ γδ

T cell activation marker

MFI

Vδ2+ γδ T cells CD69 MFI Flow cytometry - Vδ2+ γδ

T cell activation marker

MFI

Vδ2+ γδ T cells CD25 MFI Flow cytometry - Vδ2+ γδ

T cell activation marker

MFI
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C4 carnitine plasma concen-

tration

Lipids

C6 carnitine plasma concen-

tration

Lipids

C8 carnitine plasma concen-

tration

Lipids

C10 carnitine plasma concen-

tration

Lipids

C12 carnitine plasma concen-

tration

Lipids

C2 carnitine plasma concen-

tration

Lipids

C14 carnitine plasma concen-

tration

Lipids

C16 carnitine plasma concen-

tration

Lipids

C18 carnitine plasma concen-

tration

Lipids

C3 carnitine plasma concen-

tration

Lipids

C18:1 carnitine plasma con-

centration

Lipids

C12-2OH/3OH plasma con-

centration

Lipids

C22:6 plasma concentration Lipids

C18:2 plasma concentration Lipids

C18:3 plasma concentration Lipids

C20:5 plasma concentration Lipids

C18:1 plasma concentration Lipids

C8:0 plasma concentration Lipids
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C10:0 plasma concentration Lipids

C12:0 plasma concentration Lipids

C20:4 plasma concentration Lipids

C14:0 plasma concentration Lipids

C16:0 plasma concentration Lipids

C18:0 plasma concentration Lipids
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