To be submitted to Building and Environment, 2022

Assessment of exhaled pathogenic droplet dispersion and indoor-outdoor exposure risk in urban street with naturally-ventilated buildings

Jian Hang¹, Xia Yang²,³#, Cuiyun Ou¹#, Zhiwen Luo⁴, Xiaodan Fan¹, Xuelin Zhang¹, Zhongli Gu⁵, Xianxiang Li¹*

¹School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, P.R. China
²Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, P.R. China
³Guangdong Provincial Key Laboratory of Water and Air Pollution Control, Guangzhou, P.R. China
⁴Welsh School of Architecture, Cardiff University, UK
⁵Guangdong Fans-tech Agro Co., Ltd. China

#These authors contribute equally as the first author (Jian Hang, Xia Yang, Cuiyun Ou).

Corresponding author: Xianxiang Li

Email: lixx98@mail.sysu.edu.cn
Abstract

Outdoor droplet exposure risk is generally regarded much smaller than that indoor, but such indoor-outdoor assessment and comparison are still rare. By coupling indoor and outdoor environments, we numerically simulate the ventilation and dispersion of exhaled pathogenic droplets (e.g., diameter $d=10\,\mu\text{m}$) within typical street canyon (outdoor, aspect ratio $H/W=1$) and each room (indoor) of two eight-floor single-sided naturally-ventilated buildings. Inhaled fraction (IF) and suspended fraction (SF) between two face-to-face people are calculated to quantify and compare the human-to-human exposure risk in all 16 rooms (indoor) on eight floors and those at two outdoor sites. Numerical simulations are validated well by wind tunnel experiments.

Results show that, the rooms in the 1st and 8th floors attain greater air change rate per hour (~4.5-6.6h$^{-1}$) and the lower exposure risk (IF~2-4ppm) than the 2nd-7th floors (air change rate per hour~1.6-5.3h$^{-1}$, IF~4-11ppm). Although inter-floor droplet dispersion exists, the room with index patient attains 2-4 order greater exposure risk than the other rooms without index patient. When the index patient stays outdoor, outdoor IF will change with locations, i.e. ~55ppm at leeward corner (even exceeding indoor IF~2-11ppm), and ~7ppm at middle street. Hence, the outdoor infection risk should not be ignored especially for people at leeward street corner where small vortex exists inducing local weak ventilation. Particularly, outdoor IF is decided by short-distance spraying droplet exposure (~1m) and long-route airborne transmissions by the main recirculation through entire street canyon (~50-100m).

Key Words: street canyon, air change rate per hour (ACH), indoor and outdoor, droplet
44 dispersion, exposure risk

46 **Environmental implication**

48 Respiratory infectious diseases can spread indoor and outdoor by exhaled droplets carrying pathogenic bacteria/viruses. Most researches emphasize indoor exposure risk (e.g. isolation room, airplane cabins, restaurants, coach buses etc). However, outdoor exposure risk assessments are still rare. The comparison of infection risks between indoor and outdoor environments also requires further investigations.

53 We innovatively simulate/discuss the ventilation and exhaled pathogenic droplets dispersion (10µm) in rooms of 8-floor naturally-ventilated buildings (indoor) and street canyons (outdoor). Inhaled fraction (IF) is calculated to evaluate human-to-human exposure risk. Results indicate that indoor IF are 2-11ppm, but outdoor IF varies with locations, i.e. ~55ppm in leeward corner (exceeding indoor IF), ~7ppm at middle street.
1 **Introduction**

Respiratory infectious diseases, such as SARS in 2003, global influenza in 2009, the Middle East Respiratory Syndrome (MERS) in 2012, and COVID-19 in 2019-2022, have been indicated to spread rapidly among people by pathogen-laden droplet transmissions [1], which seriously threatens public health. Currently, there are more than 610 million confirmed COVID-19 cases worldwide, including over 6 million deaths [2]. Therefore, it has become an important scientific issue to study the pathogen-laden droplet dispersion and human-to-human exposure risks.

Numerous experiments and numerical simulations have been developed to study the mechanisms of droplet transmission in various indoor environments, including hospital isolation rooms [3-5], airplane cabins [6-8], coach buses [9-11]), within and between naturally-ventilated buildings with cross-corridor transmission and that between flats [12, 13]. Tung et al. [14] experimentally investigated contaminant dispersion in an isolation room with different ventilation rates and negative pressure differentials. Based on the experimental studies [15], Gupta et al. [6] found that airborne transmission of respiratory infectious diseases could occur in an aircraft cabin. Cheng et al. [12] investigated the cross-corridor transmission of SARS-CoV-2 due to cross airflows, suggesting a high exposure risk at downstream flats under a prevailing wind, with higher risk when the doors or windows connected to the corridor were open. These findings suggest that the exposure risk of airborne transmission is influenced significantly by ventilation airflow patterns in indoor environment. Moreover, the indoor ventilation airflow pattern is mainly controlled by the supply air and relative positions of the inlet and outlet, since the ambient wind speed is relatively less important. Besides, Ventilation pattern, buoyancy force induced by thermal bodies
produces significant upward airflow (~0.1m/s), significantly impact on indoor airflow patterns [16, 17]. Airborne transmission and infection risk between flats and different floors are assessed for residential building models with wind-driven ventilation [18], buoyancy-driven ventilation [13] and for street canyons by coupling indoor and outdoor [19]. But they did not compare the infection risk between flats and that in local rooms with index patient.

For outdoor places, most previous researches emphasized the dispersion of inert or reactive gaseous pollutants and particles as well as pollutant exposure in urban environments [20-25], but few investigate the dispersion of exhaled droplets from human breathing activities in outdoor urban space which may evaporate and is a kind of hazardous material carrying infectious bacterial or viruses. In recent years, limited researches explore droplet evaporation/dispersion in an outdoor open space [26-27] and a street canyon [28]. They found that human-to-human infection risks outdoor cannot be neglected when the index patient locates in the upstream regions of other people. However, there are occasional reports of outdoor infection, which suggests a probable of outdoor airborne transmission. Blocken et al. [26] have indicated the influence of wind speed on the outdoor social distance between two moving pedestrians by posing different levels of airborne infection risk. Yang et al. [27] have numerically investigated the transmission of solid-liquid droplets between two standing people in an open outdoor environment. They suggested that people in outdoors should not only keep a more than 1.5 m social distance from each other, but also avoid standing in the downstream region of infected persons. Fan et al. [28] have numerically simulated the interpersonal droplet transmission between two people in a two-dimensional street canyon (H/W=2.4). They suggested a 2 m social distance for pedestrians in deep urban street canyons with high winds, while 4 m with low wind speed (WS) and small relative
humidity (RH). Hence, the outdoor transient environmental conditions, such as WS, temperature and RH, are important to determine the airborne transmission risk for outdoor places [29]. Among them, ventilation and buoyancy force respectively driven by wind and temperature differential are key to transport and dilute outdoor airborne droplets and droplets [30], which may penetrate to the nearby buildings with openings, and subsequently expose people there to airborne droplets, and vice versa [31].

However, there is rare research to compare and quantify exhaled droplet dispersion and the related human-to-human infection risk analysis in urban street canyon and ventilated buildings by coupling indoor and outdoor. Some questions are still not clear, for instance: 1) Is outdoor exposure risk is definitely smaller than indoor? What difference between them? 2) Exposure risk between flats and buildings has not been compared with that in the target room with index patient. 3) The exposure risk due to transmissions from outdoor to indoor is still unclear.

In addition, according to the literature, droplet initial size, ambient temperature and relative humidity, background wind speed are the key factors of droplet dispersion [16-17, 27-28, 32]. Here we considered the specific conditions where the affecting ambient environment parameters including air temperature (300 K), RH (35%), WS (3 m/s), and airflow pattern [11, 32-33]. The physical and chemical characteristics of droplets (e.g., the initial size ($10\mu m$), initial velocity, the droplet components, etc) were also considered as significant factors to affect the spread of respiratory infectious diseases [24, 34-35].

This study aims to address the gap in the literature about ventilation performance and droplet dispersion in the indoor and outdoor coupling street canyon model with naturally-ventilated buildings, which can simultaneously consider the droplet
In this study, we comprehensively assessed the droplet dispersion in urban street canyons, evaluating the possibility of airborne transmission among different room of multi-floor buildings, street canyons and those between them.

2 Methodology

2.1 CFD validation study

2.1.1. CFD validation and grid independent tests in street canyons

To evaluate the numerical accuracy of ventilation simulations in the 2-D street canyon, we compared the flow field of CFD simulations with the wind tunnel experiments in University of Gavle, Sweden [20]. The placements of wind tunnel experiments are displayed in Fig.1a. There are 25 rows of building models in the working section, which is 11 m long, 3 m wide, and 1.5 m high. Velocity profiles at Line A between the 12th and 13th buildings and Line B above the 12th building are measured to be used in the subsequent CFD computations.

The geometric dimension of the wind tunnel model is the building height $H = 0.12$ m, the street width is equal to the building width ($W = B = 0.05$ m), and the scale ratio to the full-size street canyon model is 1:200 ($H = 24$ m, $W = B = 10$ m, Fig. 1b). The approaching wind is perpendicular to the street array, with the reference velocity $U_{ref} = 13$ m/s at $z = H$ in far upstream free flow. The corresponding Reynolds number ($Re = U_{ref}H/v$, $v = 1.46\times10^{-5}$ m2/s) is 106,849, big enough to satisfy the Reynolds independence. In the present CFD simulation, zero normal gradient boundary
conditions are adopted at the domain outlet (i.e., outflow), domain roof and lateral boundaries (i.e., symmetry). Fig.1c-d illustrate the stream-wise velocity \((u(z)) \) components and turbulence kinetic energy \((k(z)) \) along Line B, which is measured by Laser Doppler Anemometry (LDA) System to provide the domain inlet boundary under \(U_{ref} = 13 \text{ m/s} \).

Grid independent tests have been done by different minimum grid sizes near the building walls (Fig. 2), named as fine grid (0.05 m), medium grid (0.1 m) and coarse grid (0.2 m). And the expansion ratio is 1.0-1.2 which is smaller than 1.3 satisfying the requirement by the literature of CFD guideline [36-37]. It shows that there is tiny difference among the results of the three different grid arrangements. In order to ensure accuracy and save computational time, the medium grid will be adopted to evaluate the flow field in the following cases. High correlation coefficient \((R \approx 0.993) \), low normalized mean square error \((NMSE \approx 0.004) \) and low fractional bias \((FB \approx 0.017) \) have been found between experiments data and simulation results, which shows that the predicted stream-wise velocity \((u(z)) \) profiles agree well with the measured data. The numerical simulation results also indicate that the stream-wise velocity is positive above \(z = 0.5H \) while negative below it. This confirms that one main vortex appears as \(H/W = 2.4 \) with sufficiently large \(Re \) (>> 11,000) [38-40].

The coupled approach means simultaneously simulating both indoor and outdoor environments in a single computational domain. Our previous research [41] has validated that the couple approach can perform well in evaluating the indoor and outdoor ventilation [36-37,42]. Hence, it can be reasonably applied in the following
investigation.

2.1.2. Validation of building ventilation

Another measurement of indoor-outdoor airflow is also carried out in the aforementioned wind tunnel. A four-floor building with single-sided natural ventilation is located in the target measurement area (Fig.3a). Each floor is divided into two rooms by a partition in the middle, and the only window of each room is perpendicular to the incoming flow. Steam-wise (U_x) and vertical (U_z) velocity components profiles along Line PA and Line PB around the building are measured (Fig.3a) to evaluate the simulation performance of building ventilation.

In the following validation, we build a model according to the wind tunnel experiment (Fig.3b) with a scale ratio of 50:1 to wind tunnel models. The single-sided natural ventilation building is $5H$, $5H$, and $10H$ away from the domain inlet, lateral sides and domain outlet. For the domain inlet, the measured profiles of velocity (u) and turbulent parameters (turbulence kinetic energy (k) and its dissipation rate (ε)) are provided in the upstream free flow (Fig.3c-d).

Fig.4a-b compares wind tunnel data and CFD results in terms of the stream-wise and vertical velocity components along Line PA and Line PB. It indicates that simulation results can predict the flow before and behind the building. While the results also show that the simulation results in Line PB above the building deviate from the measurement data to some extent ($1 < z/H < 1.4$). Such phenomenon can be attributed to that the RNG $k-\varepsilon$ model has some shortcomings in describing the airflow in the corner.
area [43]. However, on the whole view, the CFD simulation model validated above is a helpful tool in the following investigation.

2.2 CFD modelling setups

There are two ways in indoor-outdoor flow simulations, namely decoupled and coupled approaches [44-46]. The decoupled approach simulates the indoor and outdoor airflow separately in different computational domains. While, the coupled approach builds indoor and outdoor environments in a single domain, which has been applied in our study on the indoor-outdoor ventilation and droplet dispersion.

Fig. 5a depicts the simplified street canyon in CFD simulation. The building height (H) and the street width (W) are 24 m. The span-wise length (y-direction) of the street canyon (L) and the building width (B) are 20 m. A typical street canyon is displayed in the front and rear of the target building to serve as roughness elements in the urban boundary layer [17, 47-49]. There are eight floors, and each floor is 3 m high with a 0.3 m thick floor slab in the near-road building. The wall thickness is 0.3 m and the size of each room is $5.7 \times 4 \times 2.7$ m (length \times width \times height). We considered the natural ventilation of single-sided buildings with an opening (1.5×1.5 m) in the wall of every windward or leeward room. In order to investigate the exposure risk of the susceptible person who stays in the same room with the infected, we set two face-to-face people in a single room, with one susceptible and the other infected. The distance between them is 1.5 m which is the recommended smallest safe distance in Liu et al. [50]. In most cities, there are pedestrian streets for people to walk and shop in, and these places seem to be prone to disease transmission events. Therefore, the following scenarios of people in outdoor environment are considered: two people stand symmetrically along the
central plane \((y = 0)\) of the street canyon, with a distance of 0.5 m away from the nearby building leeward and in the middle of the canyon. Detailed information of building and human model has been illustrated in Fig.5a-b.

Mesh information on the central plane and manikin is provided in Fig. 5c, where the grid size of the mouth is 0.005 m, and those of other parts of manikin are 0.05 m. The medium grid arrangement (0.1 m) with the expansion ratio of 1.05-1.15 is adopted near the building walls with the total grids of about 11 million. At the domain inlet, the vertical profiles of velocity \((U_x(z))\), turbulent kinetic energy \((k(z))\) and turbulent dissipation rate \((\varepsilon(z))\) are calculated as follows [51]:

\[
U_x(z) = U_{ref} \left(\frac{z - H}{z_{ref}} \right)^{0.22} \quad \text{(1a)}
\]
\[
k(z) = (U_x(z) \times I_{in})^2 \quad \text{(1b)}
\]
\[
\varepsilon(z) = \frac{C_\mu^{3/4} k^{3/2}}{k(z)} \quad \text{(1c)}
\]

Where the reference velocity \(U_{ref} = 3\) m/s. The building height \(H\) equals to the reference height \(z_{ref}\) which is 24 m in this study. The turbulence intensity \(I_{in} = 0.1\). Von Karman constant \(K=0.41\) and \(C_\mu=0.09\) are empirical constants. At the lateral, upper and outlet boundaries of the computational domain, the normal velocity component and normal gradients of tangential velocity components are set to zero, i.e., zero normal gradient. Background temperature is set to 300 K (26.85 °C), and the heat flux of the body surface is 58 W/m² [3].

There are two groups of numerical settings on breathing activities in previous researches: i) In the first group, the droplets are released periodically during a period like unsteady/transient breathing, talking, coughing, speech [15, 33, 50] etc. ii) In the second group, some literature utilized the mean and constant expiration flow rate as exhale boundary, and the droplet dispersion is also released continuously [9, 10, 52].
This simplification can not only effectively predict the droplet dispersion characteristics but also efficiently mitigate the cost of computational resources. For simplification, this study considers the respiratory activity that the infected person only exhales and the susceptible person only inhales with the mass flow rate of 1.225×10^{-4} kg/s [11, 27].

The governing equations are discretized to algebraic on a staged grid system based on the finite volume method. SIMPLE algorithm is applied to couple pressure and velocity. Standard wall function has been used in near wall treatment. The convection and diffusion terms are discretized with second-order upwind scheme. Convergence is assumed to be obtained when residuals of x, y and z momentum are stably smaller than 10^{-6}, 10^{-5} for k, and 10^{-4} for ε and continuity [53].

In this study, droplets with the initial diameter of 10 μm are composed of 90% liquid (water) and 10% solid elements (sodium chloride) [54]. The density of water liquid and sodium chloride are 1000 kg·m$^{-3}$ and 2170 kg·m$^{-3}$ respectively and the droplet density follow the volume weighted mixing law. The Lagrangian method is adopted to solve the motion equation of a single droplet. According to Newton’s second law, the equation of droplet movement can be written as Eq. (3):

\[
\frac{du_{pi}}{dt} = \sum F_i = F_{\text{drag},i} + F_{g,i} + F_{a,i}
\]

\[
F_{\text{drag},i} = f_D (u_i - u_{p,i})/\tau_p
\]

\[
= 18\mu(u_i - u_{p,i})(1 + 0.15Re_p^{0.687})/\rho_p d_p^2 C_c
\]

\[
F_{g,i} = g_i (\rho_p - \rho)/\rho_p
\]

where u_{pi} and u_i are the droplet and the air velocity vector respectively (m/s), $\sum F_i$ is all external forces exerted on the droplet per unit droplet mass (m/s2) in the i direction. $F_{\text{drag},i}$, $F_{g,i}$, $F_{a,i}$ respectively represent the drag force, gravity and the additional forces on the droplet [55-56]. f_D is the Stoke’s drag modification function.
for large aerosol Reynolds number (Re_p) and τ_p is the aerosol characteristic response
time (s). ρ_p and ρ are the droplet and air density (kg·m$^{-3}$). d_p is the droplet diameter
(m) and μ is the turbulent viscosity (kg·m$^{-1}$·s$^{-1}$). C_c is the Cunningham correction to
Stokes drag law. g_i is the acceleration of gravity in the i direction. $F_{a,i}$ is the additional
forces consisting of the pressure force, virtual mass force, Brownian force, and
Saffman’s lift force. Among them, the pressure force and virtual mass force are
sufficiently small for indoor and outdoor droplet dispersion and so they are ignored
according to the literature [47, 55, 57], thus this paper only considered the Brownian
force and Saffman’s lift force.

The dispersion of droplets owing to turbulent flows was predicted using the
discrete random walk model-DRM. In the computational domain, the interaction
between particles and airstreams is calculated as one-way coupling (i.e. the influence
of droplets themselves on turbulent airflow is negligible) to save computational load.
Droplet boundary conditions are list in Table. 1, the droplet will be inhaled by the
susceptible person (the person shaded with yellow in Fig. 5a) who located at each floor
and the canyon, e.g. those droplet escape from the domain through the human mouth.
The building wall and human body surface are thought to be rough and the droplet will
deposit on these surfaces. If the droplet be inhaled by human or be trapped by subject,
their calculation of trajectories is terminated.

After the steady flow field was obtained, respiratory droplets have released from
the direction perpendicular to the index patient mouth at a rate of 44 droplets per time
step (0.01s for a time step) for 15 minutes, totaling 3,960,000 number of droplets. At
this stage, the diffusion range remains stable, and the normalized constants—inhaled
fraction (IF) and suspended fraction (SF) are calculated as follows:
\[
IF = \frac{N_{\text{inhaled}}}{N_{\text{total}}} \quad (3a)
\]
\[
SF = \frac{N_{\text{suspended}}}{N_{\text{total}}} \quad (3b)
\]

Where \(N_{\text{inhaled}}\) and \(N_{\text{suspended}}\) are the number of the droplets/droplet nuclei inhaled by the susceptible person and suspended in rooms, respectively. \(N_{\text{total}}\) is the total number of droplets released from the infected person’s mouth and nose. This study investigates a total of 18 investigated cases according to the different location of the index patient, i.e., respectively eight cases when index patient in windward and leeward floors (indoors) and two cases in different site of canyon (outdoors) (Table. 2). Supported by the National Supercomputer Center in Guangzhou, all CFD simulations were finished on Tianhe II supercomputer.

3 Results and discussion

3.1 Flow field and ventilation capability in street canyons and indoors

As depicted in Fig. 6a, there is a clockwise vortex in the street canyon. Vertical movement can be found near the windward side and leeward side of the building wall, and the streamlines are basically parallel to the building wall except in the corner. The normalized velocity at the pedestrian level (Fig. 6b) shows that the largest wind speed (\(\approx 1.05 \text{ m/s}\)) is appeared in the middle of the canyon (about twice the area near the buildings on both sides of the canyon), and fluctuations are produced in the corner of the first floors of the windward and leeward side buildings. The changing wind speed and direction in the corner will influence the droplet dispersion in outdoors and in the low-level indoor rooms.
Indoor temperature and velocity distribution have been displayed in Fig. 6c-d. It shows that the indoor temperature is higher in the top than in the bottom due to the body thermal plume -- an updraft around the human body. It appears that the 2nd to 7th floors in the leeward building and the 4th to 6th floors in the windward building experience a higher average temperature than other floors, due to the limitation of air change rate between indoor and outdoor. Fig.6d indicate that body thermal plume greatly impacts the indoor airflow. The airflow velocity is smaller than 0.1 m/s in most indoor spaces but about 0.2 m/s above the head. In general, the wind velocity in windward rooms is larger than that in leeward rooms, leading to a higher temperature and weaker ventilation performance in leeward rooms. The airflow pattern of the same side rooms is similar, with the air entering the room from the lower part of the window, then forming a weak vortex between the person and the window. There is a uniform upward flow between the two people, and then the air is discharged from the upper part of the window.

Fig. 6e displays the air change rates per hour for purging flow rate (ACH_{PFR}) in all windward and leeward rooms, which is used to evaluate overall ventilation capacities. For floors with the same height, the ACH_{PFR} in windward is greater than that in leeward, which is consistent with the velocity distribution. For different floors, the near ground floors (1st floor) and top floor (8th floor) have the highest ACH_{PFR} than middle floors (2nd-7th floors) for both windward and leeward buildings of the canyon. In order to make the subsequent analysis more convenient, we divide all rooms into the following three categories according to the indoor ACH_{PFR}. One is the lower part of the street
canyon (the 1st floor), where the turbulence fluctuation makes good ventilation ($ACH_{PFR} \approx 6.57 \text{ h}^{-1}$ and 4.50 h^{-1} respectively in windward and leeward 1st floor); The other is the middle floors of the street canyon (the 2nd-6th floors), where the parallel wind to the window lead to small ACH_{PFR}, with the average ACH_{PFR} of about 3.28 h^{-1} and 1.97 h^{-1} respectively in windward and leeward middle rooms; The last is the high floors (the 7th and 8th floors) which hold better ventilation, with about 5.94 h^{-1} and 4.97 h^{-1} on windward and leeward 8th floors, respectively, due to the high wind speed at the upper corner of the canyon vortex.

3.2 Exposure risk analysis when index patient indoors

Our previous research [11, 27] has found that droplet diffusion characteristics and range are dominated by the interplay of the airflow and ambient temperature. Therefore, we selected three floors (1st, 5th, 8th floors) as a representative for analysis from the aforementioned three types: lower part, middle floors and high floors. The droplet distribution characteristics will be similar in rooms of the same type.

Fig.7 displays the dispersion process of droplets with an initial particle size of 10 μm when the infected person is in windward and leeward side floors, taking 1st, 5th, 8th floors for example. It indicates that the droplets move following the indoor and outdoor airflows because they evaporate rapidly into 3.64μm nuclei ($\approx 0.1 \text{ s}$) in a dry environment of relative humidity $RH = 35\%$ which is similar with the finding in our previous studies [11, 27]. We find that most of the droplet nuclei are still suspended in the room where the patient is located, and a small number of them disperse to the street.
canyon and then enter other rooms. For both windward and leeward, the rising and circulating air flow carries the droplet nuclei to the window and then outdoors. A part of them reenter to the room due to turbulence at the window and fill the whole room over time. The results agree well with Zhang and Li [55] who simulated 48 thermal manikins in a high-speed rail cabin, suggesting that the exhaled droplets tended to follow the upward body thermal plume and could directly enter the upper zone.

Droplets released by the patient on the windward 1st and 8th floors may disperse to the street canyon more quickly than those released on the windward 5th floor. When the patient is on the windward 1st floor, the droplet nuclei escaped from the room will join the fluctuation in the corner of the windward building (Fig. 6(a)), then move up to the height of the 3rd floor. Therefore, when the patient is on the windward 1st floor, the pathogen-laden droplets can spread to windward 2nd and 3rd floors. When the patient is on the windward 8th floor, the droplet nuclei dispersed to the street canyon will re-entry to the lower floor rooms of the same building, which agrees well with Ai et al. [56]. When the infected person is located in leeward rooms, the number of droplet nuclei reentering the rooms is less than that on the windward side rooms. Especially when the patient is on the leeward 8th floor, the releasing droplets will disperse to the urban boundary layer due to the near building upward airflow. Contrary to the case of the patient in windward rooms, the droplet nuclei are more likely to disperse to the urban boundary layer, thereby reducing the number of droplets dragged into the target street canyon.

On one hand, the exposure risk will be greatly increased for the susceptible person
staying in the same room with the infected person. Thus, we discuss the circumstance when the susceptible person is in the same room with the infected person and the resulting exposure risk \((IF)\) of the susceptible person (Fig. 8). From this figure, we can find that the \(IF\) of the susceptible person in the windward rooms are larger than those in the leeward except rooms on the 2nd and 3rd floors, which is consistent with the wind velocity distribution. It is found that \(IF\) of the 1st floor \((IF \sim 4.29 \text{ ppm and } 1.77 \text{ ppm in windward and leeward, respectively})\) and of the 8th floor \((IF \sim 3.03 \text{ ppm and } 1.77 \text{ ppm in windward and leeward, respectively})\) are smaller than those of other floors. \(IF\) of floors 4 to 7 are similar (e.g., \(IF\) in leeward 4th to 7th floors is 3.54 to 6.57ppm). Overall, when a susceptible person is in the same room with the infected person, the most dangerous situation is that they are located on the 6th floor on the windward side and the 2nd and 3rd floors on the leeward side.

On the other hand, the droplets spreading to other rooms will be suspended in the air, leading to the risk of infection to people on other floor or in the canyon, hence there is a need for a further count of the suspended droplet nuclei in each room when the patient is on various floors. \(SF\) of various rooms when the patient is on different floors have been listed in Table 3. Note that all data in the table are in ppm. The double underlined data are \(SF\) in the rooms where the infected is located, and the data marked with orange highlight the relatively larger \(SF\) (i.e., greater than 50 ppm). \(SF\) in the patient’s room is the highest, reaching up to \(10^4\) ppm, which is around 2-4 orders larger than rooms at other floors without patient. Moreover, the larger wind speed and better ventilation \((ACH_{FR} \sim 6.57 \text{ h}^{-1} \text{ and } 4.50 \text{ h}^{-1}\) respectively in windward and leeward 1st
floor, and 5.94 h⁻¹ and 4.97 h⁻¹ in windward and leeward 8th floors) in upper/lower floor
carry more droplets entering the canyon, and the exposure risk in these floors is small
(e.g., $SF \sim 1.55 \times 10^4 - 2.12 \times 10^4$ ppm).

From the aforementioned droplet dispersion process, we know that there is an
upward movement near the building on windward 1st-3rd floors. Therefore, when the
infected is on the windward 1st or 2nd floor, in addition to the floor where the infected
person is located, the 2nd and 3rd floors are also the key areas for prevention and
measures. The SF can reach 572.22 ppm when the infected is on the windward 1st floor.

When the infected is on the windward 3rd or 4th floor, there is a small ratio of droplets
reentering other floors following the ambient vortexes. It also shows that when the
infected is located above the 3rd floor on the windward side, the floor below it will be
affected by the airflow, and the floor closed to the source room may have the greatest
impact, due to the downward transport induced by the combination of gravity and wind
effects [57-58]. When the droplets are released from the leeward floor, the main affected
area is the room on the upper floor due to the near building upward airflow induced by
the canyon vortex. Generally speaking, when the infected person is in the windward
side rooms, the impact range is not only on the floor on its own side, but also spread to
the upstream buildings (i.e., leeward side rooms) with the airflow. The average SF in
the street canyon is 0.81×10^4 ppm, which is more than three times that of when the
infected person is in the leeward side rooms (the average is 0.23×10^4 ppm).
3.3 Exposure risk analysis when index patient stays outdoors

It is suggested that staying outdoors may have a much lower infection risk compared with the indoor environment [59]. Nevertheless, an increasing number of cases of infection shows that there is also a risk of infection outdoors [60-61], and it is important to assess the infection risk in outdoor activities.

Fig. 9 and Table. 4 illustrate the dispersion process when the infected person is outdoors. In terms of the susceptible person facing to the infected person outdoors, the exposure includes the short spraying transmission (~1m) and the long distance transmission through the entire canyon (~100m). Droplet inhaled here are the total inhaled number by the susceptible person during the calculation period. In general, the number of inhaled droplets is rather small, but large quantities of droplets circulate around, increasing the possibility of inhalation and there are also some differences to some extent in the two outdoor situations. When the infected person is on the leeward corner of the canyon where local urban wind is weak (Fig. 9a), the upward body thermal plume can be clearly found around human, and the relatively small flow in leeward-side corner of the street canyon will result in a larger number of droplets inhaled by the susceptible person (IF is 54.8ppm), which is short spraying exposure. When further considering the situation of two people staying in the middle of the canyon (Fig. 9b), the parallel and much larger airflow passes between the infected and susceptible persons. In this situation, the IF is 7.07 ppm, smaller than that of people in leeward corner, which may be caused by the local wind speed and direction. When the susceptible and infected people all stay outdoors, compared with all staying indoors, the susceptible people are relatively safe in the middle, while they are more dangerous when they are all on the leeward side of the canyon.
The outdoor velocity is much greater than the indoor velocity (e.g., the greatest velocity at the pedestrian level is seven times larger than indoors, Fig.6a-d). Besides, the droplets will join the canyon vortex, resulting in a fast diffusion speed and a wide range of droplets. When the infection source exists in the street canyon, it is surprising that the floors with better natural ventilation have higher indoor droplet concentrations due to more frequent indoor and outdoor air exchange, which will also increase the infection risk of indoor people. Therefore, although the ventilation of the 4th-6th floors is worse than that of other floors, the SF (31.06 ppm-68.18 ppm) is much smaller than that of other floors when the infected person is in outdoor environment. Moreover, when the infected person stays in the middle of the canyon, droplets are blown away quickly due to the large wind speed in outdoors, and the number of droplets entering the street-side buildings will be greatly reduced to at least one-fifth of that when in the leeward side of the canyon, leading a little impact on indoor environment.

4 Limitations and future work

From this study, we found the local airflow and ventilation may be important to the exhaled droplet dispersion in outdoor, resulting in a big difference for different sites in street canyon, relative locations between people outdoor and the background dominant wind direction, which is worth studying in the future. Besides, more complicated processes and factors will be taken into account, for instance, more atmospheric conditions of solar radiation and ambient relative humidity/temperature as well as wind speed-directions under various urban shape (e.g. emphasizing high-density
urban area with small distance between buildings). Such CFD simulations coupling turbulence and radiation processes will be evaluated and validated by our recent scaled outdoor experiments (H~1m) on urban airflow in street canyons [62-63] and that coupling indoor and outdoor [64].

In particular, it is noted that the ambient humidity should be interrelated to temperature, which is reflected by the setting of the evaporation model in the simulation. Therefore, further efforts will be made on the more practical evaporation model of droplets.

Moreover, as we simplified the breathing to continuously exhaling or inhaling may possibly overestimate the exposure risk, more practical human breathing activities with various droplet initial sizes and velocities should be considered to find out the droplet distribution in the air. Last but not least, more complex and practical droplet composition and breath activity like talking, coughing, speech etc., which related to the number and activity of viruses in the droplet, will be integrated to further evaluate the exposure risk.

5 Conclusions

In this work, a coupling model of the indoor and outdoor environment in a target street canyon with two near-road 8-floor buildings was established to evaluate the potential human-to-human exposure risk in a windward building, a leeward building and street canyon when there is an index patient.

Some meaningful points are concluded as follows:

1) Air change rate (ACH_{PFR}) and wind velocity in windward side rooms is
greater than that in leeward side, with best ventilation at the lower floors and top floors (~4.5-6.6 h⁻¹) and worst ventilation at the middle floors (~1.6-5.3 h⁻¹). The exposure risk in 1ˢᵗ and 8ʰ floor is smaller than that in other floors (e.g., IF ~ 2-4 ppm in 1ˢᵗ and 8ʰ floor, and 4-11 ppm in 2ⁿᵈ-7ᵗʰ floors).

2) If the infected person is located on different floors in near-road building (indoor), the index patient’s room experience the largest SF (10^4 ppm), about 2-4 orders greater than that in other rooms at other floors without the index patient.

3) When the infected person is in the street canyon (outdoors), the exposure risk (IF) of the face-to-face susceptible person varies among the locations, the higher risk appears when they both are in the leeward corner (~55 ppm), and 7 ppm when they are in the middle of the street.

4) When the infected person stands on the windward 1ˢᵗ and 2ⁿᵈ floors, the people on the windward 2ⁿᵈ and 3ʳᵈ floors must pay more attention for prevention work. While the infected person is on the floor above the windward 3ʳᵈ floor, the floors below it will be affected. When the leeward floor is the release source, the main affected area is the room on the upper floors.

Based on the results, it is emphasized that there is high possibility of outdoor human-to-human infection induced by droplet dispersion in weak wind regions of 2D street canyons (e.g. leeward corner), even higher than indoor and should be taken seriously.
Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 41875015, 42005069, and 42175180); The support from UK GCRF Rapid Response Grant on ‘Transmission of SARS-CoV-2 virus in crowded indoor environment’, the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No. 311020001), Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies (Grant 2020B1212060025), are also gratefully acknowledged. The CFD simulations were conducted on the Tianhe II supercomputer at the National Supercomputer Center, Guangzhou, P.R. China.

References

NOx–VOCs chemistry and pollutant dispersion in street canyons with various aspect ratios by CFD simulations, Build. Environ., 226 (2022) 109667.

Appendix: Validation of the buoyancy effect

Before cases investigation, a former simulation of buoyancy effect, ventilation mode in a real inpatient ward (Yin et al, 2009) have been conducted to evaluate the accuracy of CFD simulation (Fig. S1a). The isolation room equipped with displacement ventilation supply rate of 114 cubic feet per minute (CFM), 19.5°C of temperature, and the 36CFM and 78CFM of rates in the bathroom and main exhausts respectively. Patients, visitors, TV and equipment generate 106W, 110W, 24W and 36W heat respectively. The mesh was generated with the maximum grid size of 5cm, totaling tetrahedral cells of 1.8 million. The measurement locations are marked in Fig. S1b.

Velocity, temperature of the experiment and simulation results are compared. Fig. S2 displays the normalized velocity (u/U, $U=0.14m/s$ is the supply air velocity) and the normalized temperature ($\theta=(T-T_i)/(T_c-T_i)$, T_i and T_c are the temperature respectively at inlet and main exhaust) along the normalized height (z/H, $H=2.7m$ is the height of the inpatient ward) in Pole 4 and Pole 5 for example. From the results, it is found that the CFD have a good performance in predicting the velocity and temperature field in this isolation chamber. The Pearson correlations of velocity and temperature are >0.71 and >0.94 respectively. The velocity and temperature are slightly overestimate while they still show the good agreement of the experiment data. Therefore, the above comparison proves the CFD simulation is an effective tool in simulating the flow field including the buoyancy effect.
Fig. S1 (a) Overview of the isolation room, (b) measurement location

Fig. S2 Comparison of (a)(b) velocity and (c)(d) temperature distribution between CFD and measurement

Table. 1 Boundary condition setups in CFD simulations.

<table>
<thead>
<tr>
<th>Boundary name</th>
<th>Boundary condition of airflow</th>
<th>Boundary condition of droplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain inlet</td>
<td>Velocity inlet, the vertical velocity obeys the exponential profile and temperature is 300°C, and turbulent intensity is 5%.</td>
<td>Escape (trajectory calculations are terminated here)</td>
</tr>
<tr>
<td>Domain outlet</td>
<td>Outflow</td>
<td>Escape (trajectory calculations are terminated here)</td>
</tr>
<tr>
<td>Domain roof, laterals</td>
<td>Symmetry</td>
<td>Escape (trajectory calculations are terminated here)</td>
</tr>
<tr>
<td>Domain floor, building surfaces</td>
<td>No slip wall</td>
<td>Trap (trajectory calculations are terminated here)</td>
</tr>
<tr>
<td>Mouth of infected patient</td>
<td>Mass-flow-inlet, mass flow rate is 1.225×10^{-4} kg/s (in a direction perpendicular to human mouth), temperature is 308°C</td>
<td>Escape (trajectory calculations are terminated here)</td>
</tr>
<tr>
<td>Mouth of susceptible person</td>
<td>Mass-flow-outlet, mass flow rate is 1.225×10^{-4} kg/s (in a direction perpendicular to human mouth), temperature is 308°C</td>
<td>Escape (trajectory calculations are terminated here)</td>
</tr>
<tr>
<td>Other body surfaces</td>
<td>No slip wall, heat flux is 58 W/m² for each person.</td>
<td>Trap (trajectory calculations are terminated here)</td>
</tr>
<tr>
<td>Case</td>
<td>Infected patient location</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Case 1-8</td>
<td>Indoors, 1<sup>st</sup> floor to 8<sup>th</sup> floor in windward-side building</td>
<td></td>
</tr>
<tr>
<td>Case 9-16</td>
<td>Indoors, 1<sup>st</sup> floor to 8<sup>th</sup> floor in leeward-side building</td>
<td></td>
</tr>
<tr>
<td>Case 17</td>
<td>Outdoors, leeward side corner of canyon</td>
<td></td>
</tr>
<tr>
<td>Case 18</td>
<td>Outdoors, middle of canyon</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Suspended fraction (SF) in each room when patient in different floors. Unit: ppm

<table>
<thead>
<tr>
<th>Floor No.</th>
<th>Windward</th>
<th>Patient in indoor different floor</th>
<th>Leeward</th>
<th>Patient in outdoor</th>
<th>leeward</th>
<th>middle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
</tr>
<tr>
<td>1st</td>
<td>1.55×10^5</td>
<td>2.53</td>
<td>1.26</td>
<td>0.51</td>
<td>1.01</td>
<td>2.02</td>
</tr>
<tr>
<td>2nd</td>
<td>252.78</td>
<td>2.31×10^6</td>
<td>1.77</td>
<td>2.02</td>
<td>0.76</td>
<td>1.01</td>
</tr>
<tr>
<td>3rd</td>
<td>572.22</td>
<td>195.45</td>
<td>2.07×10^6</td>
<td>7.58</td>
<td>6.57</td>
<td>4.55</td>
</tr>
<tr>
<td>4th</td>
<td>1.77</td>
<td>1.01</td>
<td>1.52</td>
<td>2.07×10^6</td>
<td>152.78</td>
<td>75.51</td>
</tr>
<tr>
<td>5th</td>
<td>3.03</td>
<td>0.00</td>
<td>1.01</td>
<td>0.76</td>
<td>2.74×10^8</td>
<td>145.20</td>
</tr>
<tr>
<td>6th</td>
<td>2.27</td>
<td>1.01</td>
<td>2.02</td>
<td>1.52</td>
<td>0.76</td>
<td>182.58</td>
</tr>
<tr>
<td>7th</td>
<td>1.77</td>
<td>1.01</td>
<td>2.78</td>
<td>2.27</td>
<td>2.27</td>
<td>1.77</td>
</tr>
<tr>
<td>8th</td>
<td>3.54</td>
<td>1.77</td>
<td>2.27</td>
<td>5.56</td>
<td>2.53</td>
<td>2.53</td>
</tr>
<tr>
<td>average</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td>Target canyon (×10^6)</td>
<td>1.26</td>
<td>0.47</td>
<td>0.71</td>
<td>0.77</td>
<td>0.69</td>
<td>0.81</td>
</tr>
<tr>
<td>Average (\times 10^6)</td>
<td>(\times 0.81)</td>
<td>1.78×10^6</td>
<td>0.76</td>
<td>0.25</td>
<td>0.00</td>
<td>0.76</td>
</tr>
<tr>
<td>Leeward rooms</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
</tr>
<tr>
<td>2nd</td>
<td>7.07</td>
<td>3.54</td>
<td>4.80</td>
<td>4.55</td>
<td>4.29</td>
<td>3.54</td>
</tr>
<tr>
<td>3rd</td>
<td>3.03</td>
<td>2.27</td>
<td>3.03</td>
<td>3.28</td>
<td>0.51</td>
<td>2.02</td>
</tr>
<tr>
<td>4th</td>
<td>3.03</td>
<td>0.76</td>
<td>1.26</td>
<td>1.01</td>
<td>1.26</td>
<td>2.27</td>
</tr>
<tr>
<td>5th</td>
<td>3.03</td>
<td>0.25</td>
<td>0.76</td>
<td>0.25</td>
<td>0.51</td>
<td>0.76</td>
</tr>
<tr>
<td>6th</td>
<td>1.77</td>
<td>0.00</td>
<td>1.26</td>
<td>0.76</td>
<td>0.51</td>
<td>0.00</td>
</tr>
<tr>
<td>7th</td>
<td>2.02</td>
<td>1.52</td>
<td>2.27</td>
<td>1.26</td>
<td>1.52</td>
<td>3.03</td>
</tr>
</tbody>
</table>
Table 4 IF of the susceptible person when two people in outdoors.

<table>
<thead>
<tr>
<th>Exposure index</th>
<th>Site L (Leeward side of canyon)</th>
<th>Site M (Middle of canyon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF (inhaled fraction)</td>
<td>54.8ppm</td>
<td>7.07ppm</td>
</tr>
</tbody>
</table>
Fig. 1 Validation of urban ventilation. (a) Overview of experiment placement, (b) Full scale model in CFD simulation. Domain inlet boundary condition of (c) stream-wise velocity and (d) turbulence kinetic energy.
Fig. 2 Comparison of experimental data and CFD simulation results.
Fig. 3 Validation of indoor and outdoor ventilation. (a) Overview of experiment placement, (b) Full scale model in CFD simulation. Domain inlet boundary condition of (c) stream-wise velocity and (d) turbulence kinetic energy.
Fig. 4 Results of experiment data comparing to CFD simulation results. (a) Normalized U_x, (b) Normalized U_z
Fig. 5 (a) Urban street canyon in CFD simulation, (b) Detailed information of human model, (c) Grid arrangement on central plane and manikin surface.
Normalized velocity (U/U_{ref}) $U_{ref}=3$m/s

(a)
Normalized velocity at pedestrian level (z=1.5m)

Leeward side Windward side

Temperature

Leeward side Windward side

Normalized velocity and vector indoor

U (m/s)
Fig. 6 (a) Flow field distribution in canyon, (b) Horizontal velocity profile at pedestrian breathing height $z = 1.5$ m, (c) Indoor temperature distribution, (d) Indoor velocity vector superimposed standardized velocity cloud map, (e) Indoor ACH_{PFR}.
Fig. 7 Dispersion process of droplets with an initial particle size of 10 µm when infected person in windward side and leeward side floors ($t = 30\, s$, $90\, s$), taking 1st, 5th, 8th as examples.
Fig. 8 Inhaled fraction (IF) of susceptible person who stay in the same room with the infected person.
Figure 9 Dispersion process \((t = 5 \text{ s}, 60 \text{ s}, 15 \text{ min})\) when patient in (a) leeward side of canyon, (b) middle of canyon.