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Abstract

In the context of computational social modelling, culture represents the broad set of

attributes over which people may influence each other. Existing agent-based models

typically have simple dyadic means by which individuals copy cultural traits from

others. Building on these models, we instead embed forces from Social Impact Theory

as the basis on which simulated agents influence each other. Agents are influenced

based on their social status as well as their similarity to, and distance from, multiple

connected contacts. These principles are gradually added to a novel agent-based model,

allowing us to isolate and observe their effects.

We find that these mechanisms cause a shift away from the global polarisation of exist-

ing models, toward a diverse state where cultures can overlap and mix. Application of

the new model to different network topologies offers insights into the contexts which

encourage either cultural convergence or pluralism. We develop methods for the gen-

eration of generalised hierarchical structures containing ‘team’ subgraphs, allowing

us to investigate the spread of cultural traits within hypothetical organisations. The

new model is also tested against existing cultural models on a real-world dataset to

determine its ability to approximate actual behavioural contagion. The results support

the notion that models incorporating elements of Social Impact Theory, particularly

multiple sources of influence, more closely resemble reality.

Our findings offer new insights into factors affecting the diffusion of traits and cultural

overlap. These insights are potentially relevant to modelling the spread of misinform-
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ation, political polarisation, and the design of social and organisational networks with

regard to their cultural repercussions.
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Chapter 1

Introduction

1.1 Cultural Dissemination and Contagion

The effects of individuals and groups influencing others to adopt behaviour is a long-

standing consideration across multiple fields from social, political and economic sci-

ences to more recent areas such as artificial intelligence. The dissemination of values,

practices, norms, beliefs and opinions, intentional or otherwise, has implications for

the diffusion of innovations, the ‘viral’ spread of information (and misinformation),

the growth of religions, stability of markets, and distribution of ancient artefacts. The

willingness — or not — of recipients to accept these transmissions can affect the form-

ation, identity, and fracture of groups and even nations.

The combination of these mutable attributes over which people may influence each

other can be broadly thought of as culture. Those of the same, or similar, culture will

share many of the same attributes. Conversely, differentiation of cultural identities

may demarcate separate cultures, leading to polarisation and possibly conflict. Despite

tendencies of people to learn and adopt behaviour from others, and thus become more

alike [90, 103], individuals and groups retain differences. This has been considered a

somewhat paradoxical phenomena, and has stimulated much academic interest. There

are various social and psychological explanations for different contexts under which

groups do not assimilate others, such as social differentiation and geographical isol-

ation. In his influential 1997 work, The dissemination of culture [6], Robert Axelrod
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used a simple, abstract, agent-based model to show that merely the act of copying

cultural traits from those most similar can counter-intuitively result in the existence

of multiple cultures. However, for those cultures to persist in this model, they must

become completely polarised from each other: an implication Axelrod notes as ‘prob-

lematic’ in resolving tensions of a multicultural society.

If polarisation — and the complete rejection of other cultural values — are require-

ments for the existence of multiple cultures, the implications for diplomacy and co-

operation are stark. Yet differences between individuals and groups persist alongside

attributes held in common. In reality, adjacent cultures do not necessarily converge to a

monoculture, nor diverge to hold completely opposing traits. Subcultures form and ex-

ist within larger cultures, minority languages survive despite pressure from neighbours

with which much is held in common. In this thesis, we investigate potential mechan-

isms by which cultural pluralism may continue to exist in a system where similarity

drives convergence.

Polarisation and the spread of misinformation have received much attention in recent

years [8, 10, 11, 20, 42, 156], and has arguably become more relevant to global events

with technologies such as social media making it easier than ever before to communic-

ate. The existence of apparent ‘echo chambers’ [24, 50] highlights the roles of social

reinforcement and ‘homophily’ — the tendency of individuals to associate with those

more similar to themselves [103]. Meanwhile, the growth of online social networks

and the notion of ‘going viral’ have further increased the use of the word contagion

as a metaphor for the spread of media, ideas, and behaviours [108]. Both the psy-

chological phenomena behind why people would choose to amplify and transmit such

messages, and the network structures which enhance or impede their diffusion provide

rich veins for varied research. The application of network science to the study of social

connections is important and well established [15, 30, 38, 69, 160]. The engineering

of these networks, deliberate or otherwise, in the shaping of groups and societies, has

been considered. The performance of organisations has been studied in regard to their
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structure [30, 33, 71]. Damon Centola notes that Hannah Arendt made observations

on the social connections permitted in totalitarian regimes; often casual ‘weak’ ties

that encourage isolation and discourage the close-knit groups capable of mounting a

challenge [5, 36]. Conversely, network analysis has examined the conditions in which

collective action is possible [101, 148].

The applications and implications of behavioural spread over a network need not be

restricted to scenarios where the agents are human beings. As artificial intelligence

and distributed systems progress, autonomous agents may need to learn beneficial and

contextual behaviour from their similar neighbours. Examination of collective social

behaviours has previously provided inspiration for heuristic methods [54, 60].

1.2 Embedding Social Impact Theory in Cultural Con-

tagion

In this thesis we take the long-standing psychological theory of Social Impact [88]

and explore the effects of embedding this to gain more insightful models for cultural

contagion. Current culture models largely assume simple dyadic copying without re-

gard to social reinforcement [6, 34], and typically always result in a completely po-

larised state. In seeking to refine these models, we look to apply alternative simple

mechanisms which may produce results more closely aligned with real-world observa-

tions. Social theories with well defined interactions, particularly those represented as

functions such as Social Impact Theory, lend themselves to computational agent-based

modelling [18]. Building on the work of Robert Axelrod [6] as a useful baseline, we

model the dissemination of abstract cultural traits while additionally introducing the

psychological concept of social influence to understand the effects that it invokes. Spe-

cifically, we base the means of cultural transmission on Latané’s Social Impact theory

of social influence [88] which posited three key elements of social impact on a target

being influenced: the strength and immediacy of an influence, and the number of in-
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fluences1. It is these concepts that we use to form the mechanisms for copying. By

using a theory of social influence as the basis of the trait-copying process, we are able

to assess the effects that this extended psychological model of contagion produces as

compared to those of Axelrod. We are also able to assess to what extent this model

reflects real-world data and alternative contexts for interaction, including fundamental

organisational hierarchies.

By embedding our model and its relationships and interactions in network graphs, we

can create synthetic scenarios for analysis of circumstances that may engender cultural

convergence or disassociation. Where influence is affected by strength, number, and

distance, the structure of social or organisational networks can have a profound effect

on the spread of traits. This has implications for the formation of culturally similar

groups, and the diffusion of innovations, beliefs, and behaviours. Depending on con-

text, the spread of behaviours could be seen as desirable or not. Similarly, there may

be different circumstances where policymakers may wish to encourage either greater

or lesser similarity in an organisation or society’s members, or to protect certain traits.

Agent-based social models such as ours allow investigations on such hypothetical scen-

arios. Our model in particular will highlight the role of multiple sources of cultural

influence, and whether influence from more distant contacts is significant.

In taking this approach we consider several key questions aligned to the effects of em-

bedding different components of Social Impact Theory in alternative contexts. Based

on validation of Social Impact Theory in the literature, we hypothesise that extending

Axelrod’s model of cultural contagion by explicitly embedding Social Impact Theory

will provide additional insights for synthetic problem scenarios while also aligning

with data from real-world observations.

To explore this, we ask the following research questions (RQs):

RQ1 Will trait copying based on number of influences produce different macroscopic

results to the dyadic copying of Axelrod’s model?
1These aspects of Latané’s theory are explained in greater detail in Section 2.2.1.
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RQ2 Which local dynamics may offer explanations for global behaviours in our model

that differ from those in Axelrod’s?

RQ3 Can any differences between our model and Axelrod’s be equated to the differ-

ences between complex and simple contagions2?

RQ4 What effect will network characteristics such as clustering have on the diffusion

of traits using these models?

RQ5 Where some agents are given increased levels of influence due to their status,

will the shape of the hierarchy affect their ability to influence their subordinates?

RQ6 Will the addition of influence over structural distance (i.e. the immediacy of

social contact) affect the core behaviours of cultural diffusion?

RQ7 Given appropriate data, can computational culture models give an indication of

how behaviour spreads through a real social network?

1.3 Thesis structure and contributions

To address the above questions in a systematic manner, we use the following chapters,

which make the following contributions.

• Chapter 2 Background. In this chapter we give a background to the practice of

agent-based modelling for social simulation and describe both Axelrod’s model

of cultural dissemination and Latané’s Social Impact Theory in detail. We outline

key models in related areas of social influence and identify a gap in modelling of

cultural diffusion using Social Impact Theory which we aim to address with our

model in Chapter 3.

2Simple and complex contagions are described in more detail in Section 2.2.3.
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• Chapter 3 An agent-based model of social impact based cultural dissemination.

This chapter contributes a new model of cultural diffusion incorporating Social

Impact Theory. In this chapter, we focus on influence from multiple sources,

and find that this alone can engender a new ‘mixed’ state of cultural overlap. As

this behaviour is a defining characteristic of our model, we also contribute new

metrics to measure this ‘mixing’ of overlapping cultures. These measures and

the model introduced form the basis for several subsequent experiments in later

chapters. This chapter supports questions RQ1 and RQ2.

• Chapter 4 Cultural diffusion as network contagion contributes a network ana-

lysis and comparison of dyadic versus multiple-influence models at both local

and global scale, using ‘small world’ networks to isolate the effects of network

characteristics. Instead of the expected convergence under small-world condi-

tions, we find that cultural mixing increases in the multiple-influence model. We

also compare the local behaviours of the dyadic and multiple-influence models

with the theory of simple and complex contagions, finding examples of similar

dynamics but also instances where the theory does not neatly apply. This chapter

supports questions RQ2, RQ3, and RQ4.

• Chapter 5 The effect of compound social influence in hierarchical structures

contributes an application of our model on the examination of tall versus wide

hierarchical structures, fundamental in organisational structures. The model

from Chapter 3 is extended to include the effects of hierarchical status: greater

influence of those agents higher in the organisational structure. This is achieved

by way of using directed and weighted edges to control the direction and strength

of influence. We find that the stronger influence of higher nodes may be countered

by the sheer number of subordinates, but under some conditions it may also be

enhanced. Also contributed are generalised network structures for the purposes

of modelling hierarchical organisations. This chapter supports question RQ5.

• Chapter 6 The influence of social distance. The main contribution of this chapter



1.3 Thesis structure and contributions 7

is the examination of Latané’s immediacy within our model, by means of dimin-

ished influence over greater network distance between nodes. Two mechanisms

are presented for modelling this effect: an inverse-square method, and a method

based on the strength of intermediaries along a network path. We repeat many of

the experiments of Chapter 4 with this new behaviour included, and find counter-

intuitive results concerning the widening of an agent’s influences via distance.

This chapter supports question RQ6.

• Chapter 7 An empirical test of our model on real-world data. Moving beyond

abstract scenarios, we validate models of social influence against real-world data.

Our fully extended model - now including the effects of multiple influences from

Chapter 3, directed and weighted edges from Chapter 5, and social distance from

Chapter 6 - is tested alongside Axelrod’s and another extension of his culture

model. Using longitudinal data, we find that given the same starting conditions,

the models give a good approximation of the data-set’s later state. This chapter

supports question RQ7.

• Chapter 8 Conclusions in which we reflect on the contributions and results of

the thesis and suggest proposals for future work.
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Chapter 2

Background

The aim of this thesis largely concerns the application of theory originating from so-

cial psychology as the mechanisms within a computational simulation, specifically an

agent-based culture model. We give a brief background of agent-based modelling in

the social sciences, before focusing on the areas most pertinent to our work: Latané’s

Social Impact Theory and Axelrod’s model of cultural dissemination. We examine sev-

eral models and their suitability for applying Social Impact Theory to a model of cul-

tural dissemination. We determine the mechanisms needed for doing so, and identify

where existing models do not allow for simulating the relevant behaviours. We give a

summary of these findings toward the end of the chapter in Table 2.1.

2.1 Computational simulations of social dynamics

The origins of quantitative approaches to social science most probably formed during

the Enlightenment; inspired by Newton, philosophers such as Hobbes, Petty, and Hume

sought to frame political and ‘moral subjects’ in more empirical and mechanistic terms

[14, 39]. The growth of computing in the twentieth century precipitated its use a tool in

a wide range of fields, including the social sciences. A comprehensive exploration of

computational social science could fill several volumes [39, 56, 107]; instead we focus

on the specific areas of networked agent-based models, specifically those involving

social influence.
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The study of social networks owes much to graph theory, from Euler’s Konigsberg

bridges to the coining of ‘sociograms’ by Moreno [39]. In the 1950s standard terms

and concepts such as centrality and density were introduced [17], as well as models of

graph structure and generation such as random graphs [146], ‘preferential attachment’

[39], and small-worlds [46, 106].

Meanwhile, John von Neumann and Stanislaw Ulam pioneered a theory of automata,

laying the foundations for future cellular automata and agent-based models. In 1959,

Oliver Benson pioneered the use of computer simulation in social sciences with a

‘Simple Diplomatic Game Model’, using variables such as national power and ag-

gression to model likelihoods of diplomatic action and war [86].

The use of simulation as a tool can serve many purposes depending on context, from

basic research and observation to hypothesis development and empirical testing where

real data is difficult to obtain. Simulations can be run a large number of times with

variations in parameters, allowing specific assumptions to be isolated for testing [18].

Joshua Epstein argues that the agent-based approach in particular is a form of ‘generat-

ive social science’, where if local interactions can be shown to generate ‘macroscopic

regularities’, they may be candidate explanations for that global behaviour [57].

Of course, it is impossible to quantify and model every facet of human behaviour,

and so simplifying abstractions and generalisations are always employed. One is often

reminded of George Box’s oft-quoted line: "All models are wrong, but some are useful"

[26].

2.1.1 Agent based modelling

Formative contributions to the use of agent-based modelling of social interactions came

from Coleman and Sakoda [21], but perhaps the most famous early agent-based simu-

lation was Thomas Schelling’s work on residential segregation dynamics [137].

Schelling’s model places agents in a cellular grid. The grid is not full; some spaces



2.1 Computational simulations of social dynamics 11

remain empty, allowing agents to move to different sites under certain conditions. Each

agent is assigned one of two immutable types, let us call them ‘X’ and ‘O’. At each

time-step, an agent determines whether it is ‘satisfied’ with its current location, if not,

it moves to a random empty cell. The measure of satisfaction is how many of its

neighbours are of the same type as the agent. If an agent assesses its surroundings and

decides that too many of its neighbours are “not like us”, it will move to a new area.

The surprising result of this model, was that even a relatively small preference for

neighbours of the same ‘type’ results in a separating into segregated areas of ‘X’ and

‘O’, rather than a mix. The segregation (and perhaps polarisation) or neighbourhoods

was not caused by explicit differentiation or movement away from the other type of

agent, but simply by a slight preference for one’s own; a recurring theme in models

discussed in this chapter.

Another recurring theme in social agent-based modelling is the emergence of similar-

ities and analogies between behaviours of social models and those of physics models.

In Schelling’s segregation, physicists saw parallels with concepts such as coarsening

and the phase separation of emulsions [44]. The application of statistical physics to

social models has proved a fruitful one [34]. Indeed, physicists have found many of

the models discussed later in this chapter to have similarities with Ising’s spin model of

ferromagnetism [125]. While the focus of physicists has often been the classification of

social dynamics against known physical phenomena, social models do not always lend

themselves to neat categorisation of macro-scale dynamics, and local or micro-scale

considerations have often been more appropriate.

A key dynamic of Schelling’s model is that of emergent behaviour; individual pro-

clivities do not necessarily result in obvious group behaviour (or as Schelling referred

to them, Micromotives and Macrobehavior [138]). This principle has shaped the use

of agent-based models since, and allies with a use of simulation to test the broader

implications of specific isolated behaviours.

Common features of agents in agent-based models include being aware of its own state
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and that of its local environment, though depending on the model an agent’s ‘vision’

may not extend far. Agents are autonomous, usually without any central authority, and

can generally communicate or interact with other agents in some way [39]. Agents

adapt to their local environment; in line with Axelrod’s model, most of the models

we examine feature ‘adaptive rather than rational agents’ [6]. There are no costs or

benefits, utility, fitness, or strategy as in some game-theoretic models; agents simply

give and receive influence, reacting to their environment.

2.2 Social influence and contagion

Social influence is defined by the American Psychological Association as ‘any change

in an individual’s thoughts, feelings, or behaviours caused by other people’ and en-

compasses or is related to several other concepts of social psychology such as inter-

personal influence and social pressure [3]. Considerations of social environment and

how people influence others date back to antiquity, but gathered pace in the wake of

the French Revolution [131]. Violent uprisings of the 19th century became attributed to

the power of suggestion. The Scottish journalist Charles Mackay popularised the term

‘Madness of Crowds’ in his book of similar name [96], which among other examples

contributed a (likely exaggerated [65]) description of the Dutch tulip bubble as one of

social mania. More academic treatments of crowd behaviour were given by Sighele

[141], Tarde, and Le Bon [91] as the field of social psychology developed.

In the following century, the study of social influence widened into consideration of

many social phenomena [131]. It is however interesting (at least for our purposes),

that those early works seemed to describe it as a contagion. Indeed, both Sighele and

Le Bon use the word in their works [91, 141]. The term social contagion is some-

times used in a specific sense (particularly in the context of the early work mentioned

above) relating to the easy spread of behaviour or emotion in a crowd, and sometimes

more generally to encompass broader diffusion of attributes. In this thesis we may
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use contagion to mean the possible transmission of any mutable attribute, but not that

this transmission is necessarily trivial, immediate, or without consideration on the part

of the individual. Distinctions between instances where behaviours and traits spread

easily, and scenarios where they do not, are examined in Chapter 4.

Serge Moscovici formed a theory of minority influence, accounting for the fact that the

norms and opinions of the majority are not always universally adopted [115]. While

Moscovici’s work contained a qualitative difference between how minority and major-

ity influences achieved adoption, Bibb Latané’s social impact theory [88] allowed for

the possibility of minority influence through the same essential mechanisms as that of

majority influence. Where influence consists of not only the number of influences, but

also their relative individual strength and immediacy, a minority of strong influences

can outweigh a local majority. Latané’s theory has proven popular and influential, and

has been used in various contexts [25, 78, 80, 119]. Its expression as a simple for-

mula of strength, immediacy, and number positions social impact theory as a useful

candidate for algorithmic modelling of social influence. Several models have mechan-

isms that appear similar to those of strength, immediacy or number, but few explicitly

model all three. Social Impact Theory has rarely, if ever, been utilised as a method

for examining the polarisation present in culture models such as Axelrod’s [6]. In this

thesis, we use Social Impact Theory as the basis for how the copying of cultural traits

takes place on each iteration of a computational simulation. The theory is described in

greater depth below.

2.2.1 Social Impact Theory

Bibb Latané’s social impact theory [88] appears, on the surface, to be a rather simple

description of people’s social effect on each other. Inspired by physical forces, par-

ticularly light, Latané sets out three principles of social impact, in which source of

influence can act upon a target:
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Figure 2.1: Social Impact Theory: a number of sources exerting asymmetric in-

fluence on a target, depending on their strength and distance.

• Strength - Determined by the power, importance, status, prior relationship, repu-

tation etc. of a source of influence.

• Immediacy - The physical or temporal proximity of the source, the closeness of

contact, the absence intervening barriers or filters.

• Number - Simply the number of sources acting upon the target.

These effects are compared by Latané to the effect of light-bulbs shining on a surface;

the number of bulbs, their lumens, and their distance from the surface. He formulates

these effects on impact as simply multiplicative:

Impact = f(SIN)

Thus a target’s contact who has power over the target (like a boss), or is one with many

things in common (perhaps a sibling), or is a source of inspiration (perhaps a celebrity),

will have a high strength of influence. However, should that source be fairly distant -

perhaps despite best intentions the two contacts meet less than they would like, or one

lives in another country, or it may even be the case that they simply don’t know each

other personally (for example, the inspirational celebrity) - then the influence will be
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diminished. The sheer number of influences will also have an effect; one may suffer

stage fright in front of an audience, or be swept along by the emotions of a crowd, or

be reticent to act against the social norms of those around them.

The social force of number is qualified by the addition of a ‘psychosocial law’, that

each additional source added will contribute less influence than those before. Where

two people are influencing a target, the addition of a third could make a substantial

difference. Where 99 people are influencing a target, the addition of a 100th adds little

impact. Latané expresses this:

Impact = sN t

where N is the number of sources, s is a scaling constant, and t is a value between 0

and 1. In return, a source’s impact may be diminished by the number of targets they

try to influence at once:

Impact from source = f(1/SIN)

For each additional target that an individual seeks to influence, their impact will be a

little less each time.

Latané gives supporting evidence across several scenarios, including conformity and

imitation, bystander intervention, stage fright, and news interest. The theory is often

cited, and has been applied to considerations of phenomena such as social loafing [80]

and the influence of physical personal space [89] amongst many others [25, 78, 119].

2.2.2 Computational models of social influence and opinion form-

ation

The key hypotheses and research questions outlined in Chapter 1 are centred on ap-

plying Social Impact Theory to culture models, as a simulation of social influence in
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a population. To apply Social Impact Theory computationally, it is clear that we will

need to model its three main mechanisms:

• a form of strength of influence between agents

• the notion of immediacy or distance between agents, and this affecting their in-

fluence upon one another

• an allowance for an agent to be influenced by a number of other agents simul-

taneously

Existing models often incorporate one or more of these concepts, explicitly or other-

wise. We will examine these models throughout this chapter. In addition to their use of

aspects of Social Impact Theory, we will also assess the suitability of these studies for

application to models of culture. Cultural models are usually distinguished by agents

having a set of discrete traits; ‘opinion-based’ models tend to only study a singular

binary or continuous value within agents [34]. Therefore, we are also looking for mod-

els that use multiple features, each with multiple possible discrete trait values. A

summary of these requirements, and whether they are present in existing models, is

given at the end of the chapter in Table 2.1.

A general theme in ‘social influence’ is the tendency for agents to become more alike

[34], through the copying and transmission of various attributes. This is usually re-

ferred to as homophily, and is commonly observed [103]. Many agent-based models

tend to be characterised as either opinion-formation models or models of cultural dis-

semination, but dynamics and characteristics of ‘cultural’ or ‘opinion-based’ models

will often overlap. Although our model introduced in this thesis (Chapter 3 and ex-

tended in chapters 5, 6) is one of cultural spread (i.e., multiple discrete traits), in this

section we give a brief overview of some of the more fundamental opinion-based mod-

els as some may have dynamics similar to those we will later use. Cultural models are

described in their own section, 2.3.
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Voter model

The voter model [76] is a particularly simple model of social influence. Each agent

is given a single binary opinion, usually assigned randomly at initialisation. At each

iteration, a random agent is activated, and one of its neighbours is randomly chosen.

The activated agent simply copies the opinion of its neighbour without any other con-

siderations, and the sites converge to a single opinion. While simplistic, the model and

its derivatives display behaviours familiar to physicists, such as phase transitions and

other dynamics analogous to those of ferromagnetic models [34].

The introduction of ‘zealots’ to the voter model causes changes to the dynamics. In

simple topologies, a single zealot will eventually convert all others to their position

[109]. Multiple zealots with conflicting opinions can cause fluctuating steady states

[110].

While influential, the voter model lacks some of the key features we need to answer the

research questions posed in Chapter 1, and to apply Social Impact Theory to cultural

contagion. The voter model features only a single feature of binary value. The notion

of strength is absent in the base model, influence is only dyadic rather than from a

greater number of sources, and potential sources of influence are only those most near

(see Table 2.1).

Majority Rule

Inspired by public debates, the majority rule model [64] expands on the voter model

by allowing multiple sources of influence. The means by which this occurs is on every

iteration, a ‘discussion group’ r is drawn from the entire population. All members

within this group will adopt the majority opinion within the group. The size of the

group may vary on each iteration, from a given distribution. Where the size of the

group is even, deadlock can occur when the number of ‘votes’ for each opinion is

evenly split. Galem frames the binary opinions as ‘reform’ and ‘status-quo’; on a
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deadlock, the group will choose the status quo opinion. This gives a slight bias to one

of the potential opinions. Where group sizes are odd, the majority opinion (whichever

it is) will eventually win out and gain consensus in the population. Where group sizes

are even, the ‘status-quo’ opinion will eventually dominate, even if the agents who hold

it start as a minority.

The use of a ‘discussion group’ is analogous to number from Social Impact Theory,

but the other limitations present in the base voter model still remain if we are to model

Social Impact Theory in a cultural model.

A Dynamic Theory of Social Impact

In 1990, Latané worked with Nowak and Szamrej to develop an agent-based model of

his social impact theory [122]. As social impact theory is fundamental to this thesis,

we look at this model in a little more detail. Its agents each held a single binary opinion

(randomly assigned at initialisation), and were placed in cellular grids. Each agent was

also given a random value for ‘persuasiveness’, and a random value for ‘supportive-

ness’; these two variables represent the strength of social impact. Persuasiveness gives

the strength of the agent when influencing those others with an opposing opinion to

change it; supportiveness gives the strength of the agent when influencing those of the

same opinion to resist change. Immediacy is based on the Euclidean distance of the

influencing agent; applied to the strength using an inverse-square rule. The fact that a

target is influenced simultaneously by multiple persuasive and supportive sources gives

the number element of social impact. This is moderated however, by the ‘psychoso-

cial’ law of social impact described in Section 2.2.1; these ‘diminishing returns’ are

achieved by by multiplying influence by the square root of the number of influencers.

The authors determine the persuasive (i.e. opinion-changing) impact on an agent as:

l̂p = N
1
2
o [∑(pi/d

2
i )/No]
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and the supportive (i.e. opinion-affirming) impact on an agent as:

l̂s = N
1
2
s [∑(si/d

2
i )/Ns]

where No and Ns represent the number of agents with opposing and shared views re-

spectively; pi or si the persuasiveness or supportiveness of the source i; di the distance

between source i and the target.

On each step of the simulation, the rules above are applied to determine whether an

agent will change or hold its opinion. The simulation tends to reach a polarised state at

equilibrium. One opinion usually forms a clear majority, with clusters of the minority

opinion pushed to the margins of the cellular grid.

While the most obvious example of a computational model of Social Impact Theory,

this dynamic model of social impact has limitations in regard to potential application

to culture models (see Table 2.1). As with voter models, Nowak et al. use a single

binary feature, whereas culture models are typically multifaceted. Strength is assigned

randomly, rather than taking into account homophily or other potential real-life effects

on strength of influence. Influence is from multiple sources, but this includes the entire

population; culture models are usually based on more localised influence. However, we

adapt the inverse-square method of diminishing influence over distance in our model

in Chapter 6.

Continuous opinion models

Probably the most well known opinion model with continuous values is that of Guil-

laume Deffuant et al. [49]. Here, agents are placed in a graph and may interact with

their neighbours. Each agent is given a random starting opinion somewhere between

0 and 1. These boundaries are perhaps the ‘extremes’ of an opinion, with moderate

views lying between. At each iteration, a randomly chosen agent will interact with

a randomly chosen neighbour, and their opinions may move closer to each other’s.
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A threshold to discussion is often set: if the two agents’ opinions are too far apart,

they will not interact; this barrier to interaction is referred to as ‘bounded confidence’.

The amount by which agents move their opinions toward each other is determined

by a convergence parameter. There is an element of homophily; agents close enough

in opinion becoming more alike, but those too far apart not interacting and perhaps

becoming polarised. The bounded confidence threshold determines how many final

clusters of opinions will emerge. Where the threshold is large, all agents converge to a

single opinion. Where the threshold is smaller, clusters of different opinions may form.

Deffuant et al. have made a number of extensions to the base model, including the

introduction of ‘extremists’ [48]. Here, the uncertainty of agents (i.e. the threshold

to interaction) is influenced by others as well as the opinion. Furthermore, an agent’s

influence on others is increased by low levels of uncertainty - an ‘extremist’ will be

less uncertain in their views. Where there was a high level of uncertainty in the gen-

eral population, extremists tended to succeed in winning over others to their views.

In [2], Amblard and Deffuant examine the effects of network topology (particularly

lattices and small-world networks) on this extremism, finding that at low connectivity

extremists could spread their opinion more than in high connectivity scenarios. Def-

fuant also found that convergence around extremist opinions could be made possible

by the isolation of moderates [47].

Hegselmann and Krause [74] offer a similar approach, but in contrast to the Deffuant

model they incorporate multiple influences. Instead of being influenced by one neigh-

bour at an iteration, an agent adopts the average opinion of all its compatible neigh-

bours. The additional cognitive expense of determining this average opinion makes

time-to-convergence generally slower than in the Deffuant model.

The use of continuous rather than binary values allows for greater variance in the num-

ber and composition of groups formed. However, this single continuous opinion is

again quite different to the multiple features of distinct traits used in culture models

(see Table 2.1). Some form of homophily is present, but this serves more to block in-
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teraction between dissimilar agents rather than as a form of ‘strength’ of influence. The

Hegselmann and Krause model allows for multiple sources of influence (the ‘number’

in Social Impact Theory), but influence over distance is absent.

2.2.3 Social contagion

The copying of traits and opinions from one agent to another also bears some similarity

to models of contagion. Models of contagion are often epidemiological in nature,

such as agent-based SIR models. In their simplest form, an SIR model [81] simulates

the spread of a trait (for example, a disease one either has or does not) throughout a

population. Each member of the population has a status from Susceptible (does not

have the disease or trait but is able to receive it), Infected (has trait), or Recovered (no

longer has trait, and may or may not be immune from receiving it again). These models

and their derivatives have been re-purposed for scenarios beyond those of infectious

diseases, such as the spread of news [79], rumours [43], financial crises [51], corruption

[118], memes [157], scientific ideas [66], and more besides.

Studies applying network analysis to contagion are myriad [128]. In the context of

epidemiology, applying network science principles gained momentum with the study

of the spread of sexually transmitted diseases in the 1980s [95]. Even where contagion

and graph theory are not explicitly mentioned, earlier work hinted at the importance

of short paths of transmission; perhaps most famously in Travers and Milgram’s 1969

‘small-world’ experiment that popularised the notion of ‘six degrees of separation’

[152]. Granovetter further advanced the importance of global path-length and how it

is typically the ‘weaker’ ties of social acquaintances that contribute to the small-world

phenomena [69]. Strong ties in a network tend to be clustered, and provide a degree

of local redundancy; where information spreads through a network, a node’s closest

contacts will tend to also be close to each other, and receive the same information

almost simultaneously. Weak ties on the other hand are often long, joining otherwise

disparate communities. Watts and Strogatz found that it only takes a relatively small
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number of these ‘long’ ties acting as shortcuts to give a clustered network a low average

path-length, similar to that of a random graph [160]. However, unlike a random graph,

a Watts-Strogatz graph can retain a high degree of clustering while the graph diameter

becomes short: a key characteristic of a ‘small-world’ network. These types of network

properties could have significance for the behaviour of our proposed model, and will

be key to answering research question RQ4 (see Chapter 4).

Although a highly contagious disease or rumour may jump across such long weak

links easily, the spread of behaviours as a ‘viral’ sensation is disputed. While a virus

may spread alarmingly easily, measures to prevent it may meet resistance [127]. In

some cases, non-adherence to measures was caused or exacerbated by peer pressure

and rumours of side effects [155]. There are instances where doctors are reluctant to

adopt a new drug unless their colleagues are using it [41], or activists are more likely

to join a social movement where it aligns with their other social ties [102]. Damon

Centola argues that where social behaviours are concerned, the threshold to adoption is

often higher, and therefore diffusion requires multiple sources of influence - a ‘complex

contagion’ [36]. As our model intends to incorporate number from Social Impact

Theory as simultaneous multiple influences, there could be links between the theory

of complex contagions and our work. In particular, simple and complex contagions

are key to answering research question RQ3, so we describe this theory in more detail

below.

Simple and Complex Contagions

Damon Centola makes a distinction between simple and complex contagions. The

definitive difference is the minimum number of contacts needed for a trait to spread.

In simple contagions a single interaction with a single contact may be sufficient for

transmission. This is the case for many infectious diseases; while repeated interactions

may increase the chances of contagion, the minimum possible contact required for

transmission is still a single interaction. Travellers forced into close proximity on a
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metro train, who may never have met and will likely never see each other again, may

nevertheless catch a common cold from one another. As we are unfortunately all too

aware, even pressing the same elevator button as an infected person, then touching

one’s face, may be sufficient contact for the transmission of a potentially deadly virus.

Complex contagions however, require multiple sources for a trait to spread. It is argued

that the spread of human behaviours often require social reinforcement from multiple

sources. This is often because the adoption of a new trait or behaviour incurs some

form of cost, be it financial, social, or otherwise. In communications technologies,

adoption will likely depend on whether the potential user perceives the benefit of the

technology to exceed its cost; yet the value derived from the service is directly depend-

ent on the number of its users (a ‘network effect’) [94]. One is unlikely to purchase a

fax machine or mobile phone without other compatible devices to communicate with.

Multiple trusted sources adopting a behaviour increases its credibility, such as cases

where doctors are more likely to trust the use of an innovation once their colleagues

are seen to have adopted it. The risk of damaging one’s reputation by adopting a new

behaviour is reduced when others make the same decision [36]. The idea of a ‘critical

mass’ is common across varied social contexts, from seminar attendance to collect-

ive action [100, 138]. Where contagions are complex this can impact widely held

assumptions regarding how behaviours spread ‘virally’ or across ‘weak links’ within

small-world networks.

A comparison of these contagion dynamics with those of our model is the focus of

research question RQ3. Consequently specific mechanisms and local dynamics are

described in more detail in Section 4.1.1.

2.3 Culture

The word ‘culture’ has many different definitions and comes with various connotations.

Kroeber and Kluckhohn listed over 150 definitions in 1952 [87]; in 2006 Baldwin et al.
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added 300 more [13]. The majority at least frame culture as something we learn from

each other. For the purposes of this thesis we shall use the same very broad definition

that Robert Axelrod uses in his 1997 work The dissemination of culture: the ‘set of

individual attributes that are subject to social influence’ [6].

Axelrod goes on to state that cultural diffusionists tend to treat culture as a set of

distinct traits, each of which can be passed on. Many computational models work to

the same principle; the general perspective is that this set of categorical and non-ordinal

traits distinguishes culture models from opinion formation models [34]. These traits

are usually abstract; they are not attached to any real-world meaning or significance.

What is important is that they may spread, and global states of distinct cultures of

different numbers and sizes emerge. A large number of subsequent cultural models are

based on Axelrod’s original, including the model we develop over the course of this

thesis. Accordingly, we describe his model in more depth below.

2.3.1 Axelrod’s model of Cultural Dissemination

As we have mentioned above, Robert Axelrod’s influential paper The dissemination of

culture [6] modelled culture as a set of discrete traits; a representation that has been

adopted by many subsequent works (see Section 2.3.2). Where previous models of

social influence (such as the voter model and its derivatives), tended to treat features

individually, Axelrod took into account the interaction between features. This is key

to the homophilic copying within the model; the more existing features agents have in

common, the more likely they are to copy additional traits from each other. Axelrod

set out to investigate the apparent paradox of cultural convergence and diversity. If

people tend to associate with those more similar and adopt their behaviours and norms,

why then do cultural differences continue to exist? In a similar result to Schelling’s

earlier work on residential segregation [137], it was found that even a small preference

for interacting with those more similar at a local level can create a global state of

polarisation. Different cultures continue to exist, but they are disparate and essentially
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disconnected from each other.

In Axelrod’s model, agents are each assigned a list of cultural features (or ‘dimen-

sions of culture’). Each feature takes a value from a set of discrete cultural traits. For

example, one feature may represent a piece of clothing, and each possible trait value

may represent a style for that item. Agents in this model do not necessarily represent

individuals, but could represent a ‘cultural site’; this could be an individual, a village,

a nation, or any entity with a cultural identity. Expressed more formally, each agent

j holds a feature vector (σj1, σ
j
2, . . . , σ

j
F ) where there are F features1. Each feature is

populated by one value from a set of q traits. Let T denote the set of traits. In Axel-

rod’s work and subsequent extensions, these traits are typically denoted by numerals;

however it is important to remember that they are discrete, and the value 1 is no more

similar to 2 as it is to 9. Any mutually exclusive symbols could be used to denote traits,

but alphanumeric characters are usually most convenient; thus a set T of q = 10 traits

will almost always be represented by the integers 0 to 9. In this way an agent’s culture

is defined by its features; an example where F = 5, q = 10 might be (0,7,4,8,1).

In the original work agents are assigned random trait values and placed in a simple

square lattice, often a 10x10 grid of 100 agents, reminiscent of cellular automata. An

agent may interact with those to its north, east, south or west — i.e. a ‘Manhattan

Distance’ of 1. This grid is bounded and non-toroidal; the agent at the extreme north-

west square of the grid only has neighbours to its south and east.

Trait-spreading interactions in Axelrod’s model are based on homophily, the widely

observed [103] tendency for individuals to associate with those most similar to them-

selves. On each iteration a random agent i is activated. It chooses a random neighbour,

j, to interact with. On interaction, the existing similarity between i and j is calculated:

1Typically a set is denoted by capitalisation, and its size by ∣F ∣, but in the interests of consistency

with other extensions of Axelrod’s work, we will always use F to refer to the size of the feature vector

rather than the vector itself.
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Figure 2.2: Trait copying in Axelrod’s model: These two agents share 3/5 features

in common (features 2, 3 and 5), giving a similarity of 0.6. Should Agent 1 be

activated, they therefore have a 60% chance of copying from Agent 2. If this

occurs, a random dissimilar feature will be chosen (i.e. feature 1 or 4 in this case),

and Agent 1 will adopt the trait agent 2 holds in that feature. For example, Agent

1 may change its 4th feature to be trait 5, to match Agent 2.

simi,j =
1

F

F

∑
k=1

δσi
k
,σj

k

where δσi
k
,σj

k
is Kronecker’s delta. Therefore δσi

k
,σj

k
= 1 only when the kth feature of

i and j are the same. Pseudo-code for calculating this existing similarity is given in

Algorithm 2.1. This calculation is based on the number of features the agents have

in common, and this similarity dictates the likelihood that i will copy a trait from j.

Where i and j have two out of five features in common, the probability of copying is 2
5 ,

or 0.4. Should this occur, i will adopt a trait from j for one of the remaining dissimilar

features. An example of this copying process is given in Figure 2.2, pseudo-code in

Algorithm 2.2.

In this way, similar agents become more similar, driving convergence. There may be

instances where two neighbours have traits in common, but lose this commonality as

one is influenced in a different direction by their other neighbours. However, in general,

a small amount of similarity often leads to complete similarity. Even if two adjacent

agents have low similarity and probability of copying, given enough time they will
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Algorithm 2.1 calculateSimilarity(i,j), based on the number of features the two com-

pared agents have in common.
Require: two agents, i and j

Require: the number of features, F

1: similarity ← 0

2: for k ← 1 to F do

3: if σk(i) = σk(j) then

4: similarity ← similarity + 1

5: end if

6: end for

7: return similarity/F

copy from either each other or their other neighbours. The simulation can only reach a

state of stability where the possibility of copying traits is absent from all relationships

between agents in the population. There are two circumstances where an agent has zero

chance of copying from a neighbour: it has exactly the same culture, or it is completely

dissimilar. Convergence and polarisation are inevitable and inescapable. An algorithm

for determining a stop condition is given in Algorithm 2.3; note that this occurs when

all agents are adjacent to either completely similar or completely dissimilar neighbours.

Axelrod’s principal measure for this convergence was the number of cultural regions,

each being a set of contiguous sites with identical culture. His work also defines cul-

tural zones, areas containing agents with ‘compatible’ culture; i.e. at least one feature

in common. Cultural zones eventually become cultural regions of identical agents. The

number of these cultural regions that the stabilised simulation can support is largely af-

fected by the number of features F and traits q. An increase in the size of the feature

vector F gives more chance of agents having at least one trait in common, driving the

copying behaviour that eventually leads to homogeneous cultures. An increase in the

number of possible trait values q for each feature increases the chances that agents will

have nothing in common, allowing different cultures to persist. When trait values are
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Algorithm 2.2 Interactions in Axelrod’s Model
Require: the number of features, F

Require: a global set of agents A, each containing a set of F features

1: stabilised← false

2: while not stabilised do

3: Select random agent i from A where ∣N(i)∣ > 0

4: Select random agent j where j ∈ N(i)

5: similarity ← calculateSimilarity(i, j) // see Algorithm 2.1 for calculateSimilarity(i, j)

6: randomInt← a random integer between 1 and F inclusive

7: if F > (similarity × F ) ≥ randomInt then // ‘F >’ ensures agents not already identical

8: Select random feature k where 0 < k ≤ F and σk(i) ≠ σk(j)

9: σk(i)← σk(j) // i copies a trait from j

10: end if

11: stabilised← isStabilised() // see Algorithm 2.3

12: end while

Algorithm 2.3 Detecting stabilisation in Axelrod’s model. Stabilisation can only occur

where all agents have either complete similarity or complete dissimilarity with those

they may interact with.
Require: a global set of agents A, each containing a set of F features

1: for all agent i ∈ A do

2: for all neighbour j of agent i do

3: similarity ← calculateSimilarity(i, j)

4: if 0 < similarity < 1 then // agents are neither identical nor completely dissimilar

5: return false

6: end if

7: end for

8: end for

9: return true
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Figure 2.3: A typical end state of Axelrod’s model, where F = 5, q = 10. Here

we have recreated Axelrod’s model, and it has stabilised with 3 cultural regions.

Note that each agent is either identical or completely dissimilar to its neighbours;

the cultures are completely polarised. Interestingly, the cultures marked in blue

and red actually do have one compatible feature (feature 2), but they are insulated

from each other by the dominant ‘92491’ culture. Had the blue and red cultures

been geographically adjacent, one would have assimilated the other.

assigned randomly, the probability that two neighbours will start with all features in

common is (1
q )
F , that they will have no features in common (1 − 1

q )
F , and that they

will have at least one feature in common 1 − (1 − 1
q )
F (Figure 2.4). These starting

probabilities give an indication of how likely it is that multiple cultures will exist when

the stabilisation is run. However, the final number of cultural regions is not a direct

translation from these starting probabilities. When the simulation is complete, at low

values of q multiple cultures cannot be sustained at all; at high values of q the popu-

lation will consist of many very small regions. Physicists have characterised this as a

phase transition [35], in a similar fashion to the abrupt transitions between basic states

of matter under temperature changes.

Axelrod’s model continues to be a popular basis for simulations of social and cultural

influence. As mentioned above, and in [34], subsequent computational models tend to

follow Axelrod in treating culture as multi-faceted.
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Figure 2.4: Starting probabilities (p) of at least one feature in common for differ-

ent values of q and F .

2.3.2 Extensions to Axelrod’s model

There are numerous extensions and comments on Axelrod’s model, from drawing ana-

logies with similar phenomena in physics [35], to applications in optimisation prob-

lems [60].

Many papers examine the effects of different network topologies. In [85], the model’s

effects in small-world and scale-free networks were examined, while [143] utilised

Erdős-Rényi random graphs. Battiston et al. [16] take a different approach involving

multiplex networks where an agent may have different contacts for each feature. For

example, one may be able to influence another individual on sport but not politics.

Mobility of agents has also been considered. Gracia-Lázaro et al. [68] do away with

the usual network structures and instead place the agents in a world more akin to that

of Schelling’s residential segregation model [137], where agents may move to empty

spaces in an Axelrod-Schelling hybrid. In [37], Centola et al. allowed a form of move-

ment within a network: agents dynamically ‘rewiring’ their edges in a network which
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co-evolves alongside the cultures. In this model, where an agent has zero similarity

with one of its neighbours, it may abandon contact with it and instead create a link to

another randomly chosen agent. At certain values of q (number of traits), the network

will disconnect into disparate sub-graphs, each of a single culture.

Similar to introducing ‘zealots’ or ‘extremists’ to opinion formation models [48, 109,

110], Singh et al. [143] add ‘committed agents’ to the Axelrod model, finding that

beyond a critical number of committed agents convergence time grows logarithmically.

Both Shibanai et al. [140] and González-Avella et al. [67] have added the effect of mass

media to the model, by modelling a mass media message as a ‘global other’ with which

agents may interact. In [67], on each iteration there is a probability B that an agent

may be influenced by the ‘mass media’ rather than one of its local neighbours. Counter-

intuitively, high values of B can induce multiple cultures rather than convergence to a

monoculture, due to increased polarisation with those agents who do not share traits

with the media message.

The notion of ‘cultural drift’ is borrowed from evolutionary biology’s ‘genetic drift’;

minor errors or fluctuations that may lead to broader change. Klemm et al. [84] in-

troduce cultural drift to Axelrod’s model as noise: there is a small probability that an

agent will change a trait randomly and not through social influence. These small per-

turbations can ‘shake’ Axelrod’s simulation out of a state of multiple polarised cultures

and into a global monoculture. Flache and Macy [59] demonstrate that the fragility of

cultural diversity in the face of these random perturbations can be made more robust by

influence being from multiple sources rather than one, a method thematically close to

Social Impact Theory’s number. Consequently we examine this model in further detail

below.

Flache and Macy’s model of Social Influence

In [59], Flache and Macy expand Axelrod’s model to include noise, selection error, and

what they refer to as social rather than interpersonal influence. The authors charac-
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terise the dyadic interactions of Axelrod’s model as ‘interpersonal’, and simultaneous

multiple influences as ‘social’.

At each activation, the node in question i will add each of its neighbours j to an influ-

ential subset S with probability pij . This is somewhat similar to the ‘Majority Rule’

voter model of social influence (see Section 2.2.2), however the group is drawn only

from i’s neighbours, and only i will be updated rather than the whole group. This sub-

set S will contain only the nodes who may have influence over i during this iteration.

The probability of each neighbour j of i being added to this subset is denoted as pij by

Flache and Macy; this measure is either always 1 if homophily is disabled, otherwise

it is identical to the similarity measure used in Axelrod’s original model. However,

Flache and Macy also use selection error; with probability r′, the decision on whether

to include or exclude a neighbour j from group S will be reversed. In addition to se-

lection error, noise is also added; at intervals in the simulation an agent may change

one of its features to a randomly chosen trait.

When S has been formed, and assuming it is not empty, a feature k is randomly chosen

for updating2. For each possible trait α of k the number of ‘votes’ α receives is counted;

that is, each member of S that holds that trait on that feature contributes a vote toward

it being adopted. The trait with the maximum votes, α′, is adopted for that feature k

by agent i.

Despite the disruptive dynamics of selection error and noise, the multiple social in-

fluences allowed in the model offer greater robustness against random perturbations

pushing the simulation into a single monoculture.

2In their paper, Flache and Macy use the symbols F , Q, f and q to refer respectively to the number

of features, number of traits, feature in question, and trait in question. For consistency with Axelrod’s

model we use F and q throughout this thesis to denote the number of features and number of traits.

Specific features and traits are indicated by k and α respectively, as used in our trait-scoring formula in

Chapter 3.
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2.4 Summary

Numerous approaches and models have been developed to offer potential explanations

for aspects of how human beings influence each other, and spread behaviours, values,

opinions, and norms. Many models seek inspiration from physics for their mechan-

isms, and are often analysed in comparison to physical phenomena. Few use social

impact theory deliberately or explicitly, although some have processes which could be

thought of as analogous to some aspects of social impact theory; these are compared

in Table 2.1. Nowak et al. [122] have contributed a well known model of social impact

theory characterised as a physical force, but this is used as an opinion formation model

with only a single binary opinion being influenced rather than the multiple discrete

traits typical of a culture model. Although Flache and Macy’s culture model [59] can

be used as one of multiple influences, social impact is not the focus of the model. Con-

sequently there remains a gap in the literature for a systematic understanding of cultural

contagion using the mechanisms on which social impact theory is based, namely the

strength, number, and distance of influences. This is the focus of our thesis, which

begins by introducing a new modelling approach for this purpose in Chapter 3.
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Chapter 3

An agent-based model of social impact

based cultural dissemination

In this chapter, we introduce our model which will act as the basis of experiments

throughout this thesis. Extending Axelrod’s Dissemination of Culture, we use Latané’s

Social Impact Theory as the basis of social influence within a culture model. In particu-

lar, this chapter focuses on expanding the influence upon an individual to include mul-

tiple sources of local influence; a mechanism that can give markedly different results

when compared to dyadic copying. We also outline alternative metrics for examining

the state of cultural models on network graphs.

The work outlined in this chapter has previously been published in part in [112]. The

measures of polarised, homogenised, and mixed links outlined in Section 3.3.2 have

been published in [113]. This chapter supports research questions RQ1 and RQ2.

3.1 Introduction

In his work on cultural dissemination, Axelrod focuses on cultural ‘sites’, which may

or may not necessarily represent individuals. Indeed, Axelrod writes of implications

for state formation and transnational integration as well as social influence between

individuals [6]. We also aim to keep our model abstract and generalised, such that

the agents may potentially represent any entity (individual or group) with mutable at-
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tributes, and the meaning of those attributes is not defined. What is more important

is that, as in Axelrod’s work, the attributes are multiplex, mutable, and transmittable.

However, when it comes to the mechanisms of this transmission, our work extends

Axelrod’s by embedding Social Impact Theory [88] as a process of social influence.

While this theory has often been used as a qualitative description of how an individual

may be influenced by others, we attempt to use its mechanisms as alternatives to the

dyadic copying of traits within the Axelrod model.

3.1.1 Basis for our model

The extended mechanisms of social influence within our model are drawn from Latané’s

social impact theory [88], which has previously been adopted to emulate larger scale

effects of a range of different social and psychological processes [25, 78, 119]. De-

scribed in more detail in Section 2.2.1, the theory characterises influence based on

three variables: strength (denoted S), number (denoted N ), and immediacy (denoted

I). ‘Strength’ reflects the intensity of a source upon the target being influenced, de-

termined by factors such as status, resources, in-group membership, power. ‘Number’

is simply the number of influences upon the target. ‘Immediacy’ represents the proxim-

ity in temporal, physical or social space and absence of barriers or filters. Influence in

Latané’s initial work is given as a multiplication of these factors, Impact = f(SIN).

In basing the probability of copying on an agent’s existing similarity with its influ-

encer, Axelrod’s model has in effect already included an element of strength. The

propensity of individuals to behave more favourably toward those of greater similarity

is a long-standing one [90, 103]. We retain this element of homophily in our model as

an initial basis for the strength of influence. However we allow for the possibility of

later extending strength to incorporate other aspects, such as status, which we include

in Chapter 5.

A target being influenced by several sources of influence is notably absent in Axelrod’s
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model. We seek to add this number aspect, moving away from dyadic interactions to

ones where an agent is influenced by multiple sources simultaneously. An individual’s

closest ties acting upon them simultaneously can in a sense be thought of as ‘peer

pressure’ [112]. This addition is the main focus of this chapter, and also allows our

model to be used as a tool for examining the effects of dyadic versus multiple influence

in other networks and scenarios (chapters 4, 5, 7).

Latané’s theory also contains a ‘psychosocial law’, whereby each additional source of

influence contributes a little less (see Section 2.2.1). In our model influence will be

divided by the number of neighbours, giving an effect similar to that outlined in the

original theory [88] and the model of Dynamic Social Impact Theory [122].

The third social force of Latané’s social impact is that of ‘Immediacy’ or distance. We

defer the consideration of this factor until later in this thesis (Chapter 6); instead we

first seek to isolate and examine the effects of number of influences.

3.1.2 Other models of multiple influence

In Chapter 2, we described previous models that have some element of multiple influ-

ence, although few explicitly set out to model Social Impact Theory. The ‘Majority

Rule’ [64] (Section 2.2.2) extension of the voter model allows potential influence from

up to the whole population, but these influences are chosen stochastically rather than

having a basis in the agent’s local network. Hegselmann and Krause [74] (Section

2.2.2) narrow their multiple influences to a local neighbourhood, but theirs is a model

of continuous values. Both of the models above are usually classified as opinion forma-

tion models, with a single feature rather than the vector of features with discrete values

we associate with culture models.

The model of Nowak et al. [122] (Section 2.2.2) is explicitly one of Social Impact

Theory, however it is also framed as an opinion formation model with a single binary

feature. Also, it is based on cellular automata with agents influenced by the entire
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population (albeit with a diminishing effect over Euclidean distance); we are looking

to create a model of cultural diffusion on network graphs to allow variations in network

structure beyond simple lattices.

Flache and Macy’s model of social influence [59] also contains a mechanism of mul-

tiple influences, but their model focuses on noise and selection error, which are beyond

the scope of our current work. However, as it is a cultural model of multiple features,

we will use an adaptation of it (with homophily always present but zero noise and zero

selection error) as a benchmark for testing our model.

3.2 The Model

Let A denote the set of agents. Rather than restrict attention to a cellular grid, agents

form the vertices in an arbitrary undirected network graph, and are connected to their

immediate neighbourhood. Thus where a GraphG would normally be defined as a pair

of sets, G = (V,E), here the set of vertices is A. We consider one graph at a time, and

we denote the neighbourhood of a node i as N(i) (i.e., a set of vertices adjacent to i).

The equivalent network graph to the grids used in Axelrod’s paper would be a basic

grid lattice, but any connected network can be used. Initially, edges are undirected

and unweighted. Neighbours may interact with each other in either direction with

equal weight. Similarities could have been used as edge weights, but we reserve edge

weights for other usages in later chapters. Also, the similarities between agents will

change and need to be recalculated frequently.

Each agent i holds a feature vector (σi1, σ
i
2, . . . , σ

i
F ) where there are F features1 and

each feature is populated by one of q traits. Let T denote the set of traits. As with

1As previously mentioned when describing Axelrod’s model in Section 2.3.1, typically a set is

denoted by capitalisation, and its size by ∣F ∣, but in the interests of consistency with other extensions

of Axelrod’s work, we will always use F to refer to the size of the feature vector rather than the vector

itself.
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Figure 3.1: An example of two agents (a1 and a2) with their associated feature

vectors. Assuming F = 5 and q = 10, using traits denoted 0-9, these agents have

three common features (positions 2, 4 and 5). Their similarity simi,j = 0.6. Figure

taken from [112], ©2019 IEEE.

Axelrod’s work, it is important to remember that although often depicted by numerals,

traits are discrete, non-ordinal and mutually exclusive. The value 1 is no more similar

to 2 as it is to 9.

As in Axelrod’s model, the similarity, simij between neighbours i and j is calculated:

simi,j =
1

F

F

∑
k=1
δσi

k
,σj

k

where δσi
k
,σj

k
is Kronecker’s delta. This similarity will form the basis of the notion of

strength in our model; the more similar the influencing node, the stronger its influence.

An example is given in Figure 3.1, pseudo-code in 2.1.

Similarly to Axelrod’s model, at each iteration a random agent is activated. This re-

tains a stochastic element in the model, as the mechanism for copying is otherwise

deterministic. The random order in which agents are activated can produce different

local results for simulations even where starting conditions are identical.

On activation, an agent is influenced by all of its neighbours simultaneously. This

composite influence from the immediate neighbourhood constitutes the number aspect

of our model, as influenced by the number of sources of influence in Latané’s social

impact theory. For each feature k (where k = 1 to F ) of the activated agent i, each

possible trait α ∈ T is scored. This trait-score is calculated by examining the similarity

of i to every neighbour which holds the trait α for feature k. These similarities are
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summed, and the result is the score for that particular trait. This process is repeated for

every possible trait of feature k; the trait α′ ∈ T which scores highest is selected as the

new value of k for the agent i. Where the current trait value of feature k is the highest

or joint-highest scoring trait, then this value is retained. Should there be multiple traits

holding the same highest score, and none of these traits are the current value of k, then

one of these highest-scoring traits is adopted at random.

More formally, the trait scoring formula is:

tsα,k,i = ∑
j∈N(i)

simijδσj
k
,α

where tsα,k,i denotes the trait-score of trait α for feature k of agent i; N(i) is the set

of all neighbours of node i; simij is the similarity between i and j (see above). δσj
k
,α

is Kronecker’s delta, equal to 1 only when the kth value of j is identical to the trait α

being scored. Otherwise, the trait scores zero for j and the process moves on to the

next neighbour of i. When all traits have been scored, α′ ∈ T is determined such that

tsα′,k,i ≥ tsα,k,i, ∀α ∈ T . Then σik is set to α. An example of this process is given in

Figure 3.2. Pseudo-code is outlined in Algorithm 3.1.

3.2.1 Stabilisation

For comparison with other models, we are largely interested in the state of these simu-

lations at their stable end point. Were a simulation to be halted early, it may present a

state not indicative of the cultural states the model dynamics ultimately lead to.

An algorithm for detecting stabilisation in the Axelrod model is given in Algorithm

2.3 (Section 2.3.1). However, for our non-dyadic model we cannot be sure that the

polarisation intrinsic to Axelrod’s model is as inevitable in ours. The activation process

of our model remains random, agents may be called in any order. However, the copying

mechanism upon activation is deterministic. For a given time-step, an agent will always
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Algorithm 3.1 Interactions in Our Model. Note that this is much simplified, we have

excluded code that records data for the purposes of statistics, and trivial calculations

that may be language specific (e.g. obtaining the traits with maximum value from the

traitScores array). In reality we also configure the check for stabilisation to be at

greater intervals rather than on every iteration, for reasons of optimisation.
Require: the number of features, F

Require: the number of traits, q

Require: a global set of agents A, each containing a vector of F features

1: for all a ∈ A do

2: stablea ← false // set all agents to stable = false

3: end for

4: stabilised← false

5: while not stabilised do

6: iterationCount← iterationCount + 1

7: Select random agent i from A

8: stablei ← true // Used to determine stabilisation

9: for k = 1 to F do // for each feature

10: traitScores← (ts0, ts1, ..., tsq−1)

11: for t = 0 to q − 1 do // for each trait

12: for all j ∈ N(i) do // for each neighbour j

13: if σk(j) = t then // agent j has trait in question t for feature k

14: similarity ← calculateSimilarity(i, j) // see Algorithm 2.1

15: traitScorest ← traitScorest + similarity

16: end if

17: end for

18: end for

19: topTraits← {x ∶ tsx =max(traitScores)} // all traits with highest score

20: if σk(i) ∉ topTraits then // if current trait is not in topTraits, it has been outscored

21: adoptTrait(traitScores, i, k) // see Algorithm 3.2

22: end if

23: end for

24: stabilised← isStabilised() // see Algorithm 3.3

25: end while



42 3.3 Simulations in square lattices

Figure 3.2: Multiple-influence copying based on similarity. Here, where F = 5, q =

10, a1 considers which trait to adopt for feature σ1. Each possible trait for σ1

is scored. As traits 0, 2 and 4-9 are not held in feature σ1 by any agents in the

neighbourhood those traits each score zero. The score for trait 1 is calculated

as 0.6 + 0.6 = 1.2; the sum of the similarities to a1 of the agents which hold this

trait (a2, a4). Trait 3, held only by a0, is scored 0.8. Thus despite a0’s greater sole

influence over a1, a trait held by a2 and a4 is able to outscore it. Agent a1 will

adopt trait 1 as its first feature.

respond the same way to local conditions. This being the case, we can determine that

should every agent in the simulation be given an opportunity to change trait, and none

having done so, then no more chances can or will take place (see Algorithm 3.3). The

agents have made their choice, and the only circumstances in which they will deviate

from that choice is if there is change amongst their local neighbours. Since the whole

population has settled and is not changing, the simulation is stable.

3.3 Simulations in square lattices

Initially, we place the agents in a 10 × 10 regular lattice. Although unlikely to be

realistic from the point of view of social networks, this structure allows for direct com-

parison with Axelrod’s model of cultural polarisation [6] and subsequent extensions

[35, 68]. As in Axelrod’s original study [6], agents are created with randomly assigned

starting traits. On each run of the simulation, we are interested in its state at stabilisa-
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Algorithm 3.2 adoptTrait() function in our model. Called when one or more traits

outscore the current trait for a feature. Where the top score is held by multiple traits,

a trait to adopt is chosen at random from those highest scoring traits. When a trait is

successfully adopted, all agents are set to potentially unstable (see Algorithm 3.3).
Require: a global set of agents A

Require: a list of highest scoring traits, traitScores

Require: an agent i

Require: a feature number k, such that σk(i) represents the value of the kth feature of

i.

1: if ∣topTraits∣ > 1 then // if multiple traits with highest score

2: adoptedTrait← random(topTraits)

3: else

4: adoptedTrait← topTraits1

5: end if

6: σk(i)← adoptedTrait // adopt new trait

7: for all a ∈ A do

8: stablea ← false // every time a trait is updated, reset every agent to unstable

9: end for

tion, when no other changes can take place. Descriptions of how this is determined can

be found in Section 3.2.1. We examine these end-states over several runs and take the

mean values of metrics at the simulation end-point.

3.3.1 Cultures, regions and zones

In Axelrod’s initial study [6] and subsequent related works [35, 37], typical measures

are the number of cultural regions and zones, and the size of the largest culture. A cul-

tural region is defined as a “set of contiguous sites with an identical culture”; a cultural

zone as a “set of contiguous sites, each of which has a neighbour with a ‘compatible’

culture” [6], i.e. neighbours with at least one feature in common.
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Algorithm 3.3 isStabilised() function in our model. We can be certain our model has

stabilised if since the last change of trait, every agent has had a chance to copy a trait,

and none have since done so. On activation, an agent i is set to stable (see Algorithm

3.1, line 6). If it changes trait, all agents including itself are set to potentially unstable

(Algorithm 3.1, line 19). We reach global stability where all agents can be said to be

stable since the last trait change.
Require: a global set of agents A

1: for all a ∈ A do

2: if stablea = false then

3: return false // agent a has not been activated since last change

4: end if

5: end for

6: return true // only reachable if all agents have been activated since last successful change

In Axelrod’s model, the development of cultural zones during a run of the simulation

gives an early indication as to how many stable cultural regions will result; at stabil-

isation the number of zones and regions is the same. This is not usually the case in

our model. Polarisation is a condition of stabilisation in Axelrod’s model; it can only

be said to have stabilised when all agents are either completely similar or completely

dissimilar to their immediate neighbours. However, in our model where agents are

influenced simultaneously by multiple sources, a stable state can be reached where

agents retain some, but not all, of their neighbours’ traits. Mixing of adjacent cultural

sites can occur without complete convergence or polarisation. This key difference is

illustrated in Figure 3.3.

As the number of features F rises in Axelrod’s model, the number of stable cultures is

reduced. With an increase in the size of the features vector, there is an increased chance

of two agents finding at least one feature in common, driving convergence and resulting

in a smaller number of cultures - often just one monoculture. Conversely, increasing

the number of possible values per feature - the cultural traits, q, reduces the chances of
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(a) Axelrod’s model (b) Social Impact inspired model

Figure 3.3: A unit-square representation of agents positioned on a 10× 10 regular

lattice. This representation is similar to the ‘Map of cultural similarities’ used in

Axelrod’s paper [6]. Solid lines indicate boundaries between culturally dissimilar

agents; lighter lines indicate a greater level of similarity between neighbours. The

absence of any dividing line indicates complete cultural similarity. Both (3.3a)

and (3.3b) were run with the same starting cultures and random seeds, with 100

agents, 5 features and 10 traits. Axelrod’s model (3.3a) stabilises at 3 regions of

culturally identical agents, yet each region being completely polarised from the

next. However, when agents take into account multiple influences simultaneously,

stability can occur with mixed cultural zones still existing (3.3b). Figures taken

from [112], ©2019 IEEE.

two agents having the same trait value for a given feature. In extensions of Axelrod’s

work, these changes with q and F are often characterised as a phase-transition; the

number of cultures at stabilisation jumps abruptly from a single monoculture to cultural

fragmentation around a critical point of q [35]. These abrupt changes in the overall

nature of the stabilised simulation do not occur when using our model. The multiple

sources of influence have a mediating effect on the number of cultural regions, allowing

cultural diversity and mixing.
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Figure 3.4: The effect of increasing the number of possible traits q on the number

of cultural regions (3.4a, 3.4c), and the effect of increasing the number of fea-

tures F on the number of cultural regions (3.4b, 3.4d) for both Axelrod’s dyadic

model of cultural influence and the Social Impact inspired model of peer pressure.

Complete monoculture or complete cultural fragmentation are rare in our model;

instead overlapping cultures may persist.
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3.3.2 Polarisation, homogenisation, and the mixing of adjacent cul-

tures

As mentioned in Section 3.3.1, typical measures for studies based on Axelrod’s model

are based on the number of cultures: agents with identical traits. This focus on region

size is perhaps a consequence of the depiction of the simulation on a grid, similar to

cellular automata. We however envisage our model as one of a network graph, and as

such we are interested in both the state of the vertices and the edges which connect

them.

Measures of cultural region number and size are often referred to as the degree of po-

larisation [6], however in the Axelrod model it is arguable that these metrics better

illustrate a degree of fracture within an always globally polarised population. In such

a dyadic model all agents are always either completely similar or dissimilar to their

neighbours at stabilisation; cultural regions and their sizes are neatly delineated. In

a model of compound influence such as ours, these metrics do not fully convey the

dynamics taking place. At stabilisation, agents often hold traits from multiple neigh-

bouring cultures simultaneously and therefore cultures counted as distinct may in fact

have many traits in common. Similarly, the largest region size rarely adequately indic-

ates the amount of fracture within groups, or the amount of cultural overlap between

the largest region and others. A few dominant traits may persist across several other-

wise different cultures.

Consequently, we introduce measures that record the state of the edge between nodes:

• Homogenised - an edge between two agents with identical traits,

i.e. similarityi,j = 1

• Polarised - an edge between two agents with zero traits in common,

i.e. similarityi,j = 0
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• Mixed - an edge between two agents with some, but not all, traits in common,

i.e. 1 > similarityi,j > 0

The total number of each of these edge types is normalised by the number of total

nodes. Together these metrics give an indication of the amount of cultural polarisation,

or on the other hand, the degree of cultural pluralism, present in the network. Where

the number of ‘mixed’ edges is low (or zero), the simulation has ended in a highly

polarised state: most neighbours are either identical or completely polarised. A high

degree of ‘homogenised’ edges suggests a small number of large cultures, or a single

monoculture.

Figure 3.5 gives an illustration of these agent populations represented as network

graphs rather than sites in a grid. In this image, the difference in edge status gives

us a flavour of the different characteristics of our model next to Axelrod’s. Where in

the dyadic model polarised edges form the boundaries between distinct cultures, edge

statuses in our model are more varied and depend on local context. Two neighbours

may share nothing in common, but may both have traits in common with another neigh-

bour - a scenario not possible in Axelrod’s model. Some of these ‘local contexts’ are

examined in more detail in Section 4.2.

The proportions of polarised, homogenised, and mixed links within our model are not

so closely tied to the overall number of unique cultures (Figure 3.6). While some dif-

ferent parameter sets may result in a very similar number of cultures, the degrees of

cultural mixing or polarisation can be quite different. When increasing F , essentially

the number of things on which it is possible for agents to have in common, a single

monoculture is a foregone conclusion in Axelrod’s model as homophily drives conver-

gence (Figure 3.6c). Less so in our model, where it can instead drive diversity (Figure

3.6d).
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(a) Axelrod’s model (b) Our model

Figure 3.5: Network graph representations of Axelrod’s model versus ours in grid

lattices. Axelrod’s model (3.5a) stabilises with a small number of cultural regions,

each containing identical agents. Edges between these identical nodes are con-

sidered ‘homogenised’, and depicted in green. Borders between cultural regions

are comprised of polarised edges (red); the cultures can share nothing in com-

mon or one would assimilate the other. Mixed links (black) between agents with

something, but not everything, in common are not possible in Axelrod’s model

at stabilisation. However, in our model (3.5b) it is possible for the simulation to

stabilise with agents sharing a mix of traits from different neighbours. In this

representation, vertex colours have been created simply using RGB values drawn

from the trait values held. Nodes of different cultures will have slightly different

colours.

3.3.3 Time to stabilisation

Direct comparison of time-to-stability between our model and Axelrod’s is difficult as

the typical number of interactions are on very different scales. A single interaction in

our model entails an agent examining all of its neighbours and their features simultan-

eously, and potentially copying multiple features in one go. The dyadic model on the

other hand requires several interactions before it can be said to have been influenced by
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Figure 3.6: Edge statuses in our model versus Axelrod’s on grid lattices. The usual

increases in cultural fracture with increased q, and cultural convergence with in-

creased F , are retained in our model, but with a mediated effect. The influence

of multiple neighbours simultaneously prevents the simulation from reaching a

state of complete monoculture or complete cultural fracture. The abrupt changes

in state reminiscent of phase transitions (3.6c) are absent in our model (3.6d).

Where polarisation and number of cultures are closely related in results from

Axelrod’s model, in simulations of our model the statuses of edges may change

even where the total number of distinct cultures does not (3.6d).
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all its neighbours, as it only interacts with one neighbour on one feature per iteration.

As a result our model does appear to have a more consistent run time due to the stabil-

ising effects of simultaneous compound influence. Across the parameter sets illustrated

in Figure 3.4, our model typically stabilises at between 550 and 1800 iterations, with

a relative standard deviation of 22%. Axelrod’s model typically stabilises at between

1800 and 225500 iterations with a relative standard deviation of 72%.

Descriptions of how our model, and Axelrod’s model, stabilise are given in sections

3.2.1 and 2.3.1 respectively.

3.3.4 Comparison with Flache and Macy’s social influence model

For comparison, we also run an adaptation of Flache and Macy’s model [59] with

homophily and social influence activated, but noise and selection error removed. Under

these parameters, this is also an Axelrod-based culture model of multiple influences,

but these are calculated in quite different ways.

In replicating an adaptation of Flache and Macy’s model we noticed other dynamics

which differ from ours, ones which could be problematic in the extension of a model

to consider status, directed networks, and distance.

The paper [59] suggests that with zero noise, ‘equilibrium is guaranteed and easily

tested (all pairs of agents are either identical or dissimilar to one another on all fea-

tures; hence, no further change is possible and iteration can be terminated).’ This

suggests a similar stop condition to Axelrod’s model. However, in the specific para-

meters we chose when reproducing the model (homophily, social influence, zero noise

and zero selection error), we find that this state of complete polarisation is not always

obtained. The simulation may persist in the same state for many millions of itera-

tions, while its agents sometimes still share some cultural overlap with neighbours

of a different culture. Upon examination, it became apparent that there were certain

local conditions under which cultures could overlap. Where agents have at least some
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Figure 3.7: Comparison of edge statuses (see Section 3.3.2) between our model

and Flache and Macy’s. Both are models of multiple social influence, and both

show similar averaged results. However, our model shows greater cultural mixing

and less convergence, particularly when the number of traits q is lower.

neighbours with which they share an identical cultural identity, they may also have

other neighbours with which they share some traits - but from whom social influence

will never be enough to counter that of the identical neighbours.
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Results of this adapted Flache and Macy model bear more similarity to our model than

Axelrod’s, confirming the significance of multiple social influences (Figure 3.7). How-

ever, there are subtle differences. Our model displays greater cultural mixing (Figure

3.7d) and less convergence (Figures 3.7a, 3.7c) than Flache and Macy’s, particularly at

low values of q.

A possible contributing reason is one remarked upon above; for mixed links to exist

in the Flache and Macy model, each of the agents linked must also have neighbours to

which they are completely similar. It is not possible for an agent to only have mixed

links without also having some homogenised. The simulation forms neat cultural re-

gions of homogeneity, separated by borders of either polarisation or cultural mixing

(Figure 3.8a). This is not the case for our model. It is perfectly possible for an agent to

stabilise while having mixed links, and no homogenised links. They can take on a mix

of the cultures around them without a requirement of being tied to another identical

agent (Figure 3.8b).

These differing dynamics make it less clear as to when this adaptation of Flache and

Macy’s model can be said to have stabilised, and an algorithmic detection of equilib-

rium in the simulation is less straightforward than either our model or Axelrod’s. In

fact, in Section 7.4.2 we find instances where the Flache-Macy model does not seem to

reach a definite equilibrium within a reasonable time frame. In our adaptation we in-

cluded a stop-condition where if each and every agent has had an opportunity to copy x

times and does not do so, the simulation can be said to have stabilised. x can be tuned,

and we found no traits were copied in the interval 1000 < x < 10000.

We believe that our formulation of multiple influences is a more explicit modelling of

number from Social Impact Theory. The simultaneous consideration of all neighbours

within a network distance makes it easier for us to use our model to isolate the different

factors of Social Impact Theory. Also, it should be more straightforward to extend our

model to consider factors such as weighted, directed edges (see Chapter 5) and distance

along a network path (Chapter 6).
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(a) Flache & Macy model (b) Our model of multiple influences

Figure 3.8: Network representations of Flache and Macy’s model (left) versus our

model (right) when run on the same starting traits. In the Flache and Macy sim-

ulation, at stabilisation mixed links can only form the borders of cultural regions

where agents are identical. Where a node has a mixed edge (black), it must also

have at least one other edge which is homogenised (green). In our model, agents

are free to hold overlapping traits with several cultures at once, and do not need

the reinforcement of an identical neighbour. An example is given by the node

marked with an X (3.8b), which has mixed and polarised edges to its neighbours

but is not identical to any of them.

3.4 Conclusions

In this chapter, we extended Axelrod’s culture model by embedding Latané’s Social

Impact Theory as the basis for social influence between agents. In particular, in this

chapter we have focused on the addition of the number social force from Social Im-

pact Theory, in a mechanism that simulates ‘peer pressure’: multiple simultaneous

influences upon an individual.

The most significant outcome of our extension is the emergence and maintenance of

cultural plurality, rather than inevitable polarisation. The cultural zones identified in
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Axelrod’s work do not become homogeneous, instead retaining a number of different

cultures within with overlapping features. Arguably, this phenomenon is frequently

observed in the real human social world. Adjacent cultures are often made up of vari-

ous features - some in common, some distinct - without necessarily converging to one

monoculture or diverging to a state of polarisation. Minority languages persist des-

pite pressure from neighbours, even those with which much is held in common. The

local dynamics allowing this state of equilibrium are a form of social reinforcement,

where an agent may retain its traits in the face of pressure from others because of the

competing influence of other neighbours who hold a portion of the existing traits.

The use of the social force of number from Social Impact Theory offers a candidate

explanation - social reinforcement from multiple similar sources - for the persistence

of different overlapping cultures in the global population. Note however, that mere

exposure to another culture is not sufficient to allow mixing; agents need something

in common. There are observed instances where exposure to an opposing view does

not encourage an individual to move their own opinions in that direction [8, 10]. Also,

exposure to a different but compatible culture without any social reinforcement of ex-

isting traits would result in the agent changing to adopt the new culture in its entirety.

There may be analogies here with isolated individuals being more prone to radicalisa-

tion when brought into contact with extremists of similar views.

It should be noted that we did not seek to create a model that allowed or encouraged

cultural mixing and diversity; our aim was simply to test whether such an extension

of Axelrod’s model would produce substantially different results in order to answer

research question RQ1. These results indicate that applying Social Impact Theory in

such a way can indeed cause considerable differences in the global state of the system.

While we acknowledge that there are likely alternative approaches to modelling the

combined effects of peer influence, our approach offers a useful benchmark and basis

for future work. Its clear criteria for stabilisation, and separation of aspects of strength,

immediacy and number allow for extension in each of these areas. A purely determ-
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inistic model was considered, one in which all agents would consider and update their

traits simultaneously. Such a simulation would, under certain specific conditions, fall

into a state of oscillation, similar in some ways to various cellular automata. However,

we do not know if such a deterministic system would be particularly realistic2 in the

application of Social Impact Theory to culture models.

The persistence of cultural plurality in our simulation appears to be a consequence of

agents becoming ‘stuck’ between two cultures, and adopting traits from either. Social

reinforcement from different contacts allows an individual to retain cultural or behavi-

oural attributes even where other contacts may act differently. A potential explanation

for this dynamic lies in the theory of Complex Contagions [38], the idea that behaviours

do not spread as easily as contagious diseases but instead require multiple sources of

exposure for transmission. In Chapter 4 we explore this idea, as well as broader im-

plications of network structure, in order to gain a greater understanding of the local

dynamics that are causing this macroscopic phenomenon.

2Despite this thesis being submitted as part of the fulfilment of the qualification Doctor of Philo-

sophy, I feel a discussion on the existence of free will is probably beyond the scope of this thesis.
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Chapter 4

Cultural Diffusion as Network

Contagion

In this chapter, we compare the behaviours of both our multiple-influence model in-

troduced in Chapter 3 and Axelrod’s to studies of contagion dynamics, principally

those that focus on the difference between simple and complex contagions [38]. As our

model is one of multiple simultaneous influences, it may show similar differences to

Axelrod’s model of dyadic influence as models of complex contagions show to those

of simple contagions. By comparing our work to contagion studies on small-world

networks, we aim to test network properties that have particular effects on our model.

The use of rewired ring lattices allows us to control and examine effects of average

path length, local degree and clustering coefficient. This chapter supports research

questions RQ2-RQ4.

4.1 Simple and Complex Contagions

Robert Axelrod’s model [6] is one of cultural spread and polarisation within a cellular-

automata-like grid. While his work primarily concerns the macroscopic polarisation

and segregation that can occur from micro-level rules, it nevertheless relies on the basic

diffusion of traits throughout a network - even if it is initially a very simple lattice.

Many subsequent extensions, including ours, use techniques from network science and
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graph theory in their analysis [37, 85, 143]. The copying of traits within culture models

also bears some similarity to models of contagion.

In Section 2.2.3 we gave a brief overview of contagion models in general, and noted

the many studies which apply network science to the problem. Granovetter’s influen-

tial work on ‘weak ties’ stressed the importance of long, casual connections acting as

bridges between communities [69]. Watts and Strogatz created ‘small world’ networks

by using just a small number of these bridging ties to act as shortcuts across a net-

work, giving a low average path-length but retaining a high degree of clustering [160].

These structures support the spread of ‘viral’ contagions, by allowing short paths for

a contagion to spread quickly throughout the network. However, it is disputed that

social phenomena such as behaviours and norms spread as easily as pathogens; there

are many cases where spread of a trait only occurs when there are multiple sources

of influence (see Section 2.2.3). Where the threshold to adoption is higher, Damon

Centola characterises this as a ‘complex contagion’ [38, 36].

The definitive difference between a simple and complex contagion is the minimum

number of contacts required for transmission. We cover this theory in more detail in

Section 2.2.3. In simple contagions, such as infectious diseases, a single interaction

with a single contact may be sufficient for a trait to spread. A complex contagion on

the other hand, requires multiple sources for transmission to occur. Centola argues

that this is often the case for the adoption of new behaviours, innovations, and social

norms [36]. Where contagions are complex this can impact widely held assumptions

regarding how behaviours spread ‘virally’ across the bridging ties of a small-world

network.

4.1.1 How the diffusion of simple and complex contagions differ

In [38], Centola and Macy illustrate some of these differences in how a complex con-

tagion may spread through a network in comparison to a simple contagion. They ap-
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ply the Watts-Strogatz model [160] to complex contagions, investigating whether the

small-world principle generalises from the spread of information or disease to the dif-

fusion of collective behaviour. Nodes are given a simple status: activated or unactiv-

ated. Nodes change from unactivated to activated when the number of their activated

neighbours exceeds a threshold τ . Activated nodes never return to being unactivated.

Figure 4.1: Simple contagion in a Watts-Strogatz graph: The edge between gi has

been rewired to iq, allowing a simple contagion from q to i; iwill become activated

through contact with q. However, such a narrow bridge across the ring would not

allow even a minimally complex contagion of τ = 2.

In threshold models the threshold may often be expressed either as a whole number (of

neighbours), or as a fraction τ = a/z, where a is the number of activated neighbours

required for transmission and z is the total number of neighbours. For example, when

expressed as a number τ = 3, at least three sources are needed for activation - regardless

of the number of other neighbours who may be unactivated. When expressed as a

fraction, for example τ = 3/12, three out of twelve neighbours must be activated for

the node to be activated itself. Where complex contagions and fractional thresholds are

involved, Centola and Macy find there is often a qualitative difference between a = 1

and a > 1, even when proportions are identical. E.g. the fractional thresholds 1/4 and

4/16 may display different behaviours: 1/4 is a simple contagion, 4/16 is a complex

contagion. The numerators are important: where they are greater than 1, contagion is
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complex, requiring multiple sources.

Figure 4.2: Complex contagion in a Watts-Strogatz graph: While the graph in

Figure 4.1 would not allow complex contagion across the bridging tie, here an

additional edge hi has been rewired to ir. Now a complex contagion of τ = 2 (or

fractionally, τ = 2/4) may cross the wider bridge, and activate i. Note however,

the growing erosion of the ring structure. Once i has been activated by q and r, it

will not be able to spread the contagion to h or g as those links have been rewired.

Node h will only be activated by a complex contagion spreading clockwise around

the ring; its ties to those nodes on its other side have deteriorated below the level

needed to transmit a complex contagion of τ = 2.

Centola and Macy state that for complex contagions, the bridges between neighbour-

hoods across a graph must exceed a critical width, Wc, for contagion to occur. On

simple ring lattices of degree 4, this is calculated Wc = a(a + 1)/2. A seemingly

obvious way of increasing bridge widths across the ring is to increase the amount of

random rewiring (as Watts and Strogatz did in their ring lattices [160]). However, as

edges are randomly created across the ring they are often removed from the ring itself,

eventually lowering the overall clustering of the network and hindering the spread of

complex contagions locally. Where p is the probability of rewiring a link, they find

that increasing p causes a U-shaped effect on propagation of complex contagions. In-

creasing randomisation of links will typically aid propagation of a simple contagion,
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even with only a small increase in p. For complex contagions, a larger increase in p is

needed to affect diffusion. As p rises the propagation time first drops, then rises (see

[38], Figures 3 and 4). There is a ‘small-world’ window that may facilitate complex

contagions, where path length is short but clustering remains high.

There are aspects of this theory of complex contagions that seem useful for explaining

some behaviours of our model of multiple influences, and why diffusion of cultural

traits is typically lower than that in Axelrod’s. However, there are important differ-

ences between this simulation of complex contagions on ring lattices and our model.

In Centola and Macy’s initial investigation, every node has equal influence and an

identical threshold. In our model, the similarity of nodes determines their influence,

and hence the thresholds of their neighbours. While in Centola and Macy’s complex

contagion study, nodes have a simple binary status of activated or not; in our model

agents typically have a broader set of features and possible values (traits) for each fea-

ture. In their model, nodes’ statuses may only change in one direction: from unactiv-

ated to activated, and do so deterministically immediately after a threshold is exceeded.

In our model traits can spread in either direction across an edge, and agents may adopt

different traits - or readopt previously held traits - several times over the course of the

simulation. Additionally, while some aspects of our copying mechanic are determin-

istic, agents are activated randomly. A node’s neighbours may, by chance, change state

several times before the node is called upon to copy traits themselves. In the next sec-

tion, we give examples where our model of multiple influences may exhibit behaviours

similar to both simple and complex contagions.

4.2 Our multiple-influence culture model exhibits both

simple and complex contagious local behaviours

If comparing the diffusion of traits in culture models to the spreading dynamics of con-

tagion models, it would be prudent to determine whether the copying mechanisms of
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contagious local behaviours

those models more closely match single or complex contagions. Most studies of com-

plex contagions [38] set a threshold for contagion - the number of activated neighbours

needed for a susceptible node to adopt a trait. As we have seen (Section 4.1.1), for

simple contagions this is always exactly one neighbour; for complex contagions either

an absolute figure greater than one or a fraction of a node’s neighbours where the

numerator is greater than one. This threshold may be heterogeneous or homogeneous

across all nodes but it is usually known and fixed from the start of the simulation. In the

culture models we examine however, the state of each agent is frequently changing, and

with it the agent’s relationship with its neighbours. Whether an agent can copy from a

neighbour is dependent on the traits both agents hold at that precise time-step.

Simple contagions in the Axelrod model

Nevertheless, it is clear that Axelrod’s model is essentially one of simple contagion.

While the state of agents affects the probability of copying, all interactions are dyadic.

When activated, an agent only takes into account one random neighbour at that time

(Figure 4.3). Whether the agent adopts a trait from that neighbour is a matter of chance,

but the states of any other nodes are irrelevant to the interaction. There is no social

reinforcement, no peer-pressure; the minimum number of sources required for adoption

of a trait is one.

Simple and Complex contagions in our Multiple-influence culture model

In models of multiple simultaneous influences such as ours, thresholds for contagion

vary and are dependent on the traits held by the agent and every other node that has

influence over it. In a situation where an agent has a high degree of similarity with its

neighbours, the threshold to change will be quite high (Figure 4.4). If one imagines

a scenario where an individual has a great deal of affinity with their social group,

any interloper would find it difficult to persuade that individual to change deep-seated
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Figure 4.3: Simple contagion in the Axelrod model: a2 is interacting with a1. The

similarity of a2’s other neighbours is irrelevant; a2 is free to copy from a1 as a

single source.

behaviours, traits, or opinions away from those of its peers. The individual would

be far more likely to adopt a new trait - perhaps a new fashion - if it first saw such a

change in several others they deemed to be similar in values to themselves (Figure 4.5).

This would be an example of homophily from multiple sources raising the minimum

threshold to change, and thus making contagion complex in nature. This is a key

dynamic in our model of multiple influences, and goes some way to explaining the

differences in cultural dissemination between ours and Axelrod’s model.

However, our model is not just one of complex contagion. There are circumstances

where the threshold to change is low. In contrast to the scenario where an agent is sur-

rounded by similar peers, an agent who has little similarity to its neighbours is more

susceptible to copying traits from the few sources it identifies with (Figure 4.6). An

analogy may be a person who feels they have little in common with their close network,

those links existing instead perhaps for reasons of family, employment, or geograph-

ical proximity. Such a person may be more likely to be influenced by a contact it is not

so alienated by, one with which it shares at least some common ground. Alternatively,

they may become impressionable to distant but seemingly like-minded persons met on-

line, who share similar interests; analogous to Granovetter’s ‘long-ties’, or the rewired

bridging links that allow simple contagions in a Watts-Strogatz graph. This could have

implications for the modelling of issues such as loneliness, or even the radicalisation
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Figure 4.4: Social reinforcement in our model: It is not currently possible for a1

to influence a2; the influence of a2’s other neighbours is too great. In fact, a2 will

never change in this situation, unless its influential neighbours change first or it

develops a substantial number of new links to other nodes. When considering

feature 1, a2’s neighbours have either trait 1 or trait 7. The sum influence of the

three neighbours with trait 1 is 3, whereas only a1 has trait 7 and is only able

to exert an influence of 0.4 on a2. Thus the threshold for contagion is τ > 3/z,

requiring a complex contagion for change to occur.

of alienated persons.

These examples illustrate that our model is one of both complex and simple conta-

gions. The threshold to change for any individual node is wholly dependent on local

conditions. Areas of a graph with strongly connected nodes of a single monoculture

may be almost (but not entirely) impossible for outsiders to make inroads into. Else-

where in the same graph, locally dissimilar agents may be easily changed by others.

Much of the population may sit in-between, adopting different elements of bordering

cultures. A person can adopt different traits from their various types of contact - their

colleagues, family, friendship groups, religious groups and so on. One may support a

different football team to one’s colleagues, have different hobbies and interests to their

family, prefer different foods to their friends. As we have seen in Chapter 3, the cul-

tural mixing which occurs in our model makes it distinctive from the Axelrod model

on which it is based.
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Figure 4.5: Complex contagion in our model of multiple influences: Even when

an agent has a high degree of similarity to a neighbour, others can effect change.

Here, agent a2 is identical to its neighbour a3. However, the combined influence of

a1 and a4 is greater still. When considering feature 1, the trait score of trait 7 is 1.4

(from a1 and a4) versus a trait score of 1.2 for trait 1 (from a0 and a3. Therefore,

at the next opportunity agent a2 will adopt trait 7 as its first feature. This is an

example of a successful complex contagion; a single neighbour would not be able

to exert enough influence on a2 to enact change, but multiple neighbours can.

4.3 Simulations of our multiple-influence culture model

on ring lattices and small-world networks

In this section, we compare the macroscopic behaviours of our multiple-influence

model and the dyadic Axelrod culture model on ring lattices and Watts-Strogatz net-

works. There are a number of reasons for choosing these network structures for ana-

lysis. Ring lattices allow us to increase the degree of all nodes in a heterogeneous fash-

ion, so no one node has different connectivity characteristics to any other. Also, some

network distance (i.e. graph diameter and average path length) is maintained. While

these characteristics are shortened as a ring lattice increases its degree, the shortening

effect is less than many generated random graphs.

Conversely, the rewiring of a ring lattice that occurs in a Watts-Strogatz graph allows us

to rapidly shrink the diameter and average path length of the network while maintaining

the same average degree, and a close-to-uniform degree distribution.
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Figure 4.6: Simple contagion in our model of multiple influences: Despite having

little in common, agent a2 is influenced by agent a0. Because a2 is polarised with

its other neighbours, its threshold to change is low, and when activated it will copy

traits from a0. In this situation, a single contact with any similarity at all can have

an influence - an example of simple contagion.

In addition, these network structures have been used in other studies to compare simple

vs complex contagions, most notably [38]. We expected that Axelrod’s model would

display behaviour more similar to that of a simple contagion model, and that our

multiple-influence model would show some characteristics of complex contagion.

4.3.1 Methodology

We arranged 1024 agents in ring lattices of varying degrees: 4, 8, 12, and 24. Starting

traits were assigned randomly to each node, where F = 5, q = 10. Both Axelrod’s

model and our model of multiple-influence were run on these generated structures.

Runs were limited to 10 each per parameter set, due to limited resources. A single

run of the simulation can often take several hours to stabilise. Despite the low number

of runs, result metrics obtained showed a narrow distribution of values, low variance,

a small range between minimum and maximum values, and similar median values to

mean (see Figures 4.7, 4.8). Additionally, select instances of 20 runs returned very

similar results to 10 runs on the same parameters. This gave us confidence that the

results obtained were indicative of the general behaviours of the models. The same
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random seeds were used across different parameters so that each model had the same

starting conditions.

We also rewired the above ring lattices using the Watts-Strogatz model, with probabil-

ities p ranging from 0.001 to 1 that an edge would be rewired, where p = 1 is essentially

a random graph. These graphs were generated using the Python library NetworkX’s

[139] connected_watts_strogatz_graph generator [121]; our aim being to maintain a

single connected graph in each case with constant size and density, but increasing ran-

domisation.

It should also be noted that when we talk of the clustering co-efficient of a graph,

we use that calculated by NetworkX [120], based on the number of possible triangles

through a node that exist. Although slightly different to the measure used in [160],

results for ring lattices and small world networks are similar.

4.3.2 Results

Axelrod’s model in ring lattices

As with grid lattices [6], there is a clear convergence of cultures as degree increases

(Figure 4.7). In most structures, in addition to increasing density, increasing degree will

often increase clustering and decrease average path length. The increased number of

pathways for a trait to spread, in addition to the likely shortening of these paths, makes

the convergence to a monoculture an expected behaviour in a model where traits are

transmitted so easily.

Our multiple-influence culture model in ring lattices

In our model of multiple social influences, the number of distinct cultures in the popula-

tion is also reduced as degree increases. However, there appears to be barely any effect
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Figure 4.7: Homogenisation of Axelrod model as degree increases: As the node de-

gree is uniformly increased in ring lattices, the Axelrod model stabilises at fewer

cultures. Correspondingly, the amount of homogenised edges increase, and the

amount of polarised edges decrease. Note: number of cultures has been normal-

ised by number of nodes.

on the proportion of homogenised, polarised, and mixed links within the network (Fig-

ure 4.8). At first glance this may seem a contradiction; but while the number of cultures

is normalised by the number of nodes, the portion of polarised/homogenised/mixed

links are proportionate to the number of edges. As the number of edges increases, the

ultimate number of homogenised/polarised/mixed links also increase at a fairly linear

rate, resulting in very similar proportions in highly connected rings to lower connected

rings. This is largely due to the nature of ring lattices; clustering is high throughout

and some distance across the graph is maintained. Any new links are created in sim-

ilar areas to existing links: they will not be bridges across the ring - the ‘weak links’

of which Granovetter wrote. Where existing links in an area are between identical

agents, additional links in the same area are likely to be also. While some cultures may
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Figure 4.8: Cultural convergence in our multiple-influence model as degree in-

creases: As average degree increases, clustering increases and cultures converge.

However, the proportion of homogenised, polarised and mixed links remains

largely the same. As more edges are added to increase degree, they become ho-

mogenised, polarised or mixed at roughly the same proportions as before.

converge, additional links are then created between that culture and other agents who

share some, or no, traits in common. This maintains the percentage of homogenised,

polarised, and mixed links in the overall network.

Axelrod’s model in small-world networks
Where increasing the uniform degree of a ring lattice increases its clustering, rewir-

ing even a small number of edges serves to greatly reduce average path lengths. As a

model where diffusion of traits is analogous to simple contagion (see Section 4.2), any

reduction in path length via ‘short-cuts’ across the ring will greatly increase cultural

convergence (Figure 4.9). These links form bridges between cultures that may previ-

ously have been insulated from each other by other, non-compatible cultures; allowing

traits to spread across the divide.
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Figure 4.9: Homogenisation of Axelrod model as path length decreases: As the

probability of rewiring p increases, the number of cultures quickly falls to a single

monoculture. The ease at which agents copy from each other ensures that any

shortcuts across the graph will greatly increase transmission of traits. When a

graph is rewired enough, there are multiple pathways for traits to spread. Any

cultures that might otherwise be isolated from other compatible cultures in an-

other part of the network are far more likely to form connections, and thus as-

similate each other into one culture. Note: the x-axis is a log scale of the prob-

ability p that an edge will be rewired. L(p)/L(0) and C(p)/C(0) are the average

path length and clustering coefficient respectively, both normalised by their val-

ues when p = 0.

Our multiple-influence model in small-world networks

Increasing the uniform degree of a ring lattice showed that increasing clustering can

have an effect on the cultural convergence of our model (Figure 4.8). As links are

rewired across the ring, our model initially shows little change in homogenisation or

cultural diversity even as average path length is reduced. It is only when clustering

drops significantly that there are discernible changes in these measures. If our model

contains behaviours similar to that of complex contagions (Section 4.2) then a relat-
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ively low sensitivity to changes in average path length is intuitive; single bridges across

a ring are not usually sufficient to overcome the social reinforcement of an agent’s often

stronger (and more numerous) local ties.

It is not possible to directly compare our results to Centola and Macy’s results [38] on

convergence as p increases. As a model of contagion, their results concern the time-

steps needed for a contagion to spread to the entire network. In our multi-dimensional

feature model, traits or cultures rarely if ever spread to the entire network; instead we

look to the differences between agents. However, a key result from their measuring

of time-to-convergence was that increasing randomisation p may initially aid conver-

gence, before ultimately impeding it when edge placement becomes more random and

clustering falls (see [38], Figures 3 and 4). Were similar dynamics the sole cause of

cultural diffusion in our model, we would expect to see a similarly U-shaped trend in

either the number of cultures or degree of polarisation in our model.

Cultures do rise significantly when clustering drops, indicating decreased convergence

at higher levels of p; a similar phenomenon to increased time-to-convergence in Centola

and Macy’s study. However, there is no discernible ‘U-shape’ or significant reduction

in the number of cultures before they rise (Figure 4.10). There are instances of tiny

fluctuations in the number of cultures between p = 0.001 and p = 0.1, but these are so

small as to be likely caused by the random starting traits for each run. The ‘small-world

window’ of high clustering and low path length does not seem to have much effect on

our model.

Changes in polarisation as p increases are negligible, and likely not significant. For

some higher degree rings there is a slight increase in polarisation when p increases

from 0 to 1, but it is less than 0.05 in each case. Homogenisation on the other hand

drops noticeably as the number of cultures rise. The explanation for homogenisation

dropping and polarisation remaining largely steady, is that cultural mixing increases

as clustered edges are rewired to nodes further away in the ring. It appears nodes

are retaining some traits from their local neighbours, while also adopting others from
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Figure 4.10: Increased cultural diversity of our model as clustering decreases:

Unlike in some existing models of contagion, there is no increased cultural con-

vergence in a ‘small-world’ network where clustering is high and average path

length is low. When clustering falls to lower levels, cultural diversity and mixing

increase. Note: the x-axis is a log scale of the probability p that an edge will be

rewired. L(p)/L(0) and C(p)/C(0) are the average path length and clustering

coefficient respectively, both normalised by their values when p = 0.

elsewhere in the ring lattice.

4.3.3 Discussion

Results from Axelrod’s model on ring lattices and small-world networks show patterns

in common with studies of simple contagions. Increasing either the average degree of

the ring lattice, or the amount of random rewiring, causes greater cultural convergence

and homogenisation. There are however differences, due to the multi-dimensional

features of the Axelrod cultural model in contrast to the binary nature of many studies

on network contagion. Transmission in Axelrod’s model is also bi-directional; an agent

may change its feature back and fore between traits before the simulation stabilises; in
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contagion models an activated node cannot usually ‘catch’ being deactivated. Whereas

those studies typically converge to a single state of either activated or not, Axelrod’s

model often stabilises with several polarised cultures remaining. These cultures are

amalgamated into one when graph diameter is so low that cultures are unlikely to be

isolated from others they share a trait with (Figure 4.11).

While homophily is a key mechanic in Axelrod’s model, and it influences which agents

are more likely to spread their traits locally, if there is any similarity at all then even-

tually agents will tend to become the same. This is not the case for our model, where

agents can find themselves between competing cultures, as we have shown in Chapter

3. There are some resulting behaviours analogous to complex contagions, such as the

need for multiple sources of influence to effect change (see Section 4.2). As with com-

paring behaviours in Axelrod’s model to simple contagions, multi-dimensional features

of agents restrict the application of contagion dynamics. In our model this is even more

pronounced, as agents may copy a variety of different traits from different neighbours

and end in a ‘mixed’ state (Figure 4.12).

Additionally, there are cases using our model where traits spread very easily as if by

simple contagion (Section 4.2). Even within the same neighbourhood, where there is

a mix of traits for a feature an agent may change their trait very easily from a low

number of influencers. Yet for other features it may require strong sources of influence

to overcome existing social reinforcement.

These distinctions in local interactions cause differences in global network behaviour.

While increasing rewiring in [38] had a nonmonotonic ‘U-shaped’ effect on propaga-

tion, there is no discernible increase in convergence in our model at any point. Our

model shows an increase in cultural mixing and diversity as links are rewired toward

a more random graph, and away from local clustering. This may have parallels in real

life social networks. It naturally follows that if individuals are exposed to more cultural

traits, cultural diversity may increase. Individuals may retain a large number of traits

from their closest, clustered links - the ‘strong ties’ Granovetter described, often close
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Axelrod’s model.

Figure 4.11: Dyadic copying as a simple contagion in a small Watts-Strogatz ex-

ample graph: Should Axelrod’s model be run on 4.11a, the connected cultures

{i, k} and {j, l} will converge to one culture. In 4.11b this has occurred, and due

to the edge kq has spread to the opposite side of the lattice. In any ‘cultural re-

gion’ of compatible overlapping cultures, the cultures will inevitably converge to

one. Here, culture 0,1,2,3,4 has prevailed, but any combination of traits existing

in the cultural region {i, j, k, l, q, r, s, t} may have possibly succeeded.
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Figure 4.12: Cultural mixing in a small Watts-Strogatz example graph: Using our

model of multiple influences, cultural diversity and mixing can persist even when

adjacent nodes share traits in common. Here, nodes i and k retain a majority of

traits common to their area of the ring lattice (j and k), yet also share other traits

with the culture found at {q, r, s, t}. As rewiring increases, more mixed links are

possible (see Figure 4.10).

family members and friends. However, as they broaden their horizons, they may adopt

traits from other cultures they are exposed to (Figure 4.12). In our model, this tends to

happen when clustering is lowered, which could occur either through removal of local

clustered links or a greater proportion of ties being added to acquaintances across the

network.

4.4 Conclusions

In this chapter we have examined the copying dynamics of our model within local

neighbourhoods, and how they may compare to theories of simple and complex conta-

gions. We then ran simulations on larger networks to examine the macroscopic effects

these behaviours may have on cultural spread in a broader population.
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In investigating research questions RQ2 and RQ3, we undertook neighbourhood-level

analysis (Section 4.2) which showed that in our model of multiple influences, local

conditions can allow copying behaviour analogous to either simple or complex conta-

gions. In different circumstances traits may spread very easily, slowly, or not at all.

To answer research question RQ4, we undertook simulations in ring lattices and Watts-

Strogatz ‘small-world’ networks (Section 4.3). These simulations show that the local

dynamics described above manifest themselves as an increase in cultural diversity as

links are formed across the network, but that these bridges usually need to be wide.

This is in contrast to previous studies, which typically show an increase in convergence

as edges are rewired and average path length falls. Our model appears to be more

sensitive to changes in clustering than changes in average path length.

Our model may exhibit some characteristics similar to the concept of interacting conta-

gions [99], in that the presence of other traits in a neighbour may increase propagation.

However, it differs in that transmission is not dependent on a neighbour holding a par-

ticular trait, only that any traits be commonly held. Our findings may add weight to

considerations that contagions may not be able to be neatly divided into simple and

complex, and are dependent on local conditions. As Hébert-Dufresne et al observe,

"This mechanistic difference creates a false dichotomy, forcing us to choose the mech-

anism we think best describes the reality of a given contagion. In practice, the context

of transmission events always matters." [73]

The sensitivity to clustering in our model could have implications for the development

of local ‘teams’ and shorter paths of influence in organisational structures, which we

examine in Chapter 5.
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Chapter 5

The effect of compound social

influence in hierarchical structures

In this chapter, we extend our implementation of the social force of strength in Social

Impact Theory to include hierarchical status in addition to the existing homophily.

In particular, we examine this in pyramidical network structures as generalisations of

organisational hierarchies. Where influence is from multiple sources, as in our model,

will a higher status individual’s influence be countered by the greater number of their

subordinates?

The results of this chapter have been previously published in part in [113], and in a

paper currently in preparation [114]. This chapter supports research question RQ5.

5.1 Organisational culture

Organisations that support similar functions or similar missions are well known to

frequently exhibit very different cultures. Such culture can be an important determinant

for an organisation’s identity [72, 126] and its effective functioning [52]. As a term,

‘organisational culture’ can have different connotations. It may be thought of as the

values, norms and assumptions held by a group’s members, regardless of whether they

were intentionally set; alternatively, it is sometimes used to describe those values an

organisation’s leaders wish to instil and propagate [136]. As we have done throughout
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this thesis, we consider culture in a similarly broad sense as in Axelrod’s work [6];

that is, anything over which individuals may influence each other, such as beliefs or

behaviours. Other popular usages may equate organisational culture with corporate or

business culture. We again use the term organisation broadly: as potentially any group

of connected members who may influence each other. We are however principally

concerned with those groups that contain some form of hierarchy.

5.2 Hierarchy and status

In alignment with the meaning of the word itself, all “organisations” have some form

of structure for coordination, whether formal or informal, and hierarchy proves to be

a prevalent and often defining feature of organisations in many operational contexts

[97]. The notion of a hierarchy within an organisation may invoke an image of a

formal, clearly defined hierarchy; however even where an explicit hierarchy appears to

be absent, an informal hierarchy often develops [4, 53, 123].

There are numerous ways in which an individual in a hierarchy may be seen to be

ranked higher than a subordinate. Building on French, Raven and Cartwright’s work on

social power [63], Magee and Galinsky make a distinction between power as the con-

trol of resources; and status, the amount of respect accorded by others [97]. Mowday

[116] defines authority as legitimate power based on formal position, whereas ‘power’

and ‘influence’ are used as broader terms referring to a general ability to change the

actions of others. In this chapter, we will use the term hierarchical status to encompass

any means (intentional or otherwise) by which a superior may have a greater ability to

influence a subordinate than vice-versa.

Hierarchies are typically pyramidical in shape; subordinates outnumbering superiors.

We use tree network structures (specifically k-ary trees) as generalisations of these

pyramidical hierarchies. We seek to model the balance between the greater influence

of a higher node, and the combined influence of the greater number of its subordinates.
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This greater influence due to status will be modelled by extending our model to use

directed and weighted edges, a description of which will be given in Section 5.3.

5.2.1 Tall versus flat hierarchical structures

A recurring phenomenon in organisational culture is that of firms or organisations

claiming to have moved away from the ‘traditional’ hierarchy. The terminology used

varies, from the ‘Lattice Organisation’ at W. L. Gore & Associates in the 1970s [98],

to more recent attention given to so-called ‘holacracies’ at companies such as Valve

and Zappos [19, 61, 147, 154]. Claims of the elimination of hierarchy are likely over-

stated; as previously mentioned, the apparent absence of a formal or planned hierarchy

is not necessarily the absence of hierarchy altogether [4, 53, 123]. Where the phras-

eology may vary with time and fashion, a consistent description is that of a ‘flatter’

organisation, with less intermediary layers of management.

Studies on such tall versus flat organisational structures have focused on performance

or decision making capabilities, and largely in a qualitative fashion within the fields

of sociology, psychology, or business studies [33, 70]. Performance of structured hier-

archies in contrast to more democratic teams has been found to be dependent both

on the nature of the task and the number of levels in the hierarchy [32]. Wider tree

structures typically have a reduced path length for communication, but any superiors

that do exist will necessarily have responsibility for a larger number of subordinates,

potentially becoming bottlenecks. A taller, narrower structure on the other hand may

insulate and distance higher nodes from lower.

In terms of computational social modelling and network analysis, Stocker et al [150]

applied an opinion formation model to both taller and flatter hierarchies, finding that

the latter cause more fluctuations from consensus than the taller trees. The spread of

corruption through a network was simulated by Nekovee et al [118] using an epidemic-

based model on flat-vs-tall structures. However we are not aware of previous work that
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has used these flat-vs-tall tree structures in the context of culture-based modelling. In

this chapter we aim to rectify this by applying our model to such structures, in turn

modelling the possible formation and spread of culture in an organisational structure.

5.2.2 Teams: local clustering within a hierarchy

Despite the presence of hierarchical status, influence is rarely entirely top-down. In-

dividuals may employ a variety of tactics to exert influence upwardly or horizontally

[82, 164]. Some may seek to increase their influence by combining with their peers in

trade unions, teams, or coalitions [23] for example.

As organisations grow and labour is divided, different departments and structures may

form, and each may have elements of its own sub-culture [136]. These sub-groups may

subvert a consistent overarching organisational culture, but can also lead to innovation.

At Intel in the 1990s, members of higher management were opposed to turning PCI

chipsets into a business. A team was assembled that “flew under the radar”, without

close scrutiny from higher management, to build the case for PCI chipsets as a viable

business - which ultimately succeeded [29].

In this chapter we contribute a method for generating team sub-structures, where nodes

with a common direct super-ordinate may form a connected ‘team’. These sub-structures

will also increase the amount of local clustering, which as we have seen in Chapter 4

seems to have a greater effect on our model than path length. In existing literature

[117], formal groups within a hierarchy are often referred to as teams, and informal

groups as coalitions. The term coalition as used in this context is slightly different to

that of political or military contexts, where it often refers to more formal and long-

lasting agreements. Conceptually, the ‘team’ sub-structures we create may seem closer

to the formal ‘teams’ Munyon references [117]; however they may also represent those

intra-organisational groups that form more organically with a social component (i.e.

‘coalitions’), in the same way that hierarchies can emerge in an informal fashion. In
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either case, later uses of the term ‘team’ in this chapter will refer to the local sub-

structures we create within the hierarchical k-ary tree networks.

5.3 Extending our model: incorporating status

In Chapter 3, we used homophily as an element of strength in our model inspired

by Latané’s social impact theory. Here, we extend this strength to also incorporate

status. Where previously strength was simply the similarity between two agents, we

now multiply this similarity by the edge weight between the nodes in question. This

edge weight represents status. Where the similarity between two agents i and j has

previously been defined (see Section 2.3.1) as:

simi,j =
1

F

F

∑
k=1
δσi

k
,σj

k

then strengthij = simij ×wij where wij is the edge weight from node i to j.

Therefore the trait-scoring formula introduced in Section 3.2 has now been extended

to:

tsα,k,i = ∑
j∈N+(i)

strengthijδσj
k
,α

where N+(i) is the set of out-neighbours from node i (i.e., those i copies from).

5.4 Methodology

In this section we explain how our model is applied in the context of possible organ-

isational structures, with particular reference to hierarchies and embedding of teams.
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5.4.1 Tall vs flat k-ary trees

Figure 5.1: A taller binary tree, k = 2, h = 4 (left), and a flatter tree k = 5, h = 2

(right). Image from [113].

To model the effects of tall-vs-flat hierarchies, we place our agents in balanced k-

ary trees of height h and branching factor k. Each tree has a root at level 0 with k

children arranged in h levels of descendants. Wider, flatter trees have low h and high

k; deeper narrower trees have higher h and lower k (Figure 5.1). Values for h and

k were chosen to maintain a relatively similar number of agents across different tree

structures (between 1023 and 1555, see Table 5.1). For the purposes of examining the

effects of taller-vs-flatter trees, we initially only use undirected edges.

Table 5.1: Tree structure configurations as networks, table from [113].
Branching factor (k) Height (h) # of Agents # of (undirected) Edges

2 9 1023 1022

3 6 1093 1092

4 5 1365 1364

6 4 1555 1554

10 3 1111 1110

We choose number of features, F and traits, q based on values which exemplify the

behaviours found in the model, between the states of complete mono-culture and

complete polarisation. We run our model on F = 5, q = 3,5,10,15,20,25,50 and

q = 10, F = 3,5,10,15,25,50. For each parameter set, we run the simulation 20 times,
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(a) Undirected (b) Exclusively top-down (c) Asymmetric bi-directional

Figure 5.2: Different trait-copying scenarios within tree structures. In undirected

trees (5.2a) linked nodes may copy traits from each other in either direction. In

a scenario where influence is exclusively top-down (5.2b), edges are directed such

that nodes may only copy from their superior - thus traits (and influence) flow

downwards. In the asymmetric bi-directional scenario (5.2c), edges exist in both

directions but typically have a greater weight where a subordinate copies from

their superior. Figure from [114].

each with a different random seed and randomly assigned starting traits. We also run

Axelrod’s model on similar trees for comparison.

5.4.2 Hierarchical status

Where Section 5.4.1 used undirected edges in tree structures, we now also apply dir-

ected and weighted edges to simulate hierarchical status (as described in Section 5.2).

Using an extended version of our model given in 5.3, we simulate ‘top-down’ hier-

archical status by increasing the weight on directed edges that allow copying from a

node’s superior. We use our directed and weighted edges in three ways: undirected,

exclusively top-down influence, and asymmetric bidirectional influence (Figure 5.2).

In the following sub-sections we outline the different scenarios for influence between

nodes.
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Undirected edges: no hierarchical status

Where edges are undirected and unweighted, hierarchical status is essentially absent.

Influence flows both ways along a connection, and subordinates may influence their

superiors with as equal a weight as vice-versa (Figure 5.2a). While nodes higher in the

tree may have greater centrality and lower average shortest paths lengths to the rest of

the network, they are affected by an equal amount of influencing agents to those over

which they have influence.

Exclusively top-down influence

Where influence is exclusively top-down, agents may only copy from those directly

above them, and only be copied from by those directly below. Edges are directed in

such a way that nodes have only out-edges to their superiors and in-edges from their

subordinates (Figure 5.2b). Aside from those at the very top and bottom of the tree,

each agent may copy from one other and be copied from by k others.

Asymmetric bi-directional influence

We extend the top-down structures by adding additional directed edges allowing up-

ward influence. Agents can now copy both from above and below. However, unlike in

the undirected scenario, upward and downward edges may now have different weights.

A superior will likely exert more influence upon a subordinate than it receives in return

(Figure 5.2c).

5.4.3 Teams

To generate the team structures described in Section 5.2.2, we define a team in our

network as a set of all nodes containing the same ‘parent’ node in the tree. In addition
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to the ‘vertical’ links in the k-ary tree (i.e. edges to superiors/subordinates), our teams

will introduce horizontal links between members of a team.

First, we create k-ary trees (as in Section 5.4.1). Then, each node is assigned to a team.

The nodes in our tree are numbered sequentially, from node 0 at the top to the last node

(id = ∣A∣ − 1) at the bottom. Each team is numbered by its parent; for example, those

agents which are child-nodes of node 3 are assigned to team 3. Node 0 is a special

case; with no peers or superiors it sits alone at the top of the tree, a member of no team.

Every other node can belong to one team only, and the size of each team is k.

Within each team, for each possible link between members we create an edge with

probability p. Where p = 1, every team would form a complete subgraph. For example,

where k = 4 and p = 1, each team in the structure would be fully connected, with 6

edges (in the undirected case) linking 4 nodes. Where k = 4 and p = 0.5, each team

would have on average 3 edges randomly distributed across the 4 nodes.

In directed graphs, there are two potential edges between each pair of nodes within

a team: inward and outward. An edge created from one agent to another may not

necessarily be reciprocated. The edge weight between members of a team is always

set to 1, but the weight between team members and superiors/subordinates may be

varied to simulate hierarchical status. As we did with basic tree structures in Section

5.4.2, we examine three different scenarios of hierarchical status:

• Undirected team structures: nodes may copy from their team-mates, subordin-

ates and superiors with equal weight (Figure 5.3a).

• Exclusively ‘top-down’ influence: Nodes may only copy from their peers and

superiors (Figure 5.3b).

• Asymmetric bi-directional influence: Nodes may copy from their team-mates,

superiors and subordinates; but typically with greater weight from their superi-

ors. (Figure 5.3c).



86 5.4 Methodology

(a) Undirected (b) Exclusively top-down (c) Asymmetric bi-directional

Figure 5.3: Different trait-copying scenarios within team structures. We take the

same undirected and directed structures used for trees (Figure 5.2) and add intra-

team edges with probability p. Figure 5.3a depicts two undirected teams of size

k = 4, where the left team is fully connected i.e. p = 1. The team on the right

has p = 0.5, and therefore only 50% of possible edges have been created. Figure

5.3b depicts a scenario where upward influence is absent; nodes may only copy

from their team-mates and superior; never from their subordinates. Note that the

graph is directed, and that there is a probability of creating an edge in either dir-

ection. In this example, p = 0.5 and 6 directed edges out of a possible 12 have been

generated within the team. Figure 5.3c illustrates the asymmetric bi-directional

scenario for p = 0.25; nodes may copy from their team-mates, subordinates and

superiors but will typically copy with greater weight from their superior. Figure

from [114].

5.4.4 Results metrics

Similarly to previous chapters, we examine the composition of the edges within the

stabilised simulations; whether they link completely similar agents (a homogenised

edge), completely dissimilar agents (a polarised edge), or somewhere in between (a

mixed edge). These edges are described in more detail in Section 3.3.2.

As we are studying hierarchies and status, we are also interested in ability of higher

nodes to influence others. To do this, we record the topmost (root) node’s starting traits
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at the beginning of the simulation. When the simulation reaches stabilisation, we com-

pare the original traits of the root node with others across the structure. We consider

the nodes at the top of the structure to have had a large influence on the organisational

culture where their traits are widely adopted by the rest of the population. The aver-

age similarity of two nodes with randomly assigned traits is 1
q . We can use this as a

baseline; if the topmost node only has 1
q of its traits adopted by others, it has not had

any more influence than any other node on average.

We also compare the topmost node’s traits at stabilisation to its original starting traits.

Should the root node retain a large proportion of its starting traits, then it has not been

greatly influenced by the rest of the population.

5.5 Results

We examine the network clustering and path-length that result in the generated k-ary

trees and team structures (sec:hierarchiesResultsNetwork). We organise the cultural

results by undirected trees (i.e. no hierarchical status, Section 5.5.2), hierarchical status

in trees (Section 5.5.3), and results from team structures (Section 5.5.4).

5.5.1 Network characteristics

K-ary trees represent an extreme case where clustering is zero; none of a node’s neigh-

bours will be connected to each other. The average node-degree of the basic k-ary trees

also remains similar (close to 2) across tall and flat structures as the increase in sub-

ordinates (k) in a flatter tree is balanced by the greater number of nodes at the lowest

level, who all have degree 1. As the horizontal links of teams are introduced, clustering

increases with p. The increase of clustering with p is amplified as tree structures get

flatter and the teams within them consequently get larger (Figure 5.4a).
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Figure 5.4: Network characteristics of trees and teams. For all basic k-ary trees,

clustering is 0. Clustering is greater in flatter structures that contain teams, and

increasing intra-team connectivity p greatly increases clustering. Flatter trees also

have much lower average path lengths, as there are less levels of hierarchy to

navigate. Increasing p has little effect on path length.

The average shortest path is significantly lower for flatter trees vs tall; the increased

hierarchical layers of the latter cause greater distance between the top and bottom of

the tree. Introducing teams only has a minor effect in reducing this path length, even

where p = 1 (Figure 5.4b)).

5.5.2 Undirected taller vs flatter trees

When edges are undirected, flatter trees tend to show greater convergence than taller,

narrower trees. This manifests itself as a smaller overall number of cultures (Fig-

ure 5.5a) and a greater proportion of homogenised edges (Figure 5.6b). In contrast

to flatter trees, taller and narrower structures instead exhibit greater cultural mixing

(Figure 5.6c). The proportion of polarised edges appears to be similar across different

tree structures (Figure 5.6a). As the number of features F is increased, the difference
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between tree structures grows (figures 5.5a, 5.6). However, varying traits did not seem

to cause much distinction between the results of the different hierarchical structures

(Figure 5.5b).
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Figure 5.5: Number of cultures in tall-vs-flat trees. In Figure 5.5a, we vary the

number of features, F . The number of cultures decreases as the size of the features

vector, F , is increased. Deeper trees maintain a higher number of cultures than

flatter trees. Note: q = 10. Where q = 5 and q = 15 similar tall vs flat patterns

are present. In Figure 5.5b, we vary the number of traits q. The number of

cultures increases as the number of possible traits, q, increases; however there is

no discernible difference between different tree structures for F = 5. Figure from

[113].

5.5.3 Hierarchical status in taller vs flatter trees

Exclusively top-down influence

In simple k-ary trees, nodes only have connections to their superiors and subordinates.

As upward influence is absent, all nodes are completely and exclusively influenced by
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Figure 5.6: Proportions of edge types for tall-vs-flat trees. As the size of the fea-

tures vector, F, increases, the number of polarised links drops (5.6a). These links

instead become homogenised or mixed. The amount of cultural mixing is greater

for deeper trees (5.6c) whereas flatter trees show greater convergence (5.6b).

their superior. This influence from only one other node renders any status multiplier

on edge weight moot; so too is compound influence. The ‘cultural mixing’ that is

usually a key characteristic of our model cannot occur at stabilisation; the simulation

will eventually reach a stable state where all agents are either completely the same as
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Table 5.2: A comparison between edge statuses in trees where influence is exclus-

ively top-down, and edge statuses in trees where edges are undirected. Unlike

in cases where influence is bi-directional, the simplistic structure of k-ary trees

ensures that no ‘mixed’ links can remain when trait-copying occurs only from

parent to child. Table from [114].

Exclusively top-down influence Undirected graph

Polarised

links

Homogenised

links

Mixed

links

Polarised

links

Homogenised

links

Mixed

links

k = 2, h = 9 0.056 0.943 0 0.14 0.628 0.232

k = 3, h = 6 0.068 0.932 0 0.164 0.648 0.188

k = 4, h = 5 0.084 0.916 0 0.17 0.673 0.157

k = 6, h = 4 0.095 0.905 0 0.184 0.7 0.116

k = 10, h = 3 0.113 0.887 0 0.195 0.73 0.075

their direct superiors or completely dissimilar (see Table 5.2). If a node begins with

even a single randomly assigned trait in common with its superior, it will eventually

become identical to its superior. Global convergence is extremely high but not total,

as there exist instances where agents have no traits in common with their superior and

cannot copy from them, essentially insulating that sub-tree from any dominant cultures

hegemonising the majority of the structure. In contrast to undirected trees, taller trees

show slightly greater homogenisation.

Asymmetric bidirectional influence

The introduction of even a small amount of influence counter to top-down hierarchical

status can have a notable effect. In a taller tree (k = 2, h = 9) where there is some

upward influence, convergence only reaches similar levels to that of the exclusively

top-down scenario when the ratio is around 40:1 of top-down vs bottom-up influence

(Figure 5.7). At this ratio and above, ‘mixed’ links cease to be present and the num-
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ber of polarised and homogenised links are close to that of the exclusively top-down

simulation. In flatter trees, the points at which mixed links disappear occur at greater

weights: around 100:1 for a tree of k = 6, h = 4.

Despite the results of a high downward-to-upward influence ratio largely matching

those where influence is exclusively top-down, some differences remain. Where influ-

ence is exclusively top-down, the topmost node unsurprisingly retains all of its original

starting traits. However, when there is at least some upward influence the topmost

node is less able to totally influence its subordinates (Figure 5.8a). Even where there

is a very large ratio of downward to upward influence (> 50 ∶ 1), the topmost nodes on

average only retain 0.6 of their original traits for deeper trees (k = 3, h = 6), and 0.85

for flatter trees (k = 6, h = 4).

Correspondingly, the amount of the topmost node’s starting traits which are adopted by

other agents is lower. At around the same point at which mixed links disappear (Figure

5.7), the degree of similarity between the population and the topmost node’s starting

traits appears to reach a ceiling above which it doesn’t climb; even adding extra weight

to downward influence beyond this point will not increase the spread of the topmost

node’s traits (Figure 5.8b).

5.5.4 Team Structures

Undirected Team Structures

It is perhaps an intuitive expectation that increasing the average degree and connectiv-

ity between agents who behave homophilically will likely drive convergence toward

greater similarity overall. Indeed, simulations on ring-lattices (Section 4.3.2) showed

that increasing node-degree in Axelrod’s model will cause greater convergence; lower-

ing the average number of distinct cultures and increasing the proportion of homo-

genised links. For our model, the results were more nuanced (Section 4.3.2); greater

degree caused a lower number of cultures but the proportion of homogenised links
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Figure 5.7: The effect of greater ratios of downward vs upward influence from

taller (5.7a) through to flatter trees (5.7e). The weight (x-axis) represents hier-

archical status, and refers to the edge weight wij applied where subordinates

are influenced by their superiors (see Section 5.3). The amount of hierarchical

status weight required to raise homogeneity increases as trees get flatter. Mixed

links eventually drop to zero. Dashed lines indicate the amount of polarisa-

tion/homogenisation when influence is exclusively top-down (Section 5.5.3). As

hierarchical status weight rises in relation to upward influence, the proportion

of polarisation/homogenisation eventually settles close to that of the exclusively

top-down scenario. The point at which this happens is where mixed links reach

zero. However, it often requires a large ratio of downward-vs-upward influence

to reach this point.
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are retained at stabilization
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Figure 5.8: The influence of the topmost node vs upward influence. 5.8a depicts

the proportion of starting traits the topmost node retains at the end of the sim-

ulation. 5.8b illustrates the proportion of starting traits from the topmost node

that are adopted by other agents at the end of the simulation. When there is no

upward influence, the topmost node always retains 100% of its starting traits, but

this is not the case when there is some upward influence. Even when polarisa-

tion and homogenisation approach the levels found in an exclusively downward

influence model (Figure 5.7), the topmost node does not exert the same amount

of influence as it did where upward influence was absent. The top node does not

retain all original traits even when the downward influence is many times that of

the upward influence. Additionally, the topmost node’s influence appears to be

greater in flatter trees.

was largely the same. Results on our ‘team’ structures show different behaviour still:

homogenisation may drop when additional links are added.

As the likelihood p of connections between peers within a team increases, the pro-

portion of homogenised links undergoes a u-shaped dip; one which is exaggerated for
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flatter-shaped organisations (Figure 5.9). Where homogenisation decreases, mixing

increases. This is likely another example of the differences caused by influence from

multiple sources; as agents are influenced by several others simultaneously, a small in-

crease in their node degree may expose them to a greater number of different traits - but

without those traits necessarily becoming ‘dominant’ locally. Yet further increases in

local connections within a group may increase the likelihood of a trait reaching fixation

within a team, causing the slight return to convergence as p approaches 1.

Regardless of the value of p, the average similarity of other agents with the topmost

node’s starting traits remains between 0.098 and 0.102 (where q = 10). As the average

similarity of any two nodes with randomly assigned traits is 0.1, this indicates that the

introduction of intra-team connections has little or no effect on the influence of the

topmost node where edges are undirected.

No upward influence

Next we simulated a scenario where no upward influence is possible; nodes may only

copy from their peers and superiors. We expected the addition of horizontal links

between team members to undermine the influence of the topmost node as p increases:

that these extra edges between team-mates would strengthen intra-team homophily and

offer ‘resistance’ to top-down influence. This was not always the case.

When the weight of hierarchical status (downward influence) is low, increasing the

number of links p causes less adoption of traits from the top of the organisation, as

expected. Where the weight of downward influence is 1, and p = 1, the proportion of

traits adopted form the topmost node drops to 0.1, the same average proportion of traits

in common between two nodes with randomly assigned traits. This means the effective

influence of the topmost node is no more than any other node in the structure (Figure

5.10).

However, at higher weights of top-down influence, the introduction of additional links
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Figure 5.9: The effect of greater intra-team connectivity from undirected taller

trees (5.9a) through to flatter trees (5.9e), where p is the probability of an edge ex-

isting between two team-mates. Increasing the number of edges between nodes of

the same team (p) does not necessarily drive convergence; in a compound influence

model increasing connectivity may instead encourage greater cultural pluralism

(‘mixed links’). Increasing horizontal connectivity in tree structures produces a

‘u-shaped’ effect on homogenisation.

between peers instead serves to increase the amount of traits adopted from the topmost

node. When the weight of influence from higher status nodes is greater, links between

their subordinates have a further reinforcing effect in promoting their superior’s traits.

In addition, the greater connections within larger teams mean that this effect is more
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Figure 5.10: Proportion of topmost node’s traits adopted by others in team struc-

tures. When the ‘top-down’ hierarchical status weight (y-axis) in the structure is

low, increasing the connectivity of teams (p, x-axis) weakens the effective influence

of the high level nodes. This is the area of the charts shaded blue/green, a ‘valley’

where subordinates are influenced little by their superiors. Where p = 1 the top-

most node traits adopted drop to 0.1, no greater than the average similarity of two

nodes with randomly selected traits; at this point the high connectivity of subor-

dinates with each other has reduced the topmost node’s influence to the same as

any other node. However, when the ‘top-down’ status weight is increased, the in-

creased connectivity of subordinate teams serves to reinforce the topmost node’s

effective influence. The red-shaded areas of this chart, where the influence of su-

periors is highest, occur where there is at least some intra-team (p) connectivity,

and often where p is higher. This effect is more pronounced for flatter trees (5.10b)

than taller (5.10a).

pronounced in flatter, broader structures (Figure 5.10b) than deeper, narrower organ-

isations (Figure 5.10a).
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Asymmetric bi-directional influence

Our expectation was that any effects of upward influence apparent in tree structures

would be greater in corresponding ‘teams’ structures. However, where upward influ-

ence is present, there are only minor differences between the results from basic k-ary

trees (Section 5.5.3) and team structures where teammates are fully connected.

When we examine the number of the topmost node’s traits copied by other agents,

we find little difference between the results from basic bidirectional trees to those that

contain fully connected teams. Where small differences exist, there does not seem to be

a discernible pattern that would suggest that team structures either increase or decrease

root influence across different bidirectional tall or flat structures.

At low levels of downward influence, more connections between teammates causes an

increase in the proportion of ‘mixed’ edges - those between agents with non-identical

but not dissimilar cultures. As ours is a model of compound influence this is intuitive;

the greater a node’s degree the greater the likelihood that it can be influenced simultan-

eously by multiple competing cultures. However, as the weight of downward influence

increases, these differences between basic trees and team structures become smaller or

cease to exist.

5.6 Discussion

Where basic undirected k-ary trees with no team sub-structures are used (Section

5.5.2), flatter trees show a clear trend toward homogeneity. This may seem counter-

intuitive if one envisions a typically (and perhaps, traditionally) tall hierarchy as more

rigid and autocratic. However, the greater degree of intermediate ‘hub’ nodes, social

reinforcement from more subordinates, and possibly shorter paths of communication

(Figure 5.4b) may aid convergence. Note however, that in these most basic of k-ary

trees, increasing k does not increase clustering above zero (Section 5.5.1 and Figure
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5.4). It is also interesting to note that despite the shorter path lengths of flatter trees

offering a possible explanation for greater convergence, in ring lattices we did not find

path length to have a great effect on the results of our model (Figure 4.10, Sections

4.3.2, 4.4).

Where we first introduce hierarchical status to basic k-ary trees as an exclusively top-

down phenomenon (Section 5.5.3), the results are in some ways predictable. Where

an agent can only be influenced by one other - its superior - there is no way cultural

mixing can endure. The simulation ends in a similar state to that of the typical Axelrod

model; all homogenised and polarised edges. While a scenario where agents can only

be influenced by their direct superior is not impossible, it is likely very rare except in

the most authoritarian of environments.

The impact of upward influence is evident from Section 5.5.3. Where superiors allow

themselves to be influenced even a small amount by their subordinates, popular traits

can spread upwards and a greater mix of cultures can exist in an organisation. There are

many instances where such upward spread is considered beneficial. While our model

has no notion of ‘good’ or ‘bad’ traits, it would generally be considered desirable for

any superiors who valued efficiency to allow a successful trait developed at a low level

to spread up and across the organisation. In reality, office politics and power struggles

may undermine such a notion [29, 153]; our model does not currently model conscious

and deliberate ‘blocking’ strategies, although ‘blockages’ in the spread of traits do

occur in circumstances where superiors and subordinates are completely dissimilar.

The introduction of team structures (Section 5.5.4) further illustrates the nuances in

behaviour when trait spread is based on compound influence, rather than the dyadic-

copying of models such as Axelrod’s or many infection-based models. As we have

seen in previous chapters, where agents can be influenced by multiple neighbours sim-

ultaneously, cultural mixing can occur. In our k-ary trees with team sub-structures,

an increase in intra-team links creates an inverted u-shape in the proportion of mixed

links (Figure 5.9). It should be noted that while non-monotonic, at p = 1 (a completely
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connected team) mixing is generally greater than where p = 0 (an unconnected team).

This is of interest because where in Chapter 4 a decrease in clustering caused an in-

crease in mixing (Figure 4.10), here it is the addition of intra-team links that seems to

facilitate cultural mixing, despite the fact that these links increase clustering. Clearly,

we cannot predict the amount of homogenisation and cultural mixing from network

clustering alone.

A perceived benefit of ‘flat’ organisations is the supposed reduction of formal hierarch-

ies and their associated politics to better allow power and influence to be more evenly

spread across the structure [154, 161]. However, the results illustrated in figures 5.8

and 5.10 suggest that while cultural plurality may increase in flatter structures, so may

the superior’s influence. Where strongly influential personalities exist in the upper

levels of an organisation, flatter structures may further concentrate influence within a

small number of these nodes.

As generalisations of hierarchies, basic k-ary trees have obvious limitations. A scen-

ario where an individuals only has contact with their direct superior and subordinates,

and these contacts of the ego then have absolutely zero contact with each other, seems

highly unrealistic. While the team structures proposed offer a more realistic extension,

in some cases the results differ little with the basic trees. This suggests there may be

phenomena common to organisational structures such as these. Despite limitations and

simplifications in the construction of generalised networks, we believe some of the be-

haviours observed may be the result of the basic characteristics of a hierarchical struc-

ture: typically hierarchies - and most organisations - form a pyramidal shape. High

level nodes can cause bottlenecks and blockages to the spread of traits and behaviours

up and across an organisation. On the other hand, even highly influential high-level

nodes may be swayed by the sheer number of their subordinates adopting a behaviour.

In a sense, there is a balance between hierarchical authority and collective influence;

the hierarchical status introduced in this chapter versus the number of simultaneous

influences that forms a key part of our model.
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We believe the structures used in this chapter may serve as a useful basis for examining

the behaviour of other models. Inter-team links may further enhance these structures,

but risk diluting the hierarchical nature of the network. A potential future enhancement

could be in the form of a multi-layer network, with the formal hierarchy forming one

layer and an informal social network forming another - perhaps linking members of

different teams or levels. Another approach may be to increase the network distance at

which agents may influence each other; we add this notion of distance to our model in

Chapter 6.

5.7 Conclusion

In this chapter, we have made two main contributions: examining the behaviour of a

compound influence model in hierarchical structures and introducing a method of gen-

erating and examining ‘team’ sub-structures within basic k-ary trees. The team struc-

tures improve upon basic k-ary trees as a generalisation of hierarchical organisational

structures by allowing horizontal interactions where they are most likely: between

members of a common team. We believe these structures may be a useful generalisa-

tion for other network-based models.

We observe that whether a tree is narrow and tall, or broad and flat, has a tangible ef-

fect on the amount of cultural convergence. Also, in support of research question RQ5,

we find that where top-down hierarchical status is present, the increased influence of

higher level nodes is often counteracted by the number and connectivity of subordin-

ates. A small amount of upward influence may greatly diminish the spread of traits

from the top of the hierarchy, even where the weight of top-down status is greater.

Increased connectivity within teams of subordinates may diminish the influence of a

superior who lacks sufficient status; conversely, a strongly connected team may serve

to enhance the influence of a superior where their hierarchical status is high.

The results add further evidence to the notion that the shape of an organisational struc-
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ture can have a tangible effect on its culture and internal dynamics, in addition to (or

even despite) motives and behaviours of individuals. These findings may have implic-

ations for how organisational cultures may take hold, and the design of organisational

networks and hierarchies in light of their cultural implications. Whether seeking sub-

sidiarity and the development of individual behaviours from below, or a more robust

top-down culture, the results from this chapter demonstrate that the design of a hier-

archical structure can have a notable effect.
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Chapter 6

The influence of social distance

In this chapter, we extend our model of social influence to include distance. This allows

influence beyond direct connections, to acquaintances and ‘friends-of-friends’. We aim

to model effects such as the reach of social influence, and the immediacy element of

social impact theory [88], using network path-length as an analogy. We introduce two

possible mechanisms to capture distance; one based on an inverse-square law, the other

on the intermediary paths between agents. Using simulations over network graphs, we

explore the effects these processes have when varying clustering and path length in

Watts-Strogatz networks. This chapter supports research question RQ6.

6.1 Social Distance

To avoid confusion with everyday terminology, we should differentiate between the

distance within social networks (either real networks or simulated), and broader meta-

phorical uses of the term social distance. The notion of ‘social distance’ is often as-

sociated with Georg Simmel’s essay ‘The Stranger’ [142], who appears to be both

near and far to his social group. Owing to academic interest in immigration and racial

tensions in the USA in the 1920s, the concept of ‘social distance’ became largely con-

cerned with the differences between individuals or groups [92, 158]. This ‘similarity’

notion of social distance is clearly more closely related to homophily [90, 103], which

is already included in our model (see Section 3.1.1). However, Levine and Carter [92]
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argue Simmel also used ‘nearness’ to describe interactions; the nearness of the stranger

being their proximity to, and regular contact with, a social group. Thus a ‘stranger’ in a

community may have regular contact with its members, but remain different. This may

bear similarities to our scenario in Figure 4.6, where an agent has close ties to others

with which it shares little in common. It is the ‘nearness’ of interactions that we aim

to add to our model in this chapter.

6.2 The role of Immediacy in Social Impact Theory

In Chapter 3 we focused on the roles of Strength and Number in Social Impact Theory

[88] as inspiration for our extension of Axelrod’s culture model. By allowing multiple

sources of influence to act upon an agent, we sought to model influence more social

than interpersonal [59], while making a thematic link to the Number in Latané’s theory

of Social Impact. For Strength, we used the existing homophily present in Axelrod’s

model, while also using edge weights for potential additional factors of ‘strength’ such

as hierarchical status in Chapter 5. Latané describes Immediacy as “closeness in space

or time and absence of intervening barriers or filters” [88]. Proximity in space or time

seems similar in spirit to Simmel’s notion of ‘nearness’ (Section 6.1), that those who

are ‘near’ would be close geographically, or at least be in regular contact. The “absence

of intervening barriers or filters” suggests direct contact between agents, with little or

no noise (in the signal sense) or interference from others. In [122], Nowak et al model

social impact theory as a cellular automaton, and immediacy as the Euclidean distance

between cells. Although our model is based on network graph structures rather than

cellular sites, we use a similar principle in that the immediacy of influence between our

agents is based on the distance of path lengths between them in the network. Those

agents that are a shorter network distance from each other will represent agents nearer

in “space or time”; the fewer network hops between them the “absence of intervening

barriers or filters”. Accordingly, influence from others further away will likely diminish

as distance increases, and intermediaries may act as barriers or filters. The latter forms
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a key element of the path-based distance method we introduce into our model in this

chapter; that nodes along a path may potentially enhance, diminish, or block entirely

influence from more distant agents.

6.3 Extending our model: incorporating distance

To add the notion of ‘distance’ (or ‘immediacy’) to our model, we base our algorithm

on the established assumption that a force such as influence is likely to decay as dis-

tance increases [88, 89, 103, 122, 124, 166]. We study two approaches; one based on

an inverse-square law (Section 6.3.1), and another more novel process of path-based

influence over distance (Section 6.3.2). In either of these methods, an agent being in-

fluenced by others at greater distance would seem to be influenced indirectly by those

more distant nodes. Depending on context this may well be a fitting representation;

agents may receive second-hand information and be influenced by the opinions and

norms of the wider population.

However, this second-order influence does not necessarily need to represent a lack of

contact between nodes at distance, but rather less immediate contact. If those vertices

in a node’s immediate neighbourhood represent its closest contacts, perhaps family

members or close friends, those at greater distances may represent colleagues through

to acquaintances, those we know by name, those we recognise and finally those with

whom we have no contact at all. There are parallels with different group sizes and

layers in anthropology, such as families relative to tribes [28]; or support cliques and

sympathy groups in Dunbar’s work [75]. Agents will generally have their greatest

frequency of contact with their closest social circle.

There is also a body of work [27, 40, 58, 69, 133] that proposes that should an indi-

vidual A have strong ties to two others, B and C, then those others will usually have at

least some form of link to each other. Mark Granovetter went so far as to call a struc-

ture with an absence of tie between B and C a ‘forbidden triad’; asserting that a ‘weak
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(a) A ‘forbidden triad’ (b) A ‘forbidden triad’ closed

with a weak link

Figure 6.1: Granovetter’s ‘forbidden triad’: where strong ties exist from A to B

and A to C, some form of relationship must exist between B and C - even if only

a weak or indirect one.

tie’ will almost always exist to close the triangle [69] (Figure 6.1). The inclusion of

weaker influence of nodes at l > 1 in effect models such a triadic closure; if strong ties

exist as first-order contacts between A ↔ B and A ↔ C, then B may be influenced

by C at distance: a weaker tie. B is likely to have at least some contact with C, albeit

with less immediacy.

‘Distance’ in Axelrod’s The Dissemination of Culture

It should be noted that in Robert Axelrod’s original paper, The Dissemination of Cul-

ture [6], he refers to interactions over distance. For these interactions, agents are able

to copy from those beyond their local Von Neumann neighbourhood (i.e. at greater

Manhattan distances [22]). While this may make some sense in a cellular automaton,

in a network graph the ability of two nodes to interact directly, and with no barriers,

interference or noise, means they are connected. If an edge exists between A and B,

and A can interact with C under the same conditions, conceptually there is an edge

A↔ C. Therefore the notion of distance described in [6] is really one of connectivity;

when ‘distance’ in the grid is increased the average node-degree increases. This is ac-
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Figure 6.2: ‘Distance’ in The Dissemination of culture can instead be thought of

as connectivity. Where the Manhattan distance increases (right), agents create

first-order connections to other nodes with no decaying effect of distance.

knowledged in the original paper by the use of the terms ‘Neighbourhood’ and ‘Range

of Interaction’. We do not use this characterisation of ‘distance’, as we have already

examined the effects of greater degree and connectivity in Chapter 4.

6.3.1 Diminishing influence over distance as an inverse-square law

As many social simulations and models take inspiration from physics and statistical

mechanics [14, 34], several base their modelling of distance decay on concepts from the

physical sciences. Newton’s law of gravity serves as an analogy for several studies that

model some force diminishing over distance [62, 77, 134]. Accordingly, these forces

are often modelled as inversely proportional to the square of the distance [45, 122].

In addition, some social phenomena over distance have been found to follow patterns

similar to inverse-square functions [89, 149, 166].

We apply an inverse-square function to distance in our model. Distance is modelled

as the number of ‘hops’ between vertices. For example, where an edge {a, b} between

two nodes exists, the distance between a and b would be 1. Should edges {a, b} and

{b, c} exist, but no edge {a, c}, then the distance between a and c would be 2. Where

l is the distance between node i and j, j’s influence over i will be 1
l2 × influence.
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Figure 6.3: Distance as an inverse-square law: As nodes increase in distance from

a0, their influence decays. a0 has similarity of 0.8 with each of the other agents

illustrated. However, as the inverse-square law is applied, a2 has its trait scores

adjusted by 1
22 , giving 0.8 × 0.25 = 0.2. a3 has its influence reduced even further:

multiplied by 1
32 .

The full equation for calculating a trait’s score1 when an inverse-square distance law is

applied is:

tsα,k,i =
d

∑
l=1
∑

j∈Al(i)

1

l2
simi,jδσj

k
,α

where d is maximum distance; j is a node in the set Al(i) which is the set of all

nodes where the shortest path is l hops from i; simi,j is the similarity between i and

j (see Section 2.3.1); δσj
k
,α is Kronecker’s delta (1 if trait α matches j’s kth feature, 0

otherwise). Therefore, where j is within a distance d of i, and holds the trait currently

being scored, that trait’s score will increase. When all traits from all nodes within

distance have been examined, the highest scoring trait will be adopted.

Note that pre-defined edge weights (such as those used in Chapter 5) are not taken into

account, as agents may interact with others not in their immediate neighbourhood.

6.3.2 Distance as indirect influence

We have also developed a method of influence over distance, first introduced in [112],

where we use the product of influence along a path. Where maximum influence dis-
1See Section 3.2 for an explanation of trait scoring.
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tance is two, and there exists links A ↔ B and A ↔ C, C’s influence on B is the

influence of A↔ B multipled by the influence of A↔ C. In [112] this was expressed

more simply as the product of the edge weights along a path, where edge weights were

simply the similarity of the edge’s two vertices. However, we have since treated edge

weight as a separate parameter to allow it to represent other factors such as status (see

Chapter 5). Treating the similarity of two agents differently to the edge weight between

them also allows us to more easily potentially extend our model to more dynamic net-

work structures without having to recalculate edge weights after every interaction or

network change. The updated trait-scoring equation using this method is:

tsα,k,i =
d

∑
l=1

∑
P ∈Pathsli

⎛

⎝

∣P ∣−1
∏
n=0

strengthP (n),P (n+1)
⎞

⎠
δ
σ
P (l)
k

,α

where d is maximum distance; P is a set of vertices forming a path in the set Pathsli,

which is the set of all possible paths (with no cycles) from i of length l; strength is

similarity ×weight (see Section 5.3). Thus P (l) represents the final node on a path,

and must hold trait α for α’s score to increase. If we expand the full calculations for

strength and similarity, the equivalent and final formulation of our model of trait-

scoring used in this thesis is:

tsα,k,i =
d

∑
l=1

∑
P ∈Pathsli

⎛

⎝

∣P ∣−1
∏
n=0

(
1

F

F

∑
x=1

δσx(P (n)),σx(P (n+1))) ×wP (n),P (n+1)
⎞

⎠
δ
σ
P (l)
k

,α

where w is weight. This expression of the formula is included for completeness, the

simplified version above is generally preferred.

In this way, the similarity of intermediary agents along a path is important. Where

similarity is high, influence over distance will decay at a lower rate. Where similar-

ity is low, distance decay will be much greater; a polarised edge along the path will

block influence entirely. An example of this is given in Figure 6.4. An agent’s closest

neighbours mediate the influence of more distant contacts, in the way one’s closest
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Figure 6.4: Distance as indirect influence: Unlike the inverse-square approach,

in our path-based distance method the similarities along the path to a node are

also important. While a0 has similarity of 0.8 with a2, its influence from a2 is

instead calculated by multiplying the similarities along the path a0, a1, a2, giving

0.8 × 0.6 = 0.48.

family may shape one’s views of others in the wider community or society. It should

also be noted that multiple paths may exist to another node, particularly those closest,

potentially raising their influence further.

6.4 Simulations of our multiple-influence model with

the additional effect of influence over distance

6.4.1 Methodology

To examine the effects of influence over distance, we have largely repeated the exper-

iments of Chapter 4, but with the extension of our model with the distance methods

described above. With both our path-based method, and an inverse-square law, we

examine the effects of increasing influence over distance while also varying homogen-

eous degree within a ring lattice. We then apply both methods to lattices increasingly

rewired into ‘small-world’ networks, to observe the effects of decreasing global aver-

age path length and network clustering.

A list of parameters used is given in Table 6.1. Each parameter set was run 10 times

with different random seeds. While the number of runs is small, this is consistent with
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the methods used in Chapter 4, and is again due to limited resources. The parameters

in Table 6.1 give a total of 1260 runs, many of which take several hours to complete.

The exponential growth in complexity with the increase of an agent’s social ties or

distance of influence is analogous with the ‘social brain hypothesis’ that social group

size is limited by cognitive ability [55].

Model Our multiple-influence model

Distance Methods Inverse-square, Path-based

Distance 1, 2, 3

Degree 4, 8, 12

Rewiring probability 0.01, 0.05. 0.1, 0.2, 0.5, 0.75, 1

q 10

F 5

Table 6.1: Parameters used in testing effects of distance.

Hypotheses

We hypothesise that at lower degree, results from both distance methods will show little

difference to results where influence is from local neighbourhood only. The additional

influencing agents will be small in number, and each only have a very small influence

because of the effects of distance decay.

When run over ring lattices of higher node-degree, we expect any effects caused by

increased distance to be greater, as the number of nodes at distance l will increase with

degree. It is possible that higher node-degree may cause either greater convergence or

greater cultural mixing. As we have seen in Chapter 4, being exposed to nodes beyond

one’s local cluster can cause a greater mix of traits to be adopted. On the other hand,

where agents are ‘caught between’ two or more cultures, extra influences introduced

by our distance methods may act as ‘tie-breakers’, pushing an agent into one culture or

another and driving convergence.
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We would expect any effects of ‘small-world’ rewiring, as observed in Chapter 4, to be

exaggerated by the inclusion of influence over distance. Where a single edge exists as

a bridge across areas of the ring lattice, neighbours of a bridging node may now exert

influence over distance, albeit weakly.

The two distance methods, path-based influence and inverse-square, may show slightly

different results. In our path-based influence method, dissimilar nodes along a path

can effectively ‘block’ influence (as similarity will be zero); the inverse-square method

will still allow influence from nodes-at-distance who are insulated from the influenced

agent by dissimilar nodes.

6.4.2 Results

A: The effect of inverse-square-based distance and node-degree in simple ring-

lattices

When node-degree is low (degree = 4), adding the process of inverse-square-based

distance has only a minor effect. Convergence is slightly higher, as evidenced by the

decrease in cultures (Figure 6.5a) and increase in homogenised edges (Figure 6.5c).

The number of ‘mixed’ edges shows almost no change (Figure 6.5d).

We had expected an increase in degree to increase any effects caused by increased

distance. Instead, as degree increases the additional influence of distance appears to

diminish; results become slightly closer to that of d = 1 (Figure 6.5).

B: The effect of path-based distance and node-degree in simple ring-lattices

The effects of applying our path-based distance process, even at low degree, are more

pronounced than with the inverse-square-based method, particularly for the number of

‘mixed’ edges. When degree = 4 and d > 1 there is greater evidence of convergence
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shown by an increase in homogenised edges (Figure 6.6c). The amount of cultural mix-

ing is significantly lower when using path-based distance (Figure 6.6d), in contrast to

our hypothesis that distance would have little effect at low degree. As degree increases,

results for d > 1 show a greater increase in homogenised links and convergence.

C: The effect of path-based distance in Watts-Strogatz small-world networks

When we introduce rewired ‘small-world’ networks, at low degree (degree = 4) the

results patterns are largely consistent with those where no distance-mechanic is ap-

plied. The differences caused by distance (e.g. greater homogenisation) that we outline

above for ring lattices, remain at similar proportions as the lattices are rewired (Figure

A.1, appendix).

At higher degrees, the results where path-based distance is applied start to diverge

from those where it is not (Figure 6.7). Where the probability of rewiring p is greater

than 0.1 a reversal in the decline of homogeneity occurs. The number of homogenised

edges rises sharply; mixed links and overall number of distinct cultures appear to drop

as the topology approaches that of a random network. These effects are exaggerated

by increased degree; at degree = 12 the rise in homogeneity occurs at both lower p

and lower distance than results from degree = 8 (Figure A.2, appendix). However,

where rewiring probability reaches 1, essentially a random graph, cultural diversity

may recover slightly.

To further explore the decline in cultural mixing beyond p > 0.1, we examine the make-

up of rewired edges versus those that remain part of the ring lattice. Where distance of

influence d = 1, the portion of rewired edges which link homogeneous cultures grows

slightly. However, this growth is not enough to counteract the substantial decline in

homogenisation that occurs in the non-rewired edges of the ring lattice (Figure 6.10a).

Thus, for d = 1, homogenisation is lowered in networks with more rewired edges.

Where distance d > 1, the opposite often occurs beyond p > 0.1. The portion of
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Figure 6.5: Results of inverse-square distance over varying degree ring lattices:

Applying an inverse-square distance effect causes minor differences to results in

ring lattices. Greater cultural convergence is suggested by a lower number of

cultures (6.5a), lower polarisation (6.5b), and greater homogenisation (6.5c). As

degree increases, there appears to be less difference in results for influence over

different distances.
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Figure 6.6: Results of path-based distance over varying degree ring lattices:

When our path-based distance method is applied, the effects are greater than

when using an inverse-square method (Figure 6.5). Convergence increases with

both increased distance and increased degree (6.6b, 6.6c). Mixing (6.6d) is lower

than when using the inverse-square method (Figure 6.5c).
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Figure 6.7: Results of path-based distance in Watts-Strogatz small-world net-

works (degree = 12): When run on networks of progressively more rewired edges,

initially the results of influence over distance follow the pattern of those where

distance = 1: a decline in homogenisation as edges are randomly rewired. How-

ever, beyond around p = 0.1, the results start to diverge and influence over higher

distance causes greater convergence (Fig. 6.7c) and less mixing (Fig. 6.7d). The

distributions of results where distance = 2 are charted in Figure 6.8.
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Figure 6.8: Interquartile ranges for results of path-based distance in Watts-

Strogatz small-world networks (degree = 12, distance = 2): Distribution of data

given in Figure 6.7, for distance = 2. Despite a greater range of values for p = 0.5

and p = 0.75, the medians and interquartile ranges still show a clear ‘u-shaped’

pattern for homogenisation as the graph is rewired. The extended maximum value

where p = 0.5 is the result of a single outlier.
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(a) Distance = 1 (b) Distance = 3

Figure 6.10: Composition of rewired and non-rewired edges using path-based

distance for distance = 1 (a) and distance = 3 (b). Rewired edges are represen-

ted below dashed line, non-rewired edges (i.e. those that remain part of the ring

lattice) above dashed line. p is the probability of an edge in the lattice being ran-

domly rewired. Where distance = 1, homogenised links decline with the reduction

of unrewired edges in the ring lattice (6.10a right). Where distance = 3, as more of

the lattice is rewired, mixing all but disappears for both rewired and non-rewired

edges (6.10b right).

rewired edges that link homogeneous cultures explodes, while homogeneity remains

at a similar level for non-rewired edges of the ring lattice. The increase in both the

proportion of rewired homogeneous links, and the increase in the total number of these

rewired links, contribute to an increase in homogenisation and cultural similarity at the

expense of cultural mixing (Figure 6.10b).
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D: The effect of inverse-square-based distance in Watts-Strogatz small-world net-

works

When we apply an inverse-square based distance mechanism, we also see an increase in

homogeneity with rewiring (Figure 6.11). However, when compared to the path-based-

distance method, this increase occurs at a slightly lower level of rewiring (p = 0.075 for

degree = 12, d = 3). At higher levels of rewiring, more extreme changes may occur.

While in path-based-distance, cultural mixing may recover very slightly at around p =

1; when using an inverse-square process cultural diversity not only increases at high

levels of rewiring but becomes arguably the dominant dynamic. For degree = 12 and

distance d = 3, where rewiring probability p = 0.2, mixed links are barely above zero

(Figure 6.11d); the average number of unique cultures is merely 23 in a population

of 1024 agents. Yet at p = 0.5 (i.e. 50% of ring lattice links are rewired across the

ring), the average number of unique cultures jumps to 1018 - almost 100% (Figure

6.11a), and the amount of ‘mixed’ edges is around 40% of the links in the network.

Homogeneous edges between completely similar nodes all but disappear. The number

of successful copying interactions which take place using such a parameter set is very

low: agents tend to retain their starting traits. This abrupt change appears similar

to a phase transition. Furthermore, at the transition point p = 0.2, the cumulative

distribution of culture sizes appears to be close to a power-law.

6.4.3 Discussion

The results from distance-based influence on ring lattices suggest subtle differences

between inverse-square and path-based distance methods (sections 6.4.2 A, 6.4.2 B).

While both saw increases in homogeneity, this was higher for path-based distance, and

increased even further with greater node-degree. One probable cause is a fundamental

difference between how influence-over-distance is determined: with inverse-square,

each node within d is considered once; with path-based-distance, each path of length
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Figure 6.11: Results of inverse-square-based distance in Watts-Strogatz small-

world networks (degree = 12): Initially, results follow a similar pattern to path-

based distance (Figure 6.7), where increasing rewiring and distance causes greater

convergence (Figure 6.7c). At p = 0.2, d = 3, the number of unique cultures has

shrunk to a very small number and the amount of mixing is low: most agents are

identical to their neighbours or completely dissimilar. However, with only a little

more rewiring there is then a jump to an almost opposite state: at p = 0.5, d = 3

the population is culturally fragmented and agents tend to retain their traits.
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≤ d is considered. Many of these paths will be to the same nodes multiple times, and

even more so to the nearest neighbours who have acquaintances in common. This is

likely to reinforce and advance popular traits within local clusters.

When rings are rewired, the results where influence occurs at distance are non-monotonic,

and less predictable than those where distance = 1. The dynamics described above,

which tend to increase homogenisation in ring lattices, are also at play in rewired small-

worlds. When influence is only via direct connections, rewiring (and thus reducing path

length and clustering) tends to increase mixing - as seen in Chapter 4. However, when

we introduce distance, each rewired link is not just allowing influence from its opposite

vertex, but also that vertex’s neighbourhood and beyond, driving homogenisation.

This increase in homogenisation seems to occur beyond the ‘small-world window’2,

only when clustering has fallen significantly. In addition to sensitivity to clustering

(Chapter 4), results could be due to already shortened paths becoming wider with ad-

ditional rewiring. In small-world Watt-Strogatz networks, the length of the average

shortest path drops significantly with only small amounts of rewiring; further rewiring

then has a negligible effect on this measure [160]. This is most pertinent to traits which

spread via simple contagion, where only a single path is needed [38]. However, as our

model is more affected by multiple sources, additional rewired links across the lattice

may provide the extra influence needed to tip an agent toward a culture.

The abrupt jump in 6.4.2 D (figures 6.11, 6.12) from a small number of cultures to

almost complete cultural fragmentation appears similar to a phase transition, com-

monly observed in social models. The power-law distribution of culture size at the

point of transition is also reminiscent of other studies based on Axelrod’s model which

exhibit phase-transition-like behaviour [35]. As we have seen with ring lattices, dif-

ferences in results can be caused by inverse-square-distance adding influencing nodes

over distance in contrast with path-based-distance adding paths. In a pure ring-lattice,

2The small world measure ω [151] is in the small world range of −0.5 < ω < 0.5 for around

0.05 ≤ p ≤ 0.2 where degree is 8-12, 1024 vertices.
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increasing the distance of influence using inverse-square only adds a small number

of additional nodes at each distance, as reach of influence inches around the ring:

the number of influencing nodes is simply distance × degree. When edges are re-

wired however, the number of additional influences increases non-linearly; although

not quite exponentially as there is some redundancy in the rewiring of edges to the

same local clusters. In such cases the number of successful influencers when using the

inverse-square method can start to outnumber those when using path-based-distance,

as in the latter distant influences can ‘blocked’ by dissimilar agents along the path. So

in this scenario of high inverse-square-distance and high rewiring, the sheer number of

mostly unique influencers swamps the activated agent; competing traits tend to cancel

each other out. The number of traits being q = 10, and features being F = 5, means

the probability of two agents starting with more than two feature/traits in common is

close to zero. Where the number of agents is 1024, and p is high enough that an agent

has links to a large proportion of others, the agents most likely to influence an agent

on a feature are those which already hold the same trait. Thus agents largely retain

their starting traits, and no culture exerts enough influence to change them. There is a

tipping point from where agents have few enough influences to successfully copy from

the most influential, to where influence is diluted enough to inhibit action.

6.5 Conclusion

In this chapter we have extended our model, adding the concept of influence over

distance. We introduced two possible methods of incorporating influence beyond dir-

ectly connected nodes, and repeated the experiments of Chapter 4 with these included.

How these often weaker, but often more numerous, additional influences affect cultural

spread is dependent on the network structure.

When clustering is high and contacts are predominantly local, strong social norms

may form. However, individuals who seem relatively dissimilar to their local group
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may be alienated; invoking Simmel’s stranger appearing both near (in terms of prox-

imity) and far (in terms of similarities) to his social group. There are existing examples

of increased contact either causing convergence of traits [6, 132], or conversely, fur-

ther entrenching existing positions [8, 10]. Our simulations model scenarios where

as individuals expand their horizons and connect to others further away, they may be-

come either more like their contacts or maintain their differences (Figures 6.7, 6.11).

In [159], Duncan Watts invokes Asimov’s planet Solaria to describe a world where

individuals interact almost exclusively at distance and local clusters do not exist - an

extremely ‘rewired’ scenario. Such an extreme example of predominantly long and

weak ties in our simulations produces results where influence is so thinly spread that

agents usually maintain their original traits; for each feature there are enough influen-

cing agents to reinforce the current trait, but not enough similarity to induce homophilic

copying (Figure 6.12b). ‘Cultures’ are almost entirely individualistic, dominant social

norms do not seem to exist. Although such a scenario is perhaps unrealistic, there are

nevertheless implications of connectivity in the consideration of the spread of phenom-

ena such as misinformation: it may be easy to find connections to those who confirm

rather than challenge our biases. Furthermore, the transition from a population of a

small number of homogeneous cultures to one of high cultural fragmentation appears

to occur as a phase transition, a phenomenon observed in other social models.

Finally, it is notable that with the exception of Nowak et al. [122], the notion of ad-

ditional weaker influence over distance appears to be rarely included in social models.

It may be the case that similar mechanics could reveal interesting behaviour in other

social simulations.
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Chapter 7

An empirical test of our model on

real-world data

In previous chapters, our model has been used to examine abstract scenarios. To some

extent, this is an intention of such models; positing that micro-specifications may be

potential explanations of macro-behaviour. Axelrod’s culture model showed that global

polarisation and the persistence of different cultures can exist even where local rules

promote convergence [6]. In this sense, the model could give indications as to the

probable number of cultures at stabilisation, but it was likely not intended to predict

which cultural traits would succeed, or localised results such as the final state of any

individual agent. The micro-level rules were the focus, rather than the trait values

themselves, which were allocated randomly at initialisation of the simulation. This is

a common approach of agent-based models, to isolate specific (and often simple) local

behaviours as candidate explanations for global behaviour [57].

However, the use of agent-based models as social simulations need not be confined to

abstract or qualitative studies. There are examples of the approach applied in a more

empirical context, on real-world data. When modelling stock markets, Bak et al [12]

found that allowing agents to imitate each other causes price distributions consistent

with the real-world data, while Kirman and Vriend modelled price dispersion and buyer

loyalty in a fish market [83]. Axelrod and Bennett [7] recreate history in the model-

ling of European alliances in the 1930s, and also offer an alternative counterfactual

history where allied nations instead unite against the Soviet Union. Axtell et al [9] also



128 7.1 Selection of a suitable dataset

constructed an agent-based model that was compared with historical data; one which

retrospectively predicted the population decline of the Native American Anasazi cul-

ture. The use of such a model may offer some explanations as to the factors affecting

such a decline.

In this chapter, we aim to test our model in a similar fashion: given starting conditions,

we ask to what extent will our model arrive at a similar later state to that of the real-

world data. This chapter supports research question RQ7.

7.1 Selection of a suitable dataset

If we are to compare results generated by our models against real world data, then we

need both starting conditions and data of the same structure gathered at a later date.

In this way, we can take the data at an early time-step, run them within our model

and compare with real-world data at a later time-step; hopefully, the results from our

models will show some similarity with how things actually occurred. Therefore, any

dataset must have a temporal, longitudinal aspect.

As our work principally explores agent influences on each other, and the wider effects

within networks, the data must be able to form a network graph of agents, each node

having stated or derived connections with a subset of the population.

Thirdly, these individual nodes or agents must hold multiple mutable attributes that

may be changed over the course of the longitudinal study. The nature of Axelrod’s

culture model and its derivatives is such that each changeable feature should have pos-

sible values (traits) that are categorical, non-ordinal, and ideally mutually exclusive.

The latter attribute can be harder to discern; for example most football fans may have a

favourite club but some may support two, individuals may hold multiple nationalities.

In such instances it may be possible to model these cases in terms of an entity’s most

strongly held preference.
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It has proven difficult to find data that exhibits all three of these characteristics, an ob-

servation also acknowledged by Lewis et al. in their creation of the ‘Tastes, ties, and

time’ (T3) dataset [93]. The title of such a dataset seems to identify it as ideal for our

purposes; indeed the authors define the dataset as sociocentric, multiplex, and longit-

udinal. However, the methods of data collection and anonymisation attracted public

criticism, and the dataset was withdrawn [165]. It may be possible to ‘scrape’ online

social media to construct networks of individuals with stated beliefs and preferences,

but clearly this is ethically problematic [165].

The most suitable dataset we have yet found is the ‘Glasgow Teenage Friends and

Lifestyle’ dataset [145], which we shall use as an empirical test of social influence

models.

7.1.1 The ‘Glasgow Teenage Friends and Lifestyle’ dataset

The Chief Scientist’s Office of the Scottish Home and Health Department, under the

remit of their Smoking Initiative, funded a study of the lifestyle and friendship groups

of teenagers in the West of Scotland in the 1990s [105, 31, 129, 130]. Questionnaires

given to teenagers recorded their use of alcohol, tobacco, and drugs, and also their

leisure activities and friends. An excerpt of this data forms the basis for the ‘Glasgow

Teenage Friends and Lifestyle’ dataset [145].

This dataset focuses on a cohort of pupils at an unnamed comprehensive school in the

wider Glasgow area. The study took place from February 1995, when the students

were aged around 13, to January 1997. Questionnaire responses were recorded at three

intervals, giving longitudinal data regarding how behaviours may have changed over

the time of the study. The dataset includes, for each time-step, an adjacency matrix

representing the friendship network of the participants. Thus we have temporal data,

consisting of a connected network of nodes with mutable attributes.

For a list of fields included, see Table B.1 in Appendix B.
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7.2 Methodology

We extract features and network edges from the ‘Glasgow Teenage Friends and Life-

style’ dataset. Those present at the first time-step will form the starting ‘seed’ data

for initial configuration of our models. The extraction of these features and edges is

discussed in more detail in Section 7.3.

When the simulations have completed, we will compare the resulting feature vectors

for each agent with those of the third and final time-step of the real dataset. We define

consistency as the degree to which a simulation matches the real data. Where all

features for an individual in the simulation results match all features for the same indi-

vidual in the real data, this would be consistency = 1. We run our simulations multiple

times using different random seeds, and compare the results against the real data each

time, before taking an average of the consistencies. Note that the random seed is only

used to determine the order in which the agents are activated within the simulation.

We test three models against the data; Axelrod’s original culture model [6], an adapted

version of Flache and Macy’s social influence model (see Section 3.3.4) [59], and our

social influence model incorporating multiple influence and influence over distance.

For our social influence model, we use distances 1 to 3.

7.3 Data preparation

The ‘Glasgow Teenage Friends and Lifestyle’ dataset is provided by the SIENA pro-

ject, and consists of several files in the R Data format [145]. The data were extracted

from these files, cleaned and saved in Graph Modelling Language (GML) for use by

our model.

We focused on those students included in selection129, i.e. those who were present at

all three time-steps. Others were excluded.
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7.3.1 Creation of features and traits

When selecting nodal attributes, those that are discrete and mutable (specifically ‘in-

fluenceable’) are most appropriate for our models of social influence. We excluded all

geographic data; while potentially useful in determining the likelihood of links form-

ing (e.g. pupils living close by forming friendships), we considered it unlikely to affect

trait adoption beyond the friendships already specified. While pocket money could

conceivably be influenced by the social norm of a pupil’s friendship group, it is both

a continuous value and one arguably determined more by a pupil’s parents; therefore

this too was excluded. The dataset records a pupil’s age, sex, and the smoking habits

of their family as immutable (or at least, not easily influence-able by their peers during

the study).

For many fields (see Table B.1), values are given as a frequency with which an activity

is undertaken. For example, for each leisure activity, the recorded responses were

‘most days’, ‘once a week’, ‘once a month’, ‘less often or never’. As models based

on the Axelrod culture model work on discrete and categorical traits, we cannot treat

these values as ordinal. While ‘most days’ is closer to ‘once a week’ than ‘once a

month’, we must instead treat these values as categorical and unrelated. As such, we

have reduced these responses to binary values: either the pupil engages in the activity

fairly regularly, or not.

We must also determine what constitutes ‘regularly’ engaging in an activity. Some

activities, for reasons of cost and logistics, do not take place every day - such as pop

concerts. Therefore we considered that attending a gig or pop concert at least once a

month would indicate it is a favoured activity for that pupil. Conversely, due to the

greater ease of listening to CDs we consider it a regular activity if a pupil undertook

this activity at least once a week. When assigning these thresholds we used our own

discretion informed by the distribution of pupil responses for each field. A list of these

thresholds is given in Table 7.1.
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Attribute Values Considered

TRUE

where:

Tobacco 1 (non), 2 (occasional), 3 (regular) ≥ 2

Alcohol 1 (non), 2 (once or twice a year), 3 (once a

month), 4 (once a week), 5 (more than once

a week)

≥ 3

Cannabis 1 (non), 2 (tried once), 3 (occasional), 4

(regular)

≥ 3

I listen to tapes or

CDs

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 2

I look around in the

shops

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 2

I read comics, mags

or books

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 2

I go to sport matches 1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 3

I take part in sports 1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 2

I hang round in the

streets

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 2

I play computer

games

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 2

I spend time on my

hobby (eg art, an in-

strument)

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 2
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Attribute Values Considered

TRUE

where:

I go to something

like B.B., Guides or

Scouts

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 2

I go to cinema 1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 3

I go to pop concerts,

gigs

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 3

I go to church,

mosque or temple

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 3

I look after a pet an-

imal

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 2

I go to dance clubs or

raves

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 3

I do nothing much

(am bored)

1 (most days), 2 (once a week), 3 (once a

month), 4 (less often or never)

≤ 3

Table 7.1: Thresholds for converting data to binary trait values

We created four feature-sets for experimentation, each described below. We acknow-

ledge that models based on Axelrod’s culture model typically have several possible

trait values (q) rather than just binary data. Therefore we have attempted to increase q

beyond 2 by grouping music genres and types of leisure activities.
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Feature-set 1: All mutable fields

This feature-set consisted of a feature for each mutable field, each with a binary value.

The assumptions on what constitutes a true or false value are given in Table 7.1. There-

fore this feature-set is of F = 34, q = 2.

Feature-set 2: A selection of four fields

A simplified version with a small number of fields: tobacco smoking, cannabis use,

alcohol use and participation in sports. This is based on the ‘s50’ excerpt of the full

dataset [144], but with the full friends network retained. All trait values are binary,

giving F = 4, q = 2.

Feature-set 3: All mutable fields, with grouped music genres

To increase q beyond 2, we group music genres into 6 trait values using criteria based

on work by Rentfrow and Gosling [135]. Musical preferences were grouped into

categories: ‘Intense and Rebellious’ (heavy metal, indie, rock, grunge), ‘Reflective

and Complex’ (jazz, classical, folk/traditional), ‘Upbeat and Conventional’ (chart mu-

sic), and ‘Energetic and Rhythmic’ (reggae, rap, hip-hop, techno, house, rave, dance).

Where a pupil’s responses indicated a preference for one of these categories, this was

recorded as the trait value. In some instances several categories scored equally, and

were given the music trait ‘Eclectic’. Also, a small number of students did not claim

to listen to any music genre, and were given the trait ‘Nothing’.

Musical category Dataset time-step 1

total

Dataset time-step 3

total

Intense and Rebellious 14 23

Reflective and Complex 2 0

Upbeat and Conventional 41 29
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Musical category Dataset time-step 1

total

Dataset time-step 3

total

Energetic and Rhythmic 21 17

Eclectic 50 60

Nothing 1 0

Table 7.2: Distribution of preferred musical category over 129 students.

Other mutable fields were used in the same binary way as in other feature-sets. This

gives F = 20, q = 6 (although for 19 features, only two trait values will be used).

Feature-set 4: All mutable fields, with grouped music genres and grouped leisure

activities

In addition to grouping musical genres, we also attempt to group types of leisure activ-

ity using categories based on work by Yin et al [163] and Agnew and Petersen [1].

Leisure activities were grouped as ‘Unsupervised socialisation’, ‘Organised leisure

activities’, ‘Organised sport’ and ‘Self-directed’. Where students showed an equal

preference for several activity types, the trait was recorded as ‘Eclectic’. How the

various leisure activities were categorised is detailed in Table 7.3.

This gives us F = 6, q = 6 where we have the music field grouped into 6 genres as

above, an activities field grouped into 5 possible values, and four binary fields: alcohol

use, cannabis use, tobacco use and romantic.

Activity Category

I listen to tapes or CDs Self-directed

I look around in the shops Unsupervised socialisation

I read comics, mags or books Self-directed
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Activity Category

I go to sport matches Unsupervised socialisation

I take part in sports Organised sport

I hang round in the streets Unsupervised socialisation

I play computer games Self-directed

I spend time on my hobby (eg art, an instrument) Organised leisure activities

I go to something like B.B., Guides or Scouts Organised leisure activities

I go to cinema Unsupervised socialisation

I go to pop concerts, gigs Unsupervised socialisation

I go to church, mosque or temple Organised leisure activities

I look after a pet animal Self-directed

I go to dance clubs or raves Unsupervised socialisation

Table 7.3: Grouping of leisure activities into categories.

7.3.2 Creation of edges

For each feature-set, edges between nodes were created in two ways; undirected and

unweighted, directed and weighted. Once our simulation has been run on the starting

conditions obtained from time-step 1, we will use the resulting trait values as starting

traits for time-step 2, albeit with the friendship edges given in the adjacency matrix for

time-step 2. In other words we will run our simulation in steps, with friendship edges

changing for each step as they do in the dataset. Where we use the term ‘time-step’

in this chapter, we are referring to time-steps in the real data; we refer to sequential

changes in a run of our simulation as ‘iterations’.
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Figure 7.1: Undirected edges derived from the Glasgow Teenage Friends dataset.

Undirected and unweighted

Using the friendship adjacency matrices, where a friendship existed between two pu-

pils in any direction, a reciprocal undirected edge was created. These edges were un-

weighted, regardless of whether pupil was identified as ‘friend’ or ‘best friend’. This

network is illustrated in Figure 7.1.

Directed and weighted

Using the friendship adjacency matrix for time-step 1, directed and weighted edges

were created. Where a pupil described another as a ‘friend’, an out-edge of weight 1

was created. Where a pupil described another as a ‘best friend’, an out-edge of weight

2 was created. i.e. a pupil will be influenced only by those they have described as

‘friends’ or ‘best friends’.
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7.4 Results

7.4.1 Undirected and unweighted edges

All mutable, binary traits; undirected edges

Treating all mutable fields as binary value traits (F = 34, q = 2), the probability of

any randomly assigned trait matching a corresponding trait in the dataset is simply 0.5.

Where edges are undirected and given equal weight, all models perform better than

random chance (Figure 7.2a), with the models of multiple social influences - ours and

Flache and Macy’s - obtaining greatest consistency with the real data.

Small selection of fields; undirected edges

When a smaller selection of just four fields1 is used, any differences in results from

model to real-life are magnified. This is reflected in the greater variance of results

and lower worse-case performance (Figure 7.2b). Despite this, median values remain

comparable with the results of all mutable (F = 34) traits.

7.4.2 Directed and weighted edges

It should be noted that when run on a directed network, the Axelrod model, and in

most cases the Flache and Macy model2, did not stabilise within a reasonable amount

of time. For the former we allowed 109 iterations, and the latter 107. In fact, the

Axelrod model (and likely Flache and Macy also) would never stabilise on the directed

network created by the dataset values at time-step one. The reason for this is the

existence of a small number of nodes with in-edges but no out-edges. These agents

1Alcohol use, smoking, cannabis use, and participation in sports
2This is despite the generous stop condition which we described in Section 3.3.4, even where this

was set to allow 10,000 dormant iterations per agent.
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(b) Selection of four fields

Figure 7.2: Consistency between model and real data: undirected edges. Presen-

ted are the similarities between the end states of simulations, and the actual traits

in the dataset at time-step 3. Dashed line indicates the probability of randomly

assigned traits matching those of the dataset (i.e. in this case, binary traits for

all features results in 0.5). All models on average perform better than random

chance, with the better results from our social influence model where influence-

distance = 1.

are copied from but never copy any other agent themselves; they are influencers but

never influencees. These uninfluenceable individuals have a degree of dissimilarity,

essentially injecting competing traits into the wider population. These traits may move

in waves throughout the population, but never reach fixation as agents continue to copy

competing traits from the alternative, unchanging, uninfluenceable agents.
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(b) Grouped music genres
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(c) Grouped music genres and grouped activities

Figure 7.3: Consistency between model and real data: directed edges. In most

cases, models based on multiple sources of influence perform better than Axel-

rod’s. A smaller number of fields intuitively increases variance (7.3b and 7.3c).

Note that the probability of randomly assigned traits matching those of the data-

set (dashed line), is in the cases of 7.3b and 7.3c lower than 0.5 as trait values are

no longer binary (q > 2).
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All mutable, binary traits; directed and weighted edges

The results for F = 34, q = 2 on a directed and weighted network are very similar

to those for the same feature-set on an undirected network. Means, medians and in-

terquartile ranges are almost identical. There is a greater distance between the min-

imum and maximum values (Figure 7.3a).

Grouped music genres, directed and weighted

The reduction in total features due to the grouping of 14 music genres into a single field

causes any differences between feature similarities to have a proportionally greater

effect. However for this feature-set, models of multiple influence show only a mild

reduction in mean/median similarity (around 0.05). Variance increases for all models

(Figure 7.3b).

Grouped music and activities, directed and weighted

The additional decrease in fields further lowers the ability of the models to match

the real-life data. However, compared with the feature-set using 4 binary fields on

an undirected network, the majority of results from models of multiple influence stay

above the results of random chance (Figure 7.3c). Variance is significantly higher than

when only grouping musical genres however.

7.4.3 Composition of edges

In previous chapters we have examined the proportion of edge states based on the

similarity of agents they connect; the states being homogenised, polarised and mixed

(see Section 3.3.2). When examining the real data for these edge-types, we find that

for most of the above feature-sets, polarised edges are rare or non-existent at time-step

one. At time-step three in the real data, they are even rarer. The vast majority of edges
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in the dataset are mixed, i.e. between agents with some but not all traits in common

(see Table 7.4).

When run through the various models, polarisation remains low. However, conver-

gence occurs changing some mixed links into homogenised. Factors which have been

seen to drive homogenisation, such as increasing influence over distance (Chapter 6),

also do so here. The greatest convergence is seen in Axelrod’s model and our model

where distance is 3 (Figure 7.4).
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7.5 Discussion

7.5.1 Multiple-influence models show greater consistency with real-

world data

Results from all feature-sets show a greater consistency between the real-world data

and multiple-influence models than they do to Axelrod’s dyadic model. As we saw

in Chapter 3, results from our model of multiple influence bear closer similarity to

those from Flache and Macy’s. Although both models feature influence from mul-

tiple sources, the processes in which copying of traits take place are very different;

yet statistical measures are again comparable. In so much that our model may share

characteristics with those of complex contagions (Chapter 4), these results may lend

weight to the argument that the spread of behaviour often requires multiple sources of

influence [36, 38].

The results of influence over greater distance in each case show lower accuracy than

where distance = 1. This may, at least in part, be due to their tendency toward greater

convergence and homogenisation; we have seen in Section 7.4.3 that the real data does

not exhibit such a strong convergence. However, even in cases where influence at

distance = 3 caused greater convergence than the Axelrod model (figures 7.4c, 7.4d,

7.4e), it still showed greater similarity with the dataset’s final traits (Figure 7.3).

7.5.2 Instability of dyadic models when a minority are

non-influenceable

In Section 7.4.2, we establish that in instances where agents are copied from, but do

not copy from others, the Axelrod model may never reach a static state. There could

be myriad social reasons, beyond the scope of this thesis, as to why these pupils were

regarded as friends by others yet did not identify any friends themselves. They may
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Figure 7.4: Edge compositions for each model on each feature-set: The propor-

tion of polarised, homogenised, and mixed links. Models illustrated are our social-

impact model at distance 1 (S-I D1), distance 2 (S-I d2) and distance 3 (S-I d3);

Axelrod’s model, Flache and Macy’s model (F & M). Also included is the compos-

ition of links in the dataset at time-step 3 (Data T3).
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have thought themselves above stating a small number of friends, or it may simply

have been a mistake of omission on the survey response. These results do however

tie in with other works on ‘committed’ or ‘zealous’ [111] individuals or groups within

a population. Singh et al [143] found that a small number of ‘committed’ identical

and unchanging agents in a simulation of the Axelrod model caused a reduction in

time to consensus. Other studies have shown that competing committed individuals or

groups may prevent a stable majority, instead fluctuating between two or more states

[111, 162]. Our results are closer to the latter; the different traits held by those un-

influenceable individuals causes other agents to switch back-and-forth between them

in waves throughout the wider population.

7.5.3 Polarisation is almost non-existent

When examining the real dataset, we found that polarised edges are rare (see Section

7.4.3). Given most feature-sets used have a large number of features, and relatively low

number of traits, this is intuitive; the chances of two friends having nothing in common

is very low. In fact, in the feature-set of 34 binary traits, the probability of two agents

with randomly chosen traits having none in common is 5.8208×10−11. The probability

of two agents with 34 randomly chosen features having everything in common is, in

the case of binary traits, the same figure. Yet the proportion of homogenised edges

at time-step one is slightly higher, reflecting that linked individuals in this study have

stated their friendship and are thus more likely to have the same interests. Even so, the

vast majority (> .96 for most feature-sets) of connections are mixed, and at later time-

steps in the data remain so; perhaps reflecting that even close friends and family will

not agree on everything (Table 7.4). It seems that in most cases, the less a model tends

toward (almost) total convergence and homogenisation, the closer its results will be to

the real data. Even where the number of fields is low, the completely polarised and

distinct cultures that characterise Axelrod’s model do not occur: different individual

tastes and behaviours persist even when in contact with other ‘cultures’. As we have
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seen in chapters 3, 4 and 6, with our model cultural mixing usually continues to exist.

7.5.4 Limitations

The dataset did not exhibit a large amount of change over the course of the study.

Similarity between traits at time-step 1 and time-step 3 in the real data was around

75%, dependent on the feature-set used. The performance of the models could in

part be attributed to the Axelrod model causing many more changes between agents

than ours. Nevertheless, at each run a large number of agent interactions comprising

successful trait copying did take place in the simulations using our model.

Our attempt to raise the number of possible trait values (q) may have limitations. Any

grouping into genres and categories requires some subjective discretion. There are a

large number of different ways in which we could have grouped this data, all pos-

sibly giving different results - better or worse. We believe that those we have chosen

are reasonably representative. Despite the grouping of these preferences reducing the

number of fields and thus magnifying any differences, the models still scored higher on

this feature-set (Figure 7.3c) than another low-F feature-set (Figure 7.2b) which didn’t

include grouped music genres and activities.

A flawed simplification of these groupings is that the music genres or activity types are

treated as if they are almost mutually exclusive. We chose the field value based on a

student’s strongest preference, and included an ‘eclectic’ trait for those pupils with a

broad range of interests. However, a small change in survey response could tip a stu-

dent from ‘eclectic’ into another category. Some activities may also be complimentary;

for example one who goes to gigs (classified as ‘unsupervised social’) is also likely to

listen to CDs (classified as ‘self directed’). This is one of the main difficulties we have

found in applying extensions of Axelrod’s culture model to real data. The model as-

sumes multi-dimensional data of multiple, discrete, mutually exclusive values. On the

other hand, the use of a continuous but often one-dimensional scale (as often found
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in opinion-formation models) is also a simplification. A refined model may manage

to combine the strengths of both approaches, allowing homophilic copying of multi-

dimensional ordinal data.

7.6 Conclusion

In this chapter we have taken models usually employed in more abstract scenarios, and

applied them to longitudinal real-world data. Despite limitations, when given real data

as a starting seed, in most cases these models do produce a good approximation of the

later longitudinal data. Models incorporating multiple sources of influence performed

better than those using only dyadic influence. However, applying influence over dis-

tance produced slightly degraded results. Interesting behaviour emerges when dyadic

models are run on directed networks; ‘committed’ un-influenceable agents cause the

simulation to persist in a non-static state. Our more deterministic model of compound

influence did allow such a scenario to stabilise to a static state. When examining the

real, longitudinal data, the completely polarised worlds famously generated by Axel-

rod’s study did not materialise. Instead, agents moved more toward diversity: a key

factor in the greater consistency between the data and the results of multiple-influence

models than between the data and Axelrod’s model.

Finally, it proved difficult to find datasets comprising suitable longitudinal, networked,

multi-dimensional and mutable data. The ‘Tastes, ties and time’ study [93] recognised

this, and it is hoped that researchers can solve the ethical and anonymisation issues

associated in obtaining and presenting such data. If handled sensitively, its use in

computational social science could be of great benefit.
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Chapter 8

Conclusions

The central theme of this thesis has been the embedding of Social Impact Theory in a

model of cultural dissemination. Our main contribution has been the development of

this model allowing us to isolate separate effects of these social forces, and the insights

it has offered into the system dynamics arising from simple rules of social influence.

In Section 1.2 we hypothesised that this embedding of Social Impact Theory in a cul-

tural model would provide additional insights for synthetic problem scenarios while

also aligning with data from real-world observations. We have contributed a number

of insights, perhaps the most striking of which has been the emergence of cultural over-

lap between agents; the number social force of Social Impact Theory allowing agents to

adopt different traits from different neighbours without becoming completely identical

to them. This stable cultural pluralism is enabled by social reinforcement, and Social

Impact Theory combined with cultural dissemination offers a candidate explanation

for the continued existence of overlapping cultures. In addition to uncovering these

dynamics, appropriate metrics for measuring their prevalence are also contributed.

We have further examined the effects of different network structures on the dynamics

of influence in number and over distance, allowing us to ascertain the role network

characteristics such as node-degree and clustering play in behaviours of cultural mod-

els. A comparison is made with the theory of simple and complex contagions, and we

determine local conditions which influence the mode of transmission in our model in

similar - but not identical - ways to this theory.
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Cultural mixing due to multiple competing influences has implications for the devel-

opment of organisational culture. We undertook an analysis of trait spreading within

hierarchical structures to examine the effects of the hierarchical status of superiors

versus multiple subordinates in a manner which would not be possible in previous

existing models. We have also contributed a method of generating generalised hier-

archical structures incorporating ‘team’ sub-structures.

Agent-based models and social simulations are often theoretical and abstract in nature.

However, in addition to general insights, we have conducted an empirical test of a

selection of models on real world data, finding that models of multiple influence (such

as ours) generally perform better than dyadic models. Notably, the polarisation many

other models depict did not materialise in the real data.

8.1 Research questions

Here, we revisit questions posed in Chapter 1:

RQ1: Will trait copying based on number of influences produce different macro-

scopic results to the dyadic copying of Axelrod’s model?

Where an agent takes into consideration the strength and immediacy of all of its influ-

encers simultaneously, it can adopt different traits from each. This appears globally as

a mixing and overlapping of different cultures. The complete polarisation of cultures

- which was a defining characteristic of Axelrod’s model - is no longer present. This

establishes our model as one of cultural overlap (Chapter 3).
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RQ2: Which local dynamics may offer explanations for global behaviours in our

model that differ from those in Axelrod’s?

The dyadic and stochastic trait-copying in Axelrod’s model ensures that polarisation is

inevitable. However, where the number factor of Social Impact Theory is incorporated

into cultural contagion, an individual may receive social reinforcement from multiple

sources, preventing assimilation (sections 3.3.1, 4.2).

RQ3: Can any differences between our model and Axelrod’s be equated to the

differences between complex and simple contagions?

The spread of traits in Axelrod’s model aligns well with simple contagions, but in

our model traits can spread as if by simple or complex contagion, depending on local

context (Chapter 4). This supports the notion that simple and complex contagion may

co-exist, and be applicable as consequence of the situation.

RQ4: What effect will network characteristics such as clustering have on the dif-

fusion of traits using these models?

Increasing node-degree in Axelrod’s model has a more marked effect on convergence

than in ours. Axelrod’s model seems more sensitive to average path length, whereas

embedding Social Impact Theory leads to greater sensitivity to local clustering (Section

4.3.2).

RQ5: Where some agents are given increased levels of influence due to their status,

will the shape of the hierarchy affect their ability to influence their subordinates?

The ways hierarchy affect trait spread are nuanced, and we found that upward influence

from subordinates, even where individually weak, can have a notable effect on both

cultural convergence and the ability of the higher nodes to disseminate their traits.
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Horizontal links within ‘teams’ can serve to either undermine a superior’s influence or

to enhance it when the superior’s strength is above a certain level.

RQ6: Will the addition of influence over structural distance (i.e. the immediacy of

social contact) affect the core behaviours of cultural diffusion?

Increasing distance of influence tends to reduce the amount of cultural overlap in the

population, but there are subtle differences in results from different methods of determ-

ining influence over distance. Varying clustering and path length within the network

graph has a non-monotonic effect. An increase in small-world ‘rewiring’ initially pro-

motes convergence at greater distance; however as the network becomes closer to a

random graph this convergence can collapse into cultural fragmentation, due to the

sheer number of equal competing influences.

RQ7: Given appropriate data, can computational culture models give an indica-

tion of how behaviour spreads through a real social network?

Most models give a reasonable approximation of the results from real data, with models

of multiple influence performing best (Chapter 7).

8.2 Limitations and future work

We believe our work has provided new insights into some of the emergent patterns

which result when applying Social Impact Theory to cultural modelling. However,

there will always be limitations associated with modelling using simplifying assump-

tions, as no computational model can fully encompass every facet of human behaviour

and social influence. There are several potential avenues for future investigation which

could further refine our model and others in this area.
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Many of our model’s mechanisms are more deterministic than the existing models

of social influence, although we retain a random order in the activation of agents.

Whether this is more or less realistic is open to debate, but there is a tendency in

existing stochastic models to always produce a state of polarisation. Where there is

even the smallest chance of change, it will eventually occur; if the only limit to that

change is a state of polarisation then such a result is inevitable. A future consideration

could be a stochastic model with more open stop conditions, though this could lead to

a state never reaching equilibrium.

An obvious extension would be the introduction of cultural drift, either through selec-

tion error or noise, as this is a feature of some existing models [84]. In previous models

this had a tendency to encourage convergence to a monoculture; it may be interesting

to see what effect our use of simultaneous number and immediacy forces from Social

Impact Theory may have under such conditions.

The representation and categorisation of data is a broad problem, and one that has im-

plications for the application of all social models. In the case of culture models, the

characterisation of traits as being discrete and mutually exclusive has limitations; it

assumes complete independence of traits with no overlap. In reality, some cultural or

behavioural traits will be closer to others; for example, there are several distinct Ro-

mance languages but they often share much in common, and can justifiably be thought

of as ‘closer’ to each other than to languages from another part of the world. Continu-

ous values for opinions are also a simplification, as they represent opinion as a scalar

value on a one-dimensional scale. A model that allows for continuous values, while

still taking account of homophily and possible interacting contagions between features

(i.e. the presence of a trait on one feature increases the chance of adoption of a similar

trait on another) could be a possible extension. The possibility of accumulating traits

rather than completely replacing existing ones is also a consideration, one which could

combine models of cultural diffusion with those of cumulative culture [104].

When tested against real data, distance mechanisms appeared to perform less well
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than when only strength and number were applied (Chapter 7). The algorithms for

determining influence over distance could be adjusted, either by scaling the effect up

or down or using a different formulation. It could simply be that the effect is less

prominent than we expected, and local contexts could make it more or less likely that

referred influence is possible.

Finally, real-world data suitable for applying cultural dissemination models to remain

scarce. Any additional datasets of similar nature to that of the ‘Glasgow Teenage

Friends’ dataset would be a considerable boon to modelling in this area, and in the

future we hope more models can be tested this way. A qualitative social study testing

the results generated by our model would be ideal; however, it is potentially difficult to

isolate these dynamics in the real world - which is one of the reasons for, and benefits

of, adopting a modelling approach.
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Figure A.1: Results of path-based distance in Watts-Strogatz small-world net-

works (degree = 4): At low degree the results patterns are largely consistent with

those where no distance-mechanic is applied.
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Figure A.2: Results of path-based distance in Watts-Strogatz small-world net-

works (degree = 8).
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