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Abstract

According to the World Health Organisation (WHO), cancer is the second leading

cause of death around the world. Cancer is responsible for about 18 percent of deaths

worldwide and about 10 million people die from it each year. Multidisciplinary teams

participate to manage and deliver e�ective diagnosis and treatments for cancer pa-

tients. Currently, PET images and other medical images are interpreted visually by

radiologists and clinicians. However, medical images contain more information than

what can be assessed visually. The rapid development of medical image analysis has

revolutionised the ability to recognise complex patterns in imaging data and provide

a depth of quantitative analysis previously unachievable. Radiomics is de�ned as

extracting quantitative features from medical images which cannot be seen by the

naked eye. It is now accepted that further data extraction has the potential to en-

hance the prognostic and diagnostic power of the radiologist or oncologist. However,

despite the promising aspect of radiomics, several challenges remain in the �eld of

radiomics. The major challenges that need to be addressed before radiomics can

be applied in the clinic are reproducibility, repeatability, and stability of radiomic

features. Several studies have reported that some of PET radiomic features are very

sensitive to di�erent sources such as segmentation method, image acquisition and

reconstruction protocols. Thus, multiple variables, parameters and condition may

cause a variation on radiomic features. For increased con�dence in the utilisation

of texture features as imaging biomarkers, this thesis intends to determine whether
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di�erent confounding factors have an e�ect on PET image radiomic analysis. In

this thesis, preclinical, homogeneous phantom and heterogeneous phantom studies

were conducted to assess the impact of di�erent reconstruction settings (TOF, num-

ber of iteration, number of subsets, FWHM of the gaussian �lter) on PET image

radiomic features. In addition, the self organising map (a type of arti�cial neural

network algorithm) were applied to cluster and visualise the resulting data. The

results presented in this body of work, indicate that di�erent reconstruction settings

have an in
uence on PET radiomic features and some of the robust features were

able to distinguish between regions (phantom inserts). Furthermore, the �ndings of

this thesis showed evidence that suggests self-organising map (SOM) has ability to

identify emergent properties that e�ect their variability, in this case contour size. In

addition, the SOM can be used with outcome data to serve as a predictive tool for

dependent variables (e.g therapy response, prognosis). In so doing the learnt repre-

sentations of self-organised features serve as the attributes for prediction which will

take into consideration the statistical variability in the underlying dataset.

vi



List of Abbreviations

AI Articial Intelligence
ANN Arti�cial Neural Network
COV Coecient Of Variation
CT Computed Tomography
FDG Fluorodeoxyglucose
FWHM Full Width at Half Maximum
GLCM Grey Level Co-occurrence Matrix
GLDZM grey Level Distance Zone Matrix
GLRLM grey Level Run-Length Matrix
GLSZM grey Level Size Zone Matrix
GMP Good Manufacturing Practice
IBSI International Biomarker Standardization Initiative
ICC Intraclass Correlation Coe�cient
IQ Image Quality
LOR Line Of Response
MLEM Maximum-Likelihood Expectation-Maximization
NAS Network Attached Storage
NEMA National Electrical Manufacturer’s Association
NGTDM Neighbourhood grey Tone Di�erence Matrix
NHS National Health Service
NSCLC Non-Small Cell Lung Cancer
OSEM Ordered Subsets Expectation Maximization
PA Percent Agreement
PET Positron Emission Tomography
PETIC Positron Emission Tomography Imaging Center
SNR Signal to Noise Ratio
SOM Self Organising Map
SPAARC Spaarc Pipeline for Automated Analysis and Radiomic Computing
SUV Standardised uptake value
TOF Time Of Flight
WHO World Health Organisation

vii



Presentations & Publications

The majority of projects introduced in this thesis have been presented or published

as follows.

Presentations

Oral Presentations

• E. Alsyed, R. Smith, S. Paisey, C. Marshall, and E. Spezi, \The stability of

PET radiomic features over time: preclinical study," presented at All-Wales

Medical Physics and Clinical Engineering Summer Meeting, University Hospi-

tal of Wales, Wrexham, UK, JUNE 14, 2019.

• E. Alsyed, R. Smith, S. Paisey, C. Marshall, and E. Spezi, \Positron Emission

Tomography (PET) Texture Analysis," presented at PETIC research showcase,

University Hospital of Wales, Cardi�, UK, OCT 25, 2019.

• E. Alsyed, R. Smith, L. Bartley, C. Marshall, and E. Spezi, \A Phantom Study

to Evaluate the Stability of PET Images Radiomic Features with Time of Ac-

quisition," presented at Annual Congress of the European Association of Nu-

clear Medicine, Virtual, OCT 22-30, 2020.

• E. Alsyed, R. Smith, L. Bartley, C. Marshall, and E. Spezi, \The E�ect of

Increasing the Number of Iterations on the Stability of PET Radiomic Features:

A Phantom Study," presented at Annual Congress of the European Association

viii



of Nuclear Medicine, Virtual, OCT 20-23, 2021.

• E. Alsyed, R. Smith, L. Bartley, C. Marshall, and E. Spezi, \Phantom with

Heterogenous Tumour Inserts to Explore the Impact of Varying Number of

OSEM Subsets on PET Radiomic Features," presented at Annual Congress of

the European Association of Nuclear Medicine, Virtual, OCT 22-30, 2021.

Poster Presentations

• E. Alsyed, R. Smith, S. Paisey, C. Marshall, and E. Spezi, \The E�ects of

Reconstruction Time on PET Radiomic Features," presented at:

ENGIN-Cancer Research Forum, Life Sciences Hub, Cardi�, UK, APRIL

16, 2019.

United Kingdom Imaging and Oncology congress, Liverpool, UK, JUNE

10-12, 2019.

AI and Robotics Symposium, School of Engineering, Cardi� University,

Cardi�, UK JUNE 27, 2019.

• E. Alsyed, R. Smith, S. Paisey, C. Marshall, and E. Spezi, \Stability of PET

Radiomic Features: A Preclinical Study," presented at Annual Congress of

the European Association of Nuclear Medicine, Barcelona, Spain, OCTOBER

12-16, 2019.

• E. Alsyed, R. Smith, P. Whybra, S. Paisey, C. Marshall, and E. Spezi, \Eval-

uating the Stability of PET Radiomic Features to Expectation- Maximization

ix



Reconstruction Iterations," presented at United Kingdom Imaging and Oncol-

ogy congress, Virtual, JUNE 1-3, 2020.

• E. Alsyed, R. Smith,S. Paisey, C. Marshall, C. Parkinson, P. Whybra, E. Spezi,

\The Impact of Varying Number of OSEM Subsets on PET Radiomic Features:

A Preclinical Study," presented at European Society for Therapeutic Radiology

and Oncology Congress, E20-1258 , PO 1568, Vienna, Austria, NOVEMBER

28 - DECEMBER 01, 2020.

Publications

Conference Paper (Proceedings)

• E. Alsyed, R. Smith, S. Paisey, C. Marshall, C. Parkinson, E. Spezi. \The sta-

tistical in
uence of imaging time and segmentation volume on PET radiomic

features: A preclinical study". Presented at: 2019 IEEE Nuclear Science Sym-

posium and Medical Imaging Conference (NSS/MIC), Manchester, UK, OC-

TOBER 31 -NOVEMBER 7, 2019 (DOI: 10.1109/NSS/MIC42101.2019.9059863)

• E. Alsyed, R. Smith, S. Paisey, C. Marshall, C. Parkinson, E. Spezi. \A self

organizing map for exploratory analysis of PET radiomic features". Presented

at: 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference

(NSS/MIC), Boston, MA, USA, OCTOBER 31 -NOVEMBER 7, 2020 (DOI:

10.1109/NSS/MIC42677.2020.9507846)

• E. Alsyed, R. Smith, L. Bartley, C. Marshall, C. Parkinson, E. Spezi. \Arti�-

x



cial Neural Network Algorithm to Cluster and Visualize Phantom Experiment

Data". Presented at: 2021 IEEE Nuclear Science Symposium and Medical

Imaging Conference (NSS/MIC), Boston, MA, USA, 31 October -7 Novem-

ber 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference

(NSS/MIC),\(DOI: 10.1109/NSS/MIC44867.2021.9875826)"

• E. Alsyed, R. Smith, L. Bartley, C. Marshall, C. Parkinson, E. Spezi. \Toward a

method of selecting robust heterogeneous PET images radiomic features". This

paper will be presented at: 2022 IEEE Nuclear Science Symposium and Medical

Imaging Conference (NSS/MIC), Milano, Italy 05-12 November 2022 IEEE

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC),\(in

press)"

Book Chapter

• E. Alsyed, R. Smith, C. Marshall, and E. Spezi (2022). \Texture Analysis

Using a Self Organizing Feature Map", in El-Baz, A. (editor) Texture Analysis

in Image Processing. CRC Press (Taylor & Francis Group), \(in press)"

xi



Contents

Front Matter i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Presentations & Publications . . . . . . . . . . . . . . . . . . . . . . . . . viii

Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxviii

1 Introduction 1

1.1 PET Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

xii



1.1.1 PET imaging physics . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 18F-FDG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 PET imaging reconstruction . . . . . . . . . . . . . . . . . . . 7

1.1.4 PET units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.5 Imaging data and DICOM format . . . . . . . . . . . . . . . . 13

1.2 PET Radiomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Radiomic work
ow . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2 Radiomic applications . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Texture features . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.4 Challenges in radiomic . . . . . . . . . . . . . . . . . . . . . . 27

1.2.5 Parameter a�ecting PET imaging radiomic features . . . . . . 28

1.3 Thesis aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 The Impact of Acquisition Time and Reconstruction Settings on

PET radiomic features: A Pre-Clinical Study 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xiii



2.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.2 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.3 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.4 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.5 Impact of post injection imaging time . . . . . . . . . . . . . . 47

2.2.6 Reconstruction settings . . . . . . . . . . . . . . . . . . . . . . 48

2.2.7 Feature extraction and data analysis . . . . . . . . . . . . . . 50

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 Impact of post injection imaging time . . . . . . . . . . . . . . 52

2.3.2 Impact of number of OSEM subsets . . . . . . . . . . . . . . . 54

2.3.3 Impact of number of EM reconstruction iterations . . . . . . . 55

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 The Statistical In
uence of Imaging Time and Segmentation Vol-

ume on PET Radiomic Features 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiv



3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Feature extraction and data analysis . . . . . . . . . . . . . . 63

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 A Self Organizing Map for Exploratory Analysis of PET Radiomic

Features 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Feature extraction and data analysis . . . . . . . . . . . . . . 75

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 The Impact of Reconstruction Settings on PET Radiomic Features:

A Homogeneous Phantom Study 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Phantom preparation . . . . . . . . . . . . . . . . . . . . . . . 83

xv



5.2.2 Acquisitions and reconstructions . . . . . . . . . . . . . . . . . 85

5.2.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.4 Feature extraction and data analysis . . . . . . . . . . . . . . 87

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Impact of TOF . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 Impact of number of subsets . . . . . . . . . . . . . . . . . . . 89

5.3.3 Impact of the number of iterations . . . . . . . . . . . . . . . 90

5.3.4 Impact of FWHM of the Gaussian �lter . . . . . . . . . . . . 91

5.3.5 Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 The Impact of Reconstruction Settings on PET Radiomic Features:

An Inhomogeneous Phantom Study 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Phantom preparation . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.2 Acquisitions and reconstructions . . . . . . . . . . . . . . . . . 100

6.2.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xvi



6.2.4 Feature extraction and data analysis . . . . . . . . . . . . . . 102

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Impact of TOF . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Impact of number of subsets . . . . . . . . . . . . . . . . . . . 110

6.3.3 Impact of the number of iterations . . . . . . . . . . . . . . . 112

6.3.4 Impact of FWHM of the Gaussian �lter . . . . . . . . . . . . 112

6.4 Towards selection of robust heterogeneous PET image radiomic features113

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Arti�cial Neural Network Algorithm to Cluster Radiomic Data 120

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Discussion and conclusions 127

8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xvii



Bibliography 147

Appendix 168

A Pre-clinical studies 169

A.1 Post injection imaging time . . . . . . . . . . . . . . . . . . . . . . . 169

A.2 Numper of Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.3 Numper of iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B Statistical In
uence of Imaging Time and Segmentation Contour

Sizes 177

C Homogeneous Phantom Study 180

C.1 TOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.2 Number of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.3 Number of iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.4 FWHM of the Gaussian �lter . . . . . . . . . . . . . . . . . . . . . . 187

C.5 Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D Inhomogeneous Phantom Study 193

D.1 TOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xviii



D.2 Number of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

D.3 Number of iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

D.4 FWHM of the Gaussian �lter . . . . . . . . . . . . . . . . . . . . . . 199

xix



List of Figures

1.1 PET image for a patient with NSCLC . . . . . . . . . . . . . . . . . 5

1.2 An illustrative example of the annihilation process . . . . . . . . . . . 8

1.3 PET scanner detects four LORs and the corresponding sinogram . . . 9

1.4 Flow chartillustrating the steps of iterative reconstruction of PET images 11

1.5 Relation between full width at half-maximum (FWHM) and the stan-

dard deviation (� ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 A work
ow for radiomic processes . . . . . . . . . . . . . . . . . . . . 18

1.7 An illustrative example of how the Grey level co-occurrence matrices

(GLCM) created . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8 An illustrative example of how the grey level run length matrices

(GLRLM) created . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.9 An illustrative example of how GLSZM is calculated . . . . . . . . . . 25

1.10 An illustrative example of how GLDZM is calculated . . . . . . . . . 26

xx



1.11 An illustrative example of the neighbourhood grey tone di�erence ma-

trix (NGTDM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 An illustrative layout of the system build-up . . . . . . . . . . . . . . 44

2.2 A picture of Mediso PET/CT nano scanner . . . . . . . . . . . . . . 45

2.3 Data transfer work
ow . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Coronal view for a mouse with di�erent number of subsets . . . . . . 49

2.5 Bar chart displaying number of each categories for the stability of

extracted feature against post injection imaging time . . . . . . . . . 53

2.6 Bar chart displaying number of each categories for the stability of

extracted feature against number of subsets . . . . . . . . . . . . . . 55

2.7 Bar chart displaying number of each categories for the stability of

extracted feature against number of iterations . . . . . . . . . . . . . 56

3.1 Coronal slice of lower right 
ank with four di�erent contours for the

�rst mouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Sagital slice of lower right 
ank with four di�erent contours for the

�rst mouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Work
ow for evaluating the statistical association of texture feature

values versus di�erent contour size and time points. . . . . . . . . . . 65

xxi



3.4 An illustrative example of resulting correlation matrices . . . . . . . . 66

3.5 Bar chart displaying the mean determinant of correlation for di�erent

features types whilst varying acquisition time and contour size . . . . 67

4.1 Illustrative example of a Self-Organising Map . . . . . . . . . . . . . 74

4.2 Codes plots for the texture features . . . . . . . . . . . . . . . . . . . 76

4.3 The distribution of the �rst contour size with respect to the self-

organized features. This heat map demonstrates the distribution or

frequency of the �rst contour size over the code cells (nodes) of the

SOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 The distribution of the fourth contour size with respect to the self-

organised features. This heat map demonstrates the distribution or

frequency of the fourth contour size over the code cells (nodes) of the

SOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 The distribution of the �rst time point with respect to the self-organised

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 The distribution of the fourth time point with respect to the self-

organised features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Picture of NEMA IQ phantom with un�lled inserts . . . . . . . . . . 84

5.2 An illustrative layout of the �lled inserts with 18F-FDG activity . . . 84

xxii



5.3 Picture of scanner used in the phantom study and the IQ NEMA

phantom after placed on the scanner . . . . . . . . . . . . . . . . . . 86

5.4 Number of features for each category of the stability of PET radiomic

features against TOF . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Number of features for each category of the stability of PET radiomic

features against number of subsets . . . . . . . . . . . . . . . . . . . . 90

5.6 Number of features for each category of the stability of PET radiomic

features against number of iteration . . . . . . . . . . . . . . . . . . . 91

5.7 Number of features for each category of the stability of PET radiomic

features against �lters . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Percent agreement (PA) values of all features across all of reconstruc-

tion settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Box plot showing the mean of percent agreement among all di�erent

texture group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 An illustrative layout of the syringe mounting plate and four con�gu-

rations of the arti�cial tumour inserts . . . . . . . . . . . . . . . . . . 100

6.2 Axial, Coronal and Sagittal views for the phantom scan . . . . . . . . 101

6.3 Heat map of stability of GLCM and GLRL features against di�erent

reconstruction settings . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xxiii



6.4 Heat map of stability of GLSZM, GLDZM and NGTDM features

against di�erent reconstruction settings . . . . . . . . . . . . . . . . . 107

6.5 Bar chart illustrating the COV values for 20 (GLCM) radiomic features108

6.6 Bar chart illustrating the COV values for 19 (GLRLM & GLSZM)

radiomic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7 Bar chart illustrating the COV values for 13 (GLDZM & NGTD)

radiomic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 Box plot for the mean values of COV for each feature family over all

reconstruction settings . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.9 Bar chart showing the number of features for each category . . . . . . 110

6.10 Work
ow of selecting good features that can detect the di�erences

between regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.11 An illustrative example showing how the data sorted to perform the

Friedman test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Codes plots for the texture features . . . . . . . . . . . . . . . . . . . 123

7.2 The distribution of the second contour size with respect to the self-

organised features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 The distribution of the third contour size with respect to the self-

organized features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xxiv



List of Tables

2.1 List of di�erent parameters used to generate new images . . . . . . . 48

2.2 List of extracted radiomic features. . . . . . . . . . . . . . . . . . . . 51

2.3 Total number of features for each category showing the stability level

against post injection imaging time . . . . . . . . . . . . . . . . . . . 54

2.4 Total number of features for each category showing the stability level

against the number of OSEM subsets. . . . . . . . . . . . . . . . . . . 56

2.5 Total number of features for each category showing the stability level

against the number of EM reconstruction iterations . . . . . . . . . . 57

3.1 Features with highest value of mean determinant of correlation for

acquisition time and contour size for each feature families. . . . . . . 67

3.2 Features with lowest value of mean determinant of correlation for ac-

quisition time and contour size for each feature families. . . . . . . . . 68

5.1 List of di�erent reconstruction settings used to generate new images . 86

xxv



5.2 List of features with high stability and good agreement . . . . . . . . 95

6.1 List of di�erent reconstruction settings used to generate new images . 102

6.2 List of examined radiomic features - heterogeneous phantom study . . 103

6.3 Features for each category of stability over all reconstruction settings 111

8.1 List of robust (low variation and high percent agreement) radiomic

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.1 Coe�cient of variation (COV) value for each extracted feature against

post injection imaging time. Features were classi�ed based on their

COV values. 1= (COV � 5% ), 2 = (5% > COV � 10%), 3 = (10%

> COV � 20%) and 4 = (COV > 20%). . . . . . . . . . . . . . . . . 169

A.2 Coe�cient of variation (COV) value for each extracted feature against

number of subsets. Features were classi�ed based on their COV values.

1= (COV � 5% ), 2 = (5% > COV � 10%), 3 = (10% > COV �

20%) and 4 = (COV > 20%). . . . . . . . . . . . . . . . . . . . . . . 172

A.3 Coe�cient of variation (COV) value for each extracted feature against

number of iterations. Features were classi�ed based on their COV

values. 1= (COV � 5% ), 2 = (5% > COV � 10%), 3 = (10% >

COV � 20%) and 4 = (COV > 20%). . . . . . . . . . . . . . . . . . . 174

xxvi



B.1 The average of determinants of the correlation matrices for each fea-

ture whilst varying segmentation contour sizes (Det-C) and post in-

jection times (Det-T). . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.1 Coe�cient of variation (COV) value for each extracted feature against

TOF. Features were classi�ed based on their COV values. 1= (COV

� 5% ), 2 = (5% > COV � 10%), 3 = (10% > COV � 20%) and 4

= (COV > 20%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.2 Coe�cient of variation (COV) value for each extracted feature against

number of subsets. Features were classi�ed based on their COV values.

1= (COV � 5% ), 2 = (5% > COV � 10%), 3 = (10% > COV �

20%) and 4 = (COV > 20%). . . . . . . . . . . . . . . . . . . . . . . 183

C.3 Coe�cient of variation (COV) value for each extracted feature against

number of iterations. Features were classi�ed based on their COV

values. 1= (COV � 5% ), 2 = (5% > COV � 10%), 3 = (10% >

COV � 20%) and 4 = (COV > 20%). . . . . . . . . . . . . . . . . . . 185

C.4 Coe�cient of variation (COV) value for each extracted feature against

FWHM of the Gaussian �lter. Features were classi�ed based on their

COV values. 1= (COV � 5% ), 2 = (5% > COV � 10%), 3 = (10%

> COV � 20%) and 4 = (COV > 20%). . . . . . . . . . . . . . . . . 187

xxvii



C.5 Percent agreement (PA) values of each features across all of recon-

struction settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D.1 Coe�cient of variation (COV) value for each extracted feature against

TOF. Features were classi�ed based on their COV values. 1= (COV

� 5% ), 2 = (5% > COV � 10%), 3 = (10% > COV � 20%) and 4

= (COV > 20%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

D.2 Coe�cient of variation (COV) value for each extracted feature against

number of subsets. Features were classi�ed based on their COV values.

1= (COV � 5% ), 2 = (5% > COV � 10%), 3 = (10% > COV �

20%) and 4 = (COV > 20%). . . . . . . . . . . . . . . . . . . . . . . 195

D.3 Coe�cient of variation (COV) value for each extracted feature against

number of iterations. Features were classi�ed based on their COV

values. 1= (COV � 5% ), 2 = (5% > COV � 10%), 3 = (10% >

COV � 20%) and 4 = (COV > 20%). . . . . . . . . . . . . . . . . . . 196

D.4 Coe�cient of variation (COV) value for each extracted feature against

FWHM of the Gaussian �lter. Features were classi�ed based on their

COV values. 1= (COV � 5% ), 2 = (5% > COV � 10%), 3 = (10%

> COV � 20%) and 4 = (COV > 20%). . . . . . . . . . . . . . . . . 199

xxviii



Chapter 1

Introduction

Cancer can start in any tissue or organ and spread to other organs of the body.

Cancer begins when the uncontrolled growth of abnormal cells occurs. According to

the World Health Organisation (WHO), cancer is the second leading cause of death

around the world. Cancer is responsible for about 18 percent of deaths worldwide

and about 10 million people die from cancer every year [1]. In 2020, the number

of new cases worldwide of breast, colon and cervical cancer were 2.26, 2.21, and

1.93 million, respectively. In Great Britain alone, 375,400 new cases of cancer were

reported between the years 2016 and 2018 [2]. Breast, prostate, lung and bowel

cancers together were responsible for more than half (53%) of all new cancer cases [2].

In cancer management, the �rst step is to identify the extent of the disease to

achieve an accurate tumour diagnosis. The term \stage" is used to describe the extent
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of the cancer [3]. Cancer staging is very important to model an accurate treatment

plan. Cancer diagnosis and staging involves a series of clinical observations that

review the disease progression. In most cases, this comprises both medical imaging

and biopsy (tissue sample) procedures.

Clinicians aim to select the most suitable treatment approaches based on several

factors such as disease stage, patient age, and data drawn from previous clinical

results. There are di�erent treatment options for di�erent cancer stages. Treatment

can involve invasive (e.g. surgical) or non-invasive (e.g. radiotherapy) methods.

Thus, multidisciplinary teams participate to manage and deliver e�ective diagnosis

and treatments for cancer patients.

One of the advantages of medical imaging is that it can reveal the hidden struc-

tures of the human body for the assessment of patient condition without an invasive

surgical procedure. Therefore, medical imaging can play a vital role in many tech-

nical aspects in cancer management areas such as screening, diagnosis, treatment

and monitoring, and follow up. For this reason, imaging techniques have become

indispensable in modern medicine. Di�erent 3D imaging techniques (e.g. CT, PET,

MRI) are selected for di�erent cancer types, typically dependent on the type of tissue

being evaluated.
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Positron Emission Tomography (PET) imaging is one of these techniques which

forms an essential part of clinical protocols for many types of cancer. PET image

evaluation has been mostly constrained to qualitative assessment and semi quali-

tative assessment such as standardised uptake value (SUV) measurements. Recent

developments in the �eld of imaging and data analysis have revolutionised the ability

to recognise complex patterns in imaging data and provide a depth of quantitative

analysis previously unachievable.

PET has potential for quantitative characterisation of disease using radiomic

techniques which are de�ned as extracting quantitative features (information on the

image content) from medical images which cannot be seen by the naked eye.

The hypothesis of radiomics is that the characteristic imaging features between

various type of disease may serve as a bene�cial biomarker for predicting prognosis

and therapeutic response. Several aspects of radiomics are described in detail in this

body of work (Section 1.2).

Despite the promise of using radiomic features as metrics in prognosis and diag-

nosis for several cancers, accuracy and stability of radiomic features remains as one

of the most challenging aspect for implementing radiomic features as a biomarker.

3



This chapter provides a brief overview of PET imaging, PET physics, PET

radiomics and parameters a�ecting PET imaging radiomic features. In addition,

this chapter highlights the aim and the structure of this thesis.

1.1 PET Imaging

The National Health Services (NHS) has reported more than 34.9 million imaging

tests performed in England between April 2020 and March 2021 [4]. X-ray radio-

graphs, MRI, CT and PET scans accounted for about three quarters (73%) of all

imaging tests in the England in the year 2020-2021.

Unlike other anatomical imaging technique such as CT scan which give informa-

tion on anatomical structures, PET is a functional imaging modality which provides

images of metabolic activity [5, 6]. Functional imaging is commonly referred to as a

medical imaging technique that measures the physiological processes such as blood


ow while anatomical imaging provides information on structure and geometry of

tissues. The main concept of PET is based on injecting (radiotracer administra-

tion may also by inhalation or oral ingestion) the patient's peripheral vein with a

short-lived radiotracer, which allows the radiotracer to become part of the vascular

circulation and reach the tumour or region of interest. After about 45 to 60 min-
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Figure 1.1: A) CT, B) PET and C) PET overlaid over CT image (adopted from [7]) for a patient
with NSCLC (Non-small cell lung cancer).

utes (post injection time), patients will be placed on a PET scanner. Data acquired

from the PET scanner will be reconstructed into a readable image by human eyes.

Figure 1.1 presents an example of 18 F-FDG PET scan for a patient with NSCLC

(Non-small cell lung cancer). PET images play an essential role in identifying the

abnormalities in living tissue and detecting cancer. In addition, PET can be used to

diagnose several health problems, such as Alzheimer's and heart disease [6]. More

details of the physics of PET imaging are reported in the next section.

1.1.1 PET imaging physics

The historical backdrop of Positron Emission Tomography imaging began in the

second half of the 20th century when the research about PET imaging technology
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started. In 1950s, David E. Kuhal and Roy Edwards from the University of Penn-

sylvania introduced the principle of emission and transmission tomography [8]. In

1977, the �rst whole-body PET scanner was developed [9]. PET is a sub-modality of

nuclear medicine imaging that is used in scanning radio-pharmaceutically targeted

biological processes. Typically, to acquire a PET image, patients are injected (radio-

tracer administration may also by inhalation or oral ingestion) intravenously with a

short-lived radiopharmaceutical tracer. This allows the radiotracer to become part

of the vascular circulation and reach the tumour or the region of interest. The selec-

tion of radiopharmaceutical is dependent on its capability to explore the biochemical

function of interest within the human body. These radiopharmaceuticals are also

called `PET tracers'. Various PET tracers have been developed and introduced to

enhance the clinical utility of molecular imaging [9, 10]. The most common PET

tracer is Fluorine-18 Fluorodeoxyglucose (18FDG) to provide a marker for glucose

metabolic rate. The following section will highlight the characteristics of 18FDG as

a PET tracer.

1.1.2 18F-FDG

Fluorodeoxyglucose (18F-FDG) an equivalent of glucose, has become a standard ra-

diotracer for cancer patient management. The half life of 18F is 1.83 hours (110

6



minutes) and it is produced in a cyclotron. 18F is an unstable radioisotope that de-

cays by beta-plus emission or electron capture and emits a neutrino� and a positron

� +. When the positron annihilates with an electron, the energy is released in the

form of coincident photons. Equations below show the 18F annihilation reaction.

18
9 F �! 18

8 O + �

� + e � �! 511 KeV 
 + 511 KeV 


1.1.3 PET imaging reconstruction

After radiotracer injection the patient is placed within the bore of the PET scanner

which has scintillation detectors placed around the patient. These detectors are able

to detect pairs of anti-parallel gamma (
 ) photons nascent from the annihilation

process (positron (e+) annihilates with an electron (e-) to release energy in the form

of anti-parallel gamma photons). Figure 1.2 shows an illustrative example of the

annihilation process. When an incident photon is registered in any detector a timed

pulse is generated in that detector. If two pulses are generated by the detectors

surrounding the patient within a short time window (3 to 12 nanoseconds), they are

counted as coincidence events which are assigned to a line of response (LOR) joining

the two relevant detectors.
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Figure 1.2: An illustrative example (from reference [11]) of the annihilation process demonstrated
that two 511 keV photons produced when a positron and an electron annihilate. A circular gamma
ray detector array in the PET camera registered the two 511 keV photons.

A sinogram is used to store detected annihilation occurrences. As presented

in Figure 1.3, a line called the Line Of Response (LOR) may be formed between

detectors for every event. The LOR drawn between pairs of detectors for detected

events is A, B, C, and D, and X is the center of the detector ring gantry. The

sinogram is generated by plotting each event's LOR as its angular orientation around

the detector ring (from -90° to 90°) versus the LOR displacement from the detector

ring's center were A, B, C, and D correspond to the LORs. The sinogram generated

from the PET scanner is used to rebuild PET pictures into visual representations.

Figure 1.3 also illustrates an example of sinograms for brain and the corresponding

reconstructed image.
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