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Abstract—Vision-based practical applications, such as con-
sumer photography and automated driving systems, greatly
rely on enhancing the visibility of images captured in night-
time environments. For this reason, various image enhancement
algorithms (EHAs) have been proposed. However, little attention
has been given to the quality evaluation of enhanced night-time
images. In this paper, we conduct the first dedicated exploration
of the subjective and objective quality evaluation of enhanced
night-time images. First, we build an enhanced night-time image
quality (EHNQ) database, which is the largest of its kind so far.
It includes 1,500 enhanced images generated from 100 real night-
time images using 15 different EHAs. Subsequently, we perform a
subjective quality evaluation and obtain subjective quality scores
on the EHNQ database. Thereafter, we present an objective blind
quality index for enhanced night-time images (BEHN). Enhanced
night-time images usually suffer from inappropriate brightness
and contrast, deformed structure, and unnatural colorfulness. In
BEHN, we capture perceptual features that are highly relevant
to these three types of corruptions, and we design an ensemble
training strategy to map the extracted features into the quality
score. Finally, we conduct extensive experiments on EHNQ and
EAQA databases. The experimental and analysis results validate
the performance of the proposed BEHN compared with the state-
of-the-art approaches. Our EHNQ database is publicly available
for download at https://sites.google.com/site/xiangtaooo/.

Index Terms—Enhanced night-time image, blind image quality
assessment, two-dimensional entropy, biorder structures, ensem-
ble learning.

I. INTRODUCTION

Images captured in night-time environments usually require
postprocessing for better visualization and improved utility in
practical application scenarios, such as consumer photography
and automatic driving systems. In this context, enhancement
becomes highly desirable for improving the quality and avail-
ability of night-time images. The last few years have witnessed
significant advances in the exploration of enhancement algo-
rithms (EHAs) for night-time images [1]-[9]. However, the
visual quality evaluation of enhanced night-time images has
been largely overlooked in the literature. Therefore, in this
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paper, we explore the quality evaluation of enhanced night-
time images from both subjective and objective aspects.

In the quality evaluation of enhanced night-time images,
two major challenges are encountered. The first challenge is
the absence of an enhanced night-time image database with
subjective quality scores. A subjective database provides a
benchmark for conducting research on objective evaluation
metrics. Once a new objective quality evaluation algorithm
is proposed, it can be tested on a constructed subjective
database to verify its performance. The second challenge is
the lack of an objective quality assessment index specially
designed for enhanced night-time images. Enhanced night-
time images usually possess unique attributes and compli-
cated distortions (e.g., inappropriate brightness and contrast,
deformed structure, and unnatural colorfulness), and they need
special attention when evaluating their visual quality. An
objective metric has beneficial applications in real-time image
processing and image-driven systems, such as objective detec-
tion and autonomous driving systems. An efficient objective
metric can be used to not only assess the performance of
different algorithms (systems) but also automatically optimize
and select parameters to achieve the best performance and
meet different application requirements.

Nowadays, three possible objective solutions can be adapted
to estimate the visual quality of enhanced night-time images.
The first possible solution is to use traditional general-purpose
image quality assessment methods (IQAs) [10]-[16] that are
not restricted by image contents or distortions. However, the
traditional general-purpose IQAs mainly focus on natural im-
ages with commonly encountered artifacts and show unsatis-
factory performance on enhanced night-time image evaluation.
The second solution is to use contrast-related IQAs, which are
specifically designed for gauging the visual quality of contrast-
changed/-enhanced images [17]-[21]. However, these contrast-
related approaches mainly focus on the contrast distortion
and ignore other distortions introduced by the enhancing
procedure for night-time images, such as deformed structure
and unnatural colorfulness. The third solution is to use IQAs
specifically designed for natural night-time images [22]. Since
enhancement may change the intrinsic properties and generate
additional distortions, the third solution is not up to the task
of quality evaluation of enhanced night-time images.

In this paper, we investigate the quality evaluation of
enhanced night-time images from both subjective and objective
aspects. First, we construct a public large-scale enhanced
night-time image quality (EHNQ) database. Images in the
EHNQ database are created by enhancing natural night-time



images via different types of EHAs. To obtain the mean opin-
ion scores (MOSs) (ground truth) of each enhanced night-time
image, we conduct a carefully designed subjective experiment
according to the double stimulus method recommended by
ITU-R BT.500-13 [23]. Finally, necessary outlier detection
and correction procedures are executed to address the mistakes
generated in the subjective experiments.

Second, we conduct an objective evaluation on the con-
structed EHNQ database using a blind quality evaluation index
for enhanced night-time images (BEHN), which is designed by
considering three factors that highly define the visual quality of
enhanced night-time images: the enhancement effect, the struc-
ture deformation caused by the enhancement, and the overall
color naturalness. In BEHN, we capture the enhancement-
aware features, structure-preserving features, and colorfulness,
respectively, to quantify these three factors. Specifically, the
enhancement-aware features measure the degree of brightness
and contrast. The structure-preserving features characterize the
structural deformation, which are represented by the statistical
information of the biorder structures. The colorfulness at-
tempts to quantify the color naturalness of the entire enhanced
image in three different color spaces. Hereafter, an ensemble
training strategy is designed to map the extracted features into
a quality score based on the adaptive boosting (AdaBoost) and
random forest (RF) algorithms.

The main contributions of this paper are summarized below.

e We construct a large-scale enhanced night-time im-
age quality database, the EHNQ database. The EHNQ
database includes 1,500 enhanced images generated from
100 natural night-time images of two different resolutions
using 15 well-known EHAs. To the best of our knowl-
edge, the EHNQ database is the largest enhanced night-
time image quality database that contains human-labeled
ground-truth quality scores.

« We conduct subjective experiments to evaluate the quality
of enhanced night-time images in the EHNQ database. In
the experiments, we adopt the double stimulus method
recommended by ITU under well-prepared settings, and
each observer gives a score for every image. After some
necessary postprocessing, we obtain the ground truth, i.e.
MOS, for every image by averaging all valid scores.

« We perform an objective evaluation of the EHNQ
database using our proposed blind quality evaluation
index for enhanced night-time images, BEHN. BEHN
first extracts enhancement-aware, structure-preserving,
and colorfulness features. Then, an ensemble training
strategy is designed to map the extracted features into
a quality score. Extensive experiments verify the superi-
ority of our approach over state-of-the-art methods.

The remainder of this paper is structured as follows. Section
II briefly introduces the related work, including the EHAs
used in the EHNQ database and the related quality assessment
metrics. Section III presents the construction of the EHNQ
database and its subjective evaluation experiments. Section IV
elaborates the proposed BEHN scheme. Section V experimen-
tally evaluates the performance of the proposed BEHN. We
present the conclusions of the paper in Section VI.

II. RELATED WORK

In this section, we introduce the 15 enhancement algorithms
(EHASs) that are used in our constructed EHNQ database and
the related subjective and objective evaluations of EHAs.

A. Enhancement Algorithms

With the demand for image enhancement in practical ap-
plication scenarios, such as consumer photography, automatic
driving systems, and monitoring systems, numerous EHAs
have been proposed during the past decades. For brevity, in
this section, we only describe the 15 representative EHAs
employed in our constructed EHNQ database. These 15 EHAs
consist of 3 contrast EHAs (CEHAs), 7 low-light image
EHAs (LEHASs), and 5 night-time image EHAs (NEHAs). An
overview of the selected 15 EHAs is shown in Table L.

CEHAs are proposed to mainly enhance image contrast. For
example, histogram equalization (HE) is a typical and effective
enhancement technique based on the image histogram [24].
This method is implemented by spreading the gray-level clus-
ters in the histogram. However, HE without any modification
usually leads to excessive enhancement, which, in turn, makes
the processed image look unnatural and creates visual artifacts.
In [25], Lee et al. presented a contrast enhancement algorithm
based on the layered difference representation (LDR). LDR
attempts to amplify the gray-level differences between the
neighboring pixels of the image for contrast enhancement.
Wang et al. [26] presented a fusion-based strategy for signal
backlit image enhancement (FSBE). The fundamental strategy
of FSBE is to blend different features into a single feature to
improve the specific quality of the image.

LEHAs are designed for images captured in low-light
conditions, such as underwater or in rainy, hazy, or night-
time conditions. The seven LEHASs contained in the EHNQ
database are described as follows. In [27], Fu et al. proposed
a variational framework for enhancing low-light images by
employing a bright channel prior (BCP). Wang et al. [28]
proposed a naturalness-preserving enhancement (NPE) method
for non-uniform illumination images. The NPE method de-
signs a bi-log transformation to map the illumination such that
image details and naturalness are balanced. A retinex-based
enhancement method via illumination adjustment (REIA) is
presented in [29], which can well preserve image edges by
exploiting a model without a logarithmic transformation. A
probabilistic enhancing model (PEM) is developed by simul-
taneously estimating the illumination and reflectance in the
linear domain [1], which demonstrates that the linear domain
exhibits superior performance in representing the prior infor-
mation for the reflectance and illumination estimation com-
pared to the logarithmic domain. Furthermore, Fu et al. [30]
introduced a weighted variational enhancing model (WVEM)
by also estimating both the reflection and illumination. Differ-
ent from traditional variational models, WVEM can suppress
noise and preserve the estimated reflectance with more details.
A fusion-based method is proposed for weak illumination
image enhancement (FWIE) [31]. The fundamental strategy
of FWIE is to blend different inputs and weights derived from
a single estimated illumination. Guo et al. [2] presented a



TABLE I

AN BRIEF OVERVIEW OF THE SELECTED 15 ENHANCEMENT METHODS IN EHNQ

Database Category Algorithm Abbreviation

Histogram Equalization [24] HE

Contrast EHAs (CEHAs) Layered Difference Representation [25] LDR

Fusion-Based Strategy for Signal Backlit Image Enhancement [26] FSBE

Bright Channel Prior [27] BCP

Reti BNaau%ll?less—Preservi_ngIEnha_nce.menz ([128] [20] é\IISEA

. etinex-Based Enhancement via Illumination Adjustment

EHNQ Low-Light Image EHAs (LEHAs) Probabilistic Enhancement Model [1] PEM
Weighted Variational Enhancing Model [30] WVEM

Fusion-Based Method for Weak Illumination Image Enhancement [31] FWIE

Low-Light Image Enhancement [2] LIME
Color Night-Time Image Enhancement via Fuzzy subsets [32] CNEFS
. ) Improved Multi-Scale Retinex-Based Enhancing Model [33] IMSRE

Night-Time Image EHAs (NEHAs) Photographic Neiative Ima%ing—lnspired Enhancement [4] PNIE
Retinex-Based Algorithm Based on Guided Filters [34] RGF

Improved Multi-Scale Retinex [3] IMSR

Histogram Equalization [24] HE

. Classic Histogram Adjustment CHA

EAQA Low-Light Image Subset Classic Gamma Correlation CGC
Enhancing Algorithm for Low-Light Videos [35] ELLV
Color Night-Time Image Enhancement via Fuzzy Sets [32] CNEFS

low-light image enhancement (LIME) method. In LIME, the
illumination is first estimated individually by computing the
maximum value in RGB channels, and then the illumination
map is refined by imposing a structure prior on it.

NEHAs are specially designed for night-time images. In
[32], Cai and Qian proposed a color night-time image en-
hancement method based on a fuzzy set (CNEFS). CNEFS
enhances the dark regions, restrains the glare regions, and
adjusts the contrast, which can make the image have uniform
brightness and more details. In [33], Lin and Shi proposed an
improved multi-scale retinex-based enhancing model (IMSRE)
for night-time images. Since the original multi-scale retinex
(MSR) is sensitive to the noise speckles that usually appear in
night-time images, IMSRE uses a customized sigmoid function
instead of a logarithm function in MSR to achieve better
performance. Inspired by photographic negative imaging, Shi
et al. [4] proposed PNIE. First, a negative image is generated
by reversing the input night-time image. Then, an image
dehazing method is used to rectify the negative image. Finally,
the rectified negative image is revised to create an enhanced
image. A retinex-based scheme based on a guided filter (RGF)
is proposed for night-time image enhancement in [34]. In [3],
Kuang et al. used an improved multi-scale retinex (IMSR) for
night-time image enhancement, which can extract the regions
of interest (ROIs) accurately and enhance images effectively
for accurate night-time vehicle detection.

B. Quality Evaluation of EHAs

In addition to EHAs themselves, the performance evaluation
of EHAs and the quality assessment of enhanced images are
also critical. A proper IQA index for enhanced images not
only can be used to quantify the quality of experience (QoE) of
consumers, but also can be applied to effectively optimize and
benchmark practical applications, such as autonomous driving
systems and visual surveillance. In the current literature, most
EHAs are qualitatively evaluated by human observers and
quantitatively evaluated by computer algorithms.

1) Subjective Evaluation: Subjective evaluation is a
straightforward and accurate method because images are visu-
ally perceived by humans. Subjective evaluation is of great

significance for the research community from two aspects.
First, subjective evaluation is necessary for building databases.
Constructing a quality assessment database requires subjective
rating scores, which are generated via a subjective evalua-
tion experiment. Such a created subjective database provides
ground-truth scores with which the scores obtained by ob-
jective algorithms should be highly consistent. Chen et al.
[36] proposed an enhancement algorithm quality assessment
(EAQA) database consisting of three subsets: haze, underwa-
ter, and low-light images. Each subset consists of 500 images
enhanced by 5 EHAs from 100 original images. The 5 EHAs
used to enhance the low-light images in the EAQA database
are listed in Table I. However, the type of EHAs contained
in the EAQA database is inadequate. Moreover, the EAQA
database only gives the performance ranks of the 5 EHAs
rather than the absolute quality scores of enhanced images.

Second, subjective evaluation can serve as a qualitative tool
for comparing the performance of different EHAs. A common
practice is to list a few images with poor visibility and their
corresponding enhanced versions for subjective comparison
[2], [25], [28]. Although this method complies with intuition,
there are two problems: The number of the listed images
is extremely limited, which cannot demonstrate the general
performance of these EHAs. Moreover, subjective evaluation
is time-consuming and labor-expensive, making it infeasible
for vast amounts of data.

2) Objective Evaluation: Objective evaluation provides a
quantitative method for measuring the performance of EHAs
and the quality of enhanced images. Recent years have wit-
nessed the rapid development of objective IQAs for enhanced
images. In [19], the authors presented the RIQMC method,
which is a reduced reference (RR) method for evaluating the
quality of contrast-changed images using image histograms
and phase congruency. In [18], the authors proposed an RR
method, namely, C-PCQ], and a no-reference/blind (NR/blind)
method, namely, BIQME, for contrast-enhanced images. C-
PCQI measures the similarity of the mean intensity, contrast
change, and structural distortion between original and en-
hanced images, and BIQME analyzes the contrast, sharpness,
brightness, and other features. In [17], the authors designed



NIQMC to assess the quality of contrast-distorted images
according to information maximization theory. Fang et al.
[37] proposed NR-CDIQA for contrast distortion via natural
scene statistics (NSS) regulation, involving the mean, standard
deviation, skewness, kurtosis, and entropy.

Although the above-mentioned IQAs achieve promising
results on contrast-changed or contrast-enhanced images, they
perform unsatisfactorily on enhanced night-time images. The
reason is that they mainly focus on contrast changes and
enhancement and do not consider the diverse and complex dis-
tortions that are highly related to enhanced night-time images,
such as structural deformation and unnatural colorfulness.

III. EHNQ DATABASE

In this section, we build the EHNQ database and conduct
subjective experiments to obtain ground-truth quality scores.

Database 100 Night- 15 EHAs 15](\)1(_) ];Zlnhgnced
Construction | tjme Images }%n ;;1;16

Subjective Raw Experiment (Fig. 3)|7
Experiments Subjective 50 Observes

Scores Outlier D
and Correction
Raw Data Corrected o~
Processing Scores Arithmetic Average S

Fig. 1. Pipeline of the subjective evaluation experiments.

A. Pipeline

The procedure of the subjective evaluation experiment for
constructing a quality assessment database should strictly
follow the recommendation of ITU-R BT.500-13 [23], as our
work and other related works [38], [39] do. Fig. 1 gives
the pipeline of the subjective evaluation experiments, where
three steps are mainly contained for the construction of the
EHNQ database. The first step is database construction, which
collects a large number of enhanced night-time images with
diverse types and contents. Then, a sufficient number of
observers are invited to rate the visual quality of the collected
images by choosing an appropriate evaluation method under
a carefully-arranged experimental environment, and obtain
the raw subjective scores. Last, the raw subjective scores
are further processed by outlier detection and correction to
generate the final MOS value for each image.

B. Database Construction

We select 100 natural night-time images from NNID [22],
which is the first public database for night-time image quality
evaluation. NNID contains 2,240 natural night-time images
with 448 different image contents captured by three different
photographic devices in real-world scenarios. The selected
100 images cover diverse night-time scenes that often ap-
pear in daily life, including buildings, humans, traffic signs,
landscapes, and roads, among other objects. According to the
selected 100 natural night-time images, we generate 1,500 en-
hanced images using 15 representative state-of-the-art EHAs,
which are described in Section II-A. The 15 EHAs consist of

Fig. 2. Role of the original night-time image in subjective evaluation. (a)
Original night-time image; (b) enhanced image 1; and (c) enhanced image 2.

3 CEHAs, 7 LEHASs, and 5 NEHASs, and basic information
on them is listed in Table I. Our constructed EHNQ database
contains two subsets with different resolutions: subset-512 and
subset-1024. The resolution of half of the images in the EHNQ
database is 512x 512 pixels, and the resolution of the other half
is 1024 %1024 pixels.

C. Subjective Evaluation Methodology

Subjective experiments are strictly conducted based on the
standard double-stimulus method [23] recommended by ITU-
R BT.500-13, which compares the image that need to be
evaluated with the reference image (ground-truth). However, a
perfect high-quality (night-time or enhanced) image is unavail-
able as a reference. Following [38], [39], which constructed a
subjective quality assessment database by comparing enhanced
images with their original low-quality versions, we use the
original night-time image as the reference here. The double-
stimulus method is chosen are two-folds. First, the double
stimulus method is a more intuitive method for the observers
to detect and rate the changes in an image with respect to its
reference [40]. Second, the double stimulus method can reflect
additional distortions caused by the enhancement algorithms.
Fig. 2 shows the role of the original night-time image in
the subjective test. If the original night-time image Fig. 2(a)
is unavailable, the subjective score of Fig. 2(b) would be
better than that of Fig. 2(c). However, Fig. 2(b) suffers from
additional distortions (blur and color distortions), which are
labeled in the red boxes. Therefore, the enhanced quality of
Fig. 2(c) is better than that of Fig. 2(b) in our subjective
experiments, whereas we would probably obtain the opposite
conclusion without the presentation of Fig. 2(a).

There is another way to conduct the subjective experiment
by providing two enhanced images with their reference image
for comparison, but it will affect the final quality evaluation
of the individual enhanced image. For instance, we have three
enhanced images A, B, and C (the enhancement quality scores
are 1, 2, and 5, respectively). If we want to assess the quality
of A and B by giving the enhanced image C and the original
reference image for compassion, the observer may pay more
attention to comparing A and C or B and C instead of focusing
on the difference between the original image and the enhanced
image we want to evaluate because C is much better than A
and B. This may result in biased scores. Thus, in our subjective
test, we only provide the corresponding reference image of an
enhanced image for comparison. The rating scales include 9
discrete points from 1 to 5, which correspond to five quality
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Fig. 3. Graphical user interface for subjective evaluation.

levels: bad, poor, fair, good, and excellent. A higher score
indicates better visual quality.

We recruit 50 observers to participate in our subjective
experiments, including 21 females and 29 males. They are
divided into two groups: 25 observers (11 females and 14
males) rate the enhanced images in subset-512, and the re-
maining 25 observers (10 females and 15 males) participate
to rate the images in subset-1024. All the observers are college
students majoring in business, science, art, engineering, or
similar fields; only four observers have background knowledge
of image processing. They all have normal or corrected vision,
and they range from 20 to 30 years old.

We design a graphical user interface (GUI) for conducting
the subjective evaluation process, which is exhibited in Fig.
3. Both the enhanced image to be rated and its original night-
time image are shown on a 4K monitor with a resolution of
3840x2160. All the images are shown at the original resolu-
tion to prevent extra distortions. The viewing conditions of the
subjective experiments are consistent with the recommenda-
tions of ITU-R BT.500-13 [23]. The observers are required to
sit at a fixed viewing distance of approximately four times the
image height in a laboratory environment with normal indoor
illumination conditions. The incident light falling on the screen
is 80 lux, and the environmental illumination from behind the
monitor is 240 lux.

The observers are asked to rate the visual quality for at least
5 seconds per image (including the switching time between
enhanced images). To avoid visual fatigue, the observers are
required to take a break every 20 minutes. A short training
session is given to exhibit the approximate range of visual
quality of enhanced night-time images. The observers are told
to rate the quality of each enhanced night-time image by
considering three main aspects. First, compared to the original
night-time image, are the brightness and contrast enhanced or
not in the enhanced image? Second, does the enhancement
introduce additional distortions? Third, how natural is the
enhanced night-time image?

D. Raw Data Processing

1) Outlier Detection and Correction: After completing the
subjective rating, we obtain the original raw subjective scores
given by all the observers. However, it is difficult for the
observers to give accurate scores for all enhanced night-time
images. Some mistakes may happen in the subjective rating

procedure, which are defined as the outliers of subjective
scores. Specifically, if a subjective score is outside the 95%
confidence interval of the mean subjective value, it is defined
as an outlier. In this work, we follow the method in [23] to
automatically detect and correct the outlier scores.

2) MOS: MOS calculation is a widely used method to gen-
erate subjective scores. When evaluating an image, different
observers may assign different quality scores. To remove the
different scale associated with each observer, z-scores [41]
are applied to calibrate the corrected scores. The arithmetic
average value of the z-scores from all observers on each
enhanced night-time image is scaled to the MOS:

| X
$i = Zsz',j ey
i=1

where s; ; is the z-score of the jth enhanced image given by
the 7th observer, N is the number of observers after outlier
rejection, and s; denotes the MOS value of the jth image.

E. MOS Analysis

Generally, the MOS values of a good IQA database should
cover the entire range of visual quality, from bad to excellent
[22]. Since our EHNQ database consists of enhanced night-
time images, the visual quality of the images tends to be
higher. Fig. 4 shows the histograms of the MOS values of
the entire EHNQ database, subset-512, and subset-1024. The
MOS values of the entire database span the whole visual
quality scale [1, 5] and have a good spread at different quality
levels. Furthermore, the MOS histograms of sub-512 and sub-
1024 exhibit similar behavior. This phenomenon shows that the
constructed EHNQ database is valuable for quality evaluation,
since the result of the subjective test is not affected by the
differences in image resolution and content.

In Fig. 5, we also show the histograms of the MOS values
of images enhanced by different EHAs in the EHNQ database.
Based on the results of Fig. 5, we roughly compare the
performance of each algorithm. For the three CEHAs (Fig.
5(a)-5(c)), we find that the MOS values of images enhanced
by conditional HE [24] range from 3 to 5, those of the images
enhanced by FSBE [26] range from 2 to 4.5, and those of the
images enhanced by LDR [25] range from 1 to 3.5. Therefore,
we conclude that the performance ranking order of the three
CEHAs is HE > FSBE > LDR. Similarly, for the seven
LEHAs, NPE [28], REIA [29] and LIME [2] outperform the
other LEHAs. Among the NEHAs, PNIE [4] and IMSR [3]
exhibit better enhancement performance since the MOS values
of images enhanced by these two algorithms are distributed at
higher quality levels.

IV. PROPOSED METHOD

In this part, we introduce in detail the proposed BEHN,
which is a blind quality evaluation index for enhanced
night-time images. First, we present its basic definition and
framework. Then, we present the processes of extracting
enhancement-aware features, structure-preserve features, and
colorfulness. Last, we introduce in detail the proposed ensem-
ble training strategy for feature pooling and quality prediction.
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Fig. 4. Histogram of MOS values in the EHNQ database. (a) MOS distribution of the entire EHNQ database; (b) MOS distribution of the images of size

512x512; and (c) MOS distribution of the images of size 1024x1024.
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A. Basic Definition and Framework

Fundamentally, our proposed BEHN measures the per-
ceptual features that are characteristic of enhanced night-
time images and critical for visualization. Night-time images
suffer from visible issues such as decreased brightness and
contrast and loss of image details, while enhancement algo-
rithm attempts to improve the brightness and contrast, and
recover image details. Therefore, a good EHA for night-time
images is expected to enhance the image content as much
as possible, preserve the image structure from damage, and
prevent unnatural colorfulness. Based on these considerations,
we design BEHN by extracting and fusing three groups
of features, namely, enhancement-aware features, structure-
preserving features, and colorfulness. Subsequently, we com-
bine the extracted features into the final BEHN index by
training a regression model with an ensemble training strategy.

Fig. 6 shows the framework of the proposed BEHN, which
works as follows. First, we extract the brightness and con-
trast as the enhancement-aware features. The brightness is

Histograms of MOS values of the images enhanced by different EHAs. (a)-(c) Three CEHAs; (d)-(j) seven LEHAs; and (k)-(o) five NEHAs.

captured based on the dark channel prior (DCP) and the
luminance channel of the LMN color space. The contrast
is characterized by the two-dimensional (2D) entropy and
the normalized singular value (NSV) of multiple intermediate
images. Second, we extract the structure-preserving feature
based on the statistical information of the biorder structures.
Third, we capture the color naturalness in three different color
spaces. Since the human visual system (HVS) perceives an
image at multiple scales, we extract features at three scales
(with a down-sampling factor of 0.5) to alleviate the variations
in image resolution and viewing distance. Finally, an ensemble
training strategy, AdaBoost-RF, is proposed for pooling the
extracted features into the overall quality score based on the
AdaBoost algorithm and RF regression.

B. Enhancement-Aware Features

Night-time images exhibit visibility problems, such as
brightness and contrast reduction, while EHAs try to recover
the lost brightness and contrast. Thus, we extract the brightness
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and contrast features to measure the enhancing effect of
enhanced night-time images.

1) Brightness: Brightness is a critical property for the
visualization of enhanced night-time images. We capture the
brightness of each image in two steps. First, we compute
the DCP map and the luminance map of LMN color space.
Then, the arithmetic average value, logarithmic average value,
and skewness of these two maps are calculated to obtain a
brightness feature vector.

DCP denotes the lowest intensity among the R, G, B color
channels in an image [42]. Night-time images usually exhibit
a darker DCP map, and enhancement generally leads to a
brighter DCP map. Inspired by this regular change, the local
pixel-wise DCP map is leveraged to measure the enhancement
degree, which is defined as

(I°(,4)) 2

D
P00 = 3005 | e R )
where (4, j) denotes a 15x15 window centered at (¢, j) and
0 € {R,G, B} denotes the red, green and blue channels.
LMN color space is well-defined on a physical basis and
optimized on the HVS [43]. Converting RGB color space
to LMN color space can eliminate the correlation between
the luminance component (L) and chrominance components
(M, N). The luminance component can well characterize the
brightness of the image. This conversion is defined as

L 006 0.63 027| R
M| = 1030 0.04 -035| |G|. 3)
N 034 -06 0.17| |B

Then, we compute the arithmetic average value, logarithmic
average value, and skewness of the DCP map I” and the
luminance map I” as the brightness feature. The arithmetic
average value represents the absolute light condition across
the whole image, which is formulated as

1 H W

where ¢ € {D, L} and H and W denote the height and weight
of the image. The logarithmic average value is the conjunct
representation for the brightness and dynamic range of an
image [44], which can be represented as

z

= L];C exp ZZlog<

=1 j=1

BL*(i, j)

where ¢ € {D, L}, R® is the maximum dynamic range of
the DCP map or luminance map (i.e., R” = 255 and R =
255) and € is a small number to avoid computing log(0). The
HVS employs the skewness or a similar measure of histogram
asymmetry to perceive the surface quality of an image. An
image with a small skewness value tends to brighter and
glossier [45]. Thus, we also compute the skewness of these
two maps for brightness measurement:

a?(1¢(i, 7))
where o (I¢(4, j)) denotes the variance value of image I¢(4, j).

After the above calculation, we obtain six brightness com-
ponents and combine them to obtain a brightness vector

Fyrightness = [BAP, BA*, BL?, BL*, BS®, BS*]. (7)

BS(i,j) = (6)

2) Contrast: Contrast refers to the perceived magnitude
of the visually meaningful differences within an image, and
it has a special significance in gauging the effect of image
enhancement. Enhanced night-time images generated by a
good EHA should have appropriate contrast and comfort
perception. Here, we discover that the 2D entropy [46] and
NSV of multiple intermediate images are highly related to the
contrast of enhanced night-time images.

By gradually raising/reducing the original luminance of
an image, we can obtain multiple intermediate images. The
degree of the variation can reflect the contrast of the original
image. Thus, we capture the contrast features from multiple
intermediate images for quality evaluation of enhanced night-
time images here. The intermediate image I, of an enhanced
night-time image I can be obtained by

I, = max (min(m, - I,t,), ) )

where m,. denotes the rth multiplier, for r = {1,2,..., N}; ¢,
and t; denote the upper and lower bounds, respectively; and
the max and min operators are used to confine the intermediate
images to the range of [¢;, t,,]. Here, we set ¢{;, = 0 and ¢,
255 for an 8-bit image, and we select N = 9 multipliers m,. =
{1/n,1,n|n =3, 5,7, 9} by considering the balance between
efficacy and efficiency. Note that I, = I when m, = 1.

The 2D entropy of intermediate images can be used to
effectively distinguish images with different contrast because
compared to traditional entropy, 2D entropy can reflect both
the information amount and distribution characteristics of gray
values. Fig. 7 exhibits the relation between the multiplier and
the corresponding 2D entropy value, where m, < 1 indicates
decreasing luminance and m, > 1 indicates increasing lumi-
nance. The 2D entropy of Fig. 7(c) quickly falls down to a
low level when the luminance is increased. This is because Fig.
7(c) already has proper contrast, and increasing its luminance
harms its visual quality. Thus, we use 2D entropy to deduce
whether an enhanced night-time image has proper contrast.

The 2D entropy of an image is calculated as follows. First,
for a pixel (7, j) of the intermediate image I.(¢, j), the average
value of all the adjacent pixels of I,.(i,7) in a window is
defined as

~ Z(k heq I.(k,1) —

T ) = & I.(i,5)

)
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Fig. 7. Illustrations of the variance of the 2D entropy with the multiplier. (a)
An original night-time image, (b)-(c) enhanced images with MOS=3.05 and
MOS=4.96, and (d) the relation between the 2D entropy and the multiplier.

where (Q is the set of adjacent pixels of I,.(¢, ) in a window
of size W x W. In our work, we set W = 3. Then, we
define a function f,,, to count the number of pixels that
simultaneously satisfy I,-(i,j) = m and I,(i,j) = n for all
(4,7). The probability is computed as

where H and W are the height and the width of the image.
After that, the 2D entropy of the image is calculated as

(10)
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In addition to the 2D entropy, we also compute the singular
values of multiple intermediate images to capture the contrast
change degree among these intermediate images. A given an
intermediate image [, can be decomposed into

I, =USvV7T (12)

where U and V' are orthogonal matrices. The singular values
are S = diag{&1. &2, ..., &}, 2 = rank(l,.). To reduce the ef-
fect of image content on contrast measurement, we normalize
the average singular value by

S = Zf:l &
202
where o is the variance of the image.
For each intermediate image I,., we obtain a 2D entropy
E%p and a singular value Sr. Since we have N = 9
intermediate images, we combine all these components to form
the contrast feature vector:

1 &1 T Qr 9 Q9
Fcontrast = E2D7S 7-~~7E2D7S 7~~~7E2D7S .

13)

(14)

Finally, the enhancement-aware feature is generated by
combining the brightness feature vector Fy,;gntness and con-
trast feature vector Fi,nirqst, Which is expressed as

Fe - [FbrightneSSa Fcontrast]~ (15)

C. Structure-Preserving Feature

Image structure is a significant cue for the quality pre-
diction of enhanced night-time images because the HVS is
highly sensitive to structural degradation [47], [48]. Enhanced
night-time images usually suffer from structural artifacts and
deformations caused by the enhancement procedure, which
severely damage their visual quality. Fig. 8 presents two
typical examples of structural artifacts introduced by the
enhancement of night-time images. One typical distortion is
intrinsic structural damage, which is found in Fig. 8(a)-8(b).
The second structural artifact is over-enhancement, which
usually occurs in low contrast regions. For example, the image
details in the upper-left area are hardly observed in Fig. 8(d),
however, this area is enhanced in the image structure in Fig.
8(e).

Therefore, in this paper, we extract the structure-preserving
features to capture the over-enhancement and intrinsic struc-
tural distortion of enhanced night-time images. The human
visual cortex has been demonstrated to perceive the first-order
and second-order structures (biorder structures) individually
[49]. We leverage statistical information on the biorder struc-
tures to measure the structure deformation, which is repre-
sented by the histograms of the high-order gradient magnitude
(GM) and completed local binary pattern (CLBP).

The first-order structure refers to the dominant contents of
an image, such as edges, which convey the dominant structure
that is highly sensitive to visual perception [50]. We propose
a high-order GM map for capturing the first-order structure,
which well captures the structural differences of enhanced
night-time images. Examples of high-order GM maps of a
night-time image and its enhanced images Figs. 8(a)-8(c) are
shown in Figs. 8(g)-8(i). We observe that the high-order GM
map captures intrinsic structural information in Fig. 8(h), and
its histogram also reflects the structural deformation because
the distribution deviates greatly from that of the original night-
time image. In contrast, the histogram of the high-order GM
map of the enhanced image in Fig. 8(o) without structural
distortion has a similar distribution to that of Fig. 8(m). Thus,
the statistical information of the high-order GM can be used to
distinguish structural corruptions, which is conductive to the
quality evaluation of enhanced night-time images. The GM of
an image is given by

GM(i,J) = /UG J) @ haJ? + [1G.J) @ 2 (16)

where ® is the linear convolution operator and hq,d € (z,y)
denotes the Gaussian partial derivation filter applied along the
horizontal (x) and vertical (y) directions:

.9 .o\ de{z,y}

v (17)
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where ¢ denotes the scale coefficient. The high-order GM

maps are obtained by taking GM (i,5) as input; these maps

are denoted GM™ (i, j), where h = 1,2, ..., H. The final first-

order structure maps can be obtained by

. 1 d
ha(i, j|60) = o0 24P <—

H
HGM(i,j) =Y  GM"(i, ) (18)
h=1
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Fig. 8. Two typical structural artifacts introduced by EHAs. (a) A night-time image; (b) image enhanced by [27] with intrinsic structural damage; (c) image
enhanced by [34]; (d) night-time image; (e) image enhanced by [27] with over-enhancement; (f) image enhanced by citekuang2016; (g)-(i) GM maps of

(a)-(c); (j)-() CLBP,, maps of (d)-(f); and (m)-(r) histograms of (g)-(r).

where H is empirically set to 3. Finally, the spatial structural
information is obtained by computing the histogram of HGM:

Hypm = hist(HGM (3, 5)) (19)
where hist is the histogram operator. In our paper, we empir-
ically set the number of GM histogram bins to 10.

The second-order structure represents the minor structure
(e.g., texture), which is also indispensable for visual percep-
tion. We employ the CLBP operator [51] to extract the second-
order structure, which can be expressed as three maps: the
intensity of the central pixel C LB P, and the sign C LB P, and
the magnitude C'LBPF,, of the local difference of neighboring
pixels [51]. Likewise, we employ the histogram to capture the
statistical information of these three maps for quality evalua-
tion. Figs. 8(j)-8(1) show the C'LBP,, maps of Figs. 8(d)-8(f),
and Figs. 8(p)-8(r) are the corresponding histograms of Figs.
8(d)-8(f). From these figures, we find that the CLBP,,, map
(Fig. 8(k)) accurately portrays the over-enhancement area (Fig.
8(e)). Moreover, as the MOS value of the image increases, the
histogram changes regularly (the first bin decreases while the
last bin increases). Thus, it is reasonable to use the histogram
to represent the statistical information of CLBP maps for over-
enhancement evaluation.

Given a central pixel g, g, (p = 0,...,P — 1) denotes its
surrounding neighbors in a circular space. The central intensity
can be expressed as

1, z>e

0, z<e 20

CLBPC:t(gan)7 t($,€): {

where 7 denotes the average pixel value of the image. The
sign of the local difference is given by

pP-1

Z t(gp - 970)7 if Ug S 2

p=0

P+ 1, otherwise
[t(gp—1—9,0) —t(g0 — g,0)]

CLBP, = 2
U, =

P-1 29
3 ey~ 0.0~ tgp 1 — 0,0 D
p=1

where U, measures the discontinuity in the circular binary
representation [52]. The magnitude of the local difference is
given by
P—1
CLBP, = t(lgp — gl,ma) - 27
p=0

(23)

where 7)4 is the average value of all local differences |g,—g.| in
an image. Since CLBP, € {0,1}, we use the hist operator
to map it into a histogram Hcppp, with 2 bins. Similarly,
we map CLBP; and CLBP,, into Hcrpp, and Hcrpp,,,
respectively, with P + 2 bins. Here, we set P =8 empirically.
Finally, we combine 10 first-order and 22 second-order
structural features as the structure-preserving feature vector:

Fy =[Hym,Herpp., Horsr,, Horsp,,)- (24)

D. Colorfulness

Since EHAs enlarge the dynamic range of original night-
time images, their corresponding enhanced images usually



exhibit more abundant color information. In other words, the
color information of enhanced night-time images changes.
Moreover, different EHAs emphasize different regions, and
depending on the complexity of the image contents, they may
produce unpredictable visual effects. Thus, it is important to
consider the colorfulness for quality evaluation. As shown
in Fig. 8(b), image enhancement usually introduces extra
unnatural colorfulness.

As the HVS perceives color information in an opponent
color space [53], we first transform the RGB color space into
the opponent space, which is represented as

0O1=R-G
0O,=(R+G)/2—-B

(25)
(26)

where O; and Oy are the converted red-green and yellow-
blue channels, respectively. Then we compute the following
three colorfulness features. The first colorfulness feature is
computed from the opponent space:

2 2
C1 = log(

Oy 90,
|M01|O'2) fog |/~L02|0'2) @D
where [10,, [t0,, 00, and oo, are the mean values and the
variances of O; and O,. Since LMN color space is highly
consistent with the perception of HVS, we compute the second
colorfulness feature according to the chrominance components
(M, N) of LMN defined in Formula (3), which is defined as

2 O.]2V
C2 = lOg( |,UM‘02) : lOg( |,UN|02) (28)

where pps, jin, 0pr and o are the mean values and the
variances of M and N. The dynamic range of YCbCr color
space can also capture the colorfulness feature [54]. Thus, we
define the third colorfulness feature as

o5 = 2L
p(Ie)
where DR(I€) and p(I€) denotes the dynamic range and the
global mean of the image I on channel ¢ € {Y,Cb, Cr}.
Combining these three colorfulness features, we obtain 5
components as the colorfulness feature vector:

F.=[Cy,Cy,CY,C5% OS5

(29)

(30)

E. Ensemble Model and Quality Prediction

After feature extraction, a regression model is required to
learn a mapping function from the feature space to the quality
score. In this paper, we present an ensemble training model
AdaBoost-RF based on the AdaBoost algorithm [55] and RF
[56], which has better generalization ability than a single base
learner, such as SVR.

There are two critical issues in designing an ensemble
model: the accuracy of the base learners and the differences
between the base learners. Here, we choose RF as the base
learner for two reasons. First, RF combines bagging theory and
the random selection of features, making it robust to noises
and outliers. Second, the decision trees in RF are independent
of each other, so there is a big difference between different
RFs. AdaBoost is used to ensemble the base learners, which is
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Fig. 9. The procedure of the proposed ensemble algorithm AdaBoost-RF.

achieved by changing the training data distribution and adap-
tively adjusting the errors of the base learners. AdaBoost-RF
combines the advantages of the boosting and bagging methods,
which enables RF to fully use the extracted features to improve
the accuracy and robustness of the quality prediction model.

The core principle of the proposed AdaBoost-RF algo-
rithm is that if a training sample produces a greater pre-
diction error, it will be assigned a greater weight in the
next iteration during the training procedure. Let (X,Y) =
{(z1,91),--, (ch’yq)7 E) ($Qv yQ)‘q =1,2,---,Q} be the
training set, where X and Y denote the extracted features and
MOS values of the training data, @) is the total number of
training samples. The detailed operation steps of AdaBoost-
RF are described below. First, we assign an initial weight to
each sample in the training set:

Wi = (w1, w12, - ,w1,Q), Wi,q = (31)

1
o
where w; 4 denotes the initial weight of the gth sample. Then,
we use the training set with initial weight to train an RF
model (base learner) Ry = frr((X,Y),W1), frr denotes
the training operation of RF. Thereafter, we can obtain the
predicted scores Y of the training set via R;. Based on the
error between the MOS values (Y') and predicted scores (Y)
of the training samples, we update the weight of each training
sample and train the next RF model. The error of each sample
can be defined as:

‘yq - @\q‘
max{y, — Ty b
where ¥, is the predicted score of the gth sample. Thus, the
error « and the weight 8 of Rj can be defined as

@ «
o= E W1,q€q; B =
g=1

1—a

ey =

(32)

(33)



Finally, we can update the weight of each training sample by
B w1 q ﬂl—eq

Zqul wy gt C
Based on the updated weights of the training samples, we can
train the next model. Totally, we repeat the above operations
T times, and we can obtain 7' models R;,t =1,--- | T.

Given a test sample z’, we can obtain the corresponding
T predicted scores {7,}7_, via the trained 7" RF models.
Then we sort {g,}._, in ascending order and obtain the
corresponding weight list of these models as {31, B2, - , Br}.
Based on the sorted RF models, we define the kth RF model
R, as the final model to predict the quality of the test image,
which should satisfy the following condition:

S D RN |

> —

;mﬁt . 2;111@

where (3; denotes the weight of the ¢th RF model. In this
paper, the base learner RF contains 256 decision trees, the
depth of each decision tree is 6, and the ensemble scale of

AdaBoost-RF is T' = 24. Fig. 9 illustrates the training and
testing procedures of the proposed AdaBoost-RF method.

Wiql,qg = Wag (34)

(35)

V. EXPERIMENTS

In this section, we conduct a performance evaluation and
compare the propsoed BEHN metric with the exsiting repre-
sentative IQAs on two databases.

A. Experimental Protocol

1) IQAs: In this paper, we compare our proposed BEHN
with four types of IQAs. The IQAs of the first type are
general-purpose IQAs, including BRISQUE [10], GM-LOG
[11], IL-NIQE [57], NRSL [13] and SNP-NIQE [14]. These
methods are blind IQAs and achieve promising performance
on popular IQA databases. The IQAs of the second type
are contrast-related IQAs, including two RR IQAs, namely,
RIQMC [19] and CPCQI [18], and three blind/no-reference
(NR) IQAs, namely, NR-CDIQA [37], NIQMC [17] and
BIQME [18]. The IQA of the third type is a night-time IQA,
i.e., BNBT [22], which is a blind IQA for natural night-time
images. Moreover, to further demonstrate the practicality of
the proposed subjective database, we also train two NR CNN-
based IQA models (CNNIQA [58] and ResNet18-IQA [59]) on
the EHNQ database for comparison. In our study, RR IQAs use
enhanced images and their corresponding night-time images,
and blind IQAs only use enhanced images.

2) Databases: Besides the constructed EHNQ database,
there exists another relevant database, namely, the EAQA
database [36]. The EAQA database consists of three subsets,
and each subset contains 500 images created by enhancing
underwater, haze, and low-light images using five different
EHAs. In our experiments, we only consider 500 enhanced
low-light images. The EAQA database only contains the
performance ranks of five EHAs, specifically, the rank range
is from 1 to 5, where 1 represents the best and 5 the worst.
Therefore, we use these ranks to represent quality scores. If
the rank of an image is 1, we set its subjective score to 1. A
higher score indicates the worse visual quality of the image.
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Fig. 11. Performance of different regression models. (a) EHNQ; (b) EAQA.

3) Criteria: Four representative evaluation criteria are used
to measure the performance of these IQAs. Specifically,
the Spearman rank-order correlation coefficient (SRCC) and
Kendall’s rank-order correlation coefficient (KRCC) are em-
ployed to measure the prediction monotonicity. The Pearson
linear correlation coefficient (PLCC) and root-mean-squared
error (RMSE) are used to measure the prediction accuracy. A
better objective algorithm should obtain higher SRCC, KRCC,
and PLCC values but lower RMSE, indicating a high degree
of consistency between the objective and subjective scores.

B. Ablation Study

1) Effectiveness of Features: The proposed BEHN extracts
three groups of features, namely, enhancement-aware features,
structure-preserving features, and colorfulness. To verify the
effectiveness of each group of features, we analyze their
contribution to the performance of BEHN. The performance of
each group of features is determined by training the model in-
dividually with the corresponding features. For instance, only
the extracted enhancement-aware features are used to train the
quality prediction model when measuring the contribution of
the enhancement-aware features.

Fig. 10 shows how well different groups of features correlate
with the perceptual quality of subjective judgment. From Fig.
10, we make the following observations. First, by using only
enhancement-aware or structure-preserve features, consider-
able performance can be achieved, which demonstrates that
recovering brightness and contrast and avoiding structural
artifacts are crucial for enhancing night-time images. Second,
colorfulness also contributes to the proposed BEHN, and
this is not surprising since color is of great importance for
visual perception. Last, each group of features contributes to
the overall performance, and the combination of these three
groups of features achieves the best results. This verifies the
effectiveness of these three groups of features in evaluating



TABLE 1II

GENERALIZATION ABILITY EVALUATION
Test Database | Metric SVR RF AdaBoost-RF

SRCC 0.565 0.591 0.682

EAQA PLCC | 0582  0.588 0.673

SRCC | 0435 0.449 0.512

TID2008 PLCC 0.458 0.462 0.496

SRCC 0.324  0.339 0.418

TID2013 PLCC 0.341 0.357 0.434

CSIQ SRCC 0.347  0.361 0.454

PLCC 0.365 0.386 0.476

the quality of enhanced night-time images. All the features
perform better on the EHNQ database than on the EAQA
database except the colorfulness (F.), which is due to the
differences between the EHAs used in the two databases. The
EHAs in the EAQA database bring heavy color distortion, and
the colorfulness features designed in our paper are conductive
to capturing such color distortions.

2) Effectiveness of the Regression Model: To demonstrate
the effectiveness of our proposed ensemble training algorithm
AdaBoost-RF, we conduct an ablation test under different
regression schemes on the two databases. In our experiments,
SVR, RF, and AdaBoost-RF are separately employed to map
the features into the quality score, and all the other experi-
mental conditions remain unchanged.

Fig. 11 illustrates the performance of different regression
models on the EHNQ and EAQA databases. We can find
that our BEHN using RF to train the regression model out-
performs BEHN using SVR in terms of all the evaluation
criteria. This is because RF utilizes bagging theory and the
random selection of features, resulting in better robustness
to noise than SVR. Thus, we choose RF as the base learner
of the proposed AdaBoost-RF algorithm. In addition, BEHN
trained via AdaBoost-RF outperforms the other two models
on both databases, which demonstrates the effectiveness of
the proposed AdaBoost-RF in training the regression model
for our task.

3) Generalization Ability: The ensemble learning model
has better generalization ability than a single base learner.
We conduct a cross-database test to verify the generalization
ability of AdaBoost-RF. We train a model on the EHNQ
database and test it on the EAQA database and the contrast
enhancement-related subsets of TID2008 [60] (200 images),
TID2013 [61] (160 images), and CSIQ [62] (250 images)
databases. Images in the EAQA database are generated by
enhancing low-light images, while images in the remaining
test subsets are generated by changing the contrast of the
undistorted natural images. Thus, the test datasets are mainly
distorted by contrast change. Besides the contrast distortion,
the enhanced images in our constructed EHNQ database are
also corrupted by blur, noise, and other complex distortions
created by the enhancing procedure, such as structural defor-
mation and unnatural colorfulness. Table II presents the per-
formance results, it is observed that the proposed AdaBoost-
RF shows better generalization ability than a single regression
model SVR and RF on all the test datasets.
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C. Performance

1) Performance on Individual Databases: We compare
BEHN with 11 state-of-the-art IQAs and 2 CNN-based IQA
models (CNNIQA [58] and ResNet18 [59]) in terms of overall
performance. Among them, BRISQUE, GM-LOG, NRSL,
NR-CDIQA, BNBT, and BEHN are training-based methods,
which require a training stage to adjust regression models. For
the training-based methods, the database is randomly divided
into two non-overlapping sets: a training set containing 80%
of the enhanced night-time images and a testing set with the
remaining 20% of the images. Enhanced images corresponding
to the same night-time image are divided into the same set to
avoid content overlap between the training set and the testing
set. We retrain these training-based methods on the training set
and test them on the testing set. The training-testing process is
repeated 1,000 times, and the median performance criteria are
reported. We test the remaining methods without the training
procedure on the same testing set for a fair comparison.

Table III shows the comparison results on the EHNQ and
EAQA databases. We make the following observations. First,
BEHN achieves better performance on the two databases.
Second, the general-purpose training-based IQAs (BRISQUE,
GM-LOG, and NRSL) outperforms the non-training IQAs (IL-
NIQE and SNP-NIQE). This is understandable because the
training-based models are conducive to capturing the distor-
tions of enhanced night-time images. Third, although BIQME
and NIQMC are designed for contrast-enhanced images, their
performance is not impressive. This is because, in addition
to contrast distortion, the enhanced night-time images still
suffer from more complicated corruptions, such as structural
deformation and unnatural colorfulness. Last, the results of
the two CNN-based IQA models demonstrate the practicality
of the constructed subjective database and the effectiveness of
the proposed objective quality evaluation methods.

2) Performance on Individual EHAs: In addition to the
overall performance on each database, to more comprehen-
sively assess the performance of all involved methods, we
also conduct comparison experiments on individual EHAs.
The result for each EHA is obtained using the model trained
with all the enhanced images on the EHNQ or EAQA database.
For brevity, we only present the SRCC value here, and similar
results are obtained for KRCC, PLCC, and RMSE.

Table IV reports the SRCC values of different EHAs on
the EHNQ and EAQA databases. First, none of these methods
always performs the best on all EHAs. Second, the proposed
BEHN achieves much better and more robust SRCC perfor-
mance across different EHAs than other IQAs on the EHNQ
database. Specifically, BEHN obtains the highest SRCC values
on all CEHAs. For LEHAs and NEHAs, our proposed BEHN
occupies the top place 9 times. In contrast, NIQMC, GM-LOG,
and BNBT exhibit significant changes on different EHAs. In
addition, the performance of BEHN on the EAQA database
stands out from those of the other methods. These results
indicate the effectiveness and stability of BEHN in evaluating
the quality of enhanced night-time images.

3) Running Time Measurement: A good IQA metric should
simultaneous achieve efficacy and efficiency. Since the running
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Method Tvpe Subset-512 of EHNQ Subset-1024 of EHNQ EHNQ EAQA
YP® 'SRCC KRCC PLCC RMSE[SRCC KRCC PLCC RMSE[SRCC KRCC PLCC RMSE[SRCC KRCC PLCC RMSE
RIQMC T19] RR [ 0428 0.30I 0.539 0.791 | 0.592 0.423 0.669 0.789 [ 0.504 0.355 0.597 0.806 | 0.396 0.285 0.429 1.278
CPCQI [18] RR | 0.184 0.122 0.315 0.891 | 0.250 0.167 0.345 0.996 [ 0.217 0.145 0.323 0.951 | 0.207 0.142 0.243 1.372
TL-NIQE [57] NR [ 0.575 0399 0.587 0.760 [ 0469 0.324 0.512 0912 [ 0518 0.360 0.542 0.844 [ 0.499 0370 0540 T1.190
SNP-NIQE [14] | NR | 0.211 0.137 0.280 0.901 | 0.152 0.100 0.214 1.037 | 0.181 0.118 0.239 0.975 | 0.072 0.053 0.075 1.410
NIQMC [17] NR [ 0.591 0422 0.659 0.706 | 0.607 0.429 0.665 0.792 | 0.597 0423 0.660 0.755 | 0.453 0.330 0.594 1.137
BIQME [18] NR [ 0.698 0511 0.755 0.615 | 0.729 0.546 0.775 0.670 | 0.715 0.530 0.767 0.645 | 0.533 0.399 0.560 1.172
BRISQUE [10] NR | 0.659 0471 0.681 0.715 | 0.640 0.457 0.641 0.630 | 0.640 0.447 0.655 0.754 | 0.747 0592 0.775 1.278
GM-LOG [11] NR [ 0.641 0456 0.663 0.689 | 0.658 0.468 0.689 0.760 | 0.725 0.530 0.739 0.669 | 0.645 0.495 0.686 1410
NR-CDIQA [37] | NR | 0.508 0.353 0.579 0.761 | 0464 0.320 0.536 0.876 | 0.518 0.359 0.580 0.821 [ 0.792 0.676 0.809 1.198
NRSL [13] NR [ 0.744 0549 0.768 0.597 | 0.693 0.499 0.739 0.715|0.721 0.530 0.728 0.855 | 0.831 0.681 0.860 1.025
BNBT [22] NR [ 0.825 0.629 0.821 0.508 | 0.823 0.627 0.818 0.507 | 0.817 0.665 0.823 0.519 | 0.803 0.639 0.863 1.130
CNNIQA [58] NR [ 0.834 0.671 0.841 0.497 | 0.827 0.665 0.830 0.501 | 0.828 0.692 0.848 0.489 | 0.841 0.719 0.836 0.797
ResNet18-IQA [59]| NR | 0.849 0.687 0.862 0475 | 0.846 0.698 0.858 0.483 | 0.852 0.715 0.856 0.480 | 0.856 0.727 0.845 0.742
BEHN NR | 0.887 0.711 0.894 0.441 | 0.877 0.698 0.897 0.428 | 0.908 0.741 0913 0.452 | 0.884 0.744 0.892 0.678
TABLE IV
SRCC VALUES OF DIFFERENT EHAs ON THE EHNQ AND EAQA DATABASES
EHNQ EAQA
Method Type CEHAS LCEHAS NEHAs EHASs of Low-Light Subset
LDR FSBE HE [BCP NPE REIA PEM FWIE LIME WVEM [IMSRE PNIE CNEFS RGF IMSKR| HE CHA CGC ELLV CNEFS
RIQMC [I9T |RR0.50T 0.124 0.27T0.188 0.264 0.217 0.033 0.149 0.324 0.116 [0.325 0.355 0.340 0.033 0.405 |0.100 0.017 0.326 0.069 0.I12T
CPCQI [18] RR [0.247 0.480 0.468 [0.650 0.230 0.315 0.140 0.213 0.456 0.164 [0.259 0.103 0.289 0.133 0.350 0.261 0.109 0.324 0.063 0.025
IL-NIQE [57] [NR0.466 0.479 0.265[0.103 0.312 0.228 0.317 0.284 0.069 0.235 [0.428 0.179 0.336 0.228 0.060 [0.206 0.042 0.279 0.135 0.074
SNP-NIQE [14] [NR0.375 0.300 0.089 [0.205 0.089 0.006 0.172 0.056 0.077 0.187 |0.451 0.202 0.591 0.289 0.124 [0.367 0.126 0.141 0.187 0.267
NIQMC [17] |[NR|0.544 0.275 0.025(0.258 0.178 0.245 0.130 0.107 0.314 0.302 |0.279 0.333 0.730 0.135 0.370 (0.220 0.228 0.123 0.337 0.155
BIQME [18] |NR|0.710 0.315 0.154/0.320 0.111 0.370 0.355 0.365 0.454 0.385 | 0.293 0.483 0.800 0.319 0.506 [0.233 0.182 0.121 0.243 0.230
BRISQUE [10] |NR0.749 0.649 0.685 (0.745 0.574 0.609 0.686 0.703 0.737 0.640 | 0.557 0.694 0.745 0.650 0.553 0.748 0.463 0.672 0.802 0.603
GM-LOG [11] |NR0.736 0.622 0.5620.811 0.730 0.538 0.677 0.741 0.842 0.661 |0.452 0.778 0.758 0.846 0.781 (0.619 0.358 0.570 0.601 0.621
NR-CDIQA [37] [NR[0.612 0.618 0.526 [0.652 0.696 0.682 0.624 0.633 0.619 0.517 |0.544 0.708 0.760 0.588 0.778 0.611 0.577 0.631 0.597 0.620
NRSL [13] NR[0.881 0.874 0.803(0.774 0.783 0.819 0.780 0.783 0.811 0.866 | 0.824 0.789 0.851 0.652 0.817 [0.619 0.595 0.564 0.785 0.827
BNBT [22] NR[0.813 0.744 0.703 |0.826 0.676 0.795 0.714 0.734 0.775 0.836 | 0.580 0.597 0.850 0.769 0.784 [0.564 0.491 0.555 0.708 0.658
CNNIQA [58] |NR0.854 0.806 0.731]0.796 0.743 0.766 0.702 0.779 0.823 0.854 |0.646 0.683 0.820 0.775 0.807 [0.681 0.504 0.613 0.772 0.825
ResNet18-IQA [59] NR [0.873 0.845 0.792 |0.851 0.654 0.804 0.699 0.773 0.848 0.812 |0.769 0.791 0.847 0.755 0.816 (0.723 0.618 0.586 0.748 0.805
BEHN NR 0.922 0.890 0.882[0.891 0.715 0.824 0.796 0.802 0.853 0.838 | 0.839 0.812 0.855 0.797 0.831 [0.747 0.533 0.664 0.795 0.843
TABLE V
COMPUTATIONAL COST
" Non-Learning IQAs ™| - -
Time (sec./image) 0.721 0.048 3473 1.822 1.174 0.480 0.057
earning-Base S - - esNetI8-
Time (sec./image) 0.053 0.036 0.086 1.882 0.011 0.424

time is crucial in real-time applications, we test the computa-
tional complexity of our BEHN and all compared IQAs, and
we report the results in Table V. One hundred enhanced night-
time images with a fixed resolution of 512x512 are selected
from the EHNQ database, and the average running time of
feature extraction and quality prediction is regarded as the
computation cost. Experiments are conducted on a personal
computer equipped with a 3.20GHz Intel Core i5 CPU and
4 GB RAM. The development platform is MATLAB R2014b
running on Windows 10 Home Premium.

From Table V, we can make the following four observations.
First, the non-learning methods IL-NIQE, SNP-NIQE, and
NIQMC require relatively long computing times, since both
the feature extraction and quality regression of these meth-
ods require complex calculations. Second, the learning-based
methods BRISQUE, GM-LOG, NR-CDIQA, and NRSL, have
lower computational overhead. The reason is that they extract
features using statistical histograms, and they are easy to
compute. The computational cost of the CNN-based models
depends on the network depth. Since CNNIQA has 2 convolu-
tional layers while ResNet18-IQA has 18 convolutional layers,

the runing time of CNNIQA is lower than that of ResNetl8-
IQA. Last, the proposed BEHN has a low computational cost,
though not the lowest among all compared methods.

VI. CONCLUSION

In this paper, we conduct subjective and objective quality
evaluations of enhanced night-time images. First, we construct
a large-scale enhanced night-time image quality database,
namely, the EHNQ database, with subjective quality scores
rated by human observers, which can be employed as the
ground truth when conducting an objective quality evaluation
of enhanced night-time images. Second, we present BEHN, a
blind quality evaluation index for enhanced night-time images,
by analyzing three groups of features: enhancement-aware
features, structure-preserving features, and colorfulness. After
extracting these visual features, we propose an ensemble
training algorithm, AdaBoost-RF, for mapping the extracted
features into a quality score using AdaBoost and RF. Ex-
tensive experiments are conducted on the constructed EHNQ
database and the EAQA database to evaluate and analyze the
performance of our proposed BEHN. The results show that



the proposed method outperforms the state-of-the-art IQAs in
terms of both efficacy and efficiency.
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