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Abstract. There is analyzed the cohomology structure of the fundamental two-form deform-
ation related with a modi�ed Monge�Ampère type on the complex Kähler manifold P2(C):
Based on the Levi-Civita connection and the related vector �eld deformation of the fundamental
two-form there is constructed a hierarchy of bilinear symmetric forms on the tangent bundle
to the Kähler manifold P2(C); generating on it Hermitean metrics and suitable solutions to the
studied Monge�Ampère type equation. The classical fundamental two-form construction on the
complex Kähler manifold P2(C) is generalized and the related metric deformations are discussed.

1. Introduction

Let us consider a compact complex n-dimensional manifold Mn
C ; endowed with the Kähler

[1, 3, 27] fundamental symplectic two-form ! 2 �2(Mn
C ) and de�ne the related Monge�Ampère

equation, describing a deformation of this symplectic structure:

(1.1) (! + i�@@')n = (exp f)!n

under the normalizing conditions

(1.2)
Z
Mn

C

(exp f)!n =

Z
Mn

C

!n;

Z
Mn

C

'!n = 0;

where ' 2 C1(Mn
C ;R) is a real valued function on Mn

C and �@ is the complex @-bar di¤erential,
corresponding to the standard di¤erential splitting d = @ � �@ : �(Mn

C ) ! �(Mn
C ) on the complex

manifold Mn
C : In a general case it was supposed [28] that if the two-form

�
! + i@ �@'

�
2 �2(Mn

C )
is real valued and the �rst Chern class c1(Mn

C ) = 0 of a Kähler manifold Mn
C ; then there exists

a Riemannian metric g : T (Mn
C ) � T (Mn

C ) ! C of the Calabi-Yau type, whose holonomy group
[9, 10, 12, 13] coincides with a subgroup of the Lie group SU(2); generating, in particular, a so
called Einsteinian metric. The equation (1.1) is always [28] solvable, yet its holonomy groups,
in general, not classi�ed and its unitarity remains to be open.
One can also mention here that if a Kähler manifold M2

C is compact with the Chern class
c1(M

2
C) = 0; it is well known [24] that it is then hyper-Kähler, possessing exactly three Kähler

fundamental forms !I ; !J and !K 2 �2(M2
C); corresponding to three compatible complex structures

I; J and K : T (M2
C) ! T (M2

C): As for the compact projective two-dimensional Kähler manifold
M2
C = P2(C) the Chern class c1(M2

C) 6= 0; it is not hyper-Kähler, and its holomorphic volume two-
form 
 2 �2hol(M2

C) is not composed of the symplectic forms !J and !K 2 �2(M2
C):

We here also remark that there exists a slightly di¤erent modi�ed Monge�Ampère type equation

(1.3) (! + dJ�d')n = (exp f)!n;

on a real symplectic manifold M2n ' Mn
C ; where f 2 C1(M2n;R) and J : T (M2n) !

T (M2n); J2 = �I; is a suitably chosen nonintegrable quasi-complex structure on the manifold
M2n and J� : T �(M2n) ! T �(M2n) denotes its conjugate. It was proved [5] that if the structure
J : T (M2n)! T (M2n) is integrable, then the equation (1.3) reduces to the Monge�Ampère equa-
tion (1.1) on the related complex manifoldMn

C 'M2n owing to the classical Newlander-Nirenberg
[16] criterion. Otherwise, if the equation (1.3) is solvable for its arbitrarily chosen right hand side,
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then the quasi-complex structure J : T (M2n) ! T (M2n) proves to be necessary [5, 15, 19, 17] a
complex one, once more reducing the equation (1.3) to the Monge�Ampère equation (1.1).
In our note we are interested in the following "symplectic" deformation

(1.4) (! + dds )2 = (exp f)!2

of the Monge�Ampère (1.1) on the complex two-dimensional Kähler manifold M2
C = P2(C); whose

Chern class c1(M2
C) 6= 0; by means of a symplectic deformation

(1.5) ! ! ! + dds ;

where  2 �2(Mn
C ) is a searched two-form and, by de�nition, the mapping ds := (�1)k+1 ?s d?s

denotes the adjoint [6, 10, 12, 24] symplectic Hodge type di¤erentiation, satisfying the by-linear
scalar relationship

(1.6) (�(k)jd�(m))s := (ds�(k)j�(m))s
for all di¤erential k-forms �; � 2 �k(M2n); k = 1; 2n; as well as the identity dds = �dsd: Here
we have put, by de�nition,

(1.7) (�(k)j�(m))s := �km

Z
Mn

h��(k)j�(m)isd� := �km

Z
Mn

��(k) ^ ?s�(m)

for any di¤erential k-form � 2 �k(M2n) and di¤erentialm-form � 2 �m(M2n); where d� := !n=n!
is the volume measure on M2n and the symplectic Hodge-star mapping ?s : �(M2n) ! �(M2n)
acts on di¤erential k-forms via the identity

(1.8) � ^ ?s� = h�j�is!n=n!
subject to the "symplectic" bilinear form h�j�is : �k(M2n)� �k(M2n)! R; looking as

(1.9) h�j�is :=
1

k!

2nX
il;jm;l;m=1;k

!i1j1!i2j2 :::!ikjk�i1i2:::ik�j1j2:::jk ;

if � := 1
k!

P2n
im;m=1;k

�i1i2:::ikdx
i1^dxi2^:::^dxik ; � := 1

k!

P2n
im;m=1;k

�i1i2:::ikdx
i1^dxi2^:::^dxik 2

�k(M2n); ! := 1
2

P2n
ij=1 !ijdx

i^dxj 2 �2(M2n) and
P2n

k=1 !
ik!kj := �ij ; i; j = i; j = 1; 2n; being

further naturally continued on the complex-valued di¤erential forms. It is worth of mentioning
here that in the case of Kähler manifolds the following important equalities

(1.10) Im d \ ker ds = ker d \ Im ds = Im dds

hold, being consequences of the expression (1.6) and (1.8). The scalar product (1.7), naturally
extends [3, 27] on the complex valued di¤erential forms on the complex manifold Mn ' �M2n and
gives rise to the following symplectic scalar product on �(Mn

C ) :

(1.11) (�(k)j�(m))s := �km

Z
Mn

C

h�(k)j��(m)isd� := �km

Z
Mn

C

�(k) ^ ?s ��(m);

where �(k) 2 �k(Mn
C ); �

(m) 2 �m(Mn
C ); k;m = 1; 2n; are complex-valued di¤erential forms on Mn

C
and the bar "� " denotes the usual complex conjugation. In addition, the following identities

(1.12)
(!j� ^ �)s = (�j�)s = ���(X�) = ��(X�);

(! + dds j� ^ �)s = ���(X�)� (i �X�
d jd��)s + (i �X�

d jd��)s;

hold for any one-forms �; � 2 �1(Mn
C ); where vector �elds X�; X� 2 �(T (Mn

C )) are de�ned via
the relationships iX�

! := �; iX�
! := �; respectively.

It is worth remarking also that in general case, when the Chern class c1(M2
C) 6= 0; notwithstand-

ing this fact, based on the equalities (1.10) and the well known [3, 4, 26, 27] relationship

(1.13) ?s� = ��
for an arbitrary "primitive" holomorphic volume two-form � 2 �2hol(M2

C); satisfying the additional
condition �^! = 0; one easily derives the existence of two cohomological "primitive" holomorphic
volume two-forms 
1 and 
2 2 �2hol(M2); for which 
1 ^ �
1 = ! = 
2 ^ �
2: Moreover, the
following interesting relationship

(1.14) 
1 � 
2 = dds�
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holds for some smooth two-from � 2 �2(M2
C); solving the problem (1.4) for the case, when the

fundamental symplectic structure ! 2 �2(M2
C) is replaced by a holomorphic volume two-form


 2 �2hol(M2
C):

In our report, having analyzed in detail the cohomology structure of the deformed two-form
expression (! + dds ) 2 �2(M2

C) and applied some generalized transformations which were
suggested in the classical works by Enneper [7] and Weierstrass [25] about one and half century
ago and recently developed in [11], we succeeded in reformulating the "symplectic" modi�cation
of the Monge�Ampère (1.4) by means of specially constructed coordinates, allowing to construct
its special solutions. It is here important to mention that in general the considered deformed
structures are, in general, stable and conserving [2, 15, 20, 21, 22, 23] their properties only
locally, and their global determination is one of main problems under regard.

2. Canonical metric on P2(C) and the related fundamental symplectic form

Let z := (z0; z1; z2)| 2 C3 be a uniform coordinate frame on the Kähler complex manifold
M2
C := P2(C) and de�ne a related linear connection mapping

(2.1) E3 3 u ! df (u) := du+ #fu 2 E3 
 �1(M2
C);

where E3 := (C3; �;M2
C; SO(3) � S1) is a one-dimensional complex vector bundle over M2

C '
E3=

�
SO(3)� S1

�
with the structure group SO(3) � S1; completely speci�ed by means of the

local holomorphic basis frame vector f(z) := z 2 E3; and # : E3 ! E3 
 �1(M2
C) denotes the

corresponding connection form. As the basis frame vector f(z) 2 E3 makes it possible to de�ne
on the Kähler manifold M2

C the canonical Hermitian metric

(2.2) gf (A(z); B(z)) := �f(z)|f(z)a(z)�b(z)

for any vectors A(z) = a(z)f(z) 2 E3 and B(z) = a(z)f(z) 2 E3 at a point p(z) 2 M2
C; one can

construct easily the holomorphic connection form #f := # : E3 ! E3
�1;0(M2
C); compatible with

the metric (2.2) by means of the well known [27] relationship

(2.3) #1;0(z) :=
�
�f(z)|f(z)

��1 �f(z)| @f(z);

where, by de�nition, #(f(z)) := #1;0(z)f(z) 2 E3
�1(M2
C): As the iterated mapping d

2
f = df �df :

E3 
 �(M2
C) ! E3 
 �(M2

C); being a linear homomorphism on the module �(M2
C); determines

[3, 27] the closed global curvature two-form


(z) =
i

2
d2f =

i

2

�
d#1;0(z) + #1;0(z) ^ #1;0(z)

�
=(2.4)

=
i

2
�@
��
�f(z)|f(z)

��1
@ �f(z)|f(z)

�
=

=
i

2

�
jzj�2hdzj ^ dzi � j zj�4hdzjzi ^ hzjdzi

�
at arbitrary point p(z) 2 M2

C; generating the �rst nontrivial Chern class c1(M
2
C) := [
] �

H2(M2
C;Z) of the Kähler complex manifold M2

C: The obtained curvature two-form 
 2 �2(M2
C);

being nondegenerate, can be identi�ed with the fundamental symplectic two-form ! 2 �2(M2
C);

that is

(2.5) ! =
i

2

�
jzj�2hdzj ^ dzi � j zj�4hdzjzi ^ hzjdzi

�
;

naturally determining on the Kähler complex manifoldM2
C the compatible positive de�nite Fubini�

Study [3, 27] metric

(2.6) g(dz; dz) := jzj�2hdzjdzi � j zj�4hdzjzihzjdzi

at p(z) 2M2
C:

The Fubini-Study metric (2.6) is obtained as that compatible with the canonical symplectic
structure (2.5), naturally generated by the curvature two-form (2.4), corresponding to the
canonical connection (2.1) on the one-dimensional vector bundle E3 := (C3; �;M2

C; SO(3) � S1):
The latter depends strongly on a coordinate frame f(z) 2 E3 at point p(z) 2 M2

C; which was
chosen to be trivial as f(z) := z 2 E3: It is evident that this choice is not unique and any other
coordinate frame f(z) 2 E3 will provide a suitable connection df : E3 ! E3 
 �1(M2

C) on the
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Kähler complex manifold M2
C; whose a priori closed curvature two-form 
f 2 �2(M2

C) if, none-
degenerate, can be interpreted as a symplectic two-form !f 2 �2(M2

C); based on which one can
naturally present the related bilinear and symmetric form gf : T (M

2
C)�T (M2

C)! C: If, moreover, a
suitably chosen coordinate frame f(z) 2 E3 makes this bilinear form positive de�nite, we will arrive
at some symplectic deformation !f 2 �2(M2

C) of the canonical symplectic two-form ! 2 �2(M2
C);

constructed before.
To realize this scheme analytically, we will make use below of the classical constructions devised

still in classical works by Enneper [7] and Weierstrass [25] about one and half century ago and
recently developed in the general case [4, 8, 11, 29] of the Kähler manifold Pn(C); n 2 N:
Consider the following linear projective type mapping

(2.7) QV : E
3 3 f ! hdf jV i � f jf j�2hdf jV i 2 E3

for a �xed nontrivial vector �eld V 2 �(T (E3)) and iterate it starting from some holomorphic
coordinate frame function f = f0 2 E3: A sequence fj 2 E; j = 0; 2; obtained this way, is
parameterized by a �xed nontrivial vector V 2 �(T (E3)) and characterized by the following
lemma.

Lemma 2.1. Let vectors fj := fj(z) 2 E; j = 0; 2; be de�ned for any n 2 Z+ as
f0 := f; f1 := QV f0; f2 := QV f1 � f0jf0j�2hdf1(V )jf0i;(2.8)

f3 := QV f2 � f1jf1j�2hdf2(V )jf1i � f0jf0j�2hdf2(V )jf0i ; :::;

fn+1 := QV fn �
X

j=0;n�1

fj jfj j�2hdfn(V )jfji

at each point p(z) 2 M2
C: Then fj = 0 for all j � 3 and three vectors fj 2 E3; j 2 0; 2; are

biorthogonal:

(2.9) hfsjfki = 0
for k 6= s = 0; 2 at all p(z) 2M2

C:

Proof. It is easy to check that hf0jf1i = 0: Now, by induction, we assume that all vectors fj 2 E3;
j = 0; n; de�ned by (2.8), are biorthogonal to each other, that is hfj jfki = 0 for all j 6= k = 0; n� 1:
Concerning the vector fn+1 2 E3 we can calculate that

(2.10)

hfn+1jfki := hQV fnjfki�
�
P

j=0;n�1hfj jfkihdfn(V )jfjijfj j�2 =
= hQV fnjfki � hdfn(V )jfki =

= hjdfn(V )jfki � hdfn(V )jfki = 0;
for all k = 0; n� 1: In the last case k = n; we have that

(2.11)
hfn+1jfni = hQV fnjfki =

= hdfn(V )� fnjfnj�2hdfn(V )jfnijfni =
= hdfn(V )jfni � hdfn(V )jfni = 0:

Taking now into account that dim C3 = 3; we naturally derive that all fj = 0 for j = 3; n; proving
completely the lemma. �
The lemma above makes it possible to describe e¤ectively possible deformations of the fun-

damental symplectic structure ! 2 �2(M2
C); parameterized by two parameters: tangent vector

V 2 T (M) and a suitably de�ned element f 2 E3:

3. The deformed Kähler fundamental form and induced Monge�Ampère equation

Consider now a t-parametric deformation of the symplectic form ! 2 �2(M2
C) : ! ! !t :=

td� + !; where t 2 [0; 1]; � 2 �1(M2
C) is some one-form and 't : M2

C ! M2
C - a one-parametric

group of di¤eomorphisms of the Kähler manifold M2
C: Now we need the following Moser�s [15]

theorem.

Theorem 3.1. Let (M2n;!) be oriented symplectic manifold and some symplectic deformation
! ! !t := ! � !t 2 �2(M2n); t 2 [0; 1]; with �xed two-dimensional periods, that is

(3.1)
Z
�

!t =

Z
�

!
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for every two-cycle � 2 H2(M
2n;R): Then there exists such a di¤eomorphism 't : M

2n ! M2n

that

(3.2) '�t! = !t

for all t 2 [0; 1]:

As the symplectic deformation ! ! !t := td�+! 2 ! 2 �2(M2
C) a priori satis�es for all t 2 [0; 1]

the condition (3.1), as a consequence of Theorem 3.1 one easily derives by di¤erentiation with
respect to the parameter t 2 [0; 1] that there exists such a vector �eld K 2 �(T (M2

C)) that the Lie
derivative LK! = d�; where the one-form � 2 �1(M2

C) can be � = ds on the Kähler manifold
M2
C: Taking into account the symplectic deformation (1.5), the latter means that

(3.3) LK! = diK! = dds ;

from which one ensues the equivalence

(3.4) iK! = ds mod d�0(M2
C)

on the Kähler manifold M2
C: The written above mod-equivalence can be easily omitted, if to take

into account that the vector �eld K 2 �(T (M2
C)) is taken to be equivalent to the naturally related

set H = fH 2 �(T (M2
C)) : LH! = 0g of the Hamiltonian vector �elds on the manifold M2

C;
reducing our problem (1.4) to the following slightly simpler form

(3.5) iK! = ds :

Now the initial problem reduces to the next two tasks: the �rst one assumes solving the equation
(3.5) with respect to the corresponding two-form  2 �2(M2

C); and the second one is a description
of vector �elds K 2 �(T (M2

C)) on M
2
C; for which the two-form ! + diK! 2 �2(M2

C) generates a
Hermitian structure h : T (M2

C)� T (M2
C) ! C on the Kähler manifold M2

C:
First of all, take now into account the Kodaira theorem [3, 27] that any two-form  2 �2(M2

C)
on the complex manifold M2

C satis�es the conditions  = � (mod d�1(M2
C) and  ^ ! = 0: The

latter makes it possible upon applying to this condition the operation � 
 iK to obtain the
identity

(3.6) �(K) = �(� ^  jd )s
for any real one-form � = �� 2 �1(M2

C): The identity (3.6) is equivalent to a representation of
the searched for vector �eld K 2 �(T (M2

C)) as some solvable quadratic di¤erential expression on
the two-form  2 �2(M2

C): Thereby, we can formulate the obtained above result as the following
proposition.

Proposition 3.2. Any symplectic deformation (1.5) of the symplectic structure ! 2 �2(M2
C) on

the complex manifold M2
C is generated by the real vector �elds K 2 �(T (M2

C)) on M
2
C; satisfying

the scalar quadratic functional identity (3.6):

Recall now that the constructed above symplectic deformation (1.5) of the symplectic structure
! 2 �2(M2

C) should generate an Hermitian metric on our Kähler manifold M
2
C = P2(C); what

imposes natural constraints on the generating vector �eld K 2 �(T (M2
C)) on M

2
C; some of which

were described in Proposition 3.2. To proceed to their more detail analysis, observe that the Levi-
Civita connection r : T (M2

C) ! T (M2
C); corresponding to the fundamental symplectic structure

! 2 �2(M2
C); leaves invariant the related complex-structure J : T (M2

C) ! T (M2
C); naturally

extended from the complexi�ed tangent space T (M4)
RC on the whole T (M2
C); that isrJ = 0 on

the complex Kähler manifoldM2
C: Taking now into account that the related compatible Hermitian

metric g : T (M2
C)�T (M2

C)! C on the Kähler manifoldM2
C satis�es the determining relationship

(3.7) g(X;Y ) := !(X; JY );

as well as the Levi-Civita connection r - invariance

(3.8) Kg(X;Y ) = g(rKX;Y ) + g(X;rKY )

for any vector �elds X;Y 2 �(T (M2
C)) along the vector �eld K 2 �(T (M2

C)) onM
2
C one can derive

by means of easy, yet slightly cumbersome calculations, the following identity:

(3.9) (LK!)(X; JY ) = g((rK � LK)X;Y ) + g(X; (rK + JLKJ)Y ):
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The expression (3.9), considered jointly with (3.7), gives rise to the deformed metric gK :
T (M2

C)� T (M2
C)! C on the Kähler manifold M2

C; de�ned by means of the expression

(3.10) gK(X;Y ) := g(X;Y ) + (LK!)(X;Y );

which should be for all Y = X 2 �(T (M2
C)) positive de�nite, imposing suitable constraints on

the vector �eld K 2 �(T (M2
C)) on M

2
C:

To specify this metric positivity constraint on the vector �eld K 2 �(T (M2
C)); satisfying

the additional quadratic relationship (3.6), we need, preliminarily, to construct the related
Levi-Civita connection dA : �(T (M2

C))! �(T �(M2
C)
 T (M2

C)) ' �(End( T (M2
C))) on sections of

�(T (M2
C)) :

(3.11) dAX := dX +A(1)X;
where A(1) 2 �(End(T (M2

C)))
�1(M2
C) is the corresponding connection matrix, which is compat-

ible with the constructed above Fubini-Study metric (2.6). Since the latter is representable on
sections X;Y 2 �(T (M2

C)) as

(3.12) g(X;Y ) = hhXjY i;
where the Hermitian matrix h 2 End(T (M2

C)) satis�es the following di¤erential relationship:

(3.13) dh = hA(1) + �A(1)|h;
its solution provides the related curvature matrix two-form

(3.14) 
A = dA(1) +A(1) ^ A(1);
whose matrix trace

(3.15) !A :=
i

2
tr 
A

is a priori closed and belongs to the Chern class, that is !A 2 c1(M
2
C): Moreover, the following

proposition holds.

Proposition 3.3. The closed two-form !A 2 �2(M2
C) proves to be nondegenerate and de�nes an

equivalent to ! 2 c1(M2
C) fundamental two-form, generating a compatible Hermitian metric on the

Kähler manifold M2
C:

Return now to the deformed metric gK : T (M2
C) � T (M2

C) ! C on the Kähler manifold M2
C;

de�ned by the expression (3.10) and depending on the covariant derivative rK : T (M2
C)! T (M2

C);
whose action on X 2 �(T (M2

C)) can be now rewritten as

(3.16) rK(X) = iKdX + (iKA(1))X:
Taking into account (3.16), we obtain the following linear mappings

rK � LK + I=2 = K� + iKA(1) + I=2;(3.17)

rK + JLKJ + I=2 = �JK�J + 2iKA(1) + J(iKA(1))J + I=2;

entering the deformed metric (3.10), where we made use of the following covariant and Lie deriv-
atives

(3.18) rKJ = J�K + [J; iKA(1)]; LKJ = J�K + [J;K�];

respectively, and denoted by dash "0" the corresponding tangent mapping, making the following
tangent vector bundle diagrams

(3.19)
T (M2

C)
K�! T (T (M2

C))
# #
M2
C

K! T (M2
C)

;
T (M2

C)
J�! T (End(T (M2

C)))
# #
M2
C

J! End(T (M2
C))

commutative. Whence, the deformed metric (3.10) �nally reduces to the following bilinear sym-
metric expression

gK(X;Y ) := g((K� + iKA(1) + I=2)X; JY )+(3.20)

+ g(X; (�JK�J + 2iKA(1) + J(iKA(1))J + I=2)Y )

on the product T (M2
C)�T (M2

C): The obtained result we can formulate as the following preliminary
theorem.
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Theorem 3.4. The deformed metric (3.10) is correctly de�ned on the complex Kähler manifoldM2
C

as a bilinear symmetric form (3.11) on the product T (M2
C)� T (M2

C); whose positive de�niteness
depends uniquely on a choice of the vector �eld K :M2

C ! T (M2
C):

A detail Hermitian analysis and application of the deformed metric expression (3.20) to solving
the Monge�Ampère type equation (1.4) is postponed for another work under preparation.

4. Conclusion

We analyzed the cohomology structure of the fundamental two-form deformation related with a
modi�ed Monge�Ampère type on the complex Kähler manifold P2(C): Based on the Levi-Civita
connection jointly with the related vector �eld deformation of the fundamental two-form there is
constructed a hierarchy of bilinear symmetric forms on the tangent bundle to the Kähler manifold
P2(C); generating on it Hermitian metric and suitable solutions to the studied Monge�Ampère
type equation. There is also generalized the classical fundamental two-form construction on the
complex Kähler manifold P2(C); its relation to the Hermitian metric deformations is discussed.
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