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ABSTRACT Performance interference can occur when various services are executed over the same physical
infrastructure in a cloud system. This can lead to performance degradation compared to the execution of
services in isolation. This work proposes a Confirmatory Factor Analysis (CFA)-based model to estimate
performance interference across containers, caused by the use of CPU,memory and IO across a number of co-
hosted applications. The approach provides resource characterization through human comprehensible indices
expressed as time series, so the interference in the entire execution lifetime of a service can be analyzed. Our
experiments, based on the combination of real services with different profiles executed in Docker containers,
suggest that our model can accurately predict the overall execution time, for different service combinations.
The approach can be used by a service designer to identify phases, during the execution life-cycle of a service,
that are likely to lead to a greater degree of interference, and to ensure that only complementary services
are hosted on the same physical machine. Interference-awareness of this kind will enable more intelligent
resource management and scheduling for cloud systems, and may be used to dynamically modify scheduling
decisions.

INDEX TERMS Modeling and prediction, containers, resource contention, performance.

I. INTRODUCTION
Cloud computing has enabled the dynamic allocation of
computational resources to support service execution by
using resource abstractions such as Virtual Machines (VMs)
and containers to deploy services. Container abstraction
and mechanisms (e.g. Docker and Kubernetes) provide a
low-overhead approach by providing a computational unit
for executing an application within an isolated environment,
and by reducing the start-up and termination times [1] of
containers during resource provisioning, as well as physical
resource usage, compared to VMs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

Container and VMs have been viewed as complementary
virtualization techniques that solve different problems [2].
While containers have been used as tools for the deploy-
ment of software with a Platform-as-a-Service (IaaS) focus,
VMs have been considered the main hardware allocation
and management tools with a focus on providing an IaaS.
Initially, container technologies were adopted by enterprises
to create homogeneous infrastructures over heterogeneous
cloud computing solutions. In addition, the use of containers
alleviates the problem of being locked into a cloud plat-
form, due to lack of portability and interoperability between
them [3], [4]. However, containers provisioned inside the
VMs can exhibit performance degradation and unpredictable
effects [5]. As companies seek better efficiency and lower
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cost in cloud deployments, they are increasingly interested
in containers running on bare metal, instead of on VMs.

According to a recent IDC survey [6], 50 percent of the
container workloads, in the enterprise market, are on premise
infrastructure versus the public cloud. The same percentage
share of workloads can be seen in local containers, on bare
metal, as an alternative to virtual machines. This situation
has fostered a new and growing market niche for running
containers on bare metal servers (for instance, Equinix Metal
and IBM Bare Metal Kubernetes) that is not sufficiently
covered by large cloud service providers (although Amazon
already offers some bare metal instances). The appearance
of these new competitive cloud providers, and the interest of
important cloud clients (Netflix), highlights the fact that most
important commercial cloud platforms (Google, Amazon,
or Alibaba) do not support built-in mechanisms to detect
interference and mitigate its impact [7].

A comparative study by Sharma et al. [8] showed that
containers running on bare metal exhibit better performance
than VMs, but they can suffer from performance interference
because they share the underlying OS kernel and, at least,
some of the hardware resources (such as L3 cache). Multiple
services executed on the same physical machine can lead to
resource contention. When two or more services or tasks are
executed over the same physical resource, performance inter-
ference can occur, leading to performance degradation com-
pared to the execution of each service in isolation (i.e. on a
dedicated resource). Various scheduling strategies [9], [10]
attempt to avoid the co-existence of tasks that interfere with
one another on the same physical resource. In Paragon [10]
an interference-aware scheduler is proposed, which classi-
fies a task based on how much interference it will cause to
co-scheduled applications and how much interference it can
tolerate for multiple shared resources. The main assumption
of Paragon is that interference remains constant over the
entire execution lifetime of a service.

In this study, we propose an innovative model of indices
to estimate performance interference among containers, that
host services running on bare metal, with the following
features: (i) consideration is made for CPU, memory and
I/O usage variation during execution (especially for long
running services), and therefore an observation that per-
formance interference is time dependent; (ii) recording of
human-comprehensible indices for expressing resource usage
during service execution. These indices are expressed as a
time series that can be analyzed; (iii) Confirmatory Factor
Analysis (CFA) [11] is used to identify how performance
interference is affected by the aforementioned indices and
service profiles. The modeling approach of multiple linear
regression is subsequently used in combination with CFA to
quantify the performance interference of co-scheduled ser-
vices; (iv) the indices are general purpose, and can be used,
with low overhead, by a scheduler to prioritize services that
cause more/ less interference, and to limit interference on
physical resources. The target platforms of our approach are
bare metal providers, private clouds, public clouds and host

machines, with support of processor performance counters.
In addition, any long-running applications/services, sharing
intense use of the same specific resources, are good candi-
dates to improve their performance with our solution.

We validated our approach by conducting experiments
using a set of applications: POV-Ray, IOzone, Stream, Metis,
bzip2, pbzip2,Montage, blastn and blastx. Thesewere chosen
based on their different and relevant patterns of resource
usage. Three of them, povray, iozone and stream, are used
as primary benchmarking applications to estimate the inter-
ference between other applications. The experiments were
executed using the Docker container framework, showing
that the model can be successfully used to estimate perfor-
mance interference and overall service execution time. The
rest of this paper is organized as follows: Related work is
discussed in Section II. In Section III, we define the concept
of performance interference and analyze the factors that can
exacerbate it. In Section IV, we describe the use of Confir-
matory Factor Analysis (CFA) and how it can be applied in
the context outlined in this study. Indices for characterizing
our interference model are described in Section V, and exper-
imental validation is carried out in Section VII. Based on
the results in section VIII, we analyze how the methodology
can be refined. Finally, the conclusions and future work are
presented in Section IX.

II. RELATED WORK
Container virtualization performance and a comparison with
VM virtualization have been addressed in many studies, for
instance [12]. These studies analyzed several performance
metrics for different deployment configurations and work-
loads. In general, the proposed metrics are related to CPU,
memory and storage performance and they describe how
isolation between VMs and containers is different.

The problem of performance isolation, but not security iso-
lation, is similar to interference. This problem has been stud-
ied in the context of cloud computing [13]. However, in [13],
the focus was on multi-tenant applications without any con-
sideration of the infrastructure on which such applications
were deployed, and the results in this work were obtained
by simulation. Prior studies have focused on the interference
of VMs residing on the same physical host, particularly for
cache memory and memory bandwidth resources [14], [15].
The majority of these studies use the Last Level Cache (LLC)
counter to analyze memory behavior. The other resources
analyzed are the I/O file system [16] and the communication
network [17].

Performance interference, which arises when multiple
VMs compete for shared physical machine, has a nega-
tive impact on the quality of service perceived by the end
user. Commercial cloud platforms use intelligent sched-
ulers, live migration, or server reconfigurations [18] to solve
this problem. These techniques are useful for infrastructure
providers but not for end consumer. Clients must develop
their own mechanisms to ensure the Quality of Service [19].
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The characterization of applications is usually performed,
by assigning weights to denote the importance of the CPU
or memory, in predicting interference [20], [21], [22], [23].
In the case of network-intensive services, interference can
also be quantified by monitoring network utilization [24].
These measures can be used [7] to ensure that the response
time target of a specified end user is met in this context.

In addition, performance degradation has been detected
in VM virtualization owing to vCPU scheduling issues [25]
that container virtualization cannot experience, because con-
tainers do not manage vCPUs. In [26], the performance
isolation of VMs on the same physical host was analyzed
and the authors provided performance estimations based on
the similarity between applications. In [27], a technique
called Bubble-Up was used to estimate the execution time
under contingency conditions in VM clusters. In this study,
each application is modeled as a sensitivity profile, which
is normalized to a single score, called the bubble score.
Additionally, Hubbub-Scale [28] calculates an interference
index based on the value of the degradation. In ROSA [29],
an unceRtainty-aware Online Scheduling Algorithm has been
proposed, to schedule dynamic and multiple workflows with
deadlines, to reduce the interference from uncertain task
start/execution/finish time, as well as the uncertain data
transfer time among tasks or the sudden arrival of new
workflows.

Other studies have focused on understanding the interfer-
ence with physical servers. In Paragon [10], a collaborative
filtering algorithm was used to determine the influence of
several ‘‘Sources of Interference’’ in applications running on
exclusive servers on Amazon EC2 and servers on a private
cluster. Using this information, the scheduler attempts to
choose the optimal machine for an application. Unlike our
work, this technique considers that container interference
remains constant for the entire execution, which might lead to
non-optimal decisions for the scheduling algorithm. In addi-
tion, this study assumes that the host machines in the cluster
are heterogeneous, and no meaningful metric can be found,
such as our interference profiles. The machine-learning mod-
els, explained in this work, provide several variables that
do not have a direct correspondence with physical observed
variables, which can make it difficult to analyze the model
and use it to reason for different situations.

Furthermore, the values of our interference profiles, or the
estimated degradation, may be used by the scheduler to give
some priorities, or penalties, for certain hosts. For instance,
in ARQ [30], the concept of the Quality of a Resource
required by an application is introduced. Low values of this
metric correspond to applications that are insensitive to inter-
ference. This metric can be used as a priority parameter for a
scheduler.

It is important to note that interference in cloud environ-
ments can also affect security. Delimitrou and Kozyrakis [31]
proposed a methodology to determine which applications
can be co-scheduled based on the likely security interference
between them.

In a previous work [1], we proposed a Petri Net perfor-
mance model to analyze the overhead of deployment and
termination of containers in Kubernetes, with different con-
figurations of Kubernetes pods, each with different number of
containers. However, the important and complex problem of
resource contention, which arises when several long running
services are executed in containers sharing the same physical
node, had not been addressed. This present study proposes a
new and original approach for this contention problem, in the
context of a broader work on the use of models for resource
management in cloud environments [32].

III. CONTAINERS AND SOURCES OF INTERFERENCE
Containers decouple the execution of a service and its depen-
dencies on the operating system and environment over which
they are deployed. As several containers can be running on
the same physical (or virtual) machine, this can degrade
their performance, for example, when a resource allocated
to one container is not released until the container has fin-
ished executing a task. However, the computational resources
involved in the execution of a container on a physical node are
complex. The interference between containers is measured as
the performance loss caused by the execution of one container
at the same time as another on the same host. This is the dif-
ference between the execution timewhen the container has all
the available computational resources and the execution time
when there are other containers using those resources, thereby
leading to resource contention. In Section VI, we measure
this metric as the ratio between the time an application takes
to execute to a pre-determined set point when scheduled on
its own, compared to when it is co-scheduled with another
application. The following Sources of Interference (SoIs) can
lead to resource contention between containers, each ofwhich
is related to the physical resource(s) hosting the container:

• CPU usage: In most container management systems,
if there is no contention in the use of the CPU, each
container uses the required CPU; otherwise, there is a
scheduling mechanism to share the CPU proportionally.

• Cache Memory and Memory bandwidth: The cache
hierarchy in a node is not isolated between containers;
therefore, a container can continuously fail to access
cache memory because another container is making
aggressive use of the cache.

• Network usage: Access to the network is shared
between all containers on a node, and if there is no con-
tention, a container can use the entire available network
bandwidth.

• I/O file system access: Like the network, the file system
is shared between all containers; additionally, it could
also be a distributed file system that use the network.

We focus on CPU and cache memory usage as they
have the most significant impact on container performance,
and because cache memory is very difficult to isolate in
these environments. However, the analysis of the network
and I/O behavior is straightforward following our proposed
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methodology. Themain difference between these resources is
that their effective analysis requires the measurement of other
low-level events, including support for network synchroniza-
tion between containers. CPU usage by a container can be
easily isolated through a reservation mechanism. However,
our studies show that this technique leads to an increase in
the execution time of the container owing to the overhead
introduced by the reservation mechanism [9], which is twice
the total execution time. An ad-hoc solution is to overbook
the required resources, but such considerations should be at
design and not operational time.

IV. RESEARCH METHOD
Confirmatory Factor Analysis (CFA) [11] is a set of statistical
techniques that identifies how observed, or measured, vari-
ables are affected by a set of factors (or latent variables that
cannot be measured). CFA is a subset of Structural Equation
Modeling (SEM) techniques [33]. In SEM, more sophisti-
cated relationships among variables are allowed, enabling the
construction of hierarchical models to construct composite
indices. We chose CFA because it allows a researcher to
establish a hypothesis, and unlike other factor analysis tech-
niques such as Exploratory Factor Analysis (EFA) [34], the
statistical model confirms or rejects the hypothesized model.
To extract meaningful factors, the solution should be rotated
and an arbitrary cut-off value must be used to determine
which variable influences each factor. On the other hand,
Principal Component Analysis (PCA) [35] only reduces the
observed variables into a set of fewer factors that are (often)
difficult to interpret.

A. CONFIRMATORY FACTOR ANALYSIS
Formally, given a set of p observed variables, X , and a set
of m factors F, we expect Equation 1 to be satisfied. µi is the
intercept for xi, that is, it is the expected value when all factors
are 0, ϵi is the stochastic error and m < p.

xi = µi + λi1F1 + λi2F2 + . . . + λimFm + ϵi (1)

If all observed variables are affected by a single factor, we call
the model a measurement model. Namely,

(∀i ∈ {1, p}, ∃k ∈ {1,m} | λik ̸= 0)

∧(∀j ∈ {1,m}, j ̸= k, λi,j = 0)

We can express Equation 1 in matrix form as in eq. 2.

X =


x1

x2
...

xp

3 =



λ11 0 · · · 0

λ21 0 · · · 0

...
...

. . .
...

0 0 · · · λp−1m

0 0 · · · λpm



F =


F1

F2
...

Fm

µ =


µ1

µ2

...

µp

 ϵ =


ϵ1

ϵ2

...

ϵp


X = 3F+ µ + ϵ (2)

If we suppose that 6 = Cov(X − µ), and we denote the
covariance over the factors by 8, and the covariance over
the error by 9, we can write Equation 2 in covariance form
(Equation 3).

6 = Cov(X − µ) = Cov(3F+ ϵ)

= 3Cov(F)3t
+ Cov(ϵ)

= 383t
+ 9 (3)

To identify themodel, we set the scale of latent factors. Two
methods can be used: (i) fix the loading of the first observed
variable for each factor to 1; or (ii) fix the factor variance
to 1, i.e. ∀i ∈ {1, . . . ,m}, σ (Fi) = 1 – there are different
methods in literature to estimate parameters 3 and 8 [36]:
(a) Maximum Likelihood (ML), (b) robust ML (MLR) and,
(c) Weighted Least Squares (WLS). These methods are avail-
able in a number of statistical frameworks, such as R, STATA
andMPLUS. In this work, we used the Maximum Likelihood
(lavaan package [37]in the R statistical software1).

B. FACTOR SCORES
Several methods can be used to compute the value (fac-
tor score) of latent variables [38]. In this sutdy, we use
regression-based Thurstone or Thompson scores. Once the 3

and8 values are estimated, we can compute the Factor scores
using regression (Equation 4) – matrix B has coefficient
values obtained using regression.

F = BX (4)

In the general formulation of the CFA problem (Equation
1), we can include n sampled values for the p observed
variables (Equations 5 and 6).

x11 − µ1 · · · x1n − µ1

x21 − µ2 · · · x2n − µ2

... · · ·
...

xp1 − µp · · · xpn − µp



=



λ11 0 · · · 0

λ21 0 · · · 0

...
...

. . .
...

0 0 · · · λp−1m

0 0 · · · λpm


×


f11 · · · f1n

f21 · · · f2n
... · · ·

...

fm1 · · · fmn

 (5)

X̂p×n = 3p×mF̂m×n (6)

1https://www.r-project.org/
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We can isolate F in 6 to compute B as follows:

X̂ = 3F̂ H⇒ F̂ = (3t3)−13t X̂

As we want to minimise the error ϵ, from Equation 3,
we get:

6̂ = 383t
H⇒ (3t3)−13t

= 83t 6̂
−1

Combining the previous expressions, we obtain Equation
7, where 8 is the covariance matrix across all Factors, 6 is
the covariance matrix across all observed variables and X̂ is
thematrix with the observed values centred on 0. fij represents
the factor score of Fj for the ith observation.

F̂ = 83t 6̂
−1
X̂

B = 83t 6̂
−1

(7)

V. DEVELOPING INTERFERENCE INDICES
We characterized the behavior of service execution, identi-
fying how different computational resources (cache, CPU,
RAM, etc.) are used, to obtain meaningful indices that can
allow the prediction of interference. Our interference indices
correspond to the factors in our CFA model. To develop
these indices: i) we conducted several experiments to obtain
a dataset that includes different performance metrics that
vary over the execution lifetime of several relevant ser-
vices (subsection V-A); ii) we extracted several variables,
from the measures in this dataset, which are correlated
(Subsection V-B); iii) we carried out a CFA analysis to sum-
marize these variables into four uncorrelated factors, which
represent our proposed interference indices (SubsectionV-C).
Figure 1 illustrates how an application is characterized using
these indices, as explained in more detail in the following
subsections.

A. BUILDING THE DATASET
First, we need to obtain a set of relevant measurements of
resource usage to establish the observed variables for the CFA
model. For this purpose, we chose a set of applications, based
on their different and relevant patterns of resource usage,
whose execution can help to build dataset of the relevant
measurements, from real scenarios:

• POV-Ray v3.7 [39] is a ray tracing application that
generates an image from a scene description. The appli-
cation is multi-threaded and has high CPU requirements.
The input parameters were provided by the default
benchmark.

• IOzone [40] is a file system benchmark utility, and is
executed with the following input parameters iozone -
a -i 0 -i 1 -g 4M. Parameters have been chosen to adjust
the execution time of the generated job. It has high cache
hierarchy requirements with many cache misses.

• Stream [41] is a benchmark for testing the memory
bandwidth of an architecture using a large input data
array. To adjust the execution time of the task, the

following parameters were used:
-DSTREAM_ARRAY_SIZE=100000000 -DNTIMES=100.

• Metis [42] is a set of graph partitioning tools. We use
the gpmetis tool with one iteration and two parti-
tions, utilising the LiveJournal dataset,2 which contains
4847571 nodes and 68993773 vertices.

• Bzip2 and pbzip2 – Bzip2 is an open-source file com-
pression program and pbzip2 is a parallel version of
this utility. The experiment compresses the LiveJournal
dataset 2, which is approximately 1GB.

• Montage is a widely used scientific workflow that
integrates several astronomical images into a single
image mosaic. This task has high computational and
data requirements. We used the Montage toolkit3 with
the provided pleiades example. We consider the entire
pleiades workflow as a single task.

• Blastn and Blastx benchmarks4 are related to the bioin-
formatics domain, involving string comparison between
a target string and a large database of variable sized
string sequences. They consist of several queries (100
for blastn and 24 for blastx) in a database to find biolog-
ical sequences that resemble the original query string.

Additionally, we will use three of them, pov-ray, iozone
and stream, as benchmarking applications to estimate the
interference between applications (see Section VI), because
each of them has a high usage of a specific resource (CPU,
cache hierarchy and memory bandwidth).
The applications were hosted using containers with Docker

platform. We have not used any CPU reservation technique
to avoid the financial cost associated with this technique
and some performance degradation [9]. We executed these
containers and measured these variables at different points in
their execution life-cycle. The objective is to obtain a dataset
that captures the variations of the metrics in time series to
build meaningful indices. We assume that when the applica-
tion is started, all required data or information is available.
Therefore the application does not need to communicate with
other applications for input, and is primarily dependent on
available physical resources.
As described in Section III, in this work we focus on CPU

and cache memory use by applications, as relevant examples
of resources whose use could lead to interference. The dataset
consists of a number of observations of 11 variables that mea-
sure low-level resource usage of these applications executed
inside a container. The metrics were measured with perf
tool [43], which is available in several Linux distributions.
This tool uses Linux performance counters tomeasure several
hardware events. Given an application A and a sampling
period of time sA in seconds, we measure the number of
occurrences (denoted by the # notation) of the following
events:

2https://snap.stanford.edu/data/
soc-LiveJournal1.html

3http://montage.ipac.caltech.edu/
4http://fiehnlab.ucdavis.edu/staff/kind/

collector/benchmark/blast-benchmark
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FIGURE 1. Process to get the interference indices from an application.

• #Cycles: Number of processor cycles executed in sA sec-
onds. This is an indirect measure of CPU usage during
this period.

• Number of Cache-references (#Cr ) and Cache-misses
(#Cm). They indicate the total cache accesses and misses
from the memory hierarchy in T̂ seconds. They reflect
memory usage intensity and access patterns.

• LLC-loads (#LLCl) and LLC-load-misses
(#LLClm). They indicate the number of Last Level Cache
accesses and misses for loading data in sA.

• LLC-stores (#LLCs) and LLC-store-misses
(#LLCsm). They indicate the number of Last Level Cache
accesses and misses for storing data in sA.

• Branch-instructions (#Br ) and Branch-instructions-
misses(#Bm). They measure the number of instruc-
tions that cause the execution of a different instruction
sequence and the number of instructions that cause a
miss in the cache hierarchy.

• Page faults (#fault) measures the number of page faults
when running the application. A page fault arise when
the application attempts to access a virtual memory
address that is not loaded into the physical memory. This
event represents the lowest level of memory that requires
access to the disk I/O.

• Number of executed Instructions (#Inst) counts the
number of instructions executed in sA seconds.

B. VARIABLES FROM THE DATASET
To obtain the measured variables to build the CFA model,
instead of working with the absolute value of the number of
occurrences of events presented in the previous subsection,
we use their relative values as follows:

• Cache-references per instructions (v1),
branch-instructions per instructions (v2), LLC-loads per
instructions (v3), and LLC-stores per instructions (v4).
These variables are obtained by dividing the number of
events by the number of instructions executed over that

period (Equation 8).

v1 =
#Cr
#Inst

v2 =
#Br
#Inst

v3 =
#LLCl
#Inst

v4 =
#LLCs
#Inst

(8)

• Cache-miss rate (v5), branch-miss rate (v6), LLC-load-
miss rate (v7) and LLC-store-miss rate (v8). These vari-
ables are obtained by dividing the number of missed
events by the number of their corresponding non-miss
events executed over that period (Equation 9).

v5 =
#Cm
#Cr

v6 =
#Bm
#Br

v7 =
#LLClm
#LLCl

v8 =
#LLCsm
#LLCs

(9)

• Standardized faults (v9). We consider that this is not rep-
resentative of the number of fault events per instructions
executed. Instead, we standardize the value to avoid
scaling problems in further analysis (Equation 10). The
mean and standard deviation are calculated from the
entire dataset, which captures the level of variability in
the occurrence of these faults over time.

v9 =
#faults− E[#faults]

Var[#faults]
(10)

• CPU usage (v10). This variable identifies the extent to
which a CPU is used. Given the number of cycles exe-
cuted in sA seconds, #Cycles, the number of cores of the
machine, #Cores, and the CPU speed measured in MHz
S, Equation 11 shows how the CPU usage is computed.
The values lie within the [0, 1] interval.

v10 =
#Cycles

sA · S · 106 · #Cores
(11)

We used the vi notation to simplify the index expressions
in the following sections.
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FIGURE 2. 82 –Subfigure (a)–, 83– Subfigure (b)– and 84 – Subfigure (c)– functions. Red line is the cumulative distribution function (cdf) of a
normal distribution with the same mean and standard deviation.

C. INTERFERENCE INDICES
The high correlation between the previous variables avoids
their use as raw values to describe an application and per-
form further analysis. Therefore, to address meaningful and
non correlated indices, we propose a theoretical model that
combines these variables into the following four factors,
expressed as indices:

• I1.CPU usage index: This index models the intensity of
CPU usage of an application.

I1 = v10 (12)

• I2. Memory page fault: This index models the num-
ber of page faults in the system. We analyzed them
in isolation because they have significant impact on
system performance. The observed values exhibited an
exponential distribution. To improve the linearity of I2,
we transform the variable by taking natural logarithms
(Equation 13).

I2 = 82(Î2), where

Î2 = ln(v9 + 1) (13)

• I3. Intensity of memory hierarchy usage index: This
index represents the number of accesses to memory hier-
archy. It is a combination of the cache references –#Cr ,
#LLCl– store references –#LLCs– and branch references
–#Br– (Equation 14).

I3 = 83(Î3), where

Î3 =

i=4∑
i=1

bi(ln(vi) − µi) (14)

• I4. Intensity of cache misses index: This index mea-
sures how frequently (in time and size) the application
misses access to data in the cache hierarchy.

I4 = 84(Î4), where

Î4 =

i=8∑
i=5

bi(ln(vi) − µi) (15)

To avoid linearity problems in further analysis, we took
logarithms for Î2, Î3 and Î4 because they can be analyzed as
ratios [44]. Because of the CFA formulation (Equation 1),
we must center the variable before multiplying by its load;
consequently, we subtract its mean value. It is important to
note that Î2, Î3, Î4 are values with a certain mean and standard
deviation, and follow a non-normal probability distribution
(theoretically, their values belong to the interval (−∞, ∞)).
We can transform these indices into other indices –I2, I3, I4–
through their cumulative distribution function (cdf). The
transformation function 8X is defined as shown in Equa-
tion 16.

8X (x) : x → P(X ≤ x)

(−∞, ∞) → [0, 1] (16)

We can build functions 82, 83, 84 empirically using their
histogram, as shown in Figure 2. The raw indices do not
follow a normal distribution, as denoted by the red line in
Figure 2.
To compute the weight of each variable for I3 and I4,

we performed CFA analysis as explained in Section IV.
We fixed the variance of the latent factors to 1 –σ (Î2) =

σ (Î3) = 1– and the covariance among factors to 0 –
Cov(Î2, Î3) = 0–, thus, the resulting factors are forced to
be orthogonal. The solution and further factor scores are cal-
culated using the Lavaan package [37] on R. The parameter
estimation method used is ML and the regression method is
used to compute the scores.

The resulting 3, 8 and µ matrices are:

3 =



λ11 0
λ21 0
λ31 0
λ41 0
0 λ52
0 λ62
0 λ72
0 λ82


=



2.202 0
0.179 0
2.342 0
2.011 0
0 1.315
0 −0.259
0 1.241
0 1.483


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8 =

(
σ (F1) Cov(F2,F1)

Cov(F1,F2) σ (F2)

)
=

(
1 0

0 1

)

µ =



µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8


=



−6.079

−2.049

−6.448

−8.734

−2.051

−3.796

−2.083

−1.857


Then, we computed the B matrix using Equation 19:

B =

(
1 −0.06 −0.48 −0.04 0 0 0 0
0 0 0 0 1.40 0.05 −0.46 −0.14

)
We can see that the values corresponding to v2, v4 and

v6 are quite low. Hence, they can be excluded from the
analysis. The reason for this behavior is the high correlation
between variables and because we are looking for factors that
are not correlated. The variance in v2 can be explained by
other variables. Some of the observed variables (e.g. v3 and
v4) measure events that might be included in others (e.g,
v1); thus, the scores of the factor remove the commonly
measured elements and the correlation. Consequently these
coefficients should not be interpreted as decreasing the inter-
ference caused by using a certain resource. In a computational
environment, it is difficult to isolate these variables and to
control them for a given application, and an analysis of
the elasticity of the variables in the indices should not be
carried out.

D. CHARACTERIZING RESOURCE USAGE OF
APPLICATIONS OVER TIME WITH INTERFERENCE INDICES
We want to model how the resource usage of an application
changes over time using the four indices presented in the
previous section, as time series. Given a sampling time sA,
to compute the value of I1, I2, I3 and I4 in that interval, we pro-
ceed as shown in Figure 1: i) we execute the containerized
application alone to obtain the raw events; ii) we compute
the ratios of the events; iii) we take logarithms in the Î2 and
Î3 dependent variables; iv) we compute the factor scores for
Î3 and Î4 through Equation 19; and v) we standardize and
transform the variables to a [0, 1] range, using Equation 16.
Steps 2 through 5 are repeated for each set of events measured
with a period of sA seconds.
Figure 3 depicts the profile of pov-ray, iozone and stream

applications. These applications are used in the following
sections as benchmarks to analyze the impact of application
co-scheduling, because they make a high usage of a certain
resource. This situation is modeled by getting a high value on
a certain index. For example, pov-ray –Figure 3a– continu-
ously uses the entire computational capacity of the machine,
therefore I1 is about one for the entire execution. On the other

FIGURE 3. I1, I2, I3 and I4 values for benchmarking applications –(a)
pov-ray, (b) iozone and (c) stream–. The execution time (x-axis) is
normalized.

hand, iozone – Fig3b–makes random accesses to thememory,
hence I4 is about one. Stream application –Figure 3c– is a
benchmark which tries to test the memory bandwidth, so the
highest index is I3.
The behavior of the remaining applications is shown in

Figure 4. We can see that pbzip2 –Figure 4d–, the parallel
implementation of bzip2, makes a high usage of all resources
in the system. When compared with the bzip2 profile (fig-
ure 4c) the usage of extra CPU capacity leads to an increase
in faults in cache, I4 index, while I3 remains constant. Another
interesting application is montage (figure 4b) which consists
of several tasks executed in a pipeline scheme. This situation
causes thememory usage indices, I3 and I4, feature some kind
of pattern in their distribution. Similarly, blastn application
(figure 4e) shows high values for I2.

VI. INTERFERENCE ANALYTICAL MODEL
In this section, we propose a model to estimate the interfer-
ence between containers and, consequently, the total execu-
tion time under contingency situations. Interference is caused
by sharing physical resources that are not isolated at the
container level. To describe an application and its use of
physical resources, we propose an index-based representation
in Section V. We assume that when two applications are
scheduled to be executed on the same machine, and if both
use the same resource heavily, the degradation will be higher.
Additionally, as the indices vary over the execution time, the
interference will not be constant.

We propose a multiple linear regression model to estimate
the interference between containers. Given an application A,
we execute it with three benchmark applications that have a
high usage of a particular resource to obtain reference inter-
ference values. These values allow us to build the regression
model to estimate the interference when application A is
co-scheduled with another application whose resource profile
is known.

The proposed methodology (Figure 5) comprises the
following phases: (i) obtaining the interference pro-
files; (ii) benchmarking the application; (iii) defining
the regression model; and (iv) estimating the inter-
ference. These phases are described in the following
subsections.
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FIGURE 4. I1, I2, I3 and I4 values for some applications –(a) metis,
(b) montage, (c) bzip2, (d) bzip2, (e) blastn and (f) blastx. The execution
time (x-axis) is normalized.

A. PRELIMINARIES
We propose modeling the resource usage of applications as a
set of n sampled values for each interference index – I1, I2,
I3 and I4. Formally, the resource usage of an application A is
a tuple ⟨sA,Y ⟩, where:

• sa is a constant and called the sampling period of A.
• Y is a n×4matrix.We denote yij as an element inY . Each
yij represents the sampled value of the jth interference
index at time i · sA.

Given the previous definition, we can define the interfer-
ence profile function fAi for each index as an interpolation
between the sampled points as follows:

∀i ∈ [1, n], ∀j ∈ [1, 4], fAj(i · sA) = yij

Without loss of generality, we consider a linear interpolation
function comprised of a concatenation of linear interpolants
between each pair of (xi, yi) (Equation 17). Figure 4 depicts
several examples of the profile functions for different appli-
cations.

fAj(x) = yij + (x − (i · sA))
yi+1,j − yij

sA
(17)

Given two applications A and B, we say that they are
co-scheduled if they are executed on the same physical
machine; hence, they are going to share computational
resources. We denote the co-scheduling operator as ⊗. The

result of co-scheduling two applications can be interpreted
as a compound application C . The profile function of C is
a combination of the profile functions of A and B. Our key
focus is to estimate the execution time of C given the profiles
of applications A and B. In our model, A represents an incom-
ing application to the system, and B can model the entire
resource utilization of applications executed on a particular
machine.

We denote by TA the execution time of application A;
and TA⊗B the execution time of application A when is
co-scheduled with application B. If application B is one of
the three benchmarks, we denote TA⊗Bi = TABi , i ∈ [1, 3].
In general, TA⊗B ̸= TB⊗A.

B. PHASE 1: GETTING INTERFERENCE PROFILES
We consider a homogeneous computational cluster on which
an application is scheduled to execute alone in a machine
(this is undertaken for each applications considered in
Section V-A). The interference profile functions are built
using the methodology presented in Section V. An applica-
tion interference profile is the set of the four interference
profile functions. Figure 4 shows several examples of these
application interference profiles. In addition, we obtain the
total execution time when the application is executed with all
available resources, denoted by TA. The sample period of the
profiles is denoted by sA.

C. PHASE 2: BENCHMARKING THE APPLICATION
We execute the application on a machine with different run-
ning benchmarks. In each instance we execute application
Ap with each application Bj (e.g. povray, iozone, stream)
to obtain Tk . Additionally, we split the execution time of
application A in ⌈TA/sA⌉ intervals. The interval bounds are
defined by using the number of instructions observed with
perftool – #Inst variable – in each time ⌈i · sA⌉, i ∈

[0, ⌈TA/sa⌉] of the phase 1. We measure the time that appli-
cation A takes to execute the number of instructions, corre-
sponding to the ith interval in phase 1, when it is co-scheduled
with benchmark Bj. This time is denoted by τi,j, i ∈

[0, ⌈TA/sa⌉] , j ∈ [1, 3]. Note that τ⌈TA/sA⌉,i = TABi . Inter-
ference δi,j can be computed using 18.

∀i ∈ [1, ⌈TA/sA⌉] , j ∈ [1, 3], δi,j =
τi,j − τi−1,j

sA

∀j ∈ [1, 3], δ0,j =
τ0,j

sA
(18)

D. PHASE 3: DEFINING THE REGRESSION MODEL
We can model the interference of an application A when it
is co-scheduled with an application B as a multiple linear
function (Equation 19)

1(fA1, . . . , fA4, fB1, . . . , fB4)

= y = β0 +

4∑
i=1

(βifAi + βi+4fBi) (19)
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FIGURE 5. Methodology to estimate the interference when application A is co-scheduled with application B.

where fA1,fA2,fA3 and fA4 are values from the profile
functions of A (Equation 17) and fB1,fB2,fB3 and fB4
are values from the profile functions of B at the same
time.

With the interference reference values, δij in the previous
step, and the profile functions ofA,B1,B2 andB3, we can esti-
mate the parameters of the model. To improve the accuracy of
the model, we propose building a model for each application.
To accomplish this, we must execute the application at the
same time that each benchmark is executed before building
the model.

As the four indices are normalized to the range [0, 1],
and the interference value is positive, we can include the
following restriction to the regression problem: βi > 0, ∀i ∈

[0, 9]. We use the Non-Negative Least Squares (NNLS)
approach [45]to estimate the regression model under these
assumptions. The use of the NNLS algorithm (using the
nnls implementation in the R package) leads to non-normal
distributed residuals, so their classical interpretation should
be avoided [46].

E. PHASE 4: ESTIMATING THE INTERFERENCE
Once the interference is modeled as a linear function, we can
estimate the interference of application A when co-scheduled
with any other application B whose resource utilisation func-
tions are known. The execution time of applicationAwas split
into ⌈TA/sA⌉ intervals in the second phase. At instant i·sA (the
upper bound of interval i) the interference is denoted by δi,
and we use the hat notation for the estimation δ̂i. Without loss
of generalization, the values within the interval are calculated
using a linear interpolation function. Using Equation 19,
we can compute the interference for each interval by using
the profile function. Given a model1 or equivalently the beta
coefficients in the regression model, the interference for the

interval i can be estimated using 20.

δ̂i = 1(fA1(isA), . . . , fA4(isA), fB1(isA), . . . , fB4(isA))

= β0 + β1fA1(isA) + . . . + β4fA4(isA)

+β5fB1 (isA) + . . . + β8fB4 (isA) (20)

As the indices are functions that depend on the execution
time of the application, namely their domain is [0,TA]; we can
rewrite Equation 20 as seen in Equation 21. To simplify this
process, we compute the values of the function at the upper
bound of each interval.

1(t) = β0 + β1fA1 (t) + . . . + β4fA4 (t)

+β5fB1 (t) + . . . + β8fB4 (t) (21)

The execution time of application A co-scheduled with
applicationB can be computed as the integral of function1(t)
(Equation 22). These can be estimated or measured values.
In Equation 22, we considered that the interference is constant
in each i interval due to sampling. Note that if we do not take
any intermediary sample point –TA = sA– we consider the
interference to be constant, and the overall estimation error is
likely to be higher.

TA⊗B =

∫ TA

0
1(t)dt ≈

n∑
i=1

δ̂isA (22)

This estimation approach can be used to develop a sched-
uler for a container management system.When an application
arrives, the scheduler calculates the interference functions
and selects the best machine to deploy the application. When
new applications arrive, the scheduler knows the profile of
the application scheduled on each machine and can estimate
the machine that leads to the lowest interference and, conse-
quently, to the shortest execution time.
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TABLE 1. Overall interference for applications when they are co-scheduled with benchmarks.

FIGURE 6. Interference values vs. normalize application execution time
(A) –metis (a), montage (b), bzip2 (c), pbzip2 (d), blastn (e) and blastx
(f) –when they are co-scheduled with the benchmarks – B1 is pov-ray,
B2 is iozone and B3 is stream.

VII. EXPERIMENTAL EVALUATION
All experiments were executed on eight homogeneous physi-
cal machines with the same hardware and software configura-
tion. On the hardware side, each machine has an Intel i5-4690
(3,500GHz) CPU with four cores, 32 GB of RAM and 1 TB
hard disk at 7200rpm. On the software side, the configuration
was minimal to not interfere with our experiments. Each
machine has a minimal Ubuntu 16.04 server operating system
with only basic services (ssh and docker services). Docker
(version 18.02.0-ce) ran the applications of the experiments
in containers, and no other application ran on the machine.

Thus, negligible interference was expected on the platform
used for all experiments.

The sampling period (sA) was 5 seconds. Each experi-
ment was run seven times to get a 95% confidence inter-
val that is within 5% of the mean. In total, 515 samples
were obtained from each execution. Each sample had 11 val-
ues corresponding to the 11 basic variables described in
Subsection V-A.

All experiments presented in this paper were run with this
setup.

In this section, we present additional experiments that were
conducted to test the proposedmethodology. First, we present
the results of the benchmarking phase and interference esti-
mation.

A. BENCHMARKING PHASE
Figure 6 depicts the interference of different applications
when they are co-scheduled with the three benchmark
applications. The x-axis shows the execution time of the
application normalized to one and the y-axis represents the
interference as computed in Equation 18. The y-axis scale for
bzip2, blastn and blastx is different to better visualization the
impact of interference in each of these instances. We can see
that metis has a similar behavior to bzip2 because both of
them are applications which make a high usage of memory
bandwidth. In both cases, the highest interference is achieved
when they are co-scheduled with stream, which makes an
aggressive usage of memory bandwidth. Although, metis can
produce some phases, at the beginning and in the end, with
higher CPU and cache misses.

On the other hand, pbzip2 is highly affected by pov-
ray, because both applications use a CPU fully, and by
stream, because of its high memory bandwidth. The Montage
application ()Figure 6b) shows several well-differentiated
phases,with regular high resource usage, mainly cachemisses
observed affected by iozone. Each of these phases corre-
sponds to the task of the montage workflow. The Blastn
and blastx applications are tolerant/resilient to the benchmark
application interference, with low degradation in both cases.

Table 1 shows the overall degradation for the six applica-
tions. It can be interpreted as the mean value of the interfer-
ence shown in Figure 6. As expected, parallel applications
–such as pbzip2– suffer a higher degradation when they
are co-scheduled with B1 than one-core applications. The
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FIGURE 7. Interference values vs. normalized execution time for several co-scheduled applications (A ⊗ B). Blue line shows the measured
values and Red line shows the estimated values with the proposed methodology.

interference caused on the latter by this benchmark is about
5%-7%.

B. EXPLOITING THE MODEL
We measured the interference observed when the previ-
ously chosen applicationswere co-scheduledwith others. The
results are shown in figure 7. The red line, in the results, rep-
resents the value estimated using the proposed methodology.

This figure shows that our prediction model can provide
meaningful estimations (in blue), near the measured temporal
behavior (in red), for applications with distinctive resource
usage. The biggest interference, which can be observe, corre-
sponds to when metis is executed alongside the rest of the
applications, because of the important usage of resources,
mainly memory bandwidth, as shown in figure 6. The esti-
mation of some spikes in the measured interference, could
be calculated if a shorter sampling period was used in the
benchmarking phase, as we analyze in the next section. This

same consideration can be made to some interference spikes
between montage and blastn applications, and some other
combinations and periods, as shown in figure 7. Most often,
the estimations observed in this figure, offers lightly larger
interference values, as a cautious approach. Overall, the esti-
mated and measured interferences followed a similar pattern,
validating our approach.

Table 2 depicts the Mean Error (ME), the Mean Squared
Error (MSE) and the accuracy of estimations (Acc). The
first ones have been calculated using Equations 23 and 24.
Although the regression methodology tries to minimize the
absolute error, Mean Relative Error (MRE) provides a more
useful metric to analyze the accuracy of the model (Equa-
tion 25).

Once we have estimated the interference for each interval,
we compute the execution time (Eq. 22). Table 3 lists the
values. The estimated execution time is computed as the sum
of all the estimated interference, and the residual error ϵ in the
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TABLE 2. Mean Error –ME–, Mean Squared Error –MSE– and Mean Accuracy –Acc– values for the experiment of figure 7.

TABLE 3. Measured and Estimated execution times in seconds –Mea. and Est. rows– for the experiment of Figure 7.

estimation depends on the ME and the sampling parameters,
namely, the number of sampling points n and sampling period
sA. The expression is given by Eq. 26.

ME =
1
n

n∑
i=1

(δi − δ̂i) (23)

MSE =
1
n

n∑
i=1

(δi − δ̂i)2 (24)

Acc = 1−MRE = 1 −
1
n

n∑
i=1

|δi − δ̂i|

δi
(25)

ϵ = TA − T̂A =

n∑
i=1

δisA −

n∑
i=1

δ̂isA

=

n∑
i=1

(δisA − δ̂isA) = nsA
n∑
i=1

(δi − δ̂i)

= n2 · sA ·ME (26)

VIII. REFINING THE MODEL
In this section, we analyze how the methodology can
be refined by considering the experimental results. First,
we evaluated the impact of sampling time on the accuracy
of the estimated execution time. Second, we removed the
benchmarking phase and evaluated a single model for all the
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TABLE 4. Measured and Estimated execution times in seconds when
Metis is co-scheduled with Montage. Two estimated scenarios. In Scenario
1, the sampling period of Phases 1 and 3 is always 5 seconds, and Phase
4 applies the different sampling periods defined in the sA column in
seconds. In Scenario 2, sA is the same for all phases and corresponds to
the values in its column. n is the number of sampling intervals.

arriving applications. Finally, we discuss how our method-
ology can be exploited by the scheduler of the container
management system.

A. SAMPLING TIME
In our model, we consider that performance losses are not
constant during the execution time of an application. The
accuracy of these values depends on the sampling time and
interpolation function. In the previous sections, we consid-
ered a sampling period of 5 seconds for all applications.

However, if we consider the experiment with Metis and
Montage, metis ⊗ Montage, we can compute the accuracy
of the estimated execution time for a given sample period.
In table 4, we can observe the results of the two scenarios
of execution of the experiment. On the one hand, Scenario 1
computed all the profiles (phases 1 and 3) with a 5 seconds
of sample period (sA), but the overall interference (phase 4)
was executed with the different values of the sample period
defined in column sA. On the other hand, Scenario 2 applies
the values in column sA to all phases, thus, each sample
value is applied, either for the profiling phases or the overall
interference phase.

For simplicity, we assumed that the sampling period is
constant in all phases of the methodology; however, we can
use one sampling period to compute the profiles and an
another one to compute the overall interference (Scenario 1 in
Table 4) and the execution time (Scenario 2 in Table 4).
We observe that the accuracy of the estimation increases as

the number of sampling period increases in Scenario 1. The
reason for this behavior is straightforward. As we increase
the number of intervals, the size of those intervals decreases,
thus, the error estimation also decreases. For Scenario 2, the
behavior was quite similar. We reduced the number of points
to interpolate the interference profile of the applications,
consequently, the estimation was less fine-grained.

The experimental results lead us to conclude that the sam-
pling period should be adjusted depending on the granular-
ity needed for the estimations and the expected accuracy.
Namely, if we have a scheduler that tries to fill the gaps of
low expected interference values in the execution of long
applications with smaller applications, the granularity can
determine the size of these gaps and the sampling period.

B. SINGLE MODEL
In our methodology, we built a model for each incoming
application to make estimations. This model allows us to
wait for the execution time of the application when it is
co-scheduled with the three benchmarks. This is easily par-
allelisable, and the waiting time of the benchmarking phase,
Tbench is given by Equation 27.

Tbench = max i=3
i=1

{
TBi
}

(27)

This time can be negligible if we consider scenarios in which
many similar applications arrive at the system to be pro-
cessed, as occurs in a lambda function processing architec-
ture. However, we can analyze what happens when we build
a single model using the values of all experiments and when
we use that model to estimate the execution time.

For example, we can consider a single model that includes
the interference values of metis, bzip2, pbzip2 and blastn
applications when they are co-scheduledwith the benchmark-
ing applications. We excluded montage and blastx applica-
tions to analyze the accuracy of the model when an applica-
tion that did not include arrives. Results are shown in Table 5.
Note that the accuracy value –Acc– is the mean value of the
accuracy of all estimations for that experiment (see Equation
25) and, not the accuracy of the total estimated time. The
overall accuracy was approximately 0.78. This value includes
the estimation of co-scheduling all applications with montage
and blastx, and the montage ⊗ blastx experiment in which
both applications are not in the model.

These results show that the proposed single model captures
the variability of the variables quite well and can be used as
an upper bound of the real value. Additionally, it seems that
applications that are not included in the model do not exhibit
worse behavior than those that are included. These results
lead us to conclude that the benchmarking phase improves
the overall accuracy of the model at the expense of waiting
for the benchmarking time. Thus, the single model can be
used if an estimation of the upper bound is required and/or
if its accuracy is high enough.

C. EXPLOITING THE MODEL
In the previous sections, we focused on estimating the effects
of the interference between containers. We have defined
the co-scheduling operator ⊗ and we have calculated the
execution time. These values are useful for the scheduler
to determine the optimal host for deploying the container.
Several scheduling techniques (e.g. the use of priority queues)
can be used to improve the performance of executed applica-
tions. However, with our methodology, the scheduler can also
determine when the best time to launch the application is.

We can define the co-scheduling operator with a delay
⊗
k . A ⊗

k B denotes that application A is co-scheduled with
application B; however, A is delayed until B reaches the k
interval. This approach can be useful for executing short
applications when long execution applications are in a low
resource-usage period. The scheduler can choose themachine
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TABLE 5. Measured and Estimated execution times in seconds –Mea. and Est. rows– and Accuracy –Acc– with a single model which includes metis,
bzip2, pbzip2, blastn applications.

and delay that are optimal tominimize the interference caused
by the applications in the cluster.

In addition, interference profiles can be useful for ana-
lyzing the behavior of applications. For example, they can
be used to give penalties, or rewards, to those applications
that interfere more, or less, with the remaining containers.
Although several resources are difficult to isolate, our model
can analyze the impact of setting up limits for resources
that can be isolated (e.g., CPU, I/O disk, or network usage).
In this regard, several container management systems such as
Kubernetes allows bounds to be set for the CPU used by a
container.

IX. CONCLUSION
Co-located container hosted applications can suffer from per-
formance interference, particularly if such applications have
similar resource requirements over their execution lifetime.
This interference is caused by contention across different
low-level resources, such as CPU, cache and memory hier-
archy (leading to page faults), which can be difficult to char-
acterize fully.We proposed a performance interferencemodel
to predict the performance degradation of co-scheduled appli-
cations hosted in containers. The model considers that an
application makes use of the CPU, memory, and I/O and
these requirements can vary over the execution lifetime of the
container (and the application it hosts). Using Confirmatory
Factor Analysis (CFA), we identified a set of high-level,
human-comprehensible analytical indices that characterize
how a service uses the physical resources of a machine. These
indices are expressed as time series, so that we can analyze
how they interfere across the execution lifetime of an appli-

cation, instead of considering them as a constant parameter
that is only measured once. We subsequently use a multiple
linear regression model to estimate how much a service is
going to be degraded for co-scheduling with others. Our
experiments were conducted using Docker containers with a
number of real applications of varying needs. Experiments
suggest that for different service combinations, our model
provides an improved representation of their performance
variability to make accurate estimations of overall execution
time. Thus, the proposed interference model can be used to
decrease executions costs of applications and improve their
performance and overall resources usage in dynamic Cloud
infrastructures. Moreover, these indices can be used with a
low overhead in future scheduling proposals.

The proposed approach can also be used as the basis for
developing interference-tolerant applications. An application
could dynamically adapt its behavior if it noticed meaningful
interference from other co-hosted applications. Interference-
awareness of this kind can subsequently be used to guarantee
minimal performance targets for applications.

In future work, the use of the four interference indices pro-
posed in this study will be explored as a criterion to improve
the scheduling of distributed jobs, services, or applications
across resources within a cloud environment. Moreover, addi-
tional resources will be considered, such as GPU, network
usage and I/O file system access.
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