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The role of additive and diffusive 
coupling on the dynamics of neural 
populations
Marinho A. Lopes 1*, Khalid Hamandi 1,2, Jiaxiang Zhang 1,3 & Jennifer L. Creaser 4

Dynamical models consisting of networks of neural masses commonly assume that the interactions 
between neural populations are via additive or diffusive coupling. When using the additive coupling, a 
population’s activity is affected by the sum of the activities of neighbouring populations. In contrast, 
when using the diffusive coupling a neural population is affected by the sum of the differences 
between its activity and the activity of its neighbours. These two coupling functions have been used 
interchangeably for similar applications. In this study, we show that the choice of coupling can lead 
to strikingly different brain network dynamics. We focus on a phenomenological model of seizure 
transitions that has been used both with additive and diffusive coupling in the literature. We consider 
small networks with two and three nodes, as well as large random and scale-free networks with 64 
nodes. We further assess resting-state functional networks inferred from magnetoencephalography 
(MEG) from people with juvenile myoclonic epilepsy (JME) and healthy controls. To characterize the 
seizure dynamics on these networks, we use the escape time, the brain network ictogenicity (BNI) and 
the node ictogenicity (NI), which are measures of the network’s global and local ability to generate 
seizure activity. Our main result is that the level of ictogenicity of a network is strongly dependent 
on the coupling function. Overall, we show that networks with additive coupling have a higher 
propensity to generate seizures than those with diffusive coupling. We find that people with JME have 
higher additive BNI than controls, which is the hypothesized BNI deviation between groups, while 
the diffusive BNI provides opposite results. Moreover, we find that the nodes that are more likely to 
drive seizures in the additive coupling case are more likely to prevent seizures in the diffusive coupling 
case, and that these features correlate to the node’s number of connections. Consequently, previous 
results in the literature involving such models to interrogate functional or structural brain networks 
could be highly dependent on the choice of coupling. Our results on the MEG functional networks and 
evidence from the literature suggest that the additive coupling may be a better modeling choice than 
the diffusive coupling, at least for BNI and NI studies. Thus, we highlight the need to motivate and 
validate the choice of coupling in future studies involving network models of brain activity.

Modelling large-scale brain activity is key to better understanding macroscopic brain  dynamics1. Merging such 
models and experimental data enables posing and testing hypotheses about brain function and  dysfunction1,2. 
There are two main classes of large-scale brain dynamic models, neural field models and brain network models 
(BNM)1. Neural field models treat the cortex as a continuous medium, whereas BNMs discretise the cortex into 
nodes. A node may typically represent a local population of excitatory and inhibitory neurons, whose activity 
may be modelled using a neural mass model such as the Wilson-Cowan  model3. An ensemble of such coupled 
nodes is a BNM. The BNMs are particularly suited to study the role of brain network connectivity in shaping 
healthy and pathological dynamics as they can readily incorporate a brain connectome into a brain dynamics 
modelling  framework4. For example, Hansen et al.5 used a BNM and structural brain connectivity to simulate 
functional connectivity dynamics. Goodfellow et al.6 used a BNM and functional connectivity derived from 
intracranial electroencephalography (EEG) to simulate and predict the outcome of epilepsy surgery. Demirtaş 
et al.7 used a BNM to investigate the mechanisms responsible for connectivity changes in Alzheimer’s disease. 
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Given the potential of BNMs to bring mechanistic understanding into the field of network neuroscience, it is 
important to be aware of its assumptions and choices.

BNMs may differ with regards to three main choices. First is the connectivity structure or network topol-
ogy. BNMs may be used to investigate different types of networks, namely structural  networks8, or functional 
 networks6, which are inferred from different data modalities. Second is the choice of model to be employed to 
simulate the node dynamics. There is a wide range of model choices from biophysically realistic to purely phe-
nomenological. For example, the Wendling  model6,9 (a biophysical model), the Epileptor  model10 and the the 
subcritical Hopf bifurcation  model11 (two phenomenological models) have all been used within the context of 
modelling brain dynamics in epilepsy. Third is the interaction between nodes, which may be coupled with each 
other in a variety of ways. We identify two common coupling functions: additive coupling and diffusive coupling. 
For additive coupling the input to a node is a function of the sum of the activities of its neighbours. In contrast, 
for diffusive coupling the input to a node is a function of the sum of the differences between its activity and the 
activities of its neighbours. From a biophysical perspective, the additive coupling may be chosen when node 
activities represent currents, whereas the diffusive coupling may be appropriate if node activities represent elec-
trical potentials. Even though these coupling definitions are different, they have been used for similar purposes 
in the literature. For example, in the epilepsy literature, the additive coupling has been used in studies to dis-
tinguish functional networks from healthy people and people with  epilepsy12, to simulate epilepsy  surgery6,13,14, 
and to model seizure  propagation15. On the other hand, the diffusive coupling has also been used in studies to 
differentiate controls from people with  epilepsy11, to investigate epilepsy  surgery10,16,17, and to understand pat-
terns of seizure  emergence18.

Although the additive and diffusive coupling frameworks have been used for such similar purposes, there has 
been no systematic assessment of the potential impact of this modelling choice on the resulting network dynamics 
and subsequent predictions. In this paper, we investigate whether this choice has an impact on network dynamics 
and model predictions in the context of epilepsy research. To this end, we focus on a phenomenological bi-stable 
model of seizure transitions that has been used with both additive and diffusive coupling in the  literature11,12. 
We test whether the additive and diffusive couplings lead to similar observations of the transient dynamics and 
predictions of seizure likelihood. Specifically, we use three salient measures, namely, escape  times11,19, brain 
node ictogenicity (BNI)6,12, and node ictogenicity (NI)6,14. The escape time quantifies the average time taken to 
transit from a resting state to a seizure state; the BNI measures the likelihood of a network to generate seizures; 
and the NI quantifies the contribution of single nodes to the network’s seizure propensity. We first apply all three 
measures to quantify the behaviour of artificial networks consisting of two, three and 64 nodes with additive 
and diffusive coupling. We then test whether the two couplings provide similar results in terms of BNI when 
applied to functional brain networks inferred from resting-state magnetoencephalography (MEG) with the aim 
of distinguishing individuals with juvenile myoclonic epilepsy (JME) and healthy controls. Concordant results 
in terms of escape time, BNI and NI between models using additive and diffusive coupling would imply that the 
choice of coupling is inconsequential with little impact on the predictions relevant to epilepsy; whereas discord-
ant results would ask for careful consideration when choosing the coupling.

Methods
Phenomenological model of seizure transitions. To assess seizure-like dynamics with a BNM using 
both additive and diffusive coupling, we consider a commonly used phenomenological model of seizure transi-
tions that is based on the normal form of the subcritical Hopf  bifurcation11–13,16,17,19. In this model, each network 
node can be represented by a noisy bi-stable oscillator, where a stable fixed point coexists with a stable limit 
cycle. Fluctuations around the fixed point represent resting dynamics, whereas large oscillations around the limit 
cycle correspond to seizure dynamics. Transitions between the two states are driven by noise and the influence 
of other nodes in the network.

The network dynamics is described by the following system of stochastic differential equations:

where zk(t) is a complex variable that describes the dynamics of node k ( k = 1, 2, . . . ,N , and N is the number 
of nodes). The function f(z) that defines the activity of a single node is,

The parameter ν controls the stability of the node and ω defines the frequency of the oscillations that the node 
may display depending on ν . At ν < 0 , the origin is an unstable fixed point and the node oscillates around a 
stable limit cycle. At ν = 0 , the unstable point becomes stable in a subcritical Hopf bifurcation. For 0 < ν < 1 , 
the node is bi-stable with a stable fixed point at the origin and a stable limit cycle separated by an unstable limit 
cycle. At ν = 1 , the stable and unstable limit cycles meet each other in a saddle-node bifurcation. Each node 
has an independent (identically distributed) complex white noise process Wk(t) ∈ C , the strength of which is 
governed by the noise amplitude α > 0 . In this paper, we use ν = 0.2 , α = 0.05 and ω = 20 in line with previous 
studies 11,17,19,20 except where stated otherwise. We would expect qualitatively similar results for different values 
of these parameters if the relationship ν � 2α given in 19 is satisfied.

The interaction between nodes is determined by the adjacency matrix Ajk and the coupling function g(zk , zj) . 
Here we use three coupling functions:

(1)dzk(t) =



f (zk)+
1

N

�

j�=k

Ajkg(zk, zj)



dt + α dWk(t),

(2)f (z) = (−ν + iω)z + 2z|z|2 − z|z|4.
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corresponding to diffusive coupling (3), additive coupling (4), and a combination of the two which we will call 
‘mixed’ coupling (5). The parameter β scales the diffusive coupling, whereas γ scales the additive coupling. The 
larger these parameters are, the larger can be the impact of the dynamics of one node on another. Note that if 
β = 0 , then gm(zk , zj) = ga(zk , zj) = γ zj , whereas if γ = 0 , then gm(zk , zj) = gd(zk , zj) = β(zj − zk) . The dif-
fusive coupling was used for example by Benjamin et al.11, Terry et al.21, Hebbink et al.16, Creaser et al.18,19, and 
Junges et al.17. The additive coupling was used for example by Petkov et al.12, Sinha et al.13, and Junges et al.20. To 
the best of our knowledge, the mixed coupling has never been considered.

To aid our understanding of the model, we note the relationship between the coupling function and node 
degree. The mixed coupling function (5) can be rewritten as

where dk is the in-degree of node k. For simplicity of interpretation, we can assume that zk(t) is a positive variable, 
such as the amplitude of oscillations (or as the node output in the theta  model14 described in the supplementary 
material). Also, we consider only β and γ positive. With this set up, the first term in (6) promotes the increase 
of activity zk , whereas the second term may only suppress it. Therefore, with these assumptions, the additive 
coupling promotes an increased node activity, whereas the diffusive coupling may both promote or suppress 
activity depending on node activities and network structure.

Substituting (6) into (1) gives

This shows that activity suppression is node dependent, being proportional to a node’s own activity and number 
of in-connections. This effect will lead to very different node behaviour in networks where the in-degree is highly 
heterogeneous between nodes.

The difference between additive and diffusive coupling is particularly distinct in all-to-all networks ( Ajk = 1 
for all j  = k ). In these networks, all nodes are topologically equivalent with in-degree dk = (N − 1) , and if the 
network is sufficiently large, then their activity is on average the same. As a consequence, before any node escapes 
to the oscillatory state, the diffusive term, β

∑

j  =k Ajk(zj − zk) , is approximately zero. In contrast, the additive 
term, γ

∑

j  =k Ajkzj is approximately equal to γ (N − 1)zk . This suggests that the diffusive coupling tends to have 
a weak influence on the dynamics of resting well-connected networks, whereas the additive coupling term tends 
to be stronger as the number of connections increase.

Quantifiers of seizure transitions. To quantify and compare the effect of the three coupling functions 
on the behaviour of the BNM we use the following measures based on escape time theory. Escape times have 
previously been used to classify the behaviour of motif networks of this BNM with diffusive  coupling11,18,19. To 
compare the effect of the three different coupling functions on the dynamics we compute escape times for the 
two node bidirectionally coupled system. We also perform a bifurcation analysis of this two-node system in the 
coupling parameters. To quantify differences in escape times between motif and larger networks we compute the 
brain network ictogenicity (BNI). The BNI is computed using escape times and has been shown to be suitable 
for comparing the propensity of different networks to generate seizure dynamics (ictogenicity) 6,12,14,20. Finally, 
we compute the node ictogenicity, a quantity that assesses the contribution of each node to the network’s icto-
genicity 6,14,20.

Escape time. We will first characterise the transition to seizure dynamics in two coupled nodes. To this end, we 
consider the mean time taken for nodes to transition from the stable fixed point to the stable oscillatory seizure 
state. For one node, we define the escape time � as the moment t at which the amplitude of its activity z crosses a 
given threshold. This escape threshold is usually chosen to be the unstable point (or gate) between stable states. 
The initial condition of all nodes is the resting state, here the fixed point at the origin. We only consider transi-
tions from the resting state to the oscillatory seizure state, as for our chosen parameter values the oscillatory 
stable state is much more strongly attracting than the fixed point, and so transitions back again to the resting 
state happen on a much longer timescale. The escape time � is a random variable and so we define the mean 

(3)gd(zk , zj) = β(zj − zk),

(4)ga(zk , zj) = γ zj ,

(5)gm(zk , zj) = β(zj − zk)+ γ zj ,

(6)

∑
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∑
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∑
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escape time as T = E[�] . The mean escape time of a single node (1) for k = 1 has been fully characterised using 
Eyring–Kramers’ escape time theory in 11,19.

For two coupled nodes we define the first escape time as the time the first node transitions to the oscillatory 
state, which can be either node. The second escape time is then the time that it takes the other node to transition 
after the first one has escaped. As before these are random variables and so we can define the mean first escape 
time and mean second escape time; here we will refer to these means as the first escape and second escape. The 
first and second escape times in a two node system with diffusive coupling were characterised in 19. Here, we will 
extend this work to compare the effect of all three coupling functions on the escape times.

We numerically compute the mean escape times for two bidirectionally coupled nodes with each of the 
three coupling functions using custom code written in MATLAB. For each coupling strength we compute 1000 
simulations of the two node model using the stochastic Euler-Maruyama method with step size h = 10−3 and 
initial conditions zk(0) = 0 . To leading order the escape times do not depend on the choice of escape threshold 
provided it lies beyond the unstable limit cycles, and in the following we fix it to be a node amplitude of 0.5 in 
line  with11,19. For each simulation we identify the first and second escape time, then take the means over the 1000 
simulations. The escape times do not depend on ω and so we set this to zero in our simulations.

Bifurcation analysis. We identify qualitatively different regimes of escape time behaviour using bifurcation 
analysis. We consider here only the symmetrically coupled case (bi-directional coupling) for which we can con-
sider the amplitude dynamics as a potential system and identify the potential landscape V as detailed in 19.

We convert the BNM with two nodes into polar coordinates zk(t) = Rk(t) exp[ıθk(t)] using Itô’s formula. 
Note that as in  19 the oscillatory phase of the periodic orbit does not affect the escape times. We consider the 
case where the phase difference between nodes is zero, which allow us to restrict our attention to the amplitude 
dynamics given by

for j, k = 1, 2 , j  = k . The steady states of the amplitude dynamics are the “transition states” where either none, 
one or both nodes have escaped. Note that due to the Itô transformation the transition states also depend on α , 
which we fix here at 0.05. The number and stability of these states change with the strength of the coupling. We 
perform bifurcation analysis on the transition states as we vary each of the coupling strength parameters β and 
γ , using specialist continuation software AUTO-07P 22.

Brain network ictogenicity. To characterise seizure-like dynamics in networks, we use the concept of brain 
network ictogenicity (BNI)6,12,14,20. The BNI quantifies the likelihood of a network to generate seizures and cor-
responds to the average time that each network node spends in the seizure state. Since the initial conditions are 
such that all nodes start in the resting state and once they transition to the seizure state, they do not return to the 
resting state, then the BNI is formulated as

where M is a sufficiently long simulation time and �k is the escape time of the kth node. The higher the fraction 
�k/M is, the longer the node k takes to seize. If node k does not escape during the simulation time, we take 
�k = M . Thus, the BNI ranges from 0 to 1, where networks with low BNI have more nodes with high escape times, 
whereas networks with high BNI have more nodes with low escape times. This definition of BNI is equivalent 
to the seizure likelihood measure used by Sinha et al.13. Whilst we use the escape times to study two interact-
ing nodes, we compute the BNI for three-node motifs and larger networks (see sect. “Artificial networks”). To 
compute the BNI, we integrated the stochastic equations (1) using the Euler-Maruyama method with step size 
h = 10−3 , set initial conditions zk(0) = 0 , fixed M = 50/h , and averaged the BNI across 1000 noise realisations.

Node ictogenicity. To quantify the contribution of each node to the network’s ability to generate seizures, we 
use the concept of node ictogenicity (NI)6,14,23. The NI(k) measures the relative difference in BNI upon removing 
node k from a network:

where BNIpre is the BNI prior to node removal, and BNI(k)post is the BNI after the removal of node k. Note that 
to compute BNI(k)post , the coupling term in (1) is not normalised by N, but by N + 1 (i.e., the size of the network 
before node removal), so that the effective coupling strength is kept fixed. As in previous studies, we set the 
coupling strength parameters such that BNIpre = 0.56,14,23 (except in the three node networks, where we use 
the network BNI computed as above), and the same parameters are used to compute BNI(k)post . The NI(k) ranges 
between − 1 and 1, where NI(k) = −1 means that removing node k increases the ictogenicity of the network to 
its maximum ( BNI(k)post = 1 ); NI(k) = 0 means that the removal of node k has no impact on the ictogenicity of the 
network ( BNI(k)post = BNIpre ); and NI(k) = 1 means that removing node k stops all seizure activity in the network 
( BNI(k)post = 0 ). Here we use it to assess whether the relative importance of nodes for the network ictogenicity 
depends on the coupling function.

(8)
dRk

dt
= −νRk + 2R3

k − R5
k + β(Rj − Rk)+ γRj +

α2

2Rk
,

(9)BNI = 1−
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N
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M
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To compare different NI distributions obtained using the different coupling functions, we consider the 
weighted Kendall’s rank correlation τ14,23–25,

where P is the number of pairs of nodes with the same order in two rankings (e.g., pairs of NI values using the 
additive coupling that are ordered in the same way as pairs of NI values using the diffusive coupling), and Q is 
the number of pairs in reverse order. To account for the relative NI values in the comparison between distribu-
tions A and B, the contributions to P and Q are weighted by the product of the distances in NI in the two pairs, 
∣

∣

∣
NI

(i)
A − NI

(j)
A

∣

∣

∣
×

∣

∣

∣
NI

(i)
B − NI

(j)
B

∣

∣

∣
 , where NI(k)D  is the ictogenicity of node k in distribution D. The value of τ ranges 

from -1, i.e., all pairs in reverse order, to 1, i.e., all pairs with the same order.

Artificial networks. To better characterise differences and similarities between the different coupling 
choices, we investigated the model in a variety of networks. This was to ensure that our observations were not 
specific to a certain kind of network structure. Indeed, we have previously shown that the BNI and NI are a 
function of the network  topology14. Thus, besides analysing the dynamics of two and three interacting nodes, 
we also simulated large networks with N = 64 nodes. This is a typical network size in studies with BNMs 
applied to functional brain  networks6,13,14. We considered random and scale-free networks, both directed and 
 undirected14,26,27. We generated random networks using the Brain Connectivity  Toolbox28. To build undirected 
scale-free networks with degree distribution P(x) ∝ x−a , we used the static  model29 and a = 3 . Finally, we 
employed the Barabási-Albert algorithm to construct directed scale-free  networks30. We considered networks 
with mean degree c = 4 and c = 8 . In the case of directed networks, we used mean in-degree cin equal to the 
mean out-degree cout , cin = cout = c . We discarded networks with disconnected components and analysed 10 
network realisations per network topology. Thus, we studied 80 networks.

MEG functional networks. To verify how our results generalise to real-world brain networks we com-
pared additive and diffusive coupling in terms of BNI on MEG functional networks. We used resting-state MEG 
functional networks from people with JME and healthy controls. This MEG dataset was previously used to 
demonstrate that the BNI framework was capable of differentiating the two groups of  individuals31. This data-
set has also been explored with connectivity  metrics32. For more details on the use of mathematical models to 
better characterize functional networks, we refer the reader to  references6,12,13,33. All methods were carried out 
in accordance with relevant guidelines and regulations. In that study, Lopes et al.31 used the theta model with 
additive coupling (see the Supplementary Material for a description about the theta model), and showed that 
individuals with epilepsy had higher BNI than controls as hypothesized. The difference here is that we use the 
bi-stable model instead of the theta model, and that we consider the MEG networks specifically to compare the 
effect of additive versus diffusive coupling.

We refer the reader to Lopes et al.31 for details about the participants, MEG acquisition, pre-processing, source 
mapping, and functional network construction. Briefly, the dataset comprises 26 people with JME and 26 con-
trols. The control group was age and gender matched to the JME group (the median age was 27 and there were 7 
males in both groups). All participants had their eyes open during the MEG acquisition, and no participant had 
seizures during their MEG session. This study was approved by the South East Wales NHS ethics committee, 
Cardiff and Vale Research and Development committees, and Cardiff University School of Psychology Research 
Ethics Committee. Written informed consent was obtained from all participants.

Approximately 5 minutes of resting-state, MEG data were acquired using a 275-channel CTF radial gradi-
ometer system (CTF System, Canada) at a sampling rate of 600 Hz. The first 200 s of artefact-free, resting-state 
data were selected for each individual prior to any filtering (without interictal or ictal activity). The data were 
then filtered in the alpha band (8-13 Hz) and down-sampled to 250 Hz. We chose the alpha band because it has 
been shown that functional networks inferred from this frequency band are capable of distinguishing between 
people suffering from generalized epilepsy and healthy  controls23,33,34. Subsequently, the underlying sources 
were inferred using a linear constrained minimum variance (LCMV) beamformer on a 6-mm template with a 
local-spheres forward model in  Fieldtrip35. The source signals were then mapped into the 90 brain regions of the 
Automated Anatomical Label (AAL)  atlas36.

To obtain MEG functional networks, the source reconstructed data were divided into 10, non-overlapping, 20 
s segments. A functional network was computed from each segment using a surrogate-corrected amplitude enve-
lope correlation (AEC) with orthogonalised signals to avoid spurious correlations (i.e., leakage correction)31,36. 
Thus, we considered 10 MEG functional networks per individual. We then took the average of the 10 networks 
and analysed one average network for each individual. To then measure BNI on these networks, we computed 
seizure-like dynamics using (1), with Ajk equal to the average surrogate-corrected AEC values of the functional 
networks. We used α = 0.005 for the additive coupling simulations, and α = 0.03 for the diffusive coupling 
simulations. These α values are sufficiently large to enable some node activity within reasonable computational 
time, whilst not so large to make noise dominated dynamics.

Results
Two coupled nodes. To illustrate fundamental differences between the coupling functions we first consider 
the simplest case of two bidirectionally coupled nodes. Figure 1 shows how each coupling function changes the 
transient behaviour of the two node system. The bifurcation diagrams of the amplitude of the transitions states 
(equilibria) R1 of node 1 are plotted for the additive and diffusive coupling functions, (4) and (3) respectively. 

(11)τ =
P − Q

P + Q
,
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Due to the symmetry of the system the diagrams plotted against R2 are identical. For each coupling type the tran-
sition states undergo saddle node and pitchfork bifurcations as the coupling strength increases. We follow these 
bifurcation points in both β and γ . The resulting two dimensional bifurcation diagram shows that these bifurca-
tions delineate qualitatively different dynamic regimes. Example simulations of each regime are illustrated on the 
potential landscape with the locations of the transition states (equilibria).

The bifurcation diagrams show that when the nodes are uncoupled, β = γ = 0 , there are 9 transition states 
of the system. These corresponding to all possible pairs of the states of the individual nodes, resting state (not 
escaped), seizure state (escaped) and the threshold state. When the coupling strength is weak ( β = γ < 0.01 ) 
the nodes behave as if uncoupled and all 9 states persist. As each coupling strength is increased the equilibria 
first undergo a saddle node bifurcation where the partially escaped state (node 1 has escaped but node 2 has 
not, and vice versa) disappear and are no longer attractors of the system. However, due to the contours of the 
potential landscape (panel (d2)), realisations spend some time in the vicinity of the partially escaped state. This 
means that while escape of both nodes is inevitable there is a delay between the first and second escapes. The 
unstable equilibrium then undergoes a pitchfork bifurcation where the system becomes synchronous in the sense 
that escapes from the resting to the seizure state for both nodes occur in quick succession. The key difference 
in dynamics comes when the additive coupling induces a further saddle node bifurcation and the only attractor 
of the system is the state in which both nodes have escaped to the seizure state. This regime never occurs with 
diffusive coupling only. Essentially, for a sufficiently large additive coupling strength, both nodes are forced 
immediately into the seizure state. In contrast, for large diffusive coupling strength the nodes stay in their starting 
resting state until noise eventually kicks both of them simultaneously into the seizure state.

Figure 2 shows the first and second escape times for different values of β and γ . The mean first escape times 
for the diffusive only coupling ( γ = 0 , triangle symbol panel (a1)) and the additive only coupling ( β = 0 , triangle 
symbol panel (b1)) show opposite trends. Note that we do not distinguish between node 1 or node 2 escaping 
first. For diffusive coupling the escape times increase as β increases. The coupling has the effect of suppressing 
activity and the nodes spend longer in the resting state where neither has escaped. For additive coupling the 
escape times decrease as γ increases as the coupling has the effect of promoting activity. Fig. 1(c) and (d4) show 
that for large γ only the fully escaped equilibrium remains and so the first escape time depends only on the start-
ing position in the (R1,R2)-plane and level of noise. With the mixed coupling function (5), when the coupling is 
weak, γ ,β < SN1 , the system behaves as if uncoupled and neither type of coupling dominates. When γ is small 

Figure 1.  Bifurcation diagrams and example simulations of the bidirectionally-coupled two-node system. 
Shown are the bifurcation diagrams of amplitude R1 of the transition states (equilibria) as a function of γ 
for β = 0 (additive coupling) in panel (a), and of β for γ = 0 (diffusive coupling) in panel (b). Stable states 
are shown as solid lines, saddle states as dashed lines and unstable as dotted lines. Saddle node bifurcations 
are labelled SN1 and SN2 , the pitchfork bifurcation is labelled PF . Panel (c) shows the position of the saddle 
node and pitchfork bifurcations in the ( β , γ)-plane. The orange stars indicate the values for which example 
simulations are shown in panel (d). Each subpanel (d) shows an example simulation in orange starting at 
zk(0) = 0 with the steady states in black (the circles are stable, the triangles are saddle and the squares are 
unstable (source)). Contour lines of the potential landscape are also plotted in shades of grey. The escape 
threshold for each node is shown as a solid line at 0.5.
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( γ < 10−1 ), the first escape times follow the same pattern as for the diffusive only coupling and for large β the 
diffusive coupling dominates. Conversely, when β is small ( β < 10−1 ), the first escape times follow the same 
pattern as for the additive only coupling and for large γ the additive coupling dominates.

The diffusive dominated coupling is characterised by the area of very large escape times in yellow for high β 
and low γ . However, for large β and γ > SN2 the first escape time no longer depends on β and additive coupling 
dominates. This is illustrated by the almost flat lines for γ = 0.2 and 1 in panel (a1) and the coalescence of all the 
lines in panel (b1) for γ > 0.1 . The mean second escape times show a decreasing trend with increasing coupling 
strength for both the additive and diffusive only cases. We note that around the pitchfork bifurcation ( PF ) in the 
diffusive case (large β ) the second escape times become noise dominated.

Taken together, these escape times show that as coupling strength is increased the state where only one node 
has escaped disappears and the behaviour of the nodes synchronises. In other words, as soon as one node escapes 
the other immediately follows. This is because when either of the coupling strengths are large the input from 
connected nodes dominates the dynamics. The key difference is the time that it takes the first node to escape, 
which is fundamentally different depending on whether additive or diffusive coupling dominates the system.

Three-node networks. To consider the effect of network structure (topology) on the escape times of the 
network and its nodes we consider the BNI and NI of three-node motifs. For simplicity, in this section we 
compare only additive and diffusive coupling. Figure 3 shows the BNI computed via (9) and NI computed via 
(10) for all non-isomorphic three-node networks. For each network, we observe that the BNI is higher for the 
additive coupling than for the diffusive coupling. Furthermore, we observe that networks with higher number of 
connections tend to have higher BNI for the additive coupling, but lower BNI for the diffusive coupling. These 
results show that, networks with more additive connections self promote activity and have more nodes with low 
escape times, whereas networks with more diffusive connections are more self suppressing activity and have 
more nodes with low escape times. It also indicates that increasing the number of connections has a similar effect 
as increasing the coupling strength. Thus, the discrepancy in BNI between the two couplings tends to be greater 
in networks with more connections.

Figure 3(c) shows that whilst the NI is generally positive for the additive coupling, it is usually negative for 
the diffusive coupling. This implies that node activities drive seizures in the network if the coupling is additive, 
but tend to prevent seizures if the coupling is diffusive. The higher the number of connections of the node, the 
stronger its ability of driving (preventing) seizures if the coupling is additive (diffusive). We note that as expected 
for symmetric networks, where the removal of one node is topologically equivalent to the removal of one of the 

Figure 2.  Mean times for the first node to escape (First Escape, row 1) and second node to escape (Second 
Escape, row 2). Column (a) shows mean escape times against β for different fixed values of γ ; Column (b) shows 
mean escape times against γ for different fixed values of β . A legend indicates the fixed values in each column. 
Column (c) plots the mean escape times on the ( γ ,β)-plane with the bifurcation curves overlaid.
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two other nodes, the NI for each node is the same, i.e., within error bars (see e.g. network 8). Overall, we note 
that the NI distributions are very different, in some cases opposite, for each type of coupling. Moreover, we show 
the node with the highest NI is different for each network depending on the coupling function.

Networks. We now turn our attention to larger networks. In this section we compare the role of the different 
coupling functions on the transient dynamics of the bi-stable model in networks with 64 nodes using the con-
cepts of BNI and NI. We consider large random and scale-free networks, both directed and undirected. Whilst 
random networks are fairly homogeneous with regards to the degree distribution, scale-free networks are highly 
heterogeneous, having some highly connected  nodes26.

Brain network ictogenicity. We first focus on the BNI, the network’s propensity to generate seizure activity, 
across different coupling functions and network structures. Figure 4 shows the BNI as a function of the coupling 
strength γ when using the additive coupling (4). We chose a range of γ such that we could observe the greatest 
overall possible variation in BNI, and considered five levels of noise α to show its impact on BNI. We observe 
that in all considered network structures, the BNI grows monotonically with γ . This result means that in all these 
types of networks, the stronger the connection strength between nodes, the more likely the network is to gener-
ate seizure activity. This result is in agreement with our observations in the two-nodes motifs where the first and 
second escape times decrease as γ increases (see Fig. 2), as well as the BNI results in the three-node networks (see 
Fig. 3). We also observe that the higher α is, the higher the BNI is. Both the coupling and noise terms are positive, 
and at larger values the nodes are more likely to transit to the seizure state, hence increasing the BNI. The BNI 
dependence with γ is qualitatively similar across the four types of network topologies, although we note that in 
directed scale-free networks the growth in BNI is not as steep as in the other networks and there is greater vari-
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Figure 3.  BNI and NI of all three-node networks for additive and diffusive couplings. Panel (a) shows the 
coupling structure for all 13 non-isomorphic three-node networks. Panel (b) shows the BNI for each network 
with either diffusive (top row) or additive coupling (bottom row). Panel (c) shows the NI for each node (1–3) 
of each network (1–13) with either diffusive (top row) or additive (bottom row) coupling. The NI distributions 
were computed using as BNIpre the BNI values in panel (b). We used β = 0.1 for the diffusive coupling, γ = 0.1 
for the additive coupling, and α = 0.03 for both couplings. Standard error bars are computed over 1000 noise 
realisations.
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ability across network realisations. This observation is presumably a consequence of directed scale-free networks 
having the most heterogeneous degree distributions across all networks considered. The BNI appears to plateau 
at values lower than 1 because there may be nodes that are unreachable by the influence of their neighbours (i.e., 
nodes with only outgoing connections), which remain in the resting state. Figure S1 shows that the results are 
qualitatively similar in networks with mean degree of 8. The main difference in the BNI curves of the networks 
with higher mean degree is that they are steeper than those of networks with lower mean degree. This result is to 
be expected: higher mean degree implies on average stronger influence from the coupling term and so the BNI 
reaches it maximum at lower values of γ.

Figure 5 shows the BNI as a function of the coupling strength β when using the diffusive coupling (3). We 
observe striking differences relative to Fig. 4 depending on the network type as well as coupling strength. As 
in the case of the additive coupling, we chose a range of β such that we could observe a full variation in BNI, 
and chose five values of the noise amplitude α . For α = 1 we note that the dynamics of each network are noise 
dominated leading to a BNI of 1, where all nodes transition to the seizure state within the simulation time, for 
all values of β . First, in the case of undirected networks, we find that the BNI decreases monotonically with β . 
The increase of the coupling strength suppresses node activity and decreases the BNI. Higher values of noise 
amplitude α imply that the BNI is higher at β = 0 . On one hand, we had to use higher α values for simulations 
with diffusive coupling relative to those with additive coupling such that we could observe BNI > 0 . On the 
other hand, we used a range of values for β four times higher than the range for γ , because while the additive 
coupling cooperated with the noise in driving node activity, the diffusive coupling opposed the noise to suppress 
activity, thus requiring higher noise magnitude. Second, directed networks are characterised by BNI curves that 
are not always monotonically decreasing. All directed scale-free and some directed random networks show a 
local minimum in the BNI curve at low β values, followed by a local maximum and a plateau (for the examples 
where α < 0.1 ). This illustrates how the diffusive coupling may both promote or suppress activity depending 
on network structure, whereas the influence of the additive coupling can only increase node activity. Third, we 
observe higher variability in the BNI curves across undirected network realisations with diffusing coupling 
compared to additive coupling. Also, we observe considerable variability in the BNI curves across the directed 
random network realisations, and little variability across the directed scale-free network realisations, which is 
the opposite relation in terms of variability observed for the additive coupling. However, there is one similarity 
in terms of the BNI curves of the directed scale-free networks between additive and diffusive coupling: both sets 
of curves appear to plateau at some intermediate BNI value, presumably due to the existence of ’unreachable’ 
nodes. Figure S2 shows that the results are similar in networks with higher mean degree. As observed with the 
additive coupling, the BNI curves are steeper. These results suggest that increasing the mean degree is effectively 
similar to increasing the coupling strength (regardless of the type of coupling).
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Figure 4.  BNI as a function of additive coupling strength γ . Each panel shows BNI curves for different network 
topologies: (a) undirected random networks, (b) directed random networks, (c) undirected scale-free networks, 
and (d) directed scale-free networks. Each color corresponds to a different level of noise α : blue is α = 0.001 , red 
is α = 0.005 , green is α = 0.01 , orange is α = 0.03 , and purple is α = 0.05 . Finally, each curve corresponds to a 
different network realisation. We used 10 network realisations per network topology and the mean degree of all 
networks is c = 4 ; see Methods for details.
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Figure 6 shows the BNI as a function of the coupling strength γ (with fixed ( β ) and β (with fixed γ ) when 
using the mixed coupling with each of the four network types. As in the additive coupling case, the BNI grows 
monotonically with increasing γ , and, as in some of the diffusive coupling cases, the BNI decreases monotoni-
cally with increasing β in all of the networks considered. These curves can be considered as cross sections of 
a generalised BNI surface in a γ − β plane (or a hypersurface if we consider a range of α values). Such surface 
would contain the curves observed in Figs. 4, 5, and 6 for a given network and a fixed α . Interestingly, Fig. 6(b) 
suggests that a sufficiently strong additive component γ can prevent the diffusive coupling component of sup-
pressing the BNI. Note that at α = 0.05 , the diffusive coupling was capable of reducing the BNI to zero in the 
case of the undirected networks, see the purple curves in Figs. 5(a) and (c). We also observe higher agreement 
between the BNI curves across different network topologies with mixed coupling than with diffusive coupling 
alone. In other words, this result suggests that the additive coupling component causes the BNI curves to be 
more uniform across network topologies relative to the diffusive coupling component of the mixed coupling.

Node ictogenicity. The NI quantifies the contribution of each node to the overall network’s propensity to gen-
erate seizures. Identifying the nodes with the highest contribution (i.e., highest NI) can be useful to inform 
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Figure 5.  BNI as a function of diffusive coupling strength β . Each color corresponds to a different level of noise 
α : green is α = 0.01 , orange is α = 0.03 , purple is α = 0.05 , brown is α = 0.1 , and pink is α = 1 . All other 
parameters are the same as in Fig. 4.
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Figure 6.  BNI as a function of (a) γ (β = 10) and (b) β(γ = 5) using the mixed coupling. Each color 
corresponds to a different network topology: blue corresponds to undirected random networks, red to directed 
random networks, green to undirected scale-free networks (overlaps the blue), and orange to directed scale-free 
networks. Each curve corresponds to a different network realisation. We fix α = 0.05 and mean degree c = 4.
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epilepsy  surgery6,14,37. Figure 7 shows representative NI distributions for each of the four network topologies, 
for a given level of noise. These representative NI distributions show how the NI values depend on the coupling 
function.

We observe that the NI when using the additive coupling has a much larger range, NI ∈ [−0.01, 0.1] , over the 
nodes than the range, NI ∈ [−0.01, 0.01] , for the diffusive coupling. Furthermore, the absolute values of NI are 
generally higher in the additive case relative to the diffusive case. A large proportion of the nodes have a positive 
NI with the additive coupling, meaning that the removal of nodes contributes to an overall reduction in BNI, 
whereas the majority of nodes with diffusive coupling have negative NI values, which implies that removing 
nodes can increase the network’s ability to generate seizure activity. We find that for the diffusive coupling nodes 
with the highest degree are more likely to have the lowest NI. From (6) we observe that activity suppression is 
node dependent, being proportional to a node’s own activity and number of in-connections. In contrast, the NI 
is highest in highly connected nodes when using the additive coupling because such nodes are more likely to be 
both excited into the seizure state and to be capable of exciting their neighbours.

Figure 7 also shows the NI distribution computed with the mixed coupling, which in each panel follows the 
NI distribution from the additive coupling, suggesting that the additive component of the mixed coupling is 
dominant for the chosen parameters. We found consistent results using other network realisations and other β 
and γ parameter values.

To better compare NI distributions from the different coupling functions, we computed the weighted Ken-
dall correlation rank τ . Figure 8 shows that the NI distributions from additive and diffusive couplings are not 
just different, they actually tend to rank the nodes in opposite order. Nodes with the highest NI in the additive 
coupling are likely to be the nodes with the lowest NI in the diffusive coupling, and vice versa, as observed in 
the three-node networks (see Fig. 3(c)). Additionally, as observed in Fig. 7, the NI orderings of the additive 
and mixed couplings are in almost perfect agreement (average τ > 0.96 in all types of networks) for the chosen 
parameters. Consequently, the relationship between the diffusive and mixed couplings is similar to the additive 
and mixed couplings as assessed by τ . We expect that as the diffusive component of the mixed coupling would 
be increased (and/or the additive component would be decreased), the τ value relating the diffusive and mixed 
couplings would increase, and the τ value comparing the additive and mixed couplings would decrease. These 
results are consistent across all network topologies, with lower τ values in the undirected networks relative to 
directed networks when comparing the diffusive coupling to the other couplings. Figures S3, S4, and S5 comple-
ment these findings by showing that the NI is related to the number of connections that each node has. We find 
a positive correlation between NI and node degree in the additive and mixed couplings (see Figs. S3 and S5), 
whereas the correlation is negative in the diffusive coupling (see Fig. S4). Thus, nodes with higher degree have 
higher NI in the additive coupling, but lower NI in the diffusive coupling case. The mixed coupling can presum-
ably range between the two extremes depending on parameters.
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Figure 7.  Representative NI distributions of (a) undirected random, (b) directed random, (c) undirected 
scale-free, and (d) directed scale-free networks using the different couplings. The blue squares represent the 
NI computed using the additive coupling, the red triangles correspond to the diffusive coupling and the green 
circles correspond to the mixed coupling. The nodes were sorted such that the NI grows monotonically for the 
additive coupling. The error bars represent the standard error across 1000 realisations. We used α = 0.005 for 
the additive coupling, α = 0.03 for the diffusive coupling, and α = 0.01 for the mixed coupling. In all three 
coupling cases, parameters γ and β were chosen such that BNIpre = 0.5 ; for the mixed coupling, we fixed β = 10 
and chose γ . All networks had mean degree c = 4.
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BNI of MEG functional networks. To further assess the impact of choosing either additive or diffusive 
coupling in studies that aim to investigate the emergence of seizures on real-world brain networks, we computed 
the BNI of 26 MEG functional networks from people with JME and 26 from healthy controls using both additive 
and diffusive coupling. Figure 9 shows that the BNI based on additive and diffusive couplings rank the individu-
als in reverse order. Individuals with the highest ’additive BNI’ have the lowest ’diffusive BNI’, and vice versa. 
Furthermore, while most individuals have similar diffusive BNI, they are well distinguished in terms of additive 
BNI. Finally, we observe that people with JME have on average higher additive BNI than controls (Mann–Whit-
ney U test, p = 0.0062 ), but lower diffusive BNI than controls ( p = 0.0026 ). It is important to note that higher 
BNI in people with JME relative to controls is the expected, given that higher BNI is assumed to characterize a 
brain network with a higher propensity to produce seizures. Therefore, only the additive coupling provides the 
hypothesized BNI distinction between the two groups. We performed the same comparison for other γ and β 
values and found similar results (not shown).

Discussion
BNMs are useful tools to understand the role of brain network structure on healthy and pathological brain 
dynamics. These models make assumptions about how brain regions behave and how they interact. Here, we 
investigated two main modelling choices of interaction, the additive coupling and the diffusive coupling, aiming 
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Figure 8.  Comparison of NI distributions using different couplings. The weighted Kendall correlation rank τ 
quantifies the consistency of ordering nodes according to their NI values when using the different couplings. 
The blue bars correspond to the comparison between additive and diffusive coupling, the red bars correspond to 
additive versus mixed coupling, and the green bars to the diffusive versus mixed coupling. Different panels show 
the comparison for different network topologies: (a) undirected random, (b) directed random, (c) undirected 
scale-free random, and (d) directed scale-free networks. The error bars represent the standard error across the 
10 network realisations per network topology. All parameters are the same as in Fig. 7.
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Figure 9.  Comparison of BNI using additive and diffusive couplings on MEG functional networks. Each square 
(triangle) is the BNI value based on additive (diffusive) coupling of each individual. The individuals were sorted 
such that the BNI values based on the additive coupling were monotonically increasing. Light green squares and 
light pink triangles correspond to healthy controls, and dark green squares and dark pink triangles correspond 
to people with JME. We used α = 0.005 and γ = 15 for the additive coupling simulations, and α = 0.03 and 
β = 4.6 for the diffusive coupling simulations.
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to understand their role on simulated brain dynamics. We focused on a bi-stable model of seizure transitions, a 
model that has been used in the literature with both additive and diffusive  couplings11–13,16,17. We further con-
sidered a mixed coupling, combining the additive and diffusive couplings. We analysed the model on artificial 
networks with two, three and 64 nodes, as well as MEG functional networks, and characterised the dynamics 
using escape time, BNI and NI. These measures have been used in the literature to make predictions about 
ictogenicity. We showed that additive and diffusive couplings provide fundamentally different, often contradic-
tory, predictions in both the large artificial and MEG functional networks. The mixed coupling gave results in 
between the two depending on parameters. For two connected nodes, we demonstrated that additive and diffusive 
couplings give rise to two different bifurcation diagrams, particularly at large coupling values, which explains 
the different dynamical behaviours in terms of escape times. In three-node networks, we found that generally 
networks with additive coupling have higher BNI than networks with diffusive coupling, and the difference in 
BNI increases in networks with more connections. Furthermore, nodes with higher NI with the additive cou-
pling had the lowest NI with the diffusive coupling. Our simulations in larger networks with 64 nodes further 
supported these observations. Finally, we applied the BNI to MEG functional networks from people with JME 
and healthy controls using both additive and diffusive couplings. We found that people with JME had a higher 
BNI based on the additive coupling than the controls, and we observed the opposite using the diffusive coupling.

Our observations that the BNI and NI are different depending on whether we use additive or diffusive 
coupling have consequences for studies aiming to apply these measures to interrogate functional networks 
obtained from clinical data, as illustrated with our BNI results on the MEG networks. The BNI has been used 
to differentiate the functional networks of healthy people from people with epilepsy inferred from resting-state 
 data11,12,31. The hypothesis is that people with epilepsy have a higher enduring propensity to generate seizures than 
healthy individuals, and that this propensity can be assessed from their resting-state functional networks. The 
BNI is meant to assess this enduring feature of the epileptic brain and, therefore, it is hypothesized that people 
with epilepsy have a higher BNI than healthy controls. However, our findings suggest that whether the BNI is 
higher in one group relative to the other depends on the choice of coupling function. Group A may have higher 
BNI than group B if we choose the additive coupling, whereas group B may have higher BNI than group A if 
we choose the diffusive coupling. We confirmed this expectation by computing the BNI on the MEG functional 
networks using the two couplings. We observed that the BNI using the diffusive coupling provided almost the 
opposite BNI ranking of individuals compared to the BNI using the additive coupling. In particular, we found 
that only the BNI based on the additive coupling distinguished the JME group with higher BNI values than 
the healthy group. Together with previous  evidence12,31, this result suggests that the additive coupling may be a 
better modeling choice than the diffusive coupling, for the purpose of characterizing ictogenic brain networks 
with BNI. Nevertheless, we acknowledge that our analysis on MEG networks was limited by our small dataset. 
A larger dataset could enable us to better personalise and tune parameters (without overfitting), which in turn 
could enrich our understanding of their role on the network dynamics. For example, it may be that fixing α and 
the coupling constants is a too simplistic assumption which prevent us from reaching different conclusions.

The NI has been used to model epilepsy surgery and to make predictions about the epileptogenic  zone6,14,16,17,37. 
Nodes with the highest NI are taken as predictors of the epileptogenic zone. The fact that the NI distribution 
strongly depends on the coupling choice implies that predictions about the epileptogenic zone also depend on 
this choice. The nodes with the highest NI in the additive coupling are likely to be the nodes with the lowest NI 
in the diffusive coupling. Such disagreement between additive and diffusive couplings highlights the need of 
finding which coupling choice is most appropriate to model the brain’s ictogenicity. Future work should aim to fit 
the model with the mixed coupling function to electrophysiological recordings using a search over the full (γ ,β) 
parameter space. More detailed studies may consider varying proportions of the connections modeled as additive 
or diffusive, or even weighted networks in which different connections are characterised by different γ and β 
values. However, we note that most studies that have used the bi-stable model or other models of ictogenicity to 
investigate data have used the additive  coupling6,12–14,37. Their promising results suggest that the additive coupling, 
or perhaps the mixed coupling, may be more appropriate than the diffusive coupling for such investigations. We 
speculate that a better understanding of the role of γ and β parameters on brain network dynamics as well as 
their experimental determination may lead to a better understanding of epilepsy and aid on the design of new 
personalised treatments. Furthermore, future studies should also aim to clarify the physiological underpinnings 
of such parameters, so that to understand their relation to synaptic excitation and inhibition.

We highlight that our simulations based on the additive and diffusive couplings provide different understand-
ings about the role of single node dynamics and network structure on ictogenicity. In the case of the additive 
coupling, ictogenicity can result from pathological single nodes and/or pathological brain structure. In this con-
text, ’pathological single nodes’ are nodes that are able to generate seizure activity even in isolation. Within the 
phenomenological model framework, such nodes have been modelled by making either ν or α node  specific16,21. 
With additive coupling, pathological single nodes may cause seizures due to the fact that the node interactions 
lead to increased network activity. However, pathological single nodes are not necessary for a network to gener-
ate seizures. The network ictogenicity may result from the network’s structure. For example, highly connected 
nodes are likely to be prone to generate seizures, which in turn makes the whole network prone to seizures. Given 
the way that additive coupling can only increase node activities, the network structure can only enhance the 
ictogenicity of individual nodes. In contrast, in the case of diffusive coupling, ictogenicity is the result of both 
pathological nodes and pathological brain structure. A network without pathological nodes, i.e., nodes capable 
of generating seizures in isolation, cannot generate seizures. In our simulations, we had to choose a sufficiently 
large level of noise α so that the BNI curves had a non-zero BNI at β = 0 , otherwise, the BNI would be zero at 
all values of β . On the other hand, the existence of pathological nodes does not guarantee network ictogenicity 
because certain network structures may prevent ictogenicity due to the potential suppressing activity role of the 
diffusive coupling. Thus, seizures may only emerge in networks with diffusive coupling if the network contains 
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pathological nodes and if the network structure is such that enables their pathological activity. As a consequence, 
our results suggest that if the additive coupling is a better model of large-scale brain interactions, then knowl-
edge about network structure may be sufficient to assess brain ictogenicity because pathological nodes are not 
necessarily required to drive seizures. On the other hand, if the diffusive coupling is a better approximation of 
large-scale brain interactions relevant for epilepsy, then knowledge about network structure is insufficient to 
assess brain ictogenicity. Unfortunately, evaluating whether single nodes are pathological remains a challenge.

The results presented in the main text using the bi-stable model of seizure transitions are supported by our 
results presented in the Supplementary Material using the theta  model14. The theta model is an alternative 
model of ictogenicity and we used it to test whether our comparison between additive and diffusive couplings 
was model dependent. The findings presented in the Supplementary Material show that the two models are in 
agreement. Not only the relation between results obtained with additive and diffusive couplings is similar, but 
also the two models provide similar results when using the same coupling functions (see Fig. S12). These results 
are in agreement with previous studies comparing these and other models using the additive  coupling20. Also, 
the relation between ictogenicity and the number of connections uncovered in our analysis is also in agreement 
with previous findings using both  additive14 and diffusive  coupling17.

We emphasise that our results should be broadly relevant for studies using BNMs beyond their application 
to epilepsy. The fact that the coupling choice crucially defines the escape time, BNI and NI suggests that other 
measures of network dynamics may also be affected. For example, Hansen et al.5 used a BNM with additive 
coupling to simulate functional connectivity dynamics on structural brain connectivity. Demirtaş et al.7 used 
a BNM with diffusive coupling to study the mechanisms responsible for connectivity changes in Alzheimer’s 
disease. Also, Cabral et al.38 used a BNM based on Kuramoto oscillators with diffusive coupling to investigate the 
emergence of resting-state functional connectivity. All these and other studies’ conclusions may be questionable 
given their likely dependence on the coupling choice. Furthermore, our results have potentially wide-reaching 
implications for studies that aim to establish biophysical models of large-scale brain  interactions39.

Conclusions
Here we compared the impact of using additive or diffusive coupling on the dynamics of a BNM relevant for 
epilepsy. We showed that the two couplings are not interchangeable. On the contrary, the dynamics on the net-
works are different and the predictions of node and network relative ictogenicity are often opposite. We used 
the two coupling frameworks to assess resting-state functional networks inferred from MEG from people with 
JME and healthy controls and found opposing results in terms of network’s propensity to generate seizures. The 
additive coupling provided the hypothesized result of higher ictogenic propensity on brain networks from people 
with JME relative to networks from controls. Thus, our results and evidence from the literature suggest that the 
additive coupling may be a better modeling choice than the diffusive coupling, at least for BNI and NI studies. 
Future BNM studies should motivate and validate the choice of coupling to properly model brain activity and 
to obtain reliable predictions about brain function and dysfunction.

Data availability
The MEG functional networks used during the current study available from the corresponding author on rea-
sonable request.
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