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A B S T R A C T

Recent events (e.g., George Floyd protests) have shown the impact that inequality in policing can have on
society. Thus, police operations should be planned and designed taking into account the interests of three
main groups of directly affected stakeholders (i.e., general population, minorities, and police agents) to
pursue fairness. Most models presented so far in the literature failed at this, optimizing cost efficiency or
operational effectiveness instead while disregarding other social goals. In this paper, a Smart Policing model
that produces operational patrolling districts and includes territorial, racial, and workload fairness criteria is
proposed. The patrolling configurations are designed according to the territorial distribution of crime risk and
population subgroups, while equalizing the total risk exposure across the districts, according to the preferences
of a decision-maker. The model is formulated as a multi-objective mixed-integer program. Computational
experiments on randomly generated data are used to empirically draw insights into the relationship between
the fairness criteria considered. Finally, the model is tested and validated on a real-world dataset about the
Central District of Madrid (Spain). Experiments show that the model identifies solutions that dominate the
current patrolling configuration used.
1. Introduction

Predictive Policing is the use of police data to identify people, places
and events with a high risk of crime. Crime predictions allow police
efforts to be focused on the areas of greatest risk while dynamically
adapting to the current criminal trends in a specific territory. Numerous
pilot projects (Los Angeles [1], Chicago [2], and London [3], among
others) have shown the capabilities of these methodologies and pro-
vided very good results. For example, PredPol, a computer tool used
in Santa Cruz, California, uses historical data to point officers to 10–
20 high-risk areas [4]. The result has been a reduction in the first
year of 27% of burglaries and 11% of home burglaries. In a similar
context, Baycik et al. [5] address the problem of allocating police
resources to interdict criminal activities of different types; the model
is defined within a Markov Decision Process framework.

However, crime prediction represents only the first step toward
defining a police action protocol that fits the profile of each shift. Smart
Policing [6] is the use of optimization techniques to determine the
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distribution of patrol agents in a district according to a number of ob-
jectives, thus, allowing for an improvement in the workload assignment
between agents and an increase in the efficiency of actions [7–9]. The
models are formulated as districting problems that have been widely
and successfully applied in multiple contexts, especially in the public
sector [10,11]. For an updated review of the most recent contributions
in Smart Policing the reader is referred to Samanta et al. [12].

The patrol configurations obtained by models that only take into
account the predicted distribution of crime tend to concentrate police
resources in the areas with the highest crime rates [13]. However, high-
crime locations are usually correlated with minority and disadvantaged
populations [14]. Therefore, patrol operations designed from crime
prediction data, despite being efficient and effective in controlling
crime [15], could exacerbate the racial disparity in arrests and police
actions [16,17] which, in turn, fuels the feeling of pressure in minority
communities and, ultimately, can result in negative repercussions for
both individuals and society as a whole (e.g., [18]). Nevertheless,
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this issue cannot be solved by reducing police presence in high-crime
areas, as it would deprive minority communities of much-needed police
protection, resulting in discrimination and further victimization [19].

In recent years, researchers have addressed the issue of verifying the
impact of considering racial equality criteria in Predictive Policing [20–
22] and Smart Policing models [23,24], addressing a growing concern
that is not restricted to the area of policing [25]. In particular, Libera-
tore et al. [24] segment the population into groups according to certain
characteristics (e.g., origin, nationality) and consider the objective
of equalizing police exposure among the different population groups.
Their experimental results show that there is a trade-off between police
efficiency and racial equality. However, a small reduction in police
efficiency leads to a large increase in racial equality.

1.1. Summary and rationale

The rationale of this paper is to extend previous police districting
models in the literature by balancing fairness criteria that represent
the interests of three main groups of directly affected stakeholders: the
general population, minorities, and police agents. In general, to counter
crime, it is desirable that high-risk areas receive more patrolling time
compared to low-risk areas. This is the reasoning behind the first
criterion which, in the rest of the paper, is referred to as territorial
airness. However, as explained above, focusing the police efforts ex-
lusively on high-risk areas could be counterproductive in the mid/long
erm. Second, the racial fairness criterion is introduced to ensure that
he police exposition of the groups that comprise the population is
roportioned.1 However, as shown in the rest of this paper, designing
atrolling districts while exclusively taking into account the above
riteria results in configurations with high variability in terms of the
xposure of the agents to the risk of crime which, in turn, produces an
neven distribution of the workload in terms of crime incidents that the
gents need to prevent or respond. Additionally, greater equality in the
orkplace increases the satisfaction of the agents [26]. Therefore, the
orkload fairness criterion is considered to equalize the total exposition

o the risk of crime across the districts.
Workload fairness has been previously considered in settings other

han policing, such as in the Vehicle Routing Problem [27], assembly
ines [28], and seru production systems [29,30]. In the context of po-
ice patrolling, multiple authors have provided different definitions of
orkload (please, refer to [12]). However, only Camacho-Collados and
iberatore [7],Liberatore and Camacho-Collados [9],Chen et al. [31]
xplicitly optimize for balance. All these authors define the workload
s a linear combination of attributes, including total risk, total district
rea, and district diameter.

.2. Contributions

Following from the above, this paper builds upon and expands
n Liberatore et al. [24], forwarding and expanding the literature on
mart Policing and the Police Districting Problem in the following
ays:

First, to the best of the authors’ knowledge, this paper introduces
he first police districting model that explicitly balances the interests
f three groups of stakeholders (i.e., the general population, minori-
ies, and police agents) by jointly considering territorial, racial, and
orkload fairness. Although the first two criteria have been previously

ntroduced in [24] and workload has been formerly considered in police
atrolling problems, this is the first time that the impact on the agents
f a patrolling configuration is taken into account in terms of total
xposure to the risk of crime. Thus, this is the first model that can be

1 Please, note that although the criterion is called racial fairness, the model
does not specify how the population groups are defined. For the sake of
versatility, this choice is left to the decision-makers.
2

used to identify solutions that are performant, socially equitable, and
balanced in terms of workload.

Second, the model is used to perform a comprehensive empirical
analysis that ascertains the impact of territorial, demographic, and
crime characteristics on the trade-off between the fairness criteria.
Thus, this research addresses an important gap in the literature.

Furthermore, two additional contributions lie in a novel dataset
specifically generated to carry out the above analysis and a quantitative
measure of trade-off strength, 𝜏, that is completely agnostic to the
present application context and can be applied to any bi-objective
analysis.

Finally, the model is applied to a real-world case study which allows
drawing insights into the usefulness and applicability of the model, as
well as validating the outcomes of the empirical analysis. To this end,
the solutions identified are compared to the districting configuration
currently adopted by the Spanish National Police (SNP).

1.3. Outline

The rest of the paper is organized as follows. Section 2 presents in
detail the problem and its formulation. The trade-off analysis is the
topic of Section 3. The case study on the Central District of Madrid
and the comparison with the solution currently in use by the SNP is
illustrated in Section 4, while Section 5 concludes the paper with a
summary of the main findings and guidelines for future research lines.

The paper includes two appendices. Appendix A describes the pro-
cedure used to generate the dataset while Appendix B presents the
trade-off measure of strength, 𝜏. Both are used in the trade-off analysis
of Section 3.

2. Model

Let us consider a territory partitioned into areas (e.g., census or
report districts). The territory is modeled as a graph, where the nodes
represent the areas and two areas are connected by an edge if it is
possible to move directly from one to the other. Also, the population
in the territory is categorized into population groups, e.g., by race,
ethnicity or origin.

The main decision in the problem involves assigning each area to
a unique patrol district. The patrol districts must be geographically
contiguous, their size is limited by a maximum diameter and they have
a fixed time capacity (i.e., the length of the shift). The second main
decision is the allocation of the time capacity available at each patrol
districts to their assigned areas.

The crime risk and the population groups distributions on the
territory are known. Therefore, each area is characterized by a crime
level and by the size of each population group. These attributes are
used to calculate (i) the patrol service goal for each area, (ii) the police
contact goal for each population group, and (iii) the risk exposure goal
for a district. Given a patrolling configuration (i.e., areas assignment
to districts and time allocation to areas) it is possible to compute the
following scores: (i) patrol service, i.e., the ratio of patrolling time
received by an area to its goal; (ii) police contact, i.e., the ratio of
the patrolling time received by a population group to its goal; (iii)
risk exposure, i.e., the ratio of the total risk-weighted time spent by
a district to its goal. Fairness is achieved by maximizing the weighted
sum of the minimum of each score across the districts.

The rest of the section provides technical details of the methodol-
ogy. A summary of the notation used is provided in Table 1. Readers

only interested in the practical outcomes of this work may omit it.
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Table 1
Summary of notation: sets, indices, parameters, and variables.

Sets

𝐺 = (𝑁,𝐸) Graph.
𝑁 Set of areas.
𝐸 Set of edges connecting the areas.
𝐾 Number of districts.
𝑃 Set of population groups.

Indices

𝑖, 𝑗 ∈ 𝑁 Areas.
𝑘 = 1,… , 𝐾 District.
𝑝, 𝑞 ∈ 𝑃 Population group.

Parameters

𝑐𝑎𝑝 Patrolling time capacity for each district.
𝑟𝑖𝑠𝑘𝑖 Crime risk associate to area 𝑖.
𝑝𝑜𝑝𝑖𝑝 Size of population in area 𝑖 belonging to group 𝑝.
𝑑𝑖𝑠𝑡𝑖𝑗 Distance between areas 𝑖 and 𝑗, expressed as the time necessary to go from 𝑖 to 𝑗.
𝑑𝑖𝑎𝑚 Maximum district diameter.
𝑔𝑜𝑎𝑙𝑖 Patrol service goal for area 𝑖.
𝑔𝑜𝑎𝑙𝑝 Police contact goal for population group 𝑝.
𝑔𝑜𝑎𝑙𝑘 Risk exposure goal for district 𝑘.
𝑤𝑇 , 𝑤𝑅, 𝑤𝑊 Objective function weights for the territorial, racial, and workload fairness criteria.

Variables

𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘

{

1 if area 𝑖 is assigned to district 𝑘,
0 otherwise.

𝑡𝑖𝑚𝑒𝑖𝑘 Time allocated to area 𝑖 in district 𝑘.

𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑘

{

1 if area 𝑖 is the source of the flow of district 𝑘
0 otherwise

𝑓𝑙𝑜𝑤𝑖𝑗𝑘 Flow traversing edge (𝑖, 𝑗) in district 𝑘.
𝑙𝑒𝑣𝑒𝑙𝑖 Patrol service level of area 𝑖.
𝑙𝑒𝑣𝑒𝑙𝑝 Police contact level of population group 𝑝.
𝑙𝑒𝑣𝑒𝑙𝑘 Risk exposure level of district 𝑘.
𝑊 𝑇 , 𝑊 𝑅, 𝑊 𝑊 Territorial, racial, and workload fairness criteria values.
𝑊 Total fairness criterion value.
2.1. Model’s parameters

Let 𝐺 = (𝑁,𝐸) be an undirected graph where 𝑁 is the set of areas
nd 𝐸 the set of edges connecting them. Also, 𝐾 is the number of

districts (indexed by 𝑘) and 𝑃 is the set of population groups (indexed
by 𝑝).

Districts have a constant time capacity, 𝑐𝑎𝑝, while each area 𝑖 ∈ 𝑁
is characterized by:

• a crime risk 𝑟𝑖𝑠𝑘𝑖, representing the severity of the crimes that are
expected to be committed in the area.

• a population distribution 𝑝𝑜𝑝𝑖𝑝 representing the size of the popu-
lation of area 𝑖 that belongs to group 𝑝.

The edges have an associated distance, 𝑑𝑖𝑠𝑡𝑖𝑗 . Moreover, the matrix
𝑑𝑖𝑠𝑡𝑆𝑃𝑖𝑗 is the all-pair shortest-path distance matrix, computed from the
edges’ distances 𝑑𝑖𝑠𝑡𝑖𝑗 using the Floyd–Warshall algorithm [32–34].

Finally, the parameter 𝑑𝑖𝑎𝑚 represents the maximum district di-
ameter, that is, the maximum allowed distance separating two areas
belonging to the same district. Therefore, without loss of generality, all
edges (𝑖, 𝑗) such that 𝑑𝑖𝑠𝑡𝑖𝑗 > 𝑑𝑖𝑎𝑚 are removed from the set 𝐸.

2.2. Partitioning variables and constraints

In the problem considered, the main decisions are represented in
the model by the following variables:

• 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 =

{

1 if area 𝑖 is assigned to district 𝑘
0 otherwise

• 𝑡𝑖𝑚𝑒𝑖𝑘 ≥ 0, time allocated to area 𝑖 by district 𝑘.

Variables 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 define the assignment of areas to districts, while
ariables 𝑡𝑖𝑚𝑒𝑖𝑘 represent the district patrolling time allocation to each
3

area.
The decisions concerning the definition of the districts and the
allocation of the service time to the areas are modeled through the
following constraints.

𝐾
∑

𝑘=1
𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 = 1 ∀𝑖 ∈ 𝑁 (1)

𝑡𝑖𝑚𝑒𝑖𝑘 ≤ 𝑐𝑎𝑝 ⋅ 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 ∀𝑖 ∈ 𝑁, 𝑘 = 1,… , 𝐾 (2)
∑

𝑖∈𝑁
𝑡𝑖𝑚𝑒𝑖𝑘 = 𝑐𝑎𝑝 ∀𝑘 = 1,… , 𝐾 (3)

𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝑁, 𝑘 = 1,… , 𝐾 (4)
𝑡𝑖𝑚𝑒𝑖𝑘 ≥ 0 ∀𝑖 ∈ 𝑁, 𝑘 = 1,… , 𝐾 (5)

Constraints (1) state that all areas must be assigned to exactly one
district. Constraints (2) impose that an area can receive patrol time only
from its assigned district. Constraints (3) enforce the allocation of the
time capacity to areas in such a way that all the time capacity available
in a district is distributed among its assigned areas. The last two sets of
constraints present the existence conditions for variables 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 and
𝑡𝑖𝑚𝑒𝑖𝑘.

2.3. Contiguity and diameter

The districts are required to be geographical contiguous (i.e., in each
district one patrol could go from one area to another without leaving
the district) and compact (i.e., closely and neatly packed together).
The former requirement is for practical reasons, while the latter is for
efficiency. In fact, a compact district allows patrols to reach every point
quickly in case of an emergency. Compactness is achieved by limiting
the maximum diameter of the districts, where the diameter is the max-
imum shortest-path distance between every pair of areas belonging to
the same district. On the other hand, contiguity is imposed via a set of
flow constraints, as originally proposed by Shirabe [35,36]. Differently

from Shirabe’s original formulation, in the present model each district
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𝐂

has a different network flow model associated. The variables required
are the following:

• 𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑘 =

⎧

⎪

⎨

⎪

⎩

1 if area 𝑖 is the source of the flow
corresponding to district 𝑘

0 otherwise
• 𝑓𝑙𝑜𝑤𝑖𝑗𝑘 ≥ 0, flow from area 𝑖 to area 𝑗 in district 𝑘.

The model assigns to each district a source area (represented by
ariables 𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑘), from which a flow (modeled by variables 𝑓𝑙𝑜𝑤𝑖𝑗𝑘)
riginates.

The limit on the districts’ diameter, on the other hand, is imposed
y forbidding that two areas having a shortest-path distance (𝑑𝑖𝑠𝑡𝑆𝑃𝑖𝑗 )
reater than the maximum diameter (𝑑𝑖𝑎𝑚) can belong to the same
istrict. Let 𝐸 ⊆ 𝐸 be the set of edges (𝑖, 𝑗) ∶ 𝑑𝑖𝑠𝑡𝑆𝑃𝑖𝑗 > 𝑑𝑖𝑎𝑚. The

constraints corresponding to these requirements are presented in the
following.

𝑓𝑙𝑜𝑤𝑖𝑗𝑘 ≤ (|𝑁| − 1) ⋅ 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 ∀𝑘 = 1,… , 𝐾, (𝑖, 𝑗) ∈ 𝐸 (6)

𝑓𝑙𝑜𝑤𝑖𝑗𝑘 ≤ (|𝑁| − 1) ⋅ 𝑎𝑠𝑠𝑖𝑔𝑛𝑗𝑘 ∀𝑘 = 1,… , 𝐾, (𝑖, 𝑗) ∈ 𝐸 (7)
∑

𝑖∈𝑁
𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑘 = 1 ∀𝑘 = 1,… , 𝐾 (8)

𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑘 ≤ 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 ∀𝑘 = 1,… , 𝐾, 𝑖 ∈ 𝑁 (9)
|𝑁| ⋅ 𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑘 +

∑

𝑗∶(𝑗,𝑖)∈𝐸
𝑓𝑙𝑜𝑤𝑗𝑖𝑘 ≥

∑

𝑗∶(𝑖,𝑗)∈𝐸
𝑓𝑙𝑜𝑤𝑖𝑗𝑘 + 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 ∀𝑘 = 1,… , 𝐾, 𝑖 ∈ 𝑁 (10)

𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 + 𝑎𝑠𝑠𝑖𝑔𝑛𝑗𝑘 ≤ 1 ∀𝑘 = 1,… , 𝐾, (𝑖, 𝑗) ∈ 𝐸 (11)

𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑘 ∈ {0, 1} ∀𝑘 = 1,… , 𝐾, 𝑖 ∈ 𝑁 (12)
𝑓𝑙𝑜𝑤𝑖𝑗𝑘 ≥ 0 ∀𝑘 = 1,… , 𝐾, (𝑖, 𝑗) ∈ 𝐸 (13)

Constraints (6) and (7) specify that an edge is part of a district’s
network-flow model only if both its origin and destination areas belong
to the district, respectively. Next, constraints (8) and (9) define the
source of a district’s flow: each district can have only one source area
which has to belong to the district. Flow conservation is enforced by
constraints (10). In general, for each area and district, all the in-flow
(i.e., flow generated in the area plus flow entering the area from the
edges in the district’s network-flow model) must be greater than or
equal to the out-flow (i.e. flow leaving the area through the edges in
the district’s network-flow model plus flow consumed in the area). In
particular, the district’s source area (i.e. 𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑘 = 1) generates |𝑁|

low unit (i.e., an upper bound to the possible size of the district;
ee the first term of the left-hand side of the inequality). Also, each
rea in the district (i.e., 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 = 1) consumes flow unit (see the
econd term of the right-hand side of the inequality). Therefore, to
e satisfied, constraints (10) requires all the areas belonging to the
istrict to be connected directly or indirectly to the source areas, using
nly edges belonging to the district’s network-flow model (as specified
y constraints (6) and (7)), so that they can receive the flow unit
onsumed. The diameter conditions are enforced by constraints (11)
hat ensure two areas cannot belong to the same district if their shortest-
ath distance is greater than the maximum diameter. Finally, (12) and
13) specify the existence conditions for variables 𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑘 and 𝑓𝑙𝑜𝑤𝑖𝑗𝑘,
espectively.

.4. Fairness criteria and objective

Given a district configuration, the crime risk and population distri-
ution attributes can be used to calculate the patrol service goal for an
rea 𝑖, the police contact goal for a population group 𝑝, and the risk
xposure goal for a district 𝑘:

𝑔𝑜𝑎𝑙𝑖 = (𝐾 ⋅ 𝑐𝑎𝑝) ⋅
𝑟𝑖𝑠𝑘𝑖

∑ ∀𝑖 ∈ 𝑁 (14)
4

𝑗∈𝑁 𝑟𝑖𝑠𝑘𝑗 i
𝑔𝑜𝑎𝑙𝑝 = (𝐾 ⋅ 𝑐𝑎𝑝) ⋅
∑

𝑖∈𝑁 𝑝𝑜𝑝𝑖𝑝
∑

𝑖∈𝑁
∑

𝑞∈𝑃 𝑝𝑜𝑝𝑖𝑞
∀𝑝 ∈ 𝑃 (15)

𝑔𝑜𝑎𝑙𝑘 = 1
𝐾

⋅
∑

𝑖∈𝑁
𝑔𝑜𝑎𝑙𝑖 ⋅ 𝑟𝑖𝑠𝑘𝑖 ∀𝑘 = 1,… , 𝐾 (16)

The patrol service goal (14) proportionally distributes the total pa-
trolling time capacity available (i.e., 𝐾 ⋅𝑐𝑎𝑝) among the areas, according
o their risk. Similarly, the police contact goal (15) proportionally
ssigns the total patrolling time capacity among the population groups
ccording to their size. These goals ensure that riskier areas and larger
opulation groups have higher goal values. Finally, the risk exposure
oal (16) equally divides the total risk exposure (i.e., ∑𝑖∈𝑁 𝑟𝑖𝑠𝑘𝑖 ⋅𝑔𝑜𝑎𝑙𝑖)
mong the districts. The rationale is that a fair district configuration
hould be homogeneous across the districts in terms of risk exposure.

Given a solution and its specific time allocation (i.e., variables
𝑖𝑚𝑒𝑖𝑘), the levels corresponding to the goals above can be computed
s:

𝑙𝑒𝑣𝑒𝑙𝑖 =
𝐾
∑

𝑘=1
𝑡𝑖𝑚𝑒𝑖𝑘 ∀𝑖 ∈ 𝑁 (17)

𝑒𝑣𝑒𝑙𝑝 =
∑

𝑖∈𝑁

(

𝑝𝑜𝑝𝑖𝑝
∑

𝑞∈𝑃 𝑝𝑜𝑝𝑖𝑞

𝐾
∑

𝑘=1
𝑡𝑖𝑚𝑒𝑖𝑘

)

∀𝑝 ∈ 𝑃 (18)

𝑙𝑒𝑣𝑒𝑙𝑘 =
∑

𝑖∈𝑁
𝑟𝑖𝑠𝑘𝑖 ⋅ 𝑡𝑖𝑚𝑒𝑖𝑘 ∀𝑘 = 1,… , 𝐾 (19)

The patrol service level (17) is the total patrolling time received by
an area across all districts. The police contact level (18) is the total
patrolling time received by a group assuming that, within one area,
the patrolling time is distributed among the population groups propor-
tionally to their size (i.e., equally among the individuals). Finally, the
risk exposure level of a district (19) is the sum of the risk-weighted
patrolling time allocated to the patrolled areas.

The fairness criteria values are calculated from the levels above and
their corresponding goals:

𝑊 𝑇 ≤
𝑙𝑒𝑣𝑒𝑙𝑖
𝑔𝑜𝑎𝑙𝑖

∀𝑖 ∈ 𝑁 (20)

𝑊 𝑅 ≤
𝑙𝑒𝑣𝑒𝑙𝑝
𝑔𝑜𝑎𝑙𝑝

∀𝑝 ∈ 𝑃 (21)

𝑊 𝑊 ≤
𝑙𝑒𝑣𝑒𝑙𝑘
𝑔𝑜𝑎𝑙𝑘

∀𝑘 = 1,… , 𝐾 (22)

In particular, the territorial fairness criterion (𝑊 𝑇 ) is the minimum
ratio across all the areas of their patrol service level and their goal (20);
the racial fairness (𝑊 𝑅) is the minimum ratio across all the population
roups of their police contact level and their goal (21); finally, the
orkload fairness (𝑊 𝑊 ) is the minimum ratio across all the districts
f their risk exposure level and their goal (22). As all the criteria are
imensionless ratios based on a goal value, they are comparable.

The decision-maker can express their preferences on the fairness
riteria by setting the value of the preference weights 𝑤𝑇 , 𝑤𝑅, and 𝑤𝑊 ,
uch that 𝑤𝑇 , 𝑤𝑅, 𝑤𝑊 ≥ 0 and 𝑤𝑇 + 𝑤𝑅 + 𝑤𝑊 = 1. The total fairness
alue, 𝑊 , is computed as the preference-weighted sum of the fairness
riteria:

= 𝑤𝑇 ⋅𝑊 𝑇 +𝑤𝑅 ⋅𝑊 𝑅 +𝑤𝑊 ⋅𝑊 𝑊 (23)

.5. Formulation

The complete formulation can now be provided.

max 𝑊

𝐅𝐚𝐢𝐫𝐧𝐞𝐬𝐬 𝐂𝐫𝐢𝐭𝐞𝐫𝐢𝐚 𝐚𝐧𝐝 𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞 ∶ (17)–(23)
𝐏𝐚𝐫𝐭𝐢𝐭𝐢𝐨𝐧𝐢𝐧𝐠 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬 ∶ (1)–(5)

𝐨𝐧𝐭𝐢𝐠𝐮𝐢𝐭𝐲 𝐚𝐧𝐝 𝐃𝐢𝐚𝐦𝐞𝐭𝐞𝐫 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬 ∶ (6)–(13)

The model maximizes the total fairness value, subject to partition-
ng, contiguity, and diameter constraints. The Pareto frontier can be
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obtained by solving the model for different configurations of the values
of 𝑤𝑇 , 𝑤𝑅, and 𝑤𝑊 .

Let 𝐾 be the number of districts to be defined, |𝑁| be the number
of areas, |𝑃 | be the number of population groups, and |𝐸| be the
number of edges. Then, the model includes: (2𝐾 |𝑁|) binary variables,
(𝐾 |𝑁|+𝐾 |𝐸|+|𝑁|+|𝑃 |+𝐾+4) real variables and (3 |𝑁|+3 |𝑁|𝐾+4𝐾+
2 |𝐸|𝐾 + 2 |𝑃 | + 𝐾 |

|

|

𝐸|

|

|

) constraints (excluding the existence conditions
on the variables).

As previously stated, the model is built upon the one in Libera-
tore et al. [24]; however, it presents significant differences that are
highlighted in the following. (i) It considers three fairness criteria
(i.e., territorial, racial, and workload) instead of just two. (ii) Contiguity
is imposed by a set of flow constraints instead of using a Minimum
Spanning Tree model; this results is a smaller and easier to solve model.
(iii) It does not differentiate between the travel time between areas
and patrolling time, as the travel time is still patrolling time in terms
of crime deterrence. (iv) A maximum district diameter is explicitly
imposed. (v) It provides a clear definition for the criteria goals; this
was left to the decision-maker in Liberatore et al. [24]. (vi) The model
maximizes the linear combination of the minimum fairness criteria
values. The objective function in Liberatore et al. [24] is based on
the Compromise Programming paradigm and minimized the convex
combination of the scaled distances of the fairness criteria to their
ideal. The new objective function is easier to interpret and is more
computationally efficient, as it does not require calculating the ideal
and the anti-ideal values of the criteria.

3. Computational analysis

This section introduces the analysis that studies the impact of an
instance’s characteristics and the decision-maker preferences on the
problem solvability and the trade-off between the fairness criteria.
Therefore, the goal of the computational analysis is to tackle the
following research questions:

RQ1 What are the factors that affect the solvability and the solution
time of an instance?

RQ2 What are the factors that affect the trade-off between the fairness
criteria?

The dataset used in the experiments is presented in Section 3.1. RQ1
and RQ2 are addressed in Section 3.3 and Section 3.4, respectively,
where the analysis conducted and the insights obtained are discussed
and presented in detail.

3.1. Dataset

The dataset used in the analysis is generated as described in Ap-
pendix A and is comprised of 30 instances. All the instances have the
same graph topology (i.e., 100 nodes and 267 edges, represented in
Figure 5, Supplementary Materials) and we only consider two popu-
lations: a majority and a minority one. This has been done for the
sake of simplicity and to limit the number of confounding factors, as
the analysis focuses on the fairness criteria and the following instance
characteristics: minority population ratio, Gini index, and minority
population/crime risk correlation. In fact, these variables provide a
description of the population group distributions and their relationship
to the crime distribution, which are the main characteristics affecting
the racial fairness criterion. The population ratio expresses how large
the minority population is in comparison to the majority one; therefore,
this attribute determines the total minority population. The Gini index
is an evenness measure of segregation that can be used to measure
residential segregation between a majority and a minority population.
It varies between 0.0 and 1.0, where 1.0 indicates maximum segrega-
tion. It has been chosen over other measures because it satisfies the
5

Table 2
Summary statistics for the computational results.

primal dual gap time (s) solved

Min. 0.2166 0.2166 0.0001 0.276 –
1st Qu. 0.8674 0.8861 0.0011 0.9168 –
Median 0.9524 0.9733 0.0066 2.5575 –
Mean 0.9274 0.9377 0.0199 172.5539 0.4044
3rd Qu. 1.0000 1.0000 0.0236 21.7490 –
Max. 1.5348 1.5348 0.2156 2675.8470 –
St. Dev. 0.1941 0.1929 0.0322 460.8884 –

four criteria established by James and Taeuber [37]: organizational
equivalence, size invariance, transfers, and composition invariance. Its
formula is provided in Eq. (A.2), Appendix A.2. Finally, the correlation
between the minority population and the crime risk distribution mea-
sures the strength of the relationship between the risk of crime and the
absolute size of the minority population in an area.

Again, to reduce the number of confounding factors in the exper-
iments carried out the number of districts is fixed to 𝐾 = 5. The
reference weights 𝑤𝑇 , 𝑤𝑅, and 𝑤𝑊 , can take the following values:

{0, 0.25, 0.5, 0.75, 1}. Given that 𝑤𝑇 +𝑤𝑅+𝑤𝑊 = 1, these values result in
5 feasible combinations of preference weights. All in all, 450 different
nstances are solved.

.2. Implementation and instance solution

The code that processes the data and solves the optimization model
s programmed in Python 3 [38]. The all-pair shortest-path distance ma-
rix, 𝑑𝑖𝑠𝑡𝑆𝑃𝑖𝑗 is computed by the Floyd–Warshall algorithm provided in
he SciPy library [39]. Finally, the mathematical programming model
s implemented in OR-Tools [40] and solved using Gurobi 9.1.2 (64-
it Linux) [41]. All the experiments are run on a Dell Precision 5540,
quipped with Intel® Core™ i9-9880H CPU @2.30 GHz × 16 and 16 GB
AM. The standard configuration of Gurobi is used, which applies
ulti-threading and a relative MIP gap tolerance of 0.0001. A CPU time

imit of 3600s is set on all the optimization processes.
The dataset and all the source code are freely available at [42].
For the sake of space, the full computational results are reported

n Table 1 (Supplementary Materials), while a summary is given in
able 2. The 𝑔𝑎𝑝 statistics include only instances not solved within
he time limit, while the computational time statistics include only the
nstances solved to optimality.

.3. RQ1: Solvability and solution time

RQ1 concerns the solvability and the solution time. In the following,
or each of the above, descriptive statistics are provided and an appro-
riate regression model is fit to understand the impact of the following
ttributes thereon:

• Minority population ratio (𝑝𝑟𝑜𝑝).
• Gini index (gini).
• Correlation between the minority population and the crime risk

distributions (corr).
• Territorial and racial fairness preference (𝑤𝑇 ) and (𝑤𝑅) respec-

tively. Note that the workload fairness preference, (𝑤𝑊 ) is omit-
ted from the models as it can be expressed as the linear combina-
tion of (𝑤𝑇 ) and (𝑤𝑅).

• Descriptive statistics for the risk distribution, i.e., minimum
(𝑚𝑖𝑛𝑟), first quantile (𝑞1𝑟), median (𝑚𝑒𝑑𝑟), third quantile (𝑞3𝑟),
maximum (𝑚𝑎𝑥𝑟), median absolute deviation (𝑚𝑎𝑑𝑟), standard
deviation (𝑠𝑑𝑟) and variance (𝑣𝑎𝑟𝑟).

For each regression model, a backward stepwise procedure with BIC
criterion is used to select the best subset of variables. The final models
are provided in Tables 2 and 3 (Supplementary Materials).
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Table 3
Summary statistics for the trade-off strength 𝜏 for each pair of
fairness criteria.

𝑊 𝑇 VS 𝑊 𝑅 𝑊 𝑇 VS 𝑊 𝑊 𝑊 𝑅 VS 𝑊 𝑊

Min. 0.00000 0.00000 0.00000
1st Qu. 0.05022 0.00577 0.00000
Median 0.07943 0.02561 0.00209
Mean 0.07559 0.03463 0.01053
3rd Qu. 0.10992 0.05364 0.01139
Max. 0.15517 0.11187 0.08943
St. Dev. 0.04322 0.03196 0.01865

3.3.1. Solvability analysis
Overall 40.44% of the instances are solved to optimality. A logistic

regression model is fit to explain the probability of an instance being
solved to optimality. The resulting model includes 𝑤𝑇 , 𝑤𝑅, 𝑚𝑎𝑑𝑟, and
𝑠𝑑𝑟. Both the fairness preference weights have negative coefficients,
indicating that they both impact negatively the probability of solving
an instance to optimality. However, the territorial fairness coefficient
is five times higher than the racial fairness’; as these weights are
expressed on the same scale, this indicates that increasing the territorial
fairness preference is what reduces the likelihood of solving a problem
to optimality the most. On the other hand, both measures of risk
spread have a positive coefficient. Therefore, it can be inferred that
the instances with higher variability in terms of crime risk are easier to
solve.

3.3.2. Solution time analysis
According to Table 2 the average solution time of the optimally

solved instances is 172.55s and the standard deviation is 460.89. An
exponential regression model2 is fit to explain the solution time. The
model includes 𝑤𝑇 , 𝑚𝑖𝑛𝑟, 𝑚𝑒𝑑𝑟, and 𝑚𝑎𝑑𝑟. All the variables have positive
coefficients, except for 𝑚𝑒𝑑𝑟. Therefore, the higher the decision-maker
preference for the territorial fairness, the minimum risk value, and
the risk median absolute deviation, the longer it will take to solve
an instance. On the other hand, a higher median risk corresponds to
instances with lower computational time.

3.4. RQ2: Fairness criteria trade-off

RQ2 concerns the trade-off between the fairness criteria. In par-
ticular, the focus is on quantifying the type of interaction between
each pair of criteria and on understanding the impact of an instance’s
characteristics thereon. To this end, an ad-hoc quantitative measure of
bi-objective trade-off strength, 𝜏, is developed (see Appendix B for its
efinition). A strong trade-off implies that the frontier is ‘far’ from the
deal solution and the preferences of the decision-maker have a great
mpact on the objectives’ values in the final solution. On the other
and, a weak trade-off implies that the frontier is ‘close’ to the ideal
olution and that the preference weights do not have a large impact on
he objectives’ values, as long as they are strictly positive. In fact, in
his scenario, a preference of zero in a fairness criterion would result
n the worst possible value thereof, while a positive one, albeit very
mall, would provide an ideal (or almost-ideal) value with no (or little)
mpact on the other criterion’s value.

.4.1. Descriptive analysis of the trade-off strength
For every instance and fairness criteria pair (i.e., 𝑊 𝑇 VS 𝑊 𝑅, 𝑊 𝑇

S 𝑊 𝑊 , and 𝑊 𝑅 VS 𝑊 𝑊 ) a trade-off strength value is computed using
he solutions obtained. For the full list of results please see Table 4
Supplementary Materials), while summary statistics are provided in
able 3. According to them, the trade-off among the criteria is very
eak, with values ranging from 0 to 0.16. More in detail, 𝑊 𝑅 VS

2 Time data usually follows an exponential distribution.
6

f

Table 4
Coefficients associated with the instances’ attributes in the trade-off
strength 𝜏 regression models.

𝑊 𝑇 VS 𝑊 𝑅 𝑊 𝑇 VS 𝑊 𝑊 𝑊 𝑅VS 𝑊 𝑊

𝑝𝑟𝑜𝑝 – −0.7647 −0.8379
gini – 1.4480 1.6911
corr 1.0067 – –

A dash (–) indicates that the coefficient is not statistically significant.

𝑊 𝑊 scores on average 0.01, indicating that the frontier is generally
almost right-angled and that the trade-off between the criteria is almost
non-existent. On the other hand, the trade-off between 𝑊 𝑇 and 𝑊 𝑊

is slightly more nuanced but still very weak, as the average 𝜏 is
.03. Finally, the average 𝜏 for 𝑊 𝑇 and 𝑊 𝑅 is 0.08, indicating that
heir trade-off is even more nuanced, albeit still weak. From these
bservations, we can derive the following:

• The weight for the workload fairness criterion, 𝑤𝑊 , should be
a positive value close to zero so that the model can take it into
account and avoid assigning an anti-ideal value. In fact, according
to the above, disregarding this criterion leads to an anti-ideal
value, while any other preference value leads to the ideal or an
almost-ideal value, without any detriment to the other criteria.

• The preference of the decision-maker has a stronger effect on the
values of the territorial and racial fairness criteria (𝑊 𝑇 and 𝑊 𝑅,
respectively).

• Given the low value of 𝜏 in all the instances, the overall impact
of the decision-maker is limited, as long as all the preference
weights are strictly positive to avoid having their values drop to
the anti-ideal.

3.4.2. Regression model on the trade-off strength
As 𝜏 is a ratio, a beta regression model has been fit on the trade-

off strength value for each pair of fairness criteria. Also, as 𝜏 ∈ [0, 1],
rior to fitting the model its values have been transformed as suggested
y Smithson and Verkuilen [43]:

′ =
𝜏 ⋅ (𝑁 − 1) + 𝑠

𝑁
(24)

where 𝑁 is the number of values (i.e., the number of instances, that
s, 30 in the current dataset) and 𝑠 is a constant between 0 and 1; the

value recommended by Smithson and Verkuilen, 𝑠 = 0.5, has been used.
The final regression models are provided in Tables 5–7 (Supplementary
Materials).

By observing the coefficients of the significant independent vari-
ables (𝑝-value < 0.05) it is possible to draw insights into the impact of
n instance’s characteristics on the trade-off strength. In fact, significant
ariables with positive coefficients imply that the higher their value,
he more impactful the preferences of the decision-maker. On the
ther hand, a negative coefficient suggests that the preferences of the
ecision-maker have a smaller impact on the fairness values of the final
olution. The coefficients are summarized in Table 4. The proportion of
he minority population on the majority (𝑝𝑟𝑜𝑝) has a negative impact
n the strength of the trade-offs involving the workload fairness criteria
𝑊 𝑊 ). This suggests that the greater the relative size of the minority
opulation, the less significant the preferences of the decision-maker
n terms of workload fairness. On the other hand, the Gini index (gini)
as got the opposite effect. The higher its value (i.e., the higher the
egregation between the majority and the minority population), the
igher the impact of the decision-maker on the final solution in terms
f workload. In summary, if a territory has a large and non-segregate
inority population, then the effect of the preferences of the decision-
aker on the workload is minimal. On the other hand, the correlation

etween the minority population and the crime risk (corr) is the only
ttribute that affects the trade-off between the territorial and the racial

𝑅
airness criteria (𝑊 𝑇 VS 𝑊 ). As the associated coefficient is positive,
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it can be deduced that a higher correlation gives more importance
to the preferences of the decision-maker. This is expected, as a high
correlation implies that high crime risk corresponds to minority popula-
tion presence, and vice-versa. Therefore, assigning patrolling resources
to high-crime areas implies a high police exposition for the minority
population.

4. Case study: Madrid central district

The efficacy of the model is validated on the Madrid Central District
dataset and compared to the solution currently in use by the SPN.
This dataset was first introduced in [9]. However, the present ver-
sion underwent some minor adjustments in the graph topology, which
are highlighted below. For the sake of completeness, the rest of the
parameters are summarized below.

4.1. Dataset

The set of areas 𝑁 is comprised of 111 census districts (see Figure
a, Supplementary Materials), which are represented by their centroids.
wo areas 𝑖 and 𝑗 are connected by an edge (𝑖, 𝑗) if the corresponding

census districts share part of their perimeter. As a result, graph 𝐺
is comprised of 111 areas and 314 edges, as illustrated in Figure 1b
(Supplementary Materials).

Parameters 𝑑𝑖𝑠𝑡𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐸, is computed as the great-circle
distance between the areas’ centroids in meters, i.e., the length of the
arc linking the two points on a sphere.

The dataset provides three crime risk distributions, associated with
three specific shifts:

• SATT3: Saturday, 10/13/2012, night shift (10PM–8AM).
• SUNT1: Sunday, 10/14/2012, morning shift (8AM–3PM).
• MONT2: Monday, 10/15/2012, afternoon shift (3PM–10PM).

The heat maps corresponding to each shift are represented in Figure
2 (Supplementary Materials).

Parameter 𝑟𝑖𝑠𝑘𝑖 is the number of reported thefts occurred in area 𝑖
during the shifts above. The patrolling time capacity for each district,
𝑐𝑎𝑝, is defined as the duration of the shift in minutes, i.e., 600 for
SATT3 and 420 for SUNT1 and MONT2. Concerning the number of
districts, the value considered is 𝐾 = 6. In fact, the standard patrolling
configuration for the Central District of Madrid adopted by the SNP
(see Figure 3, Supplementary Materials) partitions the territory into six
patrolling districts, according to the administrative wards, which are
then assigned to multiple officers.

The population data is extracted from the 2011 Spanish Cen-
sus [44]. The data provides the number of people living in each census
district according to their region of birth: (a) Spain; (b) other EU coun-
try; (c) European non-EU country; (d) Africa; (e) Caribbean, Central and
South America; (f) North America; (g) Asia; (h) Oceania. Therefore,
in the case study, the population group set 𝑃 is comprised of eight
elements, one for each of the above regions. The distribution of each
population group is graphically represented in Figure 4 (Supplementary
Materials).

The maximum district diameter, 𝑑𝑖𝑎𝑚, is set to:

𝑑𝑖𝑎𝑚 =
max(𝑖,𝑗)∈𝐸

{

𝑑𝑖𝑠𝑡𝑆𝑃𝑖𝑗
}

√

𝐾
(25)

resulting in 𝑑𝑖𝑎𝑚 = 1156.51 meters. These values have been checked
and approved by an SNP expert which determined that this diameter
value allows the agents patrolling a district to promptly intervene in
case of emergency.

Finally, for the preference weights 𝑤𝑇 , 𝑤𝑅, and 𝑤𝑊 , the following
value have been considered: {0, 0.25, 0.5, 0.75, 1}. Given that 𝑤𝑇 +𝑤𝑅 +
𝑤𝑊 = 1, these values result in 15 feasible combinations of preference
7

weights.
4.2. Results and discussion

Overall, 45 instances are solved and the results are illustrated in
Tables 8–10 (Supplementary Materials), while Tables 11–13 (Sup-
plementary Materials) report the solution values corresponding to the
standard patrolling configuration adopted by the SNP (Figure 3, Sup-
plementary Materials). As the standard patrolling configuration only
provides the partition of the graph into patrolling districts but not
the patrolling time assigned to each area, the solutions have been
computed by fixing the values of the variables 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑘 according to
the configuration and then solving the model. All the instances were
solved to optimality.

Fig. 1 illustrates the trade-offs between pairs of fairness criteria for
the case study. In particular, for each shift (i.e., SATT3, SUNT1, and
MONT2) and pair of fairness criteria, a line chart of the criteria values
is represented (as a continuous line), where each point represents the
fairness values of a specific instance. To emphasize the relation between
the incumbent pair of fairness criteria, only the solutions where the
sum of their corresponding preference weights is equal to one are
represented (e.g., the 𝑊 𝑇 vs 𝑊 𝑅 charts include only the fairness values
of the instances where 𝑤𝑇 + 𝑤𝑅 = 1). Each plot also displays the
line chart corresponding to the standard patrolling configuration (as
a dashed line).

By observing the plots, it is possible to identify patterns. First, all
the trade-offs that involve the workload fairness criterion (𝑊 𝑊 ) are
not strong, while the trade-off between 𝑊 𝑇 and 𝑊 𝑅 is nuanced and,
therefore, stronger. This result matches the conclusions obtained in
Section 3.4.

To compare the solutions obtained by the model to that used by the
SNP it is necessary to introduce the concept of dominance. Graphically,
a plot dominates another if the latter is subjacent to the former. When
the plots represent solution values that must be maximized (as in this
case), this implies that the dominating plot represents a solution set
that is better than the dominated one. From the plots in Fig. 1, it can
be seen that the model’s solutions (continuous line) always dominate
the standard configuration (dashed line), except for SATT3 and 𝑊 𝑅 vs
𝑊 𝑊 , where they achieve equivalent solutions. All in all, these results
validate the usefulness of the model in obtaining solutions with higher
levels of effectiveness and fairness in a real-world context.

5. Conclusions

This paper introduces the first police districting model that includes
territorial, racial, and workload fairness criteria. The model is empiri-
cally tested on a novel instance dataset and is applied to a real-world
dataset about the Central District of Madrid, Spain. A trade-off analysis
is carried out to understand the extent to which the fairness criteria
interact with each other. After analyzing the results of the experiments,
the following insights can be deduced:

• 40.44% of the dataset instances solved to optimality. However,
the average gap for the non-optimal solution is 0.0199, indicating
that the solution values are close to the optimal.

• Problem instances with a high crime risk spread are more difficult
to solve, require more solution time, and result in higher solution
gaps compared to instances with lower crime risk variability.

• A high territorial fairness preference weight negatively impacts
the solvability and solution time of an instance.

• There exists a trade-off between the territorial and the racial
fairness criteria. However, the trade-off strength is low, meaning
that almost-ideal solutions can be achieved as long as both criteria
are accounted for in the model.

• Optimal/semi-optimal workload fairness can be achieved without
any detriment in the others, as long as its preference weight
is strictly positive. In fact, if the preference weight is zero, the

workload fairness value drops to its anti-ideal. This illustrates
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Fig. 1. Fairness criteria trade-offs representation. Model solutions are depicted with a circle and connected by continuous lines. The values of the standard patrolling configuration
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the importance of including the workload criteria in patrolling
models. It greatly benefits the agents without any detriment to the
other stakeholders, while its omission would result in a significant
workload imbalance across the districts.

• Therefore, it is recommendable that all the preference weights
are strictly positive, with the workload fairness preference set to
a value close to zero, as higher value would not have a major
impact on the solution value.

• On the other hand, there is a strong trade-off between territorial
and racial fairness. Also, this trade-off is stronger in instances
where the minority population distribution is highly correlated
to the crime risk distribution. In these scenarios, the preferences
of the decision-maker really do have an impact on the fairness
values of the patrolling configurations.

• A comparison between solutions obtained by the model and the
districting configuration currently adopted by the SNP shows that
the former outperforms the latter for all the criteria considered.

Despite the encouraging results, there is much that can be done to
vercome the limits of the present study. The model proposed repre-
ents an abstraction of the patrolling operations that are carried out
very day. For instance, it does not include all the operational aspects
elated to police districting and patrolling, such as the deployment of
pecial police forces and the interactions with other public security
odies (e.g., Civil Guard and Local Police in Spain). Including these
lements would make the model more realistic, applicable, and would
enefit the analysis. Also, the model could be extended to account
or the interests of a larger number of stakeholders (e.g., taxpayers
nd victims of crime). Finally, the model assumes that the distribu-
ion of the crime risk is deterministic and known a priori. However,
hen the risk measure is defined it is important to carefully consider
ll the potential biases involved. For example, police-reported crimes
e.g., originated from traffic stops) enforce conscious/unconscious bi-
ses rooted in the police agents (e.g., racial bias). On the other hand,
eported crimes are affected by selection biases driven by unequal
rime reporting rates across socioeconomic groups and geographical
reas [45,46]. These biases could lead to further victimization, as
8

well as to over/under-reporting of specific areas, depending on their
socioeconomic characteristics. In the model presented in this paper,
bias effects are dampened by the presence of the racial fairness cri-
terion, which favors solutions that maximize equity across population
groups in terms of police exposition, regardless of the distribution of the
crime risk. This limitation - which is shared among data-driven policing
decision support tools and is an ongoing area of research [47,48] -
could be overcome in a number of ways, including de-biasing the data
used in the definition of the crime risk measure, or by considering
uncertainty in the risk of crime. This would require formulating the
model as a stochastic program. This is left as future research.

We hope that this work will inspire other researchers to extend the
literature on social fairness in police operations and, more in general,
in all the possible decision-making applications found in policing and
in the public sector.
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ppendix A. Dataset construction

This section explains in detail how the Police Districting Problem
ataset has been built. In summary, the procedure randomly generates
ne graph topology based on Voronoi diagrams. Then, the population
nd risk distributions are defined according to three dimensions: minor-
ty population relative size, Gini index, and correlation between crime
isk and minority population. To have a dataset that is representative
f this three parameters space, 1000 distributions are generated, which
re then clustered into 30 final instances that constitute the dataset.
his procedure is detailed in the following. The final dataset and the
ode are freely available at [42].

.1. Graph topology

Given a number of nodes 𝑁 , the procedure used to build the graph
s summarized in the following:

1. Randomly generate 𝑁 points on a square bidimensional plane,
using a uniform distribution U(0,100) for both coordinates. Each
point corresponds to a node in the graph.

2. Use the point distribution to partition the square plane into cells
according to its Voronoi diagram. Therefore, each node 𝑖 has an
associated cell and 𝑎𝑟𝑒𝑎𝑖.3

3. The edges are obtained from the Delaunay triangulation of the
set of points, that is, the dual graph of the Voronoi diagram. The
distance between each pair of nodes (𝑖, 𝑗), 𝑑𝑖𝑠𝑡𝑖𝑗 , is computed as
the Euclidean distance between the corresponding points.

Figure 5 (Supplementary Materials) shows the topology of the graph
sed in the final dataset.

.2. Population and crime risk distributions

All the dataset instances consider two populations (|𝑃 | = 2), a ma-
ority (population 1) and a minority one (population 2). Given a total
ajority population size, 𝑃𝑂𝑃 1 > 0, and a proportion, 0 ≤ 𝑝𝑟𝑜𝑝 ≤ 1, the

total minority population, 𝑃𝑂𝑃 2, is equal to (𝑝𝑟𝑜𝑝 ⋅ 𝑃𝑂𝑃 1). Therefore,
the total population 𝑃𝑂𝑃 =

∑

𝑝∈𝑃 𝑃𝑂𝑃 𝑝 equals
[

(1 + 𝑝𝑟𝑜𝑝) ⋅ 𝑃𝑂𝑃 1
]

.
Also, the user can specify the desired values for the Gini index, Gini,
nd the Pearson’s correlation between the crime risk (𝑟𝑖𝑠𝑘) and the mi-
ority population distributions (𝑝𝑜𝑝2), corr. In particular, the Gini index
aries between 0 and 1, representing no-segregation and completely
egregated conditions, respectively.

It is possible to generate the population groups’ and the crime risk’s
istribution data (i.e., 𝑝𝑜𝑝𝑖𝑝 and 𝑟𝑖𝑠𝑘𝑖, ∀𝑖 ∈ 𝑁, 𝑝 ∈ 𝑃 , see Section 2.1
nd Table 1) by solving the following non-linear program.

min
𝑜𝑝,𝑟𝑖𝑠𝑘

𝑍(𝑝𝑜𝑝, 𝑟𝑖𝑠𝑘) = |

|

|

Gini − Gini(𝑝𝑜𝑝)||
|

+ |

|

corr − corr(𝑟𝑖𝑠𝑘, 𝑝𝑜𝑝2)|| (A.1)

𝑠.𝑡. Gini(𝑝𝑜𝑝) =

∑

𝑖∈𝑁
∑

𝑗∈𝑁

[

𝑝𝑜𝑝𝑖⋅𝑝𝑜𝑝𝑗⋅
|

|

|

|

𝑝𝑜𝑝𝑖2
𝑝𝑜𝑝𝑖⋅

− 𝑝𝑜𝑝𝑗2
𝑝𝑜𝑝𝑗⋅

|

|

|

|

]

2𝑃𝑂𝑃 2 𝑃𝑂𝑃 2
𝑃𝑂𝑃 (1 − 𝑃𝑂𝑃 2

𝑃𝑂𝑃 )
(A.2)

3 Although it is not used in this study, the area of the nodes is provided in
he dataset for future uses.
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∑

𝑖∈𝑁
𝑝𝑜𝑝𝑖𝑝 = 𝑃𝑂𝑃 𝑝 ∀𝑝 ∈ 𝑃 (A.3)

∑

𝑖∈𝑁
𝑟𝑖𝑠𝑘𝑖 = 1 (A.4)

∑

𝑝∈𝑃
𝑝𝑜𝑝𝑖𝑝 ≥ 1 ∀𝑖 ∈ 𝑁 (A.5)

𝑟𝑖𝑠𝑘𝑖 ≥ 10−4 ∀𝑖 ∈ 𝑁 (A.6)
𝑝𝑜𝑝𝑖𝑝 ≥ 0 ∀𝑖 ∈ 𝑁, 𝑝 ∈ 𝑃 (A.7)

Eq. (A.1) is the model’s objective function, which minimizes the
absolute distance of the Gini index and of the crime risk/minority
population correlation to their respective desired values. Constraint
(A.2) computes the Gini index [37] for any feasible value of 𝑝𝑜𝑝. Note
that 𝑝𝑜𝑝𝑖⋅ =

∑

𝑝∈𝑃 𝑝𝑜𝑝𝑖𝑝. Next, constraints (A.3) establish that the sum
of any population group across the areas must equal its given total.
Similarly, constraint (A.4) imposes that the sum of the areas’ risk
must equal one. Therefore, the risk measure produced by the program
can be interpreted as a probability. Constraints (A.5) enforce that the
population in any area must be at least one. Finally, constraints (A.6)
and (A.7) define the existence conditions for the variables 𝑟𝑖𝑠𝑘 and 𝑝𝑜𝑝,
respectively, as well as their lower bounds.

The program above is non-linear and is solved using Sequential
Least Squares Programming, which provides a locally optimal solution,
initialized using randomly-generated values for 𝑝𝑜𝑝 and 𝑟𝑖𝑠𝑘. Also, vari-
able 𝑝𝑜𝑝 is continuous, which results in the population taking fractional
values. These issues are addressed in the following subsection, where
the complete instances generation procedure is presented.

A.3. Instances generation

An instance includes all the parameters that describe the topology
of the graph, as well as the risk and the population distribution. The
former is obtained as illustrated in Appendix A.1. On the other hand,
the latter is generated according to Algorithm 1.

Algorithm 1 solveNLP procedure.
Input: 𝑝𝑟𝑜𝑝,Gini, corr, 𝑃𝑂𝑃 , 𝑃𝑂𝑃 1 , 𝑃𝑂𝑃 2
Output: 𝑝𝑜𝑝⋆ , 𝑟𝑖𝑠𝑘⋆

𝑍⋆ ← ∞
𝑟𝑒𝑝𝑠 ← 10
while 𝑟𝑒𝑝𝑠 ≥ 0 do

̂𝑝𝑜𝑝, ̂𝑟𝑖𝑠𝑘 ← argmin {(A.1)–(A.7)}
̂𝑝𝑜𝑝1 ← makeInteger( ̂𝑝𝑜𝑝1 , 𝑃𝑂𝑃 1)
̂𝑝𝑜𝑝2 ← makeInteger( ̂𝑝𝑜𝑝2 , 𝑃𝑂𝑃 2)
if 𝑍( ̂𝑝𝑜𝑝, ̂𝑟𝑖𝑠𝑘) < 𝑍⋆ then

𝑍⋆ , 𝑝𝑜𝑝⋆ , 𝑟𝑖𝑠𝑘⋆ ← 𝑍( ̂𝑝𝑜𝑝, ̂𝑟𝑖𝑠𝑘), ̂𝑝𝑜𝑝, ̂𝑟𝑖𝑠𝑘
if |Gini − Gini( ̂𝑝𝑜𝑝)| < 5 ⋅ 10−3 ∧ |corr − corr( ̂𝑟𝑖𝑠𝑘, ̂𝑝𝑜𝑝2)| < 5 ⋅ 10−3 then

𝑟𝑒𝑝𝑠 ← 0
end if

end if
𝑟𝑒𝑝𝑠 ← 𝑟𝑒𝑝𝑠 − 1

end while

Algorithm 2 makeInteger procedure.
Input: 𝑣𝑒𝑐, 𝑡𝑜𝑡
Output: 𝑟𝑒𝑠
𝑟𝑒𝑠 ← round(𝑣𝑒𝑐)
𝑑𝑖𝑓𝑓 ← 𝑡𝑜𝑡 −

∑

𝑖∈𝑁 𝑣𝑒𝑐
while 𝑑𝑖𝑓𝑓 ≠ 0 do

𝑖𝑛𝑑 ← sample(𝑁, 1)
if 𝑑𝑖𝑓𝑓 > 0 then

𝑟𝑒𝑠𝑖𝑛𝑑 ← 𝑟𝑒𝑠𝑖𝑛𝑑 + 1
𝑑𝑖𝑓𝑓 ← 𝑑𝑖𝑓𝑓 − 1

else if 𝑑𝑖𝑓𝑓 < 0 ∧ 𝑟𝑒𝑠𝑖𝑛𝑑 > 0 then
𝑟𝑒𝑠𝑖𝑛𝑑 ← 𝑟𝑒𝑠𝑖𝑛𝑑 − 1
𝑑𝑖𝑓𝑓 ← 𝑑𝑖𝑓𝑓 + 1

end if
end while

As previously mentioned, the formulation (A.1)–(A.7) is solved us-
ing Sequential Least Squares Programming, that is a local optimization
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Fig. B.2. Sample approximate Pareto frontiers with different strength values. The axes represent the objective functions while the points are solutions on the frontier, drawn using
lines. The values of the points and on the axes are by way of illustration.
algorithm. We initialize it by providing random feasible values for 𝑝𝑜𝑝
and 𝑟𝑖𝑠𝑘. The goal Gini index and correlation values (i.e., Gini and corr,
respectively) might be impossible to achieve or hard to meet, therefore,
solveNLP optimizes the formulation (A.1)–(A.7) at most 10 times and
returns the best solution found. As the formulation is continuous, the
solutions variables are converted to integers by the makeInteger proce-
dure. makeInteger rounds a variable vector and increases or decreases
by one the values of randomly chosen variables of the vector until the
proper total is achieved (see Algorithm 2). Then, the Gini, correlation
and solution values are updated. If the new solution value is lower than
the best one found so far, then the best solution is updated. Also, if its
Gini and correlation values are within a small threshold, 5 ⋅10−3, of the
desired values, then the search is interrupted. Finally, the best solution
found is returned.

Algorithm 3 illustrates how multiple instances can be generated.
The procedure core is the main loop, iterated 𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 times which, for
the sake of the dataset generation, it is set to 1,000 to have a highly
representative sample of all the possible population instances. In the
loop, uniformly random values are assigned to 𝑝𝑟𝑜𝑝, Gini, and corr,
while the majority population, 𝑃𝑂𝑃 1, is a given parameter. Then 𝑃𝑂𝑃 2
and 𝑃𝑂𝑃 can be computed. The procedure solveNLP (Algorithm 1) is
then used to generate a problem instance satisfying as much as possible
the requirements in terms of Gini index and minority/risk correlation.
Without loss of generality, in the dataset it is assumed that the total
majority population, 𝑃𝑂𝑃 1, is 10,000.

Algorithm 3 Batch instance generation procedure.
Input: 𝑛𝑢𝑚_𝑖𝑛𝑠𝑡, 𝑃𝑂𝑃 1
utput: 𝐷
𝑐𝑜𝑢𝑛𝑡 ← 0
𝐷 ← ∅
while 𝑐𝑜𝑢𝑛𝑡 ≤ 𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 do

𝑝𝑟𝑜𝑝 ← 𝑈 (0, 1)
Gini ← 𝑈 (0, 1)
corr ← 𝑈 (0, 1)
𝑃𝑂𝑃 2 ← 𝑝𝑟𝑜𝑝 ⋅ 𝑃𝑂𝑃 1
𝑃𝑂𝑃 ← (1 + 𝑝𝑟𝑜𝑝) ⋅ 𝑃𝑂𝑃
𝑝𝑜𝑝, 𝑟𝑖𝑠𝑘 ← solveNLP(𝑝𝑟𝑜𝑝,Gini, corr, 𝑃𝑂𝑃 , 𝑃𝑂𝑃 1 , 𝑃𝑂𝑃 2)
𝐷 ← 𝐷 ∪ (𝑝𝑜𝑝, 𝑟𝑖𝑠𝑘)
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

end while

A.4. Instances clustering and selection

The procedure presented in Algorithm 3 produces 10,000 instances.
In this last step, the 𝑝 most representative ones are chosen by clus-
tering the instances into 𝑝 groups, using the well-known p-median
10
problem [49]. The p-median problem chooses the 𝑝 most representative
instances (i.e., the medians) by minimizing the sum of the distance of
each instance to its associated median. This method has been chosen to
avoid the uncertainty introduced by other procedures, such as k-means,
and because it clearly identifies a representative for each cluster.

The distance metric chosen is the Euclidean, where each instance
is represented as a triplet of its main attributes, i.e., (𝑝𝑟𝑜𝑝,Gini, corr).
This procedure allows us to obtain a subset of instances that are evenly
spread across the sample parameter space. The final dataset includes
the 𝑝 = 30 most representative instances. Table 14 (Supplementary
Materials) illustrates the instances comprising the dataset and their
corresponding attributes.

Appendix B. Quantitative Measure of Bi-Objective Trade-Off
Strength

In the following, a quantitative measure of bi-objective trade-off
is proposed. This measure provides a quantitative estimation of the
strength of the trade-off between two objective functions. A trade-off
is considered to be strong when the Pareto frontier is distant from the
ideal solution. On the other hand, a trade-off is weak when it is close
to the ideal solution.

It is important to note that the measure provided in this section is
for the max–max case, that is, both objectives need to be maximized.
The measure can be easily extended to the max–min and the min–min
cases; however, a formal presentation of these cases is not provided as
this is outside the scope of the present research.

Let 𝑥 ∈ 𝑋 be the decision variables for a specific problem and let
𝑓1(𝑥) and 𝑓2(𝑥) be two objective functions that should be maximized.
The Pareto frontier can be identified by optimizing the following joint
objective function for all values of 𝜆, with 0 ≤ 𝜆 ≤ 1:

max
𝑥∈𝑋

𝜆 ⋅ 𝑓1(𝑥) + (1 − 𝜆) ⋅ 𝑓2(𝑥) (B.1)

In practice, the frontier is usually approximated by solving the
above for a representative subset of all the possible values of 𝜆. Let
us suppose that the Pareto frontier is approximated using 𝐿 values of
𝜆. This produces exactly 𝐿 solutions, which correspond to 𝐿 points in a
𝑓1 −𝑓2 bi-dimensional space, i.e., 𝑆𝑙 ∀𝑙 = 1,… , 𝐿. These can be plotted
to obtain a graphical representation of the approximate Pareto frontier.

As can be seen in Fig. B.2, approximate Pareto frontiers usu-
ally present an ‘elbow’. Intuitively, the closer it is to a right angle
(Fig. B.2(a)), the weaker the trade-off between the objectives. In this

case, it is possible to obtain the ideal solution (i.e., the solution having
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maximum values in both objectives), while there exists an interaction
between the objective functions. On the other hand, Fig. B.2(b) illus-
trates a strong trade-off, where the ideal solution (i.e., point (1, 1) in the
example) cannot be reached. Thus, the further the frontier is from the
ideal solution, the stronger the trade-off is. Finally, Fig. B.2(c) shows an
example where there is no trade-off between the two objectives. In this
case, although the ideal point can be obtained, there is no interaction
between 𝑓1 and 𝑓2. In fact, the value of 𝑓2 is constant, irrespective to
𝑓1.

Let points 𝑂,𝐴,𝐵, and 𝐶 be defined as follows:

𝑂 = (min
𝑥∈𝑋

𝑓1(𝑥),min
𝑥∈𝑋

𝑓2(𝑥)) (B.2)

𝐴 = (min
𝑥∈𝑋

𝑓1(𝑥),max
𝑥∈𝑋

𝑓2(𝑥)) (B.3)

𝐵 = (max
𝑥∈𝑋

𝑓1(𝑥),max
𝑥∈𝑋

𝑓2(𝑥)) (B.4)

𝐶 = (max
𝑥∈𝑋

𝑓1(𝑥),min
𝑥∈𝑋

𝑓2(𝑥)) (B.5)

Points 𝐵 and 𝑂 are also known as the ideal and the anti-ideal point,
respectively. Let 𝑎𝑟𝑒𝑎 be the area of the polygon identified by the set
of points

{

𝑆𝑙 ∀𝑙𝑖𝑛1,… , 𝐿
}

∪𝑂. Following the intuition above, points 𝐴,
, and 𝐶 define the strongest possible frontier for 𝑓1 and 𝑓2. Let 𝑎𝑟𝑒𝑎⋆
e the area of the polygon identified by the set of points {𝑂,𝐴,𝐵, 𝐶}.
herefore, the measure of bi-objective trade-off strength, 𝜏, can be
omputed as:

=

{

1 − 𝑎𝑟𝑒𝑎
𝑎𝑟𝑒𝑎⋆ 𝑖𝑓𝑎𝑟𝑒𝑎⋆ > 0,

0 otherwise.
(B.6)

𝜏 takes values between 0 and 1, where 1 indicates a maximally
strong trade-off. Also, as it is expressed as a fraction, 𝜏 is dimensionless,
which allows us to make consistent comparisons between trade-offs
and frontiers resulting from different objective functions and solution
spaces.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.seps.2023.101556.
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