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Blind Dehazed Image Quality Assessment: A Deep
CNN-Based Approach

Xiao Lv, Tao Xiang, Senior Member, IEEE, Ying Yang, and Hantao Liu

Abstract—Research on image dehazing has made the need for
a suitable dehazed image quality assessment (DIQA) method even
more urgent. The performance of existing DIQA methods heavily
relies on handcrafted haze-related features. Since hazy images
with uneven haze density distributions will result in uneven qual-
ity distributions after dehazing, the manually extracted feature
expression is neither accurate nor robust. In this paper, we design
a deep CNN-based DIQA method without a handcrafted feature
requirement. Specifically, we propose a blind dehazed image
quality assessment model (BDQM), which consists of three com-
ponents: image preprocessing, a haze-related feature extraction
network (HFNet), and an improved regression network (IRNet).
In HFNet, we design a perceptual information enhancement (PIE)
module to learn powerful feature representations and enhance
network capability according to channel attention, multiscale
convolution and residual concatenation. IRNet aims to aggregate
all patch information for the quality prediction of the whole
image, where the effect of inhomogeneous distortion from the
dehazing procedure is attenuated via a specifically designed patch
attention (PA) mechanism. Experimental results on benchmark
datasets demonstrate the effectiveness and superiority of the
proposed network architecture over state-of-the-art methods.

Index Terms—Dehazed image quality assessment, channel
attention, patch attention, multiscale convolution, residual con-
catenation.

I. INTRODUCTION

The visibility of natural images captured in hazy weather
is degraded by the refraction reaction of air particles to
light. This situation greatly impairs the performance of many
image processing algorithms and visual-driven applications,
such as image segmentation, detection and video surveillance.
To eliminate the uncontrollable factors caused by haze in
digital image processing, various image dehazing algorithms
(DHASs) [1]-[10] have emerged. The performance evaluation
of DHAs and the quality assessment of dehazed images (DHIs)
not only help to select and optimize DHAs but also monitor
the quality of DHIs in real time. Therefore, designing a
method to measure the performance of DHAs and evaluate
the visual quality of DHIs has become a highly urgent and
beneficial endeavor for practical image processing techniques
and visually driven systems.

There is a fact that perceptual quality assessment [11]-[13]
plays a vital role in the visual communication systems. The
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Fig. 1. Three different strategies of DIQA. Solid rectangular boxes indicate
images that can be captured from natural scenes. The dashed rectangular boxes
indicate images generated by algorithmic processing. FR-DIQA and RR-
DIQA use haze-free and hazy images as evaluation references, respectively,
while NR-DIQA does not introduce any reference images.

last few years have witnessed an explosion of research on
dehazed image quality assessment algorithms (DIQAs) [14]—
[19], which can be categorized into subjective evaluation meth-
ods and objective evaluation methods. Subjective evaluation is
the most straightforward and persuasive method since humans
are usually the ultimate observers and evaluators of DHIs.
However, experimental factors such as a workload, a spe-
cific evaluation environment, and a certain number of trained
observers hinder the popularization of subjective evaluation
methods. Objective evaluation based on advanced computer
algorithms overcomes the drawbacks of subjective evaluation,
which shows high efficiency and allows a wide range of
application scenarios.

As illustrated in Fig. 1, three strategies can be adopted for
objective DIQA by employing different reference images: full-
reference dehazed image quality assessment (FR-DIQA) [16],
[18], [19], reduced-reference dehazed image quality assess-
ment (RR-DIQA) [20], [21], and nonreference dehazed image
quality assessment (NR-DIQA). In traditional IQA tasks [15],



[22]-[25], FR and RR methods are categorized depending on
the degree of ground truth information employed. However,
DIQA distinguishes between FR and RR based on the ref-
erence image used. The former takes the haze-free image as
a reference, while the latter uses the hazy image. FR-DIQA
and RR-DIQA methods achieve satisfactory performance by
comparing the references and the DHIs. However, they are
ill-posed tasks, as haze-free and hazy images are usually
unavailable in practical applications. Thereafter, researchers
take synthetic-haze images to obtain the reference images
required for experiments [16], [21], which are generated by
haze synthesis technologies (HSTs) from the corresponding
depth maps of haze-free images [26].

In contrast, NR-DIQAs take only DHIs as input for quality
evaluation without a reference image, which is more realistic
and has received substantial attention in recent years [14], [27].
However, an ill-posed definition becomes the most essential
issue for NR-DIQA to ensure good image quality predictions.
Numerous efforts have been made to address this problem
by establishing robust feature representation models [28]-
[31]. Traditional NR-DIQA methods commonly employ hand-
designed haze-related feature representations [14], [27], [32],
[33], and they lack the diversity and flexibility to capture
complex distortion patterns and various image content. Ad-
ditionally, haze is often randomly distributed and unevenly
dispersed in the image. However, existing NR-DIQA methods
evaluate visual quality based on the whole image without
considering the variation in haze density in different image
areas, which results in a performance bottleneck.

To track the abovementioned issues of NR-DIQA, in this
paper, we propose an end-to-end blind dehazed image quality
assessment model (BDQM) by employing a convolutional neu-
ral network (CNN). Due to the powerful feature representation
ability of CNN, the extracted deep perceptual features can
be effectively combined and used for regression training. The
proposed BDQM can automatically learn perceptual-related
feature representations and predict visual quality levels without
heavy manual work and reference images. Specifically, we
propose a perceptual information enhancement (PIE) module
based on channel attention, multiscale convolution and residual
concatenation. PIE can capture the long-range dependencies
between channels and distinguish different types of informa-
tion for powerful feature representation. In addition, differ-
ent image regions have different haze densities, which have
different effects on image quality assessment. To minimize
the effect of different haze densities on the dehazing results,
we propose a patch attention (PA) mechanism to capture the
dependence of perceptual features between different image
patches. This scheme mitigates the performance bottleneck
caused by heterogeneous patch information and improves the
accuracy of the predicted image quality scores.

The proposed BDQM consists of three parts: image prepro-
cessing, a haze-related feature extraction network (HFNet),
and an improved regression network (IRNet). The image
preprocessing module contains image sampling and image
normalization procedures, which are necessary operations for
deep learning models. HFNet takes the sampled patches of
the DHI as input and perceptual features that are highly

sensitive to the visual quality outputs. In HFNet, a PIE
module with channel attention, multiscale convolution and
residual concatenation is designed, which explores significant
information and extracts multiscale perceptual features for
quality prediction. IRNet integrates the features of all patches
sampled from one DHI and predicts the final quality score
of the entire image through a carefully designed PA scheme.
Extensive experiments on five datasets demonstrate that our
BDQM has considerable competitive advantages over existing
state-of-the-art algorithms.
The main contributions of this paper are as follows:

« To our knowledge, this study is the first to use CNN to
explore the NR-DIQA problem. We propose the BDQM
to automatically learn perceptual feature representations
and predict quality scores of DHIs without manual work
or reference images.

o We design a PIE module with channel attention and mul-
tiscale convolution to extract haze-related perceptual fea-
tures for quality prediction. PIE uses feature splicing to
capture valuable information and has a powerful network
ability for diverse and flexible feature representation.

o We design a PA mechanism to adaptively aggregate
perceptual features of all patches sampled from one DHI.
The PA mechanism avoids a mismatch between the local
quality and the overall image quality due to the uneven
distribution of haze density and overcomes the difficulty
of separately predicting the quality score of each patch
during the training process.

« We conduct extensive experiments to validate the per-
formance of our method on five datasets. Compared
to state-of-the-art metrics, our model exhibits superior
performance with acceptable computational cost.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on haze-related image datasets,
DIQA schemes and CNN-based IQAs. Section III details the
construction of the proposed BDQM. Section IV presents the
experimental results and their analysis. Finally, Section V
concludes this paper.

II. RELATED WORK

Generally, DIQA is designed to evaluate the quality of
DHIs, which are generated from hazy images by DHAs. In
this section, we review the existing haze-related image datasets
(including hazy and dehazed image datasets), related state-of-
the-art DIQAs and CNN-based IQAs.

A. Haze-Related Image Datasets

1) Hazy Image Datasets: Hazy image datasets are critical
to measuring the performance of DHAs. Three types of hazy
image datasets are widely used in current research. The first is
synthetic-haze image datasets, such as FRIDA [34], FRIDA2
[35], D-HAZY [26], Foggy Cityscapes [36], and RESIDE
[37], which are generated from clear images and depth maps
processed by computer synthesis techniques. However, their
shortcomings, such as low resolution, unrealistic images, and
poor simulation of synthetic-haze images, lead to an inaccurate
and unsatisfactory measurement of DHAs. The second is



TABLE I
HAZY IMAGE DATASETS AND DEHAZED IMAGE DATASETS

Haze Type Dataset Haze-Free Images | Hazy Images | Dehazed Images | Dehazing Algorithms
FRIDA [34] 18 72 - -
FRIDA2 [35] 66 264 - -
Synthetic-Haze D-HAZY [26] 1449 1449 - -
Foggy Cityscapes [36] 550 550 - -
Hazy Image Datasets RESIDE (ITS) [37] 1399 13990 - -
. O-HAZE [38] 45 45 - C
Artificial-Haze -HAZE [39] 35 35 B B
o BeDDE [18] 23 208 - -
Natural-Haze Foggy Driving [36] : 101 - -
DHQ [17] - 250 1750 7
Natural-Haze exBeDDE [18] 12 167 1670 10
MRFID [19] 200 800 12800 16
Dehazed Image Datasets| . SHRQ-Regular [16] 15 15 360 8
Synthetic-Haze SHRQ-Aerial [16] 30 30 240 8
Hybrid
(Natural & Synthetic) IVCDD [40] ) 25 200 8

artificial-haze image datasets, such as O-HAZE [38] and I-
HAZE [39], which are captured from machine-made hazy
scenes both indoors and outdoors. Although artificial-haze
image datasets are better than synthetic-haze image datasets
in haze simulation and the restoration of real scenes, they
still have gaps with natural-haze images. The third is natural-
haze image datasets, which are real but difficult to assemble.
For example, the BeDDE [18] dataset contains 208 image
pairs collected from 23 provincial capital cities, and the Foggy
Driving [36] dataset contains 101 color images depicting real-
world hazy driving scenarios. However, hazy images serve as
the processing objects of DHAs, which lack the corresponding
dehazed results and cannot be directly used in DIQA tasks.

2) Dehazed Image Datasets: The crucial task in DIQA
research is to establish a public dehazed image dataset. Ex-
isting dehazed image datasets can be classified into three
categories according to the type of hazy image. One type is
the synthetic dehazed image dataset, such as SHRQ-Regular
[16] and SHRQ-Aerial [16], which are derived from synthetic-
haze images based on reliable HSTs. Another is the dehazed
image dataset for natural haze, such as DHQ [17], exBeDDE
[18], and MRFID [19], which are generated from natural haze
scenes. The last type is the hybrid haze image dataset, which
contains dehazed images created from synthetic-haze and
natural-haze images, such as IVCDD [40]. Table I provides
specific information on the abovementioned datasets.

B. Dehazed Image Quality Assessment Schemes

Three strategies for objective DIQAs have been extensively
studied, namely, FR-DIQAs, RR-DIQAs, and NR-DIQAs.

1) FR-DIQAs: FR-DIQAs exhibit superior performance by
measuring the difference between DHIs and haze-free images.
Liu et al. [19] developed a similarity index (FRFSIM) based
on haze-related features. Specifically, dark channel [3] and
MSCN features [41] were employed to measure the haze
density similarity. Gradient and chrominance features were
used to evaluate the variation in artificial distortion. Zhao et al.
[18] proposed the visibility index (VI) and realness index (RI)
by evaluating the visibility and realness restoration of DHIs
independently. VI was designed based on dark channel [3] and
gradient features, while RI utilized phase congruence [42] and

chrominance features [43]. Min et al. [16] proposed a quality
measure by integrating three components: image structure
recovery, color rendition, and overenhancement. Obviously, it
is reliable to explore haze-related features for visual quality
score prediction based on the difference between the reference
images and the DHIs. However, FR-DIQA is impractical for
real-time applications due to the difficulty of acquiring real
haze-free and hazy image pairs.

2) RR-DIQAs: RR-DIQAs take hazy images as references
to evaluate the visual quality of DHIs. Song et al. [44]
proposed a contrast enhancement index based on the newly
proposed haze-line theory. The underlying principle of haze-
line theory is that haze lines in a hazy image respect the
color clusters in the corresponding haze-free image, and pixels
belonging to the same color cluster have similar colors. In
addition to the color contrast, Fang et al. [45] considered
structural similarity features for RR-DIQA. Specifically, the
ascension of contrast degree and structural similarity were
measured by comparing the spatial frequency contrast and
the edge consistency between the hazy images and the DHIs,
respectively. However, it was not sufficient and convincing
to focus on only these two types of features for the visual
quality evaluation of DHIs. Hsieh et al. [20] proposed an
objective assessment of haze removal based on two objective
optimizations, the dehazing effect and image distortion. Wang
et al. [21] made full use of dark channel features and pro-
posed a pixel-level dehazed image quality assessment method
(PDIQA). The advantages of pixel-level quality measures
allowed the metric to focus on specific areas. Min et al.
[17] proposed an objective dehazing quality index (DHQI)
by fusing three groups of features: haze-removing features,
structure-preserving features, and overenhancement. However,
RR-DIQA emphatically focuses on the degree of haze removal
in DHIs compared to hazy images, which is still a gap in haze-
free images. It performs slightly worse than FR-DIQA in terms
of the quality assessment of DHIs.

3) NR-DIQAs: NR-DIQAs without reference images have
received widespread attention in recent years owing to their
practicality and convenience. Choi et al. [14] proposed a
blind fog aware density evaluator (FADE) based on manually-
extracted haze characteristics: low contrast, faint color, and
shifted brightness. Shen et al. [27] extracted information,



contrast, and luminance to train a SVR model, which can be
further used for quality prediction. Zhang et al. [32] learned a
multivariate Gaussian (MVG) model of image patches from
a collection of pristine natural images, then measured the
quality of each image patch using the Bhattacharyya distance
[46], and finally obtained the overall quality score by average
pooling. Liu et al. [33] learned the pristine MVG model by
extracting structure and naturalness from natural images, and
visual quality was defined as the distance between the MVG
model of DHIs and the learned pristine model.

The performance of the abovementioned NR-DIQAs de-
pends highly on the operations of manually extracted or
MVG-generated features. Thus, further efforts should be made
to improve diverse feature representations for the quality
assessment of DHIs. Haze density variation in different image
regions causes uneven distortion after applying the DHAs.
However, existing NR-DIQAs do not consider the impact of
local distortion on overall image quality, leading to inaccurate
quality evaluation results.

C. CNN-Based IQAs

Due to the powerful learning ability of CNNs, numerous
CNN-based IQAs [30], [47]-[50] have been gradually de-
veloped and have achieved remarkable success by directly
mapping the input image to a quality score. Kang et al.
[47] were pioneers in applying CNNs for IQAs by designing
a shallow network structure consisting of one convolutional
layer with max and min pooling, two fully connected layers,
and one output node. This network took image patches as input
and estimated the overall image quality by pooling the scores
of the sampled patches. Bianco et al. [48] estimated image
quality by averaging the sum of scores predicted from multiple
subregions of the original image. Yan et al. [30] proposed
a dual-stream CNN using the image and gradient image to
capture different-level information of inputs. Po et al. [50] en-
hanced CNN-based IQAs by discarding homogenous patches
and biasing the final image quality score toward patches with
complex structures via weighted average variance. Zhang et
al. [51] proposed a CNN-based method named HazDesNet
to predict haze density. HazDesNet took hazy images as input
and predicted a pixel-level haze density map. The density map
was then refined and smoothed, and the average of the refined
map was calculated as the global haze density.

Although the application of CNNs to IQA tasks has pro-
duced pleasing results, this approach has not been applied
to the DIQA task due to the following challenges. First,
the difficulty of acquiring haze-free and hazy image pairs
makes it difficult to advance CNN-based FR-DIQA and RR-
DIQA methods. Second, most models do not effectively use
information from the images when finding correlations be-
tween images and scores and neglect the correlations between
patches. Finally, these methods estimate the subjective scores
of the patches as the subjective score of the entire image,
ignoring the effect of local quality inhomogeneities.

III. THE PROPOSED BDQM METRIC

In this section, we elaborate on our proposed BDQM.
First, we describe the core components of our network: image
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Fig. 2. The framework of the proposed BDQM.

preprocessing, HFNet, and IRNet. Then, we present the details
of the training procedure.

A. Framework

The overall framework of the proposed BDQM is shown
in Fig. 2, which contains three parts: image preprocess-
ing, HFNet, and IRNet. Image preprocessing contains patch
sampling and patch normalization. HFNet aims to capture
efficient perceptual haze-related features for quality regression.
In HFNet, we design the PIE module to maximize the haze-
related feature enrichment. IRNet aggregates and optimizes all
patch features via the PA scheme. The final quality score of
the image is derived from all input patches through carefully
designed convolution operations.

B. Image Preprocessing

Before training, some preprocessing operations need to be
performed on the input images.

1) Patch Sampling: First, we divide the input DHI into
nonoverlapping patches of size m x m [28], [29], [52], [53],
which is beneficial for capturing the inhomogeneous quality
of the image and ensuring a large number of training samples.
Then, we select N, patches of the input image as training
data. Given an input image of size h X w, at most NV,;, patches
of size m X m can be obtained:

Ny = | =] x| —] ey

2) Patch Normalization: ITmage normalization has a pivotal
role in the training procedure of neural networks, which is
effective for stability training and network convergence. We
perform patch normalization to convert all image patches to
the range [0, 1] and use the converted patches as the input of
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the HFNet. Given an image patch P; in RGB color space, we
perform the normalization operation as follows:
5 P
P =
‘255

2)

C. Haze-Related Feature Extraction Network (HFNet)

HFNet is a single-stream network for the efficient extraction
of haze-related features. First, the simple combination of
the convolutional layer and the pooling layer cannot meet
the complex feature representation requirements. Inspired by
previous work [49], [54], [55], we propose a PIE module
with multiscale convolution to effectively increase the feature
extraction capability by simulating the complex visual recogni-
tion progress of the human visual system (HSV). Second, the
local quality of the DHI is unevenly distributed, which has
a significant impact on the overall image quality assessment.
Therefore, we propose to apply channel attention to enhance
useful information and suppress useless information. Finally,
to reduce information loss during the convolution procedure,
we employ feature splicing to retain more useful perceptual
information for the quality prediction of the DHI.

The detailed architecture of HFNet is shown in Fig. 2. First,
two 3 x 3 convolutional layers and one maxpooling layer are
applied to extract low-level generic features. Then, the task-
specific semantic features are derived by a tandem group of
PIE modules. Finally, a feature pooling step is used to ag-
gregate the learned haze-related perceptual features, including
one 3 X 3 convolutional layer and one 2 x 2 maxpooling layer.
We will discuss the impact of different HFNet structures on
network performance in Section IV-C1.

PIE Module: We propose a PIE module to replace the
simple combination of a single convolutional layer and a
pooling layer [30], [47] to enhance the network capability for
feature representation.

Fig. 3 shows the detailed structural information of the PIE-
X, X € {64,128,256}. For each PIE-X module, given an
input feature I of size X/2 x H x W, it is first subjected to a
simple channel attention mechanism to obtain I. Specifically,
the one-dimensional channelwise statistics Igap of length
X/2 are obtained from I after the global average pooling
operation (GAP). Igap is defined as:

H W
1 .
Igap =Fgap(I) = T E E I(i, ) 3)
=1 j=1

Fig. 4. An example shows that patches in different regions of the DHI have
different visual qualities. The topmost images in (a) and (b) are the DHIs
from the SHRQ-Regular [16] dataset. The three rows of patches below are
taken from the corresponding positions of the DHIs, haze-free images and
hazy images.

where Fig4p denotes the GAP operation. The fully connected
(FC) layer and the sigmoid activation function are applied on
Igap to generate the attention vector S;. Then, the channel
attention feature map I¢ of size X/2 x H x W is generated
with channel attention weights S; as follows:

Ie=5®I “4)

where ® denotes the elementwise multiplication operation.
Furthermore, I,/ is generated from [ by two tandem
multiscale convolution layers [56]. In the first multiscale
convolution layer, I~ generates I,,1, I,o and I,,3 through
three convolutional layers with kernel sizes of 1 x 3, 3 x 3
and 3 x 1, respectively. Then, Ip;; of size X x H x W is
generated by aggregating I,,1, Iy,2 and I,,3 as follows:

Init = Iy @ Lz © I )]

where @ denotes the elementwise summation operation. Up to
this point, the result of the first multiscale convolution layer
is output as Ips1. Then Iy proceeds to the next multiscale
convolution layer and generates [0 of size X x H x W.

Next, a residual connection is applied to I and 1o by the
splicing operation. The splicing operation of I and Ipso is
performed in the channel dimension, so the size of the splicing
result 1.4t is (X+X/2) x HxW. Finally, a 1 x 1 convolutional
layer and a maxpooling layer are responsible for dimension
reduction and downsampling. Then, the output of the PIE-X
module is I of size X x H x W. Notably, the leaky rectified
linear unit (LReLU) activation function [57] is used after all
convolutional layers. We will discuss how the residuals are
connected and verify the best choice between splicing and
summation in Section IV-C2.

D. Improved Regression Network (IRNet)

1) Structure of Previous Regression Network: Specifically,
in the previous CNN-based IQAs [30], [47], each patch
inherits the same annotation score. Distortions in an image
are usually unevenly distributed, which means that the level
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Fig. 5. Two mainstream regression network structures for CNN-based IQAs.

of the visual quality of each patch is not flush with the whole
image. Fig. 4 shows two examples. The topmost images in
Fig. 4 (a) and (b) are the DHIs from the SHRQ-Regular [16]
dataset, and the three rows of patches below are taken from
the corresponding positions of the DHIs, haze-free images and
hazy images, respectively. These two examples show that the
color, texture, and structure of the dehazed patches are close to
those of haze-free patches. However, there are still some areas
that are visually different between DHIs and haze-free images.
The uneven distribution of visual quality makes it difficult to
estimate the visual quality of the entire DHI.

As shown in Fig. 5, there are two mainstream regression
networks in existing CNN-based IQAs based on FC networks
(FCNets). One is the single pooling approach [30], [31], [58]
in Fig. 5 (A). The input and the output of FCNet are the
perceptual features and the learned patch score o;. FCNet
consists of several cascaded FC layers, the number of FC
layers can be adaptively adjusted. We set it to 4 here. The
final quality score O of the DHI is generated by pooling the
scores of all sampled patches, which is defined as:

Np

O:ZOi

i=1

(6)

where N,, is the number of sampled image patches. The other
one is the weighted pooling method [59] in Fig. 5 (B), where
two parallel FCNets are responses to learning the quality score
0; and the weight score w; for each image patch, respectively.
The weight score represents the proportion of the image patch
in the overall quality of the entire image. The final quality
score O of the DHI is defined by:

O— Z% | 0iW;

Dim1 Wi
where N, is the number of sampled image patches.
There are ill-posed requirements in the abovementioned two
types of regression networks, that is, each sampled image
patch needs to be labeled with subjective scores for training.
The literature [30] usually adopts the way that an image
patch inherits the subjective score (ground truth) of its parent
image. However, this approach is not appropriate for DIQA.
Due to the uneven distribution of haze density in DHIs,
different image patches with different haze densities should

)
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Fig. 6. The architecture of IRNet.

have different quality scores. Therefore, assigning the same
labeled subjective score to all patches sampled from an image
may lead to inaccurate and unreliable prediction results.

2) IRNet: Motivated by the above observations, we propose
IRNet to avoid the mismatch between local and overall image
quality due to uneven distribution of haze density and to
overcome the difficulty of obtaining the ground truth of the
patches for training. The proposed IRNet aims to map all patch
features of the DHI to the final perceptual quality score. Fig.2
illustrates the main structure of IRNet, while Fig.6 refines each
part to make it easier to understand. The input of IRNet is the
perceptual features of size IV, x X x H x W from the output
of HFNet. To combine the features of each patch to estimate
the final score of the image, a reshaping operation is required
to convert the size to 1 x N, x h x w, where X = h x w.
The GAP operation of IRNet in Fig.2 ensures that the values
of H and W are 1.

PA Module: We design a PA mechanism to adaptively
aggregate perceptual features of all patches sampled from one
DHI. For a given perceptual input feature I of size N, x h x w,
the feature map Ip is obtained by the PA mechanism. In detail,
I generates an attention vector Sy by 1 x 1 group convolution
(groups=N,,) and sigmoid activation function. Then, the first
attention feature map I of size IV, x h x w is generated with
the attention weights So as follows:

Ig=5&T (8)

where ©@ denotes the elementwise multiplication operation.
Next, multiscale convolutions are conducted by using 3 x 1 and
1x3 kernel sizes for Ij,; and Ip2, respectively. The multiscale
feature maps are aggregated into I,,:

I =1, & I ©)

where @& denotes the elementwise summation operation. Then,
a sigmoid activation function is applied to I, to generate the
attention vector Ss. Similarly, the PA feature map Ip can be
obtained by:

Ip=S3®1q (10)

where ®@ denotes the elementwise multiplication operation.

__ Last, a 3 x 3 convolutional layer is applied on Ip to obtain
I of size 2N, x h x w. The GAP and two FC layers (FC-
Np, FC-1) are used to learn the final quality score O from the
features /. In the proposed IRNet, instead of predicting the
visual score of each patch individually, we fuse the perceptual
features of all sampled patches to obtain the visual quality
score of the whole image. In other words, the object of our
IRNet is the whole image rather than a single patch.



E. Network Training

For the proposed BDQM, our target is to minimize the loss
function. Given an input image I;, O; and S; are its predicted
quality score and subjective quality score, respectively. We
adopt the /1-norm loss to measure the difference between O;
and S;, which is formulated as

loss(i) = 1|0s — Silly (11)

By minimizing the loss function, we can obtain the optimal
network parameters as follows:

&
0" = "gn N Zz:;loss(i)

where N denotes the number of training images.

The backpropagation algorithm [60] is employed to iter-
atively train the proposed model over multiple epochs. We
plit the training set into minibatches for batch optimization,
and each sample in the training set is used only once in
an epoch. In our experiments, image patches sampled from
the same image must be distributed in the same minibatch,
because IRNet integrates the features of the input patches for
overall score prediction. The Adam Optimizer (ADAM) [61] is
utilized to change the conventional stochastic gradient descent
method for better convergence of batch optimization.

12)

IV. EXPERIMENTS AND ANALYSIS

In this section, we conduct extensive experiments to demon-
strate the performance of our proposed BDQM on five test
datasets and compare it with that of state-of-the-art IQAs.

A. Experimental Protocols

1) Test Datasets: Five benchmark dehazed image datasets
are used to evaluate the performance of our proposed method.
They are two synthetic dehazed image datasets SHRQ-Regular
[16] and SHRQ-Aerial [16], two natural dehazed image
datasets DHQ [17] and exBeDDE [18], and one hybrid de-
hazed image dataset IVCDD [40]. The details of the five
datasets are presented in Table L.

SHRQ-Regular: The SHRQ-Regular consists of 360 DHIs
created from 45 synthetic-haze images using 8 DHAs. The
synthetic-haze images are derived mainly from high-quality
haze-free images and the corresponding depth maps from [62]
and Middlebury Stereo datasets [63]. The standard double-
stimulus method with a five-grade continuous quality scale is
used to conduct the subjective experiment test [64]. First, 38
observers are invited to rate a quality score for each dehazed
image based on their won visual experience. Then the outlier
detection operations are employed to process the obtained raw
subjective scores, and invalid observers are rejected. Finally,
the MOS value of each image is generated by averaging all
the rating scores from the valid observers. The MOS values
lie in the range [10, 80], where a higher value indicates better
visual quality.

SHRQ-Aerial: The SHRQ-Aerial dataset consists of 240
DHIs created from 30 synthetic-haze images using the same
8 DHAs in the SHRQ-Regular dataset. The synthetic-haze

images are generated from high-quality aerial images in the
AID [65] dataset. The subjective test is the same as the SHRQ-
Regular. The MOS values in SHRQ-Aerial are in the range of
[10, 80], with higher values indicating better visual quality.

exBeDDE: The exBeDDE dataset is an extension of BeDDE
[18]. It contains 167 hazy images from 12 cities in BeDDE. Of
these, 1670 DHIs are generated from 10 representative DHAs.
In the subjective experiment, the images were divided into 12
hazy groups and 167 dehazing groups. 10 subjects rank each
dehazing group based on realness and visibility by the double-
stimulus method. The final MOS of an image is converted from
its rank in a group by a specially designed mapping function
[18]. The MOS values in exBeDDE lie in the range [0, 1],
where a higher value indicates better visual quality.

DHQ: The DHQ dataset contains 1750 DHIs generated
from 250 hazy images of various haze densities using 7
representative DHAs. The 250 hazy images selected from the
total 500 hazy images [66] are obtained from the real world.
Subjective experiments are performed by 54 observers by
using the double-stimulus method with a five-grade categorical
rating scale. After the outlier detection, three subjects are
rejected. The MOS values are in the range [20, 80], where
a higher value indicates better visual quality.

IVCDD: The IVCDD dataset includes 25 hazy images and
200 DHIs created by 8 DHAs. Most images in this dataset are
captured in the real world, but the haze of indoor static objects
is simulated artificially. This single-stimulus method is used in
the subjective experiment test. 24 observers are participated to
rate their quality of each image based on an integer scale from
1 to 10, where higher values indicate better visual quality.

2) Evaluation Criteria: Based on the recommendations of
the video quality expert group (VQEG) [67] for the first
phase of FR-TV testing, four common performance evaluation
criteria are used to evaluate the performance of different
DIQA metrics. Pearson linear correlation coefficients (PLCCs)
and Spearman rank order correlation coefficients (SRCCs)
are employed to evaluate the prediction monotonicity, while
the Kendall rank order correlation coefficients (KRCCs) and
root mean squared error (RMSE) are used to evaluate the
prediction accuracy. To obtain accurate PLCC and RMSE,
the predicted score is processed by a five-parameter nonlinear
logistic mapping function [68]:

1

1
0'=p(5 - m)‘f‘@;@‘i‘ﬁs (13)

where O denotes the predicted score, and O’ denotes the fitted
predicted score. 3;(i = 1,2,...,5) are the parameters to be
fitted. A better DIQA method should have a higher SRCC,
KRCC, and PLCC but a lower RMSE.

3) Protocol Configuration: We select five dehazed image
datasets in Table I for our experiments. The performance
results on each dataset are obtained by training the proposed
model on 80% images of the dataset while testing on the
remaining 20%. According to patch sampling method in
Section III-B1, we divide the input DHI into nonoverlapping
patches of size m x m (m = 32) and select N, = N,
patches for training. The MAE loss function with a learning
rate of 7 = 10~ is adopted by the ADAM optimizer with



TABLE I
THE RESULTS OF PARAMETER ANALYSIS

Parameter Setting SHRQ-Acrial
48 0.9673 0.8635 0.9575 0.0715
64 0.9645 0.8564 0.9460 0.0790
Patch 80 0.9633  0.8475 0.9591  0.0685
Size 96 0.9436  0.8191 0.9432 0.0788
112 0.9429 0.8121 09375 0.0825
128 0.9307 0.7801 0.8900 0.1069
Patch 374 0.949T 0.8209 0.9388 0.0912
Number 172 0.9357 0.7943  0.9206 0.0918
1/4 0.9332  0.8032 0.9331 0.0933
Color HSV 0.9657 0.8528 0.9445 0.0952
Space LAB 0.8909 0.7199 0.8422 0.1278
Kernel 5x5 0.9525  0.8245 09457 0.0835
Size Tx7 0.9629 0.8511 0.9511 0.0820
Residual Summation | 09718 0.8723 0.9635 0.0634
Connection False 0.9694 0.8670 0.9409 0.0796
BDQM 09767 0.8848 0.9613 0.0682

the parameter settings recommended in [61]. Moreover, we
add the exponential decay method to reduce the learning rate
based on the training progress. Furthermore, all convolution
layers and FC layers in our BDQM network are followed by
LReLU activation function. Dropout regularization is applied
to each FC layer with a probability of 0.5. All experiments
are performed under 10 iterative operations with randomly
divided training data and median scores for the evaluations
are reported. The best scores for each evaluation criterion are
highlighted in bold in the tables.

B. Parameters Analysis

Experiments demonstrate that different parameters have dif-
ferent impacts on the performance of our proposed BDQM. In
this section, we investigate and discuss how these parameters
affect the performance of BDQM and determine the optimal
configuration of these parameters. We conduct experiments in
this section on the SHRQ-Aerial [16] dataset. Table II shows
the results of the experiments with various parameters. The
parameters of the proposed BDQM are set as follows: patch
size: 32, patch number: all patches, color space: RGB, kernel
size: 3 x 3, residual connection: concatenation.

1) Patch Size: We split the DHI into patches with nonover-
lapping contents for training. As described in Section III-B1,
for a given DHI, the maximum number of patches varies
according to patch size. The purpose of segmenting patches
is to capture the inhomogeneous quality of the DHI; patches
that are too small increase computational overhead, while
patches that are too large lead to unstable quality estimates.
We examine the performance of BDQM under different patch
sizes m. Here, all the patches sampled from the image are
fed into the network for training. Table II shows that BDQM
achieves the best performance on the SHRQ-Aerial dataset
with patch size m = 32.

2) Patch Number: Once the patch size m is determined, the
number of patches IV, is also determined. Obviously, there
is an upper limit to the number of sampled patches since
we split them so that the content is not duplicated. Patches
selected for training directly impact the quality assessment
of the whole image. If too few patches are selected, other
information about the image may be lost in training. Table II

shows the performance results of selecting 1/4, 1/2, and 3/4
of the patches, and all the patches. The best result is achieved
by using all image patches for training.

3) Color Space: To explore the impact of the image color
space, we compare the network performance in the RGB, HSV,
and LAB color spaces. RGB is defined by the chromaticity of
the three primary colors: red, green, and blue. HSV represents
the hue, saturation, and lightness. In LAB color space, L
denotes the luminance, and A and B denote the opposing color
dimensions. We normalized the color space components to [0,
1] for training, and the experimental results are shown in Table
II. Obviously, the proposed model trained in the RGB color
space has better results.

4) Kernel Size: To verify the impact of the kernel size,
we use different kernel sizes to train our model and test
the corresponding performance. Here, we change only the
kernel size while keeping the other structures unchanged.
The experimental results of different kernel sizes in Table II
show that the network performance is sensitive to kernel size.
Therefore, we use the kernel size 3 x 3 in our method since
it achieves the best performance on the SHRQ-Aerial dataset.

C. Ablation Study

We conduct an ablation study to demonstrate the effective-
ness of our proposed PIE module and IRNet. The experiments
are conducted by comparing the proposed model with several
baseline models on SHRQ-Aerial [16] and SHRQ-Regular
[16]. The same experimental conditions are set as in Section
III-E to ensure the validity and usability of the results.

1) Effectiveness of PIE Module: To verify the effectiveness
of the proposed PIE module, we replace it in the HFNet with a
convolutional module. The convolutional module contains two
3% 3 convolutional layers and one maxpooling layer. Similarly,
an LReLU activation function is added after the convolutional
layer. In total, five different combination schemes are gener-
ated, as shown in Table III, where P; (: = 1,2, 3,4) denotes
the PIE module, C; (i = 1,2,3,4) denotes the convolutional
module, and + denotes that the module is tandem. Table
Il gives the results of these five schemes based on patch
correlation pooling, where the best scores are marked in bold.

From Table III, we infer the following conclusions. First,
based on the results of HFNet schemes A to C, we find that
network performance gradually improves with an increase in
stacked PIE modules and is best when stacking 3 PIE modules.
Second, observing the results of HFNet schemes C and D,
we speculate that the complex PIE modules are not suitable
for extracting low-level features of the images, which leads to
degradation of the network performance. Finally, stacking PIE
modules are more effective than spacing PIE modules based on
the results of scheme C and scheme E. Combining the above
information, we adopt HFNet scheme C as the final structure
of our proposed HFNet.

2) Residual Concatenation: In the proposed PIE module,
we introduce a residual concatenation to enhance the fea-
ture extraction capability and stabilize network training. To
evaluate the effect of the residual concatenation, we compare
BDQM performance under three cases: without an operation,



TABLE III
DIFFERENT DESIGN SCHEMES FOR HFNET

Model Combination SHRQ-Regular SHRQ-Aerial

SRCC  KRCC PLCC RMSE | SRCC KRCC PLCC RMSE
HFNet Scheme A | C1 + C2 +C5 + Py | 0.8478  0.6549 0.7998 0.1260 | 0.9662 0.8493 0.96I11 0.0697
HFNet Scheme B | C1 +Cs + P3s+ P4 | 0.8573 0.6706 0.8014 0.1504 | 0.9669 0.8582 0.9567 0.0685
HFNet Scheme C | C1 + P> + P3s+ Py | 08676 0.6917 0.8397 0.1182 | 0.9767 0.8848 0.9613  0.0682
HFNet Scheme D | P+ Po+ P3+ Py | 0.8670 0.6737 0.8208 0.1221 | 0.9630 0.8475 0.9513 0.0743
HFNet Scheme E | C; + P> +Cs 4+ Py | 0.8637 0.6808 0.8500 0.1243 | 09704 0.8617 0.9577 0.0785

TABLE IV

(@

Fig. 7. Examples of the proposed BDQM for learning patch features in
three scenarios. (a) is the DHI from the SHRQ-Aerial [16] dataset. (b), (c),
and (d) are the learned feature maps of the yellow rectangle in (a) of the
models without an operation, with residual connection, and with residual
concatenation, respectively.

with residual connection, and with residual concatenation. In
our experiments, residual connection denotes the elementwise
summation operation, while residual concatenation denotes the
channelwise splicing operation. For a fair comparison, all the
other experimental settings are the same for the three cases.

To intuitively compare model performance under the three
cases, we train models on the SHRQ-Aerial [16] dataset, and
the learned feature maps in the first PIE module are given in
Fig. 7. In this figure, (a) is a DHI of the SHRQ-Aerial [16]
dataset, (b), (c), and (d) are the corresponding learned feature
maps of the yellow rectangle in (a) of the models without
an operation, with residual connection, and with residual
concatenation, respectively. The visualization results indicate
that using residual concatenation can preserve more structural
information. The feature maps learned by the model with
residual concatenation are sharper than those learned by the
model with residual connection.

3) Effectiveness of IRNet: To verify the effectiveness of our
proposed IRNet, we compare two main regression network
structures for the CNN-based IQA task, whose architectures
are described in Section III-D1. We abbreviate the single

RESULTS OF THREE REGRESSION NETWORKS

Dataset SPNet WPNet TRNet

SRCC [ 08188 08190 0.8676

KRCC | 0.6424 06416 0.6917

SHRQ-Regular | proc | 08092 0.8093  0.8397
RMSE | 0.1878 01400  0.1182

SRCC | 09021 09083 0.9767

.| KRCC | 07580 07606  0.8848
SHRQ-Aerial | by | 08924 08791 0.9613
RMSE | 0.1514 01309  0.0682

pooling-based regression network as SPNet and the weighted
pooling-based regression network as WPNet. We compare
these two regression network structures with HFNet based on
scheme C in IV-C1 and keep other settings unchanged. From
the experimental results shown in Table IV, we obtain the
following three observations.

First, the single pooling operation exhibits relatively poor
performance on these two datasets when we adopt HFNet
scheme C. The final score obtained by summing or averaging
the patch quality scores ignores the contribution of superior
local quality to the overall image. It also weakens the existence
of inferior local quality. Second, using weights in single
pooling can effectively alleviate the neglect of local quality.
The weighted pooling operation emphasizes local properties
and effectively stretches the quality distance between patches.
According to Table IV, the results of four performance criteria
of weighted pooling are significantly better than those of single
pooling. Finally, compared to the above two methods, the
results show significant improvements in patch-related pooling
operations. The higher SRCC values on the SHRQ-Regular
and SHRQ-Aerial datasets show conspicuous progress. The
single pooling and weighted pooling methods compute indi-
vidual patch scores only without considering the underlying
relationship between patches in the entire image. The patch-
related pooling operation strengthens the feature connections
between each patch. As discussed in Section III-D1, the
inexact MOS value of each patch can also cause performance
degradation. The proposed scheme can avoid this awkward
situation to produce better results.

4) Patch Attention (PA): In the proposed IRNet, we intro-
duce a PA mechanism to determine the different contributions
of local quality to the overall quality prediction of the DHIs.
To verify the effectiveness of the proposed PA mechanism,
we compare the feature maps from HFNet before and after
passing PA. Fig. 8 shows the results, where (a) is a DHI and
(b) and (c) are the corresponding feature maps before PA and
after PA, respectively. The difference between the river and
the land is more significant in (c) than in (b), which is morc



TABLE V

THE RESULTS OF DIFFERENT METHODS ON THE SHRQ-REGULAR AND SHRQ-AERIAL DATASETS

Metric SHRQ-Regular SHRQ-Aerial exBeDDE
SRCC  KRCC PLCC RMSE | SRCC KRCC PLCC RMSE | SRCC KRCC PLCC RMSE
PSNR FR [ 0.6308 04516 0.6942 0.1486 | 0.8350 0.6371 0.8151T 0.142T7 | 0.3918 0.2698 0.4020 0.2718
SSIM [22] FR | 0.5627 0.3991 0.6201 0.1619 | 0.8207 0.6267 0.8166 0.1416 | 0.5208 0.3595 0.5222 0.2532
DISTS [69] FR | 0.7246 0.5375 0.8047 0.1225 | 0.8409 0.6489 0.8265 0.1381 | 0.4929 0.3404 0.5000 0.2571
VSI [70] FR | 0.6849 0.5065 0.7706 0.1315 | 0.7071 0.5158 0.6987 0.1755 | 0.5931 0.4164 0.6057 0.2362
LPIPS [15] FR | 0.7221 0.5421 0.8130 0.1202 | 0.8351 0.6382 0.8187 0.1409 | 0.3845 0.2644 0.4142 0.2702
GIQA PSIM [23] FR | 0.6238 0.4580 0.7580 0.1346 | 0.7593 0.5755 0.7338 0.1667 | 0.3993 0.2736 0.3654 0.2763
IL-NIQE [32] NR | 0.3372  0.2347 0.5935 0.1661 | 0.4306 0.2955 0.4746 0.2159 | 0.0988 0.0673 0.1046 0.2952
SNP-NIQE [33] | NR | 0.4300 0.3036 0.5873 0.1671 | 04258 0.2944 0.4677 0.2168 | 0.2458 0.1683 0.2646 0.2863
BPRIp [24] NR | 0.0159 0.0053 0.1638 0.2036 | 0.2388 0.1605 0.3568 0.2292 | 0.2647 0.1820 0.3203 0.2812
BMPRI [25] NR | 0.5148 0.3666 0.6740 0.1650 | 0.5493 0.3901 0.5448 0.2240 | 0.6108 0.4360 0.6567 0.2256
FRDQ [16] FR [ 0.8292 0.6430 0.8656 0.1033 | 0.8615 0.6685 0.8554 0.1271 | 0.1461 0.0994 0.0474 0.2969
FRDQa [16] FR | 0.7703 0.5908 0.8302 0.1151 | 0.9028 0.7219 0.9017 0.1061 | 0.2385 0.1633 0.1588 0.2931
VI [18] FR | 0.6176 0.4537 0.6974 0.1479 | 0.7250 0.5335 0.7078 0.1733 | 0.4630 0.3199 0.4283 0.2682
RI [18] FR | 0.5527 0.3953 0.6781 0.1517 | 0.6416 0.4515 0.6411 0.1883 | 0.4818 0.3342 0.4992 0.2572
FRFSIM [19] FR | 0.5862 0.4264 0.6754 0.1522 | 0.8065 0.6245 0.7844 0.1522 | 0.1978 0.1344 0.3230 0.2809
DIQA DPI [20] RR | 0.5519 0.3961 0.6254 0.1611 | 0.7075 0.5776  0.7295 0.1678 | 0.2774 0.1925 0.3350 0.2797
PDIQA [21] RR | 0.4427 0.3061 04319 0.1862 | 0.6189 0.4508 0.5920 0.1977 | 0.4296 0.2976 0.4410 0.2664
DHQI [17] RR | 0.4240 0.3000 0.6289 0.1605 | 0.5675 0.4341 0.5726 0.2011 | 0.6792 0.4701 0.6909 0.2146
BQMD [27] NR | 0.5643 04161 0.7620 0.1337 | 0.8604 0.6745 0.8441 0.1315 | 0.6244 0.4455 0.6318 0.2301
FADE [14] NR | 0.3425 0.2395 0.3358 0.1944 | 0.6632 0.5076 0.6759 0.1808 | 0.4991 0.3508 0.5168 0.2541
HazDesNet [51] | NR | 0.4045 0.2791 04196 0.1874 | 0.5472 0.3944 0.5547 0.2041 | 0.2132 0.1450 0.2253 0.2892
BDQM NR | 0.8676 0.6917 0.8397 0.1182 | 0.9767 0.8848 0.9613 0.0682 | 0.9156 0.7487 0.9369 0.1070
TABLE VI
THE RESULTS OF DIFFERENT METHODS ON THE DHQ AND IVCDD DATASETS
Metric DHQ TVCDD
SRCC KRCC PLCC RMSE | SRCC KRCC PLCC RMSE
TL-NIQE [32] NR [ 05970 04276 0.6548 0.1693 | 0.0952 0.1429 0.7950 0.1802
SNP-NIQE [33] | NR | 0.4740 0.3346 0.5447 0.1878 | 0.1905 0.1429 0.8636  0.0962
GIQA BPRIp [24] NR | 02529 0.1767 0.3512 0.2097 | 0.0238 0.0714 0.7955 0.1800
BMPRI [25] NR | 0.7265 0.5417 0.7496 0.1542 | 0.1413 0.0978 0.2468  0.2441
DPI [20] [20] RR [ 02710 0.1859 0.2727 0.2155 | 0.6429 0.5000 0.6072  0.2360
PDIQA [21] RR | 0.4468 03002 0.4291 0.2023 | 0.8810 0.7857 0.9101 0.1231
DHQI [17] RR | 0.8757 0.6994 0.8843 0.1046 | 0.5000 0.3571 0.6464 0.2267
DIQA BQMD [27] NR | 0.6537 0.4844 0.7103 0.1640 | 0.4451 0.3276 0.5766 0.2124
FADE [14] NR | 02526 0.1757 0.2540 0.2166 | 0.4762 0.3571 0.5903  0.2398
HazDesNet [51] | NR | 0.3303 0.2248 0.3430 0.2104 | 0.6429 0.5000 0.7928  0.1810
BDQM NR | 0.8936 0.7267 0.9008 0.0972 | 0.8955 0.7404 0.9083 0.1077

(2)

(b) ©

Fig. 8. Examples of the proposed BDQM for learning patch features in two
cases. (a) is the DHI from the SHRQ-Aerial [16] dataset. (b) shows the patch
feature maps without the PA mechanism. (c) shows the patch feature maps
after processing with the PA mechanism.

in line with the visual perception of the HVS in (a). Thus,
applying the PA mechanism in IRNet has a significant impact
on the accurate evaluation of the overall image.

D. Performance Evaluation

In this section, experiments are conducted to illustrate the
advantages of the proposed BDQM for DIQA. Two types of
IQAs are used for comparison, including 10 general-purpose
IQA methods (GIQAs) and 11 DIQAs. The 10 GIQAs contain
6 FR-IQAs: PSNR, SSIM [22], DISTS [69], VSI [70], LPIPS

[15] and PSIM [23], and 4 NR-IQAs: IL-NIQE [32], SNP-
NIQE [33], BPRIp [24] and BMPRI [25]. The 11 DIQAs
contain 5 FR-DIQAs: FRDQ [16], FRDQa [16], VI [18], RI
[18] and FRFSIM [19], 3 RR-DIQAs: DPI [20], PDIQA [21]
and DHQI [17], and 3 NR-DIQAs: BQMD [27], FADE [14]
and HazDesNet [51].

1) Evaluation of Individual Dataset: We compare the
proposed BQDM with 10 GIQAs and 11 DIQAs on the
SHRQ-Regular, SHRQ-Aerial, exBeDDE, DHQ, and IVCDD
datasets. Tables V and VI show the experimental results; the
best results in each dataset are marked in bold. From the
results, we can obtain the following observations. First, for
these two types of IQAs, the FR and RR methods show
better performance than the NR methods with the help of the
reference information. Second, compared to the state-of-the-
art [QAs (including GIQAs and DIQAs), our proposed BDQM
achieves the best performance on SHRQ-Aerial, exBeDDE
and DHQ and comparable performance on SHRQ-Regular
and IVCDD. The results show that the proposed method can
effectively evaluate the quality of DHIs without references.

In addition, we also employ scatter plots to graphically show
the disparity between the proposed BDQM and 21 competitors.
Fig. 9 shows the scatter plots of all examined methods on
the SHRQ-Aerial dataset, where each symbol represents the
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Fig. 9. Scatter plots of subjective scores against the objective scores predicted by representative IQA methods on the SHRQ-Aerial dataset. The solid red
line and blue triangle symbols represent the fitted curve and the DHIs, respectively. The SRCC score for each metric is also shown.

subjective and objective scores for a single DHI. The solid
red lines are the fitted curves of the scatter plots. The gap
between the symbol and the fitted curves visually indicates
the performance of the IQA model. The smaller the gap
is, the better the performance is. Comparing the distribution
characteristics of the scatter plots in Fig. 9, it is easy to see
that the proposed BDQM has a great performance advantage.

2) Evaluation of different DHAs on DHIs: To further check
the performance of the proposed BDQM, we conducted com-
parative experiments on two datasets with images applying
specific DHAs. Eight DHASs are applied to SHRQ-Regular and
SHRQ-Aerial datasets, including Fattal [1], Tarel [2], He [3],

Xiao [4], Meng [5], Lai [6], Berman [7] and Cai [8]. For the
sake of brevity, we present the results of SRCC and PLCC,
and similar conclusions are drawn for KRCC and RMSE. The
SRCC and PLCC results for the 10 GIQAs and 11 DIQAs
based on different DHAs are presented in Tables VII and VIIIL.

From the results presented in Tables VII and VIII, we can
observe that the proposed BDQM has the highest SRCC and
PLCC hit counts. In particular, the proposed BDQM shows
promising performance for Fattal [1] and Cai [8] DHAs, while
other available metrics show poor results for both DHAs.
The reason for this result is that the images after applying
DHAs Fattal [1] and Cai [8] have uneven haze residue.
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TABLE VII
PERFORMANCE COMPARISON (SRCC) OF DIFFERENT DHAS

Metric SHRQ-Regular SHRQ-Aerial
Fattal — Tarel He Xiao Meng Lai Berman Cai Fattal — Tarel He Xiao Meng Lai Berman Cai
PSNR 0.3775 0.6203 0.2347 0.4688 0.6074 0.2551 0.5748 0.548410.7428 0.8861 0.6592 0.2178 0.8839 0.4656 0.8158 0.6561
SSIM [22] 0.1485 0.5036 0.1748 0.5809 0.5611 0.2165 0.5437 0.4129 [ 0.7357 0.8020 0.7913 0.5604 0.7264 0.3976 0.7397 0.6400
DISTS [69] 0.3876 0.6964 0.7850 0.5535 0.6920 0.3897 0.3574 0.4067 [ 0.5293 0.8834 0.8527 0.3290 0.8776 0.4091 0.8612 0.5769
VSI [70] 0.5928 0.6750 0.5588 0.6275 0.6382 0.3567 0.4486 0.5506 [ 0.6828 0.8211 0.8772 0.4158 0.8487 0.3771 0.5502 0.0478
LPIPS [15] 0.5744 0.6838 0.6057 0.6569 0.6821 0.5054 0.2578 0.5638 [ 0.6592 0.9017 0.8443 0.2899 0.8994 0.4385 0.7989 0.4251
PSIM [23] 0.4457 0.5610 0.6584 0.4806 0.5499 0.2872 0.4043 0.4473 (0.6392 0.9008 0.9212 0.2187 0.8879 0.3286 0.7264 0.1115
IL-NIQE [32] [0.2220 0.2349 0.6816 0.0605 0.1099 0.0121 0.2572 0.0735|0.2347 0.4545 0.6894 0.0736 0.3895 0.1911 0.4180 0.1097
SNP-NIQE [33] | 0.3563 0.3896 0.7331 0.2603 0.2569 0.2908 0.1179 0.1067 | 0.1662 0.2529 0.5475 0.1706 0.3264 0.1880 0.1212 0.0638
BPRIp [24] 0.1439 0.0153 0.3934 0.0982 0.0092 0.0215 0.1040 0.0480 [ 0.2365 0.3041 0.7068 0.4594 0.4581 0.0002 0.4345 0.3669
BMPRI [25] |0.6866 0.4984 0.8198 0.5257 0.3457 0.6507 0.3486 0.4846|0.0905 0.7526 0.8981 0.2970 0.6383 0.3152 0.7192 0.5987
FRDQ [16] . 7 . K 7 5 . .65 7 . .847 71 91 . .837 7
FRDQa [16] [0.6148 0.7833 0.7148 0.7424 0.7108 0.4826 0.6183 0.7308 |0.8131 0.9181 0.8011 0.7682 0.9199 0.7192 0.8518 0.8545
VI [18] 0.3337 0.6538 0.3984 0.4958 0.7021 0.3389 0.3758 0.2155[0.5689 0.8407 0.8429 0.4527 0.7815 0.2267 0.8256 0.2022
RI [18] 0.4880 0.4980 0.4806 0.4671 0.3933 0.2195 0.1874 0.4561 [ 0.6409 0.7197 0.7882 0.2694 0.7526 0.4407 0.3455 0.4852
FRFSIM [19] [0.2249 0.5515 0.7590 0.4051 0.4095 0.3038 0.4199 0.4117|0.5800 0.8808 0.9066 0.5497 0.8465 0.4162 0.6712 0.5230
DPI [20] 0.5722 0.4551 0.4524 0.4935 0.4250 0.5788 0.2968 0.3980 [ 0.2974 0.9253 0.3686 0.2400 0.9582 0.1960 0.8349 0.8051
PDIQA [21] [0.4349 0.2684 0.3004 0.2769 0.3999 0.4133 0.3424 0.2047 | 0.5537 0.2494 0.2307 0.1662 0.4474 0.1947 0.6053 0.0683
DHQI [17] 0.1146 0.3859 0.7804 0.1292 0.2111 0.3381 0.2668 0.1576 [ 0.0220 0.8986 0.9284 0.1297 0.7419 0.4105 0.7931 0.7308
BQMD [27] [0.3688 0.2693 0.8710 0.1235 0.2725 0.5410 0.1542 0.2174|0.6792 0.9417 0.9399 0.1987 0.9199 0.5662 0.6392 0.8042
FADE [14] 0.5314 0.3870 0.0722 0.5625 0.3812 0.4627 0.1651 0.3847 [ 0.1657 0.9043 0.4336 0.1613 0.9479 0.2792 0.7717 0.7686
HazDesNet [51] | 0.3759 0.4325 0.3029 0.1810 0.3292 0.0289 0.0208 0.3109 [ 0.0563 0.8283 0.6156 0.3513 0.8945 0.3918 0.6436 0.5155
BDQM 0.7717 0.7937 0.7585 0.8347 0.7527 0.7050 0.6792 0.7618 [ 0.9769 0.9640 0.9662 0.8977 0.9546 0.9493 0.8834 0.9702
TABLE VIII
PERFORMANCE COMPARISON (PLCC) OF DIFFERENT DHAS
Metric SHRQ-Regular SHRQ-Aerial
Fattal — Tarel He Xiao Meng Lai Berman Cai Fattal — Tarel He Xiao Meng Lai Berman Cai
PSNR 0.4590 0.7265 0.2470 0.5509 0.6276 0.3154 0.5769 0.5886 [0.7302 0.8601 0.6785 0.6843 0.8920 0.5008 0.7381 0.6797
SSIM [22] 0.3283 0.5740 0.2501 0.5878 0.6256 0.2596 0.5517 0.4978 [0.7210 0.7973 0.8492 0.7297 0.7886 0.5946 0.7459 0.6472
DISTS [69] 0.5502 0.8151 0.7743 0.6024 0.7283 0.4229 0.4712 0.6502 | 0.5568 0.9208 0.8091 0.4893 0.8832 0.6335 0.9033 0.7238
VSI [70] 0.5926 0.7583 0.5665 0.6072 0.6753 0.3992 0.4985 0.6535(0.7038 0.8529 0.9020 0.5173 0.8336 0.6042 0.6232 0.1186
LPIPS [15] 0.6690 0.7454 0.5877 0.7605 0.7325 0.6045 0.3788 0.6085|0.7013 0.8936 0.8612 0.4836 0.9133 0.6699 0.8821 0.4770
PSIM [23] 0.5461 0.6507 0.6993 0.5846 0.5950 0.3481 0.3969 0.4706 | 0.6633 0.8854 0.9315 0.2642 0.8944 0.6401 0.7160 0.0799
IL-NIQE [32] |0.2907 0.3967 0.6897 0.1053 0.2771 0.0069 0.3704 0.3606 | 0.5235 0.4770 0.8056 0.2368 0.5424 0.2478 0.4485 0.3065
SNP-NIQE [33] | 0.4219 0.3744 0.7422 0.1865 0.3101 0.3683 0.1891 0.2556 [ 0.4761 0.4821 0.7861 0.0807 0.2881 0.3394 0.0830 0.1604
BPRIp [24] 0.4656 0.2705 0.4160 0.3196 0.2770 0.3030 0.0544 0.1357 [ 0.3372 0.5736 0.7578 0.4810 0.5276 0.4563 0.5500 0.4793
BMPRI [25] |0.7174 0.5621 0.8676 0.5604 0.3296 0.6975 0.3240 0.5846 |0.3081 0.7581 0.8798 0.7969 0.7348 0.4886 0.7625 0.6790
FRDQ [16] 0.7368 0.7904 0.7164 0.8472 0.7870 0.7778 0.6815 0.6756 [0.7581 0.9241 0.8595 0.7919 0.9078 0.6988 0.7940 0.7855
FRDQa [16] |0.7160 0.8391 0.7295 0.7801 0.7553 0.5602 0.6054 0.7457 {0.8113 0.9513 0.8302 0.8194 0.9167 0.9340 0.8001 0.9128
VI [18] 0.3789 0.7500 0.4446 0.4927 0.7350 0.4460 0.4043 0.4053 [0.5649 0.8844 0.8777 0.5971 0.7486 0.4244 09189 0.3712
RI [18] 0.5742 0.7243 0.5380 0.5386 0.4047 0.3595 0.2895 0.4790 [ 0.6806 0.7794 0.8136 0.4205 0.7903 0.6913 0.1899 0.5759
FRFSIM [19] [0.4303 0.5725 0.7689 0.5150 0.4766 0.5347 0.4543 0.4781|0.6297 0.8550 0.9172 0.6040 0.8482 0.6089 0.6619 0.5619
DPI [20] 0.6287 0.5024 0.4181 0.5350 0.5333 0.6105 0.3662 0.6008 [ 0.3632 0.9167 0.4452 0.6692 0.9555 0.3388 0.9214 0.8176
PDIQA [21] |[0.4823 0.2842 0.3600 0.5750 0.4501 0.5331 0.5101 0.4137|0.6640 0.3432 0.3684 0.2082 0.5688 0.2843 0.5637 0.3111
DHQI [17] 0.1192 0.5331 0.8126 0.3603 0.3682 0.3924 0.3527 0.3964 [ 0.2321 0.8925 0.9429 0.3611 0.7402 0.5512 0.8883 0.7669
BQMD [27] [0.5332 0.4288 0.8991 0.3903 0.4370 0.5689 0.1367 0.3411 |0.6886 0.9438 0.9401 0.3939 0.9205 0.7385 0.6908 0.8007
FADE [14] 0.6722 0.5498 0.3939 0.6059 0.3358 0.4329 0.3437 0.6015 [ 0.2479 0.9007 0.6602 0.3010 0.9337 0.3800 0.7910 0.7964
HazDesNet [51] | 0.4542 0.5763 0.4664 0.3637 0.3698 0.1399 0.0714 0.3641 | 0.5120 0.8736 0.7439 0.4255 0.8843 0.4585 0.7851 0.3797
BDQM 0.8182 0.7890 0.7803 0.8713 0.7935 0.7370 0.8227 0.8120 | 0.9755 0.9780 0.9735 0.9388 0.9632 0.9849 0.9091 0.9739
M 0/6/9/9/67/1 our proposed BDQM can learn visual features without any
e o constraints to produce satisfactory results. However, for He
I e [3], the performance of BDQM is slightly worse. Because He
o —A—RSE o —A—RMSE .. . . .
g0 o8 [3] generates additional artifacts during the dehazing process,
our model learns these artifacts as perceptual features, which
0 0 leads to inaccurate results. In general, BDQM exhibits stable
and superior performance on most types of DHAs compared
DT el T S i, " to the state-of-the-art IQA metrics
(a) (b) 3) Studies on Different Size Training Sets: In this task, we

Fig. 10. Performance results on the SHRQ-Aerial dataset using training sets
of different sizes. The training sets are selected by the two strategies: (a)
randomly selecting samples; (b) selecting samples based on expected error
reduction.

Existing metrics fail to obtain accurate results because they
do not capture the inhomogeneous haze features. In contrast,

investigate the impact of different-size training sets. Inspired
by active learning [71], the training sets are selected by
the following two strategies: (a) randomly selecting samples;
(b) selecting samples based on expected error reduction.
10%, 20%, . .., 90% subsets from a given dataset are selected
as the training sets, and our proposed BDQM is trained
independently on these training sets of different sizes, without
introducing redundant variables. Then the model is tested on
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TABLE IX
STATISTICAL SIGNIFICANCE TEST RESULTS FOR THE SHRQ-AERIAL DATASET. SYMBOL 1/0/- AT (I, J) INDICATES THAT THE
MODEL IN ROW I IS STATISTICALLY SUPERIOR/INFERIOR/INCOMPARABLE TO THE MODEL IN COLUMN J.
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the remaining subset of each random division. Theoretically,
if more data arc used for training, the model is fitted better
and results in better performance.

Fig. 10 shows the performance results on the SHRQ-Aerial
dataset under two data selection strategies. We repeat each
random division of different sizes 10 times; the average result
is plotted in Fig. 10. Obviously, the proposed model can
still obtain satisfactory SRCC values even if only 10% of
the data are used for training. A similar result can be found
for the PLCC curve. The experimental results show that the
proposed model can achieve satisfactory results even with a
small amount of training data.

4) Statistical Significance Test: We perform a statistical
significance test on the SHRQ-Aerial dataset to verify that the
performance of all models is significantly different. The F-test
method [16] is used by comparing residual variances between
the subjective and the objective score. Table IX shows the
result, where the symbols 1, -1, and - at (¢, j) indicate that
the model in row ¢ performs statistically superior, inferior,
and incomparable to the model in column j, respectively.
From Table IX, we can make two observations. First, most
competitors are statistically incomparable with each other.
Second, the proposed BDQM has significant advantages over
all considered state-of-the-art IQAs.

5) Computational Complexity: The computational com-
plexity of IQAs is worth analyzing since running time is a
critical influencing factor in many real-time applications. In
our experiments, the computational complexity of a model
is measured by computing the running time of predicting
the quality of a single image. To eliminate the bias caused
by specific image selections, we choose 240 images from
the SHRQ-Aerial dataset for testing and utilize the average
running time of each model as the computational time cost.
Table X lists the computational complexity of the proposed
model and the compared IQA methods.

From this table, we can draw the following conclusions.
On the one hand, PSNR and SSIM [22] have the lowest

TABLE X
COMPUTATIONAL COST OF BDQM AND OTHER IQA METRICS

GIQA Time(s) DIQA Time(s)
PSNR 0.0104 FRDQ [16] 0.0631
SSIM [22] 0.0163 FRDQa [16] 0.0574
DISTS [69] 3.2901 VI [18] 0.1807
VSI [70] 0.1006 RI [18] 0.1752
LPIPS [15] 0.0162 FRFSIM [19] 0.1295
PSIM [23] 0.0562 DPI [20] 0.7796
IL-NIQE [32] 2.8047 PDIQA [21] 2.8798
SNP-NIQE [33] 19111 DHQI [17] 0.2844
BPRIp [24] 0.2590 BQMD [27] 0.3604
BMPRI [25] 0.3406 FADE [14] 0.5283
- - HazDesNet [51] 0.8249

- - BDQM 0.0226

computational complexity because they contain only simple
functions among the seven GIQA metrics. DISTS [69] takes
the longest time because its features are obtained through deep
learning models. In addition, using the MVG models imposes
a cost on the computation time of IL-NIQE [32] and SNP-
NIQE [33]. On the other hand, for the remaining nine DIQAs
that predict image quality by manually extracting features,
PDIQA [21] has the highest computational complexity because
it extracts features at the pixel level. In contrast, the proposed
model shows moderate operating speed among the compared
IQAs. This result suggests that our model does not incur
an unacceptably heavy computational overhead to improve
prediction accuracy.

V. CONCLUSION

In this paper, we propose BDQM, a deep CNN-based model
for blind dehazed image quality assessment. To overcome the
difficulty of acquiring haze-free and hazy image pairs, our
proposed BDQM is an end-to-end model that does not require
a reference image. BDQM contains three core components:
image preprocessing, HFNet and IRNet. The HFNet consists
of low-level feature extraction, PIE modules and a feature
pooling step, which is beneficial for learning powerful feature
representations and enhancing the feature extraction capability



of the network. To consider the characteristics of the uneven
quality distribution of DHIs and to avoid inaccurate estimation
of the subjective scores of image patches during training,
we design a PA mechanism in IRNet. Extensive experiments
are conducted on five dehazed image datasets to verify the
performance of our proposed BDQM and state-of-the-art IQA
methods. The results show that BDQM outperforms the com-
pared methods in terms of accuracy and monotonicity with
moderate computational cost.
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