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Abstract

Motivation: Social media represent an unrivalled opportunity for epidemiological

cohorts to collect large amounts of high-resolution time course data on mental health.

Equally, the high-quality data held by epidemiological cohorts could greatly benefit

social media research as a source of ground truth for validating digital phenotyping algo-

rithms. However, there is currently a lack of software for doing this in a secure and

acceptable manner. We worked with cohort leaders and participants to co-design an

open-source, robust and expandable software framework for gathering social media

data in epidemiological cohorts.

Implementation: Epicosm is implemented as a Python framework that is straightforward

to deploy and run inside a cohort’s data safe haven.

General features: The software regularly gathers Tweets from a list of accounts and

stores them in a database for linking to existing cohort data.

Availability: This open-source software is freely available at [https://dynamicgenetics.

github.io/Epicosm/].

Key words: Social media, epidemiology, cohort studies, longitudinal studies, data science, Big Data, mental health,

wellbeing, data linkage, ALSPAC
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Introduction

Digital footprint data, such as data from social media,

banking and shopping, online searches, and apps such as

exercise trackers, offer huge potential for epidemiological

studies to derive new digital phenotypes based on real hu-

man behaviour. For example, research predicting mental

health from digital data has been increasing since 2013,1

and progress in this area could improve access to mental

health care, such as by offering overstretched services a

way of supporting patients between check-in occasions.

Early detection of problems through digital phenotyping

could lead to early interventions that prevent the develop-

ment of more complex issues. This might work at both an

individual level2 and a strategic level, where services can be

put in place to meet anticipated demands of populations

such as student groups,3,4 emergency workers5 or geo-

graphical regions,6 an approach that proved particularly

valuable during the COVID-19 pandemic.7–10 Research in

this field has developed methods for inferring a wide range

of outcomes, including social anxiety,11 suicidality,12,13 de-

pression,14–16 wellbeing6,17 and happiness.18,19 This makes

social media data a potentially valuable source of informa-

tion for epidemiological studies, such as birth cohorts, to

supplement more traditional approaches. Inference from

social media data has the potential to provide high tempo-

ral resolution data on mental wellbeing on daily or even

hourly timescales, and research using these data could ad-

vance our understanding of mental health time courses, aid

early diagnosis and inform public health interventions and

policies,20,21 opportunities recognized by funding bodies,

such as United Kingdom Research and Innovation (UKRI)

and the Wellcome Trust, in their cohort data linkage

strategies.22,23

Conversely, researchers developing approaches for

inferring phenotypes from these novel data can benefit

from the resources provided by epidemiological cohorts.

Historically, studies using social media have rarely had

good knowledge of the samples they were studying, risking

demographic bias and unmeasured confounding. Similarly,

these studies have rarely had access to good ‘ground truth’

measures of their phenotypes of interest. Epidemiological

cohorts, with their well characterized participants and

state-of-the-art phenotyping, offer an opportunity for a

step change in the quality of research in this area by allow-

ing straightforward validation of new digital measures

against gold-standard, symptom-based assessments and di-

agnoses in a known population.

Despite these advantages, currently few longitudinal

cohorts have linked digital footprint data, because of the

specific challenges. For example, social media data are dif-

ficult to anonymize; with a publicly available platform

such as Twitter, there is no way for a cohort to share user

names or Tweets without identifying cohort participants.

This is particularly important because cohorts rely on a

long-term trust relationship with participants, and the dis-

closure of personal data could lead to reputational damage

for the cohort and a decrease in participation. Such chal-

lenges mean that cohorts could benefit greatly from soft-

ware designed in collaboration with cohort leaders and

participants to meet their specific needs. With this in mind,

we worked closely with stakeholders from the Avon

Longitudinal Study of Parents and Children (ALSPAC) and

other CLOSER (based at the University College London

Social Research Institute) cohorts to design the Epicosm

software to address these special requirements.

Although social media harvesting software products are

widely available, most require significant programming

skills run in a way useful to longitudinal cohorts, such as

collecting new data regularly from a list of specific users.

Similarly, most social media harvesters are not well docu-

mented, and do not provide functions such as data man-

agement or built-in approaches for inferring common

digital phenotypes from datasets. In contrast, Epicosm is

designed to be relatively straightforward to set up and run

on servers in the heterogeneous computing environments

inside cohorts’ data safe havens, allowing long-term link-

ing of social media time lines from a list of users, storage

of information in a flexible database structure, and auto-

mated and modular processing of the data using several

widely used coding algorithms. At the time of writing,

Epicosm’s focus is on harvesting data from Twitter.

However, the software has been designed following soft-

ware engineering best practices, including modular organi-

zation to allow expansion to other social media platforms,

Open Source code available on GitHub, and documenta-

tion written with future collaborators and maintainers in

mind. The data collected by Epicosm form the basis for a

depersonalized dataset of information, derived from social

media, which can be shared with researchers through a

cohort’s usual data access mechanisms. As social media big

data continue to evolve, Epicosm provides robust data ac-

quisition tools so that epidemiology can benefit from these

rich sources of information about the daily lives and

behaviours of people and populations.

Implementation

Epicosm is an open-source project freely available under a

GPL version 3 licence from GitHub [dynamicgenetics.

github.io/Epicosm/], along with full documentation.

Collaborators are welcome to branch, fork or issue pull

requests [for example, updating in response to changing

API (Application Programming Interface) authentication]
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and to add custom functionality. The modular nature of

the software suite allows adaptation for alternative plat-

forms, allowing any typical API response to be archived in

a local database for later analysis. Together, the software

engineering principles applied in its development promote

collaboration to maintain and expand Epicosm’s scope,

and allow it to act as a foundation for a variety of

research.

For data management, Epicosm uses the open-source,

non-relational document database MongoDB [mongodb.

com]. MongoDB was chosen for flexibility: the schema is

consistent with Java Script Object Notation (JSON) data

structure, a common format for API responses. This allows

the storage of a variety of types of data (from plain text

with metadata to images and other media), and accommo-

dates adaptation of Epicosm to variation in API responses

over time and across a range of social media platforms.

We anticipate that Epicosm will be installed and

managed by cohort data managers: these staff typically

have permissions to process identifiable participant data

and are responsible for the post-processing (for example

de-personalization) needed prior to sharing with research-

ers. In development we have been sensitive to user require-

ments, keeping requisite skills marginal: some basic

experience of the command line interface is expected, but

no programming experience is required and we provide

full instructions for setting up and running the software.

The repository also contains links to resources to support

new users.

The steps to gather information from the Twitter API

using Epicosm are as follows. The user must provide two

files: (i) a list of participants’ Twitter user names (also

known as ‘screen names’ or ‘handles’); and (ii) a Twitter

API bearer token to authorize API requests. Once these are

in place, Epicosm is ready to run and carries out the fol-

lowing processes.

i. Credentials are verified by Twitter’s API.

ii. The API converts screen names to unique and persis-

tent identification (ID) numbers (this enables the track-

ing of participant accounts longitudinally, even where

participants change screen names).

iii. Epicosm then requests Twitter timelines—that is, the

user’s tweets (posts by the user) and re-tweets (re-posts

of other users’ posts)—from each ID number. With an

authorised academic research account, the complete

tweet history of each user is available.

iv. Finally, each record (a single JSON document for each

tweet) is stored in MongoDB. The tweet harvest can be

scheduled to repeat at regular intervals specified by the

user.

Various options are available, depending on the specific

consent obtained from participants, including acquiring

the list of ‘followed’, third-party Twitter account names.

Public followed accounts can also be harvested for their

tweets: the content of this harvest approximates the ‘feed’

that a user is presented with by Twitter (or at least, the

pool of tweets available for Twitter to present to the user).

In contrast to the original user tweet harvest, this harvest

will only acquire posts made in the last 7 days (but can be

repeated weekly). A full-archive harvest of followed

accounts is theoretically possible, but not currently imple-

mented in Epicosm: users can each follow thousands of

accounts, each of which may have a large history of tweets,

especially if they are intensely managed (for example, ce-

lebrity accounts) or automated accounts (for example,

sports results or the weather).

Epicosm includes a selection of widely used algorithms

(Box 1) for deriving sentiment (and other) information

from Twitter data: LabMT,18 VADER,24 LIWC201525

and TextBlob26 (note that, for licensing reasons, LIWC

analysis requires the users to acquire a dictionary from the

LIWC developers). Epicosm applies the analyses to each

tweet, and appends these to each record in labelled data-

base fields. The software provides implementations of

these commonly used measures, as a demonstration of how

phenotypes can be automatically added to the data base

and because they are likely to be requested by researchers.

However, the platform is flexible to allow users to derive

novel phenotypes through the addition of custom algo-

rithms or new dictionaries to allow analysis of languages

other than English, and we anticipate that cohorts will em-

ploy a variety of their own approaches to derive informa-

tion from the Twitter data once Epicosm has downloaded

and stored it.

Use

As an approximate guide based on a random sample, 1000

users typically have an acquirable history of around

700 000 tweets, leading to a database size of around 3.5

GB, although the software will also allow data collection

from much larger samples, limited only by storage space

and the Twitter API’s rate limits. When first run, Epicosm

will attempt to gather the full tweet time line history for

each user. Subsequent harvesting operations will return

only the tweets more recent than the latest tweet already in

the database. At the time of writing, data can be acquired

at about a million tweets per hour, but this will be highly

dependent on connection speed, network activity and any

rate-limiting measures Twitter impose (i.e. where they re-

strict the rate of download via the API).
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As an example of expected use, we gathered tweets

from a list of around 800 Twitter accounts of consenting

participants in ALSPAC, an epidemiological birth cohort

of around 15 000 families recruited between 1991 and

1992 in the historical county of Avon in the west of the

UK.27 ALSPAC was interested in understanding the poten-

tial of these novel data to infer changes in mental health

over time. Participants provided informed consent and eth-

ical approval was provided by the ALSPAC Ethics and

Law committee. We used Epicosm to link Twitter data as

proof-of-principle. Of course, different populations use so-

cial media platforms in different ways, and this evolves

with time. Twitter users, in the UK at least, are on average

younger and slightly more likely to be male than the gen-

eral population,28 although there is less age bias than pre-

viously assumed, with good representation from all age

groups. For the ALSPAC young people at 24 years old,

there was little difference in Twitter use across gender, eth-

nicity and parental employment groups, although those

who had completed Advanced Level qualifications (post-

16 school leaving examinations) were slightly more likely

to use Twitter (58% compared with 51%).29 Despite the

potential for bias in the sample, cohorts are the ideal for

collecting this type of data because the biases are often

identifiable. Twitter is currently among the social media

platforms most open to academic research, but our inten-

tion is to expand Epicosm’s capabilities in future to include

linking other forms of social media, subject to API

restrictions.

The Twitter data linkage in ALSPAC was guided by

conversations with cohort participants to understand the

acceptability of this use of data and to establish appropri-

ate safeguards,30 and with cohort data managers and link-

age experts to understand the requirements for running

the software and retrieving the data. These insights empha-

size the wider evidence from participants30,31 that it is

a necessity for data accessed by researchers to be de-

personalized, and that study data managers operate in a

trusted role where they are able to capture identifiable data

and process these so they are suitable for dissemination to

researchers.

We developed a data management protocol that en-

sured that Twitter linkage fitted with ALSPAC’s linkage

data pipeline model, acquiring tweets from consenting

participants via the Twitter Application Programming

Interface (API) and depositing these in raw form in a per-

manent, versioned MongoDB data base. Data bases such

as MongoDB are particularly useful for social media data

because they store data in the form of documents that are

very similar to the responses received from social media

APIs. In this case, each document corresponded to a tweet

and its associated metadata. The ALSPAC data managers

(who have exclusive access to participant identifiers) fol-

lowed a protocol that involved:

i. the implementation of consent and withdrawal;

ii. providing the software with a list of Twitter user

names which guided the collection of data from the

Twitter API;

Box 1 Sentiment analysis methods

Sentiment analysis, the most common approach applied to derive information from social media data, is the inference

of emotions, opinions and attitudes from written text. Output metrics vary depending on the methodology, but com-

mon inferences include positive or negative emotions or a composite of both [for example, VAD ER29 (Valence Aware

Dictionary and sEntiment Reasoner)]. Some methods also aim to derive more specific emotional and syntactic content,

for example LIWC30 (Linguistic Inquiry and Word Count) infers over 70 categories from emotions aor gender specific-

ities to politics or food.

A commonly used methodology is the ‘dictionary approach’. Individual words are first assigned sentiment scores by a

group of participants, to build up a dictionary. For example, words such as ‘death’, ‘hate’ and ‘hell’ might be assigned

negative scores, and ‘friend’, ‘happy’ and ‘love’ are generally rated more positively. The text is then assigned a mean

score based on the dictionary words it contains (or a relative frequency for categorical dictionaries). This straightfor-

ward approach is limited by features of natural language such as negation, neologism, irony or sarcasm, but these are

often equally difficult for human readers to understand, and their influence can be mitigated by applying more sophisti-

cated natural language processing and machine learning approaches that aim to interpret sentence structure or do not

assume the direct correspondence between the dictionary definition of words and the associated phenotypes. Linking

social media data in epidemiological cohorts provides a crucial tool to develop these new approaches, by providing ac-

cess to linked independent outcome (‘ground truth’) measures and demographic information about the populations

studied.
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iii. subsequent curation of the data in the MongoDB data-

base (including documentation and versioning);

iv. the management of participant identifiers to enable

linkage to other cohort data;

v. ensuring that the raw captured data were sufficiently

depersonalized to share as structured data outputs,

while retaining full Twitter content within the cohort’s

data safe haven for the duration of the study so that it

could be repurposed for future research needs.

Conclusion

Social media data offer huge potential for digital pheno-

typing in epidemiological cohort studies to complement

traditional measures. Equally, epidemiological cohorts

have much to offer digital footprint researchers. We have

described the software Epicosm and how it can be used

by epidemiologists to expand existing cohort datasets.

The software provides a robust foundation for Twitter

data acquisition, and enables the exploration of partici-

pants’ digital footprints to address important health and

social research questions. As the importance of online

community and communication increases (especially in

light of global health events such as the COVID-19 pan-

demic), Epicosm offers epidemiologists a practical way to

expand their work into novel types of data and methodol-

ogies, and opens up the valuable data already held

by longitudinal population cohorts to new research

communities.
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