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A B S T R A C T   

This paper presents a new structural health monitoring strategy based on a deep learning architecture that uses 
nonlinear ultrasonic signals for the automatic assessment of breathing-like debonds in lightweight stiffened 
composite panels (SCPs). Towards this, nonlinear finite element simulations of ultrasonic guided wave (GW) 
response of SCPs and laboratory-based experiments have been undertaken on multiple composite panels with and 
without baseplate-stiffener debonds using fixed a network of piezoelectric transducers (actuators/sensors). GW 
signals in the time domain are collected from the network of sensors onboard the SCPs and these signals in the 
frequency domain represent nonlinear signatures as the existence of higher harmonics. These higher harmonic 
signals are separated from the GWs (raw) and converted to images of time–frequency scalograms using 
continuous wavelet transforms. A deep learning architecture is designed that uses the convolutional neural 
network to automatically extract the discrete image features for the characterization of SCP under healthy and 
variable breathing-debond conditions. The proposed deep learning-aided health monitoring strategy demon-
strates a promising autonomous inspection potential with high accuracy for such complex structures subjected to 
multi-level breathing-debond regions.   

1. Introduction 

Lightweight fibre-reinforced composites have gained popularity in 
aeronautic, aerospace, marine, infrastructure and automobile engi-
neering sectors, owing to their high stiffness/weight ratio, fire resistance 
and acoustic damping, amongst others [1–5]. Stiffened composites are 
often used for the lightweight construction of these engineering struc-
tures [6,7]. Various types of stiffeners (e.g., cross-sections of I, L, T) are 
bonded to the base plate of these structures. At these stiffener-baseplate 
bond interphase, breathing type debond can occur owing to cyclic 
loading, improper handling, impact and ageing [8,9]. While in service, 
these debond can grow further and lead to a catastrophic structural 
failure, if not identified beforehand [10,11]. Hence, detecting and 
characterising these hidden damages in stiffened composites is 
important. 

In [12–15], it was shown that the structural health monitoring 
(SHM) methods based on guided wave (GW) propagation have the po-
tential for the accurate detection of hidden defects in complex com-
posites with multiple layers. Such linear and nonlinear GW propagation- 
based SHM techniques offer long-range monitoring with high sensitivity 

against minor defects/discontinuities in layers [16–19]. These SHM 
methods often involve the application of lightweight and economic 
broadband transducers such as the network of surface-mounted piezo-
electric lead zirconium titanate transducers (PZTs) [14,15]. 

The breathing debonds in composites are complex and often difficult 
to identify using trad SHM methods [20,21]. This breathing-type debond 
can sometimes behave as open (i.e. debond) or closed (i.e. undamaged) 
regions, owing to the occurrence of ‘breathing behaviour’ under dy-
namic wave loading [21,22]. The breathing phenomenon of such 
debonds generates nonlinear ultrasonic waves that involve higher har-
monics [23,24], sub-harmonics [25], mixed frequency–response [26], 
and non-linear resonance [27]. Several studies [24,28,29] have 
demonstrated that the nonlinear response features are responsive to 
contact-type damage (e.g., breathing crack, kissing-delamination) and 
are not much influenced by operational conditions. Many authors 
[30,31] have analysed the generation of higher-harmonics, due to the 
occurrence of contact nonlinearity (often occurring for breathing-type 
damage) in the structures. In [23], contact-acoustic non-linearity 
(CAN) that occurs owing to the breathing-type cracks was investigated 
using signals from a PZT network. Nonlinear elastic wave signal-based 
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SHM techniques are also presented by some other researchers [32,33]. 
In recent times, structural response data-based machine learning 

approaches are gaining popularity for autonomous condition moni-
toring of structures [34–38]. Deep learning algorithms using Convolu-
tional Neural Network (CNN) have demonstrated their capability in the 
image-based characterization of structural conditions [34,35]. The CNN 
algorithm can effectively handle the grid-like inputs from images to 
generate similar image features from the local regions of alike patterns 
[34,39]. Image-based deep learning involves large datasets that can be 
produced synthetically by adding different levels of noise (e.g., Gaussian 
zero mean noise) to the actual images, which is known as ‘data 
augmentation’ [40–42]. Recent studies [42,43] have presented deep 
learning based SHM methods for autonomous assessment of static 
damage/delamination in laminated composites. The literature review 
revealed that no investigation has been undertaken in the area of 
identification of breathing-type damage-induced nonlinear ultrasonic 
wave features using an automated deep learning approach. This paper 
aims to address this important research gap with a deep learning-based 
SHM strategy. 

A CNN-based SHM strategy is presented in this paper for the auto-
matic characterization of carbon fibre-reinforced stiffened composite 
panels (SCPs) with and without baseplate-stiffener debond using the raw 
GW signals and the filtered time-domain higher-harmonic signals. A 
series of laboratory experiments and numerical finite element based 

numerical simulations have been carried through on multiple SCP 
samples. The numerical and experimental GW signals are translated to 
images of RGB (red, green, blue) scalograms (time–frequency) using the 
Continuous Wavelet Transform (CWT). These scalograms have been 
supplied as input to the designed deep learning architecture to perform 
the training/validation/testing operations. This paper is structured as 
follows. Section 2 presents the details of laboratory experiments on SCP 
samples for SCPs with breathing debonds. In Section 3 the details of 
finite element modeling for nonlinear numerical simulations of GW 
propagation in SCP are described. Section 4 describes the details of the 
deep learning architecture for SHM of SCPs. The experimental results, 
findings, and discussions around them are presented in Section 5. The 
main conclusions from this study and scope the of future research in this 
area are detailed in Section 6. 

2. Experimental procedure 

A series of ultrasonic GW-based experiments are conducted in the 
laboratory on.  

(i) an undamaged (healthy) SCP- marked as ‘UD’,  
(ii) an SCP with a baseplate-stiffener 2 debond- marked as ‘DSt2′

(iii) an SCP with a baseplate-stiffener 1 debond- marked as ‘DSt1′. 

Fig. 1. Experimental setup: PZT-induced ultrasonic GW propagation in SCPs.  

Fig. 2. (a) Frequency modulation curve, (b) selected actuation signal and (c) its FFT.  
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In the SCP samples, two 450.00 mm long L shaped (30.00 × 30.00 
mm) stiffeners are attached to the base plate (500.00 × 450.00 × 2.00 
mm) using the epoxy resin adhesive. At the stiffener-baseplate interface, 
artificial debonds (30.00 mm × 30.00 mm) are induced by placing 0.05 
mm thin Teflon films while manufacturing the samples (ii) and (iii). A 
bonded PZT (thickness = 0.05 mm, diameter = 10 mm) network is 
mounted on the SCP’s top surface for the actuation and reception of 
ultrasonic signals. A signal generation/acquisition system (sampling 
rate: 1 M sample/s) was utilized to control the PZTs (Fig. 1). These SCP 
samples are made of 2.00 mm thick quasi-isotropic (lay-up [0/90/+45/- 
45]S) laminates of carbon-fibre (CFCL). The prepreg lay-up process is 
used for manufacturing the CFCL with the following material properties:  

• Carbon-fibre: volume-fraction of fibre = 0.565, mass density (ρ) =
1650 kg/m3, Poisson’s ratio (ν) = 0.25, Elastic modulus (E) = 257.5 
GPa.  

• Matrix: E = 3.45 GPa, ρ = 1270 kg/m3 and ν = 0.35.  
• Epoxy resin: E = 3.0 GPa, ρ = 1150 kg/m3 and ν = 0.34. 

Fig. 1 shows the laboratory-based setup for the SCP sample with DSt2 
debond, the PZT network of 5 sensors: S1, S2, S3, S4, S5 and an actuator: 
‘A’. The excitation signal was selected based on trials for a range of 
career frequencies and cycles. In the process, the 7-cycle tone-burst sine 
signal produced the most prominent higher harmonics in the frequency 
domain. A suitable actuation frequency was identified by actuating a 
series of sine waves of 7-cycle with different carrier frequencies through 
the actuator ‘A’, and the propagated signals are collected at the sensor 
‘S3′ (ref. Fig. 1). Thus, a frequency–response plot was generated as 
shown in Fig. 2(a). The plot shows higher magnitudes of response 
around 150 kHz. Thus, a Hanning window modulated 7-cycle 150 kHz 
sine pulse as shown in Fig. 2(b) is selected as the excitation signal for the 
experiments and simulations. Fig. 2(c) represents a Fast Fourier trans-
form (FFT) of the actuator signal in the frequency domain. The actuator 
PZT introduces the excitation (Fig. 2(a)) and generates the GW propa-
gation in the SCP. These GWs are registered at each of the PZT sensors 
(S1, S2, S3, S4 and S5) in the network. 

3. Finite element modeling 

The numerical simulation models are validated for all 3 experimental 
(baseline) cases and then extended for different debond locations and 
variable actuation positions to generate a large dataset for the deep 
learning model. As the experiments could be conducted only for (i) a UD, 
(ii) an SCP with a DSt2 debond and (iii) an SCP with a DSt1 debond. 3D 
nonlinear simulation of ultrasonic GW propagation in SCPs with contact- 
acoustic-nonlinearity owing to the breathing-debond phenomenon is 
challenging. In this study, finite element simulation of GW propagation 
in SCP samples (450 × 450 × 1 mm) with PZT actuator/sensors 
(thickness = 0.40 mm, diameter = 10.00 mm) has been carried out in 
ABAQUS implicit (modeling of PZT) and explicit solvers (for SCP) [18]. 
The explicit and implicit solutions are linked by assigning the ‘standard- 
explicit-co-simulation’ [44]. In the SCP (i) and (ii) models, zero-volume 
(approx.) debond (30 × 30 mm) regions are modeled by releasing 
connections between the inter-facial node-to-node connections. The 
SCPs are modeled with the 8-node brick element (0.5 × 0.5 × 0.2 mm), 
‘C3D8I’. These elements offer the advantage of hourglass control, 
elimination of shear locking and reduced volumetric locking. Each node 
has 3 degrees-of-freedom (translational). The material properties 
(homogenised) of quasi-isotropic CFCL are considered based on the 
empirical formulations in [45] given in Table 1. 

The PZTs (actuator and sensors) are modeled using the 8-node 
C3D8E (standard implicit) linear-piezoelectric brick element (0.05 ×
0.05 × 0.1 mm (approx.)) that supports the behaviour of 
electromechanical-coupling. The actuation signal (i.e., 150 kHz) is 
applied (as voltage (V)) to the nodes of the PZT-actuator top-face 
whereas a 0 V is assigned to the nodes of both sensor and actuator PZTs 
bottom-face. Output signals of propagating GWs are recorded at the top- 
face nodes of the PZT sensors: S1, S2,…, S5 (ref. Fig. 1). The properties of 
NCE51 PZTs (actuator/sensor) are selected based on the manufacturer 
(NOLIAC® Kvistgård, Denmark) and the constitutive equation details are 
described in [46]. 

Table 1 
Material properties of the CFCL.  

Material E11 (GPa) E22 (GPa) E33 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) ν12 ν13 ν23 ρ (kg/m3) 

CFCL  77.46  77.46  11.24  4.15  3.625  3.625  0.03  0.37  0.37 1655  

Fig. 3. Numerical models of the experimental SCPs corresponding to (a) undamaged case, (b) DSt2 case and (c) DSt1 case.  
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stiffnessconstants : [C] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

131 8.6 90.5 0 0 0
0 131 90.5 0 0 0
0 0 121 0 0 0
0 0 0 20.11 0 0
0 0 0 0 20.11 0
0 0 0 0 0 22.4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

[GPa]

Mass-density: ρ = 7200 [kg/m3], 

permittivity constants : [ε] =

⎡

⎣
1944 0 0

0 1944 0
0 0 1911

⎤

⎦× 8.85 ×

10− 12[F/m] and 

coupling constants : [e]

=

⎡

⎣
0 0 0 0 13.35 0
0 0 0 13.35 0 0

− 6.14 − 6.14 15.76 0 0 0

⎤

⎦[C/m2]

Three types of SCP models are prepared: (i) undamaged (i.e., UD), 
(ii) debonds in stiffener#1 (i.e., DSt1), and (iii) debonds in stiffener 2 (i. 
e., DSt2). The numerical models of the experimental SCP samples are 
presented in Fig. 3. 

In the numerical simulation, 15 DSt1-type SCP models are prepared 
with a 30 mm DSt1-type debond (ref. Fig. 3(b)) contiguously located 
along the stiffener#1 length (15*30 mm = 450 mm); 15 DSt2-type SCP 
models are prepared with a 30 mm baseplate-stiffener#2 debond (ref. 
Fig. 3(c)) contiguously located along the stiffener#2 length; and 15 UD- 
type SCP models (ref. Fig. 3(a)) are also prepared with a minutely shifted 
(±3 − 5 mm concerning the experimental ‘A’ position) actuator posi-
tions. In the SCP models, the contact acoustic nonlinearity is assigned to 
the baseplate and stiffener debond surfaces by assigning the surface-to- 
surface frictionless contact to avoid any penetration between the debond 
region surfaces while applying the wave propagation loading. A direct 
enforcement formulation that uses the Lagrange multiplier is assigned to 
maintain the pressure and penetration. The direct enforcement condi-
tion for contact virtual work contribution, ‘∂

∏
Con’ is obtained using 

variational formulation [47] as: 

∂
∏

Con
= ∂fx+ f ∂x 1  

where ‘f’ represents the contact pressure and ‘x’ represents the over-
closure. For hard contact, the contact pressure between 2-surfaces at a 

Fig. 4. Schema of the SHM strategy for deep learning-based classification of SCPs.  

Fig. 5. Designed architecture of the CNN for structural classification.  

Fig. 6. (a) Frequency-response of the designed filter and (b) an extracted HH1 from raw GWs.  
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particular point is defined as a function of the overclosure/inter- 
penetration of the surfaces. This contact condition is defined with 

conditions :f=0when s<0thesurfaces are separating
s=0whenf>0thesurfaces are contacting

}
2 

The Rayleigh damping coefficients of mass proportional and fre-
quency proportional have been considered for the numerical models. A 
time increment of 5 × 10− 8 second/time-step was selected for the im-
plicit and explicit solvers. In all numerical modelling, the actuator PZT 
‘A’ generates a 150 kHz 7-cycle sine excitation pulse (Fig. 2(a)) and the 
ultrasonic GWs are collected at each of the five sensor locations in the 
PZT network (Fig. 3(a)). 

4. SHM strategy based on deep learning 

The SHM strategy being presented here uses the GW time-history 
signals from the sensors and produces time–frequency scalogram im-
ages of these time-history signals by applying CWT based on the Morse 

Wavelet [48]. CWT is a convolution of the input dataset with a set of 
functions rendered by the mother wavelet. The convolution can be 
computed by using an FFT algorithm. Generally, the output is a real- 
valued function apart from a complex mother wavelet that converts 
the CWT to a complex function. Generalized Morse wavelets are a family 
of analytic wavelets [48] of complex values whose Fourier transform is 
affirmed only along the real axis with positive values. CWT is utile for 
studying modulated signals with time-varying frequency and amplitude. 
CWT is also useful for examining localized discontinuities. CWT pro-
duces RGB scalograms with its time–frequency spectrums. The extracted 
features of the dominant frequencies and the related scales from these 
plots are utilised for training and validation of a signal-classifier of a 
Neural Network. Here, the generated scalograms as input are supplied to 
the deep-learning network to train and characterize the 3 different SCP 
classes: (i) UD, (ii) DSt2, and (iii) DSt1. 

Fig. 4 represents a schema of the SHM strategy that uses CNN-based 
deep learning for the automatic assessment of breathing debonds in 

Fig. 7. (a) experiment and (b) simulation signals: healthy, DSt2 and DSt1 debond.  
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SCPs. The training/validation and test process of the designed CNN ar-
chitecture are described below. 

4.1. CNN-based deep learning architecture 

A block diagram of the designed CNN consisting of 6 different layers 
is presented in Fig. 5. The functions of each layer of CNN for the current 
problem are discussed here in brief. A detailed description is given in 
[49,50]. In the CNN algorithm, the input scalograms are converted to 
RGB pixels and supplied to the network. In this current problem, each of 
the Red, Green and Blue (i.e., RGB) has [292 × 219 pixels] and separate 
convolution kernels are assigned for each pixel matrix and a bias is 
added after the convolution. The outputs from these three channels 
(RGB) are then combined to obtain the output from this layer. A zero 
padding is assigned after the convolution to avoid any information loss 
due to the reduction in the successive layers. The value of bias and 
convolution kernel weights are updated through back-propagation. 

In this problem, the convolution kernel size (i.e., filter) is 8*8 pixels 
and the kernel number is selected as 20 (trial based) to handle valuable 
information. After the convolution process, an activation function, ‘Relu 
(rectified linear unit)’ given in Eq. (3) is applied for mapping all the 
negative element values to zero. 

F(y) =
{

yy ≥ 0
0y < 0 3 

RELU is chosen over the ‘sigmoid’ and ‘tanh’ functions owing to the 
higher speed and accuracy [46]. After the RELU operation, a down- 
sampling is performed by the max-pooling layer to reduce any dimen-
sionality involved in the feature maps. Max-pooling picks max. values of 
the [2*2] size sliding window. In order to learn large-feature patterns, 
the selected features from the last layer of max-pooling are compounded 

in the fully connected layer (FCL). The classification stage commences 
from this FCL that multiplies the inputs from the pooling layer by adding 
a weight matrix and a bias vector. In the current problem, the 
FCL output size is equal to the dataset class numbers. This deep learning 
network training is an optimization operation that computes loss- 
function gradients from every iteration to minimize loss for the 
assigned training data with updated weight components. The image 
pixel, weight and bias are the loss function’s input. Loss-function 
considered in here is the ‘softmax’ that considers the multinomial lo-
gistic loss [49]. The posterior probability Qi of the true class mi for a 
feature sample, ‘S’ is given as 

ui = Qi(mi|s) =
exp[aT

i s + ai0]
∑n

j=1exp[aT
j s + aj0]

4  

where the score vector u(u1, u2,⋯un) calculates the proceeding features 
between 0 and 1 with the sum = 1, ai0 is the bias and ai is the vector of 
weights that are updated by backpropagation. A loss function, l(a) is 
defined as: 

l(a) = − UT
g ln(u) 5  

where Ug
(
Ug1 ,Ug2,⋯,Ugn

)
represents the ground-truth vector [49]. The 

Ground-truth offers checking results corresponding to the real features. 
The loss function in Eq. (5) estimates the difference between current and 
targeted models. The value of ground truth (U) for the aimed neurons is 
1 whereas for the rest of the neurons is 0, and loss is reduced by updating 
the ‘weights’ and the ‘bias’. The updated weight values are obtained as: 

aupdated = aprevious − R
δl

δaprevious
6  

where R represents a learning rate (user-defined) which depends on 
computational time and accuracy in information. A cross-entropy loss, α 
is estimated by the classification layers with m mutually exclusive 
classes for multiclass classification. The layer of ‘softmax’ followed by 
the classification layer connects the final FCL and the loss function is a 
cross-entropy of an 1-of-m coding approach. Equation (7) represents the 
cross-entropy-loss or logarithmic-loss as: 

α = −
1
S

∑s

i=1

∑m

j=1
yij.log pij 7  

where the sample no. is ‘s’, class no. is ‘m’, pij represents either 1 pointing 
whether ith s belongs to the jth m otherwise, it is 0; yij is the output for ith s 
and jth m from the layer of ‘softmax’ [50]. 

4.2. Higher harmonic extraction from the raw GW signals 

The 2nd harmonic signals with a double central frequency (i.e., 300 
kHz (approx.)) to the fundamental excitation frequency (i.e., 150 kHz) 
are extracted from the raw signals by applying a designed filter. The 
filtered signal consists of debond information, and it is important to 
maintain the signal’s shape while filtering. Hence, an FIR (Finite Im-
pulse Response) filter with a linear phase is chosen to ensure a 
distortion-free shape without much group delay [51–53]. A bandpass 
FIR Equiripple filter is designed to separate the 2nd harmonic signals 
having a peak around 310 kHz. The frequency response of the Equiripple 
filter is shown in Fig. 6(a) and a typical representation of second har-
monic (HH1) the extraction from the raw GWs is given in Fig. 6(b). 

5. Results and observations 

5.1. Analysis of GW signals from experiment and simulation 

GW signals for different cases are obtained from numerical simula-
tions and experiments. The typical experimental GW signals 

Fig. 8. Healthy and breathing-debond informed (a) raw and (b) HH1 signals 
(frequency-domain). 
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Fig. 9. Waveform plots corresponding to (a) experimental UD case, (b) experimental DSt2 case, (c) experimental DSt1 case and (d) DSt1 case at a later stage where 
the breathing-debond is acting as the ultrasonic source. 

Fig. 10. Reduced CWT scalograms of S4 signals corresponding to (a) UD, (b) Dst1 and (c) Dst2.  
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corresponding to the undamaged and damaged cases are presented in 
Fig. 7(a) and the typical numerical signals from undamaged and 
damaged cases are shown in Fig. 7(b). It is realized that the propagated 
GWs in SCP at 150 kHz produce multiple GW modes. The fre-
quency–response of the experimental and numerical undamaged and 
debond influenced signals are presented in Fig. 8(a) that indicating the 
occurrence of higher harmonics owing to the breathing-like (opening- 
closing) phenomenon at the region and the presence of second harmonic 
(HH1) is a prominent for both DSt1 and DSt2 debond cases. Fig. 8(b) 
shows a clearer pattern of the HH1 signals. 

Some typical waveform plots from the numerical SCP models sub-
jected to the Dst2 (ref. Fig. 1), DSt1 and UD are presented in Fig. 9(a)-9 
(d), respectively. The waveform plots in Fig. 9 also show the generation 
and propagation of breathing-debond-induced nonlinear ultrasonic 
waves (e.g. HH1) in damaged SCPs, due to the breathing of stiffener- 
baseplate debond. Similar signal characteristics are observed in all 

other (DSt1, DSt2 and UD) study cases. 

5.2. SHM of SCPs using raw GW signals 

The experimental and numerical ultrasonic GW signals (time- 
domain) are collected from 5 PZT sensors for the debond cases (DSt1 and 
DSt2) and variable actuator positions for the UD cases. The GW dataset 
consisted of 3 primary classes – UD, DSt2, DSt1, and two additional test 
datasets corresponding to (i) 3 experimental analysis cases (UD, DSt1 
and DSt2) and (ii) 2 new debond cases (DSt1 and DSt2). In each case, the 
ultrasonic GW signals are registered from the 5 PZT sensors. These raw 
time-domain signals for a fixed window size of 800 microseconds are 
then transformed into time–frequency CWT scalograms, as represented 
in Fig. 10. Each of the RGB scalogram image sizes is found to be [840 ×
630 × 3] (i.e. length × width × channels) pixel. 

The scalogram sizes (pixels) are carefully reduced to [292 × 219 × 3 

Fig. 11. Training-validation plot represents the loss and accuracy.  

Table 2 
The confusion matrix shows the 10-fold Av.test performance of the trained network.  
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pixels] to abridge the computational cost. Farther, the 0-mean Gaussian 
noise was randomly selected within the range of 10 % to 30 % and added 
to the resized CWT scalograms for image augmentation as schematically 
shown in Fig. 4. The Gaussian noise consists of a probability density 
function resembling a normal distribution and for image augmentation, 
a random Gaussian function can be added to the image function to 
introduce this noise. The zero mean value of the noise does not 
contribute to a net disturbance as the amount of positive and negative 
noise is the same and ultimately gets cancelled out from the system. A 
total of 4500 scalograms are obtained and 80 % of the scalograms (i.e., 

3600) are considered for training, 10 % scalograms (i.e., 450) are used 
for the validation of the network and the remaining 10 % scalograms (i. 
e., 450) are used for testing of the trained network. The deep learning 
network described in Section 4 is trained/validated/tested using data-
sets consisting of the resized scalogram images corresponding to the UD, 
DSt2 and DSt1 classes. A 10-fold training/validation and test have been 
conducted to achieve the stable performance of the deep learning 
network. A total of 4500 images corresponding to the classes: UD, DSt2 
and DSt1 are distributed into 10- parts with 450 images/part. Stage 1: 
part-1 for Testing and part-2….part-10 for Training/Validation. Stage 2: 
part-1, part-3…part-10 for Training/Validation and part-2 for Testing. 
Likewise, Stage 3 to Stage 10 have been performed to improve confi-
dence with training progress. The validation accuracy and loss curves 
have shown some oscillations during the early epochs, due to the usage 
of limited images per batch. After every passing batch through the CNN, 
updated weight values are applied with a proportion of all the classes. In 
order to avoid any overfitting, 10 epochs and 31 iterations/epoch are 
considered to train the network. A typical training-validation result in 
Fig. 11 indicates validation accuracy and loss. 10-fold training and 
validation results show a 97.39 % average (av.) accuracy = {(96.84 +
96.98 + 97.16 + 97.22 + 97.64 + 98 + 97.46 + 97.68 + 97.44 + 97.44) 
/ 10}. The confusion chart in Table 2 shows the test performance per 
SCP class with an overall 10-fold average of 95.3 % accuracy. 

Further, the trained-network’s performance is evaluated for the 
experimental test datasets corresponding to a UD SCP, an SCP with a 
DSt2 debond and an SCP with a DSt1 debond. Table 3 confusion matrix 
shows an overall 85.6 % test accuracy (10-fold av.) for the experimental 
data. 

The deep learning model was trained with the simulation dataset and 
the test performance with available experimental data (never used for 
training) produced high accuracy justifies the SHM potential of the 
proposed deep-SHM model and the simulation success. The trained 
network is then tested for 2 entirely new debond datasets corresponding 
to a DSt1 and a DSt2 debond. The 10-fold average accuracy (92.85 %) in 
Table 4 indicates the robustness of the deep learning architecture for 
breathing-debond monitoring. The NaN% resembles zero input in the 
UD channel. 

5.3. SHM of SCPs using filtered HH1 signals 

The designed neural network is trained with time–frequency scalo-
grams of HH1 (260 – 360 kHz) that are extracted from the raw ultrasonic 
signals (ref. Fig. 6) by using the designed bandpass filter described in 
sub-section 4.2. Fig. 12 (a) represents a typical time-history signal of 
extracted HH1 and its resized time–frequency scalogram image is pre-
sented in Fig. 12 (b). 

The tenfold training, validation and test are performed with HH1- 
signal datasets and a training/validation performance (i.e., 1 of 10 re-
sults) of the network is presented in Fig. 13 and shows a very high ac-
curacy (99 %). Whereas the 10-fold av. training-validation accuracy was 
found to be 98.99 % = {(98.64 + 98.8 + 98.98 + 99.11 + 99.14 + 99.00 
+ 99.00 + 99.12 + 99.14 + 99.00)/10}. This accuracy is significantly 
better than the results using the raw GW dataset. Further, the 10-fold 
training-validation with the raw data and the HH1 data are compared 
and represented in Fig. 14 indicating a better accuracy for the extracted 
HH1signals than the raw data. 

The 10-fold training-validation accuracy corresponding to the raw 
data standard deviation (SDRD) and HH1 data standard deviation 
(SDHH1) of the was calculated as: 

SDRD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − μ)2

n

√

= 0.328761312  

SDHH1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(x′

i − μ′
)

2

n

√

= 0.484984536 

Table 3 
Test performance of the trained network for the experimental test dataset.  

Table 4 
10-fold average test performance of the network for the new datasets.  
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where ‘xi’ is the 10-fold training-validation accuracy using raw data =
[96.84, 96.98, 97.16, 97.22, 97.64, 98, 97.46, 97.68, 97.44, 97.44]; ‘μ’ 
is the mean accuracy using raw data = 97.386;‘x׳i’ is the 10-fold 
training-validation accuracy using HH1 data = [98.64, 98.8, 98.98, 
99.11, 99.14, 99.00, 99.00, 99.12, 99.14, 99.00]; ‘μ׳’ is the mean ac-
curacy using HH1 data = 98.993 and ‘n’ is number of trials = 10. 

Table 5 confusion chart represents the 10-fold average test perfor-
mance (97.3 % accuracy) of the trained networks using only 100 RGB 
scalograms per class. Fig. 15 shows a comparison between the test 
performance using raw data (ref. Table 2) and the extracted HH1 signal 
data (ref. Table 5). The HH1 signal data-based results show better ac-
curacy than the raw signal data-based results for each of the SCP classes. 

The damage region classification potential of the network is evalu-
ated for the experimental HH1 scalograms corresponding to the UD, 
DSt1 and DSt2. The test results in Table 6 confusion matrix show the 
overall accuracy of 90.4 % of the network, which is again more than the 
raw GW data-based test results (i.e. 85.6 %). 

Further, a class-wise comparison between the experimental raw and 
HH1 data-based test performance is presented in Fig. 16. The compari-
son shows higher test accuracies for the HH1 data-based results, in all 
the SCP classes. 

Fig. 12. Typical (a) HH1signal (time-history) and (b) its CWT scalogram (time–frequency).  

Fig. 13. Training and validation performance of the deep learning network with HH1 data.  

Fig. 14. 10-fold training/validation performance using raw data and HH1.  
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The SHM potential of the designed neural network is further evalu-
ated for the HH1 signals from DSt1 and DSt2 datasets (never used for 
training). The 10-fold average test performance in Table 7 shows an 
overall 95.9 % accuracy, resembling the robustness of the SHM strategy. 
The NaN% has again appeared in the confusion matrix owing to the no 
input in the UD channel. 

Fig. 17 represents a class-wise comparison between the HH1 signal 
and raw-GW image-based test results (10-fold av.) for DSt1 and DSt2 
that again proves the better performance for the extracted nonlinear 
higher-harmonic signals, in both the classes. 

6. Conclusions 

A deep learning based SHM strategy is presented for the assessment 
of SCPs using nonlinear ultrasonic signals. This study is amongst the first 
to propose a damage identification methodology using a deep learning 

approach for complex stiffened composite panels with nonlinear ultra-
sonic signals. The SHM strategy has the advantage of being physics- 
informed and data-driven by experimental guided wave data. This 
work has proven the potential of the deep learning-based SHM strategy 
for classifying breathing-debond regions in stiffened composite struc-
tures. This monitoring strategy provides the foundation for an auto-
mated strategy for the extraction of essential signal features (filtering 
and transformation) to be incorporated into the deep learning models. 
Thus, the potential of the proposed methodology can be explored for the 
assessment of a wide range of damages with acoustic fingerprints 
recorded at the sensory network and the trained model can be deployed 
for real-time or online identification of damages for operational complex 
lightweight structures. 

The main conclusions can be listed as follows. 

Table 5 
10-fold average test performance using the HH1.  

Fig. 15. Class-wise 10-fold average test performance corresponding to raw and 
HH1 signals. 

Table 6 
The average test performance using the experimental HH1 signals.  

Fig. 16. 10-fold average test performance per class using raw data and 
HH1 data. 
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• In the given study conditions (e.g., SCP geometry, loading), the 
breathing-debond-induced nonlinear ultrasonic signals show a 
prominent HH1 signature in the registered GW signals. The existence 
of any other higher-harmonics or sub-harmonics is not recognized.  

• The test confusion charts of the trained deep learning network prove 
that the SHM strategy can effectively classify the 3-primary classes (i. 
e. UD, DSt2, DSt1) of the SCPs with high precision using the exper-
imental untrained datasets and with the datasets from new debonds. 

• This network can offer an improved training/validation/test per-
formance with the filtered second harmonic (HH1) signals than the 
raw GWs.  

• The average (10-fold) test performance of the raw and the HH1 
datasets confirms that the proposed SHM strategy is more impactful 
with the HH1 datasets. 

It is envisaged that this research will contribute to the development 

of industry-grade autonomous damage identification toolbox in the near 
future. This will be especially applicable for the identification of struc-
tural damages which have nonlinear ultrasonic signatures and can 
facilitate the prevention of catastrophic damages resulting from large 
relative motions between damaged structural components. The future 
research direction will be focused on the characterisation of various 
types of damages in composites, especially involving the following-.  

• the influence of damage size, severity and damage types (e.g., 
delamination, crack) on GW signal characteristics.  

• exploring the scope of applying unsupervised learning methods (e.g., 
hierarchical clustering) for outlier identification and damage classi-
fication related to the events of nonlinear ultrasonics 

• uncertainty quantification and management to account for the in-
fluences on identified damage metrics due to variable loading and 
operating cases. 

These continue to be part of the ongoing research work by the 
authors. 
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Williams-Bell FM. Quantitative feature analysis of continuous analytic wavelet 
transforms of electrocardiography and electromyography. Philos Trans R Soc A 
Math Phys Eng Sci 2018 Aug 13;376(2126):20170250. 

[49] Huang X, Liu Z, Zhang X, Kang J, Zhang M, Guo Y. Surface damage detection for 
steel wire ropes using deep learning and computer vision techniques. Measurement 
2020;161:107843. 

[50] Yamashita R, Nishio M, Do RK, Togashi K. Convolutional neural networks: an 
overview and application in radiology. Insights into imaging 2018 Aug 1;9(4): 
611–29. 

[51] Oppenheim AV, Willsky AS, Ian T, Signals and Systems, Prentice-Hall, New Jersey, 
1982. 
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