
J
C
A
P
0
3
(
2
0
2
3
)
0
1
8

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Probing Lorentz-violating
electrodynamics with CMB
polarization
L. Caloni,a,b S. Giardiello,a,b,c M. Lembo,a,b M. Gerbino,b,a
G. Gubitosi,d,e M. Lattanzib,a and L. Paganoa,b,g
aDipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara,
via Saragat 1, I-44122 Ferrara, Italy
bIstituto Nazionale di Fisica Nucleare, Sezione di Ferrara,
via Saragat 1, I-44122 Ferrara, Italy
cSchool of Physics and Astronomy, Cardiff University,
The Parade, CF24 3AA Cardiff, Wales, U.K.
dDipartimento di Fisica Ettore Pancini, Università di Napoli “Federico II”,
Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
eIstituto Nazionale di Fisica Nucleare, Sezione di Napoli,
Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy
gInstitut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, Bât. 121, 91405 Orsay cedex, France
E-mail: luca.caloni@unife.it, serena.giardiello@unife.it, margherita.lembo@unife.it,
giulia.gubitosi@unina.it, gerbino@fe.infn.it, lattanzi@fe.infn.it, luca.pagano@unife.it

Received December 16, 2022
Revised February 6, 2023
Accepted February 13, 2023
Published March 7, 2023

Abstract. We perform a comprehensive study of the signatures of Lorentz violation in
electrodynamics on the Cosmic Microwave Background (CMB) anisotropies. In the frame-
work of the minimal Standard Model Extension (SME), we consider effects generated by
renormalizable operators, both CPT-odd and CPT-even. These operators are responsible for
sourcing, respectively, cosmic birefringence and circular polarization. We propagate jointly
the effects of all the relevant Lorentz-violating parameters to CMB observables and provide
constraints with the most recent CMB datasets. We bound the CPT-even coefficient to
kF,E+B < 2.31 × 10−31 at 95% CL. This improves previous CMB bounds by one order of
magnitude. The limits we obtain on the CPT-odd coefficients, i.e. |k(3)

(V )00| < 1.54×10−44 GeV
and |kAF| < 0.74× 10−44 GeV at 95% CL, are respectively one and two orders of magnitude
stronger than previous CMB-based limits, superseding also bounds from non-CMB searches.
This analysis provides the strongest constraints to date on CPT-violating coefficients in the
minimal SME from CMB searches.
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1 Introduction

Lorentz symmetries are at the foundation of the current description of nature. However,
theoretical investigations have suggested that they may only be exact symmetries at low
energies [1–3]. Motivations for this hypothesis are rooted in quantum gravity. Therefore, it is
expected that the energy scale at which Lorentz invariance could be violated is the Planck
scale. While the magnitude of this scale might discourage searches for Lorentz violations,
high-precision experimental tests might be sensitive to their small low-energy residual effects.

There are currently a number of different theoretical frameworks describing departures
from Lorentz symmetries [1–3]. The most conservative approach is that of effective field theory,
which incorporates Lorentz violation via the introduction of extra tensors in the Lagrangian
of the standard model. The new operators can be ordered according to their mass dimension:
operators which introduce Lorentz violations at some high-energy scale have mass dimension
higher than four, and therefore are non-renormalizable. Without some custodial symmetries,
these operators might also induce Lorentz violations in operators with lower mass dimension.
The lower-dimension renormalizable operators produce effects that are not suppressed by the
high-energy scale, and could in principle dominate over the non-renormalizable operators,
possibly leading to stronger signatures on low-energy physics. The Lagrangian containing
such renormalizable terms, known as minimal Standard Model Extension (SME), was first
derived in [4]. In this work we focus on the radiation sector of the SME Lagrangian [5] and
test Lorentz invariance with observations of the CMB. We concentrate on renormalizable
operators, leaving the study of the non-renormalizable operators [6] to a future work.

The Cosmic Microwave Background (CMB) is an ideal probe of possible departures
from standard electrodynamics. The CMB radiation is linearly polarized due to Compton
scattering at the epochs of recombination and reionization [7]. A non standard propagation of
light might induce distinctive patterns on the CMB polarization. A very well known example
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is the cosmic birefringence effect, namely the in-vacuo rotation of the linear polarization plane
of the CMB radiation.1

Since the CMB last scattering surface is the farthest source of electromagnetic radiation
available in nature, the cosmic birefringence effect accumulates during propagation of the
CMB, increasing the chances of detecting a non-vanishing signal. Evidence for new physics
could also come from the observation of a sizable level of circular polarization. In the standard
cosmological model, circular polarization is not expected at the time of last scattering, even
though a tiny amount can be generated by known physics at a later time [8, 11–16] as CMB
photons propagate across the Universe.

As we will show in this paper, some combinations of these effects are expected within
the SME framework, depending on which operators are considered. Among the two operators
analyzed in our work, one violates CPT symmetry and is responsible for the generation of
cosmic birefringence. The CPT-even operator, instead, leads to the generation of circular
polarization from the conversion of the primordial linear polarization components. While
we will focus on the SME framework, we remark that both birefringence and the generation
of circular polarization can emerge in other theoretical scenarios. In particular, cosmic
birefringence can be generated by Chern-Simons terms in the electrodynamics Lagrangian [17–
20], by the coupling of the electromagnetic field to quintessence [21–23] or axion [24] fields, or
in quantum-gravity motivated effective theories for electromagnetism [25–27]. These scenarios
might be distinguished because they predict different dependence on the frequency of the
CMB signal [28, 29] and on the propagation direction [19, 20, 27, 30, 31]. Production of
circular polarization is instead predicted by several scenarios beyond the standard model of
particle physics, including a possible coupling between photons and an external vector field
via a Chern-Simons term [32], the Cotton-Mouton effect [33], propagation of CMB photons in
a non-commutative spacetime [34] and other non-standard effects [35–39].

Previous tests of the minimal SME focussed on one operator at a time [35, 40], and
neglected the possible interplay between them, which instead might affect theoretical pre-
dictions and then observational constraints. In this work, we exploit the large amount of
information stored in the CMB polarization spectra [41–43] to perform a more complex
analysis, accounting for different operators at the same time. In doing so, we employ the
formalism recently developed by some of the authors of this work [44]. This novel formalism
allows to describe in all generality the effects of anomalous propagation of polarized radiation
in terms of an effective susceptibility tensor. Any model implying anomalous propagation of
radiation can be mapped into the components of this effective susceptibility tensor and the
implications for the CMB power spectra can be readily derived.

This work is timely, since it provides updated constraints on Lorentz violating coefficients
using a novel mathematical formalism and state-of-the-art CMB data. Moreover, it paves
the way to analogous tests with upcoming CMB data. Indeed, CMB polarization is the main
observational target of next-generation CMB experiments [45–50].

The paper is structured as follows. In section 2 we map the coefficients of the minimal
SME operators which describe Lorentz violation in the radiation sector onto the effective
susceptibility tensor. We define a number of phenomenological parameters related to the
SME operators. This allows us to propagate the combined effects of the SME operators to
the CMB spectra. We discuss the phenomenological impact of individual operators as well

1Faraday rotation induced by the interaction of the CMB with primordial magnetic fields can also produce
a rotation of the CMB polarization which is proportional to the square of the radiation wavelength, see e.g.,
refs. [8–10]. We do not consider Faraday rotation in this work.
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as their interplay. We then proceed to constrain the operators using data from a number of
CMB experiments, as detailed in section 3. Results are reported in section 4. In section 5,
we translate the bounds obtained on the phenomenological parameters into bounds on the
actual coefficients appearing in the minimal SME Lagrangian. We compare our results to
constraints obtained both with other CMB datasets and with other kinds of observations.

2 Imprints of Lorentz violation on the CMB spectra

In this section, we introduce the theoretical model that describes Lorentz violating (LV)
effects in the electromagnetic sector and propagate the effects to the cosmological observables
of interest, namely, the CMB spectra. As we mentioned in the Introduction, we treat LV
effects within the SME framework [5], focussing on the so-called minimal SME, which only
contains renormalizable operators, with mass dimension d ≤ 4. For the photon sector and in
a general spacetime with metric gµν this is characterized by the action

S =
∫
d4x
√
−g

[
−1

4FµνF
µν + 1

2ε
αβµνAβ(kAF )αFµν −

1
4(kF )αβµνFαβFµν

]
, (2.1)

where we set εαβµν = εαβµν/
√
−g, with εαβµν being the completely antisymmetric Levi-Civita

symbol and g = det(gµν). Fµν and Aµ are the field-strength tensor and the electromagnetic
4-potential, respectively. The first term in eq. (2.1) is just the standard Maxwell Lagrangian.
The couplings kAF account for operators with mass-dimension d = 3 which violate CPT
symmetries besides Lorentz symmetries. The vector (kAF )α has dimensions of a mass and
4 independent components. The couplings kF govern operators with mass-dimension d = 4
that are invariant under CPT. The tensor (kF )µαβγ is dimensionless and obeys the following
symmetries

(kF )µαβγ = −(kF )αµβγ = −(kF )µαγβ , (2.2)
(kF )µαβγ = (kF )βγµα , (2.3)

plus a vanishing double trace, thus implying a total of 19 independent components.
Applying the Euler-Lagrange equations to the action in eq. (2.1) leads to the following

modified Maxwell’s equations:

∂ν
(√
−gFµν

)
+ εµνρσ(kAF )ν

√
−gFρσ + ∂ν

[
(kF )µνρσ

√
−gFρσ

]
= 0 . (2.4)

The usual Maxwell’s theory is invariant under conformal transformations of the metric
gµν → agµν . This guarantees that Maxwell’s equations in a Friedmann-Lemaitre-Robertson-
Walker (FLRW) Universe, described by the metric

gµν = a2(τ)ηµν = a2(τ)
[
−dτ2 + dx2

]
, (2.5)

are the same as in Minkowski spacetime with the metric ηµν . Here τ represents the conformal
time. In order for this invariance to be preserved by the LV theory in eq. (2.1), the coefficients
(kF )αβµν must transform according to [51]:

(kF )αβµν → a−4(kF )αβµν , (2.6)

such that the a−4 factor cancels out the a4 coming from √−g. Instead, the vector (kAF )α
must be invariant under the conformal transformation, since the scaling of √−g is canceled
by that of the Levi-Civita tensor εαβµν ∝ 1/√−g.
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A well-known analogy exists between LV electrodynamics in vacuum and the standard
Maxwell electrodynamics in an anisotropic medium, as first explored in ref. [17] (see also
refs. [5, 27]). This analogy can be exploited to define an effective susceptibility tensor χij
from the modified Ampère-Maxwell equation, i.e. the space component (ν = i) of eq. (2.4).2
This reads

χij =− 2(kF )i0j0 − 2i c
ω
εikj(kAF )k + 2 c

ω

[
−i c
ω

(kAF )0εikj + (kF )ik0j + (kF )i0kj
]
kk

+ 2 c
2

ω2 (kF )ilkjklkk , (2.7)

where ω and k are the comoving angular frequency and wave-number, respectively:

ω = aωphys , k = akphys . (2.8)

Note that the CPT-odd operator introduces in χij only terms that are zero- and first-order in
the wave-vector, whereas the CPT-even operator produces also a contribution that is quadratic
in k. This does not come as a surprise, since it is not possible to construct a quadratic term
in the wave-vector by contracting its components with those of the 3D Levi-Civita tensor and
the three-vector kAF .

To evaluate the effects of the LV operators on the CMB power spectra, we first need to
link the susceptibility tensor to the components of the mixing matrix in the radiative transfer
equation for the Stokes parameters Q, U and V of the polarized CMB radiation. Employing
the formalism developed in ref. [44], the components of the susceptibility tensor can be then
recast in terms of three quantities, ρQ, ρU and ρV , describing a general mixing between the
U and V , Q and V , U and Q Stokes parameters, respectively (see eq. (1) and eq. (12) of
ref. [44]). Using the same conventions as in ref. [44], we introduce

ρ̄±2/V (τ) = (τ − τLS)−1
∫ τ

τLS
dτ ′ ρ±2/V (τ ′) , (2.9)

where ρ±2 = (ρQ ± i ρU )/
√

2 and τLS is the conformal time at the last scattering surface. As
usual in CMB analysis, we expand (τ0 − τLS)ρ̄±2/V in spherical harmonics,3 with expansion
coefficients b±2/V, `m. Note that the bV,`m are only non-vanishing for ` = {0, 1}, whereas the
b±2,`m are non-vanishing only for ` = 2.

At this stage, it is useful to combine the expansion coefficients b±2/V, `m to define the
following dimensionless parameters:

4π β2
AF,T = b2V,00 and 4π β2

AF,S =
∑
m

|bV,1m|2 , (2.10)

4π β2
F,E =

∑
m

|b−2,2m + b2,2m|2 , (2.11)

4π β2
F,B =

∑
m

|b−2,2m − b2,2m|2 . (2.12)

2The standard Ampère-Maxwell equation in an anisotropic medium with no external sources can be written
in Fourier space as [52]

ω2

c2 Ai + [k × (k × A)]i = −ω2

c2 χijA
j .

3τ0 is the conformal time today.
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In fact, these parameters are directly connected to the CMB power spectra, as we will show be-
low, and can be related to the physical parameters appearing in the action in eq. (2.1) as follows:

β2
AF,T = 16c2

[
(k̄AF )0

]2
, (2.13)

β2
AF,S = 16

3 c
2|k̄AF|2 = 16

3 c
2
([

(k̄AF )1
]2

+
[
(k̄AF )2

]2
+
[
(k̄AF )3

]2)
, (2.14)

β2
F,E = 64

5

[(
(k̄F )3020 + (k̄F )3121

)2
+
(
(k̄F )3010 − (k̄F )3221

)2
+
(
(k̄F )2010 + (k̄F )3231

)2]
≡ 64

5 k̄
2
F,E , (2.15)

β2
F,B = 32

15

{
2
(
2(k̄F )3021 + (k̄F )3120 − (k̄F )3210

)2
+ 6

[(
(k̄F )3120 + (k̄F )3210

)2

+
(
(k̄F )3110 − (k̄F )3220

)2
+
(
(k̄F )2120 − (k̄F )3130

)2

+
(
(k̄F )2110 + (k̄F )3230

)2]}
≡ 32

15 k̄
2
F,B , (2.16)

where the bar denotes quantities averaged along the line of sight, e.g. (k̄AF )0 ≡
∫ τ0
τLS

(kAF )0 dτ

and4 (k̄F )ijkl ≡
∫ τ0
τLS

ω(kF )ijkl dτ . To derive these relations, we have assumed that the standard
dispersion relation for photons holds true, i.e. ω = ck. In principle, one should take into ac-
count the corrections to the dispersion relation, which are of the kind ω = ck [1 +O(kF , kAF )].
When included in eqs. (2.13)–(2.16), these corrections lead to higher-order contributions in
kF and kAF . Since LV effects are constrained to be very small [40], we can work at leading
order in the LV coefficients, so that we can take ω ' ck.

The phenomenological parameters of eqs. (2.13)–(2.16) relate the observed CMB spectra
CXX` to those expected if no LV effects are in place, which we denote C̃XX` . Keeping terms
up to second order in the β’s, which corresponds to working at second order in the parameters
appearing in the action (2.1), we find:

CTE` =
(

1− Z2

)
C̃TE` , (2.17)

CEE` = (1−Z) C̃EE` +
∑
`1

K11
`1`C̃

EE
`1 +

∑
`1

K22
`1`C̃

BB
`1 , (2.18)

CBB` = (1−Z) C̃BB` +
∑
`1

K11
`1`C̃

BB
`1 +

∑
`1

K22
`1`C̃

EE
`1 , (2.19)

CEB` =
√
β2
AF,T

(
C̃EE` − C̃BB`

)
, (2.20)

CTB` =
√
β2
AF,T C̃

TE
` , (2.21)

CV V` =
∑
`1

K33
`1`C̃

EE
`1 +

∑
`1

K44
`1`C̃

BB
`1 , (2.22)

CEV` = CBV` = 0 , (2.23)
4As stated above, kF is dimensionless while kAF has the dimension of an energy in natural units. This

explains the appearance of the ω factor in the expression for (k̄F )ijkl.
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where

Z = β2
AF,T + β2

AF,S +

(
β2
F,E + β2

F,B

)
4 , (2.24)∑

`1

K11
`1`C̃

XX
`1 = β2

AF,S

4
`+ `2

C̃XX` , (2.25)

∑
`1

K22
`1`C̃

XX
`1 = β2

AF,T C̃
XX
` + β2

AF,S

(
`2 − 4
`(2`+ 1) C̃

XX
`−1 + (`− 1)(`+ 3)

(`+ 1)(2`+ 1) C̃
XX
`+1

)
, (2.26)

∑
`1

K33(44)
`1`

C̃XX`1 = β2
F,B(E)

(
(`− 2)(`− 3)

4(4`2 − 1) C̃XX`−2 + 3(`2 + `− 2)
2(4`2 + 4`− 3) C̃

XX
`

+ (`+ 3)(`+ 4)
4(4`2 + 8`+ 3) C̃

XX
`+2

)
+ β2

F,E(B)

(
`− 2

2(2`+ 1) C̃
XX
`−1 + 3 + `

2(2`+ 1) C̃
XX
`+1

)
.

(2.27)

By inspecting eqs. (2.17)–(2.23) we can identify the effects of different classes of LV operators:

• the CPT-odd operators, parametrized by β2
AF,T and β2

AF,S , lead to the well-known
cosmic birefringence effect. In particular, β2

AF,T , related to the time component of
the 4-vector kAF , gives rise to isotropic birefringence [26, 53–58], which produces non-
vanishing EB and TB spectra and the mixing between EE and BB spectra. Anisotropic
birefringence [59–64] is induced by the parameter β2

AF,S , related to the space components
of kAF . This mixes the EE and BB spectra by introducing a coupling among different
multipoles (i.e. off-diagonal correlations), such that the `-th multipole is coupled to
both the (`− 1)-th and (`+ 1)-th ones;

• the VV spectrum is sourced from EE and BB spectra when the CPT-even operators are
present. Similarly to what observed for anisotropic birefringence, a coupling between
different multipoles is induced. In this case, it affects all the multipoles between the
(` − 2)-th and the (` + 2)-th. Note that the VV spectrum is the only one which, if
measured, could break the degeneracy between β2

F,E and β2
F,B, since in the other spectra

only the sum of these two parameters comes into play. In this model, no mixing is
predicted between V modes and E- or B-modes;

• both the CPT-even and CPT-odd operators rescale the EE, BB and TE spectra via the
parameter Z.

The modifications to the CPT-even linear polarization spectra, eqs. (2.17)–(2.19), and
the introduction of the circular polarization spectrum, eq. (2.22), have been implemented
in a customized version of the Boltzmann code CAMB [65, 66], hereafter camb-cpt.5 In
the code, we have treated gravitational lensing of the CMB and the modifications induced
by the extra terms in the action, eq. (2.1), as two distinct effects. In principle, these two
mechanisms should be propagated simultaneously along the line of sight, see for example
ref. [67]. However, the kernel of the lensing effect is peaked at low redshift while the effect of
the LV electrodynamics on the CMB is integrated from the last scattering surface and acts
as a small correction. Therefore, as far as B-modes are concerned, we can safely rotate the
tensor signal and then add the B-mode lensing contribution computed assuming no rotation.

5We make the code publicly available at this link: https://github.com/sgiardie/CAMB_CPT.
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AF, T = 2
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F, B = 0.001
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BB, lensing, no LV
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EE, LV
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Figure 1. Standard CMB power spectra in solid lines (no LV), with Lorentz violating effects (LV)
in dashed lines. The LV spectra are generated according to eqs. (2.17)–(2.22) with β2

AF,T = β2
AF,S =

β2
F,E = β2

F,B = 0.001 using camb-cpt. The VV spectrum is non-vanishing only in the LV case, sourced
by both the standard EE and BB spectra. Note that the EE spectra are almost overlapped and
practically indistinguishable with this choice of the LV parameters.

Instead, regarding EE and TE, we apply corrections to the lensed spectra. This is justified
by considering that, for the noise level of current CMB experiments and even for the noise
level of SO and LiteBIRD,6 there is a negligible difference between modifying the lensed
spectra (i.e., applying the Lorentz-violating effect after the lensing contribution is included)
and acting on the unlensed ones before adding lensing, see [44, 67].

Figure 1 shows a comparison between the standard CMB spectra (solid) and those
obtained with camb-cpt by setting all the β2 parameters equal to 0.001 (dashed). The most
relevant feature is the leakage of E- into B-modes. Another clear effect is the VV power
spectrum mostly sourced by the E modes. The linear-polarization spectra are also rescaled
by the Z factor in eq. (2.24), which depends on all the β2 parameters. The latter effect is
barely visible on the scale of the figure.

3 Analysis method and dataset

We perform a Monte Carlo Markov Chain (MCMC) analysis to obtain constraints on the
Lorentz-violating parameters β2

AF,T , β
2
AF,S , β

2
F,E , β

2
F,B jointly with other cosmological, fore-

ground and nuisance parameters. To this scope, the code camb-cpt has been interfaced with
the MCMC sampler Cobaya [68]. Using the Gelman-Rubin convergence statistics [69], we
have assumed that our MCMC chains have reached convergence when R− 1 ∼ 0.01.

We analyze the following data:

• Planck 2018: Planck temperature and polarization power spectra [70], and lensing
reconstruction power spectrum [71], from the Planck 2018 legacy release.

6For deeper surveys, such as CMB-S4, these approximations should be reconsidered.
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• BICEP/Keck 2018 (BK18): combination of all the B modes data collected by BICEP2,
Keck Array and BICEP3 experiments until the 2018 season [42].

• ACT: Atacama Cosmology Telescope temperature and polarization power spectra as
published in the Data Release 4 [43]. Since the ACT data are always used in combination
with Planck, following the prescription of the ACT collaboration, we only consider
multipoles larger than 1800 in temperature. For more details see section 6.2.3 of [43].

• VV: V modes power spectra as published by CLASS [72] and SPIDER [73] experiments.

For Planck, BICEP/Keck and ACT we employ the official likelihood packages released
by the respective collaborations [42, 43, 70, 71]. For the V-modes data, a simple custom-made
likelihood has been added to the framework. The χ2 for the V modes is computed as:

χ2
V V =

∑
b

(DV V
b,theory −DV V

b,data)2

σ2
b

, (3.1)

where DV V
b,data and DV V

b,theory are the data and the binned theory respectively and σ2
b is the

error on the bandpowers.7 Since CLASS and SPIDER are both completely noise dominated,
we can safely add together their respective χ2 computed as in eq. (3.1).

In our analysis we consider the following data combinations:8

(i) Planck 2018;

(ii) Planck 2018 + BK18;

(iii) Planck 2018 + BK18 + CLASS + SPIDER;

(iv) Planck 2018 + BK18 + ACT.

The ΛCDM+r model (i.e., allowing for non-vanishing primordial gravitational waves
with amplitude set by the tensor-to-scalar ratio r) provides our baseline scenario, unless
otherwise stated. See ref. [74] for details about parametrization, theoretical assumptions and
priors used. For the foreground and nuisance parameters, we follow the prescriptions provided
by Planck [74] and BICEP [42] collaborations. In addition to the baseline, we consider the β2

parameters defined in eqs. (2.13)–(2.16). On those parameters we impose uniform positive
priors. Further model extensions are not considered in this work.

4 Constraints on phenomenological parameters

In this section, we present the constraints derived on β2
AF,T , β2

AF,S , β2
F,E and β2

F,B using the
aforementioned datasets and parametrizations.

7The theoretical power spectra are binned with flat window function in `(`+ 1)/2π.
8Notice that we do not consider the combination Planck 2018 + BK18 + ACT + SPIDER + CLASS

since the inclusion of V-modes data does not add any constraining power, see the discussion in section 4 for
more details.
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4.1 Constraints on CPT-odd terms only

As a first step in our analysis, we consider only the CPT-odd term in eq. (2.1) and fix to zero
the parameters related to the CPT-even term. The effect of this term on the CMB spectra is
encoded in two parameters β2

AF,T and β2
AF,S and leads to isotropic and anisotropic birefringence

effects, respectively. In figure 2, we show the two-dimensional and one-dimensional posterior
probability distributions of a subset of cosmological parameters, including β2

AF,T and β2
AF,S ,

explored in the analysis with the combination of Planck+ BK18 data. The baseline model
is given by the ΛCDM+r cosmology. To better elucidate the effect of β2

AF,T and β2
AF,S on

the constraints of the remaining parameters, we also vary them one at the time while fixing
the other to zero. We note that varying either β2

AF,T or β2
AF,S has equivalent impact on

the constraints on other cosmological parameters. This is due to the fact that both β2
AF,T

and β2
AF,S lead to qualitatively equivalent modifications of the BB spectrum. Indeed, an

inspection of eq. (2.19) and eq. (2.26) shows that the overall effect produced by non-vanishing
β2
AF,T or β2

AF,S is an effective rotation of E-modes into B-modes. Such rotation competes
with r in increasing the power in B-modes (see figure 1, where the two β2

AF and r enhance
the reionization and recombination bumps in the BB power spectrum). This explains why
the marginalization over β2

AF,T and β2
AF,S tightens the constraints on r with respect to those

obtained in the ΛCDM+r baseline analysis.
Even though in figure 2 we report results from Planck+BK18, the two β2

AF could be also
constrained with Planck data only, exploiting their effect on E-mode polarization. However,
the resulting bounds on β2

AF,T and β2
AF,S are nearly an order-of-magnitude broader than those

obtained when adding BK18 to Planck data. This is due to the lack of constraining power
from B-modes which are more strongly affected by the two β2

AF . In figure 3a, we show the
constraints on a subset of parameters and compare the results obtained with Planck data only
in ΛCDM+β2

AF and ΛCDM+r+β2
AF with those obtained with the combination of Planck+

BICEP/Keck data in ΛCDM+r+β2
AF . As expected, the bounds on β2

AF are tightened when r
is varied jointly with the CPT-odd parameters, even if using Planck data only. However, the
improvement is dramatic when BICEP/Keck data are added to the analysis. In figure 3b
we show a zoom-in of the lower right triangle of figure 3a to better appreciate the impact
of BICEP/Keck data on the constraints on the β2

AF . We stress again that no V-modes are
sourced by the CPT-odd term of the Lagrangian.

4.2 Constraints on CPT-even terms only

We now focus on the CPT-even term of the action in eq. (2.1). The effects on the CMB spectra
are in this case encoded by the two parameters β2

F,E and β2
F,B, which are responsible for an

overall rescaling of the TE, EE and BB C̃`s via the parameter Z, see eqs. (2.17), (2.18), (2.19).
If we restrict our analysis to consider only linear polarization, the impact of the two β2

F,E/B
is degenerate. However, the CPT-even term sources a degree of circular polarization from
a mixing of E- and B-modes appropriately rescaled by β2

F,E and β2
F,B, see eq. (2.22). The

sourcing of V-modes could in principle be used to individually constrain the β2
F,E/B, provided

that a V-mode experiment puts statistically significant bounds on the VV signal. However,
the signal-to-noise ratio in the SPIDER and CLASS data is insufficient to put significant
bounds on the two parameters. This is shown in figure 9 of the appendix A, where the
posterior distributions on cosmological parameters, including β2

F,E , with and without V-mode
data are perfectly overlapping. We expect this to be exactly the same for β2

F,B, since in the
absence of sensitive enough V-mode data both β2

F,E and β2
F,B parameters are constrained
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through the rescaling of TE, EE and BB spectra within Z. Therefore, in the following, we
neglect the contribution of V modes data and we quote results for the effective parameter β2

F ,
defined as

β2
F ≡

β2
F,E + β2

F,B

4 . (4.1)

In figure 4, we show 2D and 1D posterior probabilities of a subset of cosmological
parameters explored with the combination of Planck+BK18 and Planck+BK18+ACT data.
We compare the results within the ΛCDM+r + β2

F model and the baseline ΛCDM+r model.
Differently from what discussed for the CPT-odd parameters, we do not see any improve-

ment in the bounds on r when β2
F is varied. In this case, we expect a positive correlation

between r and β2
F , contrarily to what happens with the β2

AF . Indeed, a non-vanishing β2
F

reduces the amplitude of the BB spectrum, which could be compensated by higher values
of r. However, we do not appreciate such a correlation in figure 4. The reason is that most
of the constraining power on β2

F comes from TE and EE spectra, making any degeneracy
with r undetectable. Indeed, the sensitivity on β2

F from T- and E-modes only is at the same
level as that on β2

AF,T/S , being driven by the scaling in amplitude of EE and TE spectra. In
figure 4, we also note a shift in Ωbh

2 and Ωch
2 with respect to the constraints obtained when

β2
F = 0. The shifts can be easily explained when considering the impact of the parameters

on the shape of the TE and EE spectra. The main effect of the non-vanishing β2
F on the

polarization power spectra is to rescale their overall amplitude through Z in eq. (2.24). A
change in Ωbh

2, instead, affects the amplitude of the TE and EE acoustic oscillations both in
the photon density field (by modifying the inertia of the baryon-photon fluid, which is relevant
for the temperature transfer function) and in the photon velocity field (as a result of the
change in the density), which is relevant for the E-polarization transfer function. From these
considerations, we can understand the correlation between β2

F and Ωbh
2. At sub-degree scales

(high multipoles `), a change in Ωbh
2 modifies the damping angular scale since a different

baryon density affects the photon mean free path. As a result, the power at small scales is
more or less suppressed depending on the value of Ωbh

2. This effect goes in the opposite
direction of the change in the amplitude of the first peaks: a lower value of Ωbh

2 increases
the amplitude of the oscillations at intermediate scales and suppresses the power at small
scales. A similar effect at intermediate scales is provided by Ωch

2. A decrease of the latter
delays the onset of matter-radiation equality, thus shifting to larger scales the boosting effect
due to radiation driving on the acoustic oscillations. Therefore, we expect Ωch

2 to decrease
when allowing for a non-vanishing β2

F . The inclusion of ACT data causes the same shift of
Ωbh

2 and Ωch
2 when sampling over β2

F , as can be seen in figure 4. Moreover, the limit on β2
F

is broader. This is likely driven by the known preference of ACT for larger As and ns [43],
which can be compensated by a larger value of β2

F .

4.3 Joint constraints on CPT-odd and CPT-even terms
Finally, we investigate the case in which all the CPT-even and CPT-odd parameters are
varied jointly. This allows us to investigate how the interplay between the effects induced
by different operators affects the constraints on the LV parameters. We have collected the
95% CL on r, β2

AF,T , β2
AF,S , β2

F for the cases analyzed in table 1. The posteriors on all the
cosmological parameters, including those not quoted in this section, can be found in the
appendix A. Figure 5 shows the 2D and 1D posterior probabilities of a subset of cosmological
parameters plus the β2s assuming a ΛCDM+r+β2

AF,T+β2
AF,S+β2

F model. For comparison, we
have also included the posteriors for the ΛCDM+r+β2

AF,T+β2
AF,S and ΛCDM+r+β2

F models.
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Figure 2. One and two-dimensional posterior probability distributions for a subset of parameters varied
in the MCMC analysis. We report the constraints obtained when assuming a ΛCDM+r+β2

AF,T+β2
AF,S

model (in green), ΛCDM+r+β2
AF,T (in red), ΛCDM+r+β2

AF,S (in blue) and ΛCDM+r (in orange)
using Planck TTTEEE+lensing+BK18 data. Note the tighter limit on r when one of the β2

AF

parameters is allowed to vary with respect to the case in which they are both equal to zero. Opening
to both β2

AF further improves the individual constraints on β2
AF,T , β2

AF,S and r, see the main text for
a detailed discussion.

On the one hand, we see that the bounds on β2
F improve when all the β2 are allowed to vary.

In fact, in absence of V-mode data, the only effect of β2
F is to contribute to the rescaling

of the CMB spectra via Z, in the same way as β2
AF,T and β2

AF,S do. On the other hand,
the constraints on β2

AF,T and β2
AF,S do not improve significantly when the two parameters

are varied jointly with β2
F . In fact, besides rescaling the spectra, they also induce a mixing

between E and B modes, which allows to disentangle them from β2
F . Note again the improved

bounds on r when β2
AF,T and β2

AF,S are varied. The inclusion of ACT mostly affects the
constraint on β2

F (see figure 6), as discussed before.
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Figure 3. On the left, one and two-dimensional posterior probability distributions for a subset
of parameters varied in the MCMC analysis. We report the constraints obtained when assuming a
ΛCDM+β2

AF,T +β2
AF,S (in pink) and a ΛCDM+r+β2

AF,T +β2
AF,S (in cyan and green) models. The former

using only Planck TTTEEE+lensing dataset, while the latter using both Planck TTTEEE+lensing
and Planck TTTEEE+lensing+BK18 datasets. Note how much the constraints on the β2

AF parameters
improve when we include BK18 data. On the right, a zoom-in showing the constraints on β2

AF,T and
β2

AF,S using Planck TTTEEE+lensing+BK18 datasets.

5 Implications for the LV coefficients in the minimal SME action

In this section, we translate the bounds on the phenomenological parameters β2
AF,T , β2

AF,S

and β2
F introduced in eqs. (2.13), (2.14) and (4.1) into constraints on the LV couplings kAF

and kF appearing in the action in eq. (2.1). We focus on the constraints obtained with the
full dataset combination, Planck+BK18+ACT. We report these results in table 2.

Focussing first on the CPT-odd effects, the constraints on the time component of kAF
are usually rephrased as bounds on the parameter k(3)

(V )00 = −
√

4π(kAF )0 (see refs. [40, 55]).
This parameter can be linked to the phenomenological parameter β2

AF,T as follows:

|k(3)
(V )00| =

√
π

2c(τ0 − τLS)
√
β2
AF,T ' 6× 10−43

√
β2
AF,T GeV , (5.1)

where we have assumed that (kAF )0 is constant along the line of sight and

c(τ0 − τLS) = c

H0

∫ zLS

0

dz

[Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ]1/2
' 9444 Mpc . (5.2)

In order to get the estimate in eq. (5.2), we have used the best-fit values for the cosmological
parameters taken from Planck 2018 (TT, TE, EE + lowE constraints for ΛCDM model) [74].
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Figure 4. One and two-dimensional posterior probability distributions for a subset of parameters
varied in the MCMC analysis. We report the constraints obtained when assuming ΛCDM+r+β2

F

(in purple when using the Planck TTTEEE+lensing+BK18 dataset, in blue when adding ACT) and
ΛCDM+r (in dashed orange and dashed cyan respectively). Since not enough constraining power comes
from current V-mode data, we are note able to disentangle the effects of β2

F,E and β2
F,B , and we can

only set a limit on their combination β2
F = (β2

F,E + β2
F,B)/4. Note the shifts in the posteriors of Ωbh

2

and Ωch
2 when considering the ΛCDM + r+ β2

F extension, see the main text for a detailed discussion.

Analogously, from eq. (2.14) we find for the space components of kAF

|kAF| ' 2.93× 10−43
√
β2
AF,S GeV . (5.3)

For what concerns the CPT-even effects, recasting our constraints on β2
F into bounds on

the components of kF is less trivial, due to the frequency dependence of eqs. (2.15)–(2.16).
From eqs. (2.15)–(2.16) we obtain

kF,E+B ≡
(

2k2
F,E +

k2
F,B

3

)1/2

' 1.29× 10−28
(

ν

GHz

)−1√
β2
F . (5.4)

To account for the fact that we are combining information coming from different experiments,
observing the sky in different frequency channels, we can define an effective frequency νf
following the method presented in ref. [28]. Given the frequency dependence in eq. (5.4), we
find

νf =


∑
i

1
σ2

i

[
ln
(

νi
+

GHz

)
− ln

(
νi

−
GHz

)]
∑
i

1
σ2

i

(
νi

+
GHz −

νi
−

GHz

)

−1

GHz , (5.5)
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Figure 5. One and two-dimensional posterior probability distributions for the LV parame-
ters β2 varied in the MCMC analysis. We report the constraints obtained when assuming
ΛCDM+r+β2

AF,T+β2
AF,S+β2

F (in dark blue), ΛCDM+r+β2
AF,T+β2

AF,S (in green) and ΛCDM+r+β2
F

(in purple), using the Planck TTTEEE+lensing+BK18+ACT dataset. The posterior in dashed
yellow is the reference for the ΛCDM+r case using same dataset. The joint marginalization over
all the β2 parameters improves the constraints on β2

F , while keeping unchanged those on r and the
β2

AF parameters.

where
[
νi−, ν

i
+
]
is the frequency interval of the i-th frequency channel and σi is the noise

level. Using eq. (5.5), we obtain νf = 158.8 GHz, 121.7 GHz and 122.7 GHz for Planck [41, 75],
BK18 [42, 76] and ACT [43, 77], respectively.

We now report the 95% CL constraints on the LV coefficients using Planck+BK18+ACT
data, in the case where the three parameters β2

AF,T , β2
AF,S and β2

F are all free to vary. For
the CPT-odd terms we find

|k(3)
(V )00| < 1.54× 10−44 GeV , (5.6)

|kAF| < 0.74× 10−44 GeV , (5.7)

whereas for the CPT-even operator we obtain

kF,E+B < 2.31× 10−31
(

νf
121.7 GHz

)−1
. (5.8)

Note that the bound on kF,E+B in eq. (5.8) has been obtained by normalizing the effective
frequency to 121.7 GHz, which is the value computed for BK18. This choice is motivated
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Figure 6. One and two-dimensional posterior probability distributions for the LV parame-
ters β2 varied in the MCMC analysis. We report the constraints obtained when assuming a
ΛCDM+r+β2

AF,T+β2
AF,S+β2

F model using Planck TTTEEE+lensing+BK18 (in dark blue) and Planck
TTTEEE+lensing+BK18+ACT (in red). Including ACT data weakens the constraints mostly on β2

F ,
see the main text for a detailed discussion.

by the fact that BK18 data give the highest constraining power on the LV coefficients, see
discussion in section 4. We remind the reader that the full set of constraints derived from
different data and parameter combinations can be found in table 2.

The bounds on the LV coefficients derived in previous literature are collected in [40], see
tables D15 and D16. For the CPT-odd case, an upper bound on the parameter |k(3)

(V )00| has been
obtained in ref. [51] using WMAP data, leading to the result |k(3)

(V )00| < 4.9×10−43 GeV at 95%
CL. We note that the limit derived in our analysis using Planck+BK18+ACT data is stronger
by more than one order of magnitude, see eq. (5.6). Analogously, a limit on the coefficient
|kAF| from WMAP data has been obtained in [35, 55], yielding |kAF| < 2× 10−42 GeV at 95%
CL. In this case, the bound derived in our analysis is stronger by two orders of magnitude,
see eq. (5.7). We stress that the bounds on the CPT-odd coefficients derived in this work are
the strongest to date, both considering CMB and other sources. See again ref. [40] for an
exhaustive list of current bounds.

For what concerns CPT-even Lorentz violation, our bound on kF,E+B improves previous
constraints by roughly one order of magnitude [35]. The CMB-based cosmological bounds on
the CPT-even coefficients are only overcome by those obtained from optical polarimetry of
extragalactic sources, see refs. [40, 78, 79].
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Dataset Model (ΛCDM+) r × 102 β2
AF,T

×102
β2
AF,S

×102
β2
F

×102

Planck β2
AF,T+β2

AF,S — < 1.29 < 1.28 —

Planck r+β2
AF,T+β2

AF,S < 11.5 < 0.987 < 0.953 —
Planck+BK18 r < 3.36 — — —
Planck+BK18 r+β2

AF,T < 3.07 < 0.0813 — —

Planck+BK18 r+β2
AF,S < 3.13 — < 0.0805 —

Planck+BK18 r+β2
AF,T+β2

AF,S < 3.00 < 0.0673 < 0.0697 —

Planck+BK18 r+β2
F < 3.36 — — < 4.76

Planck+BK18 r+β2
AF,T+β2

AF,S+β2
F < 3.02 < 0.0675 < 0.0692 < 4.60

Planck+BK18+VV r+β2
F < 3.36 — — < 4.73

Planck+BK18+ACT r+β2
AF,T < 3.11 < 0.0765 — —

Planck+BK18+ACT r+β2
AF,S < 3.11 — < 0.0765 —

Planck+BK18+ACT r+β2
AF,T+β2

AF,S < 3.03 < 0.0665 < 0.0668 —

Planck+BK18+ACT r+β2
F < 3.35 — — < 4.91

Planck+BK18+ACT r+β2
AF,T+β2

AF,S+β2
F < 3.03 < 0.0655 < 0.0645 < 4.76

Table 1. Bounds at 95% CL on r, β2
AF,T , β2

AF,S , β2
F for the listed datasets and models. Eqs. (2.17)–

(2.27) show how the β2 parameters affect the CMB spectra. The limits have been expressed in units
of 10−2. The key “VV” represents the combined CLASS+SPIDER dataset for V-modes.

The bounds presented in the previous paragraphs are obtained in the most general case
with all the β2 parameters jointly varied. This represents a further novelty of our work.
However, it is worth mentioning that, since all the parameters compete for the same power,
the bounds obtained with a single parameter exploration are slightly weaker, as can be seen
in table 2.

6 Conclusions

In this paper, we have derived the signatures of Lorentz-violating (LV) electrodynamics on
the polarization of the cosmic microwave background (CMB) and provided the most stringent
constraints to date on LV coefficients from CMB observations. We computed the modified
CMB spectra, employing the full expression of the LV action given in eq. (2.1), and we
performed a likelihood analysis exploiting the most recent CMB datasets. To our knowledge,
this is the first time that such an end-to-end analysis has been performed. We considered
the minimal Standard Model extension of electrodynamics, including both CPT-odd (mass
dimension d = 3) and CPT-even (mass dimension d = 4) operators. The CPT-odd operator,
characterized by the 4-vector (kAF )µ, is responsible for the standard cosmic birefringence
effect (isotropic and anisotropic). The CPT-even operator, instead, is characterized by
a tensor (kF )µνρσ and converts linear into circular polarization, giving rise to a non-zero
V-mode spectrum.
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Dataset Model (ΛCDM+) |k(3)
(V )00| × 1044 |kAF| × 1044

kF,E+B × 1031

(GeV) (GeV)
Planck β2

AF,T+β2
AF,S < 6.81 < 3.31 —

Planck r+β2
AF,T+β2

AF,S < 5.96 < 2.86 —

Planck+BK18 r+β2
AF,T < 1.71 — —

Planck+BK18 r+β2
AF,S — < 0.83 —

Planck+BK18 r+β2
AF,T+β2

AF,S < 1.56 < 0.77 —

Planck+BK18 r+β2
F — — < 2.31

Planck+BK18 r+β2
AF,T+β2

AF,S+β2
F < 1.56 < 0.77 < 2.27

Planck+BK18+ACT r+β2
AF,T < 1.66 — —

Planck+BK18+ACT r+β2
AF,S — < 0.81 —

Planck+BK18+ACT r+β2
AF,T+β2

AF,S < 1.55 < 0.76 —

Planck+BK18+ACT r+β2
F — — < 2.35

Planck+BK18+ACT r+β2
AF,T+β2

AF,S+β2
F < 1.54 < 0.74 < 2.31

Table 2. Bounds at 95% CL on k(3)
(V )00, |kAF| and kF,E+B for the listed datasets and models The

constraints on kF,E+B are derived taking νf = 158.8 GHz for Planck alone and νf = 121.7 GHz for
the combination of Planck, BK18 and ACT. As discussed in the main text, this choice is justified by
the highest constraining power on LV coefficients given by BK18 data.

The expressions for the modified CMB spectra are presented in eqs. (2.17)–(2.27) and
are obtained following the formalism laid down in ref. [44]. The LV effects are encoded in four
phenomenological parameters, defined in eqs. (2.13)–(2.16). The parameters characterizing
the CPT-odd term are β2

AF,T and β2
AF,S , related to the time and space components of kAF ,

respectively. The CPT-even terms are β2
F,E and β2

F,B, which depend on the components of
the tensor kF . The theoretical predictions of the modified CMB spectra in presence of LV
effects are computed by using a customized version of the Boltzmann solver camb.9

We derived constraints on the phenomenological LV parameters from state-of-the-art
CMB datasets: Planck [41], BK18 [42], ACT [43], CLASS [72] and SPIDER [73]. Table 1
shows the 95% confidence intervals of the β2 parameters, for different combinations of datasets
and different choices of the underlying cosmological model. Sampling the LV coefficients does
not affect significantly the standard cosmological parameters. The tensor-to-scalar ratio r
represents the only relevant exception. Indeed, the constraint on r is ∼ 10% tighter when all
β2 parameters are sampled with respect to the ΛCDM+r model (see the discussion in section 4
and the full triangle plots in appendix A). As far as the CPT-even term is concerned, we found
that current V-mode datasets have negligible constraining power compared to measurements
of linear CMB polarization, in agreement with previous findings (see ref. [44]).

Finally, we recast the constraints on the phenomenological parameters β2 into bounds
on the coefficients of the CPT-even and -odd operators appearing in the minimal SME action,

9The modified version of camb is available at https://github.com/sgiardie/CAMB_CPT.
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see table 2. We compared the constraints derived in this work with previous bounds from
astrophysical and laboratory probes available in literature.10

Our constraints on the CPT-odd parameters, i.e. |k(3)
(V )00| < 1.54 × 10−44 GeV and

|kAF| < 0.74× 10−44 GeV, are roughly one and two orders of magnitude tighter than previous
CMB limits, respectively. Moreover, they are the strongest bounds obtained to date on
the CPT-odd LV coefficients considering all other probes. Concerning the CPT-even case,
the bounds are currently dominated by the constraint coming from optical polarimetry of
extragalactic sources. Nevertheless, we improve previous CMB-based results by one order of
magnitude, yielding kF,E+B < 2.31× 10−31.

Forthcoming CMB experiments, such as LiteBIRD [49], Simons Observatory [48] and
CMB-Stage 4 [50], will largely improve our sensitivity on such extensions of the standard
electrodynamics, thanks to unprecedented sensitivity to linear CMB polarization as well as
better sensitivity to V-mode polarization. A rough estimate of the expected improvements
can be obtained by conservatively assuming that the constraints on the β2 parameters will
still be dominated by B-mode measurements. Future CMB experiments will increase their
sensitivity to the tensor-to-scalar ratio r by more than a factor of twenty compared to current
bounds. The improvement on r can be then translated to the same improvement on each β2,
since both parameters act as a rescaling factor for the BB spectrum (see eq. (2.19)). From
eqs. (5.1), (5.3), (5.4), it is straightforward to eventually forecast a factor of 5 improvement on
the physical coefficients in the LV action. Note that this is a conservative estimate since it does
not account for the increased constraining power coming from more accurate measurements of
E-mode polarization. Improved V-mode bounds would also allow to disentangle the effects of
the phenomenological β2

F,E and β2
F,B parameters. This would potentially set individual bounds

on these two coefficients, whose effects are indistinguishable when exploiting measurements of
linear polarization only, see discussion in section 4. A detailed forecast analysis is left as the
subject of a future publication.
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A Plot appendix

For completeness, we collect here the full triangle plots for all the cases discussed in section 4
of the main text. The triangle plots reported in this appendix include all the cosmological
parameters sampled in the MCMC analysis, as detailed in section 3. Apart from the
correlations already discussed at length in the main text (see section 4), the inclusion of
the β parameters in the analysis does not lead to significant modifications of the posterior
distributions of the remaining cosmological parameters with respect to the standard (i.e., no
LV) scenario. The shifts in some of the posterior distributions observed when including ACT
data in the analysis are known features not specific to this work and have been discussed at
length in the relevant ACT publications, see e.g., [43, 84]
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ied in the MCMC analysis. We report the constraints obtained when assuming ΛCDM+r+β2
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