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SUBFACTORS AND MATHEMATICAL PHYSICS

DAVID E EVANS AND YASUYUKI KAWAHIGASHI

This paper is dedicated to the memory of Vaughan Jones

Abstract. This paper surveys the long-standing connections and impact be-
tween Vaughan Jones’s theory of subfactors and various topics in mathematical
physics, namely statistical mechanics, quantum field theory, quantum informa-
tion and two-dimensional conformal field theory.

1. Subfactors and mathematical physics

Subfactor theory was initiated by Vaughan Jones [69]. This led him to the
study of a new type of quantum symmetry. This notion of quantum symmetries
led to a diverse range of applications including the Jones polynomial, a completely
new invariant in knot theory which led to the new field of quantum topology. His
novel theory has deep connections to various topics in mathematical physics. This
renewed interest in known connections between mathematical physics and operator
algebras, and opened up totally novel frontiers. We present a survey on these
interconnecting topics with emphasis on statistical mechanics and quantum field
theory, particularly two-dimensional conformal field theory.

2. Subfactors and statistical mechanics

Let N ⊂ M be a subfactor of type II1 and [M : N ] its Jones index, which is a
positive real number or infinity. That is, N and M are infinite-dimensional simple
von Neumann algebras with a trace tr. We only consider the case that [M : N ] is
finite. Vaughan [69] constructed a sequence of projections ej , j = 1, 2, 3, . . . , called
the Jones projections, and discovered the following relations:

(2.1)











ej = e2j = e∗j ,

ejek = ekej , j ̸= k,

ejej±1ej = [M : N ]−1ej .

Using these relations and a trace, Vaughan showed that the set of possible values
of the Jones indices is exactly equal to

{

4 cos2
π

n
| n = 3, 4, 5, . . .

}

∪ [4,∞].
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Vaughan made the substitution

(2.2) σj = tej − (1− ej)

where [M : N ] = λ−1 = 2 + t + t−1 to yield the Artin relations of the braid
group, where σj is the braid which interchanges the j and j+1 strands. Vaughan’s
representation came equipped with a trace tr satisfying the Markov trace property
in the probabilistic sense tr(xej) = [M : N ]−1tr(x), where x belongs to the algebra
generated by e1, e2, . . . , ej−1. Any link arises as a closure of a braid by a theorem
of Alexander, and two braids give the same link if and only if they are related
by a series of two types of moves, known as the Markov moves, by a theorem of
Markov. The trace property tr(xy) = tr(yx) and the above Markov trace property
give invariance of a certain adjusted trace value of a braid under the two Markov
moves. This is the Jones polynomial [70, 71] in the variable t a polynomial invariant
of a link.

Evans pointed out in 1983 that these relations (2.1) appear in similar formalism
to one studied by Temperley-Lieb [116] in solvable statistical mechanics. The Yang-
Baxter equation plays an important role in subfactor theory and quantum groups.
The two-dimensional Ising model assigns two possible spin values ± at the vertices
of a lattice. Important generalisations include the Potts model, with Q states at
each vertex, and vertex or IRF (interaction round a face) models, where the degrees
of freedom are assigned to the edges of the lattice. The transfer matrix method,
originated by Kramers and Wannier, assigns a matrix of Boltzmann weights to
a one dimensional row lattice. The partition function of a rectangular lattice in
general is then obtained by gluing together matrix products of the transfer matrix.
Baxter [6] showed how to construct commuting families of transfer matrices via
Boltzmann weights satisfying the Yang-Baxter Equation YBE. The YBE is an
enhancement of the braid relations in (2.2), as it reduces to them in a certain
limit. This commutativity permits simultaneous diagonalisation, with the largest
eigenvalue being crucial for computing the free energy. The transfer matrix method
transforms the classical statistical mechanical model to a one-dimensional quantum
model. A conformal field theory can arise from the scaling limit of a statistical
mechanical lattice model at criticality. Temperley and Lieb [116] found that the
transfer matrices of the Potts model and an ice-type vertex model could both be
described through generators obeying the same relations as in Vaughan’s work (2.1)
and in this way demonstrated equivalence of the models. Whilst the relations for the
Potts model only occur when λ−1 = Q is integral, the partition function is a Tutte-
Whitney dichromatic polynomial. One variable is Q which can be extrapolated
and the partition function is then related to the Jones polynomial on certain links
associated to the lattice [70, page 108]. The ice-type representation though has a
continuous parameter λ. In both cases, the Markov trace did not manifest itself.

Pimsner and Popa [102] discovered that the inverse of the index namely [M :
N ]−1 is the best constant c ≥ 0 for which EN (x∗x) ≥ cx∗x, for all x ∈ M , which
they called the probabilistic index. Here EN is the conditional expectation of M
onto N which gives rise to the first Jones projection in the tower. This was key
to creating the link with the theory of Doplicher-Haag-Roberts, by Longo [91]
identifying statistical dimension with the Jones index, and by Fredenhagen, Rehren
and Schroer [45, 46], in the late 80’s, and also key to calculating all of the subsequent
entropy quantities/invariants related to subfactors, including the calculation of the
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entropy of the shift on the Jones projections and the calculation of the Connes-
Stormer entropy [26], H(M |N) = ln([M : N ]), for irreducible subfactors.

For a subfactor N ⊂ M with finite Jones index, we have the Jones tower con-

struction

N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · ,
whereMk is generated byM and e1, e2, . . . , ek. The basic construction fromN ⊂ M
to M ⊂ M1 and its iteration to give the Jones tower of II1 factors has a fundamen-
tal role in subfactor theory and applications in mathematical physics. The higher

relative commutants M ′
j ∩Mk, j ≤ k, give a system of commuting squares of inclu-

sions of finite dimensional C∗-algebras with a trace, an object denoted by GN⊂M

and called the standard invariant of N ⊂ M . This exceptionally rich mathematical
structure encodes algebraic and combinatorial information about the subfactor, a
key component of which is a connected, possibly infinite bipartite graph ΓN⊂M , of
Cayley type, called the principal graph of N ⊂ M , with a canonical weight vector
v⃗, whose entries are square roots of indices of irreducible inclusions in the Jones
tower. The weighted graph (Γ, v⃗) satisfies the Perron-Frobenius type condition
ΓtΓ(v⃗) = [M : N ]v⃗, and also ∥Γ∥2 ≤ [M : N ].

Of particular relevance to mathematical physics is when N ⊂ M has finite depth,
corresponding to the graph Γ being finite, in which case the weights v⃗ give the
(unique) Perron-Frobenius eigenvector, entailing ∥Γ∥2 = [M : N ]. Finite depth is
automatic when the index [M : N ] is less than 4, where indeed all bipartite graphs
are finite and have norms of the form 2 cos2(π/n), n ≥ 3.

The objects GN⊂M have been axiomatised in a number of ways, by Ocneanu
with paragroups and connections [97] in the finite depth case, then in the general
case by Popa with λ-lattices [107] and by Vaughan with planar algebras [80].

By Connes fundamental result in [22], the hyperfinite II1 factor R, obtained as
an inductive limit of finite dimensional algebras, is the unique amenable II1 factor,
so in particular all its finite index subfactors are isomorphic to R. In a series of
papers [105, 106, 108, 109], Popa identified the appropriate notion of amenability
for inclusions of II1 factors N ⊂ M and for the objects GN⊂M , in several equivalent
ways, one of which being the Kesten-type condition ∥ΓN⊂M∥2 = [M : N ]. He
proved the important result that for hyperfinite subfactors N ⊂ M satisfying this
amenability condition, GN⊂M is a complete invariant. In other words, whenever
M ≃ R and ∥ΓN⊂M∥2 = [M : N ] (in particular if N ⊂ M has finite depth), N ⊂ M
can be recovered from the data encoded by the sequence of commuting squares in
the Jones tower.

Constructions of interesting commuting squares are related to statistical mechan-
ics through the Yang-Baxter equation and an IRF , vertex or spin model [72]. (See
the monograph of Baxter [6] for this type of statistical mechanical models. Also
see [75] for a general overview by Vaughan on this type of relations.) We choose
one edge each from the four diagrams for the four inclusions so that they make
a closed square. Then we have an assignment of a complex number to each such
square. Ocneanu [97] gave a combinatorial characterisation of this assignment of
complex numbers under the name of a paragroup and a flat connection. We also
assign a complex number, called a Boltzmann weight, to each square arising from
a finite graph in the theory of IRF or vertex models and we have much similarity
between the two notions. The simplest example corresponds to the Ising model

built on the Coxeter-Dynkin diagram A3 and a more general case corresponds to
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the Andrews-Baxter-Forrester model [1] related to the quantum groups Uq(sl2) for
q = exp(2πi/l) a root of unity. These fundamental examples correspond to the sub-
factors generated by the Jones projections alone and the graphs for these cases are
the Coxeter-Dynkin diagrams of type An. Others related to the quantum groups
Uq(sln) have been studied in [67, 28].

We give a typical example of a flat connection as follows. Fix one of the Coxeter-
Dynkin diagrams of type An, D2n, E6 or E8 and use it for the four diagrams. Let
h be its Coxeter number and set ε =

√
−1 exp(π

√
−1/2h). We write µj for the

Perron-Frobenius eigenvector entry for a vertex j for the adjacency of the diagram.
Then the flat connection is given as in Fig.1 and is essentially a normalisation of
the braid element (2.2):

W

l

j

m

k

= δklε+

√

µkµl

µjµm

δjmε̄

Figure 1. A flat connection on the Coxeter-Dynkin diagram

The index value given by this construction is 4 cos2(π/h). If the graph is An, then
the vertices are labeled with j = 1, 2, . . . , n and the Perron-Frobenius eigenvector
entry for the vertex j is given by sin(jπ/(n+1)). The value in Fig.1 in this case is
essentially the same as what the Andrews-Baxter-Forrester model gives at a limiting
value and it also arises from a specialisation of the quantum 6j-symbols for Uq(sl2)
at a root of unity in the sense that two of the “6j”s are chosen to be the fundamental
representation of Uq(sl2). These are also related to IRF models by Roche in [113].
These subfactors for the Dynkin diagrams An are the ones constructed by Vaughan
[69] as N = ⟨e2, e3, . . . ⟩ and M = ⟨e1, e2, e3, . . . ⟩ with the above relations (2.1) with
[M : N ] = 4 cos2(π/(n+ 1)).

The same formula as in Fig.1 for the Coxter-Dynkin diagrams D2n+1 and E7

almost gives a flat connection, but the flatness axiom fails. There are corresponding
subfactors but they have principal graphsA4n−1 andD10 respectively. Nevertheless,
the diagramsD2n+1 and E7 have interesting interpretations in connection with non-
local extensions of conformal nets SU(2)k, as explained below.

The relations (2.1) of the Jones projections ej are reminiscent of the defining
relations of the Hecke algebra Hn(q) of type A with complex parameter q, which is
the free complex algebra generated by 1, g1, g2, . . . , gn−1 satisfying











gjgj+1gj = gj+1gjgj+1,

gjgk = gkgj , for j ̸= k,

g2j = (q − 1)gj + q.

This similarity was exploited to construct more examples of subfactors with index

values
sin2(kπ/l)

sin2(π/l)
with 1 ≤ k ≤ l−1 in the early days of subfactor theory by Wenzl

in a University of Pennsylvania thesis supervised by Vaughan [127]. He constructed
representations ρ of H∞(q) =

⋃∞

n=1
Hn(q) with roots of unity q = exp(2πi/l) and

l = 4, 5, . . . such that ρ(Hn(q)) is always semi-simple and gave a subfactor as
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ρ(⟨g2, g3, . . . ⟩)′′ ⊂ ρ(⟨g1, g2, . . . ⟩)′′ using a suitable trace. The index values converge
to k2 as l → ∞. When k = 2, these subfactors are the ones constructed by Vaughan
for the Coxeter-Dynkin diagram Al−1. This construction is also understood in
the context of IRF models [28, 67] related to SU(k). The relation between the
Hecke algebras and the quantum groups Uq(sln) is a “quantum” version of the
classical Weyl duality. This duality also connects this Jones-Wenzl approach based
on statistical mechanics and type II1 factors with the Jones-Wassermann approach
based on quantum field theory and type III1 factors which is explained below.

It is important to have a spectral parameter for the Boltzmann weights satisfying
the Yang-Baxter equation in solvable lattice models, but we do not have such a
parameter for a flat connection initially in subfactor theory. We usually obtain a
flat connection by a certain specialisation of a spectral parameter for a Boltzmann
weight. Vaughan proposed “Baxterization” in [73] for the converse direction in
the sense of introducing a parameter for analogues of the Boltzmann weights in
subfactor theory. This is an idea to obtain a physical counterpart from a subfactor,
and we discuss a similar approach to construct a conformal field theory from a given
subfactor at the end of this article. It should be noted that to rigorously construct
a conformal field theory at criticality is a notoriously difficult problem – even for
the Ising model, see e.g. [114].

The finite depth condition means that we have a finite graph in this analogy to
solvable lattice models. Even from a set of algebraic or combinatorial data similar
to integrable lattice models involving infinite graphs, one sometimes constructs a
corresponding subfactor. A major breakthrough of Popa [104] was to show that
the Temperley-Lieb-Jones lattice is indeed a standard invariant showing for the
first time that for any index greater than 4 that there exist subfactors with just
the Jones projections as the higher relative commutants. Then, introducing tra-
cial amalgamated free products, Popa [107] could show existence in full generality.
These papers [104, 107] led to important links with free probability theory, lead-
ing to more sophisticated free random models to prove that certain amalgamated
free products are free group factors and adapted, by Ueda [122], to prove simi-
lar existence/reconstruction statements for actions of quantum groups. Popa and
Shlyakhtenko [110] showed that any λ-lattice acts on the free group factor L(F∞).
This involved a new construction of subfactors from λ-lattices, starting from a com-
muting square of semifinite von Neumann algebras, each one a direct sum of type
I∞ factors with a semifinite trace, and with free probability techniques showing that
the factors resulting from this construction are∞-amplifications of L(F∞). The von
Neumann algebras resulting in these constructions are not hyperfinite. A new proof
using graphical tools, probabilistic methods and planar algebras was later found by
Guionnet-Jones-Shlyakhtenko [59]. Moreover they and Zinn-Justin [61] use matrix
model computations in loop models of statistical mechanics and graph planar alge-
bras to construct novel matrix models for Potts models on random graphs. This is
based on the planar algebra machinery developed by Vaughan [80] for understand-
ing higher relative commutants of subfactors. In [60] Guionnet-Jones-Shlyakhtenko
explicitly show that it is the same construction as in the Popa-Shlyakhtenko [110]
paper. The paper [80] has been published only very recently in the Vaughan Jones
memorial special issue after his passing away, but its preprint version appeared in
1999 and has been highly influential. Note also that Kauffman [82, 83] had found
a diagrammatic construction of the Jones polynomial directly related to the Potts
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model based on a diagrammatic presentation of the Temperley-Lieb algebra which
then has a natural home in the planar algebra formalism. The polynomial was
understood by Reshetikhin-Turaev in [112] in the context of representations of the
quantum groups Uq(sl2) [33, 66].

3. Subfactors and quantum field theory

Witten [128] gave a new interpretation of the Jones polynomial based on quan-
tum field theory, the Chern-Simons gauge field theory, and generalised it to an
invariant of a link in a compact 3-manifold. However, it was not clear why we
should have a polynomial invariant in this way. Taking an empty link, yields an in-
variant of a compact 3-manifold. Witten used a path integral formulation and was
not mathematically rigorous. A mathematically well-defined version based on com-
binatorial arguments using Dehn surgery and the Kirby calculus has been given by
Reshetikhin and Turaev [112]. In the case of an empty link, we realise a 3-manifold
from a framed link with the Dehn surgery, make a weighted sum of invariants of
this link using representations of a certain quantum group at a root of unity and
prove that this weighted sum is invariant under the Kirby moves. Two framed links
give homeomorphic manifolds if and only if they are related with a series of Kirby
moves. For the quantum group Uq(sl2), the link invariant is the colored Jones poly-

nomial. A color is a representation of the quantum group and labels a connected
component of a link. This actually gives a (2+1)-dimensional topological quantum
field theory in the sense of Atiyah [5], which is a certain mathematical axiomatisa-
tion of a quantum field theory based on topological invariance. Roughly speaking,
we assign a finite dimensional Hilbert space to each closed 2-dimensional manifold,
and also assign a linear map from one such Hilbert space to another to a cobordism
so that this assignment is functorial. It is also easy to extend this construction
from quantum groups to general modular tensor categories as we explain below.

A closely related, but different, (2 + 1)-dimensional topological quantum field
theory has been given by Turaev and Viro [121]. In this formulation, one triangu-
lates a 3-manifold, considers a weighted sum of quantum 6j-symbols arising from
a quantum group depending on the triangulation, and proves that this sum is in-
variant under the Pachner moves. Two triangulated manifolds are homeomorphic
to each other if and only if we obtain one from the other with a series of Pachner
moves. This has been generalised to another (2 + 1)-dimensional topological quan-
tum field theory using quantum 6j-symbols arising from a subfactor by Ocneanu.
(See [42, Chapter 12].) Here we only need a fusion category structure which we ex-
plain below, and no braiding. This is different from the above Reshetikhin-Turaev
case. For a given fusion category, we apply the Drinfel′d center construction, a
kind of “quantum double” construction, to get a modular tensor category with a
non-degenerate braiding. This construction was developed in subfactor theory by
Ocneanu [97] through an asymptotic inclusion, by Popa [106] through a symmetric
enveloping algebra, through the Longo-Rehren subfactor [94] and Izumi [64, 65] and
in a categorical setting by Müger [96]. We then apply the Reshetikhin-Turaev con-
struction to the double. We can also apply the Turaev-Viro-Ocneanu construction
to the original fusion category, and these two procedures give the same topological
quantum field theory [87]. In particular, if we start with Uq(sl2) at a root of unity,
the Turaev-Viro invariant of a closed 3-manifold is the square of the absolute value
of the Reshetikhin-Turaev invariant of the same 3-manifold.
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Another connection of subfactors to quantum field theory is through algebraic

quantum field theory, which is a bounded operator algebraic formulation of quan-
tum field theory. The usual ingredients for describing a quantum field theory are
as follows.

(1) A spacetime, such as the 4-dimensional Minkowski space.
(2) A spacetime symmetry group, such as the Poincaré group.
(3) A Hilbert space of states, including the vacuum.
(4) A projective unitary representation of the spacetime symmetry group on

the Hilbert space of states.
(5) A set of quantum fields, that is, operator-valued distributions defined on

the spacetime acting on the Hilbert space of states.

An ordinary distribution assigns a number to each test function. An operator-
valued distribution assigns a (possibly unbounded) operator to each test function.
The Wightman axioms give a direct axiomatisation using these and they have a
long history of research, but it is technically difficult to handle operator-valued dis-
tributions, so we have a different approach based on bounded linear operators giving
observables. Let O be a region within the spacetime. Take a quantum field φ and a
test function f supported on O. The self-adjoint part of ⟨φ, f⟩ is an observable in O
which could be unbounded. Let A(O) denote the von Neumann algebra generated
by spectral projections of such self-adjoint operators. This passage from operator-
valued distributions to von Neumann algebras is also used in the construction of a
conformal net from a vertex operator algebra by Carpi-Kawahigashi-Longo-Weiner
[20] which we explain below. Note that a von Neumann algebra contains only
bounded operators.

Locality is an important axiom arising from the Einstein causality which says
that if two regions are spacelike separated, observables in these regions have no
interactions, hence the corresponding operators commute. In terms of the von
Neumann algebras A(O), we require that [A(O1), A(O2)] = 0, if O1 and O2 are
spacelike separated, where the Lie bracket means the commutator. This family of
von Neumann algebras parameterised by spacetime regions is called a net of oper-

ator algebras. Algebraic quantum field theory gives an axiomatisation of a net of
operator algebras, together with a projective unitary representation of a spacetime
symmetry group on the Hilbert space of states including the vacuum. A main idea
is that it is not each von Neumann algebra but the relative relations among these
von Neumann algebras that contains the physical contents of a quantum field the-
ory. In the case of two-dimensional conformal field theory, which is a particular
example of a quantum field theory, each von Neumann algebra A(O) is always a
hyperfinite type III1 factor, which is unique up to isomorphism and is the Araki-

Woods factor of type III1 . Thus the isomorphism class of a single von Neumann
algebra contains no physical information. Each local algebra of a conformal net is
a factor of type III1 by [58, Proposition 1.2]. It is also hyperfinite because it has
a dense subalgebra given as an increasing union of type I algebras, which follows
from the split property shown in [95, Theorem 5.4].

Fix a net {A(O)} of von Neumann algebras. It has a natural notion of a rep-
resentation on another Hilbert space without the vacuum vector. The action of
these von Neumann algebras on the original Hilbert space itself is a representa-
tion and it is called the vacuum representation. We also have natural notions of
unitary equivalence and irreducibility of representations. The unitary equivalence
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class of an irreducible representation of the net {A(O)} is called a superselection

sector. We also have a direct sum and irreducible decomposition for representa-
tions. If we have two representations of a group, it is very easy to define their
tensor product representation, but it is not clear at all how to define a tensor
product representation of two representations of a single net of operator algebras.
Doplicher-Haag-Roberts gave a proper definition of the tensor product of two rep-
resentations [30, 31]. Under a certain natural assumption, each representation has
a representative given by an endomorphism of a single algebra A(O) acting on the
vacuum Hilbert space for some fixed O. This endomorphism contains complete
information about the original representation. For two such endomorphisms ρ and
σ, the composed endomorphism ρσ also corresponds to a representation of the net
{A(O)}. This gives a correct notion of the tensor product of two representations.
Furthermore, it turns out that the two compositions ρσ and σρ of endomorphisms
give unitarily equivalent representations. If the spacetime dimension is higher than
2, this commutativity of the tensor product is similar to unitary equivalence of
π1 ⊗ π2 and π2 ⊗ π1 for two representations π1 and π2 of the same group. The
representations now give a symmetric monoidal C∗-category, where a representa-
tion gives an object, an intertwiner gives a morphism, and the above composition
of endomorphisms gives the tensor product structure. This category produces a
compact group from the new duality of Doplicher-Roberts [32]. Here an object of
the category is an endomorphism and a morphism in Hom(ρ, σ) is an intertwiner,
that is, an element in

{T ∈ A(O) | Tρ(x) = σ(x)T for all x ∈ A(O)}.
In other words, the Doplicher-Roberts duality gives an abstract characterisation of
the representation category of a compact group among general tensor categories.
The vacuum representation plays the role of the trivial representation of a group,
and the dual representation of a net of operator algebras corresponds to the dual
representation of a compact group. This duality is related to the classical Tannaka
duality, but gives a duality more generally for abstract tensor categories.

Using the structure of a symmetric monoidal C∗-category, we define a statisti-

cal dimension of each representation, which turns out to be a positive integer or
infinity [30, 31]. That the Jones index value takes on only discrete values below 4
is reminiscent of this fact that a statistical dimension can take only integer values.
Longo [91, 92] showed that the statistical dimension of the representation corre-
sponding to an endomorphism ρ of A(O) is equal to the square root of the Jones
index [A(O) : ρ(A(O))]. This opened up a wide range of new interactions between
subfactor theory and algebraic quantum field theory.

Generalizing the notion of a superselection sector, Longo [91, 92] introduced the
notion of a sector, the unitary equivalence class of an endomorphism of a factor of
type III, inspired by Connes theory of correspondences, based on the equivalences
between Hilbert bimodules, endomorphisms and positive definite functions on dou-
bles [23] [24, VB], [25] and see e.g. Popa [103] for developments. He defined a
dual sector using the canonical endomorphism which he had introduced based on
the modular conjugation in Tomita-Takesaki theory. Note that in a typical situ-
ation of a subfactor N ⊂ M , these von Neumann algebras are isomorphic, so we
have an endomorphism ρ of M onto N . Then we have the dual endomorphism ρ̄,
and the irreducible decompositions of ρρ̄ρρ̄ · · · ρ̄ give objects of a tensor category,
where the morphisms are the intertwiners of endomorphisms and the tensor product
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operation is composition of endomorphisms. If we have finitely many irreducible
endomorphisms arising in this way, which is equivalent to the finite depth condi-
tion, our tensor category is a fusion category, where we have the dual object for
each object and we have only finitely many irreducible objects up to isomorphisms.
The higher relative commutants M ′ ∩Mk are described as intertwiner spaces like
End(ρρ̄ρρ̄ · · · ρ̄) or End(ρρ̄ρρ̄ · · · ρ).

In our setting, for a factor M , we have the standard representation of M on the
Hilbert space L2(M), the completion of M with respect to a certain inner product,
and this L2(M) also has a right multiplication by M based on Tomita-Takesaki
theory. For an endomorphism ρ of M , we have a new M -M bimodule structure on
L2(M) by twisting the right action of M by ρ. In this setting, all M -M bimodules
arise in this way, and we have a description of the above tensor category in terms of
bimodules. Here the tensor product operation is given by a relative tensor product

of bimodules over M . For type II1 factors, we need to use this bimodule description
to obtain the correct tensor category structures. It is more natural to use type II1
factors in statistical mechanics, and it is more natural to use type III1 factors in
quantum field theory, but they give rise to equivalent tensor categories, so if we are
interested in tensor category structure, including braiding, this difference between
type II1 and type III1 is not important.

4. Subfactors and conformal field theory

A two-dimensional conformal field theory is a particular example of a quantum
field theory, but it is a rich source of deep interactions with subfactor theory, so we
treat this in an independent section.

We start with the (1 + 1)-dimensional Minkowski space and consider quantum
field theory with conformal symmetry. We restrict a quantum field theory onto
two light rays x = ±t and compactify a light ray by adding a point at infinity.
The resulting S1 is our “spacetime” now, though space and time are mixed into
one dimension, and our symmetry group for S1 is now Diff(S1), the orientation
preserving diffeomorphism group of S1. Our spacetime region is now an interval I,
a non-empty, non-dense open connected subset of S1. For each such an interval I,
we have a corresponding von Neumann algebra A(I) acting on a Hilbert space H
of states containing the vacuum vector. Isotony means that we have A(I1) ⊂ A(I2)
if we have I1 ⊂ I2. Locality now means that [A(I1), A(I2)] = 0, if I1 ∩ I2 = Ø.
Note that spacelike separation gives this very simple disjointness. Our spacetime
symmetry group now is Diff(S1), and we have a projective unitary representation
U on H. Conformal covariance asks for UgA(I)U

∗
g = A(gI) for g ∈ Diff(S1).

Positivity of the energy means that the restriction of U to the subgroup of rotations
of S1 gives a one-parameter unitary group and its generator is positive. In this
setting, a family {A(I)} of von Neumann algebras satisfying these axioms is called
a conformal net.

A representation theory of a conformal net in the style of Doplicher-Haag-Roberts
now gives a braiding due to the low-dimensionality of the “spacetime” S1. This
is a certain form of the non-trivial commutativity of endomorphisms up to inner
automorphisms. That is, two representations give two endomorphisms λ, µ of a
single von Neumann algebra A(I0) for some fixed interval I0, and we have a unitary
ε(λ, µ) ∈ A(I) satisfying Ad(ε(λ, µ))λµ = µλ. This unitary ε(λ, µ), sometimes
called a statistics operator, arises from the monodromy of moving an interval in S1
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to a disjoint one and back, and satisfies various compatibility conditions such as
braiding-fusion equations for intertwiners as in [45, 52, 92]. Switching two tensor
components corresponds to switching two wires of a braid. For two wires, we have
an overcrossing and an undercrossing. They correspond to ε(λ, µ) and ε(µ, λ)∗. In
particular, if we fix an irreducible endomorphism and use it for both λ and µ, we
have a unitary representation of the braid group Bn for every n. In the case of a
higher-dimensional Minkowski space, ε(λ, µ) gives a so-called degenerate braiding,
like the case of a group representation where we easily have unitary equivalence
of π ⊗ σ and σ ⊗ π for two representations π and σ, but we now have a braiding
in a more non-trivial way on S1. It was proved by Kawahigashi-Longo-Müger in
[86] that if we have a certain finiteness of the representation theory of a conformal
net, called complete rationality, then the braiding of its representation category is
non-degenerate, and hence it gives rise to a modular tensor category by definition.
A modular tensor category is also expected to be useful for topological quantum

computations as in the work of Freedman-Kitaev-Larsen-Wang [48]. This is a hot
topic in quantum information theory and many researchers work on topological
quantum information using the Jones polynomial and its various generalisations.

It is a highly non-trivial task to construct examples of conformal nets. The
first such attempt started in a joint project of Vaughan and Wassermann trying to
construct a subfactor from a positive energy representation of a loop group. Wasser-
mann [125] then constructed conformal nets arising from positive energy represen-
tations of the loop groups of SU(N) corresponding to the Wess-Zumino-Witten
models SU(N)k, where k is a positive integer called a level. These examples satisfy
complete rationality as shown by Xu in [132]. The conformal nets corresponding to
SU(2)k give unitary representations of the braid groups Bn which are the same as
the one given by Vaughan from the Jones projections ej . Wassermann’s construc-
tion has been generalised to other Lie groups by Loke, Toledano Laredo and Verrill
in dissertations supervised by him, [90, 120, 124], see also [126]. Loke worked with
projective unitary representations of Diff(S1) and obtained the Virasoro nets.

A relative version {A(I) ⊂ B(I)} of a conformal net for intervals I ⊂ S1 called
a net of subfactors has been given in [94]. Suppose that {A(I)} is completely
rational. Assuming that we know the representation category of {A(I)}, we would
like to know that of {B(I)}. The situation is similar to a group inclusion H ⊂ G
where we know representation theory of H and would like to know that of G. In
the group representation case for H ⊂ G, we have a restriction of a representation
of G to H and an induction of a representation of H to G. In the case of a net
of subfactors, the restriction of a representation of {B(I)} to {A(I)} is easy to
define, but the induction procedure is more subtle. Our induction procedure is now
called α-induction, first defined by Longo-Rehren in [94] and studied by Xu [129],
Böckenhauer-Evans [8, 9, 10, 11], and Böckenhauer-Evans-Kawahigashi [12, 13],
also in connection to Ocneanu’s graphical calculus on Coxeter-Dynkin diagrams in
the last two papers. (In these two papers, this α-induction is studied in the more
general context of abstract modular tensor categories of endomorphisms rather than
conformal field theory. For an A-A bimodule X, then the tensor product X⊗B can
be regarded as a B-B module if one uses the braiding to let B act on the left.) Take
a representation of λ of {A(I)} which is given as an endomorphism of A(I0) for some
fixed interval I0. Then using the braiding on the representation category of {A(I)},
we define an endomorphism α±

λ of B(I0) where ± represents a choice of a positive
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or negative braiding, ε±(λ, θ), where θ represents the dual canonical endomorphism
of the subfactor A(I) ⊂ B(I). This nearly gives a representation of {B(I)}, but
not exactly. It turns out that the irreducible endomorphisms arising both from
a positive induction and a negative one exactly correspond to those arising from
irreducible representations of {B(I)}. The braiding of the representation category
of {A(I)} gives a finite dimensional unitary representation of SL(2,Z) through the
so-called S- and T -matrices. Böckenhauer-Evans-Kawahigashi [12] showed that the
matrix Zλ,µ = ⟨α+

λ , α
−
µ ⟩, where λ, µ label irreducible representations of {A(I)} and

the symbol ⟨·, ·⟩ counts the number of common irreducible endomorphisms including
multiplicities, satisfies the following properties:

(1) We have Zλ,µ ∈ {0, 1, 2, . . . }.
(2) We have Z0,0 = 1, where the label 0 denotes the vacuum representation.
(3) The matrix Z commutes with the image of the representation of SL(2,Z).

Such a matrix Z is called a modular invariant, because PSL(2,Z) is called the
modular group. For a given completely rational conformal net (or more generally,
a given modular tensor category), we have only finitely many modular invariants.
Modular invariants naturally appear as partition functions in 2-dimensional confor-
mal field theory and they have been classified for several concrete examples since
Cappelli-Itzykson-Zuber [17] for the SU(2)k models and the Virasoro nets with
c < 1, where c is a numerical invariant called the central charge. It takes a positive
real value, and if c < 1, then it is of the form 1 − 6/m(m + 1), m = 3, 4, 5, . . . by
Friedan-Qiu-Shenker [51] and Goddard-Kent-Olive [55]. This number arises from a
projective unitary representation of Diff(S1) and its corresponding unitary repre-
sentation of the Virasoro algebra, a central extension of the complexification of the
Lie algebra arising from Diff(S1). Note that some modular invariants defined by
the above three properties do not necessarily correspond to physical ones arising
as partition functions in conformal field theory. Modular invariants arising from
α-induction are physical in this sense.

The action of the A-A system on the A-B sectors (obtained by decompos-
ing {ιλ = α±

λ ι : λ ∈ A-A} into irreducibles where ι : A → B is the inclu-
sion) gives naturally a representation of the fusion rules of the Verlinde ring:
GλGµ =

∑

Nν
λµGν , with matrices Gλ = [Gb

λa : a, b ∈ A-B sectors]. Conse-
quently, the matrices Gλ will be described by the same eigenvalues but with possi-
bly different multiplicities. Böckenhauer-Evans-Kawahigashi [13] showed that these
multiplicities are given exactly by the diagonal part of the modular invariant:
spectrum(Gλ) = {Sλκ/S0κ : withmultiplicityZκκ} . This is called a nimrep – a
non-negative integer matrix representation. Thus a physical modular invariant is
automatically equipped with a compatible nimrep whose spectrum is described by
the diagonal part of the modular invariant. The case of SU(2) is just the A-D-E
classification of Cappelli-Itzykson-Zuber [17] with the A-B system yielding the asso-
ciated (unextended) Coxeter-Dynkin graph. Since there is an A-D-E classification
of matrices of norm less than 2, we can recover independently of Cappelli-Itzykson-
Zuber [17] that there are unique modular invariants corresponding to the three
exceptional E graphs.

If we use only positive α-inductions for a given modular tensor category, we still
have a fusion category of endomorphisms, but no braiding in general. This is an
example of a module category. For the tensor category Rep(G) of representations of
a finite group G, all module categories are of the form Rep(H,χ) for the projective
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representations with 2-cocycle χ for a subgroup H [98]. For this reason, module
categories have also been called quantum subgroups. Such categories have been
studied in a more general categorical context by Ostrik in [100]. However, Carpi,
Gaudio, Giorgetti and Hillier [19], have shown that for unitary fusion categories,
such as those that occur in subfactor theory or arise from loop groups, that all mod-
ule categories are equivalent to unitary ones. For the conformal nets corresponding
to SU(2)k, the module categories or quantum subgroups are labeled with all the
Coxeter-Dynkin diagrams An, Dn and E6,7,8. Here there is a coincidence with the
affine A-D-E classification of finite subgroups of SU(2). Di Francesco and Zuber
[28] were motivated to try to relate SU(3) modular invariants with subgroups of
SU(3). There is a partial match but this is not helpful. In general whilst the num-
ber of finite subgroups of SU(n) grows with n, the number of exceptional modular
invariants, beyond the obvious infinite series, does not.

If we have a net of subfactors {A(I) ⊂ B(I)} with {A(I)} being a completely
rational conformal net, then the restriction of the vacuum representation of {B(I)}
to {A(I)} gives a local Q-system in the sense of Longo [93]. This notion is essen-
tially the same as a commutative Frobenius algebra, a special case of an algebra

in a tensor category, in the algebraic or categorical literature. This Q-system is a
triple consisting of an object and two intertwiners. Roughly speaking, the object
gives B(I) as an A(I)-A(I) bimodule and the intertwiners give the multiplicative
structure on B(I). Our general theory of α-induction shows that the corresponding
modular invariant Z for the modular tensor category of representations of {A(I)}
recovers this object. Since we have only finitely many modular invariants for a given
modular tensor category, we have only finitely many objects for a local Q-system.
It is known that each object has only finitely many local Q-system structures, and
we thus have only finitely many local Q-systems, which means that we have only
finitely many possibilities for extensions {B(I)} for a given {A(I)}.

For some concrete examples of {A(I)}, we can classify all possible extensions.
In the case of the SU(2)k nets, such extensions were studied in the context of α-
induction in [12] by Böckenhauer-Evans-Kawahigashi and it was shown in [84] by
Kawahigashi-Longo that they exhaust all possible extensions. (A similar classifi-
cation based on quantum groups was first given in [88].) They correspond to the
Coxeter-Dynkin diagrams An, D2n, E6 and E8. The An cases are the SU(2)k nets
themselves, the D2n cases are given by simple current extensions of order 2, and
the E6 and E8 cases are given by conformal embeddings SU(2)10 ⊂ SO(5)1 and
SU(2)28 ⊂ (G2)1, respectively. These correspond to type I extensions in Itzykson-
Zuber [17], Böckenhauer-Evans [11]. Type II extensions corresponding to D2n+1

and E7 arise from extensions of the SU(2)k nets without locality. In general [11] for
a physical modular invariant Z there are by Böckenhauer-Evans local chiral exten-
sions N(I) ⊂ M+(I) and N(I) ⊂ M−(I) with local Q-systems naturally associated
to the vacuum column {Zλ,0} and vacuum row {Z0,λ} respectively. These exten-
sions are indeed maximal and should be regarded as the subfactor version of left-
and right maximal extensions of the chiral algebra. The representation theories or
modular tensor categories of M± are then identified. For example, the E7 confor-
mal net or module category is a then a twist or auto-equivalence on the left and
right local D10 extensions which form the type I parents. This reduces the anal-
ysis to understanding first local extensions and then classifying auto-equivalences
to identify the two left and right local extensions. For SU(2) there are only three
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exceptional modular invariants E6,7,8, and in general one expects, e.g. [99], for a
WZW model that there are only a finite number of exceptionals beyond the in-
finite series of the trivial, orbifolds and their conjugates. Schopieray [115] using
α-induction found bounds for levels of exceptional invariants for rank 2 Lie groups,
and Gannon [57] extended this for higher rank with improved lower bounds using
Galois transformations as a further tool. Edie-Michell has undertaken extensive
studies of auto-equivalences [34]. The realisation by Evans-Pugh [43] of SU(3)-
modular invariants as full CFT’s, announced in [97], is based on the classification
of Gannon [53] of SU(3) modular invariants, and the classification by Evans-Pugh
of full SO(3) theories or SO(3) module categories is in [44].

For a general conformal net, we always have a subnet generated by the projective
unitary representation of Diff(S1), which is called the Virasoro net, so a conformal
net is always an extension of the Virasoro net. Through a unitary representation
of the Virasoro algebra, a conformal net has a numerical invariant c, the central
charge. The Virasoro net is completely rational if c < 1, so the above classification
scheme applies to this case, and we have a complete classification of conformal nets
with c < 1 by Kawahigashi-Longo in [84], where they are shown to be in a bijective
correspondence with the type I modular invariants of Cappelli-Itzykson-Zuber in
[17]. Four of exceptional modular invariants involving the Dynkin diagrams E6 and
E8 give exceptional conformal nets. Three of them are given by the coset construc-
tion, but the other one gives a new example. Similarity between discreteness of
the Jones index values below 4 and discreteness of the central charge value below
1 has been pointed out since the early days of subfactor theory [74], and we have
an A-D-E classification of subfactors with index below 4 as in Popa [105] (also see
[97, 42]) and an A-D-E classification of the modular invariants of the Virasoro min-
imal models of Capelli-Itzykson-Zuber [17]. We then have natural understanding
of classification of conformal nets with c < 1 in this context.

K-theory has had a role in relating subfactor theory with statistical mechan-
ics and conformal field theory. The phase transition in the two dimensional Ising
model is analysed through an analysis of the ground states of the one dimensional
quantum system arising from the transfer matrices. This is manifested by Araki-
Evans through a jump in the Atiyah-Singer mod-2 index of Fredholm operators
[3]. Here Kramers-Wannier high-temperature duality is effected by the shift endo-
morphism ρ on the corresponding Jones projections ej → ej+1 which leads, Evans
[35], to the Ising fusion rules ρ2 = 1 + σ, where σ is the symmetry formed from
interchanging + and − states, see also Evans-Gannon [41]. The tensor category of
the Verlinde ring of compact Lie groups, or doubles of finite groups has been de-
scribed by Freed-Hopkins-Teleman [47] through the twisted equivariant K-theory
of the group acting on itself by conjugation. This has allowed the interchange of
ideas between the subfactor approach and a K-theory approach to conformal field
theory, employing α-induction and modular invariants as bi-variant Kasparov KK-
elements by Evans-Gannon [37, 38, 41]. In a similar spirit, regarding K-theory in
terms of projective modules, a finitely generated modular tensor category can be
realised by Aaserud-Evans [2] as C∗-Hilbert modules. This applies to the modular
tensor categories of Temperley-Lieb-Jones associated to quantum SU(2), or more
generally those of loop groups – as well as quantum doubles such as that of the
Haagerup subfactor which we will focus on in the final section. This also gives a
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framework for braided tensor categories acting on some C∗-algebras as a quantum
symmetry.

5. Vertex operator algebras

We have another, more algebraic, mathematical axiomatisation for a chiral con-
formal field theory, namely, a vertex operator algebra. Since a conformal net and a
vertex operator algebra are both mathematical formulations of the same physical
theory, they naturally have close relations. We now explain those here.

A quantum field on the “spacetime” S1 is an operator-valued distribution on S1,
so it has a Fourier expansion with operator coefficients. In this axiomatisation, we
have a C-vector space V which is a space of finite energy vectors and is supposed
to give the Hilbert space of states after completion. For each vector u ∈ V , we
have a formal series Y (u, z) =

∑

n∈Z
unz

−n−1 with a formal variable z and linear
operators un on V , which corresponds to the Fourier expansion of a quantum field
acting on the completion of V . This correspondence from a vector to a formal series
is called the state-field correspondence. We have two distinguished vectors, the
vacuum vector and the Virasoro vector. The Fourier coefficients of the latter give
the Virasoro algebra. The locality axiom in this setting says that for u, v ∈ V , we
have a sufficiently large positive integer N satisfying (z−w)N [Y (u, z), Y (v, w)] = 0.
Roughly speaking, this means Y (u, z)Y (v, w) = Y (v, w)Y (u, z) for z ̸= w.

The origin of this notion of a vertex operator algebra is as follows. A classical
elliptic modular function

j(τ) = 1728
g2(τ)

3

g2(τ)3 − 27g3(τ)2
,

where Im τ > 0 and g2(τ) and g3(τ) are defined by the Eisenstein series, has the
following Fourier expansion with q = exp(2πiτ).

j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · .
McKay noticed that the coefficient 196884 is very close to 196883, which is the
dimension of the lowest-dimensional non-trivial irreducible representation of the
Monster group. Recall that the Monster group is the largest among the 26 sporadic
finite simple groups in terms of its order which is around 8 × 1053. It turns out
that we have a similar relation 21493760 = 1+196883+21296876, where 21296876
is the dimension of the next lowest-dimensional irreducible representation of the
Monster group. Based on this and many other pieces of information on modular
functions, Conway-Norton [27] made the following Moonshine conjecture.

(1) There is a graded C-vector space V =
⊕∞

n=0
Vn with some algebraic struc-

ture whose automorphism group isomorphic to the Monster group.
(2) For any element g in the Monster group,

∑∞

n=0
Tr(g|Vn

)qn−1 is the Haupt-

modul for a genus 0 subgroup of SL(2,R), where g|Vn
is the linear action

of an automorphism g on Vn.

Frenkel-Lepowsky-Meurman [49] gave a precise definition of a certain algebraic

structure as a vertex operator algebra, constructed the Moonshine vertex opera-

tor algebra V ♮, and proved that its automorphism group is exactly the Monster
group. They first constructed a vertex operator algebra from the Leech lattice, an
exceptional 24-dimensional lattice giving the densest sphere packing in dimension
24, and applied the twisted orbifold construction for the order two automorphism
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of the vertex operator algebra arising from the multiplication by −1 on the Leech
lattice to obtain V ♮. Borcherds [14] next proved the remaining part of the Moon-
shine conjecture. The construction of a vertex operator algebra from an even lattice
has an operator algebraic counterpart for a conformal net given in Dong-Xu [29].
The operator algebraic counterpart of the Moonshine vertex operator algebra has
been constructed as the Moonshine net in Kawahigashi-Longo [85]. Frenkel-Zhu
gave a construction of vertex operator algebras from affine Kac-Moody and Vira-
soro algebras in [50], and this corresponds to the construction of conformal nets of
Wassermann [125], Loke, Toledano Laredo and Verrill.

We have constructions of new examples of vertex operator algebras or conformal
nets from known ones as follows.

(1) A tensor product
(2) Coset construction
(3) Orbifold construction
(4) An extension using a Q-system

In the operator algebraic setting, the coset construction gives a relative commutant
A(I)′∩B(I) for an inclusion {A(I) ⊂ B(I)} of conformal nets of infinite index. The
orbifold construction gives a fixed point conformal subnet given by an automorphic
action of a finite group. These constructions for conformal nets have been studied
by Xu in [130] and [131], respectively. The extension of a local conformal net
using a Q-system was first studied by Kawahigashi-Longo in [84] for constructing
exceptional conformal nets, and this was extended by Xu in [133]. The vertex
operator algebra counterpart has been studied by Huang-Kirillov-Lepowsky in [63].
Xu has shown that various subfactor techniques are quite powerful even for purely
algebraic problems in vertex operator algebras.

From the above results, it is clear that we have close connections between con-
formal nets and vertex operator algebras, as expected, but it is more desirable to
have a direct construction of one from the other. The relation between the two
should be like the one between Lie groups and Lie algebras, and the former should
be given by “exponentiating” the latter. Such a construction was first given in
Carpi-Kawahigashi-Longo-Weiner [20]. That is, we have a construction of a confor-
mal net from a vertex operator algebra with strong locality and we also recover the
original vertex operator algebra from this conformal net. (Note that we obviously
need unitarity for a vertex operator algebra for such construction, since we need a
nice positive definite inner product on V . This unitarity is a part of the strong lo-
cality assumption. There are many vertex operator algebras without unitarity, and
they may be related to operator algebras through different routes such as planar
algebras.) In addition to an abstract definition of strong locality, concrete sufficient
conditions for this have been also given in [20]. This correspondence between vertex
operator algebras and conformal nets has been vastly generalised recently in Gui
[57], Raymond-Tanimoto-Tener [111] and Tener [117, 118, 119] including identifi-
cation of their representation categories, and this is a highly active area of research
today. Some of them started from dissertations supervised by Vaughan.

6. Other directions in conformal field theory

The classification of subfactors with index less than 4 has an A-D-E pattern.
That is, the flat connections given in Fig.1 give a complete list of hyperfinite II1
subfactors with index less than 4; see the review [81]. It naturally has connections
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to many other topics in mathematics and physics where A-D-E patterns appear.
At the index value equal to 4, we still have a similar A-D-E classification based
on extended Dynkin diagrams due to Popa [105]. They correspond to subgroups
of SU(2), and the extended Coxeter-Dynkin diagrams appear through the McKay

correspondence. These subfactors arise as simultaneous fixed point algebras of
actions of a subgroup of SU(2) on

C⊗M2(C)⊗M2(C)⊗ · · · ⊂ M2(C)⊗M2(C)⊗M2(C)⊗ · · ·
with infinite tensor products of the adjoint actions, possibly with extra cohomo-
logical twists as in the classification of periodic actions by Connes [21] and for
finite group actions by Vaughan in his thesis [68] on the hyperfinite II1 factor. The
subfactors with index less than 4 can be regarded as “quantum” versions of this
construction.

We have a quite different story above the index value 4. Haagerup searched
for subfactors of finite depth above index value 4 and found several candidates of
the principal graphs. The smallest index value among them is (5 +

√
13)/2 and

he proved this index value is indeed attained by a subfactor, which is now called
the Haagerup subfactor [4]. A similar method also produced the Asaeda-Haagerup

subfactor in [4]. New constructions of the Haagerup subfactor were given in Izumi
[65] and in Peters [101]. The latter is based on the planar algebra machinery,
and has been extended to the construction of the extended Haagerup subfactor.
Today we have a complete classification of subfactors of finite depth with index
value between 4 and 5 as reviewed in [81], and we have five such subfactors (after
identifying N ⊂ M and M ⊂ M1): the Haagerup subfactor, the Asaeda-Haagerup
subfactor, the extended Haagerup subfactor, the Goodman-de la Harpe-Jones [56]
subfactor and the Izumi-Xu subfactor. The latter two are now understood as arising
from conformal embeddings SU(2) → E6 and G2 → E6. If a subfactor arises from a
connection on a finite graph Γ, it may not have principal graph or standard invariant
based on Γ as happens with D2n+1 or E7. Any graph whose norm squared is in the
range (4, 5) but is not one of the five allowed values can only have A∞ as principal
graph just like what happens with E10 by unpublished work of Ocneanu, Haagerup
and Schou.

The fusion categories arising from the Haagerup subfactor do not have a braiding,
but their Drinfel′d center always gives a modular tensor category. Izumi gave a
new construction of the Haagerup subfactor and computed the S- and T -matrices
of its Drinfel′d center in [64, 65], using endomorphisms of the Cuntz algebra. It
is an important problem whether an arbitrary modular tensor category is realised
as the representation category of a conformal net or not, and this particular case
of the Drinfel′d center of the fusion category of the Haagerup has caught much
attention. Note that all the known constructions [4, 65, 101] of the Haagerup
subfactor are based on algebraic or combinatorial computations. There is little
conceptual understanding of this subfactor and its double and it is not clear at all
whether they are related to statistical mechanics or conformal field theory. Evidence
in the positive direction has been given by Evans-Gannon in [36, 41]. They found
characters for the representation of the modular group SL(2,Z) arising from the
braiding and showing that this modular data, their S and T matrices and fusion
rules have a simple expression in terms of a grafting of the double of the dihedral
group S3 and SO(13)2, or indeed the orbifolds of two Potts models or quadratic
(Tambara-Yamagami) systems based on Z3 × Z3 and Z13 respectively.
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Information about a conformal field theory from the scaling limit of a statistical
mechanical model may be detected from the underlying statistical mechanical sys-
tem. Cardy [18] argued from conformal invariance for a critical statistical system,
that the central charge c may be computed from the asymptotics of the partition
function and transfer matrices on a periodic rectangular lattice. This has been
well studied for the ABF, Q-state Potts models for Q=2,3,4 and certain ice-type
models; see [42, pages 453–454]. In this spirit, numerical computations have been
made using transfer matrices built from associator or certain 6j symbols for a
Haagerup system, though not the double. These give a value of c = 2 (or around
2) [62, 123, 89]. However the results shown there and these methods do not show
that if there is a CFT at c = 2 (or around 2) that it is not a known one and that if
there is a CFT that its representation theory is related to the representation theory
of the double of the Haagerup. Recall what we described in a preceding paragraph,
that a subfactor constructed from a graph may not reproduce the graph through
its invariants.

The first non-trivial reconstructions of conformal field theories were achieved by
Evans-Gannon for the twisted doubles of finite groups and the orbifolds of Potts
models [40, 41]. Whilst von Neumann algebras and subfactors are inherently uni-
tary, non unitary theories have been analysed by Evans-Gannon from ideas derived
from subfactors. This includes the Leavitt path algebras to replace Cuntz alge-
bras in constructing non-unitary tensor categories of algebra endomorphisms which
do not necessarily preserve the ∗-operation [39]. These and non-unitary planar
algebras could also be a vehicle to understand non-semisimple and logarithmic con-
formal field theories.

In attempting to construct a conformal net realizing a given modular tensor
category, a natural idea is to construct algebras as certain limit through finite di-
mensional approximations. We then use lattice approximation of the circle S1, but
diffeomorphism symmetry is lost in this finite dimensional approximation, so it is
a major problem how to recover diffeomorphism symmetry. Vaughan studied this
problem, used Thompson’s groups as approximations of Diff(S1), and obtained var-
ious interesting representations of Richard Thompson’s groups [15, 76, 77]. Though
he proved in [77] that translation operators arising as a limit of translations for the
n-chains do not extend to a translation group that is strongly continuous at the
origin, these representations are interesting in their own right. The clarity of his
formalism and analysis, led to concise and elegant proofs of the previously difficult
facts that the Thompson groups did not have Kazhdan’s property T and with his
Berkeley student Arnaud Brothier [16] that the Thompson’s group T does have the
Haagerup property. New results also followed – certain wreath products of groups
have the Haagerup property by taking the group of fractions of group labelled
forests. Taking a functor from binary forests to Conway tangles, replacing a fork
by an elementary tangle, Vaughan could show that every link arises in this way from
the fraction of a pair of forests just as braids yield all links through taking their
closures — providing another unexpected bridge with knots and links [79]. He fur-
ther studied related problems on scale invariance of transfer matrices on quantum

spin chains, introduced two notions of scale invariance and weak scale invariance,
and gave conditions for transfer matrices and nearest neighbour Hamiltonians to
be scale invariant or weakly scale invariant [78].
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