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Edge-Enhanced QoS Aware Compression
Learning for Sustainable Data Stream Analytics

M U Amaizu, M Ali, A Anjum, L Liu, A Liotta, O Rana

Abstract—Existing Cloud systems involve large volumes of data streams being sent to a centralised data centre for monitoring,
storage and analytics. However, migrating all the data to the cloud is often not feasible due to cost, privacy, and performance concerns.
However, Machine Learning (ML) algorithms typically require significant computational resources, hence cannot be directly deployed
on resource-constrained edge devices for learning and analytics. Edge-enhanced compressive offloading becomes a sustainable
solution that allows data to be compressed at the edge and offloaded to the cloud for further analysis, reducing bandwidth consumption
and communication latency. The design and implementation of a learning method for discovering compression techniques that offer the
best QoS for an application is described. The approach uses a novel modularisation approach that maps features to models and
classifies them for a range of Quality of Service (QoS) features. An automated QoS-aware orchestrator has been designed to select
the best autoencoder model in real-time for compressive offloading in edge-enhanced clouds based on changing QoS requirements.
The orchestrator has been designed to have diagnostic capabilities to search appropriate parameters that give the best compression.
A key novelty of this work is harnessing the capabilities of autoencoders for edge-enhanced compressive offloading based on portable
encodings, latent space splitting and fine-tuning network weights. Considering how the combination of features lead to different QoS
models, the system is capable of processing a large number of user requests in a given time. The proposed hyperparameter search
strategy (over the neural architectural space) reduces the computational cost of search through the entire space by up to 89%. When
deployed on an edge-enhanced cloud using an Azure IoT testbed, the approach saves up to 70% data transfer costs and takes 32%
less time for job completion. It eliminates the additional computational cost of decompression, thereby reducing the processing cost by
up to 30%.

Index Terms—Deep Autoencoders, Cloud Computing, Data compression, Edge Computing, Quality of Service, Real-time analytics,
Transmission Optimisation

✦

1 INTRODUCTION

THE amount of data generated from IoT devices, wear-
ables, and sensors is rapidly growing in scale and ve-

locity for applications such as smart healthcare, smart cities,
and video stream analytics. In centralised data center based
learning and analytics, all incoming raw data are transmit-
ted to the cloud (data center) for processing, leading to high
communication overhead, latency and energy consumption.
On-device inference, on the other hand, deploys compressed
deep neural networks (DNNs) on mobile devices. However,
over compression can cause serious performance degradation
and limited resources can lead to high communication la-
tency across devices.

Edge and fog computing [1] have emerged as a solution
to pre-process data at the edge of the network, reducing the
cost of transmission and latency [2], [3]. Machine learning
algorithms have gained attention for pre-processing massive
data streams en-route to cloud data centres in distributed
networks [4], [5]. These tasks range from simple processing
tasks like metadata extraction to more complex tasks like
anomaly detection and object recognition [6]. One such pre-
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processing technique is compression of data at the edge
of the network for transmission to the cloud, known as
compressive offloading [7]. Edge-enhanced compressive of-
floading has become a sustainable solution that allows data
to be compressed at the edge and offloaded to the cloud
for further analytics, thus reducing bandwidth consumption
and communication latency.

Compressive offloading techniques face the challenge
of finding a sustainable model that meets changing Qual-
ity of Service (QoS) requirements such as performance,
bandwidth and data quality. Real-time systems often need
to adapt to changes in resource availability to meet their
application-specific QoS requirements that vary signifi-
cantly at run-time [8], [9], [10]. QoS re-negotiation is often
needed to adapt to dynamic workload, where users can
dynamically change QoS requirements depending on the
level of QoS required [11].

An example of a use case for compressive offloading is
a multimedia application in which a user specifies that the
video quality should be low during a video conversation,
but should be improved quickly when a new person joins
the conversation [12]. Another example is a video confer-
encing application that only requires the best quality video/
audio for the person speaking.

Existing approaches for determining the best model for
compressive offloading includes performing empirical anal-
ysis to select the best model for compression [13], [14]. The
best model is selected by evaluating the performance of a
cloud model on data reconstructed using different compres-
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sion models. However, these models are fixed at run-time,
so they cannot respond to dynamic QoS demands. Addi-
tionally, the empirical analysis is computationally expensive
and does not follow a principled search strategy. Methods
such as [15] focus on hardware constraints of the device
and compress the deep learning model to meet QoS require-
ments, but do not compress the data. Another approach is
to choose an inferior but efficient local model to eliminate
or cut down data transmission [16]. This requires a tradeoff
between accuracy and speed, leading to a significant drop
in accuracy. Other data compression techniques, such as
filtering and pre-processing, have been applied to produce
metadata for offloading [17]. However, these techniques
may not be useful in applications where data needs to
be reconstructed at the server side or where a classifier
needs to be trained on the original data or its meaningful
representations.

This paper addresses these gaps by designing and im-
plementing a compression learning method for discovering
the compression models that offer the right QoS for an appli-
cation. The approach maps features to models and classifies
them for a range of QoS models. The search strategy is based
on a narrowed search over the entire neural architectural
space to reduce the computational cost of hyperparameter
search. An automated QoS-aware orchestrator is deployed
to select the best model for compressive offloading on the
edge. It works as a tuning engine to achieve the desired
compression at runtime. For example, if the machine learn-
ing task is simple, it can be tuned to the maximum level
of compression to transmit the smallest size of data (Figure
1(a)). If the machine learning task is complex, the system
compresses lightly to achieve a better compromise (Figure
1(b)). There will be many different combinations in between.
The complexity of a task is subjective and application-
specific and must be defined for the task. The orchestrator
has the flexibility and adaptability for practitioners to tune
the whole chain to achieve the required performance on a
machine learning task. The system defines QoS constraints
as a combination of different metrics, such as the quality
of reconstructed data, resource availability at the edge,
bandwidth availability and target accuracy.

Fig. 1: QoS-aware data compression

Deep autoencoder [18] is a type of deep learning model
we adapted for compression learning and compressive
offloading based on its unique characteristics – such as
latent space splitting point, portable encodings and fine-
tuning capability. The edge-enhanced configurations we
proposed are based on the modification of autoencoder

to address the possible scenarios of edge-cloud collabo-
ration, namely EdgeCompress-CloudDecompress (ECCD)
and EdgeCompress-Only (ECO). The latter eliminates the
additional computational complexity of decompressing data
in the cloud and is useful where the main objective is to
perform the machine learning task. Experiments are con-
ducted to demonstrate how intelligent data compression can
increase potential capacity on the cloud to carry out other
workloads. We measure the computational complexity and
overheads incurred by our approach for real-time analytics
and show how they map to QoS requirements. Two kinds
of data streams and motivating use cases were analyzed,
namely object classification and human activity recognition.
The main contributions of this work can be summarised as
follows:

1) A principled compression learning method has been
designed and implemented to learn models for different
QoS requirements. It takes advantage of the redun-
dancy in the features to reduce the search space (Section
3).

2) An automated QoS-aware orchestrator has been de-
signed to select, in real-time, the best autoencoder
model for compressive offloading in edge-enhanced
clouds based on changing QoS requests of users. The
orchestrator is designed to have diagnostic capabilities
to search appropriate parameters that give the best
compression. The system is capable of processing a
large number of QoS requests in a given time due
to the discoverable pool of QoS models and features.
The implemented edge-enhanced cloud saves up to
70% data transfer cost, and takes 32% less time for job
completion (Section 4).

3) A modularisation approach has been proposed and
implemented to map features to models and classifies
them for a range of QoS models. This finds the model
that can achieve the lowest compression at the expected
QoS without compromising user-defined QoS. The sys-
tem removes up to 99% data redundancy without losing
desirable performance.

4) Our proposed approach is novel in harnessing the
capability of autoencoders for edge-enhanced compres-
sive offloading based on latent space splitting, portable
encodings and fine-tuning network weights. The ap-
proach has been validated on an Azure IoT test bed
in which the EdgeCompress-Only configuration elimi-
nates the additional computational cost of decompres-
sion, thereby reducing the processing cost by up to 30%.

2 BACKGROUND AND PRELIMINARIES
In this section, we review literature related to model

partitioning, feature encoding and model selection to pro-
vide context for the solution described in the paper. We
discuss how our approach differs or improves upon existing
solutions in the field of deep learning-based data compres-
sion and offloading. Specifically, we highlight how existing
solutions lack the ability to effectively adapt models to
changing QoS conditions in large-scale streaming systems.

2.1 Model partitioning with encoder-decoder models
Previous studies have examined the application of ma-

chine learning in partitioning and optimizing bandwidth
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usage through the deployment of various encoder-decoder
models. Yao et al. [19] utilized deep encoder-decoder mod-
els to perform compressive offloading on mobile devices,
with the partitioning decision being based on latency esti-
mates. Shao and Zhang [20] employed co-inference based
on feature compression, with an encoder designed to be
adaptive to different channel conditions. QoS considerations
were made by training the encoder with different channel
conditions to improve its generalization ability. However,
while deep neural networks (DNNs) can gradually extract
intermediate features layer by layer, the feature dimension
may not decrease. This can lead to an “in-layer data am-
plification” phenomenon, where the output data size of
early layers may be larger than the original input data
[21]. Ko et al. [22] introduced an edge-host partitioning
method that combines model partitioning with lossy feature
encoding. This means that the intermediate data after model
partitioning is compressed using lossy feature encoding
before transmission. Simulation results showed that this
approach leads to significant improvements in energy ef-
ficiency and throughput compared to configurations that
perform the entire inference at the edge or at the host. The
feature coding method applied in this study used JPEG and
Huffman coding to compress the intermediate data, which
may remove high-frequency components of the features that
are important for the classification task. On the other hand,
Sbai et al. [23] proposed a partitioning approach for DNN
inference between the edge and the cloud, which they claim
to be the first work to consider simultaneous optimization
of both the memory usage at the edge and the size of
the data to be transferred over the wireless link. However,
this work proposes injecting a hand-crafted compression
module to reduce feature communication, which can lead to
high engineering and training costs, as well as sub-optimal
system performance and accuracy degradation. In addition
to partitioning methods based on encoder-decoder models,
recent research also includes federated learning, such as [24]
that proposed a method to divide the process into the model
and exemplar stages, effectively addressing the catastrophic
forgetting problem.

In contrast to the above-mentioned approaches, our
model is dynamic and utilizes a QoS orchestrator. This
orchestrator selects the best model after the edge node is
updated on the QoS requirements. Additionally, a copy
of the model is deployed on both the edge and cloud to
avoid increased computational load during inference. This
research focused on training models through hyperparame-
ter optimization, with the latent space as a parameter, and
selecting the best compression models for runtime based on
accuracy and image quality.

2.2 Feature encoding
Existing literature has shown that feature encoding

through dimensionality reduction on the edge or mobile
device can help achieve the goals of real-time data stream
analytics [25], [26] and data transmission optimization [27],
[28], [29], [30]. However, many dimensionality reduction
methods suffer from high information loss and data dis-
tortion, making it difficult to have a true representation of
the data. Linear methods like Principal Component Analysis
(PCA) are not able to capture the high non-linearity in large-

scale datasets generated by IoT applications. Additionally,
traditional data compression techniques like JPEG are be-
yond the scope of this work, as they belong to the class
of image compression algorithms that use heuristic-based
blocks of encoders and decoders.

Autoencoders [18], a special type of neural network,
have gained widespread attention for their ability to learn
meaningful representations in large-scale data streams [31].
They remove redundancy by constraining the bottleneck
layer of the network (also known as the latent space di-
mension) and have become attractive for data compression
through dimensionality reduction, as seen in studies such
as [3], [14], [27], [30], [32], [33]. Autoencoders have been
used to perform feature extraction and data compression in
various applications, including image [34], [35] and video
analytics [36]. Autoencoders are particularly useful as an
alternative to linear models like PCA as they can map
non-linear relationships and learn the structure of data and
correlations between input features when forcing the input
through the network’s bottleneck.

Existing approaches, such as [13], incur heavy computa-
tional overheads by using an empirical approach to dimen-
sionality reduction/ selection. In addition, these algorithms
lack experimental analysis of the effect of data compres-
sion on real-time analytics and are fixed, not adapting to
changing QoS conditions in real-time. In our work, we pose
dimensionality selection as a model selection problem in
order to tune the parameters of the autoencoder and select
the best model for data compression within acceptable QoS
constraints.

2.3 Model selection
In recent years, techniques for selecting the best model

that meets system requirements from a set of possible
models have been posed as a hyperparameter optimisation
problem. Classical hyperparameter optimisation algorithms
like grid search, random search and genetic/ evolutionary
algorithms have been used to find optimal neural network
architecture for convolutional neural networks [37]. These
methods evaluate the cost of the defined metrics either by
real-time execution of each architecture or using approxi-
mators. A comprehensive survey of hardware-aware neural
architecture search is provided in [38], where the best model
is selected based on hardware capabilities of the device or
platform.

Yao et al. [25] defined a search space consisting of differ-
ent partitions of deep encoder-decoder models for perform-
ing compressive offloading on mobile devices. They per-
formed an offline training of these models on a deep learn-
ing engine while profiling and modelling the execution time
with FastDeepIoT [19]. During runtime, the best-partitioned
model is selected depending on the current system capabil-
ities, measured by end-to-end latency and bandwidth. The
goal was to reduce overhead on the resource-limited end
device and to put most of the computation on the server
side. The authors limited QoS to hardware constraints of
the end device and applied an existing dynamic offloading
strategy.

Lu et al. [15] presented QoE compression models for
deep learning. Despite their focus on QoE, their work dif-
fers from ours in that they focus on deep learning model



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING , VOL. XX, NO. XX, MONTH YEAR 4

compression rather than data compression. Therefore, while
their approach addresses latency and performance issues, it
does not address transfer optimization.

3 QOS-AWARE COMPRESSION LEARNING
The goal of QoS-aware compression learning is to find

the optimal balance between compression and QoS require-
ments for a specific application. We use the example of an
image recognition task to illustrate this concept. In this task,
recognizing large objects in the image may not require high
resolution, but for finer details such as facial features in face
recognition, a higher resolution is necessary. If the machine
learning task is simple, we can opt for a higher level of
compression to transmit a smaller amount of data, resulting
in lower quality reconstruction. However, if the task is more
complex, such as in face recognition, we may choose to com-
press less to achieve a better balance between compression
and quality. There are many variations in between these
two extremes. The orchestrator provides the flexibility and
adaptability for practitioners to adjust the entire process to
meet the desired performance for the machine learning task.

It must be recognised that QoS metrics can have dif-
ferent implications and effects on data compression. The
system should be designed to set priority levels and the
right combinations of metrics to achieve the desired results.
Multimedia transmission is typically affected both by the
network performance and application QoS parameters. It
is essential to monitor not only the network performance
parameters such as packet delay and minimum bandwidth,
but also the application parameters such as image quality
and frame rate, which can ultimately affect the user’s QoE.
These are subjective and can vary depending on the appli-
cation and users [39]. An example of QoS definitions for an
image recognition use case is provided in Table 1. The QoS
constraints can be defined with a combination or ranking
of different metrics such as quality of reconstructed data,
resource availability at the edge, bandwidth availability and
target accuracy. For example, the system may be tasked
with achieving a low QoS based on an accuracy of 70%
which requires heavy compression of up to 90% of the data.
However, if resources are not available at the edge or if the
user specifies how much resources they can contribute, the
system may bypass the compression task and send the full
data or minimally compressed data to the cloud. Similarly,
if the edge has sufficient resources for compression, but
the channel bandwidth availability is high, the system can
override the original compression rate and compress as
much as the bandwidth will permit.

TABLE 1: Example of QoS definitions for an image recogni-
tion use case

QoS metric Definition
Resource
availability

How much memory, energy and pro-
cessing are available at the edge

Bandwidth How much data can go through the link
at any given time

Accuracy The performance of the reconstructed
data on the cloud machine learning task

Scalability Resizing data without losing image
quality

Image quality The quality of reconstructed image

3.1 Compression learning using autoencoders

In current autoencoder designs, a trade-off exists be-
tween compression size and compression loss in connection
to data quality, which strongly depends on this bottleneck
layer. This can be fine-tuned as desired, based on the archi-
tecture design of the network [40]. Autoencoders are good
for compression learning and compressive offloading for the
following reasons: (i) The latent space of autoencoders cre-
ates a natural splitting point for edge and cloud networks,
(ii) Encodings carry most important information about the
data at a reduced size which allow them to be portable, and
(3) Trained autoencoders can be decoupled into stand-alone
encoder and decoder networks.

3.1.1 Portable encodings

In order to design efficient autoencoders, our goal was
to reduce the dimensionality of the encoded data while
still maintaining the essential features of the input data as
close as possible. A typical architecture for an autoencoder
is illustrated in Figure 2. The process begins by feeding
data, x, into the encoder. At the latent space, the data is
compressed into a lower-dimensional representation. In the
decoding phase, this compressed data is then reconstructed
back to its original dimensions by the decoder. During
training, the decoder is trained to learn the most important
features that should be preserved in the lower-dimensional
representation. The output of each layer is passed on to the
next input layer before reaching the output layer. Among the
hidden layers, the layer with the least number of neurons is
referred to as the bottleneck. The first layer captures first-
order features, the second layer captures second-order fea-
tures, and so on. Stacked Autoencoders (SAE) are designed
to capture hierarchical abstractions of knowledge and can
effectively introduce compression by adhering to design
specifications:

1) Input data must be compressed to a level that is appro-
priate for the network’s capacity and identity.

2) The compression process should be adaptable to the
efficiency requirements of the application.

3) The computational load should be distributed between
edge nodes and the cloud.

By adjusting the number of neurons in the bottleneck
layer, different levels of compression can be achieved. The
number of neural layers in the network can also be op-
timized to improve the decoding process and to balance
the technical and cost burdens between all nodes during
training and decoding.

The deep compression is performed with a 2D input
stream of dimension r × c transformed to a 1D stream of
dimension r ∗ c. Where r, c ∈ N are the number of rows and
columns of the data stream respectively. For instance, a data
sample of 28× 28 pixels is transformed to 784 pixels during
pre-processing. By applying the dimensionality constraint
on the encoder network, we obtain Nr∗c Enc−−−→ Nd, where d
is the latent space dimension.

Equation 1 represents the compression rate (CR), which
is defined as the data reduction in size relative to the
uncompressed size of the data. It is the difference between
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the input dimension and the dimension of the output of the
encoder. The Compression ratio (CR) is given as:

CR = |d−D

D
| × 100% (1)

Where d is the dimensions of the input at the bottleneck
layer and D is the size of the original data input dimensions.

Given training data up to k samples {x1, x2, ...xk}, the
autoencoder’s objective is to reduce the reconstruction error
(loss):

J(W, b) =
1

k

k∑
i=1

(
1

2
∥ xi − x̃i ∥2) (2)

Fig. 2: Compression learning model architecture. The latent
space is the point of splitting the model for offloading.

Fig. 3: Split autoencoder showing offloading of encoder
compression model on the edge and decompression decoder
on cloud

3.1.2 Latent space splitting
The latent space of autoencoders creates a natural

splitting point for edge and cloud networks. In a split-
autoencoder as shown in Figure 3, the encoder and decoder
networks of the autoencoder are deployed on separate
nodes of the distributed system. The intermediate data is
compressed at the network edge by the encoder to re-
duce network traffic across the communication channel [27],
while the decoder part may be deployed on the cloud to
reconstruct the data.

3.1.3 Fine-tuning of network weights
Fine-tuning is a supervised learning task that adjusts

the weights of the neural network to improve its classi-
fication performance. The learning process can be further
customized so that the cloud server can accept data in either
fully reconstructed or encoded form. The two methods
for fine-tuning autoencoders for compression learning are
discussed below.

EdgeCompress-Only (ECO): Decompression of the data
can add additional computational overhead to the overall
analytics. In ECO, both autoencoder and cloud machine
learning models are trained together but the decoder is
discarded afterward. The joint offline training is to ensure
the cloud model architecture was suitable for the output
of the encoder. The configuration is shown in Figure 4
(a). In terms of neural network architecture, the encoder
is simultaneously connected to the decoder and the cloud
classifier model. The mean squared loss and cross-entropy
are simultaneously minimized between the encoder and
decoder, and classifier respectively. This eliminates the need
to decompress the data in the cloud during inference, as the
cloud model is trained with the output of the encoder and
can still make inferences directly with the encodings. This
configuration is effective in scenarios where the outcome of
the machine learning task is of primary importance, and the
original form of the data is not necessary as long as it is
represented in a meaningful way.

EdgeCompress-CloudDecompress (ECCD): In the
ECCD configuration shown in Figure 4 (b), autoencoder
and cloud model are integrated for the supervised training
using the combined models’ loss objective given in Equation
2. The encoder is connected to the decoder which is then
connected to the cloud classifier model. During training,
the mean squared loss and cross-entropy losses are sequen-
tially minimized between encoder and decoder, and decoder
and classifier respectively. During the inference phase, the
encoder part of the autoencoder is deployed on the edge
while the decoder part is coupled with the cloud. After
decompressing the data back to the original shape, the data
is passed to the cloud model for the classification task. In
this configuration, the decoder is a necessary component
on the cloud as it enables the reconstruction of the image
into the original shape for which the cloud model has been
trained. This configuration is favourable when data needs to
be returned back to the original shape for monitoring at the
cloud or when there may be a need to use another classifier
trained with the original data.

3.2 Principled method for discovering model pool
Compression learning requires finding the optimal com-

pression model architectures based on their performances
on evaluation metrics such as accuracy. This can be posed
as a hyperparameter optimisation problem and have been
recently applied to neural architecture search in [37]. Here,
we will provide details of the design process in terms of
search space, search strategy and performance estimation.

3.2.1 Search space
The simple search space is the space of chain-structured

neural network. The architecture for DNN model A can be
written as a sequence of n layers, where the i’th layer Li
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Fig. 4: Supervised compression learning combines autoen-
coder and classifier. The decoder is discarded in ECO after
learning. Models are deployed after training on the edge or
cloud or discarded in the case of ECO decoder

receives its input from layer i − 1 and its output serves as
the input for layer i+ 1, i.e., A = Ln · ...L1 · L0. The search
space is parametrised by: n number of layers; type of every
operations performed by layer (e.g., convolutional, pooling,
fully-connected layers); hyperparameters of every layer tied
to the operation (e.g., strides, kernel size, filters).

For this one-dimensional model, we have limited our
search space to the number of neurons in the bottleneck
layer as this is the main component that affects data quality
and performance after compression. The latent space dimen-
sion, d, which is the number of neurons in the bottleneck
layer of autoencoder, is chosen as a hyperparameter to
optimise. It begins by defining a search space of possible
latent space dimensions from 1 to maximum dimensions
of the dataset, dn, in increments of defined step size. This
is designed for deep learning models that require a single
numerical value for latent space, for example, the stacked
autoencoder.

3.2.2 Search strategy
The search strategy advances from the traditional

method of hyperparameters optimisation, which makes a
complete search over a given subset of the hyperparameters
space of the training algorithm. The pseudocode of the
search strategy is presented in Algorithm 1. It works in
a similar fashion as the conventional binary search except
that the middle element is the latent space and QoS is the
target and we can shift right or left depending on whether
the target value is lower or higher. Binary search seeks a
single value so it uses the middle element as a pivot to
move in the right or left direction; here, the middle element
is the latent space dimension which is always stored and
continues to move in the best direction to keep adding
QoS-features pair to the pool. The target middle QoS (Qm)
is computed by running the model training at the middle
dimension (dm). The algorithm checks whether the middle
QoS (Qm) is equal to the search target QoS (Qh) in every
iteration. If Qh is greater than Qm, then the left half or
elements before the middle elements of the list is eliminated
from the search space, and the search continues in the
remaining right half. Else if Qh is less than Qm, the right
half elements or all the elements after the middle element is
eliminated from the search space, and the search continues
in the left half. This process is repeated until the upper
dimension becomes less than the lower dimension We use a

one-dimensional search space that includes only the number
of neurons in the bottleneck layer for simplicity. Though
our work specifies the search space to be the dimensions
of the bottleneck layer, other hyperparameters could still
be added to the search space. For example, for 2D and 3D
convolutional autoencoders, the bottleneck layer consists of
multiple hyperparameters (kernel size, strides, filters) rather
than only the number of hidden neurons in the 1D stacked
autoencoders.

3.2.3 Performance estimation

The objective of the search strategy discussed above is
to find a neural architecture a that maximises some perfor-
mance measure. As the search space is relatively small, this
keeps the computational cost manageable as the number of
architectures to be explored are limited. Hence, performance
estimation was done by performing a standard training and
validation of the architecture on data. Based on historical
conditions for the application, the QoS can be estimated for
a given model selection decision on an edge device. The QoS
parameters can be influenced by multiple metrics.

In our experimentation, accuracy and data quality were
two metrics that could affect QoS. Although other factors,
such as the DNN model architecture and latency can also be
taken into account, we simplify things by assuming that the
DNN model accuracy follows a linear function, accuracy =
f1(Knode,Klayer). Additionally, the reconstruction error of
the model has an impact on data quality which can affect
the user experience in certain application. The data quality
is denoted as dataquality = f2(Knode,Klayer, Ed) for un-
supervised learning, where Ed is the distance between two
points on the plane. Thus, when Knode,Klayer, Ed, CPU,
and RAM are taken into account as a whole, the expected
QoS can be modeled as a linear function with an unknown
parameter θ that can be learned online. The context vector
xt,A captures all the available side information, including
selected features of both the DNN model A and the incom-
ing edge device such as the DNN model size, architecture,
device’s CPU, and RAM capacity. Let Q be the QoS of the
DNN model A selected at time period t. Since Q is a random
variable relying on context xt,A, we model it as:

E[Q,A] = f(xt,A) = xT
t,Aθ (3)

For simplicity, We assume that the expected QoS is a lin-
ear function of data quality and accuracy for unsupervised
and supervised learning respectively, even though users’
preferences for these metrics can vary greatly.

The above shows how the QoS metrics can be defined
and how the metrics are quantifiable to a single number
for Algorithm 2 to select the appropriate model. QoS is
subjectively defined given that QoS can vary for different
domains/users/datasets. Based on the application require-
ments, resource availability, and network conditions, more
complicated functions may be used to quantify the QoS.
Once the architectural search space is selected, training does
not depend on specific hardware, software, or network and
is done once for each application except where significant
concept drift occurs.
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Algorithm 1 QoS-aware Compression learning

1: Input: input x, epoch e, Total dimensions {D ∈ N|D >
0}

2: Output: QoS-features map, P
3: Initialisation:
4: dl = 1 ▷ Lowest dimension
5: dh = D ▷ Highest dimension
6: θ{A}, Qh ←ModelTraining(D, e)
7: modularise (Q, d):
8: if Q does not exists then
9: Create new Q subset

10: end if
11: Append d to Q subset
12: SearchLatentSpace (dl, dh):
13: k ← di ▷ Set intrinsic dimension
14: if dh ≥ dl then
15: dm = (dh + dl)/2▷ Mid dimension
16: θ{A}, Qm ←ModelTraining(dm, e)
17: modularise (Qm, dm)
18: if Qm < Qh then
19: SearchLatent (dm, dh)
20: else
21: SearchLatent (d1, dm)
22: end if
23: end if
24: return P

3.3 Modularisation of compression models
The compression models are modularised by mapping

and grouping them to features (dimensions) depending on
the QoS, Q. This way, the model that achieves the highest
or lowest compression from that subset can be selected.
Equation 4 describes the entire QoS-features super set, P .
Where Q{1,i} refers to the QoS-features set for lowest QoS,
Q1, for the group of features, d ranging from i1 to in. For
autoencoder models, these features represent the number
of latent space dimensions in the bottleneck layer at that
QoS. Through modularisation, the system can adapt to
different QoS demands by selecting the features that meet
the demand per QoS request.

P =

Q 1 · · · n

Q{1,i} ⟨dq1,i1⟩ · · · ⟨dq1,in⟩

· · · · · · · · · · · ·

Qn−1,j ⟨dqn−1,j1⟩ · · · ⟨dqn−1,jn⟩

Qn,k ⟨dqn,k1⟩ · · · ⟨dqn,kn⟩

(4)

4 AUTOMATED QOS-AWARE ORCHESTRATOR
The work of the orchestrator is to select and deploy

trained autoencoder models for QoS-aware data compres-
sion at the edge in real-time. Figure 5 shows how the orches-
trator is set up for the QoS-aware dynamic model selection
for data compression. During deployment, only one model
is active at a time to compress the data. The edge node
is updated whenever a new QoS requirement is identified
and the orchestrator selects the model that matches the QoS

specification. However, any edge-based QoS model speci-
fication like resource availability will be determined at the
edge node. To select the right cloud decompression model,
the metadata specifying compression level and the in-transit
data will be sent to the cloud. The solution is based on the
assumption that the QoS metrics can be predicted as the
streams arrive. Where the incoming streams have different
resolutions, they are rescaled to the input dimension of
the dataset. The autoencoder layer takes the same input
dimension because it has been designed for that dataset.
Intelligent compression can be performed at edge nodes,
saving bandwidth, reducing data processing time, and, in a
few cases, improving accuracy. However, the model must
be trained at sufficient granularity to perform optimized
compression. Model training and optimized model search
is an overhead. We assume that there is enough redundancy
in the dataset and that not all features are important; the
goal is to extract only important features to speed up the
inference task without losing accuracy. An edge node can
be any resource from a Raspberry Pi, PC, laptop, or virtual
machine. A cloud node can be any resource on the Internet
that can be accessed remotely.

4.1 Compression model selection and deployment by
Orchestrator

To deal with the variable QoS conditions, orchestrator
is designed to select the best possible compression model
from the QoS-features map P to be deployed on the nodes.
Assuming there are a set of D possible latent spaces, we
select the model with features/dimensions d that meets the
required QoS in real-time. During inference, the orchestrator
selects the best model based on online QoS conditions as
per Algorithm 2. If a new QoS request is received during a
batch streaming, then the new requirements are fed into the
equation which calculates a new value for QoS. From the
QoS-features map P , the minimum dimension is fetched for
the corresponding QoS value. Orchestrator then communi-
cates the chosen dimension dm to the nodes which will then
take the trained stored model that corresponds to dm from
their database and deploy on the node.

To handle changing QoS conditions, the orchestrator is
designed to select the best possible compression model from
the QoS feature map P to deploy at the nodes. Given a
set of possible latent spaces D, it selects a model with fea-
tures/dimension d that satisfies the online QoS conditions
using the Algorithm 2. If a new QoS request is received
during batch streaming, a QoS value is estimated using the
available information fed into Equation 3. Then the lowest
feature/dimension that gives the estimated QoS value is se-
lected from the QoS feature map P . The selected dimension
dm is sent to the nodes (edge, cloud), which then retrieves
the stored trained model corresponding to dm and deploys
it on the node.

The system can be applied to different datasets, but
must first be trained to find the best latent dimensions.
Once the system is trained, it should not need to repeat the
process of finding the best latent dimensions again. It is also
worthy of note that the best dimensions of two datasets can
differ, hence, models must be trained on specific datasets
pertaining to the application. As with any real-time system
with offline model training, a mechanism is required to
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Algorithm 2 Automated QoS-aware orchestrator

1: Input: input streams S, QoS-features map P
2: Output: Compression model selected
3: for each bufferedstream in S do
4: if nth QoS request is received: then
5: Fetch new requirements, r:
6: Compute Qn using Equation 3
7: {Retrieve the corresponding dimension, dm from

the QoS-features map}
8: dm = min(P : Qn → d)
9: Select trained model pairs that corresponds to dm

10: Deploy model pairs (encoder and decoder) on asso-
ciated nodes

11: Deploy selected model pairs for dm.
12: Compress bufferedstream with new model Ai

13: else
14: Compress bufferedstream with existing model

Ai−1

15: end if
16: end for

monitor for concept drift. The reconstruction error (Equation
2) between original data and reconstructed data allows mon-
itoring for significant concept drift. An application-specific
threshold can be set for the application to trigger retraining
whenever the new data samples significantly drift from the
distribution.

Fig. 5: Functional illustration of the compression learn-
ing phase (offline training) and the compressive-offloading
phase (tuning) performed by the automated QoS-aware
orchestrator. The tuning is for selecting the best compression
model that meets QoS requirements in real-time

4.2 Diagnostic Capabilities of the QoS-aware Orches-
trator

The orchestrator can perform diagnostics by querying
the QoS-features map P to extract insights of the application
domain and corresponding performance of the system. This
capability allows it to search appropriate parameters that

give the best compression. It provides more understanding
about how the compression should be done. A number of
desired information which the orchestrator can obtain for
diagnostic and prescriptive purposes are highlighted.

1) Desired performance: From the QoS-features map, the
orchestrator can determine how many features must be
added to attain a desired performance. Moving from a
performance of Q{1,i} to Qn−1,j could mean increasing
the number of features from ⟨xq1,i1⟩ to ⟨xqn−1,j1⟩.

2) Compression range: It addresses the question: how far
can data compression stretch at the same QoS? By adding
additional features to the dataset, the accuracy can be
improved. From feature set P , the compression range
for i group of features can be represented as:

|⟨xq1,i1⟩ − ⟨xq1,in⟩|Q{1,i} (5)

3) QoS range: The QoS range for the given dataset and
application can be determined from P . The QoS range
will help to inform the users on how best to tune the
model and how good the expected results would be.
The QoS range for P QoS-features map is given as:

Qn,k −Q{1,i} (6)

4) Domain understanding: Based on the QoS range we
can gain insights on whether the data is coming from
the same distribution, in which case it will advise how
much of compression is necessary. For example, a high
QoS range means that compression will not be very
useful as the data may be coming from highly different
distributions.

4.3 Cost of edge-enhanced compressive offloading
The services for the proposed edge-enhanced data com-

pression can be decomposed into three levels (a) compress,
(b) decompress, (c) classify. The time cost to process one data
stream in the edge-enhanced model, Cp is given as:

Cp = Et +Dt + Ct + Tt (7)

Where Et is the encoder’s time cost for compressing data,
Dt is the decoder’s time cost for decompressing the encoded
data (only applies for the ECCD configuration), Ct is the
classifier’s time cost to classify the frames into labels, and
Tt is the time to transfer data from the data source to the
cloud. The data transmission cost approximates to:

CT =
N∑

n=1

(Tcn + Cpn
) (8)

Where Tcn the total data transfer time for transferring N
data samples from edge to cloud and Cpn is the time cost of
processing N data samples.

The data transmission efficiency of the architecture a is
defined in terms of percentage gain with respect to data
transmission cost of the cloud architecture , c.

Ea =
CT (c)− CT (a)

CT (c)
× 100 (9)

Where CT (a) is the total time cost to transmit all the
streams in architecture a and CT (c) is the total time cost to
transmit all the streams on the traditional cloud architecture.
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5 IMPLEMENTATION
The proposed implementation posits the utilization of

the Azure IoT platform, in conjunction with a serverless
architecture and B-series VMs. It must be noted, however,
that this approach may not be well-suited for other types of
platforms or resources. Furthermore, the use of B-series VMs
may potentially impede network performance and may not
be appropriate for workloads that necessitate consistent, full
performance of the CPU. The concept of an edge node can
encompass a wide range of devices, such as a Raspberry
Pi, personal computer, laptop, or even a VM in the cloud.
However, the generalizability of the proposed QoS compres-
sion learning method is limited, as it has only been defined
in terms of accuracy and data quality, and has only been
applied to two datasets in the domains of object recognition
and human action recognition. Additionally, the QoS is
contingent upon various factors, such as latency and band-
width, among other system requirements. Therefore, these
intelligent compression learning techniques must be tailored
to user-defined application parameters. The classifier model
employed in the experimental use cases is a basic 5-layer
convolutional neural network. Another assumption of this
approach is that there is a sufficient degree of redundancy
in the dataset, and that not all features are essential; the
aim is to extract only the most important features without
sacrificing accuracy in order to expedite the inference task.

5.1 System configurations
We set up three configurations for experimentation

namely Cloud-Only (CO), EdgeCompress-Only (ECO), and
EdgeCompress-CloudDecompress (ECCD). Both ECO and
ECCD configurations are referred to as edge-enhanced con-
figurations. These configurations have been explained from
the learning aspects in Section 3.1 as the output of the
coupling of autoencoder and cloud classifier during the
compression learning. In this section, the details of the im-
plementation will be discussed. The configurations demon-
strate the effects of edge-enhanced analytics on application-
level QoS measures like bandwidth and latency. As shown
in Figure 6 the analytics process is decomposed into 3 sub-
tasks namely Compression (T1), Decompression (T2), and
Classification (T3).

5.1.1 The Cloud-Only (CO) Configuration
In this configuration, all the raw image data is sent to

the cloud. The raw data is directly transmitted from the
end devices to the cloud for the classification task (T3).
There is no intermediate processing or edge node involved
in the analytics. This represents the conventional analytics
approach where no intermediate processing is done on the
edge nodes. Then, the machine learning classifier is applied
to raw data as shown in Figure 6 (Cloud). The result of
the classification is the label of the images (L). We compute
the execution time, bandwidth cost, and accuracy of ML
classification.

5.1.2 The EdgeCompress-Only (ECO) Configuration
In this configuration, the raw data is first sent to the

edge where the data is compressed (T1) as shown in Figure
6 (ECO). The data is then sent to the cloud for classification
(T3). There is no decompression (T2). The resulting labels

are produced from the classification task (L). All the raw
data will queue up to be compressed at the edge and only
the compressed data is sent to the cloud. During training,
the encoder is connected to the decoder as well as to
the classifier. The mean squared loss between encoder and
decoder and the cross-entropy loss between the encoder and
classifier are jointly minimized. The decoder is discarded
afterward. This configuration works in a setting where the
end result from the machine learning task is paramount not
the actual data, thus, data is not needed to be in its original
form but can be in some form of meaningful representations

5.1.3 The EdgeCompress-CloudDecompress (ECCD)
Configuration

In this configuration, the raw data is first sent to the
edge where the data is compressed (T1) as shown in Figure
6 (ECCD). The data is then sent to the cloud for decompres-
sion (T2) and machine learning classification task (T3). The
resulting labels are produced from the classification task (L).

During training, the encoder is connected to the de-
coder, while the decoder is connected to the classifier. The
mean squared loss between encoder and decoder, and cross-
entropy loss between decoder and classifier are jointly min-
imised. The decoder is a necessary component of the cloud
as it enables the reconstruction of the image back to its
original dimensions. This configuration is favourable when
data needs to be returned back to the original shape for
monitoring at the cloud or when there may be a need to use
another classifier trained with the original data.

Fig. 6: Three system configurations. CO is the baseline for
cloud-centric analytics. ECO and ECCD are edge-enhanced
configurations differing by how the autoencoder compo-
nents are coupled during compression learning and com-
pressive offloading

5.2 Experimental testbed
Experiment was conducted on Azure IoT platform using

virtual machines (VMs) and serverless architecture to deal
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with servers and computing resource management. Azure
IoT is a public cloud platform providing the benefit of
handling big data and access from anywhere in the world.
We run a set of experiments for the baseline and edge-
enhanced compression configurations. The Cloud-Only and
edge-enhanced configurations are shown in Figure 7 and
Figure 8 respectively, with both using the serverless ar-
chitecture to manage data processing. The edge module
comprises a streaming application that sources data and
sends data streams to the cloud storage. For the edge-
enhanced configurations, the data stream is first sent to
the compression module where the intelligent compression
algorithm compresses the data and transfers the compressed
data to the cloud storage. The above configurations are run
using a Virtual Machine (VM) located in Western Europe
(UK) as the edge device. The Edge VM is deployed in the
Western Europe region to ensure enough distance from the
remote data centre. The Edge VM memory is set to 2GB with
1 virtual CPU.

On the cloud side, the Azure cloud services in the East
US region (Virginia) are chosen. An Azure Cloud VM that
uses geo-redundant storage option RA-GRS for blob storage
in the cloud is provisioned. This Azure storage serves as the
cloud database which receives the incoming data stream and
serves as a data ingestion source for the cloud processing
engine. The cloud VM is created as a resource in this same
region with the cloud database. The Cloud VM memory is
set to 8GB with 2 virtual CPUs.

The B-series VMs used for both edge and cloud can be
deployed on a variety of hardware types and processors, so
competitive bandwidth allocation is provided. The B series
is variable, and its design does not provide the user with
a consistent level of network performance. B-series VMs
are ideal for workloads that do not need the full perfor-
mance of the CPU continuously, like web servers, proof of
concepts, small databases, and development build environ-
ments. They run on the 3rd Generation Intel® Xeon® Plat-
inum 8370C (Ice Lake), the Intel® Xeon® Platinum 8272CL
(Cascade Lake), the Intel® Xeon® 8171M 2.1 GHz (Skylake),
the Intel® Xeon® E5-2673 v4 2.3 GHz (Broadwell), or the
Intel® Xeon® E5-2673 v3 2.4 GHz (Haswell) processors.
B-series are economical virtual machines that provide a
low-cost option for workloads that typically run at a low-
to-moderate baseline CPU utilization, but sometimes need
to burst to significantly higher CPU utilization when the
demand rises. B1ms VM’s threshold is 20% CPU Utilization,
so every hour you are under 20% you are gaining credits,
every hour you are over you are ”bursting” and consuming
credits. If you configure a VM to use 2 vCPUs with 2 cores
when you have a physical processor whose clock speed is
3.0 GHz, then the total clock speed is 2x2x3=12 GHz.

The cloud application is deployed as a containerised
flask app to provide API service to a serverless function.
The flask application performs classification on the images
ingested into the cloud database. In the ECCD configura-
tion, this module also contains the decompression algorithm
for decompressing images before the classification task. The
different configurations are given their unique addresses so
that they can be uniquely called by their respective server-
less functions. The flask application is containerised for
easier provisioning and deployment on the virtual machine.

The Azure Functions (AF) service is provisioned as a
serverless function that checks when a new data sample
is ingested to the database and makes a GET request to
the Cloud VM for decompression and/or classification. The
serverless function gets triggered whenever a new image
is ingested into the cloud database. We set the number of
images to be uploaded to a total of 100 image files to ensure
the system is not congested. When a huge volume of images
is uploaded quickly, many functions are activated at once.
This causes the output to be out of sequence and affects the
computation of statistics.

The approach used on Azure IoT platform can be
adapted to other cloud platforms such as Amazon Web
Services (AWS) and Google Cloud Platform (GCP) by using
similar technologies like virtual machines, serverless func-
tions, and containerisation. For example, AWS offers EC2
instances and Lambda functions, while GCP has Compute
Engine VMs and Cloud Functions. These platforms offer
similar features for computing resource management and
data processing, which can be leveraged for similar config-
urations as described for Azure IoT. However, the specific
virtual machine configurations and cloud services used may
differ depending on the platform.

Fig. 7: Schematic of a Cloud-Only configuration on Azure
environment

Fig. 8: Schematic of an edge-enhanced configuration on
Azure environment

5.3 Model Training and Deployment
In the experimentation, the models trained include the

Cloud-Only (classifier trained on raw data), EdgeCompress-
Only (ECO), EdgeCompress-CloudDecompress (ECCD),
Autoencoder (AE), and Principal Component Analysis
(PCA). Both ECO and ECCD models are trained together
with the classifier to achieve a supervised fine-tuning. AE is
an autoencoder model trained in an unsupervised manner
independent of the classifier and then tested with the Cloud-
Only classifier model. It is a way to check how well the
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autoencoder can reconstruct the data and perform well
on the classification task without using any supervised
objective. The parameters for training the autoencoder and
classifier models as well as their architectures are given in
Table 2 for reproducibility. A cloud classifier designed with
1D convolutional layers takes in a dataset reshaped into the
form of Number of samples × total dimension of the data sample
to produce one of the output values.

During deployment, for the ECO configuration, the en-
coder model is deployed on the edge to compress the data,
while the decoder model is discarded after training. For the
ECCD, the decoder model is attached to the cloud classifier
and both are deployed on the cloud. For the Cloud-Only
configuration, the classifier is deployed on the cloud and
there are no encoder and decoder models.

TABLE 2: Parameters for machine learning model training

Autoencoder Classifier
Model architec-
ture

StackedAE: 784-
1000-500-250-d-
250-500-1000-784
Where d is the
latent dimension

Reshape(28,28,1)-
Conv2D(32,3,3)-
Conv2D(64,3,3)-
MaxPooling2D(2,2)-
Dropout(0.25)-Flatten-
Dense-Dropout(0.5)-
Dense

Loss function MSE Categorical cross en-
tropy

Optimiser Adam SGD
Batch size 256 128
Training
samples

60,000 (Fashion-MNIST), 7352 (HAR)

Validation set 20% of Training set
Datasets Fashion-MNIST, HAR
Training time 100 epochs 100

5.4 Datasets and use cases
5.4.1 Object classification (Fashion-MNIST)

There are numerous applications of object classification
in computer vision tasks, such as semantic segmentation,
scene understanding, image retrieval, fine-grained classifi-
cation. We focus on multimedia applications where images
need to be sent to far-away data centres for classification.
The Fashion-MNIST dataset [41] consists of 60,000 images
for the training set and 10,000 images for the test set. Every
image has a row by column shape of 28x28 which amounts
to 784 pixels. The dataset has similar dimensions as the more
popular MNIST, and is designed for more challenging classi-
fication problems than MNIST. The intrinsic dimensionality
is known to be the number of classes of both datasets which
is 10. The aim is to recognise and classify images sent to
the cloud into one of the 10 labels. Our approach required a
dataset from which we can evaluate other search strategies
that use the intrinsic dimensionality as an incremental step
size. We also required a dataset that can be transformed
into one-dimensional features to be fed into the stacked 1D
autoencoder. Due to the fine-tuning of network weights,
the dataset must also have classes that can be used for
supervised learning. The experiments required testing our
hypothesis that the compression model can be modularised
into a QoS-features model pool with the assumption that
the dataset must have significant redundancy. Based on
these requirements, the FASHION dataset was picked for

experimentation as they have been shown to possess ade-
quate redundancy and have an intrinsic dimensionality of
10 which is equal to the number of classes. Furthermore, we
consider different data types that are usually streamed in
different applications like the HAR.

5.4.2 Human Action recognition (HAR)
Action recognition involves using sensors to read charac-

teristics of the environment and the user in order to identify
the activities. This is an interesting use case for several
applications such as healthcare where persons could be
remotely monitored to recognise their activities and provide
personalised care. Another appealing use case is the assisted
daily living (ADL) for the elderly or disabled. In computer
vision tasks, video understanding, content searching and
multimedia event detection are some of the interesting
applications. We have selected the UCI HAR dataset [42]
which was created from the readings of accelerometer sen-
sors attached to the body of the participants and used
to record the activities. The activities are categorised into
one of these 6 set of physical activities: standing, walking,
laying, walking, walking upstairs and walking downstairs.

5.5 Evaluation
We compare the proposed edge-enhanced compression

learning against the existing baseline systems. The compari-
son is done on the basis of model types and search strategy.

1) Model Types: From literature, intelligent data com-
pression is achieved broadly using linear or non-linear
models. A conventional implementation of the edge
computing paradigm is to train a linear model that
compresses image and sends to the cloud server, where
all the tasks are then executed. We consider a baseline
referring to this compression scenario based on [43],
[44]. Non-linear models rely on the non-linearity of
high-dimensional and unstructured data to perform
compression. We implemented a similar experiment
that uses autoencoders [13]. We evaluate the model’s
performance in terms of the prediction performance of
the cloud machine learning task.

2) Search strategy: The empirical search approach for
model selection rely on trial and error which we im-
plement as a search over all possible latent space di-
mensions. We also implement the step strategy based
on compressing the model by regular percentile of
compression rate.

6 RESULTS AND DISCUSSION
This section reports the performance results of the pro-

posed method in an edge-enhanced distributed system. The
system configurations are tested against the system require-
ments: QoS awareness, scalability, latency, and transmission
optimisation. The baseline algorithm is the cloud classi-
fier trained on the raw data without an autoencoder. The
Fashion-MNIST and HAR datasets are used for validation
for application in object classification and action recognition
respectively.

6.1 QoS-Aware Compression Learning
The first thing this experiment seeks to demonstrate is

the redundancy in the data that necessitates modularisation
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of the QoS-features pool. In this paper, we have used re-
construction quality and accuracy as the QoS estimator for
unsupervised learning and supervised learning respectively.

Fig. 9: Changing the dimensions is equivalent to changing
the compression models. We see significant redundancy
between 100, 500, 784 dimensions necessitating modulari-
sation

6.1.1 QoS as reconstruction quality
For the unsupervised approach, the Euclidean distance

was used as a QoS measure of the reconstructed image qual-
ity. A lower Euclidean distance approximates to a higher
data quality as the difference between the original and the
reconstructed data is low. Figure 9 shows how the Euclidean
distance varies for latent space dimensions, d = 2, 10, 100
and 784. The Euclidean distance decreases as the dimen-
sions increase. There is a larger difference in the Euclidean
distance between d = 2 and d = 10 as compared to between
d = 100 and d = 784. Also, the difference in Euclidean
distance between d = 2 and d = 100 is very high compared
to d = 100 and d = 784, despite the latter having a
wider dimension range (648). This indicates that the effect of
compression on the data quality becomes relatively low after
a certain minimum dimension is reached. This minimum
dimension is seen to capture most of the important features
of the dataset. To estimate this dimension, d = 784 is used
as a baseline for unsupervised algorithm. This dimension
is expected to be the lowest distance to be realised with
the architecture given that it has the same value as the
input dimension. This set of autoencoder models mapping
different latent space dimensions are trained by the orches-
trator to map the different Euclidean distances as a QoS
measure of reconstruction quality. Changing the dimensions
is equivalent to changing the models. We see significant
redundancy between 100, 500, 784. Hence, modularisation is
relevant and changing QoS requests of users (reconstruction
quality) can be met by switching the models.

6.1.2 QoS as accuracy
For supervised learning the measure of QoS used was

accuracy. We compare the linear model Principal Com-
ponent Analysis (PCA) against the non-linear model in

Fig. 10: HAR dataset compression learning: Delta accuracy
at different latent space compression ratios shows signifi-
cant redundancy eliminated by compression learning

Fig. 11: Fashion-MNIST dataset compression learning: Mod-
els can be modularised and mapped to QoS achieved during
training

Fig. 12: Time taken to process frames is lowest at ECO
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different configurations namely the baseline or Cloud-
Only (classifier trained with raw data), EdgeCompress-Only
(ECO), EdgeCompress-CloudDecompress (ECCD), Autoen-
coder (AE). Fine-tuning was done for ECO and ECCD to
improve compression in accordance with the supervised
objective. Certain compression percentage are sampled for
this experiment. We chose the compression rates of 10, 50,
75, 95, 99.5 percentages. The compression ratios represent
the different models trained by QoS-aware compression
learning. The compression rate was calculated using Equa-
tion 1. The baseline remains fixed as there is no compression
or decompression task performed in all the cases.

In Figure 10, we show the deviation from the baseline
accuracy for different models trained on the HAR dataset.
Here, 1% compression represents the minimum compres-
sion rate while 100% compression represents maximum
compression rate. We noticed that for most of the com-
pression rates the accuracy remains stable. This points to
the fact that there is significant redundancy in the features
between these two dimensions. With compression close to
100%, there is a significant reduction in accuracy for the two
datasets, specifically between 95% and 99.5%. This indicates
a high level of redundancy in about 99% of the data.

In Figure 11, the accuracy for different models trained
with the orchestrator on the Fashion-MNIST dataset is
shown. The supervised training approach also has the po-
tential to be close to or to exceed the baseline accuracy. Both
ECO and ECCD exceed the baseline accuracy in the Fashion-
MNIST dataset, while in the HAR dataset they are very
close to the baseline. For ECO where only the encodings
are sent to cloud for inference, the accuracy is mostly the
same as ECCD in both datasets. We can infer that learned
encodings of the raw data perform equally well without the
need for further decompression at the cloud. We investigate
the ability of the system to resize data without losing data
quality. For the ECCD configuration, the downscaling of the
data into lower dimensional space and subsequent upscal-
ing into original shape after data arrives at the cloud does
not significantly affect the accuracy. The accuracy remains
the same with increasing ratio of compression. In large-scale
analytics, data may need to be resized as it moves from one
medium to the other. The results show that the proposed
configuration is scalable to accommodate such scenarios
in streaming data transmission. Furthermore, scalability is
measured by the change in latency for each data stream
processed on the distributed pipeline. Figure 12 shows how
speed and scale balance each other. We observe that the
ECO configuration will allow for more jobs to be processed
within the overall system time.

We can conclude from these experiments that with the
QoS compression learning, the encoder-decoder model pairs
can be mapped to corresponding test accuracies (QoS)
achieved during training. During deployment, the system
may require compression at a particular performance and
the most suitable models can be selected.

6.1.3 Search Strategy
The search strategy is compared to other (traditional)

approaches to search through the latent space dimensions.
Table 3 compares the computational cost of different search
strategies with our proposed approach. The baseline is a

search space over all the latent spaces, from 1 to 784 for the
Fashion-MNIST dataset. Apart from storing the models at
runtime (which the other approaches did not perform) our
search strategy reduces the computational cost by factoring
in redundancy in the data during the search.

TABLE 3: Computational cost of Compression Learning
(Fashion-MNIST dataset)

Reference
implementa-
tion

Strategy Total models Time cost

Baseline All latent
space
(empirical)

784 7563

[14], [45] 10% step 10 965
Ours Binary

search
9 868

6.2 QoS-aware Compressive Offloading
This section presents the practical implications of im-

plementing Compressive Offloading with variable QoS re-
quests (6.2.1) and with fixed QoS requests on a real test-bed
(6.2.2).

6.2.1 Dynamic QoS requests
The computational cost of the orchestrator’s decision

to select the best model in real-time is measured in this
experiment. The QoS request is randomly varied to show the
computational cost of decision. Figure 13 shows the cost of a
decision made by the orchestrator to select a specific model
at runtime from the QoS-features map, P in Equation 4.
From observation, changes to QoS requests are not expected
to have much impact on latency as this only means a change
to the compression model that was selected in real-time.
At 1000 random QoS requests, the decision time of the
orchestrator is linear with an increasing number of data
streams. This shows that the orchestrator is not only able
to handle a large number of varying QoS requests but also
does this in the worst cases at a linear time.

Fig. 13: The time it takes for QoS orchestrator to make
decision on which model to deploy based on incoming QoS
requests
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TABLE 4: Data savings: Total input, payload and actual data
transmitted in for the three different configurations

Config. Total in-
put size
(MB)

Total raw
payload
size (MB)

Average
transmitted
dimension

% Data
savings

CO 125.23 784 0%
ECO 155.40 39.93 39 69%
ECCD 39.99 39 69%

6.2.2 Practical implications of compressive offloading on
system-level QoS requirements

Having established the cost of dynamic QoS requests,
the QoS request is fixed to one in these sets of experiments
to demonstrate the practical implications of deploying this
system on a real-test bed. We show that centralised cloud-
centric systems will have limitations in meeting system-
level QoS, and thus are not efficient for compressive offload-
ing in general.

1) Bandwidth requirements
In this experiment, we measure how much savings is
achieved in transmitting data from edge to cloud for the
three configurations. The same input data was trans-
mitted in all the configurations. For the edge-enhanced
configurations, the experiment was run using the re-
duced latent dimensions obtained during the algorithm
training for the Fashion-MNIST dataset.

Fig. 14: Time to process single frame in all configurations.
Individual data samples are represented by the markers.

Additionally, the data savings for the three configura-
tions are computed in Table 4. The total input remains
the same for the three configurations. For 100 frames,
this amounts to 155 MB. The raw payload for ECO and
ECCD is about 40 MB while that of CO is 4 times larger
at 125 MB. It can be seen that the payload is highest for
the cloud only configuration as all the streaming data
produced per unit time is transferred to the cloud first
and then analytics take place. Computing the percent-
age gain from Equation 9, the ECO and ECCD config-
uration are 69% more efficient in terms of transmission
savings than the Cloud-Only configuration.

2) Low-latency requirements

This experiment will focus on showing the real-time im-
plications of edge-enhanced analytics to satisfy the low-
latency requirements of system QoS. In this experiment,
we measure the time taken to complete jobs for all three
configurations, Cloud-Only (CO), EdgeCompress-Only
(ECO), EdgeCompress-CloudDecompress (ECCD). The
real-time measurement is important to understand how
much time is saved by compressing data at the edge
and sending this across the network. It can be used to
determine how much capacity can be created on the
cloud for real-time analytics. Figure 14 plots the time
taken for individual data streams to be transferred by
the edge as against the time taken to be processed at the
cloud. As expected, the Cloud-Only configuration has
the shortest edge transmission time as no processing
happened at the edge. However, the ECO configuration
matches more closely to the real-time requirements of
the system. Even though the data upload is done se-
quentially, the job completion is not sequential. Mostly
in the Cloud-Only case, some of the data uploaded
early on are processed at a later time. This indicates that
the large size of the data stream may lead to additional
delays in data arrival to the cloud. This has the potential
to lead to a loss of the freshness of data which could
limit real-time analytics and actuation decisions.
The total time cost for the compression, decompression,
and processing is also computed in Figure 15 when the
total number of frames equals 10, 50, and 100. We ob-
serve a huge growing cost of processing for the Cloud-
Only configuration as the number of frames increase.
We observe that the cost of ECCD started out higher
than CO but later is lower than CO after the 100 frames
are processed. From this we can infer that the size of
the dataset has a significant impact on the cost of the
cloud inference task. In this way, the ECO has a better
advantage because the encodings are directly fed to the
cloud classifier without incurring additional overhead
of decompression.
Given all the results above, the ECO is the most effi-
cient configuration for the QoS-aware edge-enhanced
offloading with the lowest latency and least time to
complete all jobs. For real-time or near real-time appli-
cations, the time to decompress the encodings must be
minimal in order to pass the data to the cloud machine
learning model and return the predictions to the user
within a short space of time. Using percentage gain
from Equation 9, this ECO configuration is 32% more
efficient than the CO configuration

7 CONCLUSION AND FUTURE DIRECTIONS
In centralised systems, large numbers of data streams

can be sent to the data centres (clouds) for monitoring,
storage and analytics leading to network congestion, high
computational costs and latency concerns. Current ap-
proaches to compressive offloading involves deploying a
fixed compression model which does not adapt to changing
QoS. We proposed an automated QoS-aware orchestrator
that selects and deploys trained deep learning models for
data compression at the edge in real time. The orchestrator
(Section 4) has been initialised by compression learning
of a pool of autoencoder models. The models are defined



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING , VOL. XX, NO. XX, MONTH YEAR 15

Fig. 15: Total time cost for compression, decompression, and processing for total frames = 10, 50 and 100

within a neural architecture search space and mapped to
QoS in a modularised manner. The search space has been
parametrised by the latent space dimensions of a stacked au-
toencoder. The search strategy involves a narrowed search
over the neural architectural space, thereby reducing the
computational cost of searching through the entire space by
up to 89% while meeting the desired performance goals. It
takes advantage of the redundancy in features to reduce the
feature space.

The edge-enhanced configurations we proposed for
compressive offloading are based on modifications of au-
toencoders to address the possible scenarios of edge-cloud
collaboration, namely EdgeCompress-CloudDecompress
and EdgeCompress-Only. The latter eliminates the addi-
tional computational cost of decompression and reduces
processing cost by up to 30%. An experimental platform was
set up on Microsoft Azure to demonstrate how the edge-
enhanced configurations perform for the system require-
ments such as accuracy, scalability, latency and bandwidth
as compared to the baseline centralised system configura-
tion. The proposed system achieves up to 99% reduction in
data size within acceptable performance. In addition, the
data transfer cost was saved by up to 70% for the same
amount of raw data and the system took 32% shorter time
to complete the analytics. Although model learning can
be performed offline in some environments, it can be pro-
hibitive in distributed IoT systems due to data transfer costs,
privacy and low latency requirements. In the future, we aim
to enhance the capacity of large-scale streaming systems
to support near real-time analytics via distributed learn-
ing. The edge-enhanced distributed learning system will
support fully unsupervised systems that perform analytical
tasks in real-time such as anomaly detection and clustering
through analysing the difference between local and global
models. Rather than sending data across the network, the
data stays on the edge for privacy and real-time actuation.
We believe that such systems will enable many practical
real-time applications in IoT streaming systems where low-
latency analytics are needed and where useful labels are rare
or extremely difficult to collect. Future work will involve
exploring dynamic tuning of autoencoders in the cloud and
edge environments. Although we simplify the problem by
limiting hyperparameter optimisation to the latent space
dimension, other architectural hyperparameters can also be
tuned (e.g., convolution degree and channel number), which

affect compression ratio and overall performance.
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