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Abstract

Seasonal rainfall forecasts support early preparedness. These forecasts are typically dis-

seminated at Regional Climate Outlook Forums (RCOFs), in the form of seasonal tercile

probability categories—above normal, normal, below normal. However, these categories

cannot be related directly to impacts on terrestrial water stores within catchments, since

they are mediated by non-linear hydrological processes occurring on fine spatiotemporal

scales, including rainfall partitioning into infiltration, evapotranspiration, runoff and ground-

water recharge. Hydrological models are increasingly capable of capturing these processes,

but there is no simple way to drive such models with a specific RCOF seasonal tercile rainfall

forecast. Here we demonstrate a new method, “Quantile Bin Resampling” (QBR), for pro-

ducing seasonal water forecasts for a drainage basin by integrating a tercile seasonal rain-

fall forecast with a hydrological model. QBR is based on mapping historical quantiles of

basin-average rainfall to historical simulations of the water balance, and circumvents chal-

lenges associated with using climate model output to drive impact models directly. We eval-

uate QBR by generating 35 years of seasonal reforecasts for various water balance stores

and fluxes for the Upper Ewaso Ng’iro basin in Kenya. Hindcasts indicate that when input

tercile rainfall forecasts have skill, QBR provides accurate water forecasts at kilometre-

scale resolution, which is relevant for anticipatory action down to village level. Pilot opera-

tional experimental water forecasts were produced for this basin using QBR for the 2022

March-May rainfall season, then disseminated to regional stakeholders at the Greater Horn

of Africa Climate Outlook Forum (GHACOF). We discuss this initiative, along with limita-

tions, plans and future potential of the method. Beyond the demonstrated application to

water-related forecasts, QBR can be easily adapted to work with any rainfall-driven impact

model. It can translate objective tercile climate probabilities into impact-relevant water bal-

ance forecasts at high spatial resolution in an efficient, transparent and flexible way.
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1 Introduction

Nearly 20% of the world’s population live in areas of high or extremely high water insecurity

[1], affecting lives and livelihoods in ways that are especially acute in the developing world [2].

Dryland regions have an inherently higher risk of water scarcity due to low annual rainfall

totals and high atmospheric evaporative demand, so small deviations in seasonal totals and

increases in interannual variability can quickly lead to drought conditions. Early warning of

water insecurity can support mitigation of drought impacts on dryland communities and trig-

ger preparedness activities (such as through the Forecast-based Financing protocol of the Red

Cross e.g. [3]). These activities might include distribution of drought-tolerant seeds, destock-

ing of livestock or provision of cash transfers to vulnerable households in advance of anoma-

lous dry periods [4, 5]. To maximise the potential for preparedness, early warnings should

have as much lead time as possible; seasonal climate forecasts offer long lead times compared

to weather forecasts, often available months ahead of the start of a season.

Seasonal climate forecasts are disseminated via Regional Climate Outlook Forums

(RCOFs), that meet multiple times per year. These RCOFs were developed by the World Mete-

orological Organization (WMO) in the 1990s in conjunction with National Meteorological

and Hydrological Services (NMHSs) and are focused on the delivery of climate outlook prod-

ucts that are used by a wide range of organisations to plan responses to climate hazards. In

RCOFs, forecasts of seasonal total rainfall after downscaling are issued at a coarse spatial reso-

lution (30–50 km), which may be suboptimal for many decision-making contexts, limiting the

spatial precision of targeted interventions. For instance, rehabilitation of boreholes may be

undertaken in anticipation of a poor season to protect water security during times of water

stress. However low spatial precision of expected impacts affects ability to deploy limited

resources in a concentrated manner. Providing this spatial precision requires taking account

of the processes controlling partitioning of rainfall into surface and subsurface water stores,

which are non-linear in time and space and are highly dependent on the topographic, soil and

other basin characteristics. As it stands, seasonal total rainfall forecasts do not directly provide

useful information about available water for specific locations e.g., soil moisture for crop

growth, streamflow or groundwater for drinking or irrigation. Translating climate forecasts

into water balance metrics at high resolution with more relevance to people’s lives and liveli-

hoods is key to the development of people-centred multi-hazard early warning systems [6]).

To provide more decision-relevant information, dynamical climate model output can be

used to directly drive impact models. This method has been used to generate forecasts of

hydrological variables such as soil moisture [7] or streamflow [8], but this approach faces sev-

eral issues. Biases in mean total seasonal rainfall, daily rainfall distribution, and spatial pattern

of teleconnections may induce errors in grid-point output from climate models which are

compounded in turn within impact models. Spatial and temporal downscaling may also be

required to generate input data at the appropriate scales, which has been shown to degrade

forecast skill [9]. Initial conditions for the impact model must also be generated at some

computational expense, using computationally intensive techniques such as data assimilation.

None of these challenges is insurmountable [7]. However, climate model biases may remain

uncorrected and significant time and computing resources are required to obtain downscaled

climate forecasts for generating real-time operational forecasts and reforecasts, which may be

unfeasible for actors with limited technical capacity.

Even if all the challenges associated with driving models with dynamical climate model out-

put are met, many seasonal forecasts do not provide the necessary input variables required to

drive an impact model. One example is a statistical forecast (e.g., [10, 11]), predicting seasonal

rainfall total based on historical relationships with large-scale predictors. No prediction of
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daily variability typically accompanies such a forecast. Another ubiquitous example comes

from RCOF forecasts, on which many NMHSs base their own forecasts. For example, forecasts

for the Greater Horn of Africa Climate Outlook Forum (GHACOF) are produced by post-pro-

cessing and spatially calibrating seasonal total output from dynamical climate models, to pro-

vide probabilities of seasonal total rainfall falling in each of three terciles: above normal,

normal, below normal [12]. This processing is done in such a way that it does not generate

accompanying daily rainfall data that is consistent with the tercile forecasts. Given the ubiquity

of RCOF forecasts carried out in this manner, it would be advantageous to be able to link a

particular tercile forecast to hydrological impact models that operate at high spatiotemporal

resolution.

In this paper we present a new method, “Quantile Bin Resampling” (QBR), which is used

here to link GHACOF tercile forecasts with a process-based, high-resolution dryland hydrol-

ogy model. QBR is parsimonious and technically much simpler than driving an impact model

with high frequency seasonal forecast data, and it requires no bias correction or downscaling

of climate model output. The resulting forecast is entirely consistent with the tercile seasonal

climate forecast used to create it, whilst remaining faithful to physically realistic high frequency

hydrometeorological processes and their interactions with the land surface. It provides sea-

sonal outputs of multiple water balance components at kilometre-scale resolution (the native

resolution of the hydrological model).

In the next section we describe QBR and the dryland hydrology model employed here,

along with other methodological approaches. In section 3 we present an evaluation of the skill

of QBR-based forecasts for producing hydrological forecasts over a basin in Kenya. We subse-

quently describe the release of pilot water balance forecasts at GHACOF60 in February 2022

in section 4. Finally in sections 5 and 6 we conclude by discussing the limitations of this

approach, describe plans for development of QBR, and outline some potential applications of

the method.

2 Methodology

We use QBR to link tercile rainfall probabilities with output from a recently published hydro-

logical model, DRYP 1.0 [13], designed specifically for partitioning of the water balance in

dryland catchments. Below, we describe the essential aspects of the DRYP model, the QBR

methodology and finally our forecast verification strategy.

2.1 DRYP: A hydrological model created for drylands

DRYP has been designed to estimate the water balance with particular emphasis on dryland

environments, where pre-existing models have poor capability in resolving water fluxes and

stores that are faithful to the underlying hydrological processes [13]. Partitioning of rainfall

into the water balance in drylands is highly dependent on key processes occurring at or near

the land surface on small spatio-temporal scales. DRYP simulates these hydrological processes

(such as infiltration-excess overland flow, transmission losses and focused groundwater

recharge) and is designed to be run at high spatio-temporal resolution, to capture the hydro-

logical dynamics associated with brief and spatially restricted intense rainfall events. DRYP is

parsimonious and designed for use in data-poor settings, where only limited calibration is pos-

sible. The model uses spatial fields of sub-daily rainfall and potential evapotranspiration (PET)

as input, along with various input layers representing land surface properties such as topogra-

phy, vegetation and soil characteristics. Evaluation of the model has demonstrated skill in

quantifying the main components of the dryland water balance [14].
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A historical DRYP simulation for the Upper Ewaso Ng’iro basin of central Kenya [14] was

used here as a testbed for QBR. This catchment is characterised by humid conditions in its

headwaters near Mount Kenya, resulting in evapotranspiration losses under energy-limited

conditions, and the development of largely perennial streams with significant groundwater

contribution to baseflow. However, the lower part of the basin is dominated by arid and semi-

arid climatic conditions, ephemeral streams, and focussed groundwater recharge processes

often occur via transmission losses from streams. The boundary of the basin and accompa-

nying shapefile was derived from the NASA SRTM dataset [15].

As described in detail by [14], a historical simulation was produced by running DRYP at a

3-hour timestep, and at 1-km spatial resolution. Historical rainfall forcing at 0.1o spatial reso-

lution was taken from 3-hourly MSWEP v2.8 [16] and hourly PET at 0.1o from hPET [17].

Forcing data were interpolated to the model resolution (1 km) using a bilinear method. Simu-

lations were carried out for the period 1980–2016. However, the QBR forecast analysis was

performed using only the period 1982–2016, as the first two years were used for model spin

up. Model outputs characterising the water balance were extracted as the basis of the QBR

forecast generation method. These include seasonal total actual evapotranspiration (AET),

seasonal average soil moisture and seasonal total potential groundwater recharge. Potential

groundwater recharge here is defined as the amount of water draining below the root zone of

any model grid cell (diffuse recharge) or percolating below the riparian zone along channels

(focused recharge). Additionally, the seasonal average of the commonly used water require-

ments satisfaction index (WRSI, [18], was calculated as the ratio between estimated AET and

input PET. Finally, a metric of seasonal flood hazard was estimated for all cells along the river

network defined in the model by calculating the number of days in each season in which

streamflow exceeded the 99th percentile level (estimated from all flow days in the historical

simulation).

2.2 Quantile bin resampling

We used the observation-driven historical simulation from DRYP described above (hereafter,

DRYP-obs) as a basis for producing hydrological forecasts with QBR. Here we demonstrate

the method using tercile seasonal rainfall probabilities as input, such that the results are rele-

vant to the transformation of the GHACOF seasonal rainfall forecast into hydrological (water

balance) forecasts.

Philosophically, QBR is like the concept of analogue forecasting [19], in which the current

climate state is matched to similar states in the past, and the regional climate impacts in this

historical subsample are used to forecast future conditions. With QBR, historical model out-

puts are categorised by quantiles of seasonal rainfall totals associated with that season (e.g.,

upper, middle or lower tercile). Historical hydrological outcomes can then be grouped accord-

ing to these categories (Fig 1, steps 1 and 2). This mapping of rainfall quantiles to historical

model simulations (quantile bin) thus provides a plausible set of hydrological outcomes associ-

ated with each tercile.

Once a quantile bin is produced, we can transform probabilistic forecasts of basin-average

rainfall quantiles into a hydrological forecast ensemble of any size. This is done by resampling

(with replacement) from each quantile subset, where the number of samples is chosen to be

proportional to the input forecast probability. For example, a 10-member hydrological forecast

ensemble can be generated from a tercile forecast of 60/30/10% upper/middle/lower terciles by

resampling 6/3/1 members from each of the tercile subsets (Fig 1, part 3). Large ensembles can

thus be easily generated, allowing for more robust representation of all members within each
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quantile subset. In the following analysis, we resample from the quantile bin to generate

100-member ensembles.

QBR is applied here at the scale of a hydrological basin. Whilst spatially explicit hydrologi-

cal simulation is a key feature of the output, the method is only designed for input rainfall that

does not have spatial structure, i.e. basin-average seasonal forecast probabilities. QBR thus

assumes homogeneous climate forecast anomalies across the domain. This is reasonable for a

basin small enough to experience similar climate forcing. For extremely large (e.g., trans-

boundary) basins this assumption may not be realistic, and a different approach may be

required. However, predictable seasonal signals arising from large-scale forcing tend to be

homogeneous at relatively large scales, at least (e.g., Fig 4 in [20]). The Upper Ewaso Ng’iro

basin has an area of approximately 15 000 km2, which is slightly bigger than a 1-degree grid

box, the scale at which disseminated seasonal forecast output is typically available. We consider

the assumption of a homogenous seasonal forecast signal over this basin to be reasonable.

2.3 Forecast evaluation

2.3.1 Evaulation strategy. Any quantile forecast can be transformed with the quantile bin

into a hydrological forecast ensemble. This ensemble can in turn be used to estimate the

Fig 1. Visualisation of the QBR method. Showing the three key steps in the method. Firstly historical hydrological outcomes are estimated (1), which come here from

DRYP-obs, although they could be drawn from a long observational record. Next, these historical simulations are characterised according to the quantiles (in this case,

terciles) of basin-average rainfall, to produce a quantile map (2). Finally a hydrological forecast ensemble is generated by resampling from the quantile map (3). An

ensemble size of N = 10 is illustrated, but in practice a sufficiently large ensemble size should be chosen such that all quantile bin members are proportionally present).

Once the hydrological forecast ensemble is created, probabilities of any hydrological ‘event’ (any variable of interest) can be calculated from the proportion of ensemble

members in which that event occurs.

https://doi.org/10.1371/journal.pclm.0000138.g001
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probability of crossing any defined hydrological threshold by calculating the proportion of

hydrological ensemble members lying above or below that threshold.

Before relying on this new forecast, evaluation of this method and its products is essential.

The lack of long-term hydrological records at sub-basin scale can present a challenge to evalua-

tion of forecast skill (where ‘skill’ simply refers generally to the ability of a forecast system to

anticipate observed variability). To move beyond this limitation and improve understanding

of the QBR method and potential forecast skill, we follow the 3-tiered approach for evaluation

of impact models driven by climate forecasts [21]. Tier-1 refers to evaluation of the input cli-

mate forecasts against climate observations. Tier-3 refers to evaluation of the forecast output

from a model driven by climate forecasts against real observations of the target variable (for

instance, long records of streamflow): a gold standard, but often hampered by lack of verifica-

tion data. Tier-2 provides an intermediate test, where the output forecasts from the impact

model driven by climate forecasts are evaluated against historical simulations produced by that

same model driven by historical meteorological observations. In our case Tier-2 involves eval-

uating QBR forecasts (driven by some quantile rainfall forecast probabilities) against DRYP-

obs (driven by historical climate data).

If DRYP-obs accurately captures real world hydrological variability, then skill found with

Tier-2 evaluation will be representative of Tier-3 (i.e., “real-world”) skill. For many river basins

there are insufficient data records to confirm this assumption robustly. As a proxy, historical

DRYP simulations have been shown to accurately represent the main components of the dry-

land water balance in a data-rich dryland basin [13]. Beyond this, even with significant uncer-

tainty in the relationship between DRYP-obs and real-world hydrology, Tier-2 verification still

provides a useful “stress test” of the QBR methodology for water forecasting. By comparing the

Tier-2 evaluation of QBR forecasts produced with differing levels of input skill, we can test if

the output performs as expected: does higher-skill input (accurate input rainfall forecasts)

result in higher-skill output?

2.3.2 Using the SEAS5 hindcast as a proxy for GHACOF forecast skill. Our goal here is

to estimate potential skill from the GHACOF seasonal forecast for hydrologic forecasting. The

GHACOF forecast is coordinated and disseminated by the IGAD Climate Prediction and

Application Centre (ICPAC); the World Meteorological Organisation’s provider of climate

services for the Greater Horn of Africa. Although GHACOF seasonal forecasts have been

archived since their incipience in 1998, the method of production significantly changed in

2019, from a so-called consensus forecast to an “objective” methodology. The new method is

better documented, more transparent and repeatable, supporting a more widely accepted fore-

cast. Therefore, we decided to avoid using the archive of forecasts before 2019, which may not

necessarily be a good indication of forecast skill. Instead, and in order to use the full range of

DRYP-obs data, we use reforecasts from the European Centre for Medium-Range Forecasts

(ECMWF) seasonal model, SEAS5 [22], as a proxy for the potential skill of the GHACOF fore-

cast. SEAS5 is a key model used in production of the GHACOF forecast (before and after

2019), and internal ICPAC evaluation indicates it is one of the most skilful models for the

region. We therefore assume that SEAS5 represents a reasonable indication of likely GHACOF

forecast skill. A 25-member SEAS5 hindcast is available from 1981 to present, allowing for the

assessment of reforecasts covering the entire DRYP-obs period. Here we calculate seasonal

rainfall totals from all members across the SEAS5 hindcast and calculate tercile thresholds

across the Ewaso Ng’iro. These thresholds are then used to convert the ensemble hindcast into

probabilities, where the percentage of ensemble members above the upper and below the

lower tercile threshold provides the probability of upper and lower tercile seasonal rainfall.

2.3.3 Generating benchmark hindcasts. We evaluate the potential of a SEAS5-driven

hydrological forecast by generating QBR hindcasts using DRYP-obs. Hindcasts are created for
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the two main seasons of the region—the long rains (March to May, hereafter MAM) and the

short rains (October to December, OND). For each season, a 100-member hydrological fore-

cast ensemble is created for all years in DRYP-obs (1982–2016). The ensemble for each year is

resampled based on a triad of tercile rainfall probabilities arising from the SEAS5 hindcast for

that year.

Alongside the SEAS5 QBR hindcast, we created two benchmark hindcasts: “perfect” and

“climatology”. The first, “perfect”, is created for each historical rainfall season using a forecast

probability of 100% for the actual observed tercile category. If QBR works as intended, we

expect this hindcast to show the highest skill because the forecast has perfect knowledge of pri-

ori which tercile of rainfall occurred. The skill achieved by the perfect forecast then represents

the upper limit of impact forecasts produced by the QBR method based on terciles. Any fore-

cast errors will not arise from uncertainty in the specification of the rainfall tercile, but instead

can be attributed to the simplification of all spatiotemporal variability in meteorological forc-

ing to the tercile of seasonal basin-average rainfall.

The second benchmark hindcast, “climatology”, is produced by inputting a forecast of the

climatological frequency of each tercile (i.e., 33/33/33% upper/middle/lower tercile), for all

seasons. This represents a lower bound on impact forecasting skill, where we have no certainty

about whether the rainfall fell in a particular tercile (lower third, middle third, upper third).

We expect no skill from the QBR method based on the “climatology” hindcast, as the input

forecast probabilities do not change from one year to another. Output probabilities should be

reliable (unbiased), but they will show no variability from season to season.

Skill of each hindcast for each variable is assessed with the hindcast ensemble mean correla-

tion against DRYP-obs. This is assessed for each 1-km grid cell (hereafter, pixel) in the test

basin indicating the level and spatial variability in the association between forecast signals and

observed variability. Statistical significance of correlations is calculated at the 95% level using a

t-test [23].

2.3.4 Probabilistic verification. We also carried out probabilistic verification, focusing

on the bias in forecast probabilities (reliability) and the interannual variability in issued proba-

bilities (sharpness). Probabilities are calculated based on a variable crossing a predefined

threshold (hereafter referred to as an “event”). These two characteristics are central to the real-

world utility of forecast probabilities for decision-making, as high reliability indicates that the

probabilities “mean what they say” and when higher forecast probabilities are issued the likeli-

hood of an event occurring in the corresponding observations is higher. High sharpness indi-

cates that forecasts are issued at a large range of probability levels and so have the capacity to

discriminate low risk from from high risk contexts.

Reliability diagrams [24] were used to evaluate reliability and sharpness, in which we pro-

duced separate diagrams based on seasonal forecast probabilities for three separate “events”

for each variable. The first two events are defined by one-in-three and one-in-five-year return

period thresholds respectively, calculated per pixel across DRYP-obs (the fraction of members

of the hydrological forecast ensemble breaching this threshold provides the forecast probabil-

ity). The third event is defined with a fixed threshold across all pixels, corresponding to a phys-

ical event specific to each variable. For example, the physical event for groundwater recharge is

defined as “greater than 0 mm”. Full details of the probabilistic verification methodology and

results are provided in S1 and S2 Texts respecitvely. For brevity we only report headline find-

ings in the main manuscript and provide a full dissection of probabilistic verification results in

supplementary material for particularly interested readers.

Results are presented and discussed for MAM and OND, for which GHACOF forecasts are

issued in February and August. We compare verification for the two benchmark hindcasts
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with verification based on SEAS5 hindcasts for each respective season at the time of the GHA-

COF (i.e., 1-February forecast for MAM the 1-August forecast for OND).

3 Forecast evaluation results

Ensemble mean correlation demonstrates the ability of a forecast method to reproduce

observed interannual variability. Correlation plots for the Ewaso Ng’iro basin are shown in

Figs 2 and 3 for MAM and OND, respectively. The skill ranking of the different forecasts fol-

lows expectations. When “perfect” terciles are used as input, the output shows the highest skill.

Forecast skill with SEAS5 input is lower, yet it is significantly higher than the “climatology”

expectation (where all terciles are equally probable).

With “perfect” tercile forecasts as input, different spatial patterns of correlation between

hindcast and observed outputs can be seen in each water balance variable. Forecasts of ground-

water recharge for MAM (Fig 2E) shows highest skill in the mountainous southeast, with pat-

chy areas of zero skill across the northern half of the basin. Forecasts of soil moisture, AET and

WRSI (Fig 2F–2H) all show higher skill across the basin, with slightly reduced skill in the

south. Flood hazard forecasts show correlation of over 0.8 for most streams (it can only be

measured along channels), with skill below statistical significance in the east of the basin.

These patterns in water balance variables are broadly consistent for OND (Fig 3F–3J), although

areas of zero correlation for groundwater recharge are located primarily in the west of the

basin, whilst the other variables show higher correlations overall compared to MAM.

These differences in predictability are related to the underlying interannual variability in

DRYP-obs. In the limit case where a variable shows zero interannual variability, the correlation

Fig 2. Ensemble mean correlations for MAM. Maps of ensemble mean correlation shown for:recharge, soil moisture, AET, WRSI

and flood hazard (left to right), for each hindcast type (top to bottom). Correlations below 95% significance are masked (white).

https://doi.org/10.1371/journal.pclm.0000138.g002
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is, by definition, zero—there are no anomalies to predict. Very low levels of variability may

arise from “noise”, that is, fluctuations which are unpredictable on a seasonal scale. Con-

versely, high predictability is likely to be associated with greater interannual variability in the

historical record. To demonstrate this, maps of standard deviation across all DRYP-obs years

for MAM and OND are shown in S1 and S2 Figs. Comparison with the “perfect” correlations

in Figs 2 and 3 shows a consistent pattern: areas where interannual variability is low also show

the lowest correlation values. In OND the northwest of the basin has very low interannual vari-

ability in recharge, whilst the southeast margins have low interannual variability for soil mois-

ture, AET and WRSI (S3 Fig). All these regions show lowest magnitude of correlation for each

variable respectively; generally, below statistical significance (Fig 3). For MAM the area of low

interannual variability in recharge is much more extensive compared to OND and reaches

across to the east of the basin (S2 Fig, panel A): this is reflected in low correlations stretching

across the same region (Fig 2F). Similarly, to OND, MAM variability of AET and WRSI is also

low in the southeast of the region, and low correlations are also seen here for these variables.

Flood hazard shows lowest variability in the east during MAM (S2 Fig, panel E); perfect fore-

casts also show below-significant correlations here (Fig 2J). This indicates a strong association

between low interannual variability and low forecast skill. On the other hand, high interannual

variability does not necessarily lead to high skill; the source of large year-to-year fluctuations

may not arise from the predictability of the input rainfall forecast.

QBR driven by SEAS5 shows similar spatial patterns of ensemble mean correlation to “per-

fect” tercile forecasts for across all variables, though with lower magnitudes (Fig 2A–2E). For

example, significant correlations for MAM recharge occur only in patchy areas across the

basin. Correlations for soil moisture, AET and WRSI are statistically significant across most of

Fig 3. Ensemble mean correlations for OND. Maps of ensemble mean correlation shown for:recharge, soil moisture, AET, WRSI

and flood hazard (left to right), for each hindcast type (top to bottom). Correlations below 95% significance are masked (white).

https://doi.org/10.1371/journal.pclm.0000138.g003
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the basin, with lower values in the southeast. Flood hazard forecasts are statistically significant

only in some streams in the northwest. Similarly, skill for SEAS5 OND (Fig 3A–3E) shows the

same spatial pattern as “perfect” forecast skill, with overall higher levels of skill compared to

SEAS5 MAM. Probabilistic verification also demonstrates a high consistency between the skill

of the input rainfall forecasts and the reliability and sharpness of the output water forecasts (S3

to S12 Figs). For both MAM and OND, inputting “perfect” tercile forecasts provides highly

reliable (low bias) and sharp (high year-to-year variability) forecasts, as expected, whilst input

of “climatology” forecast rainfall produces reliable probabilities with no sharpness. Results for

SEAS5 are broadly reliable, with more sharpness than climatology forecasts and less than per-

fect. Higher sharpness is found across all variables for OND compared to MAM, consistent

with the higher skill of input rainfall forecasts for the OND season. A more complete diagnosis

of probabilistic skill can be found in supplementary material.

The overall conclusions from the forecast evaluation are as follows. Firstly, the way in

which a basin-average rainfall tercile forecast is translated into water balance results in spatially

heterogenous skill in the water forecasts. This indicates the non-linear relationship between

seasonal rainfall totals and impacts on the water balance, further emphasising the need for

methods to translate rainfall into more relevant metrics which reflect variability in the water

balance. Secondly, the verification presented here demonstrates QBR to be robust, transform-

ing the level of forecast skill in inputs into outputs in an expected way. Thus, the use of QBR to

generate and release real-time water forecasts for MAM is validated for incorporation into the

GHACOF beginning in February 2022. This activity is discussed in the following section,

along with interpretation of results and potential limitations of the method.

4 Releasing a water forecast at GHACOF 60

The GHACOF objective seasonal rainfall forecast for MAM was issued by ICPAC at GHACOF

60 on February 17th 2022 [25]. The resulting rainfall terciles over the Upper Ewaso Ng’iro

basin were used to drive the QBR method and to produce water forecasts. The seasonal rainfall

forecast is shown in Fig 4, along with example output from our QBR water forecasts.

Broadly, the rainfall forecast indicates an increased chance of a wetter-than-average season

across most of the region (Fig 4A). Most of Kenya (including the Upper Ewaso Ng’iro) fall in

the defined “Zone I” region, where the probability of upper, middle and lower tercile seasonal

total rainfall was forecast at 50%, 25% and 25%, respectively. These were used with the QBR

method to produce forecasts for the five hydrological variables evaluated in this paper. For

each variable, maps were generated representing the forecasted probability of each tercile.

Along with these tercile forecasts, an additional forecast was produced for each variable sepa-

rately, corresponding to the probability of that variable falling above or below a physical

threshold for that season (see supplementary material for details on these physical thresholds).

Some examples of the resultant forecasts are shown in Fig 4B–4E. These explicitly show

how basin-average rainfall tercile forecast is translated differently into water balance forecasts,

dependent on location. For instance, Fig 4B shows that GHACOF forecast leads to enhanced

chance of above-normal WRSI across most of the region, particularly in the north, yet without

any enhanced signal in the mountainous south of the basin. Conversely, the GHACOF rainfall

forecast leads to increased chance of groundwater recharge across the south and in some areas

of the north (Fig 4C), but not for large areas of the basin where interannual variability in

recharge is historically low (S1 Fig, panel A).

From the verification of SEAS5, we expect the probabilities of water balance variables to be

reliable: higher probabilities accurately capture increased chance of the defined events. Corre-

lation analysis indicates low predictability in the southeast of the region for soil moisture and
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WRSI and across the central part of the basin (Fig 2A & 2D): consistent with this analysis, the

forecasts generated for MAM 2022 do not generate any strong forecast signal for these regions.

Examples of physical probability forecasts are shown in Fig 4C & 4D for probability of an

indicative “severe plant stress” threshold, taken as seasonal average soil moisture falling below

a quarter of the soil’s capacity (see supplementary methods for details), and for probability of

at least one extreme flow day, respectively. As expected, the water forecast suggests the wetter

mountainous region is not at risk of severe plant stress in terms of soil moisture, whilst this

probability is higher further north and east, with sub-basin variation in probability indicated

down to the native 1-km scale of the DRYP output. The flood hazard map indicates the

streams which are almost guaranteed to see at least one extreme flow day, along with those

where the probability is lower, but still significant.

These experimental forecasts have been piloted at the GHACOF60, presented to stakehold-

ers at a water and energy co-production session on February 16th and at a side event on the

17th of February 2022. We also included a participatory element to elicit feedback and stimu-

late discussion between stakeholders, inviting perspectives about the forecasts, their appear-

ance and formatting. Water forecasts of key water balance variables developed here for the

upcoming season, in addition to all 35 years historical simulations from DRYP-obs, have been

uploaded as layers on the East Africa Hazards Watch (EAHW) public GIS platform, which is

in development at http://hazardswatch.icpac.net/map/ea/ (an illustrative screenshot showing a

flood risk layer is shown in Fig 5, where the new forecasts are included under the “water secu-

rity” tab). EAHW aims to provide decision-ready information to support transnational

Fig 4. Translation of the MAM2022 GHACOF forecast to water forecasts using QBR. MAM 2022 forecasts produced at GHAOCF60 and disseminated at the

DOWN2EARTH side event on February 17th. (a) GHACOF objective seasonal rainfall forecast, with the upper Ewaso Ng’iro basin outlined in red. (b & c) Probabilities

of above normal (upper tercile) WRSI and recharge, (d) probability of seasonal average soil moisture falling in severe plant stress conditions and (e) probability that the

season will see at least one day of extreme flow.

https://doi.org/10.1371/journal.pclm.0000138.g004
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coordination and early action across borders. It allows comparison with other hazard layers to

improve the overall context and picture of forecast information delivered at the GHACOF.

The inclusion of QBR forecasts on the EAHW platform is a step toward enhanced decision-rel-

evant water security forecasts presenting various water balance variables. These will be devel-

oped further in collaboration with stakeholders as part of a co-production approach and

expanded for more basins and ultimately the broader region at future GHACOF events.

5 Discussion

The evaluation of QBR presented here used tercile forecasts based on SEAS5 to produce kilo-

metre-scale water forecasts. Results for a large basin in Kenya indicate that forecast probabili-

ties from the method are reliable across both seasons. OND forecasts achieve higher skill by

virtue of issuing a larger range of probabilities. This is despite OND forecasts being issued with

an earlier (one month) lead time than for MAM. This is consistent with understanding of dif-

ferences in seasonal forecast skill from dynamical models: predictions of MAM rainfall from

dynamical models are generally limited in skill, whilst OND is more skilful due to the strong

link to large-scale, predictable, climate modes (e.g. [26–29]).

Pilot forecasts based on the GHACOF seasonal forecast were produced for the MAM sea-

son 2022 and released in real-time as part of a stakeholder workshop at the GHACOF. These

water forecasts for the Ewaso Ng’iro basin, along with historical DRYP-obs data, have been

integrated into the East Africa Hazards Watch platform. The form of these forecasts has been

initially developed with ICPAC, and will develop further through continuous feedback with

stakeholders, working together to optimally tailor the GHACOF seasonal forecast for

Fig 5. Dissemination of water security information. A screen capture showing the dissemination of hydrological model output on the ICPAC East Africa Hazards

Watch (https://eahazardswatch.icpac.net/map/ea/). This particular layer shows flood risk from DRYP-obs, illustrating the number of days of extreme streamflow during

the record El Niño season of 2015. On the platform, these new layers can be found under the “Water Security” category on the left menu.

https://doi.org/10.1371/journal.pclm.0000138.g005
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decision-making. Prior research has argued for more engagement from such intermediate-

level stakeholders and users, which can lead to more robust development and assessment of

climate services outside of the traditional focus on end-user communities [30]. In parallel,

work is underway to set up the DRYP model for basins across the Greater Horn of Africa,

beginning with additional basins in Ethiopia and Somaliland. The ultimate vision is to extend

DRYP-based forecasts across the entire region, transforming the GHACOF seasonal forecast

into a regional water forecast at 1 km-scale, enhancing its relevance for water security. This is a

key step in the move from hazard forecasting to impact-based forecasting, transforming fore-

casts into a richer source of information to help decision makers take more informed and pre-

cise anticipatory action [31].

Verification of the QBR hindcasts demonstrate that even with a spatially homogeneous

rainfall forecast across the basin, predictability of impacts on sub-basin water stores is highly

spatially variable and highly dependent on the specific water balance variable. Our results indi-

cated interannual variability in water stores as a key factor controlling this potential predict-

ability, where low levels of historical variability limit the potential level of predictability. This

leads to an interesting question: why do seasonal averages for some water balance components

in certain regions show minimal year-to-year fluctuations, despite large variability in seasonal

rainfall? This has not been investigated further here, but this likely arises from an interaction

between local hydroclimatological processes and the land surface properties. In the case of the

Upper Ewaso Ng”iro, mountainous regions consistently receive large rainfall totals even in

“lower tercile” years, thus the lower bound on soil moisture and WRSI will be relatively high,

limiting the possible range of states (and therefore damping interannual variability). By con-

trast in the drier, hotter lowlands where potential evapotranspiration is consistently high,

groundwater recharge is rare (only occurring by focused recharge below channels) and tercile

seasonal total rainfall is not a strong predictor of modelled recharge. This spatial diversity in

the response of surface water to seasonal rainfall anomalies is not quantified in current sea-

sonal forecasts. Providing this insight represents part of the “added-value” of the QBR

approach, in the translation of seasonal outlooks into more decision-relevant metrics.

One potential challenge to QBR is that it does not capture any predictability from initial

conditions. Knowledge of anomalous antecedent conditions can add valuable information to

seasonal predictions, particularly where that anomaly persists for many months. Sources of ini-

tial condition predictability include snowpack accumulation and soil moisture [32]. However,

despite no inclusion of initial hydrological conditions prior to each forecast season, we still

find high skill in the forecasts. This may arise due to the highly modal nature of the dry and

wet seasons in the region: the start of the wet season forecast follows a persistent lack of rainfall

during the dry season, reducing water stores to the same low level by the start of most rainfall

seasons [33]. Start-of-season variability in surface water may offer limited predictability com-

pared to the subsequent seasonal rainfall total which will end up dominating hydrological

predictability. This is consistent with [32], where it is shown that streamflow forecasts made at

the time of year when moisture states are typically depleted show minimal added value from

knowledge of initial soil moisture conditions, and derive practically all hydrological forecast

skill at these times from the future boundary conditions (i.e., input rainfall following the initial

condition).

Another limitation of the method is that the set-up is fixed to link seasonal totals to statistics

of seasonal hydrology. This means that QBR cannot disaggregate outcomes over a time series

through the season. However, this problem might be overcome by updating the entire seasonal

forecast as the season progresses, for instance by using recomputed tercile rainfall forecasts

generated by combining observed rainfall to-date with a forecast of rainfall total for the

remainder of the season, in a similar approach as is used in the TAMSAT-ALERT approach to
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forecasting soil moisture [34]. Indeed, as the season approaches ICPAC release regular updates

after the initial GHACOF forecast release, and these can be used to update the QBR forecast

accordingly. QBR does not yet exploit any predictability offered by interannual variability in

temperature or more generally, PET. Temperature rises tend to lead to increased PET and

thereby decrease available water in surface stores, but potentially higher focused recharge due

to suppressed water tables in some parts of the basin [14]. Incorporating temperature forecasts

into the QBR methodology may thus offer potential to improve hydrological forecasts. Whilst

the association of hydrological outcomes with temperature is weaker than with rainfall, fore-

cast signals of temperature anomalies are generally higher than for rainfall, boosting their

potential value to hydrological predictability. The QBR approach could in theory incorporate

temperature forecasts by resampling from a two-dimensional matrix of seasonal total rainfall

and seasonal average temperature instead of rainfall alone. However, the 35 years of simula-

tions based on the observational record precludes this: division into three quantiles is reason-

able but into three-squared (accounting for both rainfall and PET) is not. We have plans to

address this limitation by creating synthetic long records of PET observations based on

observed records [17, 35] and using these to create a much longer record of plausible outcomes

using DRYP. This will also facilitate the use of forecast input based on smaller quantile bins,

such as quintiles or deciles.

It would be valuable to compare forecasts generated with QBR with alternative forecasting

methods, in order to understand and measure relative differences in performance. However to

our knowledge there are currently no other hydrological forecasting systems which are able to

producing kilometre-scale forecasts of the complete water balance (let alone those which can

be linked easily with tercile rainfall forecasts, and have reforecast data available). Thus it is cur-

rently not possible to make such a benchmarking. Along with forecasting methods based on

hydrological models, a benchmark forecast based on a simple statistical relation between sea-

sonal rainfall tercile and hydrological observations might be considered, however the lack of

availability of kilometre-scale long records of the water balance currently precludes this. How-

ever, the QBR method itself can be considered as a relatively simple statistical forecasting

method. Water balance forecasts generated through application of QBR are themselves a good

candidate to act as a future benchmark. Given that it is computationally cheap and simple to

implement, it would make a strong test of more computationally demanding kilometer-scale

forcasting methods.

The application of QBR presented here used DRYP, a dryland hydrological model. How-

ever, in principle QBR can link any process-based model of any complexity to any quantile-

based seasonal forecast. Indeed, an early precursor of this method was used to visualise the

uncertainty in the relationship between seasonal average climate and malaria risk (MacLeod

and Morse 2014). It could even use observational data to generate the quantile bins, providing

said data covers a sufficiently long period.

6 Conclusions

Here we have presented a new generalised approach (QBR) to link quantile rainfall forecast

probabilities with simulations from process-based impact models. QBR is applied to a basin in

Kenya to link seasonal tercile rainfall forecasts to a hydrological model which represents key

dryland hydrology processes. We have demonstrated the method to be robust, transforming

the level of forecast skill in inputs into outputs in an expected way. The main advantage of this

method is its simplicity and flexibility to any seasonal forecast, especially those without any

accompanying data at the required resolution to run process-based models (i.e. daily and/or

subdaily rainfall data). This is particularly relevant for statistical seasonal forecasts based on
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indices which can outperform dynamical model output (e.g. Funk 2020). It is useful even

when daily and sub-daily data are available, as it is much less computationally intensive than

alternative methods. QBR does not require any bias correction of input, initialization strategy

or downscaling and does not require any bespoke simulations to generate new forecasts at

high spatial resolution in real time. Development of QBR including QBR to target other cli-

mate impacts will support translation of tercile-based seasonal climate outlooks into impact-

relevant forecasts at high spatial resolution in a quick, transparent and flexible way.
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S1 Fig. Standard deviation of MAM DRYP-obs across 1982–2016.
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S2 Fig. Standard deviation of OND DRYP-obs across 1982–2016.
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S3 Fig. Reliability diagrams for MAM average soil moisture. Size of dots shows relative fre-

quency of each forecast probability occurring in the hindcast data. Showing verification for

probabilities of total recharge above the one in three and five year level and greater than 0mm

(left-to right). Results for each hindcast type are shown in the top to bottom rows.

(EPS)

S4 Fig. Reliability diagrams for MAM average recharge. Size of dots shows relative frequency

of each forecast probability occurring in the hindcast data. Showing verification for probabili-

ties of total recharge above the one in three and five year level and greater than 0mm (left-to

right). Results for each hindcast type are shown in the top to bottom rows.

(EPS)

S5 Fig. Reliability diagrams for MAM average AET. Size of dots shows relative frequency of

each forecast probability occurring in the hindcast data. Showing verification for probabilities

of total recharge above the one in three and five year level and greater than 250mm (left-to

right). Results for each hindcast type are shown in the top to bottom rows.

(EPS)

S6 Fig. Reliability diagrams for MAM average WRSI. Size of dots shows relative frequency

of each forecast probability occurring in the hindcast data. Showing verification for probabili-

ties of total recharge above the one in three and five year level and below 0.5 (left-to right).

Results for each hindcast type are shown in the top to bottom rows.

(EPS)

S7 Fig. Reliability diagrams for MAM flood hazard. Size of dots shows relative frequency of

each forecast probability occurring in the hindcast data. Showing verification for probabilities

of the number of seasonal extreme flow days above the one in three and five year level, and at

least one (left-to right). Results for each hindcast type are shown in the top to bottom rows.

(EPS)

S8 Fig. As S3 Fig, for OND.

(EPS)
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