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We report the domain analysis of the N-terminal region (residues 1–759) of the human cardiac ryanodine
receptor (RyR2) that encompasses one of the discrete RyR2 mutation clusters associated with catechol-
aminergic polymorphic ventricular tachycardia (CPVT1) and arrhythmogenic right ventricular dysplasia
(ARVD2). Our strategy utilizes a bioinformatics approach complemented by protein expression, solubility
analysis and limited proteolytic digestion. Based on the bioinformatics analysis, we designed a series of
specific RyR2 N-terminal fragments for cloning and overexpression in Escherichia coli. High yields of sol-
uble proteins were achieved for fragments RyR21–606�His6, RyR2391–606�His6, RyR2409–606�His6,
Trx�RyR2384–606�His6, Trx�RyR2391-606�His6 and Trx�RyR2409–606�His6. The folding of RyR21–606�His6 was
analyzed by circular dichroism spectroscopy resulting in a-helix and b-sheet content of �23% and
�29%, respectively, at temperatures up to 35 �C, which is in agreement with sequence based secondary
structure predictions. Tryptic digestion of the largest recombinant protein, RyR21–606�His6, resulted in
the appearance of two specific subfragments of �40 and 25 kDa. The 25 kDa fragment exhibited greater
stability. Hybridization with anti-His6�Tag antibody indicated that RyR21–606�His6 is cleaved from the N-
terminus and amino acid sequencing of the proteolytic fragments revealed that digestion occurred after
residues 259 and 384, respectively.

� 2010 Elsevier Inc. Open access under CC BY-NC-ND license. 
The ryanodine receptor (RyR) is the calcium release channel
responsible for excitation–contraction coupling in mammalian
muscle cells1. It is a huge homotetrameric protein with a molecular
weight of 565 kDa per subunit [1]. Approximately 90% of the RyR
polypeptide chain forms a bulky cytoplasmic domain that modulates
Ca2+ channel function. The remaining 10% (C-terminal region) con-
stitutes the transmembrane and the channel pore-forming regions
[2]. The RyR2 isoform is predominant in cardiac muscle, where it
plays a crucial role in providing the calcium for contraction by the
ythmogenic right ventricular
ergic polymorphic ventricular
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process of calcium-induced calcium release [3]. The N-terminal
and the central regions of the skeletal and cardiac ryanodine recep-
tor isoforms (RyR1 and RyR2) contain specific amino acid residues,
whose mutations cause malignant hyperthermia [4] and central core
disease [5] in skeletal muscle, and catecholaminergic polymorphic
ventricular tachycardia (CPVT1, [6]) or arrhythmogenic right ventric-
ular dysplasia (ARVD2, [7]) in cardiac muscle. These diseases have a
phenotypic signature suggesting a tendency to hyper-activation of
RyRs under certain conditions [8]. The unique distribution of these
mutation sites has led to the concept that interaction between do-
mains of the N-terminal and central region within the RyR may play
a key role in regulating channel opening [8,9]. Indeed, the addition of
short synthetic peptides corresponding to the mutation-prone re-
gions of RyR1 and RyR2 leads to increased activation of RyRs, sug-
gesting that the interaction between these two domains is
required for proper channel closure [9–11]. Consequently, defective
interdomain interaction has been hypothesized to be involved also
in the dysfunction of wild-type RyR2 channels in heart failure [12].
Recently, the tertiary structures of N-terminal domains of the rabbit
and mouse RyR1 (aa residues 1–210 and 9–205) [13,14], and the
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mouse RyR2 (aa residues 1–217) [14] were solved. The structures
contain MIR domains and adopt a b-trefoil fold, similar to IP3R.

Human cardiac RyR2 cDNA has been available for more than
15 years [2]. Due to the complex structure of this channel protein;
however, many functions of the discrete RyR2 domains, prepared
by recombinant techniques, have not been analyzed yet. The re-
combinant proteins are often used to obtain sufficient amount of
material for biological experiments. The many advantages of Esch-
erichia coli have ensured that it remains the expression system of
choice for high-level production of heterologous proteins [15]. In
general, E. coli is the preferred host for recombinant protein produc-
tion for structural studies [16,17]. E. coli is favored because it has
well characterized, relatively simple genetics and a rapid growth
rate [18]. However, a disadvantage of expressing foreign proteins
in E. coli is that these are often produced as insoluble ‘‘inclusion
bodies”. One way to reduce protein aggregation is due to self-asso-
ciation of the nascent polypeptide chains is to reduce the rate of
protein synthesis in E. coli by applying lower growth temperatures
[19,20]. The induction of gene expression at sub-optimal growth
temperatures helps to minimize inclusion body formation [21].
Other parameters that may influence protein solubility are culture
medium, time of induction, aeration and E. coli strain. Another suc-
cessful approach in expressing soluble recombinant proteins in
E. coli is the use of gene fusions. From a variety of structures avail-
able as fusion motifs, the E. coli proteins thioredoxin (Trx) and NusA
are frequently used. NusA was found by screening for proteins with
the highest potential for solubility when overexpressed [22].

Structural studies of the cardiac ryanodine receptor RyR2 based
on cryoelectron microscopy [23] showed that the protein consists
of several domains. Supposing that the arrhythmogenic mutations
in the N-terminal part of RyR2 destabilize the protein [12], our
strategy is aimed to analyze folding as well as the properties and
the structure of N-terminal domains of human wild-type RyR2 frag-
ments followed by comparison with mutated forms. Although the
structure of a short N-terminal fragment of the mouse RyR2 (1–
217) was solved recently [14], any human RyR2 fragment structure,
especially one containing the mutation-rich region (aa 400–450
[24]), is of immense importance due to its medical significance.

In the present study, we report the bioinformatics structural
prediction and consequent production of various recombinant hu-
man RyR2 fragments comprising the discrete domains present in
the N-terminal region in E. coli. These fragments were designed
on the basis of bioinformatics analysis and prediction of the sec-
ondary structure elements of the whole RyR2 protein. The expres-
sion level of the N-terminal RyR2 fragments was tested at a range
of temperatures and low-induction conditions to obtain soluble
and properly folded products. The RyR2 fragments were synthe-
sized either as authentic sequences fused at the C-terminus with
Table 1
Primer sequences used for cloning of RyR2 N-terminal fragments.

RyR2 fragment DNA sequence

RyR21–606�His6 F: 50CCCCATGGCCGATGGG
50CCGGATCCTTAGTGATGA

RyR21–223�His6 R: 50CCGGATCCTTAGTGAT
RyR21–247�His6 R: 50CCGGATCCTTAGTGAT
RyR21–382�His R: 50CCGGATCCTTAGTGAT
RyR2230–606�His6 F: 5’ GGCCATGGGTGGTGA
RyR2384–606�His6 Trx�RyR2384–606�His6 F: 50GGCCATGGGATCTATA
RyR2391–606�His6 Trx�RyR2391–606�His6 F: 5’GGCCATGGCTCATGAA
RyR2409–606�His6 Trx�RyR2409–606�His6 F: 5’GGCCATGGCGCATGAA
Nus�RyR21–606 F: 50GGGGATCCGGATGACG

R: 50CCGTCGACTTATCTTCC
Nus�RyR2230–606 F: 50GGGGATCCGGATGACG
Nus�RyR2409–606 F: 50GGGGATCCGGATGACG

F: forward; R: reverse; CCATGG, GGATCC and GTCGAC represent NcoI, BamHI and SalI r
reverse primer is not indicated, (**) was used.
an uncleavable His�Tag or as N-terminal fusions with NusA or
Trx. The constructs that exhibited a detectable level of protein
expression were analyzed for the presence of soluble recombinant
products. Proteins obtained from IMAC chromatography were
compared with those forming insoluble particles. The largest N-
terminal fragment of RyR2 (aa 1–606) was analyzed by circular
dichroism (CD) spectroscopy and by tryptic digestion that gener-
ated two discrete proteolytic products.
Materials and methods

Construction of expression vectors

Plasmid BT4 carrying the N-terminal cDNA sequence (aa 1–759)
[25] of the human cardiac muscle ryanodine receptor RyR2 (EMBL
accession no. X98330) served as a DNA template. Platinum Pfx
DNA polymerase (Invitrogen, Carlsbad, CA) and Taq DNA polymer-
ase (Promega, Madison, WI) were used for PCR amplification of
various fragments of interest and for introduction of the appropri-
ate restriction sites (Table 1). PCR products were purified using the
QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) and sub-
cloned into pET28a, pET32a and pET50b vectors (Novagen – Merck
Biosciences, Darmstadt, Germany). E. coli TG1 was used for cloning
and vector amplification. To all RyR2 fragments cloned into pET28a
and pET32a vectors, hexahistidine tags (His6) were added at the C-
terminus as an uncleavable fusion. Fragments cloned into pET50b,
with N-terminal NusA protein fusion, had two His6�Tags: one at the
N-terminus, before the NusA protein, and a second one between
NusA and the RyR2 fragment. The cloning strategy into pET28a
and pET32a used NcoI and BamHI restriction sites upstream and
downstream of the coding sequence, respectively. For cloning into
pET50b, BamHI and SalI sites upstream and downstream of the
coding sequence were used, respectively. All constructs were veri-
fied by DNA sequencing.

Protein expression screening

Medium-scale expressions of RyR2 fragments in E. coli BL21
(DE3) were performed in 100 ml Erlenmeyer flasks with 20 ml LB
medium supplemented with the respective antibiotics (30 lg/ml
of Kanamycin or 50 lg/ml Ampicillin) and inoculated to 1:100
dilution with over-night culture, grown at 30 �C. The cultivation
started at 23 �C. When OD600 reached �0.5–0.6, the temperature
was reduced to 17 �C and protein expression was induced by
10 lM IPTG. A parallel cultivation without IPTG induction was per-
formed as a negative control. After over-night cultivation, 1 ml of
media was used for expression analysis on SDS–PAGE. The rest of
GGCGAGGGCGAA* R:
TGATGATGATGTCTTCCATGTTTGTCTAAAAGTGAGATAATAG**

GATGATGATGATGTGCCT CACTTCCTGAGCTGATTGGGGCCAC
GATGATGATGATGGACAGT GAGACACTCGTCCATGTGTCCATGCAG
GATGATGATGATGCACGGA TTTCACGTCCACAGACTGGTAAGTAAG
TGTCCTCAGGTTGC
CAACGTAAGGCTATTATG
GGCCACATGGATGATGGC
GAATCACGCACAGCCCG
ACGACAAGATGGCCGATG GGGGGCGAGGGCGAA
ATGTTTGTCTAAAAGTGAG ATAATAGG
ACGACAAGGGTGGTGATGT CCTCAGGTTGCTG
ACGACAAGCAGCATGAA GAATCACGCACAGCCCG

estriction sites, respectively. If a forward primer is not indicated, (*) was used. If a
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the induced cells was pelleted by centrifugation (10,000g for
10 min at 4 �C), washed with 0.9% NaCl, frozen in liquid nitrogen
and stored at �80 �C.
Cell lysis, protein extraction and purification

For obtaining the soluble recombinant protein, the following
protocols were used:

(a) About 0.1 g of frozen cells (obtained from 20 ml of culture)
was homogenized in 500 ll of BugBuster Master Mix (Nova-
gen – Merck Biosciences, Darmstadt, Germany) Protease
inhibitor Mix B (Serva, Nordmark, Germany) and incubated
on ice for 30 min to obtain an optimal lysis of the cells.

(b) About 0.1 g of frozen cells homogenized in 500 ll of 50 mM
Tris–HCl (pH 8.0), 300 mM NaCl, 10 mM imidazole, 7 mM b-
mercaptoethanol containing protease inhibitor Mix B was
sonicated for 15 s, then 60 ll of 10% Triton X-100 was added
and stirred for 1 h at 4 �C. Insoluble cell debris (CD) was
removed by centrifugation (16,000g for 30 min at 4 �C).

Supernatant containing the proteins from the periplasm and
cytoplasm was applied to 100 ll of Ni-NTA His�Bind Resin (Nova-
gen – Merck Biosciences, Darmstadt, Germany) equilibrated with
50 mM Tris–HCl (pH 8.0), 300 mM NaCl, 10 mM imidazole, 7 mM
b-mercaptoethanol and mixed gently at 4 �C for 15 min. Then the
resin was collected by centrifugation (100g, 30 s) and washed with
500 ll of the above buffer. The bound recombinant protein was
eluted with 100 ll of elution buffer (50 mM Tris–HCl (pH 8.0),
400 mM imidazole, 7 mM b-mercaptoethanol) to obtain the solu-
ble protein (SP). The purity of the RyR2 fragments was checked
by SDS–PAGE. The presence of the monomeric form of RyR2 frag-
ments was determined by gel filtration on calibrated Superdex
75, Superose 6 and 12, HR10/30 columns (FPLC system, Pharmacia,
Sweden) equilibrated in 20 mM HEPES (pH 8.0), 0.1% Triton X-100,
7 mM b-mercaptoethanol.
Circular dichroism (CD) spectroscopy

CD spectra were recorded on an Aviv Model 215 spectropolar-
imeter (Aviv Biomedical Inc., Lakewood, NJ) equipped with a Pel-
tier thermostatted cell holder. Far-UV spectra (260–178 nm)
were collected in a 0.01-cm quartz cuvette at 4, 16, 20, 30, 35
and 40 �C at a protein concentration of �20 lM with 4 s accumula-
tion times per point at 0.2 nm intervals using a 1 nm bandwidth.
Near-UV spectra (340–250 nm) were collected at 4 �C in a 0.1 cm
cuvette (cprotein �80 lM) with 8 s per point/two scans at 0.2 nm
intervals using a 0.5 nm bandwidth. Buffer baselines recorded in
the same cell were subtracted, data were smoothed (Savitzky–Go-
lay algorithm, ±2 points), and normalized to mean residue elliptic-
ities [h]MRW. The instrument was calibrated with camphorsulfonic
acid [26].

To remove chloride ions, which strongly absorb at k < 195 nm,
the protein was dialyzed to 20 mM Tris�SO4, pH 8.0, buffer contain-
ing 100 mM NaF, 0.1% Tween-20 at 4 �C. Samples were measured
in the absence and presence of dithiothreitol (cfinal = 0.5 mM)
added 1 h before recording. Samples were kept on ice up to the
transfer into the pre-cooled cuvette. To test for any effect on the
secondary structure, far-UV spectra were recorded 30 min after
the addition of ATP (Sigma Aldrich, Germany; 3 mM stock solution)
to a 2.5 lM protein solution up to a 175 �molar excess of ATP.
Protein concentration was determined from the absorption at
280 nm assuming an extinction coefficient of
e280 = 75,860 M�1cm�1 based on the amino acid composition
[27]. CD spectra were deconvoluted for the secondary structure
content using the CDsstr algorithm [28] as implemented in the
Dichroweb server [29] with the SP175 reference data set [30].

Limited proteolysis by trypsin and chymotrypsin

For trypsin and chymotrypsin digestion, the soluble monomeric
recombinant fragment RyR21–606�His6 was used (1 mg/ml of pro-
tein dissolved in 50 mM Tris–HCl, (pH 7.5), 0.5% Triton X-100).
Trypsin and chymotrypsin (Promega, Madison, WI) were dissolved
in 50 mM Tris–HCl (pH 7.5) and used at a concentration of
0.01 mg/ml as recommended. The fragment RyR21–606�His6 and
added protease were mixed in a 2:1 ratio. Protease digestions at
25 �C lasting 5 and 10 min, respectively, for each enzyme was per-
formed. After digestion the reaction was stopped by adding an
equivalent amount of SDS sample buffer followed by boiling at
100 �C for 10 min. The products of proteolytic digestions were ana-
lyzed on 15% SDS–PAGE.

Immunodetection and N-terminal sequencing

For immunodetection of RyR2 fragments obtained after trypsin
and chymotrypsin digestion, 3–7 lg of the digested protein were
run on 15% SDS–PAGE and transferred to a 0.45 lm immobilon-P
transfer membrane (Millipore, Billerica, MA) in the transfer buffer
(10 mM NaHCO3, 3 mM Na2CO3, 20% methanol, pH 9.9) at 350 mA
(Mini Trans-Blot�, BioRad, Hercules, CA) for 55 min. The membrane
was immunoblotted with His�Tag Monoclonal Antibody (1:1000;
Novagen – Merck Biosciences, Darmstadt, Germany), followed by
Anti-mouse IgG peroxidase conjugate antibody (1:5000; Sigma,
Germany). The signals were detected on X-ray film (Kodak, USA)
using ECL™ (Enhanced Chemoluminiscence Western Blotting Sys-
tem, Amersham Biosciences – GE Healthcare, Piscataway, NJ)
according to the manufacturer’s instructions.

The N-terminal amino acid sequences of the proteolytic digests
obtained by trypsin were determined by Edman degradation using
the Procise� Protein Sequencing System (PE Applied Biosystems,
491 Protein Sequencer).
Results and discussion

Bioinformatics prediction of RyR2 domains in the N-terminal region

In this study we were interested in mapping the N-terminal re-
gion of RyR2, amino acids 1–759, which includes one of the three
mutation clusters associated with the heart diseases, ARVD2 and
CPVT1 [8], and in preparing efficient expression systems for the
production of soluble N-terminal RyR2 fragments. We combined
bioinformatics analysis with protein expression, solubility analysis,
CD spectroscopy, limited proteolysis and N-terminal amino acid
sequencing.

To find the putative individual structural entities in the N-termi-
nal region, we analyzed the whole RyR2 amino acid sequence using
the PFAM domain database [31]. The PFAM prediction indicated 14
domains in the RyR2 monomer. Three of them were localized in the
N-terminal region (aa residues 1–759) and were identified as In-
s145_P3_Rec, MIR, and RIH. At the C-terminal end of this region
(aa residues 670–759), part of a SPRY domain was also present
(Fig. 1A). The Ins145_P3_Rec domain was found in RyRs, where its
function is unknown [32], and in the inositol 1,4,5-trisphosphate
receptor (IP3R), in which it participates in forming the ligand bind-
ing suppressor region [33]. The RIH domain was found in RyRs and
IP3Rs. Structurally it is composed of a-helical and b-strand
segments. In the IP3R, this domain forms the binding site for inosi-
tol 1,4,5-trisphosphate [34]. In RyR2, the RIH domain was reported
to contain a leucine–isoleucine zipper between amino acid residues



Fig. 1. (A) Domain prediction in the N-terminal fragment (amino acid residues 1-759) of the human cardiac RyR2 receptor by Pfam. Pfam analysis of this RyR2 N-terminal
fragment indicates that it comprises an Ins145_P3_rec, MIR, RIH and part of a SPRY domain. Mutations of specific residues believed to be involved in ARVD2 and CPVT1 are
shown. LIZ (amino acid residues 554-585) represents the leucine-isoleucine zipper area. SPI and PP1 represent spinophilin and protein phosphatase 1, respectively. Areas for
LIZ, SPI and PP1 were adapted from Ref. [26]. (B) Secondary structure prediction of the N-terminal region (amino acid residues 1-759) of the human cardiac RyR2 receptor
(program JPRED). Amino acids involved in Ins145_P3_Rec, MIR, RIH and SPRY domains according PFAM are in green, red, yellow and magenta colors, respectively.
Interdomain regions are black. a-helices and b-strands are marked as purple bars and blue arrows, respectively. Areas rich in leucines and isoleucines are labeled with
asterisks. The trypsin cleavage sites obtained by directed proteolysis are marked with black triangles.
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554 and 585 that mediates binding of the phosphatase PP1 via the
spinophilin targeting protein [35]. MIR domains, usually consisting
of several MIR motifs, were found in several proteins: mannosyl-
transferase [36], IP3R [33,34], RyRs [32], eukaryotic stromal cell-de-
rived factor 2 [37] and Chlamydia trachomatis protein CT153 [24]. In
PMT1 mannosyltransferases, MIR motifs are located in the luminal
loops of the enzyme and are essential for transferase activity [35].
The MIR motif consists of �50 residues, and folds into the so-called
b-trefoil fold [38], a closed beta-barrel structure with hairpin trip-
lets and internal pseudo-threefold symmetry [33]. In the IP3R, the
first two of the b-trefoil motifs were found to belong to the ligand
binding suppressor region (INS145_P3_Rec, [34]), while the latter
two (belonging to the MIR domain) formed a part of the ligand
binding region [33]. Similar b-trefoil motifs were predicted to be
present in the N-terminal region of the RyR1 isoform [34], and later
found in the crystal structure of the RyR1 N-terminal domain [13],
although the level of sequence similarity between IP3R and RyR is
relatively low.

The above mentioned domains were further refined by predic-
tion of secondary structure elements in JPRED [39], shown in
Fig. 1B, and by amino acid sequence comparison with IP3R
[33,34]. This prediction has clearly shown that there are two sub-
regions, the first one containing mainly b-strands and involving
domains Ins145_P3_rec and MIR, and the second one containing
mainly a-helices and involving a large part of the RIH domain
and the amino acids immediately preceding it.

Evaluation of expression of RyR2 fragments in E. coli

In spite of the clear PFAM prediction of RyR2 N-terminal do-
mains, we decided to design several constructs covering the pre-
dicted domains with various alternatives at their N and C
termini, considering the secondary structure elements and the
known structure of the related IP3R domains (Table 2). All frag-
ments were designed not to disrupt the predicted secondary struc-
ture elements. In six fragments, the methionines present in the
RyR2 1–759 sequence were used as the starting residue.

The fragments RyR21–223�His6 and RyR21–247�His6 represent the
Ins145_P3_Rec domain. The fragment RyR21–382�His6 contains the
Ins145_P3_Rec and MIR domains. The fragment RyR2230–606�His6

involves almost complete MIR and the core of RIH domains. The
largest N-terminal RyR2 fragment RyR21–606�His6 involves all three
putative N-terminal domains. The third domain, RIH, suggested by
PFAM starts with Ser451. However, this residue is in the middle
of a predicted a-helix, which is preceded by another a-helix and
a loop (Fig. 1B). It appeared that a separate domain may start



Table 2
Constructs of N-terminal RyR2 fragments and their expression levels.

Construct RyR2 fragments Calculated MW (kDa) Vector Cloning site Protein expression

1 RyR21–223�His6 25.4 pET 28a NcoI, BamHI �
2 RyR21–247�His6 27.9 pET 28a NcoI, BamHI ++
3 RyR21–382�His6 43.3 pET 28a NcoI, BamHI �
4 RyR21–606�His6 68.6 pET 28a NcoI, BamHI ++
5 RyR2230–606�His6 43.5 pET 28a NcoI, BamHI �
6 RyR2384–606�His6 26.0 pET 28a NcoI, BamHI �
7 RyR2391–606�His6 25.2 pET 28a NcoI, BamHI ++
8 RyR2409–606�His6 23.2 pET 28a NcoI, BamHI +++
9 Nus�RyR21–606 128.6 pET 50b BamHI, SalI ++

10 Nus�RyR2230–606 104 pET 50b BamHI, SalI ++
11 Nus�RyR2409–606 84.5 pET 50b BamHI, SalI �/++*

12 Trx�RyR2384–606�His6 43.3 pET 32a NcoI, BamHI +++
13 Trx�RyR2391–606�His6 42.5 pET 32a NcoI, BamHI +++
14 Trx�RyR2409–606�His6 40.5 pET 32a NcoI, BamHI +++

Quantification of expression: � undetectable expression level, ++ 1–5 mg/l g of expressed cells, +++ more than 5 mg/1 g of expressed cells. The amount of the protein was
determined after IMAC purification.
* High expression of Nus�RyR2409–606 was detected only with a high concentration of IPTG (0.5–1 mM) used for protein induction. With a low IPTG concentration (10–
100 lM), no expression was detected.
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before the b-strand. Based on this, we designed three fragments:
RyR2384–606�His6, RyR2391–606�His6 and RyR2409–606�His6.

The constructs of the N-terminal RyR2 domains cloned and ex-
pressed in the pET28 vector produced products with an authentic
N-terminus preceded with a methionine and terminated with
His6�Tag. We also expressed RyR2 fragments in N-terminal fusion
with thioredoxin or NusA protein, which are known to significantly
increase the solubility of the recombinant protein [40]. Expression
of the recombinant RyR2 fragments was detected by SDS–PAGE
from the cell lysate, as shown in Table 2.

Evaluation of the expressed products showed that nine out of
14 N-terminal RyR2 constructs (nos. 2, 4, 7, 8, 9, 10, 12, 13 and
14) gave proteins of the expected size (Fig. 2). The lack of expres-
sion in RyR2230–606�His6 and RyR2341-606�His6 (constructs 5 and 6,
respectively) could have been caused by the presence of the rarely
used E. coli codons at the very N-termini of the given fragments
when expressed as authentic proteins. This problem was overcome
by fusion with Nus or thioredoxin (constructs 10, 12).

Low cultivation temperature, below 20 �C, was found to be the
critical condition for successful expression of soluble RyR2 frag-
ments. Expression levels obtained at either 37 or 28 �C for the
majority of the constructs were very low. We have also observed
Fig. 2. Evaluation of expression of the N-terminal RyR2 fragments. Recombinant protein
17 �C over-night. Proteins were resolved in 12% SDS–PAGE (A and C) or 7.5% SDS–PAGE
the positions of the expressed proteins. (+) and (�), induced and uninduced culture, res
that in most cases a low concentration of IPTG (10 lM) and pro-
longed post-induction time (16 h) were important for good yields
of soluble recombinant proteins. The best expression levels for
the RyR2 fragments with authentic N-termini were obtained for
the fragment RyR2409–606�His6 followed by the fragments
RyR2391–606�His6 and RyR21–247�His6. A lower expression level was
found for the fragment RyR21–606�His6 (Fig. 2A).

The fragments RyR21–606 and RyR2230–606 fused with the NusA
protein showed good expression levels as well, Fig. 2B. Interest-
ingly, expression of NusA�RyR2409–606 was detected only at the
low temperature combined with a higher IPTG concentration
(0.5–1 mM) for induction. Termination of all fragments at the res-
idue Arg606 was important, as shortening of the C-terminus to
Cys577 resulted in almost no expression.

High expression was obtained for the constructs prepared with
thioredoxin fusions: Trx�RyR2384–606�His6, Trx�RyR2391–606�His6 and
Trx�RyR2409–606�His6 Fig. 2C.

Evaluation of the solubility of RyR2 fragments

To address the question of whether the recombinant N-terminal
RyR2 fragments can be prepared from E. coli in soluble, monomeric
production (see Materials and methods and Table 2) was induced by 10 lM IPTG at
(B), and compared with uninduced cells cultivated identically. Arrowheads indicate
pectively.
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forms, the constructs nos. 2, 4, 7, 8, 9, 10, 12, 13 and 14 Table 2,
were further analyzed. The IMAC technology based on affinity
binding of the recombinant proteins carrying His�Tag from the sol-
uble fraction of the lysed cells to Ni-NTA His�Bind Resin was used.
The bound proteins, released from the resin with 400 mM imidaz-
ole (SP) were compared with those that remained in the insoluble
cell debris (CD). In preliminary experiments using the constructs
RyR21-247�His6, RyR2391-606�His6, RyR2409-606�His6 and RyR21-606�His6,
two types of solubilization agents – BugBuster Protein Extraction
Reagent (Novagen) and Triton X-100 were tested. As seen in
Fig. 3A,B, BugBuster was an efficient solubilization agent; however,
Triton X100 was more selective for the recombinant RyR2
fragments and provided a suitable material for further IMAC
purification. High yields of the recombinant RyR2 fragments were
obtained after elution from Ni-NTA resin of the constructs
Trx�RyR2

384–606�His6, Trx�RyR2391–606�His6 and Trx�RyR2409–606�His6,
Fig. 3D. Surprisingly, in constructs where RyR2 fragments were fused
Fig. 3. Solubility of the N-terminal RyR2 fragments. (A) and (B) RyR21–247�His6, RyR2391–60

100, respectively. (C) Nus�RyR21–606 and Nus�RyR2230–606 solubilized with Triton X-100 an
with Triton X-100. SF and CD represent eluates from the Ni-NTA resin and the insoluble
bands.
to the NusA protein, Nus�RyR21–606 and Nus�RyR2230–606, the major-
ity of recombinant protein was found in insoluble form (Fig. 3C).

The overall evaluation of expression and solubility showed that
the recombinant N-terminal RyR2 fragments can be expressed in
soluble form from the first authentic methionine (RyR21–247�His6

and RyR21–606�His6) as well as from the deleted N-terminus where
the authentic amino acid sequence is preceded with a methio-
nine (RyR2391–606�His6 and RyR2409–606�His6). N-terminal fusion of
RyR2 fragments (Trx�RyR2384–606�His6, Trx�RyR2391–606�His6 and
Trx�RyR2409–606�His6) significantly improved expression and solubil-
ity of the fragments involving the RIH domain. Ni-NTA eluates of the
fragments RyR21–606�His6, RyR2409–606�His6, Trx�RyR2384–606�His6,
Trx�RyR2391–606�His6 and Trx�RyR2409–606�His6 were further ana-
lyzed on a size-exclusion chromatography column. Retention times
of individual fragments were compared under identical conditions
with those of standards. The retention times corresponded to the
monomeric forms of RyR2 fragments.
6�His6, RyR2409–606�His6 and RyR21–606�His6 solubilized with BugBuster and Triton X-
d (D) Trx�RyR2384–606�His6, Trx�RyR2391–606�His6 and Trx�RyR2409–606�His6 solubilized

cell debris, respectively. Arrowheads indicate the positions of the respective protein



Fig. 4. CD spectra of RyR21–606�His6. Far-UV CD spectra (A) were recorded at
increasing temperatures at 4 �C (solid line), 30 �C (dashed line), 35 �C (dash-dotted
line) and 40 �C (dotted line, precipitated). The inset shows a magnified view of the
p ? p* (208 nm) and n ? p* (221 nm) transitions characteristic for a-helices. The
near-UV spectrum (B) measured at 4 �C shows distinct peaks, which correlate with
the 1Lb transitions of the aromatic residues phenylalanine, tyrosine and tryptophan
as indicated by bars suggesting a restricted mobility of some of their side chains.
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CD spectroscopy

The largest recombinant product RyR21–606�His6 was analyzed
by CD spectroscopy. Far-UV spectra showed extrema at 192 and
208 nm as well as a shoulder at 221 nm indicative for a substantial
a-helical content (Fig. 4A). Only very small changes were observed
within the 4–35 �C temperature range. When rising the tempera-
ture further to 40 �C, the protein precipitated irreversibly. Spectra
recorded in the presence and absence of 0.5 mM dithiotreitol were
identical indicating that any putative disulfide bonds like that be-
tween Cys36 and Cys65 as found in the mouse protein [14] have no
influence on the secondary structure and stability. Deconvolution
of the 4–35 �C spectra showed an a-helix and b-strand content of
�23% and �29%, respectively. These data are in agreement with se-
quence based secondary structure predictions, which – dependent
of the method used – range from 22% to 44% for a-helices and 16–
32% for b-strands. JPRED prediction (Fig. 1B) resulted in a 31% and
24% content of a-helices and b-strands, respectively.

Near-UV CD spectra provide information on the tertiary struc-
ture and dynamics. The distinct peaks observed at 285 and
292 nm (Fig. 4B) indicate that some of the 10 tryptophan residues
are buried in a nonpolar environment [41] which is in agreement
with the mouse RyR21–217 structure showing four tryptophanes
within this fragment shielded from solvent exposure [14]. The ex-
trema observed in the 258–270 nm range are probably caused by
sterically constraint mobility of some of the 17 phenylalanine res-
idues, although the 266 nm maximum could also arise from a 1La

tryptophan transition. The shoulder at 277 nm is indicative for
constrained tyrosine side chain mobility [41]. The far- and near-
UV CD data suggest that RyR21–606�His6 adopts a defined secondary
and tertiary fold, which is in agreement with the sequence analysis
data (Fig. 1B) indicating a native-like conformation.

CD-spectroscopy of RyR21–606�His6 fragment was performed
also in the presence of ATP which is important activator of RyR
channels [42,43]. Therefore, we measured far-UV CD spectra of
RyR21–606�His6 after the addition of ATP to final concentrations of
30, 90, 150, 290 and 370 lM at 20 �C. No change of the CD signal
could be observed (data not shown). This suggests that ATP does
not bind to this fragment of RyR2 with high affinity, or that any
conformational changes involved in such interaction are too small
to be monitored with this technique.

Limited proteolysis, hybridization and N-terminal sequencing

It is well known that proteases preferentially cleave those parts
of a protein that are readily accessible (mainly loops), leaving the
well-folded, compact regions of the molecule intact [44]. Therefore,
the recombinant fragment RyR21–606�His6 was subjected to proteo-
lytic digestion by trypsin and chymotrypsin to find well-folded re-
gions in the RyR2 fragment and compare them with those
predicted by PFAM.

Limited proteolytic digestion by trypsin for 5 and 10 min showed
specific cleavage of RyR21–606�His6 into two fragments with a molec-
ular mass of �40 and 25 kDa. The relative level of the 40 kDa frag-
ment decreased, while that of the 25 kDa fragment increased, with
duration of the digestion, Fig. 5A, B, suggesting the greater stability
of the smaller fragment. Digestion with chymotrypsin resulted in
four discrete fragments, the largest and the smallest having similar
molecular weights as those obtained by trypsin digestion, Fig. 5A.
This suggests the existence of two well-folded entities in the N-ter-
minus of RyR2. To find out which part of the RyR21–606�His6 was re-
moved, immunodetection with the His�Tag monoclonal antibody
was performed on the proteolytic fragments. It was found that all
discrete fragments obtained by digestion with trypsin and chymo-
trypsin contained the C-terminal His�Tag (Fig. 5B), indicating that
both proteases specifically digest RyR21–606�His6 from the N-termi-
nus, leaving the C-terminus intact. N-terminal sequencing of the
undigested RyR21–606�His6 showed that the first methionine was
processed in E. coli. The remaining sequence (Table 3) was identical
with the prediction deduced from cDNA [2].

N-terminal amino acid sequencing of the fragments obtained by
limited trypsin proteolysis showed that the larger �40 kDa frag-
ment starts with Thr259 and the smaller, �25 kDa fragment, starts



Fig. 5. (A) Proteolytic digestion of fragment RyR21–606�His6 by trypsin (fragments T1 and T2) and chymotrypsin (Ch1 and Ch2) proteases. Samples T1 and Ch1 were digested
for 5 min, samples T2 and Ch2 for 10 min, at 25 �C. Sample C is undigested RyR21–606�His6 fragment. (B) Autoradiogram of hybridization of undigested RyR21–606�His6 and
digested by trypsin (T1, T2) and chymotrypsin (Ch1, Ch2) with His-Tag monoclonal antibody. Arrows point to the RyR2 fragments obtained by trypsin and chymotrypsin
digestion.

Table 3
RyR21–606�His6 and its tryptic digests.

RyR2 fragments
(aa residues)

N-terminal aa
sequences

MW – SDS–PAGE
[kDa]

Calculated MW

[kDa]

1–606 A, D, G, G, E �70 68.6
259–606 T, V, H, Y, E �40 40.3
384–606 M, G, S, I, Q �25 26.0

Calculated MW was determined by ProtParam (http://www.expasy.org).
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with Met384, Table 3. An arginine precedes both of these residues,
which is in agreement with a trypsin cleavage site. Despite the fact
that there are several arginines (lysines) in the RyR21–606�His6 se-
quence, trypsin digestion revealed only two cleavage sites, leading
to formation of one main intact region, 384–606, with MW

�25 kDa. This fragment is identical with the construct no. 6 that
was designed according to PFAM, secondary structure prediction
and the known structure of IP3R domains, and displayed a high
expression level of the recombinant protein Table 2. This fragment
contains a part of the MIR domain and the core of the RIH domains.
Despite the fact that we did not detect expression of this fragment
(construct no. 6), its expression was high when prepared as a fu-
sion protein with thioredoxin, (construct no. 12). Good expression
was also detected for the authentic fragment RyR2391–606�His6

(construct no. 7), which was shorter than RyR2384–606�His6 (con-
struct no. 6) by six residues, as well as for RyR2409–606�His6 (con-
struct no. 8) involving the core of RIH domain Fig. 2.

It is interesting to note that the fragment RyR21–223�His6, which
corresponds to RyR11–210 [13], showed no expression. However, high
expression of the soluble protein was detected for RyR21–247�His6,
longer only by 24 residues in comparison to RyR21–223�His6. This
suggests that the missing residues are important and probably
form a part of a structural segment without which the mRNA or
protein is not stable.

Conclusion

We have mapped the N-terminal part of the human cardiac
ryanodine receptor (residues 1–759) in order to localize fragments
that can be expressed in monomeric, soluble form and behave as
independent protein molecules. Bioinformatics prediction using
the PFAM database suggested three putative domains. Based on
this prediction, 14 expression constructs were prepared, nine of
which produced recombinant proteins of the expected size. Six
constructs – RyR21–606�His6, RyR2391–606�His6, RyR2409–606�His6

and Trx�RyR2384–606�His6, Trx�RyR2391–606�His6, Trx�RyR2409–606�
His6 – were present in monomeric form after IMAC purification
as confirmed by gel filtration chromatography. RyR21–606�His6

was subjected to tryptic digestion giving rise to one stable protein
product identified as the predicted fragment RyR2384–606�His6. CD
spectroscopy indicates that the largest RyR21–606�His6 fragment is
folded into native-like form and the content of secondary structure
elements is in agreement with that obtained from sequence based
predictions.
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