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Abstract  Increasing evidence suggests that nearshore 
turbid coral reefs may mitigate bleaching of reef building 
calcifiers and play a critical role in the future of marine bio-
diversity in coastal areas. However, biomineralization pro-
cesses on turbid reefs are relatively understudied compared 
to clear water counterparts and most published work focuses 
on corals. Here, we investigate how the mixotrophic giant 
clam Tridacna squamosa, a bivalve with ecological, cultural 
and economic significance, grows across a mosaic of less 
turbid to turbid reefs in the Coral Triangle. We construct 
growth chronologies from live and dead collected shells by 
measuring daily growth increments with petrography and 
scanning electron microscopy (SEM) to gain insight into 
growth rate on daily, seasonal and annual scales. We find 
annual growth is not significantly different across a turbidity 
gradient when scaled to ontogeny, while seasonal growth 
highly varies. Kd(490) (a measurement positively correlated 
with turbidity) and chlorophyll-a are likely important fac-
tors driving seasonal growth on a turbid reef near a river, 
compared to sea surface temperature (SST), cloud cover and 
rainfall on a less turbid reef. On a daily scale, we investi-
gate increment microstructure and spectral characteristics 
of chronologies, finding a relationship between tidal range 

and daily increments. Overall, our results indicate that light-
enhanced calcification is likely most important in the less 
turbid reef, compared to heterotrophic feeding in the turbid 
reef. The trophic plasticity of T. squamosa may allow for 
its sustained growth in marginal conditions, supporting evi-
dence that these habitats serve as important conservation 
hotspots for diverse reef building taxa.

Keywords  Coral triangle · Nearshore turbid 
reefs · Mesophotic · Sclerochronology · Tridacna · 
Biomineralization

Introduction

Coral reefs provide critical ecosystem services to millions 
of people worldwide but are under threat due to multiple 
anthropogenic stressors acting at a local to global level 
(Hughes et al. 2017). Recently, turbid nearshore reefs have 
shown resilience in the face of increasing thermal stress 
and have been proposed as important ecological refugia 
(Cacciapaglia and van Woesik 2016; Zweifler et al. 2021). 
Although traditionally perceived as ‘sub-optimal’ (Kleypas 
et al. 1999), these reefs sustain high live coral cover and 
typically show resilience to bleaching during elevated tem-
peratures as suspended particles protect corals from dam-
aging high irradiance (Perry and Larcombe 2003; Waheed 
and Hoeksema 2013; Browne et al. 2019; Sully and van 
Woesik 2020). Moreover, recent evidence from the fossil 
record shows early diversification of ancient coral commu-
nities occurred in turbid reefs, with the persistence of high 
diversity lasting over geologic timescales (Santodomingo 
et al. 2016). Yet, responses to turbid reefs are confounding 
among coral taxa (Bainbridge et al. 2018). Although tur-
bidity can cause slower growth (Risk and Sammarco 1991) 
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or loss of photosynthetic endosymbionts (Dallmeyer et al. 
1982), some mixotrophic species adapt by utilising resources 
to offset stress from particle loads (Anthony 2000; Fox et al. 
2018). However, aside from corals, little is known about 
how other key reef builders calcify in turbid reefs. A robust 
understanding of different organisms and functional groups 
is required because individual responses result in ecosystem-
wide effects (Bainbridge et al. 2018).

Giant clams (Cardiidae: Tridacninae) are large and long-
lived symbiont bearing bivalves, distributed throughout the 
Indo-Pacific (Rosewater 1965). They fulfil critical roles 
in tropical reef communities due to their contributions to 
the structure, complexity and ecology of reefs (Neo et al. 
2015). Their rapid (daily increment widths of 5–200 µm) 
and continuous shell growth (Ma et al. 2020) has long been 
attributed to the photosynthetic rate of their endosymbiotic 
zooxanthellae (Klumpp and Griffiths 1994). Therefore, 
changes in growth are expected to be sensitive to external 
environmental conditions that directly or indirectly alter 
light exposure (Sano et al. 2012). In some species, translo-
cated photosynthates from endosymbionts satisfy all daily 
metabolic energy requirements (Jantzen et al. 2008). How-
ever, tridacnids are mixotrophs and like many bivalves, take 
up particulate organic matter (POM) (Klumpp et al. 1992) 
through filter-feeding. The balance of autotrophy and het-
erotrophy to total energy requirements changes depending 
on inter- and intraspecific differences in size, photosynthetic 
potential (Jantzen et al. 2008), and ontogeny (Klumpp and 
Griffiths 1994). Compared to most tridacnids, Tridacna 
squamosa (fluted giant clam) is a ‘true mixotrophic species’ 
due to its reduced photosynthetic activity, showing a reliance 
on a heterotrophic strategy to satisfy its metabolic needs 
within its range (Tedengren et al. 2000; Jantzen et al. 2008). 
Indeed, the survival of T. squamosa may be comparable or 
even higher under turbidity relative to clearer water (Guest 
et al. 2008; Yong et al. 2022). However, how growth and 
biomineralization processes of T. squamosa vary between 
turbid and clear waters and external mechanisms controlling 
these processes are not understood. Increasing understand-
ing of how giant clams respond to local stressors is required 
for conservation strategies under continued environmental 
change (Watson and Neo 2021).

Petrographic microscopy, scanning electron microscopy 
(SEM) and laser scanning confocal microscopy (LSCM) 
methods have revealed daily growth increments in both the 
inner- (Watanabe et al. 2004; Aubert et al. 2009; Elliot et al. 
2009; Schwartzman et al. 2011; Sano et al. 2012; Ayling 
et al. 2015; Hori et al. 2015; Warter et al. 2015; Arias-
Ruiz et al. 2017; Gannon et al. 2017; Warter and Müller 
2017; Ma et al. 2020; Yan et al. 2020; Yan et al. 2021; Zhao 
et al. 2021; Liu et al. 2022) and outer layers of giant clam 
shells (Duprey et al. 2015; Komogoe et al. 2018; Killam 
et al. 2021). Shell growth chronologies constructed from 

these daily increments are important alongside powerful 
geochemical techniques (e.g. LA-ICP-MS) in reconstruct-
ing highly time-resolved profiles of water temperature (e.g. 
Arias-Ruiz et al. 2017), productivity (e.g. Elliot et al. 2009), 
paleoweather (Komagoe et al. 2018; Yan et al. 2020) and 
diurnal light cycles (Sano et al. 2012), among others. The 
refinement of identification of growth increments is impor-
tant in different environments and ensures accuracy of time-
series analysis (Warter and Müller 2017). Yet, the environ-
mental controls on variation in daily growth increments are 
little understood and the potential of tridacnid shell growth 
chronologies on their own remains largely untapped (Zhao 
et al. 2021).

In this work, we investigate the growth rate of T. squa-
mosa in turbid and clear reefs on annual, seasonal and daily 
scales. We focus on measuring daily increment widths and 
investigate the microstructure of increments in shells col-
lected alive from two contrasting reef sites—a turbid reef 
near a river outlet and a less turbid reef. We select the Coral 
Triangle region of northeast Borneo (Sabah, Malaysia) as 
our study site because turbid reefs occupy about 30% of reefs 
within the region (Sully and van Woesik 2020). To disen-
tangle potential external environmental drivers of growth 
between the less turbid and turbid reef, we compare shell 
growth chronologies and their spectral characteristics with 
in situ and remote sensing environmental data. We further 
investigate growth across a gradient of turbidity by explor-
ing growth trends in shells collected dead at four additional 
reef sites.

Materials and methods

Regional setting

Darvel Bay (4° 5356′ N, 118° 2646′ E) is the largest semi-
enclosed bay on the eastern coast of Sabah and is connected 
to the Pacific Ocean through the Sulu-Celebes Sea (Fig. 1). 
It is within the northern corner of the Coral Triangle, a 
region noted for its high levels of marine biodiversity and 
endemism (DeSilva et al. 1999; Veron 2000). Coral reefs 
here are dominated by small patch and fringing reefs devel-
oped around the coastline and numerous islands (Ditlev 
et al. 1999). Mangrove ecosystems are associated with small 
freshwater catchment areas and prevail near Sakar Island and 
around the estuaries of the Silabukan and Tingkayu rivers, 
which play important roles in carrying wastewater discharge 
and land-based pollutants into the coastal area (Saleh et al. 
2007). Climatic conditions are controlled by the Indo-Aus-
tralian monsoon system, divided into the southwest mon-
soon between May to September (dry season) and northeast 
monsoon from November to March (wet season) (Saleh et al. 
2007). The tidal range is mesotidal (between 2 and 4 m) 
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(Santodomingo et al. 2021) and strong tidal currents control 
water circulation and runoff (Saleh et al. 2007).

Study sites and samples

We carried out an in-depth comparison of daily growth rate 
for T. squamosa at two key reef sites in Darvel Bay—Baik 
and Triangle (Fig. 1). Baik is proximal to a fish farm, and 
activities at the site include recreational diving. It has low 
sediment input and is indicative of a less turbid reef. Trian-
gle is approximately 3.5 km from the mouth of the Tingkayu 
River, which discharges sediment to the site at low tide. Four 
shells were extracted alive at Baik and Triangle in April 
2019 (SSbaik and SSct, respectively) and February 2020 

(NS207 and ZW156, respectively) between depths of 5 and 
8.5 m (Tables 1, S1).

In addition, eight shells were collected dead from the sea-
floor at Baik (SS01BBT), Triangle (SS03BCT, SS03BCT) 
and four additional locations across a gradient of turbidity 
(Sakar (SS02ASN), Misan (SS01ASM), THalu (SS01ATH) 
and Blue Lagoon (SS01ABH)) (Fig.  1; Tables  1, S1). 
Although these shells appeared to record in situ environ-
mental change and bioerosion assessment of shells col-
lected from specific environments showed similar features, 
we highlight the caveat that they may have been translo-
cated by local fishermen or wave action post-mortem. Due 
to these uncertainties, shells collected dead were used only 
for comparison of overall growth and not employed for fur-
ther analysis to explore the relationship between growth 

Fig. 1   False colour composite 
map (bands 7/4/2) of sam-
ple sites in Darvel Bay (wet 
season). Enlarged points cor-
respond to key localities Baik 
and Triangle, where Tridacna 
squamosa were collected alive. 
River plume originating from 
the Tingkayu river in bright 
blue

Table 1   Coral reef sampling 
sites in Darvel Bay (East Sabah, 
Malaysia)

Nearby coastal environment, human activities and mean annual Kd(490) (2019–2020) are shown.
L live collected shells, D dead collected shells, U unknown collection status

Site Collection status Adjacent coastal environment and 
human activities

Annual 
mean 
Kd(490)

Baik L, D Fish farm/recreational diving 0.09
Triangle L, D Near Tingkayu river outlet 0.30
Blue Lagoon D Semi-atoll/recreational diving 0.08
THalu D Mangroves/conservation area 0.13
Misan D Mangroves/estuary 0.10
Sakar D Mangroves/urban 0.39
Semporna reefs U Recreational diving 0.06



	 Coral Reefs

1 3

and environmental variables. To broaden the comparison 
to a wider region, another two shells from Semporna reefs 
(SEMA, SEMB) situated south of Darvel Bay were obtained 
from collections at Amgueddfa Cymru—National Museum 
Wales (NMW). It is unknown if the shells from Semporna 
were collected dead or alive.

In situ measurements of water clarity at each site were 
estimated with a turbidity meter (Nephelometric Turbidity 
Units: NTU) and Secchi disc in the dry season of 2019, yet 
prolonged drought experienced throughout southeast Sabah 
during early 2019 (Payus et al. 2020) meant that measure-
ments were atypically low. Therefore, we define turbidity 
herein based on the amount of suspended particles using 
the diffuse attenuation coefficient of spectral irradiance at 
490 nm wavelength Kd(490) (Table 1). This choice is sup-
ported by studies such as Loila et al. (2019), who used 
remote sensed Kd(490) values as robust indicators of dif-
ferences in turbidity on coral reefs. We define low turbidity 
as mean annual Kd(490) < 0.2 m−1 and the turbidity thresh-
old as mean annual Kd(490) > 0.2 m−1 (e.g. Yu et al. 2016). 
We interpret this parameter alongside remote sensed chlo-
rophyll-a concentrations, shown to be controlled by river 
runoff in the wet season (Chen et al. 2007).

All shells were cut into ~ 1–2-cm-thick slices along the 
axis of maximum growth (transversal from umbo to upper 
shell margin) (Figs. 2a, b) with either a HC Evans and Son 
(Eltham) LTD (250 mm blade, 1 mm thickness) or Log-
itech GTS1 Thin Section Cut-Off diamond saw. Thin sec-
tions (60 µm thickness) of the inner layer cut perpendicular 
to the direction of growth were prepared from slices, ground 
with 1000 grit sandpaper, and polished with 0.3 µm alumina 
oxide (Fig. 2c). To improve visibility of features, sections 

were etched with 0.5% HCL for 15 s. Prior to analysis, dead 
collected shells were investigated for diagenesis with Raman 
Spectroscopy and SEM. Evidence of original aragonite was 
found in all shells and alteration to calcite not detected (Sup-
plemental for more information; Figs. S1, S2). Lengths of 
shells ranged between 98.59 to 362.62 cm and heights 67.27 
to 215.08 cm (umbo to margin).

Environmental data

We used in situ and satellite remote sensed data to character-
ize environmental factors for the last year of growth (LYOG) 
in shells collected alive from Baik and Triangle (Table S2). 
Sea surface temperature (SST) and light intensity (lux) were 
characterized with a HOBO temperature and light logger 
and data collected every 10–15 min between 2019 and 
2020. Tide data were sourced from the Sea Level Monitor-
ing Facility (www.​ioc-​seale​velmo​nitor​ing.​org/​bgraph.​php?​
code=​ms006​&​output=​tab&​period=​30&​endti​me=​2022-​
01-​31-) at Lahad Datu (stn. ms006). Cloud cover, salinity, 
chlorophyll-a, Kd(490), rainfall and additional SST data for 
2018–2019 were sourced from Google Earth Engine (GEE) 
or the National Oceanic and Atmospheric Administration 
(NOAA) database (Table S2).

Shell growth chronologies

Shell growth chronologies were assembled from the daily 
increments of thirteen T. squamosa shells to determine 
daily growth rate. We used a mixed-method approach to 
image increments with a light microscope (Leica DMR) 
(10–40 × magnification) and a Zeiss Sigma HD field 

Fig. 2   a Valve of Tridacna 
squamosa with red vertical line 
indicating section location. b 
Transversal section from umbo 
to upper shell margin highlight-
ing the inner layer (IL), outer 
layer (OL), pallial line (PL) and 
hinge (H). c Thin section of the 
inner shell layer denoting first 
growth (juvenile growth, J) and 
last growth (adult growth, A). d 
Daily growth increments under 
transmitted light microscopy 
(20 x magnification) from first 
(J) and last growth (A)

http://www.ioc-sealevelmonitoring.org/bgraph.php?code=ms006&output=tab&period=30&endtime=2022-01-31
http://www.ioc-sealevelmonitoring.org/bgraph.php?code=ms006&output=tab&period=30&endtime=2022-01-31
http://www.ioc-sealevelmonitoring.org/bgraph.php?code=ms006&output=tab&period=30&endtime=2022-01-31
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emission gun SEM (1500 × magnification) at the School 
of Earth and Environmental Sciences, Cardiff University. 
For SEM, sections were coated with 20 nm gold–palladium 
alloy using a BIO-RAD SC500 sputter coater and growth 
increments and their microstructure observed at high vac-
uum with an acceleration voltage 10 kV and aperture size 
30 µm. Images were obtained along the height of the inner 
layer and montaged on Microsoft Image Composite Editor 
(ICE) (light microscope) or Oxford Instruments AZtec 6.0 
software (SEM).

The number and width of daily increments were deter-
mined from light microscopy and SEM images using ImageJ 
1.53 (Schneider et al. 2012) and Coorecorder 9.8 (Cybis) 
(Maxwell and Larsson 2021) software. By using sets of 
images from both methods and software, multiple counts 
were obtained for each shell (Table S3). To reduce sampling 
bias when comparing shells collected alive with environ-
mental data, a second person also counted sets of incre-
ments from these shells. Final mean shell growth chronolo-
gies were compiled from multiple counts that met certain 
criteria, which was based on how many increments could 
be defined (Supplemental for more information; Table S4; 
Figs. S3, S4).

Data analysis

Data analysis was carried out in RStudio Version 4.0.3 (R 
Core Team 2020) unless otherwise specified. The R code 
is available from the Mendeley Data Repository at https://​
doi.​org/​10.​17632/​mbjzc​2nbsn.1. We used a dimensionless 
standardized growth index (SGI) to control for ontogenetic 
decelerated growth rates (e.g. Jones et al. 1986). Often used 
in studies of bivalves (e.g. Butler et al. 2013), including 
giant clams (Zhao et al. 2021), the SGI is an estimation of 
how growth deviates from the average growth trend (see 
Schöne 2003). We applied the SGI to our data as ages of 
samples likely covered life stages from juvenile to adult. 
We investigated SGI values on daily, seasonal and annual 
scales. To examine differences in annual growth, a one-
way analysis of variance (ANOVA) and post hoc Tukey test 
were performed between shells pooled into the seven reefs. 
Assumptions of ANOVA were checked for normality and 
homogeneity of variance using Shapiro–Wilk’s test, QQ 
(quantile–quantile) plots of standardized residuals and Bar-
tlett’s test. On a monthly scale, SGI values were plotted with 
monthly averaged environmental data for the LYOG in the 
shells collected alive at Baik and Triangle. These data were 
explored as added-variable (AV) plots because they control 
for the variability of other explanatory variables when plot-
ting the effect of x on y. They therefore more accurately 
show relationships because other variables in the model 
are adjusted for (Draper et al. 1966). Principal component 
analysis (PCA) was also performed on environmental data 

for time periods corresponding to LYOG to explore annual 
and seasonal relationships, allowing the number of variables 
under investigation to be reduced. Finally, we used spectral 
analysis to investigate daily growth with tidal cycles in fre-
quency space in Baik and Triangle because tidal patterns 
are thought to be expressed in the daily increments of T. 
squamosa (Evans 1972). Multi-taper method spectral analy-
sis (MTM) (Thompson 1982) was carried out in K-Spectra 
v.3.9.3 (SpectraWorks) to extract dominant frequencies. 
Cycles were analysed with significance of spectral peaks at 
95–99% compared to red noise background.

Results

Environmental data

Mean SST for 2019–2020 at Baik and Triangle was 29.53 °C 
and 30.01 °C, respectively (Fig. 3a). Throughout the year, 
monthly SST varied between 28.11 °C and 30.47 °C at Baik 
and 28.93 °C and 30.91 °C at Triangle, peaking at the end 
of the dry season and generally dropping towards the end 
of the wet season. Light intensity (lux) corresponded with 
SST in Baik and showed a peak in October, varying between 
monthly lux of 7122.50 and 16,444.75 throughout the year 
compared to 7285.83 lux and 13,705.91 lux for Triangle 
(Fig. 3b). However, it is important to consider that we could 
not retrieve data for lux between August and October for Tri-
angle, as the HOBO logger was lost. Precipitation showed a 
bimodal distribution pattern, with maximum rainfall towards 
the beginning of the dry- and mid-wet season in both sites 
(Fig. 3f). Chlorophyll-a (Fig. 3d) generally corresponded to 
Kd(490) (Fig. 3c) in both sites, but maximum monthly values 
were higher at Triangle (4.19 mg m−3, 0.51 m−1, respec-
tively) than Baik (1.06 mg m−3, 0.14 m−1, respectively). 
Cloud cover was similar between sites (Fig. 3e), peaking 
in June and dropping during the late wet season in March. 
Although patterns were similar in 2018–2019, prolonged 
drought in early 2019 revealed atypically low cloud cover 
(51%, both sites) and rainfall (62.98 mm Baik; 43.35 mm 
Triangle) in February 2019. Sea surface salinity (SSS) 
showed a partial inverse behaviour with rainfall (Fig. S5).

We used PCA to further explore relationships between 
environmental variables at Baik and Triangle. PCA defined 
two principal components covering 77.1% of the cumulative 
variance (Fig. 4). PC1 accounted for 43.9% of variance, with 
highest negative association of SST and cloud cover and 
highest positive association of salinity and rainfall, while 
PC2 accounted for 33.2% of variance and showed highest 
negative association of chlorophyll-a and Kd(490) and posi-
tive association of cloud cover and SST. Baik and Triangle 
generally clustered into two groups regardless of season. 
However, two points that represented the dry season of 2019, 

https://doi.org/10.17632/mbjzc2nbsn.1.
https://doi.org/10.17632/mbjzc2nbsn.1.
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Fig. 3   a Monthly average sea surface temperature (SST), b light 
(lux), c Kd(490) (m−1), d chlorophyll-a (mg m−3), e cloud cover (%) 
and f rainfall (mm) from Baik and Triangle reefs in Darvel Bay for 

2018–2020. Environmental data shown relate to last year of growth 
(LYOG) for samples collected live in April 2019 and February 2020

Fig. 4   Principal component 
analysis (PCA) for environ-
mental data: monthly average 
sea surface temperature (SST), 
Kd(490) (m−1), chlorophyll-a 
(mg m−3), cloud cover (%) and 
rainfall (mm) from Baik and 
Triangle reefs in Darvel Bay, 
showing the loading of each 
variable (black arrows) and 
PCA scores (points) of each 
season for 2018–2020. Superim-
posed 95% confidence ellipsoids 
contain group points. Point sizes 
represent quality of representa-
tion of each individual point
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when anomalous drought was experienced, were positioned 
in the top left quadrant and did not cluster with others.

Growth increment microstructure

The microstructure of daily growth increments in the inner 
shell layer varied among the thirteen T. squamosa shells 
depending on collection site. Two distinct microstructures 
of daily increments were noted: Type 1—Paired growth 
couplets, consisting of a thicker- and thinner layer, deline-
ated by crystalline structure, similar to the thicker prismatic 
layer and thinner layer with oblique crystals described by 
Gannon et al. (2017) (Fig. 5a, c); Type 2—Two adjacent 
organic rich growth lines delineating a band and intersecting 
an irregular or cone complex crossed lamellar microstruc-
ture (Taylor et al. 1969) (Fig. 5b, d). Type 1 was generally 
found in shells from the Triangle reef, while Type 2 was 
common in Baik, Blue Lagoon, THalu, Misan, Sakar and 
Semporna. Despite these differences, overall observations 
of the outer shell layer showed an identical microstructure in 
every specimen that consisted of a crossed lamellar arrange-
ment (Taylor et al. 1969).

The microstructure observed in Type 1 showed a stronger 
delineation than Type 2. Thus, it was easier to observe, 
measure and count growth increments and in turn, data from 
shells with Type 1 had lower errors (calculated by value 1 
subtracted from value 2, divided by value 1) between indi-
vidual counts (0.74–2.37%). In contrast, the recorded varia-
bility in counting and measuring the least visible increments 
of Type 2 demonstrates that these increments were harder 
to distinguish. A comparison of the relationship between 
days alive and daily growth (µm) for individual counts that 

made up final mean growth chronologies of live collected 
Tridacna squamosa shells SSbaik (Baik, 2019 collected), 
SSct (Triangle, 2019 collected), NS207 (Baik, 2020 col-
lected) and ZW156 (Triangle, 2020 collected) is shown in 
Fig. 6. For instance, the SSbaik shell showed a very large 
offset of 880 increments between petrographic and SEM 
approaches (error 44.88%). However, data were similar 
between observer counts in the juvenile region of growth 
(Fig. 6a).

Annual shell growth

Lifespan of all shells was estimated between 0.72 (262 days) 
and 7.23 (1726 days) years (Table S4). Seven shells were 
under 3 years, indicating the juvenile life stage, while six 
were over 3 years, which may indicate adulthood (Lucas 
1994). Shell growth chronologies over 3 years generally 
showed a concave-down shape and could be divided into two 
broad stages: Stage 1—Rapid acceleration at start of life and 
Stage 2—Deceleration in or after 3 years (Fig. 7). Younger 
shells that presumably had not reached latter growth stages 
showed no concavity but continued rapid growth or no rela-
tionship with days alive.

Mean shell growth rates over lifespan varied greatly and 
ranged from 3.91 ± 1.39 to 8.13 ± 3.37 mm/yr (Table S4), 
corresponding to daily increment widths between 2.02 and 
41.40 µm (mean 14.90 µm/day). In all shells, mean annual 
growth in the first year of life was 6.28 mm/yr (n = 11), 
5.51 mm/yr (n = 7) in 0–2 yr, 5.18 mm/yr (n = 2) in 2–4 yr, 
3.58 mm/yr (n = 1) in 4–6 yr, following age-related decelera-
tion of growth (Fig. 7). Shells from Semporna (n = 2) showed 
pooled fastest overall mean annual growth (7.46 mm/yr), 

Fig. 5   SEM images of the 
microstructure of paired 
daily increments in Tridacna 
squamosa from Triangle reef 
a, c, consisting of a simple 
prismatic layer (Pr) and layer 
with smaller crystals (s). b, d In 
Baik shells, there is a complex 
crossed lamellar microstructural 
arrangement with faint growth 
lines (GL) running perpendicu-
lar to first order lamellae
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followed by those from Triangle (n = 4) (6.16  mm/yr), 
Misan 5.41 mm/yr (n = 1), Baik 4.61 mm/yr (n = 3), Sakar 
4.26 mm/yr (n = 1), and THalu 3.91 mm/yr (n = 1). Among 
individual shells, ZW156 from Triangle showed fastest 
mean growth (21.55 µm/day), while SS01ATH from THalu 
(10.72 µm/day) grew slowest (Fig. 7a, b).

SGI values revealed contrasting results to raw growth 
rates and showed similar minimum and maximum values 
between all T. squamosa shells irrespective of site or age 
(Fig. 7c, d). One-way ANOVA and post hoc Tukey test 
confirmed no significant differences in SGI over lifespan 
between shells from different sites (p > 0.05) (Table. S5).

Seasonal shell growth and environmental relationships

Distinct temporal patterns that were most prominent at a 
seasonal level were revealed in live collected shell chro-
nologies where exact dates of death were known. The most 
striking difference was acceleration of growth that generally 
occurred in the wet season for Baik, while a seasonal trend 

in Triangle was less clear (Fig. 8). Undated SGI chronolo-
gies from dead collected shells at the same sites revealed 
similar seasonal acceleration in Baik, while Triangle showed 
smaller fluctuations and shorter-term cycles throughout the 
year (Fig. S6).

Undated SGI chronologies from dead shells collected at 
additional sites generally showed a similar seasonal range of 
SGI values to live collected shells (Fig. S7). The shell from 
Blue Lagoon revealed positive SGI values in the second year 
of growth, compared to only negative SGI values in the third 
year, while the shell from Misan showed a distinct peak in 
the third year of growth. Younger shells at THalu and Sem-
porna that were under 3 years showed a short deceleration 
in the second year of growth before death.

AV plots revealed significant relationships between 
monthly SGI and cloud cover (p < 0.05) and SST (p < 0.05) 
in one Baik shell (SSBaik) (Fig. S8) and salinity (p < 0.01) 
and rainfall (p < 0.01) in the additional older Baik shell 
(NS207) (Fig. S9). In contrast, shells from Triangle (ssCT; 
ZW156) showed no significant correlation between tested 

Fig. 6   Comparison of relationship between days alive and daily 
growth (µm) for individual counts of live collected Tridacna squa-
mosa shells SSbaik (Baik, 2019 collected) a, SSct (Triangle, 2019 
collected) b, NS207 (Baik, 2020 collected) c, ZW156 (Triangle, 2020 

collected) d PM-LM = primary counter, measurement tool ImageJ, 
light microscopy images; PM-SEM = primary counter, measurement 
tool ImageJ, SEM images; SM-LM = secondary counter, measure-
ment tool ImageJ, light microscopy images
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environmental variables and SGI values (Figs. S10, S11). 
Nonetheless, we did note a degree of synchronization with 
bimodal chlorophyll-a and Kd(490) peaks in ZW156, while 
growth appeared relatively consistent year-round in ssCT 
(Fig. S12).

Spectral analysis

Multi-taper method (MTM) spectral analysis was applied to 
daily SGI values and tidal range to search for similarity of 
periodicities in frequency space. Daily growth increments 
in Triangle shells were characterized by high-frequency sig-
nificant peaks corresponding to periods of ~ 2–3 days and 
spectra revealed several similarities with daily maximum 
sea level (Fig. 9). Significant peaks in Baik shells occurred 
over a wider range of frequencies corresponding to periods 
of ~ 2–6 days and showed less similarity with tidal spectra 
(Fig. S13).

Discussion

Multi‑method approach to sclerochronology in giant 
clams

In this study, we established shell growth chronologies for 
thirteen giant clam shells based on counting and measur-
ing widths of daily growth increments with a mixed-method 
approach (petrography and SEM). To reduce uncertainty, 

increments were counted multiple times with different soft-
ware and live collected shells cross-checked by a secondary 
person. However, large offsets existed between counts in 
some samples, which could be attributed to either differ-
ences in microstructure that reduced growth increment vis-
ibility or visualization of bands between approaches.

Molluscan shell microstructure is underpinned by genetic 
mechanisms but is further influenced by external environ-
mental factors (Clark et al. 2020). Size and shape of biomin-
eral units may change depending on temperature (Milano 
et al. 2017; Höche et al. 2020, 2021), light attenuation (Pät-
zold et al. 1991) and food supply (Clark et al. 2020). Here, 
we found two distinct microstructures of daily increments for 
the inner shell layer of T. squamosa: Type 1 in the Triangle 
reef, which consisted of paired daily growth couplets with a 
thicker- and thinner layer delineated by crystalline structure 
and Type 2 in other reef sites, with two adjacent growth lines 
cutting a complex crossed lamellar microstructural arrange-
ment that was either irregular or cone (Taylor et al. 1969) 
and running perpendicular to first order lamellae (Agbaje 
et al. 2017). Delineation of daily increments from Type 1 
shells was clearer than Type 2, and this was reflected in 
the differences between individual counts (Table S3). Dis-
tinctly demarcated paired increments that vary in morphol-
ogy along one growth increment like Type 1 have previously 
been recorded for T. gigas (Pätzold et al. 1991; Gannon et al. 
2017) and are presumably driven by the daily light cycle 
(Sano et al. 2012). The thicker prismatic layer is thought 
to be deposited in the daytime when symbiotic algae allow 

Fig. 7   All mean shell growth 
chronologies derived from 
daily growth increment widths 
of live (a, c) and dead (b, d) 
collected Tridacna squamosa 
for comparison of shell growth 
over lifespan. Measurements 
are presented by rate of 
daily growth (μm) (a, b) and 
detrended growth rates shown 
in the dimensionless unit of 
the standardized growth index 
(SGI) (c, d). Lines are smoothed 
(span 0.1) and colours represent 
sample. Shells younger than 
365 days are excluded from SGI 
values
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light-enhanced calcification, while the thinner layer may 
calcify at night when less light is available for photosyn-
thetic processes (Sano et al. 2012). Although Pätzold et al. 
(1991) described a similar microstructure with faint growth 
lines like Type 2, they only reported its occurrence near 
the umbo and not throughout other regions of the shell. 
We found Type 2 to be common in early stages of growth 
when growth was faster, presumably a continuation of the 
simple crossed lamellar microstructural arrangement of the 

outer shell layer. Although this concurs with reports of less 
defined crystalline boundaries indicating faster deposition 
of microstructural components (Gannon et al. 2017), Type 
2 continued into adulthood in many shells and Type 1 only 
recorded in Triangle, which may relate to tidal rhythm (dis-
cussed below).

Apart from microstructure, differences in visibility of 
daily growth increments in giant clam shells have also been 
attributed to method specific issues. For example, changes 

Fig. 8   Dated mean shell growth chronologies derived from daily 
growth increment widths for Tridacna squamosa collected from Baik 
(blue lines) (b, d) and Triangle (red lines) (a, c) reefs in 2019 (SSct, 
SSbaik) and 2020 (ZW156, NS207). Measurements from raw data 
are presented in mm/yr (a, b) and detrended growth rates shown in 
the dimensionless unit of the standardized growth index (SGI) (c, 
d). Red dashed vertical lines represent one year of growth, and pur-

ple and orange bars represent wet and dry seasons, respectively. Raw 
growth (e) and SGI chronologies (f) showing only last year of growth 
(LYOG) in Baik (SSbaik) (blue line) and Triangle (SSct) (red line) 
reveal seasonal variation between the two sites. Raw data are repre-
sented by pale lines, and data after smoothing are represented by bold 
lines
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in focal length and low fluorescence of shell material under 
LSCM (Zhao et al. 2021). We used high-resolution SEM 
imaging across the entirety of the inner layer of each shell 
because this method allows singular daily increments to 
be revealed in detail in secondary electron images (Welsh 
et al. 2011). Shell regions whose daily increments remained 
unclear under SEM are likely a true feature of the sample 
instead of an artefact of sampling technique. We addition-
ally found the boundary between the outer- and inner shell 
layers (i.e. the pallial line) distinct under SEM (Fig. S14), 
similar to other studies (Gannon et al. 2017; Ayling et al. 
2017). Yet, this was sometimes unclear under light micros-
copy, which may be attributed to variation in focal length 
due to the presence of a highly topographic complex crossed 
lamellar microstructural arrangement. These results empha-
size the importance of applying a multi-method approach 
in counting daily growth increments of giant clams because 
large unveiled offsets could severely obstruct interpretation 
for high-resolution studies.

Shell growth mediated by ontogeny

A challenge in the study of sclerochronology is to disentan-
gle vital effects and externally forced growth signatures (e.g. 
temperature) (Schöne 2003). As for many bivalves, physi-
ological processes of tridacnids change with the onset of 
sexual maturity and energy priorities switch between growth 
and reproduction (Jones et al. 1986). Over time, increments 
become tightly packed and rate and year to year amplitude 
of growth decreases (Romanek and Grossman 1989; Arias-
Ruiz et al. 2017; Zhao et al. 2021). In this study, shell growth 
chronologies accounting for ontogenetic growth were inves-
tigated before applying the SGI. We found most shells over 
approximately three years old demonstrated rapid accelera-
tion at the beginning of life and reduction in growth in or 
after three years (Fig. 7). Although delayed onset of sexual 

maturity (approximately 10 years) and subsequent decel-
eration of growth has been recorded for Tridacna maxima 
(Jones et al. 1986; Romanek et al. 1987; Chambers 2007) 
and T. gigas (Klump and Griffiths 1994; Lucas 1994), the 
switch between juvenile and adult growth phases may occur 
earlier in other species (Lucas 1994). While our shells are 
young (~ 1–7 yr) relative to the natural lifespan of Tridacna 
spp. (several decades) (Rosewater 1964), growth curves 
in some samples may indicate early onset maturity for T. 
squamosa.

Environmental influences on shell growth

Our results revealed mean shell growth rates from seven 
reefs that ranged from 3.91 ± 1.39 to 11.67 ± 3.97 mm/yr, 
corresponding to daily increment widths between 2.02 and 
41.40 µm (mean of 14.90 µm/day). Despite shells being col-
lected from a range of reefs subject to varying turbidity, 
results were generally consistent with those in the literature 
for modern and cultured shells, showing mean daily incre-
ment widths of 3–32.7 µm for measurements of the inner 
layer of T. squamosa and other Tridacnidae (Aubert et al. 
2009; Elliot et al. 2009; Schwartzmann et al. 2011; Ariaz-
Ruiz et al. 2017; Gannon et al. 2017; Yan et al. 2020; Zhao 
et al. 2021) (Fig. 10). Moreover, removal of ontogenetic 
growth signals using the SGI revealed no significant dif-
ferences across annual growth rate from shells at any of our 
sites over lifespan. However, we do caution the uncertain-
ties of the interpretation of the dead collected shells from 
the seafloor and it is possible that they were translocated 
post-mortem.

Influences on annual shell growth

One explanation for similar annual SGI values across sites 
may be related to the trophic plasticity documented for T. 

Fig. 9   Multi-taper method (MTM) power spectra of a daily maxi-
mum tide (m) and b daily SGI growth chronology of Triangle reef 
shell ZW156 in frequency space. AR(1) significance peaks are set to 

95 and 99% and represented to a red noise background. Significant 
peaks labelled with arrows and identified in approximate days in rela-
tion to frequency (1/day)
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squamosa. Unlike some giant clam species who are func-
tional autotrophs, T. squamosa has a photoautotrophic 
range that is extended by heterotrophy (Jantzen et al. 2008). 
Although contributions of heterotrophy to total energy 
requirements in tridacnids change depending on ontoge-
netic stage and size (Fisher et al. 1985; Klump et al. 1992; 
Klumpp and Griffiths 1994; Yau and Fan 2012), T. squamosa 
is unusual because it has significantly lower photosynthetic 
potential irrespective of age and is more reliant on filter-
feeding (Jantzen et al. 2008). It is known to increase rates 
of filter-feeding with depth (Tedengren et al. 2000) and is 
common on the deeper fore-reef compared to other species, 
which are abundant in shallow (< 3 m) reef flat (Roa-Quiaoit 
2005). Our results lend weight to T. squamosa surviving and 
potentially thriving in turbid reefs and concur with other 
studies (Guest et al. 2008; Yong et al. 2022), who reported 
the species can survive well and even accelerate growth on 
impacted reefs.

Influences on monthly shell growth

On the contrary, at a seasonal level we found substantial 
site-to-site variability between the shells collected alive 
from Baik and Triangle, indicating that different environ-
mental factors may play some role in regulation of intra- 
annual growth trends. At the less turbid reef Baik, growth 
generally accelerated in the wet season and monthly SGI 

values negatively correlated with temperature, cloud 
cover, rainfall and salinity. Although in previous studies 
of giant clams increment widths positively correlate with 
SST (Aubert et al. 2009; Duprey et al. 2015; Komagoe 
et al. 2018; Zhao et al. 2021), the negative correlation 
found between SGI and temperature in Baik may relate 
to depressed growth above a thermal tolerance threshold 
of 27 °C (Schwartzman et al. 2011; Killam et al. 2021). 
As monthly SST varied between 28.11 °C and 30.47 °C 
at Baik, increment thickness could become erratic and 
a stress reaction initiated (Schwartzman et  al. 2011). 
Another explanation may be the small variation in SST 
throughout the year (~ 2  °C), considered negligible in 
terms of contribution to growth rate (Gannon et al. 2017). 
As such, SST may play an indirect role in modulation of 
growth of our shells due to its relationship with light. A 
positive correlation between light and growth has been 
observed in several tridacnid species on diurnal—(Sano 
et al. 2012; Yan et al. 2021) to seasonal scales (Lucas 
et al. 1989). Yan et al. (2021) found co-variance of daily 
growth rate with outgoing longwave radiation (OLR), but 
no significant correlation with SST for Tridacna derasa, 
indicating local effective solar radiation, is more important 
than SST in determination of increment width. Our results 
of an inverse relationship between monthly SGI and cloud 
cover indicate at least some light dependence on growth in 
Baik caused by photosynthetic activity of endosymbionts.

Fig. 10   Mean daily growth rate 
(μm) of the inner shell layer 
for Darvel Bay and Semporna 
Tridacnidae (current study) 
compared to published growth 
values. Reef location SCS 
Southern South China Sea, 
PNG Papua New Guinea, GBR 
Great Barrier Reef. Sample 
zhao_md3 = Zhao et al. (2021); 
yan_XB10 = Yan et al. (2020); 
arias-ruiz_GSL14_19 = Ariaz-
Ruiz et al. (2017); 
gannon_K-133 = Gannon et al. 
(2017); gannon_PT-1 = Gan-
non et al. (2017); elliot_
Tgplam = Elliot et al. (2009); 
schwartzman = Schwartzmann 
et al. (2011), aubert = Aubert 
et al. (2009). Error bars 
represent standard deviation if 
available
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Seasonal rainfall within Darvel Bay is enhanced by south-
west (dry season) and northeast (wet season) monsoons. 
Rainfall may indirectly influence growth by washing par-
ticulate matter into the region, increasing local turbidity and 
impeding photosynthetic processes (Gannon et al. 2017). 
High-resolution paleoweather reconstructions show abrupt 
decreases in daily increment thickness due to cold upwelling 
and strong wave action from typhoon and tropical cyclone 
activity (Komagoe et al. 2018; Yan et al. 2020). Although 
monthly SGI in Baik shows a negative relationship with 
rainfall, periods of reoccurring accelerated growth in the 
mid to late wet season may be attributed to enhanced verti-
cal mixing after increased rainfall, bringing nutrient rich 
sub-surface waters to the surface, coupled with subsequent 
increased solar irradiance (Gannon et al. 2017; Yan et al. 
2020). While Baik is indicative of a low turbid reef and 
Kd(490) and chlorophyll-a do not increase to the same extent 
as Triangle, we propose that a sequence of events similar to 
that recorded by Gannon et al. (2017) following: (1) higher 
rainfall during the early wet season, (2) elevated Kd(490) and 
chlorophyll-a, (3) increased sunlight, may result in favour-
able growing conditions.

Unlike Baik, shells from Triangle lacked any statistically 
significant relationship between monthly SGI and envi-
ronmental variables. Yet, we did note a positive associa-
tion between SGI and chlorophyll-a and Kd(490) in some 
months. Triangle is a naturally turbid reef situated approxi-
mately 3.5 km from the mouth of the river

Tingkayu, which discharges sediment to the site at low 
tide. During ebb tide, freshwater carrying sediment loads are 
directly discharged seaward to the reef at the surface, while 
density gradients generating two-layer circulation patterns 
move saltwater landward at the bottom (Saleh et al. 2007). 
Sediment input is likely land derived POM produced in the 
river basin by different mechanisms (e.g. freshwater pro-
ductivity and remains of plants and microorganisms) and 
mineral sediment (Bainbridge et al. 2018). In similarity to 
mixotrophic corals (Fox et al. 2018), elevated chlorophyll-a 
concentrations at Triangle may indicate T. squamosa uti-
lises chlorophyll-a as a key contributor towards metabolic 
requirements in reduced photic depth. Local irradiance may 
be of less importance for T. squamosa compared to other 
giant clam species, and it can sustain growth in turbid reefs 
if a suitable local food source is available.

Influences on daily shell growth

At a daily scale, spectral characteristics of SGI chronolo-
gies revealed similarities with tidal range at Triangle. 
Significant spectral peaks occurred at around two to three 
days corresponding closely to peaks in maximum daily 
tide. Tidal rhythms are known to leave characteristic daily 
growth or geochemical patterns in many bivalves, such as 

differentiation of increment widths that relate to spring-
neap variability or daily tidal emergence (Goodwin et al. 
2001) and trace element cyclicity (Warter and Müller 2017; 
de Winter et al. 2022). It has recently been suggested that 
under natural conditions the circadian clock genes of some 
bivalves may also run at tidal frequency, indicating behav-
ioural patterns relating to a circadian cycle can be modulated 
by tidal rhythm (Tran et al. 2020). Based on this hypothesis, 
the presence of paired daily increments in Triangle shells 
may relate to reef sediment flux controlled by a circadian 
rhythm paced to tides that result in variable light intensities. 
The thicker prismatic layer presumably related to higher irra-
diance may be accreted during flood tide, when clear water is 
transported offshore to the reef. At ebb tide when suspended 
sediment is transported to the reef lowering photic depth, 
smaller crystals could be deposited. However, more work is 
needed to elucidate the relationship between short-term tidal 
cycles and daily growth increments in tridacnids.

Conclusion

In this study, we provide the first assessment of growth 
in giant clams from turbid reefs using a mixed method 
approach. We investigated daily growth increments in thir-
teen Tridacna squamosa shells from different coral reef sites 
with varying degrees of turbidity. Similarities were found 
in annual growth rate between clear and turbid reefs, while 
there were differences in seasonal growth trends, indicat-
ing that an interplay of different environmental factors may 
regulate intra-annual growth between reefs. At a daily scale, 
we found differences in microstructure and spectral charac-
teristics of daily increments, which may relate to tidal vari-
ability at the turbid site near a river source. Our results do 
not indicate that turbidity negatively influences growth but 
are consistent with sustained growth, which may relate to the 
trophic plasticity of T. squamosa. This work supports grow-
ing evidence that resilient marginal habitats with elevated 
turbidity may serve as important conservation hotspots and 
our results are useful in the context of management and con-
servation for T. squamosa under changing future oceanic 
conditions. Although encouraging, we cannot ascertain what 
this may mean for other parameters important for survival, 
such as skeletal density. More work is needed on different 
tridacnid species to better understand the multiple environ-
mental and physiological influences of turbidity.
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