Improved obstetric and neonatal care have reduced the prevalence of severe hypoxic-ischaemic encephalopathy (HIE). However, 1-3/1000 newborns in the developed world suffer death or neurodevelopmental disability from HIE. The normal development of the brain during gestation can also be altered by placental reprogramming under oxidative stress. Under these conditions, the placenta releases DNA-damaging molecules, bone morphogenic proteins, microRNAs and glutamate. At present, one is unable to diagnose or treat these factors.

We have previously applied Xenon, a rare noble gas used in anaesthesia, at 50% using a closed-circuit system with and without hypothermia in the newborn piglet and rodent models of HIE. Unlike other inhalational anaesthetics, Xenon did not induce neuroapoptosis in the immature brain and improved cardiovascular control after hypoxia-ischaemia (HI). A clinical feasibility and ongoing randomised phase-two study are testing the effects of breathing Xenon50% in term infants undergoing therapeutic hypothermia (TH) against those undergoing TH alone. Experimentally, inhaling Xenon50% improves motor function and cognition after long-term survival in rats post-injury. In rat models of HI brain injury, Xenon is neuroprotective by upregulating neurotrophic factors and anti-apoptotic proteins, by inducing hypoxia-inducible factor (HIF-1α) pathways allowing for pre-conditioning, by suppressing the astroglial response to injury and limiting glutamate release to counter excitotoxicity thereby improving neuronal survival.

Xenon’s neuroprotective properties may be extended to treat brain injury arising from placental reprogramming under oxidative stress. To test this hypothesis, we used a rat injection model whereby media obtained directly from human placentae under oxidative stress were injected into postnatal day 4 (P4) rat brain (human gestational age 29-31 weeks equivalent). In brief, media were collected from human first trimester placentae cultured under 21% O2 (CM + 21%) and 2%-8% O2 (CM + 2%-8%). An additional group was injected with saline (Sal) and constituted the sham condition. The pups were then allowed to survive into the juvenile age, brains were culled, and neuropathology was examined (see Supplementary files for more information).

We have tested (a) the effects of hypoxic injury modelled by the injection of hypoxia-derived conditioned media from the placenta into P4 rat pup brains and (b) whether breathing 50% Xenon for 4 hours after this injury could reduce neuropathology in those pups surviving into juvenile age.

We report here that the injection of hypoxia-derived conditioned media to healthy pups causes a modest loss of parvalbumin neurons in the thalamic reticular nucleus (TRN), the hippocampus and the cortex at P30 of survival (Figure 1). The glial response to neuronal loss was assessed by GFAP immunofluorescence and showed a marked increase in astrocytes in addition to an activated morphology. The injury also affected dendrite lengths, a proxy measure for degree of arborisation/connectivity, and this was consistent with previous in vitro findings. There were no changes in overall neuronal counts, but dopaminergic neurons process lengths decreased in some areas. Importantly, Xenon treatment conferred some resistance to the increase in glial numbers (P < 0.05) in the cortex and hippocampus (Figure 1). Most strikingly, we observed Xenon treatment to be protective against the loss of parvalbumin cells in the TRN caused by the injury (P < 0.05). Interestingly, Xenon treatment did not protect dendritic arborisations/complexity but did greatly increase the lengths of dopaminergic (tyrosine hydroxylase) processes and overall neuronal numbers post-injury.

These promising results albeit limited in scope suggest that Xenon treatment after mild injury due to maternal hypoxia does offer some protection. Our findings are consistent with previously reported effects of Xenon in toning down glosis in neonatal rat cortex, hippocampus and thalamus in a classical HI rodent model. Most neurons including parvalbumin neurons are sensitive to hypoxia and are lost in the 2%-8% condition in most areas. Xenon acts as an anti-apoptotic agent, and as neurogenesis is still very active in the early developing postnatal rodent brain. Xenon may be promoting a compensatory neuroblast differentiation response in vulnerable areas explaining the higher number of densities we observed compared with 21%. This is speculative, and we do not know the underlying mechanisms. We also cannot speculate on the behavioural significance of an overall increased number of neurons without further study. Xenon is thought to provide partial protection of dopaminergic cells by acting as a trophic factor in conditions of excitotoxicity and by suppressing the astroglial response. This improves cell survival but may also result in outgrowth around the area of damage. Fibre outgrowth is linked with altered connectivity in the brain and, therefore, may not necessarily beneficial. Behavioural work is needed to test how motor skills have been affected with/without Xenon after...
and stress. Placental reprogramming can alter fetal neurodevelopment and placenta including pre-eclampsia, maternal gestational diabetes.

The CONFLICT OF INTEREST section is rephrased to be more concise:

\section*{CONFLICT OF INTEREST}

The authors declare no conflict of interest.

\section*{ACKNOWLEDGEMENTS}

We acknowledge the financial support of the JP Moulton foundation, the Perivoli Trust and SPARKS-The Children’s Medical Research Charity. We also acknowledge Dr Charles Patrick Case for his input in this study and Dr John Dingley for providing Xenon-delivery expertise.

\section*{REFERENCES}


SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.