This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/157771/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

10.3389/fpsyt.2022.893816 file

Publishers page: http://dx.doi.org/10.3389/fpsyt.2022.893816
<http://dx.doi.org/10.3389/fpsyt.2022.893816>

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Corrigendum: Potential genetic overlap between insomnia and sleep symptoms in major depressive disorder: A polygenic risk score analysis

Lindsay M. Melhuish Beaupre¹,², Arun K. Tiwari¹,³, Vanessa F. Gonçalves¹,³,⁴, Clement C. Zai¹,²,³,⁴, Victoria S. Marshe¹,³,¹,⁴, Cathryn M. Lewis¹,⁵,⁶, Nicholas G. Martin⁷, Andrew M. McIntosh⁸, Mark J. Adams⁸, Bernhard T. Baune⁹,¹⁰,¹¹, Doug F. Levinson¹², Dorret I. Boomsma¹³, Brenda W. J. H. Penninx¹⁴, Gerome Breen¹⁵,¹⁶, Steve Hamilton¹⁶, Swapanil Awasthi¹⁷, Stephan Ripke¹⁷,¹⁸,¹⁹,²⁰, Lisa Jones²¹, Ian Jones²², Enda M. Byrne²³, Ian B. Hickie²⁴, James P. Potash²⁵, Jianxin Shi²⁶, Myrna M. Weissman²⁷,²⁸, Yuri Milaneschi¹⁴, Stanley I. Shyn²⁹, Eco J. C. de Geus¹⁴, Gonneke Willemse²⁰, Gregory M. Brown¹,², James L. Kennedy¹,²,³,²⁵* and Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium¹

¹Molecular Brain Science Research Department, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada, ²Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada, ³Department of Psychiatry, University of Toronto, Toronto, ON, CANADA, ¹Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, ⁴Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom, ⁵Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom, ⁶Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia, ⁷Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom, ⁸Department of Psychiatry, University of Münster, Münster, Germany, ⁹Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia, ¹⁰Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia, ¹¹Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States, ¹²Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, Netherlands, ¹³Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit, Amsterdam, Netherlands, ¹⁴National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, King’s College London, London, United Kingdom, ¹⁵The Permanente Medical Group, San Francisco, CA, United States, ¹⁶Department of Psychiatry and Psychotherapy, Universität Medizin Berlin Campus Charité Mitte, Berlin, Germany, ¹⁷Analytic and Translational Genetic Unit, Massachusetts General Hospital, Boston, MA, United States, ¹⁸Medical and Population Genetics, Broad Institute, Cambridge, MA, United States, ¹⁹Department of Psychiatry, Charité, Berlin, Germany, ²⁰Psychological Medicine, University of Worcester, Worcester, United Kingdom, ²¹Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, Neurosciences and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom, ²²Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia, ²³Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia, ²⁴Psychiatry Department, University of Iowa, Iowa City, IA, United States, ²⁵Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States, ²⁶Psychiatry Department, Columbia University College of Physicians and Surgeons, New York, NY, United States

OPEN ACCESS

EDITED AND REVIEWED BY

Mehtu M. Agargün, Yuzuncu Yildiz University, Turkey

CORRESPONDENCE

James L. Kennedy
jim.kennedy@camh.ca

₁Full list of Consortium members are present in the Supplementary Material

SPECIALTY SECTION

This article was submitted to Sleep Disorders, a section of the journal Frontiers in Psychiatry

RECEIVED 10 March 2022
ACCEPTED 28 June 2022
PUBLISHED 04 August 2022

CITATION

COPYRIGHT © 2022 Melhuish Beaupre, Tiwari, Gonçalves, Zai, Marshe, Lewis, Martin, McIntosh, Adams, Baune, Levinson, Boomsma, Penninx, Breen, Hamilton, Awasthi, Ripke, Jones, Jones, Byrne, Hickie, Potash, Shi, Weisman, Milaneschi, Shyn, Geus, Willemse, Brown, Kennedy and Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
The prevalence of hypersomnia in our sample is slightly higher than others have reported (8, 40). Interestingly, the prevalence of insomnia between sexes was similar, but the prevalence of hypersomnia in males was 7% higher than in females. The direction of our hypersomnia results is in accordance with prior literature, which suggests depressed males are more likely to experience hypersomnia than depressed females. However, the study also suggests a more significant difference than observed in our results (41). However, their sample was significantly smaller ($N < 500$, which may explain the difference in prevalence rates)" has been corrected to "First, we found that the prevalence rates for insomnia were representative of the prevalence rates from other reports (8, 40). The prevalence of hypersomnia in our sample was slightly higher than others have reported (8, 40). Interestingly, the prevalence of insomnia between sexes was similar, but the prevalence of hypersomnia in females was 7% higher than in males. Our results are opposite to prior literature, that suggested depressed males are more likely to experience hypersomnia than depressed females (41). However, their sample was significantly smaller ($N < 500$), which may explain the difference in prevalence rates."

In the original article, there were mistakes in the labelling of Supplementary Tables 1, 2 as published. Their labelling was reversed, such that Supplementary Table 1 was referred to as if it were Supplementary Table 2, and vice versa. The Supplementary Material labelling has been corrected.

In the original article, there was a mistake in the reference order for the citations included in Table 1. Twelve references [i.e., (20–32)] were incorrect. References 20–32 have been corrected and subsequently the full reference list and citations have been updated.

The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

References

KEYWORDS

sleep, major depressive disorder, insomnia, hypersomnia, polygenic risk

