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Abstract 

The concept of Industry 4.0 (I4.0) refers to the intelligent networking of machines and 

processes in the industry, which is enabled by cyber-physical systems (CPS) - a 

technology that utilises embedded networked systems to achieve intelligent control. 

CPS enable full traceability of production processes as well as comprehensive data 

assignments in real-time. Through real-time communication and coordination between 

"manufacturing things", production systems, in the form of Cyber-Physical Production 

Systems (CPPS), can make intelligent decisions. Meanwhile, with the advent of I4.0, 

it is possible to collect heterogeneous manufacturing data across various facets for 

fault diagnosis by using the industrial internet of things (IIoT) techniques. Under this 

data-rich environment, the ability to diagnose and predict production failures provides 

manufacturing companies with a strategic advantage by reducing the number of 

unplanned production outages. This advantage is particularly desired for steel-making 

industries. As a consecutive and compact manufacturing process, process downtime is 

a major concern for steel-making companies since most of the operations should be 

conducted within a certain temperature range. In addition, steel-making consists of 

complex processes that involve physical, chemical, and mechanical elements, 

emphasising the necessity for data-driven approaches to handle high-dimensionality 

problems.   

For a modern steel-making plant, various measurement devices are deployed 

throughout this manufacturing process with the advancement of I4.0 technologies, 

which facilitate data acquisition and storage. However, even though data-driven 

approaches are showing merits and being widely applied in the manufacturing context, 

how to build a deep learning model for fault prediction in the steel-making process 

considering multiple contributing facets and its temporal characteristic has not been 

investigated. Additionally, apart from the multitudinous data, it is also worthwhile to 

study how to represent and utilise the vast and scattered distributed domain knowledge 

along the steel-making process for fault modelling. Moreover, state-of-the-art does not 
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address how such accumulated domain knowledge and its semantics can be harnessed 

to facilitate the fusion of multi-sourced data in steel manufacturing. In this case, the 

purpose of this thesis is to pave the way for fault diagnosis in steel-making processes 

using data mining under I4.0. 

This research is structured according to four themes. Firstly, different from the 

conventional data-driven research that only focuses on modelling based on numerical 

production data, a framework for data mining for fault diagnosis in steel-making based 

on multi-sourced data and knowledge is proposed. There are five layers designed in 

this framework, which are multi-sourced data and knowledge acquisition, data and 

knowledge processing, KG construction and graphical data transformation, KG-aided 

modelling for fault diagnosis and decision support for steel manufacturing. 

Secondly, another of the purposes of this thesis is to propose a predictive, data-driven 

approach to model severe faults in the steel-making process, where the faults are 

usually with multi-faceted causes. Specifically, strip breakage in cold rolling is 

selected as the modelling target since it is a typical production failure with serious 

consequences and multitudinous factors contributing to it. In actual steel-making 

practice, if such a failure can be modelled on a micro-level with an adequately 

predicted window, a planned stop action can be taken in advance instead of a passive 

fast stop which will often result in severe damage to equipment. In this case, a multi-

faceted modelling approach with a sliding window strategy is proposed. First, 

historical multivariate time-series data of a cold rolling process were extracted in a 

run-to-failure manner, and a sliding window strategy was adopted for data annotation. 

Second, breakage-centric features were identified from physics-based approaches, 

empirical knowledge and data-driven features. Finally, these features were used as 

inputs for strip breakage modelling using a Recurrent Neural Network (RNN). 

Experimental results have demonstrated the merits of the proposed approach. 

Thirdly, among the heterogeneous data surrounding multi-faceted concepts in steel-

making, a significant amount of data consists of rich semantic information, such as 

technical documents and production logs generated through the process. Also, there 
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exists vast domain knowledge regarding the production failures in steel-making, which 

has a long history. In this context, proper semantic technologies are desired for the 

utilisation of semantic data and domain knowledge in steel-making. In recent studies, 

a Knowledge Graph (KG) displays a powerful expressive ability and a high degree of 

modelling flexibility, making it a promising semantic network. However, building a 

reliable KG is usually time-consuming and labour-intensive, and it is common that KG 

needs to be refined or completed before using in industrial scenarios. In this case, a 

fault-centric KG construction approach is proposed based on a hierarchy structure 

refinement and relation completion. Firstly, ontology design based on hierarchy 

structure refinement is conducted to improve reliability. Then, the missing relations 

between each couple of entities were inferred based on existing knowledge in KG, 

with the aim of increasing the number of edges that complete and refine KG. Lastly, 

KG is constructed by importing data into the ontology. An illustrative case study on 

strip breakage is conducted for validation. 

Finally, multi-faceted modelling is often conducted based on multi-sourced data 

covering indispensable aspects, and information fusion is typically applied to cope 

with the high dimensionality and data heterogeneity. Besides the ability for knowledge 

management and sharing, KG can aggregate the relationships of features from multiple 

aspects by semantic associations, which can be exploited to facilitate the information 

fusion for multi-faceted modelling with the consideration of intra-facets relationships. 

In this case, process data is transformed into a stack of temporal graphs under the fault-

centric KG backbone. Then, a Graph Convolutional Networks (GCN) model is applied 

to extract temporal and attribute correlation features from the graphs, with a Temporal 

Convolution Network (TCN) to conduct conceptual modelling using these features. 

Experimental results derived using the proposed approach, and GCN-TCN reveal the 

impacts of the proposed KG-aided fusion approach. 

This thesis aims to research data mining in steel-making processes based on multi-

sourced data and scattered distributed domain knowledge, which provides a feasibility 

study for achieving Industry 4.0 in steel-making, specifically in support of improving 

quality and reducing costs due to production failures.
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Chapter 1 Introduction 

1.1 Background  

During the past decade, the term Industry 4.0, which originated in Germany, has been 

adopted globally. Industry 4.0 technologies are being developed and implemented in 

a number of countries, and a substantial amount of research has been conducted to 

develop and implement some of these technologies. The Internet of Things, cloud 

computing, smart sensors, and other technologies are being integrated into today's 

factories as part of I4.0 (Cemernek et al., 2017). CPS is considered one of the key 

enablers of I4.0. By linking real objects, for example, machines and products, with 

their cyber representatives, CPS enable full traceability of production processes as well 

as comprehensive data assignments in real-time. Through real-time communication 

and coordination between "manufacturing things", production systems, in the form of 

Cyber-Physical Production Systems (CPPS), can make intelligent decisions 

(Bauernhansl et al., 2014). Specifically, Industry 4.0 focuses on the intelligent 

networking of machines and processes utilizing embedded networked systems to 

achieve intelligent control (Lu et al., 2020).  

The Smart Factory initiative is one of the major constituent parts of Industry 4.0 

(Zuehlke, 2010). In a modern manufacturing plant, the data collection and transfer of 

information from almost all processes are done electronically using powerful data 

acquisition systems. Continuous measurements are being conducted at various stages 

of manufacturing, and the values of these variables are recorded in the databases of 
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organizations.  The manufacturing industry generates large volumes of raw data 

continuously as a result of technological advancements. As a result of the availability 

of large quantities of data and their increasing quantities, there has been an increased 

interest in the study of the machine learning concept (Ito et al., 2019). In this sector, 

data mining applications have been utilized for solving manufacturing problems for 

nearly two decades. The use of ML methods to perform manufacturing tasks can be 

exemplified by intelligent systems to support the scheduling of multiple production 

lines simultaneously and arrangements for the maintenance of machines (Mehrpouya 

et al., 2019). The detection of manufacturing defects is another example, as well as 

predicting failures, estimating the energy consumption of machines, and estimating 

machine energy consumption (Dogan and Birant, 2021).  

In addition to the heterogeneous data collected along the steel-making workflow, there 

is vast existing domain knowledge which has not been fully exploited for data-driven 

modelling in steel-making. Techniques such as ontology (Lu and Xu, 2017) can be 

used to develop semantic descriptions of manufacturing resources. As a semantic 

model, ontology can define and describe a wide variety of entities, features and 

properties existing in a specified domain (Otero-Cerdeira et al., 2015). However, as 

ontologies are based on rule representations, they have limited flexibility and 

adaptability when it comes to describing the semantics of large-scale workshop data. 

In contrast, KG displays a powerful expressive ability and a high degree of modelling 

flexibility, making it a promising semantic network (Paulheim, 2017). The feeding of 

these production data and knowledge into ML methods provides the basis for quality 

control of highly complex and multidimensional processes. 

A typical example of such a complex and high-dimensional manufacturing process is 

the steel industry. Throughout the industrial sector, steel is a key raw material used in 

the construction of buildings, bridges, ships, containers, medical instruments, and 

automobiles (Cemernek et al., 2022). In this context, quality improvements would be 

highly beneficial to the steel industry with the highly competitive nature of the global 

steel market since even the smallest variation during the production process causes 

costly and time-consuming post-processing or scrap (WorldsteelAssociation, 2022). 



Introduction 
3 

 

In steel production, rolling is the main method of metal plastic forming, with its 

products accounting for more than 90% of metal plastic processing (Mazur and 

Nogovitsyn, 2018). The rolling process can be classified as hot rolling and cold rolling. 

Steel produced by cold rolling has closer dimensional tolerances and a broader range 

of surface finishes than steel produced by hot rolling. In addition, it can be up to 20% 

stronger than hot-rolled steel due to the use of strength hardening. In this context, the 

cold rolling process is a primary metal-forming process for the manufacturing of steel 

strips (Mashayekhi et al., 2011). For the cold rolling process, there are a number of 

product failures leading to serve consequences. For example, strip breakage, also 

known as strip snap or strip tearing, is one of the most common quality issues in the 

cold rolling process (Mashayekhi et al., 2011). This incident resulted in damage to 

rolls, the steel strip and loss of yield. Therefore, research to identify and determine the 

causes of strip snap is of great significance in production yield improvement, cost 

reduction and mill service life extension (Iwadoh and Mori, 1992). 

For a modern steel-making plant, various measurement devices are deployed 

throughout this manufacturing process with the advancement of I4.0 technologies, 

which facilitate data acquisition and storage (Dogan and Birant, 2021). Meanwhile, 

emerging semantic techniques such as KG and graph representation learning enable 

an effective pathway to achieve cognitive intelligence by exploiting and aggregating 

the relationship of events, features, and equipment components (Xia et al., 2022). In 

this data-rich environment, data-driven approaches can provide a powerful tool to 

support quality improvement and reduce costs due to production failure. Also, with 

the merits of better visualisation and reasoning ability, modelling such production 

failure using semantic approaches can be a promising manner to achieve accurate 

perception and better understanding for the fault diagnosis in steel-making. 
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1.2 Motivations 

The steel-making industry places a great deal of emphasis on quality control, which is 

determined by the characteristics of this industry (Kano and Nakagawa, 2008, Zhang 

et al., 2018). As a process-oriented industry, the steel industry aims to ensure that every 

production line is produced continuously throughout the entire production process 

(Tang et al., 2001). In this case, any interruption caused by production failure has a 

great impact on the consistency of this continuous process. In addition, the scale of 

production on each production line is relatively large, which means a whole batch of 

products would be affected by similar quality issues when problems arise. Due to this 

situation, steel companies seek to eliminate this risk by introducing better quality 

control approaches and minimising the consequences caused by production failures. 

There is also a great deal of complexity involved in the steel production process. There 

are five major stages of the manufacturing process, which are iron-making, steel-

making, hot-rolling, cold-rolling, and heat treatment (Missbauer et al., 2009). Within 

each stage of the steel production process, there are various triggers for a production 

failure, and these failures can be caused by the former process. For example, in the 

cold-rolling process, there are numerous parameters that influence the quality of these 

cold-rolled products, such as the chemical composition of the liquid steel, the rolling 

speed and the cooling rate (Yan and Li, 2006b, Cui and Zhao, 2013b, Chen et al., 2019, 

Liu, 2015b, Liu et al., 2014, Takami et al., 2011b, Wang, 2014a, Yun et al., 1998, Lin 

et al., 2003).  

In this context, for the steel-making process, which is characterised by high 

temperatures and pressures, elevated production speeds, and intense throughput, the 

early diagnosis of an incoming fault is highly relevant for both safety and economic 

reasons. The goal of the fault diagnosis method is to determine whether and when a 

monitored system starts to operate under anomalous conditions and eventually 

estimate the potential root-cause.  

This research is in collaboration with the industrial partner Cogent Orb, a wholly-

owned subsidiary of Tata Steel. This company produces Grain Oriented Electrical 
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Steels (GOES) for use in the cores of all types of transformers. Brittle High Si steels 

are cold reduced, decreasing the original thickness by 90% to achieve excellent 

magnetic losses, which are proportional to the final strip thickness. However, under 

high rolling speed and tension, within the cold-rolling process of such thin (0.23 mm) 

strip products, strip breakages can occur, which are undesirable. The historical stats 

indicate that there was an average of 24.3 breakages per 1000 tons manufactured in 

2018. In addition to the high frequency of strip breakage in cold rolling, the financial 

losses associated with this problem are also substantial. For example, a single instance 

of strip breakage can result in several hours of downtime, repair costs, and lost 

production, with estimated financial losses ranging from tens of thousands to millions 

of pounds, depending on the severity of the breakage. Therefore, the ability to 

accurately diagnose and predict strip breakage and other production failures in the 

steel-making process is essential for reducing these financial losses and improving the 

overall efficiency and competitiveness of the industry. 

For the diagnosis of faults such as strip breakage, methods can be roughly classified 

into two broad categories: model-based and data-driven methods. The first relies on 

the availability of a physical model of the system under analysis, the derivation of 

which can be a complex and time-consuming task. Moreover, the conventional 

approach is not able to handle production failures with highly complexity and 

multidimensionality (Cui and Zhao, 2013b, Xu, 2015, Liu, 2015b). The limitation of 

the conventional approach is its retrospective manner which focuses on cause analyses 

after the occurrence of this failure rather than a predictive approach.  

Compared with conventional approaches, data-driven approaches have been widely 

employed with the advancement of I4.0 technologies (Kuo and Kusiak, 2019). With 

the deployment of various sensors and accurate measurement devices throughout the 

modern cold rolling process, process data such as coil entry and exit speed, forward 

and backward tension, roll gap position and eccentricity of the cold rolling system are 

measured in real-time, and a large amount of multivariate time-series data is collected 

and stored. In this data-rich environment, data-driven approaches to investigating strip 
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breakage have previously been applied in a handful of works (Chen et al., 2019, 

Takami et al., 2011a, Wang, 2014b). Despite the advantage of being able to extract 

useful knowledge and make appropriate decisions using the data-driven approach, 

three questions have rarely been explored. Firstly, these works were conducted with 

the aim of quality characterisation (Da Cunha et al., 2006), which is the primary step 

for quality improvement rather than quality prediction (Lopes et al., 2019). Secondly, 

the rationale for determining the variables for breakage modelling was not explained 

and justified. Thirdly, the granularity of the data used in these works cannot match the 

temporal characteristic of strip breakage, which occurs instantaneously. 

Moreover, the existing data-driven research on fault diagnosis in steel-making only 

considers the numerical production data. However, among the heterogeneous data 

surrounding the production failures in steel-making, a significant amount of data 

consists of rich semantic information, such as technical documents and production logs 

generated through the steel-making process. Also, as a conventional manufacturing 

process with a long history, there exists vast domain knowledge regarding the 

production failures in steel-making. Hence, in terms of modelling for fault diagnosis 

in steel making, proper semantic technologies are desired for the processing of 

semantic data and domain knowledge in steel-making. 

Recently, Knowledge Graphs (KG) has attracted significant research interest due 

to their ability to store structured as well as unstructured knowledge elicited from 

heterogeneous domains and query them for the purpose of answering questions (Li et 

al., 2021). KG exhibits remarkable expressive ability and excellent modelling 

flexibility, which has been described as a graph model for representing information in 

a manner that can be understood by a broad audience (Paulheim, 2017). Considering 

it as a medium for conveying information in some web-based services, the majority of 

present studies have focused on the performance of KG itself, for example, KG-enable 

industrial products and services development. Specifically, there are three common 

research purposes of KG: its customization, enhancement and integration, such as 

building KG based on multiple sources and forms of industry records and developing 

algorithms based on semantics and topology to conduct knowledge deduction in 
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multiple contexts. Besides, the advantages of KG also mitigate or even effectively 

resolve some industry pain points in product and service development, including 

multidisciplinary knowledge extraction and fusion, comprehensive solution searching, 

explainable knowledge recommendation, risk detection and prediction, and 

information distillation. As a result of flexibility in knowledge representation and 

advanced deduction approaches, KG alleviates multiple industry challenges in 

lifecycle stages and demonstrates its potential in various industrial products and 

services. 

 

1.3 Research Questions and Objectives 

Following the background and motivations, under the context of I4.0, this research 

aims to investigate data mining for fault diagnosis in steel-making based on multi-

sourced data and knowledge. The following research questions have been formulated 

to achieve this goal: 

1. With the development of emerging technologies such as IIoT, CPPS, and KG in 

the context of I4.0, the steel-making industry has shifted to a data-rich and 

knowledge-intensive environment. In this case, what is an appropriate data 

mining framework for fault diagnosis in steel-making with the full exploitation of 

these resources? 

2. Fault diagnosis is important for quality improvement in steel-making, and a data-

driven approach has been widely employed. However, existing fault diagnosis 

research was conducted within the schema of quality characterisation, and the 

rationale for determining the variables for fault modelling was not explained and 

justified. Therefore, how to achieve fault modelling in a predictive manner with 

the justification of facets surrounding the production failure? 
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3. Besides the numerical production data in the steel-making process, it is widely 

acknowledged that the semantic data and existing domain knowledge are of great 

significance to fault diagnosis. Meanwhile, research on knowledge graphs has 

been receiving more and more attention because of the great expressive power of 

graphs. In this context, how to manage and exploit these resources in steel-making 

using KG with the consideration of their heterogeneity? 

4. With the advancement of graph representation learning and GNN techniques, KG 

can be applied for machine learning analysis with the unique advantage of 

capturing intra-features relationships. Therefore, how can KG be utilised for the 

computational modelling of fault diagnosis using multi-sourced steel-making data? 

With the identification of the research questions, the research objectives following 

these research questions are listed below: 

1. To propose a framework of data mining for fault diagnosis in steel-making with 

full utilisation of multi-sourced data and knowledge. 

2. To propose a data-driven approach that identifies features with solid rationality 

and models the production failures of steel-making in a predictive manner. 

3. To study a semantic approach that can utilise semantic data and existing 

knowledge using KG. 

4. To investigate a KG-aided approach to facilitate the integration of multi-sourced 

data for fault modelling in steel-making. 

The details of this research will be reported in Chapters 3, 4, 5 and 6.  

 

https://www.sciencedirect.com/topics/computer-science/machine-learning
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1.4 Thesis Outline 

In Chapter 1, a broader context and background are provided as to the motivation and 

significance of this research.  

Chapter 2 presents a detailed review of the existing literature on related topics. It is 

divided into five parts: (1) An overview of the steel-making process with a specific 

review of cold-rolling; (2) the application of data mining in the steel-making industry, 

(3) knowledge graph and graph representation learning; and (4) the studies of 

information fusion. 

In Chapter 3, a framework is proposed for data mining in steel-making under 4.0 with 

a focus on fault diagnosis. There are five layers designed in this framework, which are 

multi-sourced data and knowledge acquisition, data and knowledge processing, KG 

construction and graphical data transformation, KG-aided modelling for fault 

diagnosis and decision support for steel manufacturing. 

Chapter 4 reports a multi-faceted modelling approach, which can characterise and 

model a typical production failure of steel-making in a predictive manner using 

machine learning. In this approach, historical multivariate time-series data of a cold 

rolling process are extracted in a run-to-failure manner, and a sliding window strategy 

is adopted for data annotation. Then, fault-centric features are identified from three 

facets — physics-based approaches, empirical knowledge, and data-driven features. 

Finally, these features are used as inputs for strip breakage modelling using Recurrent 

Neural Networks (RNNs), which are specialised in discovering underlying patterns 

embedded in time-series data. The experimental results using real-world data revealed 

the effectiveness of the proposed approach. 

In addition to the production data in steel-making, Chapter 5 aims to exploit the 

domain knowledge and semantic data surrounding the production failure for further 

modelling. A semantic approach to construct a domain knowledge graph, which serves 

as a semantic organisation to elicit, fuse, and utilise numerous entities and relationships 
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embedded in manufacturing processes, is proposed.  Firstly, multi-source information 

is extracted and integrated to build a knowledge base containing entities and relations 

for underlying ontology design. Then, an ontology design framework based on 

hierarchy structure refinement is deployed to improve the reliability in constructing 

domain-centric ontologies. Lastly, the missing relations between each couple of 

entities were inferred based on existing knowledge in KG, with the aim of increasing 

the number of edges that complete and refine KG. The validation of the proposed 

approach by a case study is also reported.  

In Chapter 6, KG is further exploited to facilitate the information fusion for the 

modelling of multi-faceted concepts in steel making. Based on the construction of the 

concept-centric knowledge graphs, as stated in Chapter 5, multivariate time-series data 

is transformed into a temporal graph representation of the data sequence. Then, a 

Graph Convolutional Networks (GCN) model is applied to extract features from these 

temporal graphs, and these features are fed into a Temporal Convolution Network 

(TCN) for fault concept modelling. The experimental results show the merits of the 

KG-aided fusion approach. 

Chapter 7 concludes the thesis, and a summary of its achievements is presented. There 

is a discussion of the restrictions and future work. As a final note, the main 

contributions to the body of knowledge resulting from this research are summarised. 

 

1.5 Research Contributions 

This thesis makes several contributions to the wider body of knowledge. 

1. As part of Industry 4.0, a research framework is imperative for supporting the 

study of fault diagnosis in steel-making. This framework outlines a technical path 

towards Industry 4.0 levelled fault diagnosis of steel-making based on multi-

sourced data in steel-making and existing domain knowledge.  
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2. Fault diagnosis in a predictive manner is important to quality management in steel-

making. With the aim of establishing a production failure prediction model, a 

multi-faceted data-driven approach is proposed to integrate sliding windows and 

deep learning techniques. Prediction of the failures can bring significant benefits 

to the cold rolling industry in terms of contingency mitigation and quality 

improvement.  

3. Since the semantic data and existing domain knowledge also can have an impact 

on fault diagnosis, it is challenging to utilise these resources and exploit them for 

further modelling. A KG construction framework is proposed as an approach that 

aims to design a reliable ontology and complete relations in constructing the 

domain-centric KG for knowledge management in steel-making. Also, this 

approach can facilitate the exploitation of knowledge for further computational 

modelling. 

4. It has become progressively more evident that a single data source is unable to 

comprehensively capture the variability of a multi-faceted fault. Meanwhile, KG 

can aggregate the relationships of multiple aspects by semantic associations, 

which can be exploited to facilitate multi-faceted modelling.  In this case, a KG-

aided data fusion approach is proposed for multi-faceted modelling.



12 Literature Review 

 

Chapter 2 Literature Review 

Introduction 

As discussed in the preceding, this chapter reviews the related works and previous 

relevant research regarding five main sections: cold rolling, data mining applications, 

KG and its applications, and information fusion. The cold rolling in the steel-making 

process was examined through three main aspects, including the steel-making process, 

cold rolling process, and strip breakage. The relevant overview and studies were 

demonstrated in Section 2.2. Section 2.3 reviewed data mining and its applications in 

the steel-making industry. Concisely, as the core part of the steel-making industry, the 

specific tasks and the applied techniques were involved in this section. In Section 2.4, 

the relevant studies of KG were introduced concerning KG construction and graph 

representation learning. Section 2.5 investigated the studies on the strategies and KG-

aided techniques under an information fusion context, and Section 2.6 summarised this 

chapter. 

 

Steel-making Process 

As a fundamental industry sector, the steel industry is of great importance to the 

economy. A number of important industries rely on the production of iron and steel by 

providing raw materials, making it one of the largest industries in the world. 

Meanwhile, cold rolling in the steel-making industry is recognised as an important 
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process in the production of electrical steel strips because of its advantages with regard 

to accuracy, efficiency, and output rate. Presently, cold rolling contributes to the 

improvement of the properties of steel strips on changes both in the microstructure and 

thickness of the steel. Since the properties that have been improved include surface 

smoothness, tensile strength, yield strength and hardness, cold-rolled products usually 

have superior mechanical properties, small dimensional tolerances and high-quality 

surfaces (Wu et al., 2021). Furthermore, as science and technology continue to advance, 

the quality requirements for steel strip products from cold rolling processes are 

becoming more detailed and demanding. Therefore, it is imperative increasingly to 

analyse and monitor the quality of cold-rolled products. This section conducted a 

literature review on the cold rolling process in the steel-making process. 

Overview of Steel-making Process 

Due to its commercial and emissions significance, the steel industry is an essential 

element of many national economies, as well as an essential material for the modern 

world. Among its many applications, it can be found in construction, military and 

defence, as well as manufacturing (such as automobiles) (Fan and Friedmann, 2021). 

In 2021, crude steel production exceeded 1,953 million tons in the world, representing 

an increase of 3.8% over 2020 (WorldsteelAssociation, 2022).   

Generally, a multi-stage process of steel making that transforms iron ore, scrap, and 

other input factors into steel products, such as plates and tubes, can be roughly divided 

into three phases (Missbauer et al., 2009). In the first stage, the production of molten 

iron (termed hot metal) is formed from iron ore, coke and a fluxing agent, which refers 

to ironmaking. Subsequently, the steel with a well-defined chemical composition is 

prepared from the hot metal, followed by solidifying the steel into cuboids (termed 

slabs). It is referred to as steelmaking-continuous casting. The final stage is to conduct 

the production of finished products through a variety of processes, such as hot rolling, 

cold rolling etc. 
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In terms of ironmaking, three dominant production processes contributed to 99.6% of 

steel hot metal production: blast furnace-basic oxygen furnace (BF-BOF), electric arc 

furnace (EAF), and direct reduced iron (DRI) (Fan and Friedmann, 2021). Iron ore is 

reduced to pig iron in the blast furnace, which is the predominant steel production 

route in the iron and steel industry. It is necessary to charge hot iron into a basic oxygen 

furnace in order to manufacture hot steel metal (BOF steel making). EAF utilizes an 

electric arc to heat materials, such as pig iron, steel scrap, and DRI. In contrast to a 

BF-BOF plant, EAF steel production takes place in a batch mode rather than in a 

continuous process. By using DRI, iron ore is directly reduced to a solid state at a 

temperature below the melting point of iron. Despite the fact that DRI production is 

more energy efficient than pig iron production from BF, additional processing 

(typically EAF) is required to upgrade DRI sponge iron for the market. It is important 

to note that these processes operate with different feedstocks. Raw iron ore is 

converted into pig iron and then into hot steel metal through the BF-BOF pathway, 

whereas steel scrap and sponge iron are converted into steel hot metal through the EAF 

pathway. Sponge iron is created by DRI by converting raw iron ore into porous, 

permeable, and highly reactive sponge iron that must be treated with EAF before it can 

be sold.  

As a consecutive casting process, continuous casting is also called strand casting. The 

molten steel is injected into a mould and sprayed onto the surface, and then solidified 

by a cooling process alongside the caster (Lee et al., 2020). As part of the entire 

manufacturing process, it consists of the production of intermediate materials, such as 

blooms, billets, and slabs, before some additional processing and final steelmaking 

procedures are carried out (Wang et al., 2005). This process is widely used for 

manufacturing intermediate casting products due to its excellent characteristics, 

including massive productivity, high quality, and cost-effectiveness (Ha et al., 2001, 

Louhenkilpi, 2014). The most representative of this process is the slabs used to make 

steel plates (Song et al., 2019). As thick plates, slabs are produced in thick-plate mills 

or hot-rolled steel plates in hot-rolling mills. 
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After the steelmaking-continuous casting process, various processes are conducted to 

gain finished products in the steel industry, such as the rolling process, pickling, 

annealing process etc. The Rolling of steel is one of the most important manufacturing 

processes in the steel-making industry (Oduguwa and Roy, 2006, Altınkaya et al., 

2014). Usually, it is the first step in the manufacturing process of steel after it is made, 

either as an ingot or continuous cast product, in a steel melting shop. It has been widely 

used with its products, accounting for more than 90% of steel plastic processing 

because of its lower cost and high productivity (Hu et al., 2021b). Rolling is the process 

of plastically deforming steel by passing it between rolls. The rolling process involves 

reducing the cross-sectional area of the steel piece being rolled or forming the steel 

products in general through the use of rotating rolls. The friction between the rolls and 

the surface of the steel workpiece during rolling causes high compressive stresses on 

the steel workpiece. As a result of the compressive forces between two continuously 

rotating rolls, the workpiece is plastically deformed. Consequently, these forces reduce 

steel thickness and alter its grain structure. Steel stock is passed through one or more 

pairs of rolls in order to reduce its thickness, make it uniform, and impart a desired 

mechanical property to enable the steel-making process. By rotating the rolls, the metal 

is continuously deformed, resulting in a change in size and shape while simultaneously 

improving its structure and material properties. It is generally accepted that rolling is 

classified according to the temperature at which the metal is rolled, including the hot 

rolling process and cold rolling process (Kumar et al., 2019). A hot rolling process 

occurs when the temperature of the metal exceeds its recrystallization temperature. 

Unlike hot rolling, a cold rolling process occurs when the metal is rolled at a 

temperature below its recrystallization temperature. Normally, cold rolling, as an 

essential process in the metal processing of sheets and strips, is implemented after a 

hot rolling process.  

Specifically, regarding the industrial partner, the process used in the production of 

electrical steels is illustrated in Figure 2.1. After casting into ingots, the steel is 

reheated to around 1400°C and then rapidly cooled after hot rolling. The steel is side 

trimmed, annealed, descaled, and pickled to refine the metallurgical structure of the 
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hot-rolled coil and make it suitable for cold rolling. The coil is reduced to an 

intermediate thickness of around 0.6 mm and is returned to the anneal and pickle line 

for an intermediate anneal. After a final cold reduction, the material is brought to the 

finished gauge of 0.23 to 0.50 mm. The decarburising anneal line removes relatively 

high levels of carbon by annealing in an atmosphere of moist hydrogen and nitrogen 

at about 840°C. The HTCA process is carried out in an atmosphere of dry hydrogen at 

about 1200°C for 4-5 days. This produces secondary recrystallisation of well-oriented 

grains, and MgO on the steel surface reacts with the silica and Fayalite to form an 

electrically insulating glass film made mostly of Forsterite. The strip is washed to 

remove unreacted magnesium oxide powder, coated with a phosphate solution, and 

cured at a temperature of approximately 800°C. The edges of the coil are trimmed 

before the coil is sent to be packaged or slit into several widths.   

 

Figure 2.1 A schematic of manufacturing process for electrical steel (Provided by Cogent) 

Cold Rolling Process and Typical Faults 

Cold rolling is an essential process in the steel processing of sheets and strips due to 

its high accuracy, efficiency, and production rate (Hou et al., 2007). Normally, cold 
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rolling can be conducted using a single stand in a reverse manner or continuous stands 

(Mashayekhi et al., 2011). As one of the primary metal forming processes in the 

production of steel strips, cold rolling is implemented to decrease the thickness of steel 

and strengthen its pliability and properties of yield strength and tensile strength. 

Specifically, compared to hot rolled products, cold rolled products offer the following 

advantages: greater dimensional accuracy, hardness improved by up to 20%, increased 

yield strength, increased tensile strength, improved surface finish, improved 

straightness etc. (Takami et al., 2011a). In consequence, the cold rolling process 

requires special attention since the improved mechanical properties increase the value 

of the final product, whether it is a sheet, a strip, or a coil. 

Cold rolling processes can encounter certain defects with regard to the final product. 

Technical reports indicate that various types of defects exist in steel strips from cold 

rolling production. The most common defects encountered in the sheet metal rolling 

process include edge cracking, burrs in the centre, surface defects, and buckling. 

Especially electrical steel is an iron alloy containing high percentages of silicon. 

Alloys containing a high silicon content have a low magnetisation loss as a result of 

the high electrical resistivity. As a result of a high silicon concentration, the strip 

becomes brittle, resulting in breaks during cold rolling. As the most serious defect, 

strip breakage needs to be paid special attention to as it has severe consequences. 

Specifically, strip breakage has damaged rolls and mill accessories badly, not only an 

increase in production costs (Johnson and Mamalis, 1977). Hence, various studies have 

been conducted on strip breakage in cold rolling. 

Research on strip breakage has typically been conducted in a retrospective manner 

which focuses on root cause analysis. By summarising related studies on the cause 

analysis of strip breakage, the causes can be concluded into four different facets as 

follows. The first type of possible breakage cause is material-related issues. The hot-

rolled coil (HRC) is the feedstock of the cold-rolling process. The undesired physical 

or chemical properties of HRC can result in a breakage (Hongzhao et al., 2010). To be 

specific,  previous work has discovered that there is a higher possibility for coils to 
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break if any non-metallic material, such as protective slag or oxide scale, is included 

in steel during the hot rolling process (Runchang et al., 2017). For the impurity of the 

strip, it was proved that the impurity has a negative impact on the homogeneity of the 

steel strip, which can contribute to a breakage (Rusnák et al., 2020). Another work 

discovered that the material hardness and hardening through the deformation of cold 

rolling have an impact on yield stress, which is an essential parameter when 

considering breakage (Ilin and Baranov, 2020). In terms of the incoming HRC, apart 

from the chemical and physical properties, the surface condition, shape, and flatness 

of the strip derived from the roll gap model are the potential causes of strip breakage 

as well (Wang et al., 2017). Other than HRC, the emulsion, which acts as the coolant 

and lubrication, also plays an important role in the occurrence of strip breakage 

according to the friction model, which describes the friction between the roll surface 

and strip using parameters such as strip speed, roll and strip surface roughness and 

lubrication (Tan et al., 2008). Moreover, the conditions of stability and reliability of 

the hot rolling process are also proven to be influential with possible strip 

breakage (Mazur and Nogovitsyn, 2018). Specifically, for electrical steel, the strips 

are annealed and pickled before cold rolling. For this process, hot-rolled coils anneal, 

followed by water quenching to control the precipitation of grain growth inhibitors. In 

addition, shot blasts and pickles will be conducted to remove the scale of the strip, 

which will have an impact on the strip surface condition as well (Ros-Yáñez et al., 

2004). 

Secondly, equipment malfunction, especially in the rolling mill, is proved to be another 

facet of breakage causes. In a previous case study (Yan and Li, 2006a), the strip was 

broken and crushed to the other side due to an inter-frame tension deviation resulting 

from mill malfunction. Another research (Cui and Zhao, 2013a) discover that the 

levelness and verticality of the steering roll of the uncoiler and the piston rod 

elongation of the hydraulic gauge control (HGC) system are potential causes of strip 

breakage. In addition, strip breakage can be caused by an unexpected high servo valve 

adjustment resulting from the defects of the backup roll bearing (Xu, 2015). Under this 

unexpected adjustment, the pressure fluctuations on both the entry and exit sides are 

different, which results in tension deviation, which is a significant cause of breakages.  
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Thirdly, rolling operations such as inappropriate parameter settings were analysed to 

be the representative causes for strip breakage in some recent works. It has been 

concluded that the opposite effect will occur with the reduction of rolling speed, which 

can increase the risk of strip breakage (Rusnák et al., 2020). In a related study (Xu, 

2015), the authors discovered that an inappropriate tension match between the entry 

and exit sides leads to a large deformation on one side of the strip. Another study 

discovered that inappropriate tension and roll separating force setting caused by 

unreasonable HGC control is the main cause of breakage (Xiao, 2013). Moreover, the 

variation of specifications such as maximum gauge, width and yield stress should be 

compensated during the rolling operation; otherwise, breakage is more likely to occur 

(Han et al., 2018). 

Fourthly, the rolls, such as the work rolls and backup rolls of the mill, are proven to be 

relevant with breakage in related works (Takami et al., 2011a, Song et al., 2018, Cui 

and Zhao, 2013a). The roll wear applies an adverse effect on the shape of strips, which 

can further result in strip breakage (Takami et al., 2011a). According to the roll wear 

model, which calculates the time-dependent thermal contours of the rolls (Song et al., 

2018), the roll contour and roll temperature have an impact on the roll wear. In terms 

of the roll contour, the bending model, which describes the roll bend, roll contour and 

flattening between the work roll and support roll, should all be taken into consideration 

for the calculation of bending. In addition, both the convexity degree and diameter 

disparity of the work rolls have been discovered to be possible causes for strip 

breakage (Cui and Zhao, 2013a). Another research discovered that imperfections of 

the backup rolls and working rolls could result in uncontrolled mill resonance, which 

is the main cause of strip breakage (Gérard et al., 2007).  

2.2.3 The Industrial Partner and Its Manufacturing under Industry 

4.0 

Cogent Power is a global supplier of electrical steels for large rotating machines, 

generators, and transformer cores. As a wholly-owned subsidiary of Tata Steel, the 
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company has manufacturing and service operations in the UK, Sweden, and Canada. 

Cogent Power is a world-renowned brand in electrical steels and is recognized as a 

leader in the manufacture of thin-gauge electrical steels for use in high-frequency 

machines. In Section 2.2.3 of Chapter 2, a detailed summary is provided of the 

company's I4.0 maturity, challenges, requirements, and constraints. Specifically, the 

company has made investments in I4.0 technologies, including the installation of a 

Supervisory Control and Data Acquisition (SCADA) system, an Operational Control 

System (OCS), and a variety of sensors for real-time data collection and analysis. 

However, the company faces several challenges related to the implementation and 

adoption of I4.0 technologies, such as the integration of data from multiple sources 

and the complexity of the steel-making process. In terms of requirements, the company 

has identified the need for scalable and adaptable solutions, data security and privacy, 

and effective communication and collaboration across different teams and departments. 

These requirements and constraints are critical considerations for the successful 

implementation of the proposed approach for fault diagnosis and prediction in the 

steel-making process. 

The concept of Industry 4.0 (I4.0) is highly relevant to this work on fault diagnosis 

and prediction in the steel-making process, as it provides a framework for leveraging 

advanced technologies such as cyber-physical systems (CPS), the industrial internet of 

things (IIoT), and data analytics to improve the efficiency and effectiveness of 

manufacturing processes. By using these technologies to collect and analyze data in 

real-time, steel-making companies can gain greater visibility into their production 

processes and make data-driven decisions to optimize their operations. In the case of 

the steel-making industry, this is particularly important due to the complex and multi-

faceted nature of the manufacturing process, which can make it difficult to identify the 

root causes of production failures. By leveraging I4.0 technologies, we can harness the 

power of data to better understand the steel-making process and improve our ability to 

diagnose and predict production failures such as strip breakage in cold rolling. 

The industrial partner of this research has installed a Supervisory Control and Data 

Acquisition (SCADA) system, an Operational Control System (OCS), and a variety of 
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sensors to acquire data from the GOES material and processing units prior to cold 

reduction and the cold reduction process. These hardware components, combined with 

software tools for data management and analysis, provide the company with a robust 

infrastructure for real-time data collection and analysis. This means that the company 

is well-positioned to benefit from our proposed approach for fault diagnosis and 

prediction, as it has already invested in the necessary hardware and software to support 

data-driven decision-making. Additionally, the company's strategy for I4.0 involves 

leveraging data analytics and machine learning to improve the efficiency and 

effectiveness of its operations, which aligns closely with the goals of our research. 

Given the hardware and software of the industrial partner, the data used in the study 

was provided by a cold-rolled silicon electrical steel manufacturing line. The data was 

collected from four main sources across the line, including hot rolled coils (HRC), 

annealing and pickling (A&P), emulsion, and cold rolling process (CRP). The HRC 

data contained critical information on chemical properties and strip shape parameters, 

while the A&P data provided details on the physical properties affected by annealing 

and the surface condition affected by pickling. The emulsion data recorded the 

lubrication and cooling effects on the strip-roll friction and thermodynamics. The CRP 

data provided direct and real-time measurements of the operations before the 

occurrence of breakage. The collected data included labels indicating whether each 

coil was either "break" or "good." To be specific, the HRC data consisted of 47 

variables that recorded the physical and chemical properties of each incoming 

feedstock hot-rolled coil. The A&P data comprised 18 variables that recorded the real-

time annealing and pickling process on each incoming hot rolled coil at a frequency of 

50Hz. The emulsion data were recorded daily in the steel plant and contained eight 

variables. The CRP data was extracted from a production data acquisition (PDA) 

system installed on-site. Cold rolling process variables were continuously sampled and 

recorded at a frequency of 100Hz.  

In order to ensure a comprehensive and accurate analysis of the data, the expertise of 

domain experts was incorporated into the research process. These experts were 
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consulted for their knowledge in feature identification, modelling of strip breakage 

prediction, and construction of domain ontology. By considering the specific domain 

knowledge of the dataset, a combination of physical-based and empirical knowledge 

features was identified and selected for further study. This collaboration with domain 

experts helped to ensure that the research was grounded in established principles and 

best practices within the field. 

 

Data Mining Applications in Steel-Making Industry 

under Industry 4.0 

The rapid growth in data mining has led many industries to use it to discover hidden 

patterns in their systems, which could then be used to design new models to enhance 

production quality, productivity, optimum cost and maintenance. Additionally, it is 

essential for steel producers to continuously improve their steel production processes 

in order to avoid quality deficiencies and increase production yields (Iwasaki and 

Matsuo, 2011). Consequently, data mining has become a useful tool for acquiring 

knowledge in the steel industry (Umeshini and PSumathi, 2017). 

Tasks of Data Mining in Steel-Making 

Manufacturing organizations are required to employ a variety of techniques and tools 

to achieve their foundational goals in the steel industry. Data mining is regarded as an 

excellent solution to address this challenge. Data mining is defined as a technique to 

find patterns or interesting information in a large amount of data (Faleiro et al., 2013). 

It is a mathematical method and technique for solving problems through the analysis 

and evaluation of data that has already been gathered and stored on a computer system. 

In steel-making, it is well established that data mining techniques are used because 

intelligent analysis of data can lead to valuable insights and provide a competitive edge. 

Concisely, the process of data mining should be followed in a few steps in order to 

achieve optimum results. The first step is to gain an understanding of the background 
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of a particular field. A second step that needs to be carried out is to perform an in-

depth analysis and understanding of the data. Thirdly, it is important to prepare the 

data for the missing data so thereby it can be used in the data mining process. The 

fourth step is to determine which method will be the most effective for achieving the 

data mining goal so that a better result can be obtained. Subsequently, the method will 

be tested and compared with the previous data in order to evaluate the method. In the 

final step of the deployment process, all of the results and progress will be reviewed, 

and a final report will be produced detailing how the entire process went (Witten and 

Frank, 2002, Villacampa, 2015). 

In general, tasks of data mining in steel-making can be categorized into four main 

categories: scheduling task(Tang et al., 2001), monitoring task (Cemernek et al., 2022), 

quality task (Li et al., 2018a), and failure task (Chen et al., 2021b). Steel-making 

scheduling refers to the process of organizing, controlling and optimizing production 

and manufacturing in the steel industry. In this process, plant and machinery resources 

are allocated, human resources are planned, production processes are planned, and 

materials are purchased. The purpose of the monitoring task is to avoid key 

performance indicator (KPI) value deviations and to increase the visibility of 

manufacturing systems in the steel-making process, including decision support 

systems (DSS) and process monitoring (Qu et al., 2017, Syafrudin et al., 2018). A 

quality task can be described as a process for predicting and improving the quality of 

steel-making products, concerning quality monitoring and quality diagnosis etc. In 

failure tasks, abnormal situations or faults are detected and predicted in steel-making 

manufacturing, such as product failures, equipment failures, and process failures. 

Production scheduling is used to gain the processing timing and sequence in each 

manufacturing process while ensuring that manufacturing conditions and delivery 

dates are met. Through a variety of processes, including blast furnaces, converters, 

continuous casting, rolling, annealing, and surface treatment, steel products are 

manufactured from iron ore, coal, and other raw materials in response to the demands 

of customers in various industries. In the specification of a product, there are a series 
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of requirements which are based on the use of the product, such as the quality and 

strength of the materials (such as strength and toughness), the grade of the inside and 

outside surfaces of slabs, and the size (such as thickness and width). Depending on the 

product type, specifications can range from several thousand to tens of thousands. 

Additionally, a number of factors contribute to the manufacturing conditions of steel-

making products, including molten steel components, rolling size, annealing 

temperature, and plating type. As with product specifications, there is a wide variety 

of manufacturing conditions. Particularly, large-lot production, during which steel-

making products are continuously manufactured under the same conditions, has 

proven to be advantageous from a quality and cost point of view, resulting in the type 

of production that has been targeted. It has been explained above that conditions for 

manufacturing products vary from process to process, as well as delivery dates. In this 

context, it is necessary to examine scheduling tasks while balancing quality, costs, and 

delivery dates in steel-making manufacturing. Specifically, quality, costs, delivery 

dates, and other performance metrics must be considered in a comprehensive manner 

(Ito et al., 2019). Therefore, various technologies for supporting steel-making 

scheduling were developed in various manufacturing processes, such as raw materials, 

steelmaking, hot rolling, and logistics. For optimizing oxygen and nitrogen usage in 

the steel industry, a two-stage predictive scheduling method was proposed, utilizing a 

long-term prediction model based on Granular Computing to predict the requirements 

of these two gas. The results of the experiments and the online application 

demonstrated that the proposed method is capable of providing satisfactory prediction 

accuracy and scheduling performance (Han et al., 2016).  For the Linz–Donawitz 

converter gas (LDG) system, a scheduling approach based on a three-layer causal 

network was presented regarding generation and consumption uncertainties (Jin et al., 

2021). A model for optimizing the operation of a gas–steam–power conversion system 

was developed. This model is designed to analyse the by-product gas system of an iron 

and steel enterprise, taking into account the operational status of equipment, 

fluctuations in the cost of gas holders, the cost of fuel, the income generated by external 

power transmission, and the cost of environmental pollution (Hu and He, 2022). 
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Increasing customer demands and highly competitive conditions force steel companies 

to develop innovative and flexible concepts in order to remain competitive. 

Particularly in, the steel industry is technology-intensive; even the slightest variation 

in production can lead to expensive and time-consuming post-processing. The result 

will be a direct reduction of costs in addition to any improvements in quality. Therefore, 

continuous monitoring, control, and assessment of the implementation are required to 

achieve this improvement. In the steel industry, a number of studies are providing the 

foundation for continuous monitoring and control of highly complex and high-

dimensional processes. Based on self-organizing maps, a new method for state 

monitoring and strip quality prediction was proposed in a hot rolling process (Cser et 

al., 1999). A detecting model for clogs in continuous steel casting was proposed, which 

can be used to eliminate the effect of confounding disturbances. Using a causal 

graphical model that incorporates field knowledge, it exploited statistical 

independence and invariance properties. The experimental results indicated the 

effectiveness of the casual graphical model based on real-world cases (Yang et al., 

2021).  

There is a great deal of responsibility placed upon the quality control of products in 

the steel industry, which is determined by the characteristics of the industry. The steel 

industry is a process-oriented industry, where each production line is continually 

produced during the production process. Moreover, the production scale of each 

production line is relatively large, which means that a whole batch of products would 

be affected by similar quality problems if a quality problem occurs. If this occurs, 

severe losses will be incurred by the economy. Hence, a better quality-control solution 

is needed in the steel industry, which has recently been referred to as intelligent 

manufacturing (Kano and Nakagawa, 2008). For example, data mining technology was 

applied to quality management, including quality control and quality analysis. By 

using the rough set attribute reduction theory, an improved Apriori algorithm was 

proposed for identifying quality association rules. It combines the merits of rough set 

and association rule excavation methods, allowing users to gain non-redundant 

decision rules whose confidence and support valve values can be pre-determined (Cai-



26 Literature Review 

 

yan and You-fa, 2009). In steel manufacturing processes, where environmental 

conditions can influence image quality, quantum machine learning technology was 

applied in surface quality supervision as a branch of quantum computing. Compared 

with conventional deep learning, there is substantial potential for utilizing this 

technology in application cases, primarily due to the speed of the physical quantum 

engine (Villalba-Diez et al., 2022). 

Steel manufacturing is characterized by extreme working conditions, such as high 

temperatures, high pressure, speedy production, and high throughput. Since the overall 

production process involves a high level of economic and energy investment, an 

intensive and costly preventive maintenance program is needed to prevent breakdowns. 

It would be beneficial for the steel-making process to have a predictive maintenance 

module which can detect incoming faults through the analysis of data. By using two 

different methodologies (static and dynamic), a two-step scheme was designed to 

detect faults in rolling mills in steel production plants. Firstly, a preliminary fault 

detection phase was conducted to detect faulty samples, which is regarded as an 

effective and efficient computational approach. Following the robust distances 

obtained in the previous phase, an additional method is applied to confirm the fault 

detection and provide additional information on the probability of transitioning 

between latent states. Case studies proved the effectiveness of the proposed 

methodology in the experiment section (Sarda et al., 2021). A novel analysis of 

variables in a cold rolling mill was presented using statistical, computational and 

numerical methods. The co-variation and correlation of variables were determined 

using principal component analysis (PCA) (Takami et al., 2011b). A study compared 

visual defects-detection techniques in the steel industry. According to the fundamental 

concepts of image processing, detection methods are classified as statistics, filtering, 

modelling, and machine learning. Various approaches are described, along with their 

fundamental concepts, benefits, and disadvantages, so that researchers can select the 

best approach for their particular application (Mordia and Verma, 2022).  
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Data Mining Techniques Applied in Steel-Making 

In the application of data mining, data-driven approaches perform significantly on data 

analysis and pattern discovery. Computers can model based on experience and 

accurately predict future events with data-driven approaches. The success and the 

associated rise of data-driven techniques in recent years have led to the deployment of 

a variety of tools and techniques to address challenges in steel-making. Presently, in 

this data-rich environment, data-driven approaches to investigating steel-making have 

previously been applied in a handful of works (Chen et al., 2019, Takami et al., 2011a, 

Wang, 2014b).  

Generally, depending on different theories, data mining techniques applied in steel-

making are classified into three main types: supervised learning, unsupervised learning, 

ensemble learning and deep learning. The three types of data mining techniques have 

been detailed below. 

A supervised learning process is defined to learn the mapping between inputs and 

outputs. Usually, with only one output variable, many input variables are used in a 

supervised algorithm. It is logical to conclude that the number of samples available for 

learning will proportionally affect the predictability of a supervised learner. There are 

two types of supervised learning in steel-making: classification and regression. In 

general, classification is used to predict discrete or nominal or categorical values, 

whereas regression is used to predict continuous or numerical values. Various 

algorithms are available for serving these purposes with their own advantages and 

disadvantages, including decision trees (DT), neural networks (NN), support vector 

machines (SVM), and naive Bayes (NB). For example, to fulfil the requirements for 

accuracy and efficiency, an SVM-based predictor for the by-product gas flow in the 

steel industry was built by real-time optimization for the width of the Gaussian kernel 

and the regularization factor (Zhao et al., 2012). Neural networks were introduced to 

predict molten steel temperature in a continuous casting process (Sobaszek et al., 2017).  
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In data-driven techniques, unsupervised learning identifies patterns and dependencies 

in unlabelled data by identifying regularities. It is the goal of all the tasks mentioned 

above to produce an effective representation of the inner data structure without 

explicitly labelling it. In steel-making, it is highly possible to encounter data with class 

labels, which is why unsupervised learning studies are relatively few. The most 

representative unsupervised learning methods include clustering and association rule 

mining. According to their similarities, clustering divides instances into different 

groups. Depending on the degree of similarity or distance between the data, clusters 

are formed based on similarity or distance measurements. A rule-based machine 

learning method called association rule learning is used to discover interesting 

relationships between variables in large databases. With the use of some measures of 

interestingness, it aims to identify strict rules that have been discovered in databases. 

A set of association rules is used in specific domains involving a wide variety of items 

to discover how or why certain items are related. For example, a DC-ML model based 

on clustering was proposed to classify samples collected from a steel plate rolling mill, 

and then the datasets were fed into supervised learning models. Experimental results 

illustrated the superior over four supervised models, including RF, gradient boosting 

regression (GB), gaussian process regression (GP), and conditional linear gaussian 

(CG) (Park et al., 2020). 

By analysing all types of highly validated steel-making research studies, it is found 

that ensemble learning and deep learning are employed mostly to enhance the 

performances of data-driven models. An ensemble learner consists of a group of 

machine learning methods that combine a committee of classifiers in order to perform 

a classification or regression exercise. In the case of homogeneous ensemble learners, 

the same algorithms are applied in different arrangements that form the committee, or 

different training sets are generated from the original dataset. In contrast, its 

heterogeneous counterpart consists of various types of classifiers. As an alternative to 

ensemble learning, deep learning is a technique that processes data in several 

connected layers, where its structure is non-linear and complex. For example, in order 

to predict casting quality, a weighted random forest (WRF) algorithm was developed 

based on the analysis of the relationship between multiprocess parameters and casting 
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billet quality. By weighting the decision tree results, this algorithm effectively solved 

the sample imbalance problem and accurately identified negative samples. As a result 

of real-time billet data collected during the casting process, the proposed method was 

proven to be effective (Ye et al., 2018). In order to predict productivity at the 

granularity, a multivariate and multifrequency Long Short-Term Memory model 

(mmLSTM) was proposed. The mmLSTM model incorporates equipment status and 

order as new supporting factors and utilizes a multivariate LSTM to determine their 

relationship to productivity. In addition, the mmLSTM model incorporates a multi-

level wavelet decomposition network to capture the multi-frequency features of 

productivity in a comprehensive manner. An evaluation of performance using 

productivity data for nearly two years is conducted using the proposed method in a 

real-world steel factory. It has been shown that our method is effective in improving 

the accuracy and granularity of industrial productivity prediction (Zhang et al., 2020b). 

In recent years, ensemble learning and deep learning have achieved great success in a 

wide range of applications due to their better generalization. Due to its ability to 

improve the performance of weak learners, ensemble learning has become increasingly 

popular in steel-making over the past few years. Compared to ensemble learning, deep 

learning is more frequently used in steel-making. In addition to their separate 

implementation, some studies have also combined ensemble and deep learning in order 

to compare their strengths and weaknesses. Due to its significant contributions to 

performance improvement, deep learning studies in steel-making are exponentially 

increasing. 

Although the above three types of techniques have already been extensively used in 

the steel industry, which accounts for most of all applications, graph representation 

learning has received less attention. By transforming the knowledge into latent vector 

space representations, graph representation learning enable an easy way to discover 

useful patterns in complicated and interconnected data and improve the modelling 

performance by introducing connected features (Myklebust et al., 2019).  
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Knowledge Graph and Graph Representation 

Learning 

As the latest technology in AI to represent and organise knowledge, KG is a unique 

type of content retrieval method for graph databases, which was proposed by Google 

in 2012. At present, KG has been energetically developed as it elicits, fuses, and 

utilises numerous entities and relationships embedded in manufacturing processes and 

products. Furthermore, KG displays a powerful expressive ability and a high degree 

of modelling flexibility, making it a promising semantic network (Paulheim, 2017). In 

this context, KGs have been utilised widely in many scenarios, such as knowledge 

recommendation and knowledge visualisation. It has become a foremost objective of 

the research on KG. In this section, state-of-the-art literature on KG is summarised, 

focusing on KG construction and graph representation learning. 

Knowledge Graph Construction 

KG has been referred to as a graph model to represent information in an understandable 

way. It is composed of interconnected sets of entities in which different entities are 

connected using semantic links. As a factual reflection of human knowledge, it is now 

widely accepted that knowledge graphs are useful in solving various domain-specific 

problems in industry and academia (Ji et al., 2021). It has been shown that the KG 

paradigm can be applied to a wide variety of domains due to its incorporation of graph 

technology and the availability of an abundance of graph datasets, thus making KGs 

applicable to a variety of problems in a variety of different areas (Abu-Salih et al., 

2021). KGs are typically divided into domain-specific KGs and general-purpose KGs. 

In addition to containing high-quality domain-specific knowledge, KGs provide 

substantial benefits for tackling domain-specific problems and maximising the value 

of domain corpora (Kejriwal, 2019). Over the years, continuous efforts have been 

made to develop KGs that capture various domains of knowledge, and the generation 

of KG using ontologies has gained considerable popularity. 
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Depending on the application scenarios, KGs have been divided into two types 

normally: general KGs and domain KGs. For general KGs, it is important that the 

information is not limited to a particular field. The information on these KGs is 

comprehensive, reasonable, and common sense. However, in terms of general KGs, it 

has been emphasised that the knowledge requirements need more broad than precise 

(Chen et al., 2021a). For example, the general KG has been usually constructed as an 

intelligent search engine to achieve the question-answering system on the Web. At 

present, beyond the generic KGs, the majority of KG research has focused on the 

construction of domain-specific KGs regarding certain ontologies in their fields (Abu-

Salih, 2021, Singhal, 2012, Li et al., 2020b). Unlike general KGs, domain KGs are 

regarded as vertical KGs, which describe specific particular domains (Zhou et al., 

2021). Although the description scopes of domain KGs are very limited, the depth of 

knowledge has been emphasised in building a given domain KG (Zhao et al., 2019, 

Kejriwal, 2019). In this context, domain-specific KG provides a promising mechanism 

to fuse more sophisticated knowledge and structure from multiple sources. 

The construction of KGs involves an iterative engineering process that can be applied 

to many different techniques and tools. Existing approaches can be grouped into two 

categories: top-down and bottom-up. The most widely used KG construction is the 

top-down method, which originates from the modelling process in database 

construction. Generally, five steps are implemented to construct KG for a specific 

scenario. The first step is to identify a subject domain, followed by a list of research 

requirements. In the second step, a conceptual model will be developed in order to 

gather the entities of interest, their interrelationships, and the categories. Furthermore, 

by using logical and physical models, entities and relationships will be represented 

logically, and assertions will be made about those entities and relationships. A fourth 

consideration is the appropriate coding language (for example, RDF and OWL), 

serialization formats (for example, RDF/XML, Turtle, and JSON-LD), and the KG 

development platforms (for example, Protégé and DOGMA). The last step in the 

development process is to deploy the KG as a service so the community can utilize it 

and provide feedback. 
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Designing an ontology is the most vital aspect of constructing a knowledge graph 

(Pietranik and Nguyen, 2014, Dou et al., 2018). Ontology is defined as a model 

describing structured and unstructured information through entities, properties, and the 

way they relate to each other. As a semantic model, ontology can define and describe 

a wide variety of entities, features and properties existing in a specified domain (Otero-

Cerdeira et al., 2015). Therefore, ontology is expressed as a formal representation of 

knowledge by a set of concepts within a domain and the relationship between these 

concepts. In other words, the knowledge graph is the manifestation of the ontology of 

the specific content. Even though there are differences between ontology and 

knowledge graph, an ontology that serves as a framework to model the content of 

multiple data sources can be applied to create a knowledge graph. Recently, ontology 

has been used as a solid tool to construct a knowledge graph in a lot of works. For 

example, a large-scale knowledge graph about drug-drug interactions was built on the 

corresponding ontology with data from multiple sources (Karim et al., 2019). A 

research work combined computer vision algorithms ontology to construct a 

knowledge graph that can automatically detect hazards to address the ‘semantic 

gap’(Fang et al., 2020). Four large and heterogeneous ontologies were applied to build 

a knowledge graph along with storing the data and semantics in the biomedical domain 

(Cardoso et al., 2020). An ontology for risk management of hazardous chemicals was 

designed to construct KG in the chemistry industry (Zheng et al., 2021). 

In addition, information in KGs generally constructed over raw data is incomplete and 

erratic, such as missing information. It is essential to refine or complete such KGs 

before they can be applied in real scenarios properly (Paulheim, 2017, Pujara et al., 

2013). In this context, entity and relation completions have been proposed as a process 

of completing KG by discovering and adding the missing and implicit entities and 

relations. For example, existing knowledge is utilised to infer potential relations 

between each couple of entities for KG completion (Wang et al., 2021c, Wang et al., 

2021b, Ren et al., 2022). In other words, relation completion augments KG in some 

respects by increasing the edge number in order to enhance reliability. 
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As mentioned previously, KG has been referred to as the advanced technology of 

knowledge representation, which provides an important way to integrate multi-source 

information. However, the construction of KG in industrial scenarios has certain 

limitations. For instance, developing a reliable KG requires extensive participation 

from domain experts, which is a time-consuming and labour-intensive process. 

Moreover, the construction of KGs from raw data can also be inadequate in situations 

where information is missing, such as relationships that are not included in the KG. 

Graph Representation Learning 

On the basis of the integration of multi-source information, constructing knowledge 

graphs has allowed obtaining the collective and comprehensive information for 

modelling multi-faceted phenomena considerably in many industrial applications. In 

this way, real-time capabilities of multi-faceted modelling can be achieved with the 

consideration of connections and relations across different facets. For multi-faceted 

phenomenon modelling, machine learning is one type of the most prevailing 

techniques. However, KG, which represents structured data effectively, is challenging 

to manipulate by conventional machine learning algorithms due to such triples’ 

underlying symbolic nature (Chen et al., 2017). When it comes to inputs of 

conventional machine learning models, they usually take feature vectors representing 

objects in terms of tabular attributes (such as numeric attributes and categorical 

attributes) as inputs (Nickel et al., 2015). In this context, conventional machine 

learning approaches, such as Convolution Neural Networks (CNN) and Recurrent 

Neural Networks (RNN), cannot be directly applied in the graph domain.  

Therefore, it is challenging to propose an expressive and informative representation of 

the graphs to bridge these semantic gaps. In other words, given the knowledge graphs, 

the representation learning on these graphs is another challenging problem. Firstly, the 

number of nodes in a graph can be variable, which poses a great challenge for 

traditional machine learning models that can only have fixed-sized input. Secondly, 

the graph has the isomorphism problem, meaning that the same graph can have 

factorially many different expressions by simply permuting the nodes, which brings 
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additional challenges to distinguishing graphs. Thirdly, the graph topology contains 

rich information important for the learning tasks, yet it is extremely hard to extract and 

learn. Hence, it has been developed various graph representation learning techniques 

that convert raw graph data into a high-dimensional vector while preserving the 

intrinsic properties of the graph. There is also a term for this process called graph 

representation learning, which is becoming a hot topic and a challenge in recent years.  

Techniques of graph representation learning are applied for two purposes: machine-

learning tools can be effectively utilized to perform downstream tasks; multi-faceted 

modelling can be achieved directly to discover hidden patterns. Depending on the 

different theories, four types of graph representation learning methods were defined 

and have formed the most prevailing taxonomy, which are dimension reduction-based 

methods, random walk-based methods, matrix factorization-based methods, and neural 

network-based methods (Hamilton et al., 2017b, Chen et al., 2020a).  

The dimension reduction method is proposed as a method for representing high-

dimensional graph data in a low-dimensional representation while preserving the 

desired properties of the original data. Specifically, a graph with 𝐷-dimensional vector 

space is converted into a 𝑑-dimensional vector space, where 𝑑 ≪ 𝐷. There are two 

types of dimension-reduction-based methods: linear and nonlinear. The linear 

approaches are implemented under the linear assumption, including Principal 

Component Analysis (PCA) (Jolliffe and Cadima, 2016), Linear Discriminant 

Analysis (LDA) (Ye et al., 2004), Multidimensional Scaling (MDS) (Ye et al., 2004) 

etc. However, there is a possibility that linear methods will fail if the underlying data 

are highly nonlinear (Saul et al., 2006). In this case, nonlinear dimensionality reduction 

approaches have been deployed to learn the nonlinear topology automatically (Saul et 

al., 2006), such as isometric feature mapping (Isomap) (Samko et al., 2006), locally 

linear embedding (LLE) (Roweis and Saul, 2000), kernel method (Harandi et al., 2011) 

etc. 

In random walk-based methods, numerous paths are generated in a graph by sampling 

walks from random initial nodes. The semantic context between connected nodes is 
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demonstrated from these paths. As a result of the randomness of these walks, it is 

possible to explore the graph and capture the global and local structural information 

by walking through neighbouring nodes. On the randomly sampled paths, probability 

models, such as skip-grams (Guthrie et al., 2006) and bag-of-words (Zhang et al., 

2010), are employed in order to learn the representation of nodes. Various approaches 

based on the random walk have been proposed and applied in many specific scenarios, 

such as DeepWalk (Perozzi et al., 2014) and node2vec (Grover and Leskovec, 2016). 

The matrix factorization-based method is also regarded as Graph Factorization (GF). 

It has been widely used to handle the sparsity of graph data. Specifically, the matrix 

factorization techniques have been introduced to discover an approximation matrix for 

the original graph. A graph's adjacency matrix is factorized to gain the embeddings in 

GF. The process corresponds to a reduction of dimensionality that preserves structure. 

As summarized, there are several matrix-factorization-based methods and their 

variants, such as graph Laplacian eigenmaps (Belkin and Niyogi, 2003), node 

proximity matrix factorization (Singh and Gordon, 2008), text-associated DeepWalk 

(TADW) (Yang et al., 2015), GraRep (Cao et al., 2015), and HOPE (Ou et al., 2016) 

etc. 

Inspired by the success of CNNs, graph representation learning based on neural 

networks has been developed, which is termed Graph Neural Networks (GNNs). 

According to different theories, GNNs are classified into four categories: Recurrent 

GNNs (RecGNNs), Convolutional GNNs (GCN), Graph Autoencoders (GAEs), and 

Spatial-temporal GNNs (STGNNs) (Wu et al., 2020). Owing to the promising 

performance and good interpretability, the application of GNNs is very beneficial and 

a widely studied topic in many fields for different tasks (Liu and Zhou, 2020), such as 

knowledge graphs, recommender systems, and visual reasoning. Consistent with 

different outputs, these tasks are classified into three levels: node level, edge level, and 

graph level (Wu et al., 2020). In other words, with the graph structure and node content 

information as inputs, the output of GNNs can focus on different graph analytics with 

these three levels, such as node classification, link prediction, graph classification etc. 
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For node labels, a training node augmentation was proposed, which enlarges the 

training set using the labels predicted by existing GNN models. As self-enhanced GNN 

improves the quality of the input graph data, it is general and can be easily combined 

with existing GNN models. Experimental results on three well-known GNN models 

and seven popular datasets show that self-enhanced GNN consistently improves the 

performance of the three models (Yang et al., 2020). At the edge level, a novel method 

for anonymising data, model training, explainability and verification was proposed to 

predict links in Master Data Management (Ganesan et al., 2020). In terms of graph 

level, an adaptive structural coarsening module was introduced to produce a series of 

coarsened graphs and then construct the convolutional network based on these graphs. 

In this work, a Multi-level Coarsening-based GCN (MLC-GCN) was proposed to learn 

the graph representations that preserve the local and global information of graphs for 

graph classification (Xie et al., 2020). 

In graph analysis, following the idea of representation learning and the success of word 

embedding, three different methods (dimension-reduction-based methods, random 

walk-based methods, and matrix-factorization-based methods) mentioned above apply 

the different theories to gain patterns of graph representation. Similar variants of them, 

such as LINE and TADW, also achieved breakthroughs. However, these methods 

suffer from two severe drawbacks. First, no parameters are shared between nodes in 

the encoder, which leads to computational inefficiency since it means the number of 

parameters grows linearly with the number of nodes. Second, the direct embedding 

methods lack the ability to generalisation, which means they cannot deal with dynamic 

graphs or be generalised to new graphs (Liu and Zhou, 2020). 

Encouraged by CNN and graph embedding, GNNs provide a series of deep learning-

based methods to manipulate graph analytics. Compared with the other methods, 

GNNs learn the representations of a graph both from the general graph structure and 

node features. In other words, GNNs are designed to learn hidden patterns from graph-

structured data in an end-to-end manner that escapes hand-engineered feature 

extraction (Chami et al., 2020). Especially, GCN tackles this problem by defining a 

convolution operator on a graph (Kipf and Welling, 2016). The model iteratively 
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aggregates the embeddings of neighbours for a node and uses a function of the obtained 

embedding and its embedding at the previous iteration to obtain the new embedding. 

Aggregating embedding of the only local neighbourhood makes it scalable, and 

multiple iterations allow the learned embedding of a node to characterise the global 

neighbourhood. Deep learning methods can model a wide range of functions following 

the universal approximation theorem; given enough parameters, they can learn the mix 

of community and structural equivalence to embed the nodes such that reconstruction 

error is minimised. In addition, GraphSAGE has gained recognition in graph 

representation learning. Compared with the original GCN model, the GraphSAGE 

algorithm has been proposed as a comprehensive improvement, which is an inductive 

representation learning for node embedding (Hamilton et al., 2017a). The main idea of 

GraphSAGE is to adhere to GNN and aggregate the neighbours' information by 

embedding them into each node. 

 

The Studies of Information Fusion 

Studies on data integration or fusion represent a renewed growing field, which started 

as a result of the continuous development of instrumental techniques and sensor 

devices and a paradigm change in the research of complex systems towards holistic, 

data-driven approaches (Kitchin, 2014, Martens, 2015). On the one hand, the 

availability of technological development in instrumentation has increased the data 

acquisition speed, the coupling of different instrumental modalities, their portability, 

and the data storage capacity successfully, thus giving rise to an enormous explosion 

of available data for analysis. On the other hand, the paradigm shift is driven by data-

intensive statistical exploration and data mining for knowledge discovery (Cocchi, 

2019b). Achieving data fusion assumes that the result will be more comprehensive and 

informative than any outcome obtained by the distinct analysis of each single data 

source. In other words, the complementarity or synergy among different data 

acquisition modalities contributes to a unified and enhanced view of the system under 
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study or improved modelling or reformative decision-making and understanding of the 

system or phenomenon. Therefore, a complex challenge lies in the fusion and mapping 

of various distributed and heterogeneous data in arbitrarily feature representation 

spaces. It is vital to propose a valid integration approach to cover the versatility of a 

phenomenon. This section investigates studies on information fusion, which involves 

two aspects: strategies of information fusion and KG-aided information fusion. 

Strategies of Information Fusion 

Information fusion is defined as a framework, fit by an ensemble of tools, for the joint 

analysis of data from multiple sources (modalities) that allows achieving 

information/knowledge not recoverable by the individual ones, although the degree of 

generalisation, formalisation, and unification of the methodology is distinctive (Cocchi, 

2019b).  Unlike the data collected from a single source, the data fused from multiple 

sources usually assembles comprehensive and informative information about different 

phenomena (Kong et al., 2020). Depending on the different objectives of fusion, three 

levels of information fusion were defined and have formed the most prevailing 

taxonomy, which is low-level, mid-level, and high-level, respectively (Hall and Llinas, 

1997). 

Information fusion at a low-level focus on integration algorithms that operate directly 

on raw data blocks, which is the simplest form and is known as the observational level. 

In other words, low-level fusion refers to the concatenation of two or more data 

matrices in such a way that the observations are in the shared mode. This type of fusion 

may be undertaken either by using a variety of methods that directly operate on several 

data blocks, joined or coupled, by decomposition, i.e., multiblock, multiset, tensor, and 

coupled matrix-tensor factorisation methods, or simply by concatenating the different 

data blocks. The characteristic of low-level fusion is to model the data (either for 

exploratory or predictive purposes) after fusion coupling. Therefore, a major 

advantage is the possibility of interpreting the results directly in terms of the original 

variables collected in each data block (Cocchi, 2019a). Meanwhile, the main 

disadvantage of low-level fusion is that typically data sets are obtained in which the 
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number of observations is much smaller than the number of variables (Cocchi, 2019a). 

As a consequence, many multivariate data analysis techniques are not directly 

applicable to such data, and some form of regularisation needs to be applied due to the 

curse of dimensionality. 

For mid-level, information fusion methods are applied to feature extraction from each 

data set, which is called feature level or state-vector level. The data is usually collected 

and integrated from many scenarios. To be specific, the feature sets collected from 

multiple sources are integrated to represent the input by generating a new high-

dimension feature vector. In other words, the information fusion methods at the mid-

level are typically designed to accomplish the most informative feature vector through 

feature selection algorithms (Gravina et al., 2017). This type of fusion implies a first 

modelling step before fusion aimed at extracting features from each data block. Mainly 

two approaches are used, either decomposition (or resolution) techniques or variables 

selection methods. The obtained features are then fused in a ‘new’ data set, which is 

modelled to produce the desired outcome. Therefore, the major advantage of mid-level 

fusion lies in reducing the dimensionality of each data matrix separately before 

attempting to link them by means of data fusion (Cocchi, 2019a). However, in terms 

of outcome interpretation of models, mid-level fusion builds a link between the 

prominent features in the final model and the original variables of the corresponding 

patterns, thus leading to the most conspicuous limitation (Cocchi, 2019a). 

High-level information fusion can be regarded as decision level or information level, 

where decisions of model outcomes from the processing of each data block are fused. 

In other words, information fusion at a high level focuses on the final result, such as 

the correct prediction of the class or attribute of each sample. Generally, the role of 

each data block and its original variables is not investigated because a fused model in 

the strict sense is not obtained but only a ‘fused decision’. Therefore, in this type of 

integration, the adequate scaling of each platform is not an issue because only the 

results are combined. Compared with the low-level and mid-level, the main merit of 

high-level fusion is to improve the final performance by statistic-mathematical 
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integration of information from the different analytical sources, thus giving rise to 

reducing the overall uncertainty among the single experimental uncertainties (Cocchi, 

2019a). Therefore, greater confidence in the combined performance is achieved by this 

type of fusion. Meanwhile, another obvious advantage of high-level fusion is the 

possibility of handling missing information because high-level fusion does not 

necessarily require the measurement of signals for all the samples (Cocchi, 2019a). 

However, in the context of the fusion process at a high level, there is an obvious 

drawback that does not provide further insight into relevant analytical features 

(variables), as well as the correlation and common variation between the considered 

analytical sources. In addition, the selection, optimisation, and calibration of 

classification or regression models for each analytical block can be troublesome and 

time demanding. 

In addition, conventional multi-faceted modelling approaches concatenate feature 

vectors to fuse different facets, not considering varying distance metrics across facet 

boundaries. In this case, one fundamental challenge in fusing disparate facets lies in 

bridging the semantic gaps between them. Meanwhile, as a large and complex 

representation, graph-structured data comprises rich relational information among 

elements, which has received considerable attention in recent years. The graph-

structured data is the natural target to cover the domain information in many 

applications, such as social networks and molecular structures (Bronstein et al., 2017). 

A knowledge graph, which is represented as a typical type of graph-structured data, is 

composed of entities (nodes) and edges. Edge is regarded as a fact that shows a specific 

relational connection between two entities. Specifically, an edge is demonstrated in 

the form of a triplet, including a head entity, relation, and tail entity. Therefore, as an 

abstraction to encode knowledge in a specific domain, constructing knowledge graphs 

based on graph-structured data provides a promising way to integrate rich relational 

information through connecting entities represented by features.  



Literature Review 
41 

 

KG-aided Information Fusion 

As reviewed above, KG is a promising and emerging information technology with the 

potential to integrate heterogeneous multi-source data. In the meantime, there is still a 

research challenge regarding using KG to fuse high-dimensional and heterogeneous 

data. In this context, a KG-supported information integration approach was proposed 

with the representation of temporal data and transforming such data into temporal 

graphs for further modelling. Through such transformation, both the temporal 

dependency of the manufacturing events and the attribute interactions among the 

multi-faceted concepts are considered.  

Although there has been a notable increase in the number of efforts to construct large-

scale KGs, the process of harvesting meaningful information from heterogeneous data 

sources is not easy. Integrating data from different sources provides users with a 

unified view of data by combining data from different sources. In most enterprises, 

relational databases house a significant amount of data (Abu-Salih, 2021). In order to 

integrate data across multiple databases, one approach relies on a global schema which 

indicates how the items within these databases are interrelated (Ji et al., 2021). 

However, the result of a large number of tables and attributes, establishing a global 

scheme can be a very challenging task as knowledgeable experts who created the 

databases are usually unavailable and owing to a lack of documentation, it can be 

challenging to interpret the data as well.  

In light of the difficulty of creating a global schema, it is convenient to convert the 

relational data into a database that follows a generic triple schema, i.e., a knowledge 

graph. An attribute mapping is created based on specific business needs, for example, 

in response to a specific business question, and this mapping can be represented in a 

knowledge graph. A recent study (Wang and Zhang, 2018) proposed a scheme for 

calculating non-linear distributions of IoT data using deep learning. As a result of the 

fusion of multi-source heterogeneous data sets, the accuracy of the recognition of data 

sets has been significantly improved. Although redundant data and dynamic data flow 

can be fused, high accuracy cannot be achieved through the fusion of redundancy and 
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dynamicity. It has been shown in another study (Jabbar et al., 2018) that different data 

models for unstructured and heterogeneous raw data formed by the internet of things 

were analysed in real-time, but the analysis and study of text data did not take place. 

In a similar work (Li et al., 2020a), the topological and semantic similarities between 

multiple sources of knowledge using two knowledge graphs are analysed. With the 

aim of implementing semi-automatic linkage among nodes and merging the relations 

between two graphs, four concept-knowledge operators were provided. In order to 

reduce the dimensionality of the associated data, a ternary data fusion algorithm based 

on reinforcement learning was proposed (Ng et al., 2021).  

Data fusion tasks using GNN and their variants are showing promise in a variety of 

applications due to the advancement of GNN. The convolutional neural network, for 

example, is limited to processing only grid structures rather than general domains, 

while the recurrent neural networks fail to take into account spatial relations between 

sensors or suffer from long-term dependency learning.  It has been proposed by (Wang 

et al., 2021a) which combine the strengths of graph convolutional networks for spatial 

learning with the strengths of temporal convolutional networks for sequential learning 

to address these problems. As a result of these methods, such as Recurrent Neural 

Networks (RNNs) and Convolutional Neural Networks (CNNs), sensory data are 

analysed only in terms of their temporal information, while the intrinsic spatial 

relations between the sensors are ignored. An adaptive spatiotemporal graph 

convolutional neural network (ASTGCNN) is proposed by (Zhang et al., 2020a) in 

order to address this issue. GNNs can be used to perform data fusion, but they have 

some limitations in practice, such as being complicated to use in practice and requiring 

a large amount of computation time. 

 

Summary 

In summary, cold rolling in the steel-making process was reviewed in Section 2.2, 

concerning an overview of steel-making, research of the cold rolling process, and a 
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survey of the strip-breakage phenomenon. During the past decades, data mining has 

grown rapidly in popularity, allowing many industries to use it to discover hidden 

patterns in their systems, enabling them to create new models to improve production 

quality, productivity, optimum cost, and maintenance. Meanwhile, as a result of the 

development of IoT, the situation of a data-rich environment has led to the deployment 

of a variety of tools and techniques for data mining. Therefore, the study of steel 

making based on data mining deserves more attention. In Section 2.3, data mining and 

its applications were investigated. With the capability of processing various types of 

data, it can be seen that data mining has become prevailing and essential in industrial 

analytics. Moreover, fusing information from multiple sources is of great significance 

to obtaining more comprehensive and informative knowledge than that of each single 

data source. As a promising way, KG encodes knowledge for information integration 

in a specific domain that comprises rich relational information among elements. In this 

context, the relevant studies of KG were introduced, which are classified into KG 

construction and graph representation learning. It is evident that KG-aided is an 

important topic in the era of IIoT. However, from the literature, it can be seen that KG 

has not gained sufficient attention in the steel industry, and very few existing studies 

have focused on KG-aid data mining in the steel-making process. Therefore, Section 

2.5 examined the studies on information fusion concerning the strategies of 

information fusion and KG-aided information fusion techniques, and Section 2.6 

summarised this chapter. 

By reviewing these related works, the importance of Industry 4.0 technologies for 

improving the efficiency and effectiveness of manufacturing processes, particularly in 

the complex steel-making industry, was highlighted. Through the analysis of various 

data mining techniques and applications in steel-making, we have identified the 

challenges and opportunities associated with the use of data-driven approaches for 

fault diagnosis and prediction. Additionally, the review of knowledge graphs and 

graph representation learning techniques has provided insights into how we can 

represent and utilize the vast and scattered domain knowledge in steel-making for fault 

modelling. Finally, the exploration of information fusion strategies, particularly the 
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KG-aided information fusion approach, has shed light on how we can integrate multi-

sourced data and knowledge to improve the accuracy and effectiveness of fault 

diagnosis and prediction in steel-making. Overall, this literature review has provided 

a solid foundation for our proposed approach to fault diagnosis and prediction in the 

steel-making process using data mining techniques under Industry 4.0 and has 

identified several key areas for future research and development in this field. 
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Chapter 3 A Framework for Data 

Mining in Steel-Making under Industry 

4.0 

3.1 Introduction 

Industry 4.0 refers to the fourth revolution of the industry, which mainly focuses on 

intelligence and automation (Qin et al., 2016). Emerging technologies such as AI, 

cloud computing and IoT have boosted the development of Industry 4.0. The Internet 

of Things, cloud computing, smart sensors, and other technologies are being integrated 

into today's factories as part of I4.0 (Cemernek et al., 2017). In this case, data-driven 

approaches to investigating production failure in steel-making have previously been 

applied in a handful of works, as reviewed in Section 2. However, there are no existing 

study reports on how to conduct fault diagnosis under the context of Industry 4.0. It is 

imperative that the industry explore a framework that can assist with fault diagnosis in 

steel-making in the next generation. In this chapter, a framework is designed for fault 

diagnosis based on the multi-sourced data and existing domain knowledge in steel-

making. The data and techniques relevant to the proposed framework are introduced 

in Section 3.2. 
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3.2 A Framework for Data Mining in Steel-Making under 

Industry 4.0 

According to the literature review in section 2, besides the numerical production data 

in the steel-making process, it is widely acknowledged that the semantic data and 

existing domain knowledge are of great significance to fault diagnosis. Existing studies 

mainly focus on modelling based on numerical steel-making production data, while 

semantic data and existing domain knowledge are not fully exploited. With the 

development of IIoT and knowledge management techniques, it is possible to conduct 

data and knowledge concerning production failure in steel-making. Hence, it is of great 

significance to introduce multi-source data and domain knowledge for data-driven 

fault diagnosis.  

Meanwhile, KG exhibits remarkable expressive ability and excellent modelling 

flexibility, which has been described as a graph model for representing information in 

a manner that can be understood by a broad audience (Nguyen et al., 2020). It has been 

widely used and shown merits. In our case, the aim was to capture and represent the 

complex relationships and dependencies among various factors contributing to strip 

breakage in the steel manufacturing process. With the ability to represent entities and 

relationships in a rich and flexible manner, knowledge graphs provide a more suitable 

solution for our needs than ontologies or taxonomies. While other techniques, such as 

ontologies and taxonomies, are useful for organizing and classifying information, they 

are limited in their ability to capture the complexity and variability of real-world 

relationships. Knowledge graphs, on the other hand, allow for more nuanced and 

context-dependent representations of knowledge, which is particularly relevant for our 

research, where the relationships between various factors influencing strip breakage 

can be highly dynamic and context-specific. Furthermore, knowledge graphs can be 

easily extended and modified as new data and knowledge become available, whereas 

ontologies and taxonomies often require more effort to update and maintain.  

 In this context, exploring how to combine different techniques also needs to be 

considered in the framework. The proposed framework is illustrated in Figure 3.1. The 
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proposed framework includes the following stages: multi-sourced data and knowledge 

acquisition, data and knowledge processing, KG construction and graphical data 

transformation, KG-aided modelling for fault diagnosis and decision support for steel 

manufacturing. The framework was designed to refer to the concept of data mining 

and graph representation learning, which was detailed in Appendix A1. Firstly, a 

multitude of fault-related data from different sources is collected, as well as fault-

centric domain knowledge such as empirical knowledge and existing literature. 

Secondly, data and knowledge processing are conducted using different techniques 

based on their modality. Thirdly, a domain KG is constructed, and it serves as the 

backbone for the population of multi-sourced data. Then, by graph feature extraction 

using GRL techniques, the embeddings of KGs are fed into the ML pipeline. Lastly, 

the modelling results from ML are used for decision support regarding fault diagnosis, 

contingency measures design and quality improvement in steel-making. 
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Figure 0.1 A Framework for Data Mining in Steel-Making under Industry 4.0 
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3.2.1 Knowledge and Multi-sourced Data Acquisition 

As reviewed in Section 2.3 and suggested by the domain experts, the preparatory 

processes before the occurrence of production failure should be deemed as potentially 

relevant. For example, the failure in the cold rolling process and its relevant data should 

be considered in the cold rolling and its former processes. It should be noted that 

regarding the collection of cold rolling data, which is typically recorded in a 

multivariate time-series manner, the concept of recency should be incorporated. Since 

most of the failures are instantaneous, the temporal observations that extend far from 

the breakage point into the past are believed to be less informative than breakage-recent 

observations [27]. In this context, data are collected in a run-to-failure manner, from 

the occurrence time point backwards in time to obtain the most recent observations. 

Figure 3.2 is an illustration of data collection along the cold rolling process.  

 

Figure 0.2 Illustration of data collection along the cold rolling process 

Besides the cold rolling process data, the annealing and pickling data are also collected. 

This process affects the occurrence of failure from the feedstock aspect, such as strip 
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roughness. In most cases, it is not easy to construct the backbone of KG under a domain 

environment without the collaboration of domain experts (Jin, 2018). In the domain-

centric knowledge representation, each triplet is described using the RDF language 

utilising open-source platforms. Therefore, these platforms are responsible for building 

and storing domain-centric knowledge bases. The fault-centric KG was constructed 

based on the refinement of the hierarchy structure and the completion of the 

relationships. A summary of related studies on strip breakage and the cause analysis 

can be categorised into four different facets, namely material-related issues, equipment 

malfunctions, rolling operations, and the rolls pushing the strips.  

3.2.2 Data and Knowledge Processing 

The multi-source data are different in type and granularity. In order to use multi-source 

data for modelling, the first step is data mapping. For example, the cold rolling process 

data is collected at a high frequency and a sampling rate that can be up to the scale of a 

millisecond, while the batch data, such as hot-rolled coil data, are collected per batch. 

Hence, the data need to be mapped into the same granularity before it is used for 

modelling. 

Knowledge repositories are typically fragmentary, with scattered knowledge 

distribution in industries, resulting in extensive participation of knowledge alignment 

from domain experts. For the steel-making industry, the processes are strongly 

correlated and complex. Processing such knowledge using conventional approaches is 

usually time-consuming and labour-intensive. Moreover, it is important that 

information extraction and entity resolution are both performed accurately for the 

development of knowledge management, but they are often insufficient (Getoor and 

Machanavajjhala, 2012, McCallum, 2005). In this context, information is often missing 
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and noisy, such as missing relations. In other words, such a relationship extracted from 

KG needs to be refined or completed in order to be used effectively in an application. 

3.2.3 Knowledge Graph Construction and Graphical Data 

Transformation 

For KG construction, the first key step is to determine the applicable ontologies. As 

semantic data models, ontologies are mainly utilised to describe the relationships 

between concepts in a given domain and provide standardised, clear and unambiguous 

definitions that can be shared. Specifically, although the general types of things that 

share certain properties are modelled in domain-centric ontologies, these models do not 

contain information about specific individuals from domains. As each industrial 

scenario has distinct characteristics, the construction method of general KG cannot be 

applied to the establishment of industrial domain-centric KG. It is necessary to 

determine a suitable ontology in advance when establishing a KG in an industrial 

environment. 

Typically, a two-step section comprising ontology design and knowledge extraction is 

conducted. After clarifying the request for the domain-centric KG construction, the 

class hierarchy structure is designed to conform to the requirements thoroughly. Based 

on that, the property hierarchy is confirmed in accordance with the class hierarchy, 

including the object property hierarchy and the data property hierarchy. Meanwhile, the 

keywords and correlation calculation methods are developed to recognise the entities 

and relations in extracting knowledge, respectively. In this context, these three types of 

hierarchy are described in OWL language for the documentation of the designed 

ontology. In the second stage, the GRL model is built to predict potential relations for 

KG completion. Specifically, the edges are divided into two types: existing edges and 
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non-existing edges. The relations represented by the two entities' embeddings are 

classified in the pre-trained GNN model. Finally, the third stage contains KG 

construction and KG visualisation. The overall triplets are described by the RDF format 

based on the triplet integration. Subsequently, the open-source platform is used to fuse 

the triplets for KG construction, and the visualisation tool is deployed to present the 

generated KG in a graphic format.  

With the aim of mining implicit knowledge from a graph, triples in the knowledge graph 

are transformed into their corresponding low-dimensional vector embedding using 

either a knowledge representation learning model or a graph convolution model. By 

populating multi-sourced data into knowledge graphs, an embedding approach is 

necessary in order to transform the data from these graphs into information that can be 

used for multi-source conceptual modelling. In this study, as a convenient way to 

accomplish the embedding process, GRL techniques can be used to extract the 

connected features in an end-to-end manner.  

3.2.4 KG-aided Modelling for Fault Diagnosis 

KG enables the merging and organisation of time series data knowledge in order to 

predict faults in subsequent devices. Multiple sensors generate and collect data during 

the manufacturing process. With the transformation of multivariate time-series data into 

the stack of temporal graphs, the output feature can be fed into the ML model for further 

modelling. Meanwhile, ML algorithms such as temporal convolution networks, a 

method of processing time-series data, utilise dilated causal convolution and residual 

connections in order to address the problems discussed above. Dilated causal 

convolutions are used only for elements that precede the current element, while CNN 

performs convolution on elements adjacent to the current element. 
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3.2.5 Decision Support for Steel Manufacturing 

Prediction of this failure can bring significant benefits to the cold rolling industry in 

terms of contingency mitigation and quality improvement. For severe production failure 

which occurs instantaneously in the steel-making process, a micro-level prediction can 

minimise the occurrence and impact of such failure. The cold rolling mill operator can 

benefit from utilising this prediction approach in developing their contingency 

mitigation strategies. According to the predicted information, a planned stop action can 

be taken to avoid damage from an unplanned fast stop. Understanding the likelihood of 

strip breakage in the near future can also be vital for post-analysis, such as in 

determining what countermeasures should be used. 

 

3.3 Summary  

With the leverage of connectivity and intelligence in the era of Industry 4.0, PdM has 

become an essential key. In a data-rich environment, the surrounding data and 

knowledge relevant to the production failure in steel-making can be collected and used 

for fault diagnosis. A framework has been designed for fault diagnosis based on the 

multi-sourced data and existing domain knowledge in steel-making. 
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Chapter 4 Multi-faceted Modelling for 

Fault Diagnosis in Steel-making  

4.1 Introduction 

Due to its high efficiency and accuracy, the cold rolling process is a primary metal-

forming process for the manufacturing of steel products (Mashayekhi et al., 2011). 

Increasing demand for cold-rolled products has aroused widespread concern for 

maintaining the production continuity of cold rolling. However, cold rolling can 

encounter certain unexpected production failures, which cause unplanned interruptions 

of the process. Strip breakage is one of the most common and undesired production 

failures for the cold rolling of strip products (Yan and Li, 2006a). This failure has 

serious consequences, such as yield loss due to unplanned stops of the rolling mill, 

extended downtime caused by severe damage to work rolls and altered rolling 

performance for subsequent rolling when production resumes following a strip 

breakage (Cui and Zhao, 2013a, Bhattacharya et al., 2016, Chen et al., 2019). 

Numerous studies on this product failure have been conducted, and their approaches 

can be generally classified into two different categories. The first type of approach, 

which is referred to as the conventional approach, addresses strip breakage by 

employing mechanical or metallurgical theories. According to related research (Cui and 

Zhao, 2013a, Xu, 2015, Liu, 2015a, Liu et al., 2014), the causes of strip breakage vary 

and can be generally classified as equipment factors, material defects, improper 
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operation, sensor malfunction or production adjustment. The limitation of the 

conventional approach is its retrospective manner which focuses on cause analyses after 

the occurrence of this failure rather than a predictive approach. The data-driven 

approach, the second type of approach, has been employed within the last two decades 

with the advancement of technologies which facilitate data acquisition and storage for 

complex manufacturing processes (Kuo and Kusiak, 2019). Despite the advantage of 

being able to extract useful knowledge and make appropriate decisions using the data-

driven approach, three questions have rarely been explored. First, these works were 

conducted with the aim of quality characterisation (Da Cunha et al., 2006), which is the 

primary step for quality improvement rather than quality prediction (Lopes et al., 2019). 

Second, the rationale for determining the variables for breakage modelling was not 

explained and justified. Third, the granularity of the data used in these works cannot 

match the temporal characteristic of strip breakage, which occurs instantaneously.  

In light of these questions, we propose a predictive, data-driven approach to model strip 

breakage, one which uses multi-faceted features in this chapter. Recurrent Neural 

Networks (RNNs) (Lipton et al., 2015) were applied to take full advantage of 

multivariate time-series data. In previous data-driven studies of strip breakage, it is 

often not clear why certain features are chosen or from which facet we should select 

features. In this chapter, three breakage-centric feature sets are identified from three 

facets: physics-based approaches, empirical knowledge, and data-driven features. 

Furthermore, in the actual production of cold-rolled strips, the steel strip shifts rapidly 

in the mill, where the rolling condition can change within milliseconds. The time-series 

process data of cold rolling is collected in a run-to-failure manner to match the temporal 

characteristic of this instantaneous production failure. A sliding window strategy is 

applied to segment and annotates whether a strip will break within the next time window 
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(denoted as the predicted window). In addition, considering cold rolling process data 

may be characterised as multivariate time-series, deep learning architectures may be 

applied because of their robust capability to manipulate multivariate time-series data 

compared with more conventional approaches (Gamboa, 2017). Among various deep 

learning architectures, recurrent neural networks (RNNs) retain the recent memories of 

input patterns, which makes them suitable for time-series processing (Punia et al., 2020). 

Notably, as a variant of RNNs, the long short-term memory (LSTM) network is capable 

of capturing long-term memories due to its fully-trained recurrent models with adaptive 

gates (Wang et al., 2019). Inspired by the studies cited above, to discover the underlying 

relationship between real-time measured rolling variables and omens of strip breakage, 

an approach based on RNNs is proposed for the modelling of strip breakage. 

To the best of our knowledge, the questions previously raised have not been 

investigated in any previous strip breakage studies, yet their answers might provide 

significant benefits in terms of decision-making for the occurrence of strip breakage. In 

actual cold rolling practice, if such a prediction can be made on a micro-level (Katona 

et al., 2019) with an adequately predicted window, a planned stop action can be taken 

to the mill in advance instead of a passive fast stop which will often result in severe 

damage to equipment. The remainder of this chapter is structured as follows. Section 

4.2 outlines the flowchart of the proposed methodology of multi-faceted modelling on 

strip breakage. Section 4.3 reports an experimental study using real-world cold rolling 

data to demonstrate the effectiveness of the method, followed by results analysis and 

discussion in Section 4.4. Section 4.5 summarises this chapter. 
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4.2 Methodology 

In this chapter, we propose a machine learning-based approach for fault diagnosis in 

steel-making that consists of three main stages, as shown in Figure 4.1. 

 

Figure 0.1 Illustration of the proposed multi-faceted modelling approach 
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The methodology illustration figure depicts the multi-stage approach followed in this 

study. The first stage involves the collection and pre-processing of data from a cold-

rolled steel strip plant. In stage 2, three different facets are considered to generate sets 

of candidate features. The three feature sets are then combined to present different 

scenarios for modelling strip breakage. This approach helps to account for the 

complexity and variability of factors that can contribute to strip breakages, such as the 

mechanical properties of the strip, the processing conditions, and the operating 

parameters of the plant. In stage 3, in the case of time-series data, RNNs are often 

preferred over other techniques, such as traditional regression models, due to their 

ability to capture the temporal dependencies in the data. RNNs are able to take into 

account not only the current input but also the historical context, which is critical for 

accurately modelling time-series data. In addition to their ability to handle time-series 

data, RNNs also offer advantages over other techniques in terms of their flexibility and 

ability to model complex relationships. For example, RNNs can be used for tasks such 

as sequence prediction. Therefore, a sequence-to-vector RNN architecture is applied 

for modelling. 

4.2.1 Data Pre-processing and Time Window Processing 

The collection of cold rolling process monitoring data was first conducted. In another 

related study (Chen et al., 2020c), we proposed a data fusion approach, which focuses 

on the fusion of multiple data sources to predict strip breakage. In this chapter, we focus 

on the multivariate time-series cold rolling process data to model this instantaneous 

production failure. Since strip breakage is an incident that occurs suddenly, temporal 

observations that extend far from the breakage point into the past are likely to have 

lower support for breakage modelling. To collect informative and predictive time-series 

data, we should incorporate the concept of recency to breakage in the collection of 



Multi-faceted Modelling for Fault Diagnosis in Steel-making 
59 

 

59 

process monitoring data (Batal et al., 2012). Following this, data was collected from the 

time point where strip breakage occurs backwards in time so that the most recent 

observations are obtained. Under this run-to-failure manner, we applied a sliding 

window strategy to segment the raw time-series data into a collection of pieces due to 

the high correlation of neighbouring data, an illustration of this strategy is shown in 

Figure 4.2. This strategy is applied to capture the momentary variations before strip 

breakage. In addition, we can take better advantage of time-series data since a time 

window conveys more information than a single time point. 

 

Figure 0.2 Illustration of the proposed sliding window strategy. 

To be specific, the multivariate time-series cold rolling process data was segmented 

into two-dimensional matrixes following a certain step size. The total window length is 
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segmented into M instances by sliding the window backwards in time from the breakage 

point. Each instance is a matrix that contains L sampling point and N attributes. The 

interval between the last sampling point and the strip breakage point determined the 

label of each instance. The matrix instance was labelled as 0 if the interval was wider 

than the predefined predicted window length, which means the strip would not break in 

the next predicted window. Otherwise, the matrix instance is labelled as one if the 

interval is within the predefined predicted window length, which represents a future 

breakage.  

4.2.2 Breakage Relevant Feature Identification from Multi-facets 

Because there are typically thousands of measurements being taken throughout the cold 

rolling process, it is necessary to select or construct a subset of the most relevant 

features. Considering the complexity of strip breakage causes, we are not sure whether 

the algorithms can make use of all the features. In terms of feature identification, certain 

features work better either for a specific domain or in a non-domain-dependent 

dataset (Mejova and Srinivasan, 2011). We choose to determine candidate feature sets 

from the following three facets: 

 The physics-based (PB) feature set contains features directly derived from 

previous physics-based models of strip breakage failure. This facet is selected to 

capture the general causes of strip breakage. 

 The empirical knowledge (EK) feature set is a feature set that would capture 

specific relevant and discriminative data by looking at the informative factors that 

result in a strip breakage and referring to domain experts. This facet is selected to 

capture the specific causes of strip breakage.  
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 The data-derived (DD) features are binary features derived from sequential 

patterns based on PB and EK features. 

4.2.3 Multi-Faceted Modelling for Strip Breakage using Machine 

Learning 

Under the sliding window strategy in Section 3.1, the strip breakage task is transformed 

into a binary classification task classifying whether the strip will break within the next 

predicted time window. In this context, we proposed a supervised machine learning 

approach using a sequence-to-vector RNN architecture to conduct this classification 

task. 

Unlike a standard neuron network, RNN consists of a series of recurrent neurons, and 

the output from a recurrent neuron is connected to the next recurrent neuron, as shown 

in Figure 4.3. One issue associated with the standard RNN is the 'fading memory' 

problem. Once the number of time steps becomes large, the 'future' time steps will 

contain virtually no memory of the first inputs, as there is no structure in the standard 

recurrent layer that individually controls the flow of the memory itself. To solve this 

problem, the LSTM network, a family of the recurrent cell which incorporates the 

standard recurrent layer along with additional 'memory' control gates, has been 

proposed (Hochreiter and Schmidhuber, 1997). An LSTM network is formed exactly 

like a simple RNN, except that memory blocks replace the nonlinear units in the hidden 

layer. Indeed, LSTM blocks may be mixed with simple units if required — although it 

is typically not necessary. Also, as with other RNNs, the hidden layer can be attached 

to any different output layer, depending on whether the required task is related to 

regression or classification (Graves, 2012).  
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Figure 0.3 Illustration of the RNN structure 

Specifically, a two-dimensional matrix instance entering the proposed RNN 

architecture contains L sampling points and N attributes. This instance represents a time 

segment as a matrix (L × N) and is fed into the recurrent layers. As a sequence-to-vector 

architecture, only the output from the last neuron is fed into the linear layer; the other 

outputs are ignored. Subsequently, an activation function is embedded into a linear layer 

to make binary predictions. 

 

4.3 Experimental Setup 

We conducted this experimental study using the historical data provided by a cold-

rolled electrical steel manufacturer. Due to excellent electrical and magnetic properties, 

cold-rolled silicon steel strip is a primary functional material widely used for the 

manufacturing of transformer cores and motors in the power electronics industry (Li et 

al., 2018b). For the production of silicon steel strips, cold rolling is an essential process 

which compresses and squeezes the incoming strip into the thinner outcoming strip to 

enhance properties such as yield strength, surface smoothness and permeability. With 

a higher silicon content, the electrical steel strips are lower in toughness compared with 
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the general low-carbon steel (Yan et al., 2015). In this case, there is a higher chance of 

strip breakage during the production of high silicon steel strips. 

In this steel strip manufacturer, brittle high silicon electrical steel strips are cold-rolled 

five passes back and forth, decreasing the original thickness by 90% on a reversing mill 

where undesired strip breakages occur from time to time. Breakages of strip coils result 

in yield loss, reduced speed of work and failure to achieve the final target thickness. 

Consequently, strip breakage production failure increasingly aroused the attention of 

this steel company. Furthermore, in this company, causes of strip breakage are currently 

identified retrospectively rather than in a predictive manner. The company can benefit 

from an effective strip breakage prediction model by taking countermeasures 

beforehand to increase productivity and prevent further damage.  

An initial experimental study was conducted to predict strip breakage and gain insights 

into feature sets constructed from different facets. In addition to experiments on 

different feature sets, to discover the appropriate predicted window length for the 

evaluation of prediction performance and actual production practice, experiments 

exploring different predicted window lengths were also conducted. 

4.3.1 Data Acquisition and Preparation 

The data used for this research was obtained from multiple sources relevant to strip 

breakage, namely hot rolled coils (HRC), annealing and pickling (A&P), emulsion, and 

cold rolling process (CRP). Specifically, the on-site production data acquisition (PDA) 

system, continuously monitored and recorded CRP variables such as tension, speed, 

and roll gap position at a frequency of 100 Hz. The raw data was of high resolution to 

ensure the most accurate and detailed information possible. The data was pre-processed 
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by identifying the momentary manner of strip breakage, followed by data cleaning to 

address abnormal and missing values. The dataset contained 33 broken strip coils 

marked with non-material causes under the same incoming material grade, covering 

three months of production, and was divided into training and testing sets. The sliding 

window strategy was implemented to obtain a manageable dataset size while still 

considering recency.  

Pre-processing of data was conducted concerning the momentary manner of strip 

breakage with the aim of taking better advantage of time-series data. To be specific, the 

collection and pre-processing of the process data were conducted from the strip 

breakage point backwards in time. Following this, data cleaning was conducted to deal 

with abnormal and missing data. There were abnormal negative values in variables such 

as entry and exit speed, indicating the rolling direction (since the mill was reversing), 

and the absolute value was therefore taken. Furthermore, values were missing within 

the dataset. In consideration of the correlation of neighbouring data points, forward 

imputation was applied, which imputed any missing value to be the same as its previous 

measurement. In this context, data were collected from the strip coils broken due to 

non-material causes, and these coils possessed the same incoming material grade. The 

training set consisted of 27 coils, and the test set contained six coils. The granularity of 

the data was high, enabling the identification of the breakage point, resulting in more 

accurate labels for classification. Since the causes of strip breakage are currently 

identified retrospectively in this company, each broken strip coil is marked with a 

specific cause manually by shop floor engineers. These causes are generally classified 

into material causes, non-material causes and unknown causes. It should be noted that, 

as was reviewed in Section 2.1, a primary cause of strip breakage is the issue of 

incoming raw material, which is annealed and pickled hot-rolled strips. The case is 

similar in this company as well. However, the information regarding these hot-rolling 
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strips was collected at a batch level (i.e. the measurements were taken on each coil) in 

practical cold-rolling operations, and no detailed material data were collected at a 

second level. Since the objective of the experimental study is to predict strip breakage 

at a micro-level, the material issue was not in its scope. In this context, data were 

obtained from coils with a unified material grade. Specifically, under this parameter 

setting, each coil in the training set could generate 201 instances; 50 of the 201 were 

marked as break, and the remainder were labelled non-break. The division of training 

and testing data was made to prevent overfitting and to evaluate the performance of the 

developed models on previously unseen data. The selection of the test set was based on 

its similarity to the training set, as both sets shared the same incoming material grade 

and contained coils marked with non-material causes. The training and testing sets were 

carefully selected to ensure that the models were trained and tested on a representative 

sample of the data, which increased the confidence in the generalizability of the results. 

Table 0.1 Parameters in sliding window strategy (unit: second). 

Instance length Step size Predicted window length 
Time backwards from breakage 

point 

58 0.01 0.5 60 

 

Regarding the absence of validation data, it is worth noting that the models were not 

validated in this study to prevent overfitting. The absence of validation data might raise 

concerns about the reliability of the models. However, the use of a sliding window 

strategy to generate instances of data for each coil, the careful selection of the training 

and testing sets, and the use of appropriate evaluation metrics, such as precision, recall, 

and F1-Score, were used to assess the performance of the models. These measures 

ensured that the models' generalizability and reliability were evaluated and that the 

absence of validation data did not significantly impact the results.  
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4.3.2 Experimental Setup 

In order to gain insights into predictive performance among feature sets, the first 

experimental study was a performance comparison of models based on different 

combinations of feature sets identified from multiple facets. Subsequently, based on the 

results from the first experimental study, further exploratory experiments were 

conducted to discover an appropriate predicted time window length. 

Table 0.2 Details of features relevant to strip breakage based on empirical knowledge. 

No. Name Description 

1 Raw entry speed (m/min) Strip speed measured on the entry side 

2 Raw exit Speed (m/min) Strip speed measured on the exit side 

3 Total load feedback 
The force pushing the load apart, equal to the pressure 

on the strip 

4 Front capsule force Force applied on the front capsule  

5 Back capsule force Force applied on the back capsule 

6 LR tension 
A force applied to the pull strip from the side of the 

left reel into the rolls  

7 RR tension 
A force applied to the pull strip from the side of the 

right reel into the rolls 

8 Exit gauge deviation (mm) Strip thickness deviation measured on the exit side 

9 Raw gap position (mm) 
A separation distance of work rolls with no elastic 

deformation 

10 Eccentricity trim (mm) 
A periodic trim to handle the non-circularity of the 

rolls which results in periodic variation in the roll gap 

11 Measured slip (%) 
The displacement ratio between the strip coil and the 

working roll 

 

In the first experimental study, models were built based on feature sets identified from 

EK, physical-based models and DD approaches. First, the feature set derived from EK 

was created since these features are informative and include specific strip breakage 
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causes in the cold rolling system of this company. Details of this feature set are listed 

in Table 4.2. 

Second, in addition to the features identified from EK, which cover specific strip 

breakage causes, features identified from PB models were considered as the second 

facet to be included in general causes of strip breakage. The diameter disparity between 

the top and bottom working rolls as well as the left and right deflector rolls, was first 

considered (Cui and Zhao, 2013a). Since chatter is a vital aspect of strip breakage, the 

causes of chatter were also considered. As chatter was proved to be the manifestation 

of torsional vibrations of the roll-spindle shaft system (Panjković et al., 2012), the 

frequency of vertical and torsional vibrations of work roll and spindle are typically 

considered in chatter modelling. As there were only data measuring the working roll, 

the frequency was derived by taking the spectrum of the work roll position signal. In 

this context, six PB features were constructed for further experiments. Details of the 

features constructed from physical-based models for strip breakage analysis are listed 

in Table 4.3. 

Table 0.3 Details of features constructed from physical-based models. 

No. Name Description 

1 Diameter disparity of work roll (%) Top working roll diameter divided by bottom working roll 

2 Diameter disparity of deflector roll 

(%) 
Left deflector roll diameter divided by right deflector roll 

3 The vertical vibration frequency of 

top work rolls (Hz)  
The spectrum of the top work roll position signal 

4 The vertical vibration frequency of 

bottom work roll (Hz)  
The spectrum of the bottom work roll position signal 

5 Work roll location error Mean error of location of rolls 

6 Angular velocity error Mean error of angular velocity of rolls 
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Third, as a main non-material cause of strip breakage, chatter can cause drastic variation 

in primary variables (Hu et al., 2006). It would be beneficial to discover the sequential 

variation pattern regarding the selected primary features and apply these patterns as 

features for the prediction task. 

In this context, sequential pattern mining was conducted on the 17 selected EK, and PB 

features listed in Tables 4.2 and 4.3. First, to handle the complex time series, temporal 

abstraction (Shahar, 1997) was conducted to transform the numeric time-series 

variables into a high-level qualitative form. To be specific, each primary variable was 

converted into an interval-based representation. When the mill encounters a chatter, the 

values of certain primary features fluctuate remarkably. Under this condition, each 

primary feature was segmented using 10%, 25%, 75% and 90% percentiles of the 

numeric values. Five states were defined as Very Low (VL), Low (L), Normal (N), 

High (H) and Very High (VH). For instance, a value between the 10th and 25th 

percentiles was segmented as low, and a value above the 90th was very high. Following 

the temporal abstraction of the global one-minute data for each coil, PrefixSpan (Pei et 

al., 2001) sequential pattern mining algorithms were applied to the selected 27 broken 

coils in the training dataset. An abstracted state corresponds to an event (itemset) within 

a sequence. To be specific, the abstracted state for each primary feature consisted of a 

sequence within a broken coil, and sequential pattern mining was then conducted for 

all 27 coils. Sequential pattern mining was conducted using the open-source package 

SPMF (Fournier-Viger et al., 2016). SPMF is an open-source software and data mining 

library which is specialized in pattern mining. For the PrefixSpan algorithm, the Min 

support was set to 0.4 and the Max pattern length to 10. The pattern with the highest 

support was chosen as the most frequent sequential pattern of strip breakage for this 

primary feature.  
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Finally, for an instance which represented a 58-second time window, the same 

abstraction strategy was adopted. The abstracted instance was matched with 17 

sequential patterns generated from 17 selected primary features. Then, 17 binary 

features were constructed in each instance. The value of each binary feature depended 

on the matching between an abstracted primary feature and its corresponding pattern. 

Within an instance, if an abstracted primary feature contained its following sequential 

pattern, the corresponding binary feature was marked as 1, and vice versa. In this 

manner, regarding the primary feature set, the 5800×17 instance was transformed into 

5800×34 after feature construction. 

In terms of the deep learning architecture, the main deep learning model parameters 

consisted of the type of layer, number of layers, number of nodes in each layer and 

dropout rate. After several trials, a pyramid shape network structure was designed in 

accordance with both computation cost and classification performance to balance the 

trade-off between computation cost and model depth. Rectified linear unit (ReLU) was 

selected as the activation function. Detailed information is shown in Table 4.4. 

Table 0.4 Detailed information for each layer of the proposed network model.  

Layers Layer name Main parameters  Other parameters 

Layer 1 Embedding  N/A N/A 

Layer 2 LSTM/GRU/RNN 60 units Dropout = 0.3 

Layer 3 LSTM/GRU/RNN 30 units Dropout = 0.3 

Layer 4 Flatten N/A N/A 

Layer 5 Fully-connected 30 units Activation = ReLU 

Layer 6 Fully-connected 2 units NA 
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To be specific, since this was a binary classification problem, CrossEntropy was used 

as the loss function. Adam was adopted as an optimiser (Kingma and Ba, 2014). The 

model was fit for 100 epochs because it quickly overfits the problem. A batch size of 

60 was used to space out weight updates. Python was the utilised platform, and the deep 

learning models were built using Pytorch (Paszke et al., 2017). Details of the parameters 

for the training process are specified in Table 4.5. 

Table 0.5 Parameters of the training process of strip breakage deep learning prediction model. 

Learning rate Batch size Epochs 
Activation 

function 
Optimiser Loss function 

0.001 60 100 ReLU Adam CrossEntropy 

 

A benchmark test was conducted to compare five prevailing machine learning 

algorithms: random forest (RF) (Liaw and Wiener, 2002, Jun et al., 2019), support 

vector classification (SVC) (Suykens and Vandewalle, 1999), artificial neuron network 

(ANN), RNN and gated recurrent unit (GRU). For the conventional RF, SVC and NN 

algorithms, which are unable to handle the high dimensionality of time-series data 

directly, hand-crafted features were required, and feature extractions were consequently 

applied. Six types of features, including the time domain and frequency domain, were 

designed and crafted, as shown in Table 6. The Scikit-learn (Pedregosa et al., 2011) 

with the default setting were applied for the benchmark tests of the conventional 

algorithms. For RF, the number of trees in the forest was set as 100, and the number of 

features to consider when looking for the best split was set as the square root of the 

number of input features. For SVC, the radial basis function was used as the kernel type, 

the degree of the polynomial kernel function was set as 3, and the kernel coefficient for 

the radial basis function was set as the reciprocal of the number of features. For ANN, 

two hidden layers were designed with 100 neurons in each layer; the other parameters 
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were set as with LSTM, as shown in Table 4.5. In terms of the RNN and GRU network, 

the input data can be tensor, as with an LSTM network. Therefore, architecture and 

training parameters for the RNN and GRU network were set to be identical to the LSTM 

network. 

Table 0.6 List of extracted features. 

Domain Features 

Statistical 

Root mean square 

Variance 

Maximum 

Peak-to-peak 

Frequency 

Spectral skewness 

Spectral kurtosis 

 

A graphics processing unit (GPU) was used for the experiment to increase speed and 

decrease training time. More specifically, the processing system used for the analysis 

was as follows: CPU Core i7-9700 K 3.8 GHz with 32 GB RAM and GPU NVIDIA 

GeForce 2080ti. 

4.3.3 Evaluation Metrics 

Typically, we can use the following two metrics from the confusion matrix to evaluate 

the classification performance of positive and negative classes independently (Storey, 

2003): 

True positive rate (TPR) is the percentage of positive instances correctly classified: 
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                                                          𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                (4.1) 

True negative rate (TNR) is the percentage of negative instances correctly classified: 

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                                     (4.2) 

Since classification intends to achieve good results for both positive and negative 

classes, neither of these measures is adequate for evaluating the classification 

performance. The Area Under the receiver operating characteristic Curve (AUC) 

provides a single measure of a classifier's performance to evaluate which model is better 

on average (Fawcett, 2006). In this context, AUC is selected to evaluate the 

performance of the proposed modelling methodology. 

 

4.4 Experimental Results 

4.4.1 Experiments using Multi-faceted Feature Sets 

Based on the experimental setup, which explored different combination scenarios of the 

feature sets identified from different facets, the quantitative results of the predictive 

models are presented in Table 4.7 under the metrics of AUC evaluated using the test 

dataset. 
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Table 0.7 AUCs of models with the best performance using different algorithms and feature sets. 

 

Feature sets 

Conventional    RNN-based  

 RF SVM ANN  RNN GRU LSTM 

Single 

feature set 

EK 0.519 0.563 0.679  0.772 0.788 0.820 

PB 0.507 0.554 0.665  0.749 0.735 0.807 

Multiple 

feature 

sets 

EK + DD 0.518 0.561 0.697  0.751 0.792 0.821 

PB + DD 0.506 0.552 0.682  0.749 0.787 0.809 

EK+PB 0.515 0.559 0.698  0.736 0.757 0.811 

EK + PB + DD 0.511 0.561 0.693  0.779 0.801 0.835 

 

In Table 4.7, the performance of various models in which both RNN-based and 

conventional approaches were applied with different mixes of feature sets is displayed. 

Generally, due to the default setting of hyperparameter selection and different manner 

of data representation, the improvement of RNN-based deep learning models compared 

with traditional methods is enormous. However, as a result of model complexity, 

hyperparameter selection is required to achieve the desired performance. Additionally, 

it is worth noting that rerunning the deep learning modelling on strip breakage 

experiments may not necessarily give the same results. This is because there are several 

factors that can influence the performance of machine learning models, such as the 

specific initialization of the model parameters, the random shuffling of the training data, 

and the choice of hyperparameters. These factors can result in slight variations in the 

performance metrics of the model, such as accuracy or F1-score. However, the 

meaningfulness and significance of the experiment should not be affected by these 

variations, as the main contribution of the study lies in demonstrating the effectiveness 

of the proposed approach in predicting strip breakage using multi-source data. The 
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study also provides insights into the importance of feature engineering and model 

selection in improving the accuracy of the predictions.  

4.4.2 Experiments using Different Time Window Lengths 

The above experimental studies were to train a model to predict whether a strip would 

break within the next 0.5 seconds. The 0.5-second window was suggested by the steel 

plant since they consider it sufficient time to respond. An adequate predicted window 

can provide enough time to take countermeasures before a strip breakage occurs. For 

instance, operators can take contingency mitigation countermeasures such as an 

actively planned stop rather than a passive fast stop, which will often result in severe 

damage to the rolling mill. However, as a rule of thumb, a wider predicted window 

often leads to undesirable prediction accuracy. Based on the best model in Section 4.4.1, 

to gain insights into the trade-off between predicted time window length and prediction 

performance, the following experiments were designed to explore window sizes from 

0.1 to 0.9 seconds. 
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Figure 0.4 Performance of models based on different predicted time windows in terms of ACC and 

AUC. 

Based on different window lengths, the performance was compared when the algorithm 

converged. The relationship between the algorithm performance and different predicted 

window lengths in terms of AUC and accuracy (ACC) is shown in Figure 4.4. It can be 

seen that ACC generally decreases with the increment of predicted window length, 

which conforms with our assumption of the relationship between prediction accuracy 

and predicted time window. However, according to our proposed sliding window 

strategy, the selection of a predicted window length will affect the data balance. Even 

if better performance in terms of ACC is achieved when the window length is narrow, 

the best AUC is achieved with a predicted window of 0.6 seconds.  
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4.5 Discussion 

In this Chapter, the results of the experiments using multi-faceted feature sets and 

different time window lengths were presented. The ability to predict strip breakage on 

a micro-level with an adequately predicted window can provide significant benefits in 

terms of decision-making for the occurrence of strip breakage. 

It is noted that the LSTM network shows merit in multi-faceted strip breakage 

modelling and outperforms conventional algorithms when only single feature sets are 

being applied. This is likely due to the limitations of hand-crafted features used to 

represent raw time-series data, which may limit modelling performance. Among the 

models built on primary features, the best performance was obtained when the LSTM 

network was applied. The RNN-based algorithms outperformed conventional 

algorithms when only single feature sets were being applied. This may result from hand-

crafted features used to represent the raw time-series data limiting modelling 

performance (Bengio et al., 2013). Among the models built on multiple feature sets, the 

LSTM network still outperformed other algorithms. Indeed, as a result of the inclusion 

of more features, the overall performance of various conventional algorithms improved. 

Additionally, the study also highlights the performance advantage of the inclusion of 

the knowledge-based (KB) and statistical process monitoring (SPM) feature sets for the 

primary feature set. This finding indicates the importance of incorporating domain-

specific knowledge and process monitoring data in strip breakage prediction models. 

Moreover, the trade-off between the predicted time window length and prediction 

performance is also discussed. It is noted that while ACC generally decreases with the 

increment of predicted window length, the best AUC is achieved with a predicted 

window of 0.6 seconds. This finding suggests that the selection of a predicted window 
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length will affect the data balance and that a wider predicted window does not 

necessarily lead to better prediction performance. 

In conclusion, the discussion provides a critical reflection on the experimental results 

and highlights the strengths and limitations of the study. Future research directions are 

also suggested, such as exploring more sophisticated deep learning architectures and 

incorporating additional domain-specific features. Overall, this section adds depth and 

insight to the research findings and demonstrates the author's ability to evaluate the 

significance and implications of the study. Fault diagnosis in a predictive manner is of 

importance to the steel-making industry. The questions previously raised have not been 

investigated in any previous strip breakage studies, yet their answers might provide 

significant benefits in terms of decision-making for the occurrence of strip breakage. In 

actual cold rolling practice, if such a prediction can be made on a micro-level with an 

adequately predicted window, a planned stop action can be taken to the mill in advance 

instead of a passive fast stop which will often result in severe damage to equipment. 

 

4.6 Summary 

Strip breakage is a severe production failure which occurs instantaneously in the cold 

rolling process. Prediction of this failure can bring significant benefits to the cold rolling 

industry in terms of contingency mitigation and quality improvement. In the present 

study, to minimise the occurrence and impact of strip breakage, we achieved a micro-

level prediction of strip breakage based on historical process data. The first contribution 

of this thesis is its exploration of deep learning models applied to a cold rolling process 

at an event level as compared to a batch level regarding strip breakage failure. Through 
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the modelling of this instantaneous failure at the event level, the rolling mill operator 

can improve and optimise their contingency mitigation strategies. For instance, a 

planned stop action can be taken in advance to avoid further damage from an unplanned 

fast stop according to the predicted information. Secondly, the post-analysis of this 

production failure can benefit from understanding the likelihood of strip breakage in 

the near future. For real cold rolling practice, even if we considered all the causes of 

strip breakage beforehand, the occurrence of this failure may not always be avoided. 

This limitation is due to information such as unexpected sudden changes, an undetected 

internal material defect or, in most cases, from an unknown reason not conveyed in the 

current dataset. Therefore, this approach is more practical for breakages with a 

definable manifestation in rolling process variables, such as breakages caused by chatter.  
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Chapter 5 Fault-centric KG Building by 

Structure Refinement and Relation 

Completion in Steel-making  

5.1 Introduction 

For the modelling of a multi-faceted concept, no single data source can capture the 

complexity of all the relevant factors. In Chapter 4, modelling strip breakages in the 

cold rolling process has proved to be a multi-faceted task as there are multitudinous 

factors contributing to this fault. However, among the heterogeneous data surrounding 

multi-faceted concepts in steel-making, a significant amount of data consists of rich 

semantic information, such as technical documents and production logs generated 

through the steel-making process. Also, as a conventional manufacturing process with 

a long history, there exists vast domain knowledge regarding the production failures 

in steel-making. In this context, in terms of multi-faceted modelling for fault diagnosis 

in steel-making, proper semantic technologies are desired for the processing of 

semantic data and domain knowledge in steel-making.  

Techniques such as ontology (Lu and Xu, 2017) can be used to develop semantic 

descriptions of manufacturing resources. However, as ontologies are based on rule 

representations, they have limited flexibility and adaptability when it comes to 

describing the semantics of large-scale workshop data. In contrast, knowledge graphs 

are conceptual databases of structured semantic knowledge, which have become 

increasingly applicable to IoT semantic collaboration (Li et al., 2019). Depending on 

the application scenarios, KGs have been divided into two types normally: general 

KGs and domain KGs. In terms of general KGs, it has been emphasised that the 
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knowledge requirements need more broad than precise (Chen et al., 2021a). Unlike 

general KGs, domain KGs are regarded as vertical KGs, which describe specific 

particular domains (Zhou et al., 2021). Although the description scopes of domain KGs 

are very limited, the depth of knowledge has been emphasised in building a given 

domain KG (Zhao et al., 2019, Kejriwal, 2019). In this context, domain-specific KG 

provides a promising approach to handling semantic data and domain knowledge. By 

using the knowledge concerning fault analysis, a proper fault-centric domain ontology 

ensures the formalisation of knowledge, making knowledge readable for humans and 

computational methods (Regulski et al., 2014). Therefore, it is of great importance to 

construct a fault-centric KG regarding the production failures in steel making. 

In this context, this chapter proposed a framework for domain-centric KG construction. 

In the steel-making industry, knowledge repositories are typically fragmentary with 

scattered knowledge distribution, resulting in extensive participation of knowledge 

alignment from domain experts for a KG establishment (Hu et al., 2021a, Yu et al., 

2020). In addition, information is often missing and noisy in KGs constructed from 

raw data, such as missing relations (Getoor and Machanavajjhala, 2012, McCallum, 

2005). With the aim of addressing the above-mentioned issues, a framework of 

domain-centric KG construction has been presented to avoid the massive participation 

of domain experts, as well as to refine KGs and discover the missing relations in this 

study. This proposed KG construction framework serves as a model that aims to design 

a reliable ontology and complete relations in constructing the domain-centric KG for 

information management and knowledge sharing in steel-making.  

The remainder of this chapter is structured as follows. In Section 5.2, a detailed 

technical roadmap has been demonstrated and explained. Section 5.3 reports the case 

study using data and empirical knowledge from a real-world cold rolling plant. The 

results are discussed in Section 5.5. Finally, Section 5.6 summarises this chapter. 
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5.2 Methodology 

In this chapter, we propose a framework of domain-centric KG construction through 

hierarchy structure refinement and relation completion. The choice of techniques and 

methods used in this framework is based on the need for accurate and comprehensive 

knowledge representation and extraction in a domain-centric manner, as well as their 

effectiveness in processing graph-structured data and predicting potential relations for 

KG completion. Figure 5.1 illustrates the process of knowledge extraction, which is a 

crucial step in the first stage of the proposed framework. Keywords and correlation 

calculation methods are employed to extract knowledge from unstructured or semi-

structured data sources. The keywords are used to recognize entities, while the 

correlation calculation methods are used to identify relations among entities. 

Specifically, the correlation between each pair of variables is calculated using three 

different rank correlation coefficient methods, including the Pearson correlation 

coefficient, the Kendall Tau rank correlation coefficient, and the Spearman rank 

relational coefficient. These methods are selected based on their effectiveness in 

accurately and efficiently extracting knowledge from data sources. The extracted 

knowledge is then used to design the ontology for the KG construction, which is a 

formal, machine-readable representation of domain knowledge. Overall, the 

knowledge extraction process plays a critical role in the accurate and comprehensive 

representation of knowledge in a domain-centric KG. 

To be specific, for the first stage, a two-step process comprising ontology design and 

knowledge extraction is conducted. The choice of using an ontology-based approach 

for the KG construction is that ontologies provide a formal, machine-readable 

representation of domain knowledge that can be used to improve information retrieval, 

reasoning and decision-making. To design the ontology, we clarified the request for 

the domain-centric KG construction and designed a class hierarchy structure that 

conforms to the requirements thoroughly. Based on that, the property hierarchy was 

confirmed in accordance with the class hierarchy, including the object property 

hierarchy and the data property hierarchy. Meanwhile, we developed keywords and 

correlation calculation methods to recognize entities and relations in extracting 
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knowledge, respectively. These methods are selected due to the fact that they enable 

the accurate and efficient extraction of knowledge from unstructured or semi-

structured data sources. In this context, these three types of hierarchy are described in 

OWL language for the documentation of the designed ontology. 

In the second stage, a two-layer Graph Neural Network (GNN) model is built to predict 

potential relations for KG completion. GNN is applied given the fact that it can 

effectively capture the complex dependencies and interactions among entities and 

relations in a graph structure. Specifically, the edges are divided into two types: 

existing edges and non-existing edges. The relations represented by the two entities' 

embeddings are classified in the pre-trained GNN model.  

Finally, the third stage contains KG construction and KG visualisation. The overall 

triplets are described by the Resource Description Framework (RDF) format based on 

the triplet integration. The choice of using the RDF format is due to the fact that it 

provides a flexible and standardized way to represent and exchange structured data on 

the web. Lastly, the open-source platform is used to fuse the triplets for KG 

construction, and the visualization tool is deployed to present the generated KG in a 

graphic format. 
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Figure 0.1 The overall framework of the domain-centric KG construction. 

5.2.1 Ontology Design  

For KG construction, the first key step is to determine the applicable ontologies. As 

semantic data models, ontologies are mainly utilised to describe the relationships 

between concepts in a given domain and provide standardised, clear and unambiguous 

definitions that can be shared. Specifically, although the general types of things that 

share certain properties are modelled in domain-centric ontologies, these models do 

not contain information about specific individuals from domains. As each industrial 

scenario has distinct characteristics, the construction method of general KGs cannot 

be applied to the establishment of industrial domain-centric KGs.  
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Figure 0.2 The detailed flowchart of industrial ontology design in industrial scenarios. 

 

Figure 5.2 provides a detailed flowchart of the industrial ontology design methodology, 

which is a critical aspect of knowledge graph construction. The first step of this 

methodology involves determining the specific industrial scenario, which is essential 

in identifying the objectives and requirements of ontology applications. This step is 

crucial in ensuring that the ontology design meets the needs of the target domain. Once 

the specific industrial scenario has been identified, the next step involves checking if 

there are any reusable ontologies for the selected domain. If reusable ontologies are 

available, ontology construction can be based on them to reduce the time and effort 

required for constructing a new ontology from scratch. 

In cases where no reusable ontologies are available, industrial knowledge integration 

is necessary before constructing ontology. For industrial knowledge integration, three 

regular procedures are applied to integrate the fragmented domain knowledge from six 
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different sources (5M1E) comprehensively. The collected information is then 

classified into different and incompatible subsets for the next step. In the last step, the 

hierarchical structure of concepts is designed in the context of the given domain. The 

top-level classes are depicted as the root of concepts in the hierarchical structure, 

which have properties and interrelationships, and constraints. 

To ensure the quality of the ontology, an implementation of the SmartKG framework, 

developed by Microsoft, is made to visualise the developed hierarchy structure quickly. 

This framework enables quick determination of the hierarchy structure's 

appropriateness and completeness. If the classes are of high quality, the instances are 

created and collected into a repository for ontology construction. The ontology is then 

documented in a file, as it is essential to achieve a knowledge graph. In the case of 

incomplete or inappropriate classes, the properties and interrelationship constraints of 

the classes need to be ascertained and fused again, ensuring the quality of the ontology. 

The rationality behind these techniques, including the use of the SmartKG framework 

and integration of domain knowledge, ensures the quality of ontology design and 

construction, ultimately leading to the development of a robust and effective 

knowledge graph. This methodology provides a step-by-step approach that ensures 

ontology design meets the specific industrial scenario's objectives and requirements, 

leading to the development of a comprehensive and effective knowledge graph. 
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Figure 0.3 The illustrative framework of ontology design and construction. 

 

Figure 5.3 illustrates the framework of industrial ontology design and construction, 

which consists of four parts. Firstly, the related knowledge of a domain-centric 

phenomenon has been collected after determining the scope, such as the six resources 

(5M1E) (YING et al., 2020). The extracted data can be classified into structured data 

and unstructured data. Secondly, individuals are recognised and extracted to construct 

the individual repository based on the data resources. Thirdly, the overall hierarchical 

structure has been designed through a combination utilisation of top-down and bottom-

up methods. Specifically, the existing constraints and interrelationships among 
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subclasses have been detected to assist the hierarchical structure accomplishment. For 

relation detection, the correlation between each pair of variables has been calculated. 

Inspired by Ref. (Wang et al., 2021a), three different rank correlation coefficient 

methods, which are the Pearson correlation coefficient, the Kendall Tau rank 

correlation coefficient, and the Spearman rank relational coefficient, are applied. 

Lastly, based on the hierarchical structure, the relations of each pair of two entities 

have been used to connect the individuals. After that, triplets have been integrated to 

construct specific domain-centric ontologies in industries. 

Pearson's correlation coefficient represents the covariance of the two variables divided 

by the product of their standard deviations, as shown as follows: 

𝑟𝑝𝑟𝑠 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

                                               (5.1) 

where: 𝑛 is the sample size; 𝑥𝑖, 𝑦𝑖 denotes the individual sample points indexed with 𝑖; 

and 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  represents the sample mean, and analogously for 𝑦̅. 

Kendall rank coefficient is usually regarded as a statistic used to measure the ordinal 

association between two measure quantities. Specifically, the calculation formula is 

described as follows: 

𝜏 =
𝑛𝑐−𝑛𝑑

𝑛0
                                                             (5.2) 

where: 𝑛0 =
𝑛(𝑛−1)

2
 and 𝑛  is the sample size, 𝑛𝑐  is regarded as the number of 

concordant pairs, 𝑛𝑑 is the number of discordant pairs. 

 

Spearman's rank correlation coefficient is a nonparametric rank correlation which 

assesses how well the relationship between two variables. For a sample of size 𝑛, 𝑋𝑖, 𝑌𝑖 

are converted to ranks 𝑅(𝑋𝑖), 𝑅(𝑌𝑖). If all ranks are distinct integers, Spearman's rank 

correlation coefficient has been computed as follows: 
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𝑟𝑠𝑝𝑚 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
                                                   (5.3) 

where: 𝑑𝑖 = 𝑅(𝑋𝑖) −  𝑅(𝑌𝑖)  is the difference between the two ranks of each 

observation. 

5.2.2 Relation Completion 

Compared with the original GCN model, the GraphSAGE algorithm has been 

proposed as a comprehensive improvement, which is an inductive representation 

learning for node embedding (Hamilton et al., 2017a). The main idea of GraphSAGE 

is to adhere to GNN and aggregate the neighbours' information by embedding them 

into each node. Generally, the GraphSAGE-based link prediction method involves 

propagating GraphSAGE networks forwards and propagating GraphSAGE networks 

backwards. The specific main procedures are demonstrated as follows: 

A graph is represented by 𝐺 = (𝐕, 𝐄) , where 𝐕 denotes a set of nodes, and 𝐄 is a set 

of edges between each pair of nodes. Specifically, the 𝑖𝑡ℎ node is indicated by 𝑣𝑖 ∈ 𝐕, 

and the features of all nodes are defined as 𝐗𝑣, ∀𝑣 ∈ 𝐕. Meanwhile, the adjacency 

matrix 𝐀 ∈ 𝐑|𝑛|×|𝑛|, 𝐴𝒊𝒋 ∈ {0, 1} is usually used to describe 𝐄, which is a |𝑛| × |𝑛| 

square matrix. If an edge exists between node 𝑣𝑖 and node 𝑣𝑗 , then  𝐴𝒊𝒋 = 1, otherwise 

 𝐴𝒊𝒋 = 0.  

Table 5.1 illustrates the embedding generation process in the GraphSAGE algorithm 

for all nodes. For starters, each node 𝑣 ∈ 𝐕  aggregates the representations of its 

neighbourhoods into a single vector {h𝑢
𝑘−1, ∀𝑢 ∈ 𝑁(𝑣)}. This aggregation step relies 

on the representations learned at the previous iteration of the outer loop, and the first 

step starts at 𝑘 = 0, which is regarded as the original input node features. After that, 

the node's current representation h𝑢
𝑘−1  has been concatenated with the aggregated 

neighbourhood vector h𝑁(𝑣)
𝑘−1 . Then, this combined vector is fed into a fully connected 

layer with nonlinear activation function 𝜎, which transforms the representations to be 

used in the next step. The final representations are outputted at depth 𝐾  as 𝐳𝑣 ≡
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h𝑣
𝑢, ∀𝑣 ∈ 𝐕. The step of neighbours' representation aggregation has been accomplished 

by various aggregator architectures. The mean aggregator has been applied: 

h𝑣
𝑘 ← 𝜎(𝐖 ∙ 𝑀𝐸𝐴𝑁({h𝑢

𝑘−1} ∪ {h𝑢
𝑘−1, ∀𝑢 ∈ 𝑁(𝑣) })                          (5.4) 

Table 0.1 The pseudocode of the GraphSAGE algorithm (Hamilton et al., 2017a). 

Algorithm: GraphSAGE embedding generation (i.e., forward propagation) algorithm 

Input: Graph 𝐺 = (𝐕, 𝐄) ; input features matrix {𝐗𝑣 , ∀𝑣 ∈ 𝐕} ; depth 𝐾 ; weight matrix 

𝐖𝑘 , ∀𝑘 ∈ {1, … , 𝐾} ; non-linearity 𝜎 ; differentiable aggregator functions 

𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘 , ∀𝑘 ∈ {1, … , 𝐾}; neighbourhood function 𝑁: 𝑣 → 2𝑉 

Output: Vector representations 𝐳𝑣 for all 𝑣 ∈ 𝑉 

1 h𝑣
𝑢 ← 𝐗𝑣 , ∀𝑣 ∈ 𝐕; 

2 for 𝑘 = 1, … , 𝐾 do 

3       for 𝑣 ∈ 𝐕 do 

4              h𝑁(𝑣)
𝑘 ← 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘 , ({h𝑢

𝑘−1, ∀𝑢 ∈ 𝑁(𝑣)}); 

5              h𝑣
𝑘 ← 𝜎(𝐖𝑘 ∙ 𝐶𝑂𝑁𝐶𝐴𝑇(h𝑢

𝑘−1, h𝑁(𝑣)
𝑘 )) 

6       end 

7       h𝑣
𝑘 ← h𝑣

𝑘/‖h𝑣
𝑘‖

2
, ∀𝑣 ∈ 𝐕 

8 end 

9 𝐳𝑣 ← h𝑣
𝑢, ∀𝑣 ∈ 𝐕 

 

Figure 5.4 gives the schematic diagram of forwarding propagation in the GraphSAGE 

algorithm. The first key step is sampling with the depth 𝐾, which samples each node 

randomly. It is noted that the number of sampling is constant for each node, as it 

reduces the computational complexity for the improvement of computational 

efficiency. Assuming that the number of sampling is 𝑘, the selected opportunity of 

each neighbourhood is equal within the scope of depth 𝐾 . If the number of 

neighbourhoods is less than 𝑘, the replacement method has been implemented until 𝑘 

neighbourhoods are selected totally. Otherwise, 𝑘  neighbourhoods of all 
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neighbourhoods are sampled at a random frequency. The next step is to aggregate 

information from the selected neighbourhoods into the target node so as to update the 

representation of the target node. Similarly, the representations of other nodes are 

updated. Finally, the aggregated representations are used to predict labels. The edge 

representation between two entities is presented through these two nodes' 

representations. Meanwhile, the edges are labelled in the link prediction task. 
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Figure 0.4 The schematic diagram of forwarding propagation in the GraphSAGE algorithm. 

 

In this study, the sample of edges is divided into two types: positive samples and 

negative samples. The positive sample is defined as the existing edge between two 

nodes in the original graph, and the negative sample is regarded as the non-existed 

edges similarily. In this context, the relation completion task can be considered as a 

binary classification. For learning the weights of aggregators and embeddings, the 

cross-entropy function is usually utilised as a loss function in the binary classification 

task, as shown as follows. 

ℒ = −
1

𝑁
∑ ℒ𝑖 =

1

𝑁
∑ −[𝑦𝑖 ∙ log(𝑝𝑖) + (1 − 𝑦𝑖) ∙ log (1 − 𝑝𝑖)]𝑖𝑖                   (5.5) 

where: 𝑦𝑖 ∈ {0, 1} is label, 𝑦𝑖 = 1 for the positive sample, and 𝑦𝑖 = 0 for the negative 

sample; 𝑝𝑖 is the predicted probability, which sample 𝑖 is a positive sample. 

Figure 5.5 illustrates an overview of the link prediction model based on GraphSAGE. 

For starters, KGs are used to derive and compute the node-feature matrices and 
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adjacency matrices. In this context, KGs are expressed in terms of the attributes of the 

entities (defined as node features) and the relationship features (regarded as adjacency 

matrices). Then, the two types of matrices are fed into a two-layer GraphSAGE model, 

which is a supervised training model. The features of each node have been updated by 

its neighbour within the share parameters. After propagating two GraphSAGE layers, 

the updated representations of each node have been obtained. Compared with the 

common GraphSAGE model, the sample labels are different from the node 

classification. Since the goal task is regarded as the link classification, the edges are 

divided into two different types: positive edges and negative edges. In terms of positive 

edges, the real-existing edges are defined as positive edges. Similarly, the non-existing 

edges are considered negative edges. In the next step, the embeddings of each edge 

have been represented by two linked entities in the proposed model. Accordingly, the 

proposed model employs the rule that minimises the classification error to achieve the 

final embeddings of nodes. In this context, the proposed model has been already 

trained to estimate the possible edges.  

[x21, x22,  ,x2n, ]

[x11, x12,  ,x1n, ]

[xn1, xn2,  ,xnn, ]
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Edge representation

Edge representation

Edge representation
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Edge Classification  

Figure 0.5 The architecture of the two-layer GraphSAGE model. 

5.2.3 Domain-centric KG Construction and Visualisation 

The key steps of KG construction and visualisation are present in this section. The 

potential triplets have been discovered and generated by the GraphSAGE-based 

relation completion model. After that, all of these triplets are integrated into a united 

triplet repository. Through using open-source platforms, the RDF language is used to 

describe each triplet for the domain-centric knowledge representation. In other words, 

the domain-centric KG is constructed and stored in these platforms. Meanwhile, graph 

visualisation tools are often embedded in these platforms. In this context, KG 
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visualisation is usually accompanied by KG construction. In fact, there are also several 

independent open-source software to achieve the KG visualisation. At present, there 

are several open-source graph databases available at this time, including Neo4j, Mongo, 

Gephi, and Grakn. Due to the operational ease and highly performant visualisation, 

the Gephi has been employed to visualise the generated KG. 

 

5.3 Case Study 

Cold rolling is recognised as an important pillar of global economic growth in the 

production of electrical steel strips. In the manufacturing of metal sheets and strips, 

cold rolling is an important process because of its advantages with regard to accuracy, 

efficiency, and output rate. Presently, cold rolling contributes to the improvement of 

the properties of steel strips on changes both in the microstructure and thickness of the 

steel. Since the properties that have been improved include surface smoothness, tensile 

strength, yield strength and hardness, cold-rolled products usually have superior 

mechanical properties, small dimensional tolerances and high-quality surfaces (Wu et 

al., 2021). Furthermore, as science and technology continue to advance, the quality 

requirements for steel strip products from cold rolling processes are becoming more 

detailed and demanding. Therefore, it is imperative increasingly to analyse and 

monitor the quality of cold-rolled products.  

This section set up a real-world experimental study on the cold rolling process to 

validate the proposed framework. In this case, a domain knowledge graph (KG) was 

constructed to address the issue of strip breakage in the cold rolling process of the steel 

industry. The KG was designed to capture the complex relationships between various 

factors that contribute to breakages, including material properties, processing 

conditions, and equipment parameters. The KG was constructed using a combination 

of ontology design, relation extraction, and relation completion techniques. 
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5.3.1 Ontology Design for Strip Breakage in Cold Rolling 

In regard to the modern steel industry, steel strips are produced by cold rolling in a 

high-speed, high-precision, and continuous process. It is not uncommon for cold 

rolling to encounter certain defects in the same manner as the process of metal forming. 

Technical reports indicate that various types of defects exist in steel strips from cold 

rolling production. It is worth noting that the technical reports used in the knowledge 

extraction process contain detailed information on the various types of defects 

encountered in steel strips during cold rolling production. These reports provide 

insights into the causes and effects of edge cracking, burrs in the centre, surface defects, 

and buckling. The reports further explain how a high silicon concentration in electrical 

steel leads to brittleness, resulting in breaks during cold rolling. The technical reports 

serve as a valuable resource for understanding the complex factors that contribute to 

breakage and for developing effective strategies for predicting and preventing this 

failure. The most common defects encountered in the sheet metal rolling process 

include edge cracking, burrs in the centre, surface defects, and buckling. Especially 

electrical steel is an iron alloy containing high percentages of silicon. Alloys 

containing a high silicon content have a low magnetisation loss as a result of the high 

electrical resistivity. As a result of a high silicon concentration, the strip becomes 

brittle, resulting in breaks during cold rolling. As the most serious defect, strip 

breakage needs to be paid special attention to as it causes huge financial losses. 

Specifically, strip breakage has damaged rolls and mill accessories badly, not only the 

increase of production costs. Hence, the information integration of different resources 

around the cold rolling process of the steel industry contributes significantly to the 

prediction of this failure. The proposed model was validated by carrying out an 

experimental study using real-world data in this section. An electrical steel 

manufacturer equipped with a reversing mill for cold rolling provided the experimental 

data. Figure 5.6 illustrates the entire manufacturing workflow that contributes to cold-

rolled coil in the steel industry. The relevant procedures contribute to the influence in 

different degrees of the quality of cold-rolled products, including the hot rolling 

process, properties of hot-rolled coils, annealing process, pickling process, cold rolling 

process, quality inspection, etc.  
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The hot-rolled coils have been fed into the annealing machine to increase their ductility, 

reduce their hardness, and make them more workable, as this processing alters the 

physical and chemical properties of the coil material. Then, a pickling treatment is 

performed on metal products to remove impurities, such as stains, inorganic 

contaminants, rust, and scale. In conjunction with emulsion, the steel coils that have 

been processed are transmitted to a cold rolling mill for flat deformation. The above 

steps are repeated to get the finished size. After straightening these coils, the quality 

of coil-rolled products was inspected by technicians who work on the site. The strip 

breakage defect has been selected and marked manually. Finally, the qualified cold-

rolled coils are cut into the required length for packing and storing. 

Emulsion

Lubrication

Pickling Washing
Drying

Hot rolling
Hot-rolled 

coils
Annealing

PicklingCold rolling

Quality inspection Cutting into sheets
 

Figure 0.6 The manufacturing workflow of cold-rolled products in the steel industry. 

Following the manufacturing workflow of cold-rolled products, the strip breakage 

knowledge should be derived from steel-coil material, chemical reagents, 

transportation, processing, treatment, etc. The class hierarchy considered the concepts 

of processes, facilities, products, operations, parameters, chemicals, fault diagnosis, 

etc. Meanwhile, these seven parts were regarded as the top classes, as shown in Figure 

5.7. Based on the provided concepts, the subclasses of each top class were determined 
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subsequently. Since the cold-rolling process plays the most crucial role in influencing 

the strip breakage phenomenon, the processes were divided into the cold-rolling 

process and other processes. Facilities were composed of the mill, rolls and other 

equipment. For operations, two different operations were recognised in the cold rolling, 

including cold-rolling operation and observation. In terms of products, coils were 

classified into cold-rolled coils and hot-rolled coils. Chemicals were regarded as the 

element contents. Process parameters and product parameters were two types of 

parameters. For fault diagnosis, the cold-rolled coils were labelled as 'Normal' or 

'Strip-breakage'. 
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Figure 0.7 The hierarchical structure of top classes of the strip breakage-centric ontology. 

Table 5.2 presents details of relevant concepts and characteristics extracted from 

multiple sources. In this section, five resources are regarded as the contributing factors 

to the strip-breakage phenomenon, including the hot-rolling process, annealing, 

pickling, emulsion, cold-rolling process and quality inspection. In this context, the 

specific strip-breakage knowledge has been extracted from the five resources in the 

next stages. The dataset is collected and stored from these resources, which covers a 
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production period of six months. Specifically, this historical dataset contains 1254 

samples, including 94 variables. 

Table 0.2 Details of relevant concepts and characteristics extracted from multiple sources. 

Sources Concepts and variables 

The hot-rolling process Hot-rolled coil properties, such as chemical contents, crown, quench 

temperature etc. 

Annealing & Pickling Annealing temperature, Jetflow speed etc. 

Emulsion Dirt result, pH, conductivity, chloride index etc. 

Cold-rolling process The rolling operation, equipment, machine performance, tension, 

measured parameters etc. 

Quality inspection Cold-rolled coil properties, such as weight ingoing, width, weight 

outgoing etc. 

In regard to the relation extraction, three correlation methods are selected to decide 

whether the relations between each pair of variables from the relevant sources are 

shown in Table 5.2, including Pearson correlation coefficient, Kendall Tau rank 

correlation coefficient, and Spearman rank relational coefficient. The results of these 

three correlation methods are shown in Appendix B. 

After taking absolute values, the heat maps of the three types of correlation results are 

presented in Figure 5.8, Figure 5.9, and Figure 5.10 accordingly. In the light of the 

absolute values, the correlation results have been classified into five levels, which are 

very weak relation or no relation ( 0 < |𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡| < 0.2 ), weak 

relation ( 0.2 ≤ |𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡| < 0.4 ), moderate relation ( 0.4 ≤

|𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡| < 0.6 ), strong relation ( 0.6 ≤

|𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡| < 0.8 ), and a very strong relation ( 0.8 ≤

|𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡| ≤ 1 ). When the correlation result fell within the range of 

very weak relation or no relation, the relation between two different variables was 

supposed to be the non-existing relation. Otherwise, the relation was considered as the 

existing relation. For example, since the absolute Pearson correlation value is 0.998 

between 'Z2Temp min' and 'Z2Temp min', it has been supposed that there is a relation 

between these two entities. Similarly, there is no relation between 'Crown min' and 
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'Width' as the absolute Pearson correlation value is 0.009 between these two variables. 

The absolute Kendall Tau correlation between 'Gauge' and 'Weight outgoing' took 

0.435, which falls within the range of moderate relation. It means that the relation 

between these two variables was considered as the existing one. On the contrary, there 

is no relation between 'Gauge' and 'TOFF'. Since the absolute Spearman correlation 

value is 0.402 between 'GasFlow min' and 'Z6Temp std dev, it has been supposed that 

there is a relation between these two entities. Similarly, there is no relation between 

'GasFlow min' and 'Heavy end' as the absolute Pearson correlation value is 0.004. 

 

Figure 0.8 The heat map of Pearson correlation coefficients. 
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Figure 0.9 The heat map of Kendall Tau rank correlation coefficients. 

 

 

 

Figure 0.10 The heat map of Spearman rank correlation coefficients. 

 

In this section, the strip breakage ontology was finished in open-source software 

(Protégé5.5), which supports OWL. The concepts, properties, and associated 
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relationships of the strip-breakage ontology were defined in this software. Figure 11 

shows an illustrative example of the classes, object properties and data properties of 

the strip-breakage ontology. There are seven main concepts in this ontology, including 

'chemicals', 'cold-rolled coil patterns', 'facilities', 'manufacturing processes, 

'operations', 'parameters', and 'products'. Totally, the second level of ontology 

comprises 20 subclasses, such as 'OES-SoIAI', 'Mill', 'Observation', 'accumulator', 

'pickling process, etc. Meanwhile, the object properties and the data properties were 

defined as well for a better understanding of the concepts in Figure 11. 

 

Figure 0.11 The classes, object properties and data properties of the strip-breakage ontology. 

A performant Web-based platform, namely 'OOPS!' (Cao et al., 2022), has been 

introduced to detect the pitfalls of ontologies in this section. After designing and 

constructing the strip-breakage ontology, the source codes were uploaded to the 

'OOPS!' website for quality evaluation of ontologies. As shown in Figure 12, the 

evaluation result means the designed ontology is error-free in logic consistency, 

reasoning and applicability. 
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Figure 0.12 The evaluation result of the strip-breakage ontology. 

5.3.2 Relation Completion for Strip Breakages 

In this section, the experiments were conducted to predict the potential edges for 

relation completion of the strip-breaking-centric KG. A brief overview of the dataset 

is provided in the following. The dataset contains 13113 samples, which are divided 

into two types (existing edges and non-existing edges). Regarding training and testing 

data split, the 5-fold cross-validation tests were conducted to evaluate the 

performances, and the mean values of the five folds were outputted and labelled. 

Specifically, 80 per cent of the overall data were selected for training, and the 

remaining 20 per cent was reserved for testing.   

As mentioned above, the experiments were conducted using our proposed two-layer 

GraphSAGE model. Meanwhile, three common machine learning algorithms were 

built to compare the performances, including back propagation neural network 

(BPNN), SVM, and random forest (RF). For the BPNN model, the hidden unit number 

and learning rate were set to 50 and 0.71, respectively, and the training epoch was set 

to 500. In terms of the SVM model, the kernel function was set as a radial basis 

function. Lastly, for the RF model, the number of estimators was set to 600. On the 

basis of that, the edges were fed respectively into three different models (BPNN, SVM, 

and RF) after calculating by the representations of entities. Meanwhile, as shown in 
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Figure 5, the representations of graphs (entity matrices and adjacency matrices) were 

fed into the two-layer GraphSAGE mode to predict the potential for relation 

completion.  

Moreover, in the task of relation completion, the goal is to output the potential edges 

by predicting the edge types. Since the edges are classified into two types (existing 

edge and non-existing edge), the link prediction is considered a binary classification. 

In this context, five following metrics were introduced to evaluate the performances 

of the proposed model, including accuracy, precision, recall, F1-Score, and False 

Alarm Rate (FAR): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                               (5.6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                           (5.7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (5.8) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                               (5.9) 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                            (5.10) 

where: 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁  mean true positive, true negative, false positive, and false 

negative, respectively. 

Table 5.6 gives the detailed binary classification result by five different metrics of 

BPNN, SVM, RF, and GraphSAGE models. It is obvious that the GraphSAGE model 

showed advantages over the other three machine learning models. Specifically, the 

GraphSAGE model surpassed the other machine learning baselines in terms of 

accuracy (82.02%), precision (76.6%), recall (79.26%), and F1-Score (77.9%). 

Moreover, the experimental results show that a smaller value on the FAR metric 
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(16.14%) was found using the GraphSAGE model than in the other three models. In 

this context, the GraphSAGE classifier performed well across all different 

performance metrics, showing that incorporating the neighbourhood information is 

better for the relation completion task in this study. Moreover, for the considered three 

benchmark models, it can be observed that the RF model achieved much better 

performances on all different metrics than SVM and BPNN models. Although the 

BPNN classifier performed better on recall than the SVM classifier, these two 

classifiers performed at about the same level during the comparison experiments.  

Table 0.3 The binary classification result of four models. 

Models Accuracy Precision Recall F1-Score FAR 

BPNN 76.99 70.45 73.17 71.78 20.46 

SVM 77.34 71.13 72.96 72.04 19.74 

RF 78.06 72.17 73.48 72.82 18.89 

GraphSAGE 82.02 76.6 79.26 77.9 16.14 

 

Figure 13 illustrates an example of relation completion through link prediction using 

the GraphSAGE model. After training the GraphSAGE classifier, the existing graphs 

were fed into the proposed model to learn the edge representations and discover the 

potential edges. As shown in Figure 13, the missing relations were found to complete 

the strip-breakage KG, including the relation between 'DSP width' and 'Z6Temp std 

dev' and the relation between 'Gauge average (microns)' and 'Crown min (microns)'. 
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Figure 0.13 An illustrative example of relation completion. 

5.3.3 Breakage-centric KG Visualisation  

Based on the hierarchy structure refinement and relation completion, all triplets were 

integrated and linked to constructing the strip-breakage-centric KG of the cold rolling 

process. In this section, the free software Gephi was implemented to store and visualise 

the generated KG as it performs well on operation and function. Specifically, 2295 

triplets are integrated and imported into Gephi to construct and visualise the strip-

breakage KG in the cold rolling process of the steel industry. In Figure 5.14, an entire 

strip-breakage-centric KG composed of seven subclasses is present. The entire strip-

breakage KG contained 230 entities and 2295 relations in total. 
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Figure 0.14 The entire strip-breakage KG of the cold-rolling process. 

 

5.4 Discussion 

In real-industrial scenarios, the relevant information from various modalities or 

sources is usually related to one intricate phenomenon, process, or system. The 

integration of data from multiple sources is essential for obtaining more 

comprehensive and expressive information than that obtained from any one source 

alone. In this context, this study presents a general framework of domain-centric KG 

construction as a semantic bridge which leverages multi-source data to provide a 

united and versatile view of understanding a phenomenon, process, or system. The 

main contributions of this study lie in hierarchy structure refinement developed to 

reduce the participation of knowledge alignment from domain experts and relation 

completion deployed to enhance the reliabilities of the KGs. The hierarchy structure 

refinement and relation completion modules have been validated using a real-world 
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case study from the cold rolling process of the steed industry, and results from the 

different metrics confirm the accuracy and efficiency of the proposed framework. 

Firstly, six sources of 5M1E, which contribute to one phenomenon, were considered 

to cover the information versatility of ontology in data-driven intensive scenarios 

comprehensively. The developed ontology was populated with instances after 

predefining the hierarchical structure of top classes in the steel industry. These top 

classes were defined around the strip-breakage phenomenon in the cold rolling process, 

including processes, fault diagnosis, facilities, parameters, operations, products, and 

chemicals. With the aim of refining and completing the proposed hierarchy structure, 

three correlation methods were developed to reduce the participation of knowledge 

alignment from domain experts, thereby avoiding time consumption and massive 

labour. As mentioned above, these three correlation methods (Pearson correlation 

coefficient, Kendall Tau rank correlation coefficient, and Spearman rank relational 

coefficient) were proposed as a quantifiable criterion to discover and decide the 

relations between each pair of variables for hierarchy structure refinement. Based on 

three experiments on the correlation coefficient, |𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡| ≥ 0.2 was 

supposed to be relations, or it was not. By extracting relation automatically, the 

experimental results illustrated that the proposed framework of hierarchy structure 

refinement avoids the extensive knowledge alignment by domain experts. Moreover, 

the Web-based platform was introduced to detect the pitfalls of ontologies. It was 

confirmed that quantifiable and fast evaluation provides an objective view of the 

quality and feasibility of ontologies. Combined with the quality evaluation manually, 

it was more effective and efficient than that of a single evaluation in constructing a 

reliable industrial ontology. The solid feasibility of strip-breakage ontology design 

shows that the general proposed framework can be broadened to other industrial 

ontologies. 

In addition, the existing knowledge was exploited to discover the missing relations 

between each couple of entities for KG completion, thereby enhancing the reliabilities 

of the KGs. Specifically, the missing relations were inferred and added to the existing 

KG, which resulted in increasing the number of edges. Recently, as a set of advanced 
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techniques for graph representation learning, GNN techniques have been full of vigour 

and tremendous potential. Based on that, a GraphSAGE-based link prediction model 

was built to complete the strip-breakage KG. Specifically, since the edges were 

classified into two types (existing edges and non-existing edges), the relation 

completion task was transferred into a binary classification task. Moreover, the three 

most common machine learning algorithms (BPNN, SVN, and RF) were developed to 

compare the performances. In this context, five metrics were deployed to evaluate the 

proposed model roundly, including accuracy, precision, recall, F1-Score, and FAR. 

The experimental results of relation completion indicated the power of the GNN-based 

approach for link prediction in constructing a domain-centric KG. Compared with the 

most common machine learning models (BPNN, SVN, and RF), the GraphSAGE 

classifier achieved the most performance on five different metrics consistently. The 

main reason is that this classifier captures the neighbourhoods' information on the 

inherent graph structure to discover the missing and potential relations. The stable 

performances show the ability of robustness to infer links for relation completion, 

which can be applied in other industrial scenarios. 

One of the significant contributions of this study was the hierarchy structure 

refinement module, which was developed to reduce the participation of domain experts 

in knowledge alignment, thereby avoiding time consumption and massive labour. 

Three correlation methods were proposed as a quantifiable criterion to discover and 

decide the relations between each pair of variables for hierarchy structure refinement. 

The experimental results illustrated that the proposed framework of hierarchy structure 

refinement avoids extensive knowledge alignment by domain experts. Furthermore, 

the web-based platform was introduced to evaluate the quality and feasibility of 

ontologies objectively. The proposed methodology was effective and efficient in 

constructing a reliable industrial ontology. 

Secondly, the proposed framework leveraged existing knowledge to discover missing 

relations between entities for KG completion, thereby enhancing the reliability of the 

KGs. The GNN-based approach for link prediction demonstrated the power of the 

GraphSAGE classifier for constructing a domain-centric KG. The experimental results 
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showed that the GraphSAGE classifier consistently outperformed the most common 

machine learning models, namely BPNN, SVN, and RF, on five different metrics. The 

reason for the GraphSAGE classifier's superior performance was its ability to capture 

the neighbourhood's information on the inherent graph structure to discover the 

missing and potential relations. The stable performance of the proposed framework 

demonstrated its robustness in inferring links for relation completion, which can be 

applied in other industrial scenarios. 

Overall, the proposed framework's effective validation in the real-world case study and 

the advantages it offers over traditional methods suggest its potential for broader 

applications beyond the steel industry. The contributions of the hierarchy structure 

refinement and relation completion modules provide a stepping stone towards 

developing reliable and robust domain-centric KGs. However, further research is 

needed to explore the proposed framework's generalization to other domains and to 

investigate the scalability of the proposed methodology for constructing large-scale 

KGs. 

 

5.5 Summary 

It is a typical characteristic that information from various sources contributes to one 

phenomenon in data-intensive industries. The use of KGs has been demonstrated to be 

an effective way to bridge the semantic gap for covering the versatility of a 

phenomenon in industries. Therefore, it has been proven that KG has been developed 

as a semantic organisation to tackle massive multi-sourced information embedded in 

manufacturing processes and products. With the aim of building a reliable domain-

centric KG, this study proposed a framework based on hierarchy structure refinement 

and relation completion. An illustrative real-world case of the cold rolling process in 

the steel industry was conducted to validate the proposed framework. 
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The process of domain-centric industrial ontology construction was first described in 

this study. Specifically, the multi-source information was extracted and integrated to 

design a comprehensive strip-breakage ontology of the cold rolling process. 

Meanwhile, three correlation methods are applied to extract relations between each 

pair of variables, where |𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡| ≥ 0.2  was supposed to be the 

existing relation. Otherwise, it is considered a non-existing relationship. Subsequently, 

the missing and potential relations were detected and predicted through the existing 

knowledge in strip-breakage KG, achieving better performances on five different 

metrics by the GraphSAGE model than the other three baseline machine learning 

models. Lastly, all triplets were linked and imported into the Gephi software for strip-

breakage-centric KG construction and visualisation. 
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Chapter 6 Knowledge Graph-Aided 

Information Fusion for Multi-faceted 

Fault Modelling in Steel-making 

6.1 Introduction 

As discussed in Chapter 4, it has become progressively more evident that a single data 

source is unable to comprehensively capture the variability of multi-faceted concepts 

in steel-making, which has diverse semantic orientations. Therefore, multi-faceted 

conceptual modelling is often conducted based on multi-sourced data covering 

indispensable aspects, and information fusion is frequently applied to cope with the 

high dimensionality and data heterogeneity. Meanwhile, in Chapter 5, we proposed a 

semantic approach by constructing a fault-centric KG for the processing and managing 

of semantic data and domain knowledge in steel-making. However, besides the ability 

for knowledge management and sharing, KG can aggregate the relationships of 

multiple aspects by semantic associations, which can be exploited to facilitate multi-

faceted conceptual modelling based on heterogeneous and semantic-rich data. 

Given this context, in this chapter, KG was applied to facilitate the construction of 

unified standard representations for data fusion by representing knowledge in the form 

of entities and relations. Although domain-independent (open-world) KGs such as 

Wiki are widely used, domain-dependent KGs offer a greater range of benefits and can 

provide a positive return on investment [12]. Meanwhile, it is common to capture 

domain knowledge in KGs, which are then used to enrich semantics with specific 

conceptual representations of entities [13]. In this case, KGs can be used as a basis for 

developing multi-faceted modelling by extracting the semantics, which is retrieved 
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from different vocabularies and semantic repositories, which are used to enrich the 

semantic description of resources using annotations.  

Based on the above analysis, with the support of a knowledge graph, this chapter 

proposes a fusion architecture for the modelling of multi-faceted concepts. The 

purpose of this architecture is to capture data related to the concept-centric domain 

derived from heterogeneous sources into a formal knowledge graph representation 

illustrating the concept-centric domain. To this end, a multi-faceted modelling method 

for fault diagnosis based on knowledge graphs and data fusion was developed. Based 

on equipment mechanisms derived from concept-centric data and empirical knowledge 

rules, a concept-centric knowledge map was derived with temporal characteristics 

surrounding the manufacturing failure. Subsequently, concept-centric knowledge 

graphs were constructed, and multivariate time-series data was transformed into a 

temporal graph representation of the data sequence. Finally, a Graph Convolution 

Network (GCN) model was applied to extract features from these temporal graphs, 

and these features are fed into a Temporal Convolution Network (TCN) model for fault 

concept modelling.  

The remainder of this chapter is organised as follows. The flowchart of the proposed 

methodology is illustrated and described for multi-faceted conceptual modelling with 

the support of a knowledge graph in Section 6.2. Section 6.3 presents the conducted 

experiments, and the results are shown in Section 6.4. These results are discussed in 

Section 6.5. Section 6.6 summarise this chapter. 

 

6.2 Methodology 

In this section, we proposed the framework of this multi-faceted modelling approach 

shown in Figure 6.1. Firstly, an initial set of concept-relevant data is gathered from 

various sources, and the concept-centric features are identified and utilised for the 

development of the CKG backbone. Then, the empirical knowledge recorded from 



       Knowledge Graph-Aided Information Fusion for Multi-faceted Modelling                
       111 

 

111 

technical documents and the existing knowledge repository is processed by NLP 

(natural language processing) tool for triplets' generation. Meanwhile, the structured 

data is mapped to its classes using the data to RDF (resource description framework) 

technique, and the CKG backbone is generated with the integration of those triplets. 

Thirdly, the time-series process data is transformed into a stack of temporal graphs 

under the CKG backbone. Finally, through spatial-temporal graph convolution using 

a temporal GCN model, the aggregated feature representing the intra-faceted and 

temporal characteristics of the graphs is extracted. The aggregated feature is then fed 

into a TCN model for multi-faceted conceptual modelling.  

The primary contribution of the proposed multi-faceted modelling approach shown in 

Figure 6.1 is the integration of heterogeneous data sources, including structured and 

unstructured data, to construct a CKG backbone. The backbone provides a foundation 

for the generation of triplets from technical documents and the existing knowledge 

repository. Additionally, the approach employs spatial-temporal graph convolution 

and temporal convolutional networks to extract the aggregated feature representing the 

intra-faceted and temporal characteristics of the graphs for multi-faceted conceptual 

modelling. This approach can effectively capture the interrelationships between 

different concepts and the evolution of the knowledge graph over time, which is crucial 

for real-world applications. 

The literature review informed several aspects of the proposed approach. Specifically, 

the use of natural language processing techniques for triplet generation from technical 

documents and existing knowledge repositories is a widely adopted strategy. The 

mapping of structured data to its classes using data to RDF conversion is also a well-

established technique in knowledge graph construction. Moreover, the use of graph 

convolutional neural networks for graph representation learning has gained 

considerable attention in recent years. The proposed approach builds on these 

established techniques by integrating them into a comprehensive framework that 

addresses the unique challenges of multi-faceted modelling.  
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Figure 0.1 The overall architecture of KG-supported multi-faceted conceptual modelling. 

6.2.1 Fault Concept-centric Knowledge Graph Construction 

The internal relationships and the temporal characteristics of the concept-related 

features were captured using a knowledge graph in this section. By semantic mapping, 

we relate the semantics of temporal process data with knowledge graphs. This layer 

primarily integrates semantic relationships between the facets of our concerning 

concept, as shown in Figure 6.1. Generally, the knowledge graph is represented by 

triples, which include the subjects, predicates, and objects, or (h, r, t). In symbolic 
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notation, h represents the subject, and t represents the object. These two nodes are 

referred to as the head node and tail node, respectively. An edge or relationship is the 

predicate, as expressed by the r. Facts are denoted by each instance (triple). For the 

structured data extracted from the enterprise information management platforms, the 

data to RDF (Corcho et al., 2020) approach is applied to structured data to its 

corresponding properties and classes.  

In terms of the unstructured information stored in the existing knowledge repository, 

our intention is to transform such information into an available computational form. 

As this information is merged with the information on the process behaviour, the 

material, the task schedule, and other facets concerning the concept, the integration of 

such information can thereby aid intelligence decision-making.  

 

Figure 0.2 Semantic illustration of CKG construction. 

As shown in Figure 6.2, the attribute is used as an edge. Attributes consist of the 

specific description of an entity, which represents several facets surrounding the 

concept. These facets can be obtained from the existing knowledge repositories, such 

as device description files and production diaries. As part of the construction of CKG, 

string matching is primarily used to obtain the names and attributions from 

unstructured data. In accordance with the extraction process, the data is organised into 

triples and placed in the knowledge graph. A knowledge graph will serve as a 

repository for aggregating and conveying real-world information. Entity nodes are 

represented by nodes, while edge nodes are represented by relationships between 

entities. Knowledge about the properties of the concept may be introduced through the 

construction of CKG. Therefore, as a result of this information, the model can better 
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fit the concept-centred feature representation and gain an understanding of more 

complex correlations between these features. 

With the generation of a list of triplets from both structured and unstructured data, the 

CKG will be generated by triplets mapping and integration. Firstly, the rules of 

mechanism knowledge are summarised, and extract indexes I1, I2…In are extracted as 

the classification basis. Accordingly, a level-1 concept node F1 of the corresponding 

level is generated, and the same to F2 until Fn. At the same time, the features of 

operational data are extracted as node attributes. Secondly, the operation data of the 

equipment is marked according to the regular nodes, and the concept classification and 

prediction of the operating data are carried out to generate node relations at different 

levels. Thirdly, the rule nodes and node relations are saved in the form of the triplets 

of inferior concept nodes, relation, and superior concept nodes. The rule of the 

mechanism chain from level 1 to level N is constructed, which contains node 

information and the relationship between nodes. Finally, according to the relationship 

between nodes, multiple regular mechanism chains are fused into a complete rule map. 

In view of mechanism knowledge, the concept-centric features are used as a 

classification basis to summarise rules, the summarised indicators and attribute names 

are symbolised, and the symbols of indicators are combined as rule nodes. Nodes of 

the same grade are divided into the same level. The node level depends on the type 

and quantity of data indicators. Lower-level nodes and upper-level nodes are 

subordinate to each other, indicating that upper-level nodes are further classified into 

lower-level nodes, as shown in Figure 6.2. 

6.2.2 Temporal Graph-based Data Transformation Relation 

Completion 

It is necessary to note that default time stamps are attached to the original process data, 

which means that each time series data set is generated for a specific period of 

time. For a better understanding of the temporal characteristics of the data, the 

intention is to construct a model that incorporates both the state characteristics of the 

time series and the internal relationships of the concept-centric features. This work is 
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characterised by the fact that sequence diagnosis is considered at each stage as a 

temporal event with corresponding time labels and attribute values associated with its 

occurrence. It is necessary to take into consideration that the collected data sequence 

is arranged into the Spatiotemporal graph that corresponds to the sequence at each time 

stamp as part of establishing possible interactions between attributes and their 

temporal dependency in the dynamic working system. In this context, the concept-

centric knowledge graph can be expressed as follows: 

                                                         G = (V, 𝐸, A)                                                  (6.1) 

with 𝑁 nodes 𝑣𝑖 ∈ V is the vertices set, and edges E is the edges set.  

According to our previous study, given a manufacturing process data  𝑋τ =

(𝑋1,  𝑋2,  𝑋𝑡−τ+1 … , 𝑋𝑡) ∈ 𝑅𝑡∗𝑁 of the 𝑡 time intervals, τ is the time interval size which 

is the window size, and our target is to predict whether the failure will take place within 

this specific time window (Chen et al., 2020b). However, the potential interactions 

between attributes were not established in the previous study. For the inclusion of such 

important relational information, we design the transformation of 𝑋τ  into its 

corresponding stack of temporal graphs 𝐺τ = (𝐺1,  𝐺2,  𝐺𝑡−τ+1 … , 𝐺𝑡)  at each time 

interval as shown in Figure 3. 

 

Figure 0.3 Transformation and temporal graph representation of the run-to-failure process data. 

In this case, using the backbone structure of the CKG derived from the knowledge 

repository,  
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                                                      𝐺t = (𝑉t, 𝐸t, 𝑨t)                                              (6.2) 

with 𝑁 nodes 𝑣𝑖 ∈ 𝑉t are vertices set following the time stamps and edges 𝐸t are the 

edges set expressed as:  

                                             𝐸t = {𝑒𝑗𝑘
𝑡 |∀j, k ∈ 𝑉t} ∈ ℝ𝑁×𝑁                                   (6.3) 

where 𝑒𝑗𝑘
𝑡 = 1 if 𝑗, 𝑘  are connected, when 𝑒𝑗𝑘

𝑡 = 0, then 𝑗, 𝑘  are disconnected. 𝑨t ∈

ℝ𝑁×𝑁 is the adjacency matrix derived from the nodes: 

𝑨t = [

𝑎11 𝑎12

𝑎21 𝑎22
    

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

    
⋱ ⋮
⋯ 𝑎𝑛𝑛

]                                 (6.4) 

It is important to understand that the relationships between different concept-centric 

facets in failure diagnostic tasks are not explicitly provided in comparison with the 

task in traffic forecasting, where the adjacency matrix can be computed by using 

Euclidean distance among stations in a traffic network. The Euclidean distance is not 

the most appropriate metric to choose for modelling relationships between two 

measurements when they are in the Euclidean domain since proximity does not 

necessarily imply close relationships. In this way, we construct a weighted adjacency 

matrix between the different measurements based on the PCCs between them. The 

formulation of PCCs for sequence 𝑋1 nd 𝑋2 is: 

 𝑃𝑋1,𝑋2
=

∑ (𝑋1𝑖−𝑋1̅̅̅̅ )(𝑋2𝑖−𝑋2̅̅̅̅ )𝑛
𝑖=1

√∑ (𝑋1𝑖−𝑋1̅̅̅̅ )2𝑛
𝑖=1 √∑ (𝑋2𝑖−𝑋2̅̅̅̅ )2𝑛

𝑖=1

                              (6.5) 

In a nutshell, 𝑃𝑋1,𝑋2
 is a number between -1 and 1 that indicates the extent to which 

two variables are related. In order to calculate the weighted adjacency matrix, the 

following formula is employed: 

 𝐀𝒊,𝒋 =  𝑒𝑃𝑋1,𝑋2                                                 (6.6) 
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In this case, 𝐀𝒊,𝒋 can be used to calculate the relationship between 𝑨t at different time 

intervals. The following GCN model takes 𝑨t and 𝑉t as the model input. 

6.2.3 KG-supported Multi-faceted Modelling   

With the aim of mining implicit knowledge from a graph, triples in the knowledge 

graph are transformed into their corresponding low-dimensional vector embedding 

using either a knowledge representation learning model or a graph convolution model. 

Firstly, an adjacency matrix 𝑨 ∈ ℝ𝑁×𝑁 is a square matrix that represents a finite graph. 

During the construction of the adjacency matrix, elements represent whether pairs of 

vertices in the graph are adjacencies or not. The degree matrix is 𝐷𝑖𝑖 = ∑ 𝑨𝑖𝑗𝑖 . When 

the multi-source data has been imported into the knowledge graph, information 

(represented by 𝑉 and 𝐸) has been contained. By populating multi-sourced data into 

knowledge graphs, an embedding approach is necessary in order to transform the data 

from these graphs into information that can be used for multi-source conceptual 

modelling. In this study, as a convenient way to accomplish the embedding process, 

GCN is used to extract the connected features in an end-to-end manner. In other words, 

GCN updates each node respectively to their neighbourhoods.  

Specifically, for the purpose of performing the temporal graph convolution, the GCN 

model takes 𝑨t  and 𝑉t  as the input with the output feature 𝑉τ̅  ∈ 𝑅τ∗N∗N . The core 

theory of GCN is demonstrated as follows: Given a specific graph-based neural 

network model 𝑓(𝑋, 𝐴), here is a Layer-wise propagation rule for a multilayer GCN: 

                                       𝐻(𝑙+1) = 𝜎 (𝐷̃−
1
2𝐴̃𝐷̃−

1
2𝐻(𝑙)𝑊(𝑙))                                (6.7) 

Here, as there are no self-connections in the graph, 𝑨̃ = 𝑨 + 𝐼𝑁  is defined as the 

adjacency matrix of the graph, among which 𝐼𝑁 is the identity matrix. Moreover, a 

layer-specific trainable weight matrix is described as 𝐷̃𝑖𝑖 = ∑ 𝐴̃𝑖𝑗𝑗  and the activation 

function is denoted as 𝜎(∙). The activations matrix is defined as 𝐻(𝑙) ∈ ℝ𝑁×𝐷 in the 

𝑙𝑡ℎ layer. 𝑋 is the original node attribute matrix where 𝐻(0) = 𝑋.  
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A CKG enables the merging and organisation of time series data knowledge in order 

to predict faults in subsequent devices. Multiple sensors generate and collect data 

during the manufacturing process. With the transformation of multivariate time-series 

data into a stack of temporal graphs, the output feature 𝑉τ̅can be fed into the TCN 

model for further concept modelling. The Temporal Convolutional Network (TCN), a 

method of processing time-series data, utilises dilated causal convolution and residual 

connections in order to address the problems discussed above. Dilated causal 

convolutions are used only for elements that precede the current element, while CNN 

performs convolution on elements adjacent to the current element. A hierarchy of 

temporal convolutional filters was first developed for the purpose of examining long-

range patterns using the TCN approach (Lea et al., 2017). In TCNs, there are two main 

characteristics: (1) convolutions are causal, and (2) the network can map a sequence 

of any length to an output sequence of the same length, similar to RNNs. A generic 

convolutional architecture for sequential data is the basis of the proposed architecture 

(Bai et al., 2018). Through autoregressive prediction and a long memory, the 

architecture is simple (e.g., no skip connections across layers, as shown in Figure 4). 

In addition, it is capable of achieving very deep networks because it uses dilated 

convolutions that allow the receptive field to be exponentially expanded. 

 

Figure 0.4 Illustration of skip connections across layers 

As shown in Figure 6.5, there are three configurations of dilation factors d: 1, 2 and 4. 

Each subsequent filter tap is separated by a fixed dilation. As the dilations and filter 

size k increase, the receptive field is effectively expanded. As a result, each input will 

be filtered in some way (Bai et al., 2018). 
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Figure 0.5 Illustration of TCN structure 

Pre-activation residual connection scheme is applied to the dilated causal convolution 

subnetwork, which means that the BN and activation function is placed prior to the 

dilated causal convolution operations.  

Table 0.1 Pseudo-code of the proposed approach 

Pseudo-code of the proposed procedure (Jiang et al., 2022) 

Input: 𝑋τ ∈ 𝑅𝑡∗𝑁  is the manufacturing process data, 𝑃𝐶𝐶𝑠 ← 𝑋τ  are the correlations 

among 𝑡 sequences, G = (V, 𝐸, A) is the CKG backbone 
Output: CKG-TCN model  

1: 𝑋τ = (𝑋1,  𝑋2,  𝑋𝑡−τ+1 … , 𝑋𝑡) ∈ 𝑅𝑡∗𝑁 

2: G = (V, 𝐸, A)    

3: while 𝑒＜𝐸 do  

4:    for each 𝑋𝑖 in 𝑋τ , 𝑖 ∈ 𝑡, Transform 𝑋𝑖  to Temporal graph 𝐺𝑖 under G 

       add 𝐺𝑖 to a stack of graph 𝐺τ 
5:    Compute adjacent matrixes 𝑨𝛕 from 𝐺τ 

6:    Calculate attribute interactions 𝑃𝐶𝐶𝑠 ← 𝑋τ  

7:    Calculate the aggregated feature Vτ  

8:    Concept modelling using the TCN  

9:    Update the model parameters  

10:    if model convergence, then 

11:          Return the CKG-TCN 

12:    end if 

13: end while 
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TCNs take advantage of the advantages of CNNs and RNNs. Since the RNN-based 

structure has several defects, the dilated causal convolution has been selected [25] to 

extract temporal dynamics. Long-term dependency can be learned by dilated causal 

convolution in a non-recursive manner, which results in a greater receptive field 

without significantly increasing computational cost.  

 

6.3 Experimental Setup 

To verify the effectiveness of the proposed approach, a multi-faceted concept with 

both temporal characteristics and internal correlations across the surrounding facets is 

an ideal modelling target. In this regard, the modelling task of strip breakage, a 

miscellaneous production failure in cold rolling, is taken as an illustrative study. First 

of all, there is a long history of research conducted regarding this failure, which means 

there are sufficient and reliable knowledge repositories on the side of this failure 

concept. Secondly, it has been verified the triggers of strip breakage are multi-faceted 

and various (Chen et al., 2021b), which drives the urgency for integrating multi-

sourced data accordingly. Furthermore, since steelmaking is a sequential process, the 

steelmaking production line is typically compact and strongly correlated, which 

indicates the necessity of considering semantic relationship complexity across multiple 

sources. 

It is a fact that cold rolling is one of the most important techniques used in the metal 

processing industry in order to produce sheets and strips due to its high efficiency and 

production rate (Hou et al., 2007).  When it comes to cold rolling, it is inevitable that 

failures such as edge cracks, central bursts, surface defects, and buckles will take place 

(Mashayekhi et al., 2011). Strip breakages are among these failures which require 

special attention, as they result in significant increases in production costs and cycle 

times, as well as significant damage to mill accessories (Johnson and Mamalis, 1977). 

A retrospective analysis of root causes has been conducted in previous studies on strip 

breakage (Chen et al., 2021b), which has discussed the causes of strip breakage and 
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classified it into four categories which are material, equipment malfunction, rolling 

operation, and work roll features. 

It has been stated that strip breakages can take place due to a variety of factors. 

Therefore, it is imperative to examine the problem of strip breakage from multiple 

perspectives, including the analysis of feedstock properties, the examination of 

equipment malfunctions, the analysis of improper rolling process operation, and other 

factors. In this context, no single data source can capture the variety of breakage-

centric factors that contribute to this production failure. Hence, it is necessary to merge 

data from multiple sources for the generation of collective information on strip 

breakage modelling using a data-driven approach. Also, owing to the wealth of domain 

knowledge regarding strip breakage and its causes, it is advantageous to integrate data 

from various sources with the utilisation of such knowledge. 

Data for this study was provided by a steel manufacturer that manufactured electrical 

steel and used a reversing mill for cold rolling. In this material, this element increases 

its electrical resistivity, reducing magnetic losses. During cold rolling, the strip 

becomes brittle due to a higher concentration of silicon, resulting in more breakages 

(Takami et al., 2011a). The experiments are conducted on a 64-bit Windows server 

with 32 GB RAM and one Core i7-9700 K CPU as well as an NVIDIA GeForce 2080ti 

GPU for training time decrease. Python was the utilised platform for experiment 

implementation, and Pytorch was applied to build deep learning models (Paszke et al., 

2017).  

6.3.1 Data and Knowledge Repository Description 

A production data acquisition (PDA) system was installed on the production site for 

the purpose of collecting raw data regarding the cold rolling process in this study. With 

the aid of this automated system, equipped with accurate measurement devices, 

variables related to cold rolling can be measured, including speed, tension, eccentricity, 

and roll gap position. Continuous monitoring and recording of data are carried out in 

real-time at a frequency of 100 Hz in order to document the continuous condition of 
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the mill. In comparison with raw data, a lower sampling rate leads to distortion as a 

result of the high correlation between neighbouring data points. Due to this, our 

analysis was conducted using full-resolution data collected at a sampling rate of 100 

Hz to obtain the most information possible from the PDA-recorded data. Furthermore, 

it is possible to calculate the breakage point in detail using full-resolution data, 

resulting in more accurate classification labels. It should also be noted that each 

selected coil only broke once. Thus, the dataset contained 1256 coils, among which 

354 are broken strip coils, covering three months of production.  

In most cases, it is not easy to construct the backbone of KG under a domain 

environment without the collaboration of domain experts (Jin, 2018). In the domain-

centric knowledge representation, each triplet is described using the RDF language 

utilising open-source platforms. Therefore, these platforms are responsible for 

building and storing domain-centric knowledge bases. The strip-breakage-centric KG 

was constructed based on the refinement of the hierarchy structure and the completion 

of the relationships. A summary of related studies on strip breakage and the cause 

analysis can be categorised into four different facets, namely material-related issues, 

equipment malfunctions, rolling operations, and the rolls pushing the strips. Following 

the approaches stated in Section 3.1, CKG was constructed according, and the free 

software Gephi was used to visualise the CKG, as shown in Figure 6.6. Specifically, 

2295 triplets are integrated and imported into Gephi to construct and visualise the strip-

breakage KG in the cold rolling process of the steel industry. In Figure 6.6, an entire 

strip-breakage-centric KG composed of seven subclasses is present. The entire strip-

breakage KG contained 230 entities and 2295 relations in total. 

The coloured nodes in the graph represent different facets that categorize the entities 

in the CKG backbone, and the edges between nodes indicate the relationships among 

them. One key observation from the graph is that there is a high degree of 

interconnectedness among entities across different facets, suggesting that the proposed 

approach is able to capture the interdependence and complexity of real-world 

knowledge domains. Moreover, the different colours in the legend correspond to 

different facets such as process, material, equipment, and so on. The fact that entities 
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are distributed across multiple facets and are interconnected within and between facets 

indicates that the proposed approach can effectively capture the multi-faceted nature 

of industrial processes.     

 

Figure 0.6 The overall breakage-centric KG 

6.3.2 Model Setup 

The experiments were set up in two scenarios: firstly, to verify the merits of the 

prediction performance, the modelling results of the CKG-TCN approach are 

compared with other prevailing machine learning algorithms. Under this scenario, six 

machine learning algorithms, which are Random Forest (RF), Support Vector 

Machine (SVM), k-Means, Long Short-term Memory (LSTM) network, Gated 

Recurrent Unit (GRU) and ConvLSTM, are compared with the proposed CKG-TCN. 
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To be specific, in this scenario, we have set the number of estimators in the RFs to 10. 

In SVMs, Gaussian kernels are employed as the kernel function. For k-Means, the 

cluster number is set to 3. LSTM and GRU have hidden state ht and window sizes of 

5 and 16, respectively. By default, the kernel size of the ConvLSTM is set to 20. In 

addition, within the graph-aided approaches, we set two different baselines: we 

compare our method CKG-TCN with its non-GCN version CKG-TCN-noGCN. 

Secondly, to verify the merits of this graph-supported modelling approach, two 

different fusion strategies were conducted: one is the transformation of multi-sourced 

sequential data into graph format using temporal graph convolution, and the other 

strategy does not conduct the transformation (inputs are the numerical values). Since 

the output of temporal graph convolution is a 3D tensor involving both attribute 

interactions and temporal dependency, conventional ML algorithms such as RFs are 

not suitable for this scenario. In this case, LSTM, GRU, ConvLSTM and TCN are 

selected for the experiments in two different fusion strategies. The parameters are the 

same as in scenario one. 

6.3.3 Evaluation Metrics 

To evaluate the modelling performance, the metrics below are used in this experiment. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑓_𝑠𝑒𝑡 ∩ 𝐾|

| 𝐾|
                                                   (6.8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑓_𝑠𝑒𝑡 ∩ 𝐾|

| 𝐾|
                                                   (6.9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑓_𝑠𝑒𝑡 ∩ 𝐾|

|𝑓_𝑠𝑒𝑡|
                                                      (6.10) 

𝐹1 =
2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                   (6.11) 

A precision rate can be defined as the proportion of positive samples predicted from 

the predicted results. Recall, which is the percentage of faults correctly predicted in a 
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test set, is a measure of how many faults appear in the test set. F1 is the analysis of 

both precision and recall. 

 

6.4 Experimental Results 

6.4.1 Exploration Experiments on Window Size 

It is important to consider the window size when modelling time-series data because 

it has a substantial influence on performance. Therefore, in order to evaluate the effect 

of this parameter, we assess the performance of the TCN (without converting the time-

series data into temporal CKG) modelling with the intention of examining its temporal 

trends. As the frequency is 100 Hz, the default window size is set to 0.01 seconds. 

 

Figure 0.7 Evaluating the performance of the TCN at different window sizes τ 
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Figure 7 illustrates a similar trend in all the metrics. It is obvious to see the best results 

are achieved when τ = 16 in terms of all different metrics. The precision reaches the 

highest when τ = 16. Accordingly, τ = 16 may represent the most relevant granularity 

of process data for fault modelling, and this window size is chosen as the most suitable 

parameter for the following experiments. 

6.4.2 Performance Comparison with Prevailing ML algorithms 

As stated in Section 6.3.2, six algorithms which are K-Means, RFs, SVM, GRU, 

LSTM, and ConvLSTM, are compared with the CKG-TCN. By performing 10-fold 

cross-validation, accuracy, precision, recall, and F1-score are obtained. 

Table 0.2 Comparison with other prevailing machine learning algorithms. 

Competitors Accuracy % Precision % Recall %  F1 

Conventional 

k-Means 52.25 72.32 43.32  0.42 

SVM 56.59 74.15 64.17  0.67 

RF 71.67 79.15 80.92  0.77 

 

RNN/CNN-based 

LSTM 75.33 86.29 81.37  0.82 

GRU 74.52 86.23 80.11  0.83 

 ConvLSTM 76.30 83.46 82.35  0.82 

 

Graph-aied 

CKG-TCN-noGCN 76.21 84.81 84.32  0.80 

CKG-TCN 81.20 86.33 87.46  0.88 

 

In Table 6.2, the performance of various models in which both RNN-based and 

conventional approaches were applied with different mixes of feature sets is displayed. 

Generally, due to the default setting of hyperparameter selection and different manner 

of data representation, the improvement of RNN-based deep learning models 

compared with traditional methods is enormous. However, as a result of model 

complexity, hyperparameter selection is required to achieve the desired performance.  



       Knowledge Graph-Aided Information Fusion for Multi-faceted Modelling                
       127 

 

127 

Since RNNs take temporal information into account, they perform better than 

conventional SVMs, K-Means, and RFs. More specifically, RFs perform better than 

SVMs and K-Means because they aggregate weak classifiers into stronger classifiers. 

CKG-TCN, on the other hand, has the best performance. In terms of accuracy, 

precision, and F1-score, it performs better than SVM and K-Means. With respect to 

Accuracy and F1-Score, it is superior to RFs, GRU, TCN, and ConvLSTM.It is 

because CKG-TCN considers not only temporal dependency but also attribute 

interactions, so it performs better across all metrics because we consider attribute 

interactions as well as temporal dependency. 

Meanwhile, within the graph-aided approaches, there is a great difference regarding 

the performance with respect to Accuracy, Precision, and F1-Score. We can see non-

GCN method performs significantly worse on all different classification metrics. This 

illustrates how GCN can be used to learn the embedding vectors of various causes of 

breakage within a graph. Possibly, this is because the GCN layer fits the feature 

representations derived by the model. As GCN is included, the node is able to 

aggregate more information. To obtain a feature representation with rich information, 

the CKG-TCN combines the features learned by each GCN layer and the features of 

the node itself. As a result, the feature representations obtained by CKG-TCN may be 

more accurate and contain less noise than those obtained by CKG-TCN without GCN. 

6.4.3 Performance Comparison with Prevailing ML algorithms 

In this section, the comparison results between graph-aided fusion methods and the 

conventional fusion methods without the support of KG are introduced. Through this 

ablation experiment, the effectiveness of the KG-supported fusion strategy is verified. 

As stated in Section 4.4, LSTM, GRU, ConvLSTM and TCN are compared under two 

different fusion strategies. Strategy one: the sequential numerical data are transformed 

into CKG format, and the input of deep learning models are 3D-tensor derived from 

temporal graph convolution, which is 𝑉τ̅  ∈ 𝑅τ∗N∗N. Strategy two: the raw sequential 

data are numerically concatenated and then fed into the proceeding deep learning 

models. For the comparison of modelling performance, considering the imbalance of 
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the dataset, Accuracy and Recall are used as the metrics under 10-fold cross-validation. 

The performance impact of KG-supported and nonKG-supported when conducting the 

fusion task is demonstrated in Figure 6.8 and Figure 6.9. 

 

Figure 6.8 Modelling performance in terms of ACCs in different strategies 
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Figure 6.9 Modelling performance in terms of Recalls in different strategies 

In Figure 6.8, we present the modelling results for various fusion strategies. As a 

general rule, graph-aided models in strategy one perform better than graph-aided 

models in strategy two in terms of both ACC and recall. As a result, the model we 

designed was able to provide a better fitting of the features as well as a more accurate 

representation of the potentially complex correlations between concept-centric 

features. As strip breaks occur instantly, the model performance may differ due to the 

fact that only a detailed representation is able to capture the momentary pattern before 

the strip breaks. Moreover, as a miscellaneous production failure, interactions and 

correlations among various attributes cannot be ignored. In contrast to conventional 

numerical fusion systems, the multi-source numerical fusion approach does not 

provide accurate associated knowledge regarding the complex semantic relationships 

between the data sources. 
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To be specific, within both the graph-aided and numerical strategy, the RNN-CNN-

based algorithms (ConvLSTM and TCN) outperform the original RNN-based (GRU 

and LSTM) algorithms with respect to both accuracy and recall. It shows that the 

RNN-CNN-based model can not only capture the temporal characteristics of the 

process data but also extract rich information from such data through the convolution 

layer. Despite this, graph-aided strategies require more computational resources than 

conventional approaches due to the complexity of the models. Additionally, it is 

usually necessary to select hyperparameters for RNN-based models to achieve the 

desired performance. 

 

6.5 Discussion 

These experiments provide some key insights into the modelling results. The first 

important consideration is to determine the best window size for monitoring the most 

relevant data related to the working system's condition. A reliable model for failure 

prediction can be developed by utilising the best temporal dependency. To achieve 

higher performance levels, it is also crucial to establish attribute dependencies to 

ensure that the system works correctly.  

Secondly, one significant disadvantage of SVMs, K-Means, and k-Means is their 

inability to depend on the working system. The status of the present is dependent on 

the status of the past. This renders a single health record insufficient to evaluate the 

current state of health. While RNNs are designed to extract temporal characteristics, 

they do not consider the internal relations among features. We can create a reliable 

model for concept modelling by fully utilising the temporal dependency to gain a better 

understanding. Meanwhile, compared with RNN-based models, the RNN-CNN-based 

model can not only capture the temporal characteristics of the process data but also 

extract rich information from such data through the convolution layer.  



       Knowledge Graph-Aided Information Fusion for Multi-faceted Modelling                
       131 

 

131 

Thirdly, it can be concluded from the comparison experiments of graph-aided fusion 

and conventional data fusion that there are potential transfer relationships between the 

multi-sourced attributes. It is difficult to obtain accurate associated knowledge 

regarding the relationships between multiple data sources using numerical fusion 

approaches without semantic information mining across the concept-centric attributes. 

In this case, to achieve better performances, it is crucial to establish an approach with 

the inclusion of attribute dependencies across the concept-centric features. It may be 

that the graph-aided approach can obtain both temporal feature embedding and 

attributes relationship embedding at the same time. 

Finally, since the GCN is used to fit the temporal and attributes relationship feature 

representations, the inclusion of graph features extraction by GCN is essential. A node 

can aggregate more information by using GCN extraction and aggregation without 

experiencing an excessive amount of noise. CKG-TCN provides a feature 

representation with rich information and less noise by combining the features learned 

by each layer of the GCN and the characteristics of the node. Thus, CKG-TCN-noGCN 

may result in more accurate feature representations containing less noise than CKG-

TCN-noGCN. 

 

6.6 Summary 

The development of a knowledge graph-aided multi-faceted modelling method was 

proposed as a means of overcoming the limitations of conventional equipment fault 

diagnosis. With the construction of concept-centric KG, the multivariate time-series 

data was transformed into a temporal graph representation of the data sequence, and 

GRL techniques were applied to extract features from these temporal graphs, and these 

features were fed into a ML model for fault concept modelling. The experimental 

results show: (1) the KG-aided fusion strategy shows merits against the numerical 

fusion strategy since it considers intra-feature relationships; (2) The graph feature 

extraction using GCN provides a feature representation with rich information and less 
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noise, which results in more accurate results. Methodologically, this approach 

improves the accuracy and convergence speed of fault diagnosis, enables constructing 

a domain map of equipment fault diagnosis, and combines mechanism knowledge and 

data-driven methods of multi-faceted conceptual modelling. 
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Chapter 7 Achievements and 

Conclusions 

7.1 Achievements 

In this study, the principal objective was to model the multi-faceted and instantaneous 

production failures of steel-making in order to optimize the quality control at modern 

steel-making facilities. The motivation for this study was discussed at the beginning 

of this thesis, and it was underpinned by a discussion of the background of data mining 

in the steel industry. While data mining has been given considerable attention in the 

steel industry, little research has focused on fault diagnosis utilizing multi-sourced data 

and fault-related knowledge. For the purpose of steel-making fault diagnosis, this 

study analysed multi-source data and fault-related knowledge. Historically, only 

numerical steel-making process data have been used in related research, and they are 

usually derived from only one source. As a result of industry 4.0, semantic data is 

becoming available, as well as techniques to handle it. Meanwhile, the emerging KG 

and GRL techniques enable knowledge processing and ML analysis on graphs.  The 

first chapter of this thesis contains four research questions. Based on the work achieved, 

the answers to the research questions are obtained. 

Subsequently, the literature review was provided with the relevant technologies and 

relevant research to determine the state-of-the-art research. Firstly, the steel-making 

process was examined through three main aspects, including the steel-making process, 

cold rolling process and strip breakage as two specific examples. Then, data mining 

and its applications in the steel-making industry were reviewed. Concisely, as the core 

part of the steel-making industry, the specific tasks and the applied techniques were 

involved in this section. Also, the relevant studies of KG were introduced concerning 
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KG construction and graph representation learning. Lastly, the studies on the strategies 

and KG-aided techniques under an information fusion context were investigated. 

The first research question is: what is an appropriate data mining framework for fault 

diagnosis in steel-making with the full exploitation of these resources? Following the 

understanding of the state-of-the-art, a framework was designed for fault diagnosis 

based on the multi-sourced data and existing domain knowledge in steel-making. In 

this framework, the stage of data and knowledge collection, data and knowledge 

processing, and data transformation are specified. After the processing, GRL 

techniques are applied to extract graph features. Finally, these features are fed into ML 

pipelines for the modelling results, which can be used to leverage the decision support 

for quality control in steel-making. 

With the aim of achieving fault modelling in a predictive manner with the justification 

of facets surrounding the production failure, a multi-faceted modelling approach was 

proposed. In this study, a typical product failure named strip breakage was selected. 

With the aim of minimising the occurrence and impact of strip breakage, a micro-level 

prediction of strip breakage based on historical process data was achieved. The 

exploration of deep learning models applied to a cold rolling process at an event level 

as compared to a batch level regarding strip breakage failure was conducted. The key 

findings in this study are: (1) Among the models built on the proposed LSTM network, 

the best performance was achieved when features from all three facets were analysed 

together; (2) In comparison with those prevailing machine learning algorithms, the 

LSTM network can achieve better algorithm performance under higher computational 

loads. 

Following the determination of the fault modelling approach, an issue in the cold 

rolling process is the multitudinous factors contributing to this fault. Meanwhile, 

among the heterogeneous data surrounding multi-faceted concepts in steel-making, a 

significant amount of data consists of rich semantic information. With the 

consideration of better utilisation of these resources, the third research question was 

how to manage and exploit these resources in steel-making using KG considering their 
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heterogeneity. In this context, a framework of domain-centric KG construction has 

been presented to avoid the massive participation of domain experts, as well as to 

refine KGs and discover the missing relations in this study. This proposed KG 

construction framework serves as a model that aims to design a reliable ontology and 

complete relations in constructing the domain-centric KG for information management 

and knowledge sharing in steel-making. The experimental results indicate: (1) the 

proposed framework of hierarchy structure refinement avoids the extensive knowledge 

alignment by domain experts; (2) compared with the most common machine learning 

models, the GraphSAGE classifier achieved the most performance regarding relation 

completion. 

With the proposed semantic approach of constructing a fault-centric KG in steel-

making, the final research question further explores the ability of KG to facilitate 

multi-faceted conceptual modelling based on heterogeneous and semantic-rich data. 

With the construction of concept-centric KG, the multivariate time-series data was 

transformed into a temporal graph representation of the data sequence, and GRL 

techniques were applied to extract features from these temporal graphs, and these 

features were fed into a ML model for fault concept modelling. The experimental 

results show: (1) the KG-aided fusion strategy shows merits against the numerical 

fusion strategy since it considers intra-feature relationships ; (2) The graph feature 

extraction using GCN provides a feature representation with rich information and less 

noise, which results in more accurate results. 

 

7.2 Future Works 

The aim of this thesis is to research data mining in the steel-making industry with a 

focus on fault diagnosis. For a severe production failure which occurs instantaneously, 

prediction of this failure can bring significant benefits to the cold rolling industry in 

terms of contingency mitigation and quality improvement. In the present study, to 

minimise the occurrence and impact of production failure, we achieved a micro-level 
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prediction of strip breakage based on historical process data. The mill operator can 

benefit from utilising this prediction approach in developing their contingency 

mitigation strategies. According to the predicted information, a planned stop action 

can be taken to avoid damage from an unplanned fast stop. Understanding the 

likelihood of production failure in the near future can also be vital for post-analysis, 

such as in determining what countermeasures should be used. For further work of this 

work, the algorithm performance in terms of ACC and AUC can be continuously 

improved. Furthermore, with more studies on strip breakage cause analysis and further 

domain expert assistance, future work would include more domain-based features to 

expand the scope of this proposed multi-faceted approach. Finally, the data collected 

in this study were under the same material grade. In this context, strip breakages caused 

by the material defect, which is another critical issue for strip breakage, were not 

within the scope of this work. Therefore, to improve the breadth of collected 

information regarding strip breakage, data recorded about this production failure from 

different sources, such as material data, need to be incorporated to generate collective 

values. For real cold rolling practice, even if we considered all the causes of strip 

breakage beforehand, the occurrence of this failure may not always be avoided. This 

limitation is due to information such as unexpected sudden changes, an undetected 

internal material defect or, in most cases, from an unknown reason not conveyed in 

the current dataset. Therefore, this approach is more practical for breakages with a 

divinable manifestation in rolling process variables, such as breakages caused by 

chatter.  

For future work regarding the construction of steel-making domain KG: firstly, with 

more studies on strip breakage cause analysis and further domain expert assistance, 

future work would include more domain-based features to expand the scope of this 

proposed multi-faceted approach. Meanwhile, the data collected in this study were 

under the same material grade. In this context, strip breakages caused by material 

defect, which is another critical issue for strip breakage, were not within the scope of 

this work. Therefore, to improve the breadth of collected information regarding strip 

breakage, data recorded about this production failure from different sources, such as 

material data, need to be incorporated to generate collective values. Future research 
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work can focus on improving the performance of relation completion. In addition, it 

remains a challenge to develop and refine KGs automatically. Combined with graph 

theories, the representation learning of KG is also interesting. For future work on KG-

aided modelling, as this study is conducted using a graph-based approach, it is more 

suitable for cases in which there are enough attributes and more interactions between 

the attributes. This may limit the adaptivity of the proposed approach. Furthermore, it 

would be beneficial to explore a more precise adjacency matrix and a more effective 

spatial-temporal structure. 

 

7.3 Conclusions 

In conclusion, this study aimed to model multi-faceted and instantaneous production 

failures of steel-making in order to optimize quality control in modern steel-making 

facilities. The thesis proposed several frameworks, including a fault diagnosis 

framework based on multi-sourced data and existing domain knowledge in steel-

making, a multi-faceted modelling approach to predict a typical steel production 

failure, a domain-centric knowledge graph construction framework, and a KG-based 

approach to facilitate information fusion for multi-faceted steel-making concept 

modelling. 

The proposed frameworks offer several capabilities, such as utilizing semantic data 

and knowledge processing techniques to enhance fault diagnosis and modelling, 

enabling the integration of heterogeneous data to construct a domain-centric 

knowledge graph, and facilitating the fusion of information for multi-faceted concept 

modelling. However, the frameworks have certain limitations and constraints. For 

instance, the proposed fault diagnosis framework may not be able to address certain 

production failures that do not have a divinable manifestation in rolling process 

variables. Moreover, the construction of the domain-centric knowledge graph may 

require domain expert assistance to refine and discover missing relations. Finally, the 



138 Achievements and Conclusions 

 

KG-based approach for multi-faceted concept modelling may have limitations in cases 

with fewer attributes and interactions between the attributes. 

Furthermore, this study has demonstrated the application of the proposed frameworks 

in the industrial case study of steel-making. The results show the potential of these 

frameworks to improve quality control and contingency mitigation in the steel-making 

industry. The multi-faceted modelling approach has been applied to predict the 

occurrence of strip breakage, a common production failure in steel-making. The 

proposed approach has achieved a micro-level prediction of strip breakage based on 

historical process data, which can assist mill operators in developing contingency 

mitigation strategies and post-analysis. Similarly, the proposed domain-centric KG 

construction framework has been applied to construct a strip-breakage-centric KG of 

the cold rolling process. The results show the potential of this framework to refine KGs 

and discover missing relations. Finally, the proposed KG-aided modelling approach 

has been applied to facilitate multi-faceted conceptual modelling based on 

heterogeneous and semantic-rich data in the industrial case study of steel-making. The 

results show the potential of this approach to provide a feature representation with rich 

information and less noise, resulting in more accurate results. To sum up, this study 

has contributed to the field of data-driven fault diagnosis and quality control in the 

steel-making industry by proposing and demonstrating the potential of multi-faceted 

modelling, domain-centric KG construction, and KG-aided modelling approaches. 

While the proposed frameworks have limitations and constraints, they provide 

promising avenues for future research and practical applications in the steel-making 

industry. 
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Appendix A.  Advanced Data Analytics 

Technologies 

A1 Data mining 

The continuous development of complex systems and instrumental techniques has led 

to an immense amount of data being created, collected, and stored. Due to the large 

amount of data that can be utilized, data mining has received considerable attention 

from the information industry over the past few decades. As a highly application-

driven discipline, data mining has seen great success in many applications, such as 

business intelligence (Yalcin et al., 2022), web search engines (Yin et al., 2022), and 

social networks (Kumar et al., 2022) etc. Essentially, data mining is the process of 

discovering interesting patterns, models, and other kinds of knowledge in large data 

sets, which is often used to refer to the entire knowledge discovery process (Han et al., 

2022). In other words, it is through the process of data mining that knowledge can be 

converted from a large amount of data.  

As a general technology, data mining can be applied to any type of data, provided the 

data are meaningful for a target application. Based on the data format, the datasets are 

classified into structured data, semi-structured data and unstructured data. In the 

structured type of data, the structure is uniform, record- or table-like, defined by their 

data dictionaries, such as data cubes, data matrices, and many data warehouses. Each 

attribute has a fixed value range and semantic meaning. A more sophisticated type of 

data refers to semi-structured data, such as a graph or network data. Beyond such 

structured or semi-structured data, there are also large amounts of unstructured data, 

such as text data and multimedia. Real-world data can often be a mixture of structured 

data, semi-structured data, and unstructured data. Based on application domains, data 
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mining methods are often developed for mining some particular type of data, and their 

results can be integrated and coordinated to serve the overall goal. 

As a knowledge discovery process, data mining typically involves data cleaning, data 

integration, data selection, data transformation, pattern and model discovery, pattern 

or model evaluation, and knowledge presentation. In connection with strip-breakage 

prediction in cold rolling, the entire process of data mining is described below: 

• Target Understanding: Understanding the background knowledge of cold 

rolling in the steel industry after identifying the meaningful target, such as the 

entire process of cold rolling.  

• Data preparation: Collecting and preparing data relevant to the strip-breakage 

phenomena from the steel industry. 

a. Data cleaning: As the data is collected from the real world, there is a possibility 

that it contains some impurities. It is necessary to remove noise and inconsistent 

data. 

b. Data integration: The relevant information obtained from multiple sources 

usually contributes to one intricate phenomenon in the industrial processes. 

Multiple data sources are combined, which usually leads to more expressive and 

informative information than that of each single data source. 

c. Data transformation: A summary or aggregation operation is performed on data 

to transform and consolidate the data into a form that is suitable for mining. 

d. Data selection: From the database, data relevant to the analysis task is retrieved. 

• Data mining: The strip-breakage predicting models are constructed based on 

intelligent machine learning methods, which aim at extracting potential patterns. 
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• Model evaluation: With the aim of identifying the truly effective models, the 

models are evaluated using different metrics.  

• Operating: After constructing and evaluating the data-driven models, they can be 

applied in the actual cold-rolled production management. 

• Knowledge presentation & Storage: After obtaining the information for analysis, 

the previous stages are adjusted by extracting knowledge. Meanwhile, 

visualisation and knowledge representation techniques are deployed to store and 

present mined knowledge.  

  

A2 Machine learning 

Machine learning has rapid growth with the development of many new methodologies 

and applications in recent years, from conventional machine learning algorithms to 

graphical models and deep learning algorithms (Han et al., 2022). As mentioned 

previously, although machine learning develops rapidly, it is challenging to implement 

enormous volumes of time-series data. In recent years, prevailing machine learning 

algorithms have proven useful for manipulating multivariate time-series data. Detailed 

descriptions have not been provided for four benchmarking algorithms, which involve 

SVM, RF, and RNN. The details of these algorithms are presented below: 

• SVM (Cortes and Vapnik, 1995) has become a widely used tool for supervised 

learning, with high versatility that extends across classification and regression 

tasks. In this thesis, SVM classifier was adopted to predict the strip breakage in 

the cold rolling process. A SVM decision function is actually an optimal 

"hyperplane" which is deployed to divide observations into two classes through 

patterns of information from known observations. By using this hyperplane, an 

unobserved data set can be labelled with the most likely label. Assuming the 

classification with bias less than 𝜀 is deemed as correct classification, the incorrect 

classification results in a high penalty to the algorithm. Kernel functions are the 
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core components of SVM classifiers. 𝑥𝑖  and 𝑥𝑗  are two vectors. Four kernel 

functions have formed the most prevailing implementation: 

Linear kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗                               (A1) 

            Polynomial kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑏)𝑑                    (A2) 

  RBF kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

)                     (A3) 

          Sigmoid Kernel: 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑏)                    (A4) 

where 𝛾, b, and d are parameters that need to be set. 

• RF (Breiman, 2001) is a classifier consisting of a collection of tree-structured 

classifiers {ℎ(𝑋, Θ𝑘)|k = 1, 2, … }  where the {Θ𝑘}  are independent identically 

distributed random vectors and each tree casts a unit vote for the most popular 

class at input 𝑿. Given an ensemble of classifiers ℎ1(𝑿), ℎ2(𝑿), … , ℎ𝑘(𝑿), and 

with the training set drawn at random from the distribution of random vector Y, 𝐗. 

The margin function (represented by 𝑚𝑔 is defined as follow: 

𝑚𝑔( 𝐗, 𝑌) = 𝑎𝑣𝑘𝑰(ℎ𝑘(𝐗) = 𝑌) − 𝐦𝐚𝐱
𝒋≠𝑌

𝑎𝑣𝑘𝑰(ℎ𝑘(𝐗) = 𝑗)       (A5) 

where 𝑰(∙) is the indicator function. The margin measures the extent to which the 

average number of votes at 𝐗, 𝑌 for the right class exceeds the average vote for 

any other class. The larger the margin, the more confidence in the classification. 

The generalization error is given below: 

𝑃𝐸∗ = 𝑃𝐗,𝑌(𝑚𝑔(𝐗, 𝑌) < 0)                            (A6) 

where the subscript 𝐗, 𝑌 demonstrates that the probability is over the 𝐗, 𝑌 space. 

Eqs. (A7) indicates that {ℎ(𝑋, Θ𝑘)|k = 1, 2, … , 𝑁}  follow the rule of large 

numbers as the value of 𝑁 is large enough for the model, and the classifier has 
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enough trees. Meanwhile, it has been proved that the upper limit of generalization 

error is convergent as the almost everywhere convergence of random vectors 

𝜃, … , 𝑃𝐸∗. It is given as follows: 

𝑃𝐗,𝑌(𝑃Θ(ℎ(𝐗, 𝛩) = 𝑌) − 𝐦𝐚𝐱
𝒋≠𝑌

𝑃Θ(ℎ(𝐗, 𝛩) = 𝑗) < 0)                  (A7) 

𝜀̅ ≤
𝜌̅(1−𝑠2)

𝑠2                                                    (A8) 

where 𝜀̅ indicates the upper limit of the generalization error, and 𝜌̅ means the 

average correlation coefficient between trees, and 𝑠  represents the average 

classification performance of the decision trees. Eqs. (A8) illustrates that the 

larger the average correlation coefficient is, the larger the upper limit of 

generalisation error will be. Likewise, the larger the average classification is, the 

larger the upper limit of generalisation error will be. Essentially, the classification 

performance is affected by two factors, one is the overall performance of trees, 

and the other is the diversity between trees. 

• RNN (Zaremba et al., 2014) is a type of deep learning algorithm which is well-

known for processing sequential data. Unlike CNNs, RNNs provide feedback 

from the previous state to the current state of the hidden units. RNN-based models 

were built to predict the strip breakage in the cold rolling process in this thesis.  

In this structure, the input vectors are fed into the RNN instead of using a fixed 

number of input vectors, as done in the conventional network structures. Besides, 

this architecture can take advantage of all the available input information up to the 

current time. In addition, the depth of the RNN can be defined according to real 

conditions. It can be seen that the final output not only depends on the current 

input but also depends on the output of previously hidden layers. The mathematic 

process is defined below: 

𝑡𝑖 = 𝑾ℎ𝑥𝑥𝑖 + 𝑾ℎℎ𝑥𝑖−1 + 𝒃ℎ                                   (A9) 



Appendix A 159 

 

159 

ℎ𝑖 = 𝜎(𝑡𝑖)                                               (A10) 

𝑠𝑖 = 𝑾𝑜ℎℎ𝑖 + 𝒃𝑦                                         (A11) 

𝑜̂ = 𝑔(𝑠𝑖)                                                (A12) 

where 𝑥𝑖 indicates the input variables, 𝑾ℎ𝑥, 𝑾ℎℎ and 𝑾𝑜𝑥 are weight matrices, 

𝒃ℎ  and 𝒃𝑦  are bias vectors, 𝜎 and 𝑔 are sigmoid functions, 𝑡𝑖 , ℎ𝑖  and 𝑠𝑖  are the 

temporary variables, and 𝑜̂ is the expected output. The cost function is defined as 

follows: 

𝑓 = ∑ (
‖𝑜̂𝑖−𝑜𝑖‖

2
)𝑖                                           (A13) 

where 𝑜𝑖 is the actual output. As such, the output at 𝑡 + 1 is the joint function of 

the input at 𝑡 + 1 and the historical data. The RNN simulates the correlation in 

sequential data, and the depth of the network is the time span. 

 

A3 Graph representation learning 

As data becomes increasingly interconnected and systems increasingly sophisticated, 

it is essential to make use of the rich and evolving relationships within our data. 

Generally, although relevant data obtained from multiple sources usually contributes 

to one intricate phenomenon, data are diverse, heterogeneous, and fragmented in real 

complex industrial scenarios. Meanwhile, multiple data sources usually lead to more 

expressive and informative information than that of each single data source. However, 

the conventional approaches concatenate feature vectors to integrate different facets, 

not considering the semantic gaps between them. In this context, data challenges 

revolve around relationships rather than just tabulating discrete data. In this case, graph 

representation has been energetically developed as it provides a powerful tool for 

connected data, such as KG. As a collection of nodes and links, graph data displays a 
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powerful expressive ability and a high degree of modelling flexibility, making it a 

promising semantic network.  

Specifically, a graph is represented by 𝐺 = (𝐕, 𝐄) , where 𝐕 denotes a set of nodes, 

and 𝐄  is a set of edges between each pair of nodes. Specifically, the 𝑖𝑡ℎ  node is 

indicated by 𝑣𝑖 ∈ 𝐕 , and the features of all nodes are defined as 𝐗𝑣, ∀𝑣 ∈ 𝐕 . 

Meanwhile, the adjacency matrix 𝐀 ∈ 𝐑|𝑛|×|𝑛|, 𝐴𝒊𝒋 ∈ {0, 1} is usually used to describe 

𝐄, which is a |𝑛| × |𝑛| square matrix. If an edge exists between node 𝑣𝑖 and node 𝑣𝑗 , 

then  𝐴𝒊𝒋 = 1, otherwise  𝐴𝒊𝒋 = 0. 

By representing interacting entities in a graph, relational knowledge can be efficiently 

stored and accessed. Analysis of graph data can provide significant insights into 

community detection, behaviour analysis, and other useful applications, including 

node classification, link prediction, and clustering. However, when it comes to the 

inputs of conventional machine learning models, they usually take feature vectors 

representing objects in terms of tabular attributes (such as numeric attributes and 

categorical attributes). Thus, conventional machine-learning approaches cannot be 

directly applied to graph-structured data. In this context, it has been developed various 

graph representation learning techniques that convert raw graph data into a high-

dimensional vector while preserving the intrinsic properties of the graph. There is also 

a term for this process called graph representation learning, which is becoming a hot 

topic and a challenge in recent years. As a result of a learned graph representation, 

machine-learning tools can be effectively utilized to perform downstream tasks. 

Depending on the different theories, four types of graph representation learning 

methods were defined and have formed the most prevailing taxonomy, which are 

dimension-reduction-based methods, random-walk-based methods, matrix-

factorization-based methods, and neural-network-based methods: 

• Dimension-reduction-based methods: Methods based on dimension reduction 

have been developed to reduce high-dimensional graph data into a lower-
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dimensional representation while retaining the desired properties of the original 

data. These methods can be classified into linear and nonlinear two types.  

• Random-walk-based methods: Random-walk-based methods sample a graph 

with a large number of paths by starting walks from random initial nodes, such as 

DeepWalk. These paths indicate the context of connected vertices. The 

randomness of walks gives the ability to explore the graph and capture both the 

global and the local structural information by walking through neighbouring 

vertices. After the paths are built, probability models such as skip-gram and bag-

of-words can be performed on these randomly sampled paths to learn the node 

representation. 

• Matrix-factorization-based methods: Matrix-factorization-based methods, also 

called graph factorization, was the first one to achieve graph embedding in time 

for node embedding tasks. With the aim of conducting the embedding, graph 

factorization factorizes the adjacency matrix of a graph. It corresponds to a 

structure-preserving dimensionality reduction process. 

• Neural-network-based methods: Inspired by the success of CNNs, researchers 

attempt to generalize and apply them to graphs. The input can be sampled from a 

graph or the whole graph itself through paths. Researchers reformat the input 

graph to fit the original CNN model designed for the Euclidean domain. It is also 

possible to generalize the deep neural model to non-Euclidean graphs. Several 

neural-network-based graph representation learning methods are proposed, such 

as GCN, GraphSAGE, GAE etc. 

A wide range of conventional methods is employed in graph representation learning 

in order to reduce dimensionality. Despite being mathematically transparent, the 

majority of them cannot be represented in graphs as high-order proximity. Instead of 

embedding the entire graph, DeepWalk-based methods sample the neighbourhood 

information of each node statistically. The main advantage of these approaches is that 

they capture long-distance relationships between nodes, whereas graphs may not fully 
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preserve global information. By using statistics associated with pairwise similarities, 

matrix factorization methods are able to extract the possible patterns of the graph 

representation. In comparison to deep-learning algorithms that utilize only a local 

context window, these algorithms are capable of outperforming methods that rely on 

random walks. As a result, matrix factorization is inefficient and cannot be scaled to 

large graphs. As a result, proximity matrices and decompositions require more 

computing power and storage space. The advantage of factorization-based methods, 

such as LLE, Laplacian Eigenmaps, and graph factorization, is that they usually 

preserve first-order proximity in contrast to DeepWalk-based methods, which preserve 

second-order proximity.
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Appendix B.  Results of Correlation Tests 

As stated in Section 5.3.1, Pearson correlation coefficient, Kendall Tau rank 

correlation coefficient, and Spearman rank relational coefficient were applied and 

results of these three correlation methods is shown in the Appendix B. B1 gives the 

Pearson correlation results of ten variables, such as 'Width', ' Tonnes on cutter Desk ', 

' Tonnes on Cutter Drive ', ' Crown max ' etc. B2 presents the Kendall Tau rank 

correlation results of ten variables, which are 'Weight ingoing', 'Weight outgoing', 

'Gauge', 'TOFF' etc. B3 gives the Spearman rank correlation results of ten variables, 

such as 'Heavy end', ' Trimmed on AP1', 'Z6Temp std dev' etc. These three correlation 

coefficient ranges from -1 to 1. 
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B1 Results of Pearson correlation coefficients of ten variables. 

Variables Width Tonnes on 

cutter desk 

Tonnes on 

cutter drive 

Crown max Crown min Z1Temp max Z1Temp 

min 

Z2Temp 

max 

Z2Temp 

min 

Z2ATemp max 

Width 1 0.039 0.05 0.032 -0.009 -0.014 0.023 0.016 0.026 0.016 

Tonnes on cutter 

desk 
0.039 1 0.262 -0.059 -0.075 -0.005 -0.024 0.005 -0.021 0.019 

Tonnes on cutter 

drive 
0.05 0.262 1 -0.052 -0.121 0.058 -0.076 -0.015 -0.073 -0.006 

Crown max 0.032 -0.059 -0.052 1 -0.071 -0.033 0.004 -0.009 0.002 -0.005 

Crown min -0.009 -0.075 -0.121 -0.071 1 -0.094 0.062 0.038 0.059 0.051 

Z1Temp max -0.014 -0.005 0.058 -0.033 -0.094 1 -0.14 0.026 -0.144 0.022 

Z1Temp min 0.023 -0.024 -0.076 0.004 0.062 -0.14 1 0.397 0.998 0.374 

Z2Temp max 0.016 0.005 -0.015 -0.009 0.038 0.026 0.397 1 0.403 0.984 

Z2Temp min 0.026 -0.021 -0.073 0.002 0.059 -0.144 0.998 0.403 1 0.382 

Z2ATemp max 0.016 0.019 -0.006 -0.005 0.051 0.022 0.374 0.984 0.382 1 
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B2 Results of Kendall Tau rank correlation of ten variables. 

Variables Weight 

ingoing 

Weight 

outgoing 

Gauge TOFF Z3Temp ave Z3Temp max Z4Temp std 

dev 

Z4Temp min LineSpeed 

ave 

LineSpeed std 

dev 

Weight ingoing 1 0.31 -0.254 -0.009 0.007 -0.04 -0.016 -0.054 -0.311 -0.122 

Weight outgoing 0.31 1 -0.435 0.002 -0.007 -0.045 -0.034 -0.053 -0.296 -0.158 

Gauge -0.254 -0.435 1 -0.014 0.034 0.003 0.003 -0.065 -0.3 -0.068 

TOFF -0.009 0.002 -0.014 1 -0.001 -0.01 -0.007 -0.103 -0.271 -0.113 

Z3Temp ave 0.007 -0.007 0.034 -0.001 1 0.6 -0.04 0.412 -0.301 -0.166 

Z3Temp max -0.04 -0.045 0.003 -0.01 0.6 1 0.231 0.174 -0.369 -0.039 

Z4Temp std dev -0.016 -0.034 0.003 -0.007 -0.04 0.231 1 -0.3 -0.323 0.067 

Z4Temp min -0.054 -0.053 -0.065 -0.103 0.412 0.174 -0.3 1 -0.282 -0.223 

LineSpeed ave -0.311 -0.296 -0.3 -0.271 -0.301 -0.369 -0.323 -0.282 1 -0.152 

LineSpeed std 

dev 
-0.122 -0.158 -0.068 -0.113 -0.166 -0.039 0.067 -0.223 -0.152 1 
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B3 Results of Spearman rank correlations of ten variables. 

Variables Heavy end Trimmed on 

AP1 

Z6Temp std 

dev 

Z6Temp max GasFlow ave GasFlow min JetFlow ave JetFlow max CoolingPyro 

ave 

CoolingPyro std 

dev 

Heavy end 1 -0.003 0.049 -0.008 0.012 -0.004 -0.026 -0.031 -0.023 0.097 

Trimmed on AP1 -0.003 1 -0.089 0.072 -0.031 0.008 -0.07 -0.061 0.048 -0.053 

Z6Temp std dev 0.049 -0.089 1 0.124 -0.067 0.402 -0.16 0.064 -0.207 0.606 

Z6Temp max -0.008 0.072 0.124 1 0.231 0.001 0.134 0.197 0.408 0.125 

GasFlow ave 0.012 -0.031 -0.067 0.231 1 0.734 0.592 0.54 0.69 -0.198 

GasFlow min -0.004 0.008 -0.402 0.001 0.734 1 0.539 0.367 0.621 -0.531 

JetFlow ave -0.026 -0.07 -0.16 0.134 0.592 0.539 1 0.857 0.55 -0.245 

JetFlow max -0.031 -0.061 0.064 0.197 0.54 0.367 0.857 1 0.41 -0.012 

CoolingPyro ave -0.023 0.048 -0.207 0.408 0.69 0.621 0.55 0.41 1 -0.413 

CoolingPyro std 

dev 
0.097 -0.053 0.606 0.125 -0.198 -0.531 -0.245 -0.012 -0.413 1 

 


