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ABSTRACT Quantitative detection of defects in structures is always a hot research topic in the field of
guided wave inverse scattering. Research studies on how to effectively extract the defect-related information
encompassed in the multi-frequency and multi-modes scattered wave signals for reconstructions of defects
have been paid attention in recent decades. In this paper, a novel deep learning-based quantitative guided
wave inverse scattering technique has been proposed to intelligently realize the end-to-end mapping of the
multi-frequency, multi-modes scattered signals to defect profiles with high levels of accuracy and efficiency.
Based on the manifold distribution principle, the data patterns of scattered SH-wave signals have been
investigated, owing to leveraging the capability of the intelligent encoder-projection-decoder neural network.
Following that, the manifold-learning-oriented network has been trained using the data generated by the
modified boundary element method. Several numerical examples have been examined to demonstrate the
correctness and efficiency of the proposed reconstruction approach. It has been concluded that this novel
data-driven technique intelligently enables the high-quality solution to inverse scattering problems and
provides valuable insight into the development of practical approaches to quantitative detection using multi-
frequency and multi-modal acoustic data from scattered ultrasonic guided waves.

INDEX TERMS Guided wave, inverse scattering problem, multi-frequency, multi-modes, deep learning.

I. INTRODUCTION
Ultrasonic guided wave testing (UGWT) is a specific inspec-
tion technique of long-standing interest due to the ability
of guided waves to travel long distances with little attenu-
ation and the high sensitivity to structural defects [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wuliang Yin .

Despite a great deal of progress on the subject of UGWT,
many methods currently available are only capable of pro-
viding a qualitative assessment of structural defects [3], [4].
Consequently, the inverse scattering problem, focusing on
the quantitative determination of the defect shape and size
in the use of various reflections and transmission signals of
ultrasonic guided waves, is always a hot research topic in the
field of UGWT [5], [6], [7], [8].
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The ultrasonic array, one of the effective quantitative
UGWT technology, has superior features including a large
scanning range and high detection accuracy [8]. In earlier
ultrasonic array work by Jansen et al. [10],Right et al. [11],
Nagata [12], and Levent et al. [13], a parallel projection
technique with the velocity and attenuation of Lamb waves as
the input was developed for the tomographic reconstruction.
Following that, McKeon and Hinders et al. [14] presented
a new Lamb wave array technique in which two contacted
piezoelectric transducers were independently used for the
scan along parallel lines. They applied the filtered back
projection (FBP) algorithm to obtain defect images in plate-
like structures. Subsequently, iterative reconstruction proce-
dures incorporated with the scattered guided waves of defects
were extended to improve image quality by Malyarenko and
Hinders [15]. On the other hand, the ultrasonic array used
with non-contact transducers was studied by Malyarenko and
Hinders et al. [15]. The probabilistic reconstruction tech-
nique [16] used a damage index based on the correlation of
the signals before and after damage. A series of ellipses that
are located away from the direct line of sight were weighted
by the damage index for the construction with a rapidly
decreasing probability. In [17], the guided wave tomography
of steel plate-like structures with a corrosion defect was stud-
ied under water loading conditions. Also, the omnidirectional
excitation of desired guided wave modes by annular array
transducers was discussed. Results showed that the defects in
the structures can be easily discriminated from any artifacts
in the images due to the liquid layer. In [18], the quanti-
tative defect sizing and imaging were achieved using the
variable shape factor defined in the PAPID algorithm. With a
32-transducer network system, the location and quantitative
size of complex shape defects in plate-like structures were
evaluated. Li et al. [19] developed a sparse array ultrasonic
guided wave imaging technique and proposed a quantitative
defect recognition method based on the sparse scattering
information extracted from the scattering coefficient matrix.
They also analyzed the relationship between the sparse and
full scattering coefficient matrices. In [20], a quantitative
method for evaluating the sizes of defects was proposed
to assess multilayered bonded composites using laser ultra-
sonic guided waves. More recently, Jin et al. [4] developed
a quantitative defect inspection technique for the structural
health monitoring of curved composite structures. Based on
the fusion of the modified probabilistic tomography (MPT)
and the damage index (DI), the defect zones in a curved
composite structure were quantitatively detected. Although
the techniques aforementioned have been proven as a promis-
ing tool for the quantitative guided wave inverse scattering
problems, there are still some limitations in such single-
frequency tomography approaches. First, the ability of the
transducer array-based techniques to fully characterize dam-
age is weakened by the amount of defect-relate information
that could be obtained through a sparse transducer array in
a cost-effective manner. Second, the transducer arrangement

may be not achievable in some harsh environments including
high temperature and nuclear radiation conditions. Finally,
these techniques mainly make use of the time of flight (TOF)
of scattered wave signals, thus they can only identify the
location of defects, but fail to depict the detail of shapes.

Taking into account these facts, some researchers have
investigated quantitative guided wave inverse scattering tech-
niques using multi-frequency or multi-modal scattered wave
signals containing sufficient defect-relate information. With
the integration of Green’s function and Born approximation,
Wang et al proposed a new method for quantitative shape
reconstruction of the local thinning in the use of reflection
coefficients of guided SH-waves [21] and Lamb waves [22].
The depth of the plate thinning was obtained as a func-
tion of reflection coefficients at various frequencies by the
inverse Fourier transform. Jarmer et al. [23] developed a
multi-wave-mode, multi-frequency detector for guided wave
interrogation of plate structures. Experimental results showed
that a single-mode, multi-frequency detector has the best
detection and localization performance for the tested dam-
age scenarios. In [24], a new methodology based on multi-
frequency local wavenumber analysis for the quantitative
assessment of multi-ply delamination damages in carbon
fiber reinforced polymer (CFRP) composite specimens was
proposed. Simultaneously,Michaels et al. [25] utilized a chirp
function to excite PZT transducers over a broad frequency
range to acquire multi-modal data with a single transmis-
sion. Each received signal from a chirp excitation was post-
processed to obtain multiple signals corresponding to differ-
ent narrowband frequency ranges. Recently, Da et al. [26]
proposed a novel approach called as Quantitative Detection
of Fourier Transform (QDFT) for efficiently detecting defects
in pipeline structures. Pereira and Belanger [27] introduced a
multi-mode and multi-frequency method for the characteri-
zation of stiffener bonded lines using Semi-Analytical Finite
Element (SAFE). Gao et al. [28] presented an inspection
methodology based on the multi-frequency local wavenum-
ber estimation for quantitative assessment of hidden corro-
sion in plates. The methodology was verified on the alu-
minum plates of 1 mm thickness with the corrosion, and the
relative errors between the estimated and actual value of the
corrosion depth were not more than 6%.

Using information from multi-frequency and multi-wave
modes to detect damage in structures requires the wave prop-
agation knowledge e.g., the dispersion and mode conversion,
in conjunction with a reconstruction algorithm that utilizes
the multiple modal information in the presence of inevitable
noise or uncertainty. In contrast to conventional model-
based approaches, data-driven techniques, particularly Deep
Learning (DL), are increasingly widely developed to solve
inverse scattering problems [6], [29], such as X-ray computed
tomography imaging (CT) [30], magnetic resonance imaging
(MRI) [31], positron emission tomography (PET) [32] as well
as ultrasonic guided wave testing (UGWT) [33]. Through
data training, these techniques can effectively extract
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defect-related information from raw noise containing the
scattering signals and quantitatively reconstruct the details of
defect shapes.

This paper investigates the implementation of deep neu-
ral network (DNN) for quantitative defect reconstruction
of plate-like structures using guided SH-waves. Details of
this research consist of three steps: First, the distribution
characteristics of multi-wave modes, multi-frequency scat-
tered signals in manifold space have been explored. Second,
a novel encoder-projection-decoder neural network has been
proposed to realize an end-to-end mapping from the scattered
signals in the wavenumber field to the defect shapes in the
spatial space. Finally, a modified boundary element method
has been developed to generate the scattered signals, for
example reflection coefficients, as the network input for the
training purpose, leading to the reconstruction of defects with
high levels of accuracy and reliability. Throughout several
examples, the correctness and efficiency of the proposed
quantitative inverse scattering method have been demon-
strated.

II. METHODOLOGY
A. DEFECT DETECTION USING MULTI-FREQUENCY
AND MULTI-MODE ACOUSTIC DATA
A shear horizontal (SH) wave propagating along a homo-
geneous, isotropic, elastic plate with the thickness of 2h is
considered in Fig.1, where the wave propagates along the
x1 direction and the particles in the plate vibrate in the x3
direction. The displacement field u of the particle must satisfy
Navier’s displacement equations of the motion defined in (1):

µ∇
2u+ (λ + µ) ∇∇ · u− ρ

∂2u
∂t2

= 0 (1)

Also, the traction-free boundary conditions applied to solve
(1) are expressed as:

τ23 (x1, x2, t) |x2=±h = µ
∂u
∂x2

|x2=±h = 0 (2)

where ρ is the mass density; λ and µ are Lame constants.
As only the component u3 of the particle displacement field
u is nonzero, a time-harmonic SH-wave is formulated as

u3(x1, x2, t) = f (x2)ei(kx1−ωt) (3)

where k is the wavenumber of the mode and ω represents the
natural circular frequency. Substituting (2) and (3) into (1),
the dispersion equation of guided SH-waves can be deduced
in a function of the wave velocity and frequency:

ω2

c2T
−

ω2

c2p
=

(nπ
2h

)2
, n = 0, 1, 2, · · · (4)

where cT =
√

µ/ρ is the velocity of SH-wave and cp is the
phase velocity. As an example, the relationship between the
phase velocities and frequencies over a range of 0−14 MHz-
mm is investigated by dispersion curves for the first eight of
SH waves modes shown in Fig.1b.

FIGURE 1. (a) The SH wave propagation traveling along the x1 direction
and particle displacement u3 in the axis of x3. (b) Dispersion curves of
SH waves for an aluminum layer (cT = 3.2 m/ms).

Each mode, when excited, will produce different fields
inside the layer i.e., the particle displacements and veloc-
ities. Also, the stress and strain fields will vary with the
depth inside the layer for each mode. In fact, even the same
mode at a different frequency will cause different distribu-
tions of fields [23]. Therefore, it is desirable to leverage
the fusion of multiple modes and multi-frequency scatter-
ing information for defect reconstruction as different fields
including comprehensive defect-relevant information may
exhibit a higher sensitivity to different types and orienta-
tions of defects. Even though each point on the dispersion
curve depicted in Fig.1b can be used for defect detection
and reconstruction theoretically, the practicability of inspec-
tion should also be considered under the consideration of
various situations. For example, a single-mode broadband
scattered signal (SH0) with the frequency range of 0 MHz to
11.3 MHz (highlighted in red shown in Fig.1b) may contain
sufficient defect-related information for quantitative defect
reconstruction using some algorithms such as Fourier trans-
form, while the mode separation would be highly required
to obtain such a broadband signal due to the complexity.
It is noted that a multi-mode narrowband excitation (high-
lighted in blue) helps to improve the mode purity and inter-
pretability of the guided wave signals, and also performs in
a more cost-effective manner as compared to a single-mode
broadband scattered signal. Furthermore, themulti-mode nar-
rowband signal enables the high-resolution reconstruction of
defects as it naturally encompasses comprehensive defect-
related information. However, it is challenging to solve such
a multi-frequency, multi-mode inverse scattering problem
using conventional model-based reconstruction algorithms
such as Fourier transform. Taking into account this situation,
a data-driven based deep learning model, which have the
ability to efficiently extract the defect features, i.e. flaw-
associated information from high dimensional data (multi-
frequency, multi-modes scattered signals) has been developed
for quantitative defect reconstructions by the mapping of data
features to defect shapes, leveraging the power of manifold
learning for the extraction of signal distributions from the
high dimensional space to the low one.

B. DISTRIBUTION OF SCATTERING SIGNALS IN THE
MANIFOLD/VECTOR SPACE
As discussed above, it is desirable to utilize multi-
mode, narrowband scattered signals for quantitative defect
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reconstruction under the consideration of the practicability
and cost of the inspection. As the reconstruction technique
used in this research establishes a data-driven intelligent net-
work model, it is necessary to perform wave analysis of the
multi-mode, narrowband signals for the generation of training
datasets from the perspective of data structures.

As shown in Fig. 2, a thinning flaw with an arbitrary shape
is located at the top surface of the plate. It is assumed that the
incident guided wave of the SH0 mode propagates from the
left to right side and is reflected back by the thinning part.
Thus, the reflected wave containing multi-mode information
can be observed at the far field and the displacement field is
determined by (3). Considering the dispersion property of the
SH-wave, displacements of the incident SH0 wave (uinc) and
reflected nth mode wave, uinc and uref can be rewritten as

uinc = Ainc0 (ωm)f0(q0x2)ei(kx1−ωmt) (5a)

uref = Arefn (ωm)fn(qnx2)ei(kx1+ωmt) (5b)

where ωm means the circular frequency (m = 1, 2, 3 · · ·);
An is the amplitude coefficient of the nth mode in frequency

domain, qn =

√
ω2
m
c2T

− k2, and fn is determined by (II-B)

fn (qnx2) =

{
cos (qnx2) for n = 0, 2, 4 · · ·

sin (qnx2) for n = 1, 3, 5 · · ·
(6)

The reflection coefficients Cn(ωm) of the nth mode reflected
wave are formulated by (7)

Cn(ωm) = Arefn (ωm)/Ainc0 (ωm) (7)

The matrix representation of Cn(ωm) can be written as

Cmn
=

 C0 (ω1) · · · Cn (ω1)
...

. . .
...

C0 (ωm) · · · Cn (ωm)

 (8)

Fig. 3 presents the absolute values of the complex-valued
reflection coefficients for the first three modes of reflected
SH waves, namely, 0th symmetric (SH0), 1st anti-symmetric
(SH1) and 1st symmetric (SH2) modes. Three defects includ-
ing the rectangular(a), V-notch(b) and Gaussian-curved(c)
thinning are considered in the wave analysis with the fre-
quency range of hω

/
cT = 7.5 − 12.5. Results in Figs. 3d-3f

represent the fused reflection coefficients that contain the first
three order modes.

It is worth noting that each complex-valued item Cn (ωm)

in the matrix Cmn defined in Eq.7 represents the interaction
between the sub-waves and the defects in the form of ampli-
tudes and phases of reflection coefficients, which reflect the
defect-related information and features. Hence, the procedure
for defect reconstruction proposed in this paper is to construct
a deep learning operator H, which has the ability to extract
the defect features and further realize the mapping of the
reflection coefficients Cmn to the profile of defects D. It is
worth noting that the operator D is defined by (9)

D = H(Cmn) (9)

FIGURE 2. An incident guided SH-wave is reflected by a plate thinning at
the top surface of the plate.

FIGURE 3. The absolute value of reflection coefficients for the first three
modes of reflected SH-waves. Three defects are considered including the
rectangular(a), V-notch(b) and Gaussian-curved thinning (c). (d-f) depict
the fused reflection coefficients that contain the first three order modes.

As described in the manifold assumption [34], [35], a nat-
ural high-dimensional data distribution concentrates close
to a non-linear low-dimensional manifold, and the goal of
deep learning aims to learn the manifold structure in data
and the probability distribution associated with the manifold.
Therefore, if the manifold represented by the scattered data of
guided waves i.e., reflection coefficients Cmn, has a simpler,
highly separable structure, it would be easier for the deep
learning model H to learn, leading to the higher reconstruc-
tion accuracy. Considering this fact, it is necessary to analyze
the manifold structure or the vector distribution of reflection
coefficients Cmn of guided SH-waves prior to the construc-
tion of H. The t-distributed stochastic neighbor embedding
(t-SNE) [36] is applied to realize a flexible dimension reduc-
tion and visualize the high-dimensional data by a complex
mapping to reveal structures of datasets at many different
scales. In this paper, the dataset of SH-wave reflection coef-
ficients which reflect three types of defect information (rect-
angular, V-notch and Gaussian-curved flaws) on the manifold
space, have been simulated using the modified boundary
element method (MBEM) [37] for the generation of training
data and feature extraction.

The effects of different modes and frequency samples on
the pattern of reflection coefficients in the reduced space for
feature extractions of defects are demonstrated in Fig. 4 by
the t-SNE technique. It is noted that for the signals excited
by the broadband frequency (Figs. 4a, 4c), the datasets of
reflection coefficients in both single mode and multi-modes
appear highly separable, that is, natural features of the data for
the different types of defects tend to be represented into tight
and wide separated clusters in the two dimensional space.
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When the number 5 of frequency samples in Figs. 4b and
d is small and insufficient for defect reconstruction, the fea-
ture representation by datasets containing multi-mode defect-
related information is significantly clear and distinguishable,
as more information related to three types of defects are
utilized for defect reconstructions. However, no separatable
clusters of reflection coefficients can be clearly identified
using the single-mode scattered information. Taking into
account the features shown in Fig. 4 as well as the practi-
cability and cost in the guided wave inspection, the following
observations have been achieved as useful guidelines for
practical applications:

1) Two guidelines relating to the numbers of frequency
samples and wave modes during the guided wave
inspection can be leveraged for quantitative defect
reconstruction as substantial defect information, e.g.,
reflection coefficients, is contained in the scattered
signals.

2) To realize a guided wave inverse scattering technique
with a high level of accuracy, it is worth noting that the
single-mode, broadband scattered signals containing
sufficient defect-relate information is compulsory. This
conclusion is demonstrated by the highly separable
dataset in Fig. 4a. However, the mode separation is
extremely challenging for a signal with such broadband
frequencies. Also, the cost of wave excitation force
during the experiment test is increasingly expensive.

3) As the defect-related information is insufficient in
the single mode signal with narrowband frequencies,
the results represented in the lower-dimensional space
indicate poorly separable in Fig. 4b. Based on this
observation, it is necessary to utilize the multi-modes,
narrowband signal that encompasses comprehensive
defect-related information for defect reconstruction
economically.

4) Constructing defects in the use of multi-mode, nar-
rowband signals indeed demonstrates superior per-
formance as the dataset appears highly separable in
Fig. 4d, leading to the development of a more practi-
cal and cost-effective defect reconstruction technique.
Therefore, deep learning models have to be developed
to solve such a multi-frequency, multi-modes prob-
lemwhich is challenging for conventional model-based
reconstruction algorithm.

C. THE PROPOSED ENCODER-PROJECTION-DECODER
ARCHITECTURE
To intelligently realize the end-to-end mapping between the
multi-frequency, multi-mode guided wave scattered signals
and defect profiles with high levels of accuracy and effi-
ciency, a novel encoder-projection-decoder neural network
has been proposed to leverage the mechanism of the manifold
distribution principle, leading to the facilitation of defect
feature extractions in the low-dimensional space. The over-
all architecture of the proposed neural network is depicted

FIGURE 4. T-SNE visualization of scattered signals (reflection coefficients)
under different cases of wave modes and frequency band.

in Fig. 5. As the developed computational framework oper-
ates on real-valued inputs, it is noted that the reflection
coefficients or experimental data must be divided into two
groups storing the real and imaginary components concate-
nated into the input vector. For example, a m × n complex-
valued reflection coefficient matrix should be reshaped to a
2mn×1 real-valued vector (mmeans the number of frequency
samples and n depicts the number of modes). In this study, the
size of 144 × 1 for the output in spatial space is predefined.
Following that, the encoder part converts the input into the
data represented in a squeezed dimension in a manner similar
to general CNNs. This process consists of sequential blocks
of convolutions with a stride of 2 and a factor of 2, leading
to the increase of the number of feature layers. Then, the
batch normalization (BN) and activation by a rectified linear
unit (ReLU) are applied before the projection part. It is worth
noting that the convolution filter size of 3×1 is used through-
out the encoder, in which there are 32 feature maps with the
dimension of mn × 1 included. Each feature is represented
by a non-linear function of an extensive portion of the input
reflection coefficients.

To facilitate the feature extraction related to the input data,
i.e., reflection coefficients from a high-dimensional space
to a homeomorphic representation, the latent projection is
implemented as an operator to highlight the features of defect
profiles. As schematically illustrated in Fig. 5, the first layer
of the projection is fully connected to an 72× 1-dimensional
hidden layer with the hyperbolic tangent activation. Once
the features are projected into a manifold space, the decoder
part upsamples the main defect features represented by the
latent projection to finalize the profiles of defects as the
output in a spacial space. In the decoder process, each step
along the path increasing the data interpretability consists of
a 3× 1 deconvolution layer that halves the number of feature
layers and a BN layer followed by a ReLU activation. The
total number of convolutional layers in the whole encoder-
projection-decoder network is set to 8. The choice of CNNs
for the encoder-projection-decoder neural network lies in the
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fact that it is able to capture spatial and temporal patterns of
the input data. This makes it particularly well-suited for wave
signal processing task. By capturing these patterns, the CNN
can effectively learn the underlying structure of the wave
signals and make accurate predictions of defects.

FIGURE 5. The overall schematic architecture of the proposed
encoder-projection-decoder neural network for quantitative structural
defect reconstruction.

D. DATASET GENERATION
To obtain the training data for the proposed network, recon-
structions of surface thinning flaws in a 2-dimensional steel
plate shown in Fig. 2 using guided SH-wave is performed.
The capability of the proposed encoder-projection-decoder
neural network to quantitatively reconstruct defect profiles is
demonstrated with the fusion of multi-frequency, multi-mode
information encompassed in scattered signals throughout the
examples. The material properties of the steel plate is listed
in Table 1.

TABLE 1. The material properties of the steel plate.

In order to efficiently generate sufficient data for the explo-
ration of defect features via the powerful data-mining capa-
bility of the Deep-guide framework, the modified boundary
element method (MBEM) [37] is applied to calculate reflec-
tion coefficients of guided waves propagating through the
plate with thinning defects. The implementation of MBEM
not only aims at obtaining the input data by performing the
ultrasonic guided wave analysis, but provides an insight to
the development of physics-informed network by the fusion
of numerical results or experimental data containing multi-
frequency, multi-wave-mode information and the data-driven
manifold learning technique for quantitatively solving the
guided wave inverse scattering problems in the field of non-
destructive evaluation.

In this research, a dataset of 4000 scattered signals
(reflection coefficients) from four typical shapes of surface
defects including the rectangular, V-notch, Gaussian-curved
and double rectangular flaws in plates, have been obtained
using MBEM. Numerical simulations of 4000 plate thin-
ning defects using the SH0 guided wave mode have been
performed to obtain reflection coefficients, which are used
as the inputs for training the proposed network. Results in
these 4000 cases have been treated as the ground truth.

The frequency takes the value from the range of hω
/
cT =

0.1 − 14 with the increment of 0.1, and therefore a total
of 140 frequency samples have been considered. The ampli-
tude coefficients of the first five SH-wave modes have been
obtained at each frequency sample. The use of the training
data for the reconstruction of defects by the proposed method
is discussed in more details in Section III.

E. NETWORK TRAINING AND QUALITY EVALUATION OF
DEFECT RECONSTRUCTION
To effectively train the proposed network, the dataset has
been randomly divided into three splits. Out of the total
4000 samples, 2800 data have been used for network training
(70%), 600 for validation (15%), and 600 for testing (15%).

The proposed network has been initially implemented in
Tensorflow [38], and then trained and tested on a NVIDIA
3080 graphics processing unit (GPUs). The mean squared
error (MSE) between the network output and ground truth
data has been used as the loss function defined by (10)

MSE =
1
n

∑n

i=1
(xi − yi)2 (10)

where x is the reconstructed defect, y is the ground truth,
and n is the number of defect pixels. The Adam optimization
method has been selected to achieve the converged results.
Once the network training followed by the validation process
is completed, the correctness and robustness of the network
model with optimal performances will be evaluated by the
test set.

For the quality evaluation of defect reconstruction, two
metrics have been considered to assess the superior perfor-
mance of the proposed network over the other existing meth-
ods The first criterion is the root mean square error (RMSE)
formulated as:

RMSE =

∑N
i=1

(
xi − x̂i

)2
N

(11)

where N is the number of pixels; xi is the pixel value of the
ground truth and x̂i is the pixel value of the reconstructed
defect. The lower RMSE value means the better accuracy
of the reconstructed defect profiles.

The second metric used for the defect quality evaluation is
the peak signal-to-noise ratio (PSNR) defined by (12):

PSNR = 20 · log10
( xmax

RMSE

)
(12)

where xmax is the maximal pixel value of the ground truth x.
A higher value of PSNR represents better defect quality.

III. NUMERICAL VALIDATION
A. VALIDATION OF THE PROPOSED METHOD
To validate the correctness and effectiveness of the pro-
posed deep learning-based quantitative inverse scattering
method, the novel encoder-projection-decoder neural net-
work enabling the manifold learning capability has been
trained using the multi-frequency, multi-modes scattered sig-
nals, which have been obtained by MBEM simulations [35].
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It should be noted that frequencies of the scattered signals
used in this study have been in the range of hω

/
cT =

7 − 12 with the increment of 0.1, a total of 50 frequency
samples. Following that, the unknown defects in the test
set have been reconstructed using the trained network. It is
worth noting that the same network architecture and hyper-
parameters have been kept intact during the process of defect
reconstructions for different inputs so that the generalization
of the developed deep learning network can be evaluated.

The reconstructed defects with three types of profiles
(Rectangular, V-notch and Gaussian-curved defects) using
different modes of SH-waves (SH0, SH1, SH2, the fusion
of first 3 modes and the fusion of first 5 modes) have been
provided in Fig. 6. It can be observed that main features
of the defects have been successfully reconstructed in all
three cases, where the remarkable capability of the proposed
data-driven method for defect reconstruction using multiple
modes, multi-frequency scattered signals has been demon-
strated. Moreover, the advantage of the proposed deep learn-
ing network has been evidenced by less than 0.1 seconds of
computational time for defect reconstruction as the frame-
work has only requires one pass to execute calculations.

FIGURE 6. Reconstruction results of plate surface defects using the
encoder-projection-decoder neural network (plate thickness h = 1mm).

Furthermore, the quantitative evaluations on the quality of
reconstructions by the average RMSE and PSNR over the
entire test set (600 samples) have been provided in Tables 2.
It has been observed that the lowest average RMSE (0.0166)
among the reconstruction results in all three cases has been
achieved using the fusion of the first 5 modes, as compared
with 0.0212 by the fusion of the first 3 modes (27.71%
higher), 0.0252 by the SH0mode (51.82% higher), 0.0298 by
the SH1 mode (79.52% higher) and 0.0485 by the SH2 mode
(175.90%). The similar conclusion can be drawn for the
quality evaluation of reconstruction results by the average
PSNR, that is to say, the best result of 28.95dB by the fusion
of the first 5 modes can be identified, whilst 26.84dB (2.11dB
lower) the fusion of the first 3 modes, 25.30dB (3.65dB
lower) for the SH0 mode, 23.39dB (5.56dB lower) for the
SH1 mode and 19.39dB (9.56dB lower) for the SH2 mode.

It is also worth noting that the V-notch defect reconstruc-
tion has been realized for the best precision with the average
RMSE of 0.0229, which has been improved by 34.06% and

28.82% from 0.0307 and 0.0295 for the rectangular and
Gaussian-curved reconstructions, respectively. This can be
interpreted from the perspective of manifold analysis illus-
trated in Section II: the higher separable pattern represented
by green dots in Fig. 4 indicates the manifold of scattered
signals by V-notch defects, as compared with the manifolds
by the other two types of defects.

TABLE 2. RMSE and PSNR of reconstructed defect shapes.

In Fig. 7, boxplots of reconstruction results using multiple
modes information of the scattered SH-waves have been
presented to demonstrate the high precision of the proposed
technique. It can be observed that the deep learning-based
quantitative guided wave inverse scattering approach lever-
aging the multi-modes information has the ability to achieve
a high level of stability, leading to a relatively narrower distri-
bution of RMSE over the entire test dataset, whereas results
reflecting the poorer stability on a wider range of RMSE
can be identified given the information from single-mode
scattered signals for reconstructions. The minimum median
value (0.0139) has indicated the superiority of the proposed
approach to defect reconstructions using the fusion of the first
5 modes over one single mode or few fused modes in terms
of accuracy, for example, the reconstruction RMSE of 0.0204
(46.76% higher) by the single SH0 mode.

B. DEFECT RECONSTRUCTION BY
NARROWBAND SIGNALS
As described in Section II, it is extremely challenging to
achieve the mode separation for a scattered signal in broad-
band frequencies and also increasingly expensive to excite
ultrasonic guided waves at different frequencies. Therefore,
the motivation of this research is to investigate the recon-
struction performance of the proposed technique using the
scattered signals that occupy the narrowband frequencies.
Fig. 10 has shown the comparison of the reconstructed results
using different numbers of frequency samples with the real
defects. As the defect-related information is insufficient for
defect reconstruction by the single mode signal in narrow-
band frequencies, it has been concluded that the fewer the
number of frequency samples for defect reconstruction is, the
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FIGURE 7. Quantitative evaluations on the quality of reconstruction with
RMSE over the entire 600 test data which include three types of unknown
defects. The x axis represents the wave modes used for reconstruction.
The y axis denotes the values of RMSE between the reconstructed defects
and the ground truth. Each box shows the interquartile range (IQR
between Q1 and Q3) of the test results. The central mark (the horizontal
line in each box) shows the median value Q2. The upper whisker extends
from the hinge to the largest value no further than Q3+1.5×IQR and the
lower whisker extends from the hinge to the smallest value at most
Q1-1.5×IQR. For each box, 150 values randomly selected from the 600
test results are shown as dots.

FIGURE 8. Defect reconstruction using different numbers of frequency
samples.

poorer the quality of reconstruction by a single mode of SH0
performs.

Moreover, the quantitative evaluations on the quality of
reconstructions using different numbers of frequency sam-
ples have been provided in Table 3. It can be observed that
as the number of frequency samples has decreased, results
of defect reconstructions using the single mode and multi-
modes scattered signals have become poorer. However, the
overall performance of reconstruction using the multi-mode
signals is relatively better and more stable as compared with
the reconstructions by the single mode signal. For example,
the reconstruction using the fusion of the first 5 modes with
50 frequency samples has demonstrated the best accuracy
with the lowest average RMSE (0.0225) and the highest
average PSNR (28.65dB). Furthermore, for the defect recon-
struction using only one frequency sample, the result obtained
by the fusion of the first 5 modes signals still has more trust-
worthy accuracy with the average RMSE value of 0.0389,
as compared with 0.1062 (173.01% lower) predicted by the
model using the SH0 signal.

TABLE 3. The quantitative evaluation of reconstruction results using
models trained with different numbers of frequency samples.

A more direct quantitative comparison of the reconstruc-
tion qualities using the single-mode and multi-modes scat-
tered signals has been shown in Fig. 9. It is worth not-
ing that the reconstruction using the multi-modes scattered
signals, e.g., the green line and blue line, can still achieve
high levels of precision by models trained with a few of
frequency samples. For example, the reconstruction using
the SH0 mode requires 50 frequency samples to achieve the
RMSE value of 0.024 or PSNR value of 24.83dB, while only
about 25 frequency samples are used for the reconstruction by
the fusion of the first 5 modes for the same level of accuracy.
Also, for reconstruction using a single-mode scattered signal,
the precision decreases rapidly as the number of frequency
samples decreases, while the accuracy is reduced slightly for
the reconstruction by the fuse of multi-modes information.

FIGURE 9. Comparison of the reconstruction precision on the entire test
set from models trained with different numbers of frequency samples in
different scenarios.

C. COMPARISON WITH THE FOURIER TRANSFORM
RECONSTRUCTION
In this section, a state-of-art conventional knowledge-driven
reconstruction method, which is called Born approximation-
based Fourier transform (BFT) has been compared against
the proposed data-driven deep learning method (DDDL) in
terms of defect reconstruction performance. The double-
notch defect reconstruction results have been shown in Fig. 10
and the quantitative evaluation of the quality has been pro-
vided in Table 4. It has been noted that the frequency range of
the scattered signals used in the BFT reconstruction has been
set from hω/cT = 0 − 14 including 140 frequency samples,
while only 32 frequency samples in the range of hω/cT =

6.3 − 7.9 have been used in DDDL. It can be observed that
the defect reconstruction by DDDLwith the fusion of the first
5 SH-waves modes has shown better quality with the lowest
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average value (0.0475) of RMSE and the highest average
value (22.84dB) of PSNR, as compared with 0.0547 (15.16%
higher) and 19.63dB (3.21dB lower) byBFT, 0.0725 (52.63%
higher) and 9.77dB (13.07dB lower) by DDDL using the
single mode (SH0) scattered signal. As sufficient frequency
samples have been provided in the comparison study, the FT
method could also produce results with a relatively trustwor-
thy reconstruction quality. The reason for this observation
has been provided in Section II. Considering the challenge
of the mode separation for such broadband frequencies sig-
nals and the increasingly expensive cost of wave excitation,
the proposed deep learning-based method has the ability to
efficiently achieve high-quality defect reconstructions using
fewer frequency samples, enabling the development of practi-
cal techniques for quantitative ultrasonic guided wave inspec-
tion using multi-frequency and multi-mode acoustic data.

FIGURE 10. Comparison of reconstruction results from different
techniques.

TABLE 4. The quantitative evaluation of reconstruction results from
different techniques.

IV. CONCLUSION
In this paper, a novel deep learning-based guided wave
inverse scattering technique for quantitative structural defect
reconstructions has been proposed to automatically real-
ize the end-to-end mapping of the multi-frequency, multi-
mode scattered ultrasonic guided wave signals to defect
profiles with high levels of accuracy and efficiency. Based
on the manifold distribution principle of the acoustic data,
the encoder-projection-decoder network has been trained by
multi-frequency, multi-modes scattered signals to enhance
the manifold-learning capability. To further demonstrate the

correctness and effectiveness of the proposed defect recon-
struction technique, numerical validations in different sce-
narios have been performed with the main conclusions as
follows:

1) Defect reconstruction using the scattered ultrasonic
signals with the fusion of different wave modes has
achieved high levels of accuracy and efficiency, for
example, the RMSE values of reconstruction results by
the fusion of first 5 modes, the fusion of first 3 modes,
the SH0 mode, the SH1 mode and the SH2 mode have
been obtained as 0.0166, 0.0212, 0.0252, 0.0298 and
0.0485, respectively.

2) Multi-mode narrowband scattered signals have enabled
the higher resolution reconstruction of defects and also
performed in a more practical and cost-effective man-
ner as comparedwith the results by broadband scattered
signals.

3) The superiority of the proposed data-driven tech-
nique over traditional knowledge-driven reconstruc-
tion approaches has been clearly demonstrated by the
effective defect reconstructs using fewer frequency
samples.

Summarily, using the fusion of multi-modes and multi-
frequency defect-related information has enabled defect
reconstructions with high levels of accuracy and reliabil-
ity, and also provided a useful insight into the develop-
ment of practical quantitative end-to-end inverse scattering
techniques for the inspection and reconstruction of complex
defects using ultrasonic guided waves. In the future, the
proposed neural network will be further optimized, extend it
to higher dimensional cases such as 3D reconstruction, and
be more suitable for processing the observed experimental
signals.
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