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The double–double (DD) laminate families that contain two continuous angles, which were proposed by Tsai

(“Double–Double: New Family of Composite Laminates,” AIAA Journal, Vol. 59, No. 11, 2021, pp. 4293–4305),

opened up a whole new era for composite layups, which are easy tomanufacture and design. In the present study, the

design space referred to as feasible regions is derived explicitly based on novel formulations for the lamination

parameters of DD laminates. This enables the boundaries of the design space to be obtained analytically, providing

mathematical support for DD families. The obtained result shows that their design space is larger than that of

conventional quadaxial laminates in terms of industrial practices.A homogenization criterion is implemented into the

design space, based on which a tailored DD laminate is proposed, expanding design possibilities and enabling

homogenization to be achieved using only 16 plies/4 repeats. The work proposed offers significant benefits through

practical solutions to making design, manufacturing, and testing simpler and more competitive.

I. Introduction

C ONVENTIONAL composite laminates comprise a collection

of 0,�45, and 90 deg plies (known as quadaxial or QUAD) [1].
These layups have been used since the 1960s, when boron and high-

strength carbon fiber composites were developed [2]. By changing

lamina directions and stacking sequences, a large number of permu-

tations of QUAD laminates are possible, allowing them to meet the

majority of application requirements. To ensure manufacturability

and enhance damage tolerance, a number of layup design rules are

generally applied, e.g., midplane symmetry, the 10% rule, blending,

etc. [3,4]. This results in a complex optimization design process. To

achieve the application requirements and minimize the weight of the

laminate, the design of QUAD laminates (especially when ply drop-

offs are considered) is now not as simple as its four-angle concept.

Instead, it has become more complicated and, as a result, more time

consuming [5–10].

The double–double (DD) laminates proposed by Tsai [1] are a new

family of composite laminates that consist of a repeat of a four-ply

sublaminate. Four types of DD laminates that are commonly referred

to as staggered 1, staggered 2, staggered 3, and paired have been

proposed. The corresponding stacking sequences of their sublaminate

are [�ϕ∕−ψ∕−ϕ∕�ψ], [�ϕ∕�ψ∕−ϕ∕−ψ], [�ϕ∕−ψ∕�ψ∕−ϕ],

and ��ϕ∕�ψ �, respectively, in which ϕ and ψ are two continuous
ply angle variables ranging from 0 to 90 deg. The usage of DD
laminates avoids several issues in the design of composite laminates.
Homogenization in the thickness direction is one of the key advan-
tages allowing DD laminates to be much more lightweight as com-
pared to QUAD layups [1]. This is because when a laminate is
homogenized, which is achieved by stacking the sublaminate, its
in-plane/out-of-plane coupling can be intrinsically ignored [11]. As a
result, the optimization of DD laminates can be performed without
imposing the midplane symmetry rule, removing a large number of
plies. Traditional QUAD laminates, on the other hand, are hetero-
geneous, requiring at least 120 plies or 15mm to be homogenized [1].
For the optimization design of composite laminates with varying
thicknesses, a QUAD laminate requires plies in symmetrical posi-
tions to be dropped simultaneously to avoid warping [12]. Without
the need to consider midplane symmetry, the tapering of DD lami-
nates can be achieved more easily by dropping plies from one side,
placed on the exterior surfaces of laminates [13]. In addition to
homogenization, with only two continuous design variables (unbal-
anced laminates have one more angle variable as a rigid-body rota-
tion), DD laminates are extremely easy to optimize; whereas QUAD
layups have millions of permutations in terms of angles and stacking
sequenceswhen the number of plies reaches 10 ormore [12]. Design-
ing the tapering of such a high number of plies would not even be
possible.
From the perspective of practical manufacturing, as mentioned

earlier, DD laminates possess a nonstop layup without midplane
symmetry. Such a feature is beneficial to improving the efficiency
of the fabrication process and the quality of the laminates [1].
Besides, a QUAD laminate is a collection of discrete laminates;
whereas DD laminates are field based, making manipulation easy
because of the continuous function. Because plies can be dropped in
singles from one side, all the plies in the interior are parallel and
stacked continuously, reducing the probability of voids, wrinkles,
and warpage in the manufacturing process [13].
Tsai [1] concluded that DD laminates could achieve a simi-

lar performance to most QUAD designs by taking advantage of
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their larger design spaces. Lamination parameters [14–17] that are
independent of the number of plies in the laminates can be used to
present these design spaces, which are more commonly referred to
as feasible regions. However, the explicit and specific boundaries of
the feasible region of DD laminates have never been found. This is
a significant limitation because the feasible regions are treated as
design constraints in the lamination parameter optimization, and
obtaining their boundaries is essential to the optimum design proc-
ess. York [18] discovered that the lower bound of the design space
of lamination parameters ξA1 , ξ

A
2 and ξD1 , ξ

D
2 for general two-angle

laminates can be represented by parabolas. However, the upper
bound of design spaces for other lamination parameters, especially

the in-plane/out-of-plane coupling parameters (i.e. ξB1;2;3;4), which
are key parameters to determine the homogenization, have not been
discussed. Therefore, the extension of the homogenization of DD
laminates has not been defined mathematically, resulting in sacri-
ficing the design space for the near-homogenized laminates.
In this paper, taking advantage of the repetition in DD laminates,

formulations for obtaining the lamination parameters of DD lami-
nates are derived: based on which, the lamination parameters can be
expressed in simple forms. The proposed formulations are not limited
to the most commonly used DD laminate sequence, i.e., staggered 1.
They are also applicable to DD laminates with rigid-body rotation:
unbalanced DD laminates that have four different angles (i.e., adding
an extra angle parameter to each sublaminate). With the aid of these
formulations, a method based on Lagrange multipliers is proposed to
derive the feasible regions of any combination of two lamination
parameters. Benefiting from the simple expressions for the lamina-
tion parameters, all feasible regions are obtained analytically. Based
on the obtained feasible regions, clear insight into the homogeniza-
tion of a DD laminate is visualized and parametrized. Furthermore,
the effect of the number of plies on the homogenization is inves-
tigated based on the homogenization criterion defined inRef. [1]. The
work proposed offers practical solutions, making the design, manu-
facturing, and testing simpler and more competitive.
Section II introduces the conventional way of calculating lamina-

tion parameters, whereas the new expressions for the lamination
parameters ofDD laminates are given in Sec. III. Section IVdescribes
the method for analytically obtaining the feasible regions of DD
laminates as well as the obtained results. Brief conclusions are given
in Sec. V.

II. Lamination Parameters

Lamination parameters were first introduced by Tsai and Pagano
in 1968 [19], enabling the stiffness matrix to be represented by a
linear function and significantly reducing the number of design
variables. For the design of either flat or curved composite laminates,
lamination parameters can be used as design variables instead of the
large number of ply angles to meet the mechanical requirements of
engineering scenarios with regard to buckling, postbuckling, vibra-
tion, etc. [20]. By using lamination parameters as design variables,
the number of design variables can be reduced to a maximum of 12;
the stiffness matrix can then be expressed as a linear function of these
lamination parameters instead of the conventional set of equations
with a large number of ply orientations [21].
Based on classical laminate theory, the stress–strain relationship

for a composite laminate can be expressed as�
n
m

�
�

�
A B
B D

��
ε0

κ

�
(1)

where n and m are vectors of the in-plane forces and moments per
unit width; A, B andD are the in-plane, coupling, and out-of-plane

stiffnessmatrices; ε0 is a vector of in-plane strains; and κ is a vector of
midplane curvatures.
The stiffness matricesA,B, andD can be expressed in terms of 12

lamination parameters ξkj�j � 1; 2; 3; 4; k � A;B;D� and material

stiffness invariants u as shown in the following:

2
66666666664

A11

A22

A12

A66

A16

A26

3
77777777775

� h

2
66666666664

1 ξA1 ξA2 0 0

1 −ξA1 ξA2 0 0

0 0 −ξA2 1 0

0 0 −ξA2 0 1

0 ξA3∕2 ξA4 0 0

0 ξA3∕2 −ξA4 0 0

3
77777777775

2
666666664

U1

U2

U3

U4

U5

3
777777775

(2)

2
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� h2

2

2
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0 ξB1 ξB2 0 0

0 −ξB1 ξB2 0 0

0 0 −ξB2 0 0

0 0 −ξB2 0 0

0 ξB3 ∕2 ξB4 0 0

0 ξB3 ∕2 −ξB4 0 0

3
77777777775

2
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U3

U4

U5

3
777777775

(3)
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� h3
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2
66666666664

1 ξD1 ξD2 0 0

1 −ξD1 ξD2 0 0

0 0 −ξD2 1 0

0 0 −ξD2 0 1

0 ξD3 ∕2 ξD4 0 0

0 ξD3 ∕2 −ξD4 0 0

3
77777777775

2
666666664

U1

U2

U3

U4

U5

3
777777775

(4)

where the material stiffness invariants u and the stiffness properties
Q are

2
6666664

U1

U2

U3

U4

U5

3
7777775

� 1

8

2
6666664

3 3 2 4

4 −4 0 0

1 1 −2 −4
1 1 6 −4
1 1 −2 4

3
7777775

2
66664
Q11

Q22

Q12

Q66

3
77775 (5)

8>>>>><
>>>>>:

Q11 � E11∕�1 − νxνy�
Q22 � E22∕�1 − νxνy�
Q12 � υxQ22

Q66 � G12

(6)

whereE11 is the longitudinalYoung’smodulus;E22 is the transverse
modulus; G12 is the shear modulus; υx and υy; are the major and

minor Poisson’s ratios, respectively; and h is the thickness of the
laminate.
The lamination parameters are obtained by the following integrals:2

666664

ξk1

ξk2

ξk3

ξk4

3
777775 �

Z
h∕2

−h∕2
Zk

2
666664

cos 2θ

cos 4θ

sin 2θ

sin 4θ

3
777775 dz; k � A;B;D;

8>><
>>:
ZA � 1∕h

ZB � 2z∕h2

ZD � 12z2∕h3

(7)

where θ represents the ply angle at depth z below the midsurface. For
a general angle laminate, such an equation cannot be simplified
further because the angle of each ply differs at different depths.

III. Lamination Parameters of General DD Laminates

Because the sublaminate of the DD laminates has only four angles
[namely, two angles with opposite signs or four different angles [1]

2 Article in Advance / ZHAO ETAL.
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(i.e., unbalanced DD laminates)], Eq. (7) can be derived with respect

to the four angles: θ1, θ2, θ3, and θ4.
Assuming a laminate has n plies with thickness t identified by

n� 1 nodes and comprising n∕4 repetitions of sublaminate �θ1; θ2;
θ3; θ4�, for which the locations are shown in Fig. 1, it should be noted
that the total number of layers n is always an even number; and the

midplane always lies on the boundary of two plies.
Then, for k � 1; 2; : : : ; n∕4, the kth repetition has its top surface

at z � t�−1∕2� �4k − 4�∕n� and its bottom surface at z �
t�−1∕2� �4k�∕n�.
Thus, the kth θ1 ply runs from z � t�−1∕2� �4k − 4�∕n� to

z � t�−1∕2� �4k − 3�∕n�; the kth θ2 ply runs from z � t�−1∕2�
�4k − 3�∕n� to z � t�−1∕2� �4k − 2�∕n�; the kth θ3 ply runs from

z � t�−1∕2� �4k − 2�∕n� to z � t�−1∕2� �4k − 1�∕n�; and the

kth θ4 ply runs from z � t�−1∕2� �4k − 1�∕n� to z � t�−1∕2�
�4k�∕n�.
Defining trigonometric functions f1�θ� � cos�2θ�, f2�θ� �

cos�4θ�, f3�θ� � sin�2θ�, and f4�θ� � sin�4θ�, the lamination

parameters ξA;B;D1;2;3;4 can be calculated as follows:

For ξA1;2;3;4, Eq. (7) can be expressed as

2
666664

ξA1

ξA2

ξA3

ξA4

3
777775 �

Z
nt∕2

−nt∕2

1

nt

2
666664

f1�θ�
f2�θ�
f3�θ�
f4�θ�

3
777775dz (8)

Integrating each ply through the thickness,

ξAj � 1

t

Xn∕4
k�1

(Z
t�−1∕2��4k−3�∕n�

t�−1∕2��4k−4�∕n�
fj�θ1� dz�

Z
t�−1∕2��4k−2�∕n�

t�−1∕2��4k−3�∕n�
fj�θ2� dz

�
Z

t�−1∕2��4k−1�∕n�

t�−1∕2��4k−2�∕n�
fj�θ3� dz�

Z
t�−1∕2��4k�∕n�

t�−1∕2��4k−1�∕n�
fj�θ4� dz

)

(9)

Simplifying Eq. (9), we have

ξAj �
�
1

4
fj�θ1� �

1

4
fj�θ2� �

1

4
fj�θ3� �

1

4
fj�θ4�

�
(10)

It can be seen that equal contributions are made by all four of the

angles. So, for the DD laminates without rigid-body rotation, the

contributions based on cosine functions will be equal and opposite so

that ξA3 and ξA4 are zero.

For ξB1;2;3;4, similar to Eq. (8), substituting the number of pliesn and
thicknesses t into Eq. (7), we have2

666664

ξB1

ξB2

ξB3

ξB4

3
777775 �

Z
nt∕2

−nt∕2

2z

�nt�2

2
666664

f1�θ�
f2�θ�
f3�θ�
f4�θ�

3
777775 dz (11)

Integrating each ply through the thickness,

ξBj �
2

t2

Xn∕4
k�1

(Z
t�−1∕2��4k−3�∕n�

t�−1∕2��4k−4�∕n�
zfj�θ1�dz�

Z
t�−1∕2��4k−2�∕n�

t�−1∕2��4k−3�∕n�
zfj�θ2�dz

�
Z

t�−1∕2��4k−1�∕n�

t�−1∕2��4k−2�∕n�
zfj�θ3�dz�

Z
t�−1∕2��4k�∕n�

t�−1∕2��4k−1�∕n�
zfj�θ4�dz

)

(12)

and simplifying,

ξBj �
�
−
3

n
fj�θ1� −

1

n
fj�θ2� �

1

n
fj�θ3� �

3

n
fj�θ4�

�
(13)

It can be seen that the contributions are inversely proportional to the
number of plies n so that increasing the number of plies can restrict

the magnitude of the ξBj lamination parameters to any required limit,

i.e., approximating a symmetric laminate.
For ξD1;2;3;4, Eq. (7) can be rewritten as2

666664

ξD1

ξD2

ξD3

ξD4

3
777775 �

Z
nt∕2

−nt∕2

12z2

�nt�3

2
666664

f1�θ�
f2�θ�
f3�θ�
f4�θ�

3
777775 dz (14)

Integrating each ply through the thickness,

ξDj � 12

t3

Xn∕4
k�1

(Z
t�−1∕2��4k−3�∕n�

t�−1∕2��4k−4�∕n�
z2fj�θ1� dz

�
Z

t�−1∕2��4k−2�∕n�

t�−1∕2��4k−3�∕n�
z2fj�θ2� dz�

Z
t�−1∕2��4k−1�∕n�

t�−1∕2��4k−2�∕n�
z2fj�θ3� dz

�
Z

t�−1∕2��4k�∕n�

t�−1∕2��4k−1�∕n�
z2fj�θ4� dz

)
(15)

and simplifying,

ξDj �
��

1

4
� 3

n2

�
fj�θ1� �

�
1

4
−

3

n2

�
fj�θ2� �

�
1

4
−

3

n2

�
fj�θ3�

�
�
1

4
� 3

n2

�
fj�θ4�

�
(16)

As can be seen from Eqs. (10), (13), and (16), each set of lamination

parameters (ξA1;2;3;4, ξ
B
1;2;3;4, and ξD1;2;3;4) can be obtained through a

single equation, in contrast to the integral equations that need to be
solved for QUAD layups, making the feasible regions easier to
obtain.
It can be observed from the preceding equations that the values of

ξA1;2;3;4 are related only to the ply angles; hence, increasing the number

of plies in DD laminates has no effect on their in-plane lamination

parameters. Besides, ξB1;2;3;4 are inversely proportional to the number

of plies and ξD1;2;3;4 are inversely proportional to the square of the

number of plies. As a result, as the number of plies increases, ξB1;2;3;4
decreases with a first-order relation, whereas ξD1;2;3;4 decreases with a

Midplane

Fig. 1 General DD laminates and locations of each node through the
thickness.
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second-order one. These relations are impossible to explicitly describe
for QUAD layups due to the complexity of their stacking sequences.
On the other hand, such explicit expressions can be very advantageous
when deriving the boundaries of the design space in terms of lami-
nation parameters, as will be shown in the following sections.

IV. Feasible Regions of DD Laminates

A. Feasible Regions of General DD Using Lagrange Multiplier

The feasible regions of the lamination parameters are treated as
constraints when employing lamination parameters as nondimen-
sional designvariables [22–35]. The earliest work on feasible regions
of lamination parameters was by Miki [36,37], who defined the
feasible region for the in-plane or out-of-plane stiffness of an ortho-
tropic laminate. After that, the feasible regions of the four in-plane or
four out-of-plane lamination parameters of symmetric laminates
were determined in Fukunaga and Sekine’s works [38,39]. In the
work of Diaconu et al. [40], the feasible regions in the general design
space of all 12 of the lamination parameters were first presented and
found to be finite convex spaces. Later, Setoodeh et al. [41] developed
a method to approximate the boundaries of the general feasible
region for lamination parameters using the method of convex hulls.
Bloomfield et al. [14] developed closed-form solutions to define the
feasible regions of any predefined finite orientation set. These studies
focused on the three four-dimensional spaces defining in-plane,
coupling, and flexural stiffnesses. Linking between them, however,
has not been considered due to the highly nonlinear nature of this
problem. Such nonlinear links constrain the algebraic relationships
between the three design spaces, further increasing the complexity of
the convex polyhedron describing the design space [42]. Researchers
have been pushing the boundary of feasible regions of lamination
parameters to exploit any possible stiffness tailoring of a laminate
through either new methodologies or representations of feasible
regions. However, research on the boundaries of the design space
highly depends on replacing or adding constraints regardless of the
methods used, leading to more complex design space.
Compared to QUAD layups, the design complexity of DD lami-

nates is significantly reduced due to the simple stacking concept.
Furthermore, the design spaces corresponding to DD laminates are
found to be larger than those corresponding to QUAD layups in
industrial practice, which will be proved later in this paper.
This section describes amethodology to obtain the feasible regions

of combinations of any two lamination parameters for DD laminates
(i.e., staggered 1: ��ϕ∕−ψ∕−ϕ∕ψ �, staggered 2: ��ϕ∕� ψ∕−ϕ∕
−ψ �, staggered 3: ��ϕ∕−ψ∕�ψ∕−ϕ�, and Paired: ��ϕ∕�ψ �) with-
out rigid-body rotation, using Lagrange multipliers, in favor of
simplifying composite design.
To obtain the feasible regions of any two lamination parameters for

DD laminates, we plot one of the parameters along the horizontal x
axis and find theminimum andmaximumpossible values of the other
parameter y. A constrained optimization problem can therefore be
summarized in the following form:
Minimize and maximize y � f�θ1;θ2� subject to x � g�θ1;θ2�,

where f and g denote the functions of θ1, θ2.
Solutions correspond to the stationary values of the augmented

function

F�θ1; θ2; λ� � f�θ1; θ2� � λ�g�θ1; θ2� − x� (17)

where λ is a Lagrange multiplier.
The conditions to be satisfied at each stationary point are

∂F
∂θ1

� ∂f
∂θ1

� λ
∂g
∂θ1

� 0 (18)

∂F
∂θ2

� ∂f
∂θ2

� λ
∂g
∂θ2

� 0 (19)

∂F
∂λ

� g�θ1;θ2� − x � 0 (20)

Solving Eqs. (18–20), the boundaries of the feasible region for any
combination of nonzero lamination parameters for any DD laminate
can be found. The key to solving the preceding equations depends
largely on pairs of cos 2θ, sin 2θ, cos 4θ, and sin 4θ in Eqs. (10), (13),
and (16), from which it can be deduced that there are, by the
combination rule,C�4; 2� � 4 � 10 solution types in total, as shown
in Appendix A, where four are pairs of their own. Furthermore, the
coefficients of Eqs. (10), (13), and (16) can potentially reduce the
complexity of solving the preceding equations, depending on the type
of DD laminates.

B. Feasible Regions of Staggered 1

In this section, one of the DD laminates presented by Tsai [1],
which has sublaminates with the stacking sequence ��ϕ∕−ψ∕
−ϕ∕�ψ �, will be taken as an example to validate the method pro-

posed. Based on Eqs. (10), (13), and (16), ξA1;2;3;4 can be written as

ξA1 � 1

2
cos�2ϕ� � 1

2
cos�2ψ�;

ξA2 � 1

2
cos�4ϕ� � 1

2
cos�4ψ�;

ξA3 � 0; ξA4 � 0 (21)

It can be seen from Eq. (21) that equal contributions are made by the
four plies. Therefore, in aDD laminate comprising angles ��ϕ;�φ�,
the contributions based on sine functions will be equal and opposite

so that ξA3;4, which are related to the shear–extension coupling stiff-

ness, are intrinsically zeros. It should be noted that DD laminates
could include shear–extension coupling when the plies are rotated;
however, research on the DD laminates with ply rotation is out of the

scope of this study. As for ξB1;2;3;4, they can be expressed as

ξB1 � −
1

2n
cos�2ϕ� � 1

2n
cos�2ψ�;

ξB2 � −
1

2n
cos�4ϕ� � 1

2n
cos�4ψ�;

ξB3 � −
1

n
sin�2ϕ� � 1

n
sin�2ψ�;

ξB4 � −
1

n
sin�4ϕ� � 1

n
sin�4ψ� (22)

It can be observed that themagnitudes of these lamination parameters
are inversely proportional to the number of plies n so that increasing

the number of plies will decrease the magnitude of ξB1;2;3;4 to any

required limit, i.e., approximating a symmetric laminate. Hence,
homogeneity can be approximated to any required accuracy by

increasing the number of plies. Expressions for ξD1;2;3;4 are given in

Eq. (23):

ξD1 � 1

2
cos�2ϕ� � 1

2
cos�2ψ�

ξD2 � 1

2
cos�4ϕ� � 1

2
cos�4ψ�

ξD3 � 6

n2
sin�2ϕ� � 6

n2
sin�2ψ�

ξD4 � 6

n2
sin�4ϕ� � 6

n2
sin�4ψ� (23)

The feasible regions of all possible combinations of any two lami-
nation parameters are analytically obtained based on the preceding
equations using the method of the Lagrange multipliers. However, in
this method, constraints on ϕ and ψ are impossible to add because
they will cause transcendental functions that have to be solved
numerically. Such an approach will require a lot of computational
effort andmight not reach enough accuracy,which is not the intention
of this paper. Therefore, ϕ and ψ are supposed to vary between −90
and 90 degherein, which covers threeDD laminates (i.e., staggered 1,
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staggered 2, and a part of paired). Based on this range, the obtained

feasible regions can be used as base solutions for each type of DD

laminate; the results of staggered 1, which is the most promising DD

laminate, are presented in the following paragraphs. According to the

combination rule, there are 66 solutions in total, i.e., C�12; 2� � 66.

From Eqs. (21) and (23), we see that ξA1 � ξD1 , ξ
A
2 � ξD2 , and ξ

A
3;4 � 0,

reducing the total number of combinations to 28, i.e., C(8,2). Although

28 solutions can be derived, there are only five basic solution types/

unique region shapes, as shown in Fig. 2, with the rest of the 28

solutions being obtained from these by either rotation or scaling.

Figure 2 illustrates feasible regions of the five unique pairs of

lamination parameters (i.e., ξA1 − ξA2∕ξD1 − ξD2 , ξ
A
1–ξ

B
1 , ξ

B
1 –ξ

B
2 , ξ

B
1 –ξ

B
3 ,

and ξB3 –ξ
B
4 ). Five different shapes of feasible regions are obtained from

six different types of solutions. The equations for the boundaries that

include straight lines, quadratics, ellipses, andquartics are also included

in the figure, with the equations being in the same color as the

corresponding boundaries. To validate the obtained feasible regions,

the lamination parameters of all of the possible layups for eight-ply

laminateswith ply angle increments of 1 deg are plotted (the blue scatter

points) and can be seen to lie within the feasible region boundaries.

Fig. 2 Two-dimensional feasible regions of eight-ply laminate: six unique shapes.
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The aforementioned solution covers larger design possibilities

than each type of DD family. However, most of the types bring extra

disadvantageous design space in coupling stiffness. It was found in

Ref. [1] that the optimal sublaminate is the staggered 1. Such a

configuration retains the same design space of in-plane and out-of-

plane stiffnesses and has the minimum space for coupling stiffness.

To obtain its feasible regions, extra constraints restricting angles

lying within 0 to 90 deg must be added on the top of the base

solutions. Those extra boundaries can be easily found by restricting

one of the DD angles to be 0 or 90 deg. From Eqs. (21–23), it can

be deducted that restricting ϕ and ψ to be positive only changes

lamination parameters ξB3;4 and ξD3;4. Therefore, the feasible regions
not related to these four lamination parameters are the same as the
base solutions, which are shown in Appendix B. Such a method can
be applied to any sequence of DD families.
Figure 3 illustrates unique shapes of feasible regions for stag-

gered 1 marked in yellow scatters with eight plies in total, and their
solutions are listed within plots. Because staggered 1 has different
values of ξB3;4 and ξD3;4 as compared with the base solutions, 22
feasible regions related to them are changed. Among these feasible
regions, six unique and basic shapes are identified, as shown in
Figs. 3a–3f. It can be observed that restricting ϕ and ψ between

Fig. 3 Feasible regions for staggered 1 with eight plies.
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0 and 90 deg significantly reduces the feasible regions of coupling

lamination parameters ξB1;2;3;4 as compared with the base solutions

marked in blue scatters; hence, the coupling effect on staggered 1 is
reduced.
Comparisons of the feasible region of ξA1–ξ

A
2 between QUAD

laminates and DD laminates are shown in Fig. 4. The solid green
lines in Figs. 4a–4c represent the feasible regions of 6-ply, 12-ply, and
20-ply QUAD laminates, respectively. It can be seen that the lower
boundaries of the feasible region of DD laminates are lower than
those of the three QUAD laminates, achieving more design possibil-
ities. However, DD laminates cannot reach the lamination parameters
located in the top left and top right of the feasible region of theQUAD
laminates, especially when the number of plies is large. The red
parabola represents the boundary above which the percentage of
90 deg plies should be more than 50% (hard laminates), whereas
the blue parabola is the same for the 0 deg plies (hard laminates). Due
to the nature ofDD laminates, themaximumpercentage of 90 or 0 deg
is 50%. As shown in Fig. 4b, for QUAD laminates with a ply number
of less than 12, which are mostly adopted in the industry, most of the
feasible region can be covered by DD laminates and the rest can be
approximated by the nearest point of DD laminates. For QUAD
laminates with a large number of plies, the regions of soft laminates
(�45 deg plies are more than 50%) and neutral laminates can still be
fully covered. The hard laminates of the QUAD laminates, however,
cannot be covered by DD laminates. To cover this area, some
strategies can be applied to DD laminates, e.g., replacing the QUAD
laminate by a DD laminate with the same A11*, A22*, or A66*,
which are defined in Eq. (24). Besides, the failure envelopes of the
hard QUAD laminates and approximated DD laminates are close.

Hence, this reduction of the feasible region has only a small effect on

DD laminates in terms of practical design.

For practical design, the coupling stiffness B is an important

concern because it causes warping within a laminate. For QUAD

laminates, the coupling stiffness is forced to be zero by stacking

laminas symmetrically, resulting in high thickness laminates. Due to

the nature of DD laminates, their coupling stiffness B cannot be

eliminated. However, the coupling effect can be significantly reduced

by increasing the number of plies. Such a phenomenon is known as

homogenization [13]. Figure 5 shows the effect of the number of plies

on the feasible regions of ξB1;2;3;4. Because the boundaries of the

feasible regions of DD laminates are inversely proportional to the

number of plies (see Table 1), a DD laminate is able to achieve

homogenization with only a few repeats. As can be seen from Fig. 5,

the values of ξB1;2;3;4 are halved when the number of plies is doubled.

The maximum absolute values of ξB3;4 for a DD laminate with eight

plies are both 0.5, whereas those of a DD laminate with 32 plies are

reduced to 0.125, which means the effects of B16 and B26 could be

neglected. Compared to ξB3;4, ξ
B
1;2 have even smaller absolute values.

As can be seen fromFig. 5a, themaximumabsolutevalues of ξB1;2 for a
DD laminate with 32 plies are less than 0.1.

On the other hand, homogenization is also seen for ξD3 and ξD4
because the contributions made by each angle are equal, with dis-

crepancies that are inversely proportional to the square of the number

of plies. Thus, the coupling parameters ξD3 and ξD4 are approaching

zero when the number of plies increases (see Fig. 5g); whereas for

QUAD laminates, these stiffnesses have to be tailored in order to

avoid such coupling, which limits their design space.

Fig. 4 Feasible region of ξA1 –ξ
A
2 for DD laminates and QUAD laminates: a) 6 plies, b) 12 plies, and c) 20 plies.
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C. Homogenization Criterion

According to Ref. [12], two criteria have to be met to reach

homogenization, which require the largest components of �B	� to
be sufficiently small; and, j�A	� − �D	�j is approaching 0[12], where
�A	;B	;D	� are the thickness normalized stiffnesses defined in

Eq. (24) [43]:

A	;B	;D	 �
�
1

h
Aij;

2

h2
Bij;

12

h3
Dij

�
(24)

Specific homogenization criterion is defined in Ref. [1], i.e., a

percentage I of the absolute value of the Tsai modulus [43] that

can be defined in the following equations:

jB	
ijj < I 	 Tsai modulus (25)

j�A	� − �D	�j < I 	 Tsai modulus (26)

As for theDD laminateswith a sublaminate of ��ϕ∕−ψ∕−ϕ∕�ψ �, as
ξA1;2 � ξD1;2 and ξ

A
3;4 � 0, with Eq. (25), it can be easily deduced that

A	
11,A

	
22,A

	
66 � D	

11,D
	
22,D

	
66 andA

	
16,A

	
26 � 0. Hence, Eq. (27) can

be simplified as

j�D	
16�j < I 	 Tsai modulus (27)

j�D	
26�j < I 	 Tsai modulus (28)

Normalizing Eq. (3) following Eq. (24), B	 � �2∕h2�B so that

2
66666666664

B	
11

B	
22

B	
12

B	
66

B	
16

B	
26

3
77777777775

�

2
66666666664

0 ξB1 ξB2 0 0

0 −ξB1 ξB2 0 0

0 0 −ξB2 0 0

0 0 −ξB2 0 0

0 ξB3 ∕2 ξB4 0 0

0 ξB3 ∕2 −ξB4 0 0

3
77777777775

2
666666664

U1

U2

U3

U4

U5

3
777777775

(29)

Because the values of the components in stiffnessmatrixB	 are set to
be less than a predefined value of I to satisfy the homogenization

criterion, the criterion can be expressed as follows:

−I 	 Tsaimodulus ≤ �U2 	 ξB1 �U3 	 ξB2 � ≤ I 	 Tsai modulus

(30)

−I 	 Tsaimodulus ≤ �−U2 	 ξB1 �U3 	 ξB2 � ≤ I 	 Tsaimodulus

(31)

−I 	 Tsaimodulus ≤ �−U3 	 ξB2 � ≤ I 	 Tsaimodulus (32)

−I 	 Tsaimodulus ≤
�
1

2
U2 	 ξB3 �U3 	 ξB4

�
≤ I 	 Tsaimodulus

(33)

−I 	 Tsaimodulus ≤
�
1

2
U2 	 ξB3 −U3 	 ξB4

�
≤ I 	 Tsaimodulus

(34)

Fig. 5 Feasible regions of lamination parameters: a) ξB1 –ξ
B
2 , b) ξ

B
1 –ξ

B
3 , c) ξ

B
1 –ξ

B
4 , d) ξ

B
3 –ξ

B
2 , e) ξ

B
2 –ξ

B
4 , f) ξ

B
3 –ξ

B
4 , and g) ξD3 –ξ

D
4 .
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From Eqs. (30–32),

−
I

U	
2

≤ ξB1 ≤
I

U	
2

(35a)

and

−
I

U	
3

≤ ξB2 ≤
I

U	
3

(35b)

where U	
2 and U	

3 are normalized U2 and U3 by the Tsai modu-

lus [11].
These are extreme values. The feasible region of �ξB1 ; ξB2 � is a

parallelogram with vertices at

�
−

I

U	
2

; 0

�
;

�
0;−

I

U	
3

�
;

�
I

U	
2

; 0

�
; and

�
0;

I

U	
3

�

Combining Eq. (33) and Eq. (34),

−
2I

U	
2

≤ ξB3 ≤
2I

U	
2

(36a)

and

−
I

U	
3

≤ ξB4 ≤
I

U	
3

(36b)

Fig. 5 (Continued).

Table 1 Feasible region boundaries for staggered 1

(x, y) Feasible region Range

ξB1 , ξ
B
2

jyj � 1

n
��1–2njxj�2 − 1� −

1

n
≤ x ≤

1

n
;−

1

n
≤ y ≤

1

n

ξB1 , ξ
B
3

n2y2 � �2nx � 1�2 � 1 −
1

n
≤ x ≤

1

n
;−

1

n
≤ y ≤

1

n

ξB1 , ξ
B
4

y � 2

n
�2nx � 1�

��������������������������������
1 − �2nx � 1�2

q
−
1

n
≤ x ≤

1

n
;−

2

n
≤ y ≤

2

ny � 4x
��������������������
1 − �nx�2

p
ξB3 , ξ

B
2

y �� nx2
−
1

n
≤ x ≤

1

n
;−

1

n
≤ y ≤

1

ny � −2x � nx2

ξB2 , ξ
B
4

�
y

2

�
2

� x2 � 1

n2
−
1

n
≤ x ≤

1

n
;−

2

n
≤ y ≤

2

n

ξB3 , ξ
B
4

y �� 2x

��������������������
1 − �nx�2

q
y � 2

n

�
js1

�������������
1 − s21

q
− s2

�������������
1 − s22

q
j
�

−
1

n
≤ x ≤

1

n
;−

2

n
≤ y ≤

2

n
s1 �

n

2
x − δ; s2 �

n

2
x� δ

δ �
�����������������������������������������������������
�1� n2

4
x2� −

�������������������
n2x2 � 1

4

rs

ξD3 , ξ
D
4 y � 2jxj

������������������
1 −

n4x2

144

r
−
12

n2
≤ x ≤

12

n2
;−

12

n2
≤ y ≤

12

n2
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These are extreme values. The feasible region of �ξB3 ; ξB4 � is a paral-
lelogram with vertices at

�
−

2I

U	
2

; 0

�
;

�
0;−

I

U	
3

�
;

�
2I

U	
2

; 0

�
and

�
0;

I

U	
3

�

As for the homogenization criterion defined in Eq. 32, ξD3;4 are

inversely proportional to the second order of the number of plies;

hence, ξD3 and ξD4 are always smaller than ξB3 and ξB4 , respectively.
Therefore, for staggered 1, when �B	� has met the criterion of 2%,

j�A	� − �D	�j is naturally less than 2% of the Tsai modulus. Figure 6

presents the feasible regions in terms of ξB1;2;3;4 for DD laminates with

Fig. 6 Feasible regions of ξB1;2;3;4 with 2% homogenization criterion.

Fig. 7 Unreachable feasible region under 2% homogenization criterion for four-repeat DD laminates on ξA1 vs ξA2 .
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8, 16, and 32 plies with a homogenization criterion (red dashed line)
of 2% of the Tsai modulus replaced by master ply values [11] (i.e.,
U	

2 � 0.417 and U	
3 � 0.098), leading to homogenization criterion

at �−0.048; 0�, �0;−0.204�, �0.048; 0�, and �0; 0.204� for the feasible
region of �ξB1 ; ξB2 � and �−0.096; 0�, �0;−0.204�, �0.096; 0�, and
�0; 0.204� for the feasible region of �ξB3 ; ξB4 �.
As discussed in Sec. IV.B, theDD laminatewith a larger number of

plies has smaller design spaces in terms of ξB1;2;3;4; hence, the homog-
enization criterion can be relatively easily achieved by the laminates
with a larger number of plies/repeats. It can be seen that, for staggered
1 with 16 plies (four repeats), most of the design space is located
inside the region defined by the homogenization criterion; whereas
for DD laminates with 32 plies (eight repeats), the design space is
fully covered by the homogenization criterion.
For the feasible regions out of this homogenization criterion

envelope, other types of DD laminates can be employed instead to
cover this area; and 16 plies (four repeats) are enough forDD families
to reach homogenization. Thus, DD laminates can still retain the
maximum design space in bending and extension stiffness while
having minimum or no effect on coupling stiffness. By such means,
staggered 1 can reach homogenization at 16 plies (four repeats) using
staggered 3 as replacements on the unreachable area.
Figure 7 illustrates the unreachable feasible region under 2%

homogenization criterion for the four-repeat staggered 1 and 3. For
staggered 1, this area in feasible regions ξB1 and ξB2 is reflected to the

feasible regions ξA1 and ξA2 shown in Fig. 7a. Unlike staggered 1, the

unreachable area for staggered 3 is caused by the criterion on ξB3 and

ξB4 rather than ξB1 and ξB2 . It can be observed that the red area for

staggered 1 (see Fig. 7a) can be covered by a combination of
staggered 3 when Φ ≤ Ψ (see Fig. 7b) and Φ > Ψ (see Fig. 7c).
Thus, this combination of DD sequences shown in Fig. 8 allows DD
laminates to reach all the possible design space covered by the 2%
homogenization criterion in just 16 plies (four repeats). As for the
conventional QUAD laminates that are characterized as hetero-
geneous, they would require at least 120 plies to reach homogeniza-
tion; the large number of plies makes their optimization design hard
to perform [1]. Great benefits can therefore be obtained by replacing
QUAD laminates with DD laminates.

V. Conclusions

In this study, novel formulations for obtaining the lamination
parameters of DD laminates are presented: based on which, the
feasible regions of the combinations of any two lamination parame-
ters are obtained analytically using Lagrange multipliers. All the
feasible regions with regard to two lamination parameters have been
obtained in this paper, and the six typical feasible regions have been
presented; whereas the rest are defined by either rotating or scaling
these basic shapes. These novel formulations are applicable to all DD

laminates, including those with rigid-body rotation, which will be

discussed in future work. The proposed method is validated against

one of the most popular DD laminates with the stacking sequence

of the sublaminate as ��ϕ∕−ψ∕−ϕ∕�ψ �. The obtained results

indicate that the lamination parameters ξA1 and ξA2 are always equal

to lamination parameters ξD1 and ξD2 , respectively, whereas ξ
A
3 and ξA4

are always zeros. The feasible regions of ξB1234 have first-order

negative correlations with the number of plies. Such a feature is

highly beneficial for DD laminates to achieve homogenization.

Besides, based on the simple expressions of lamination parameters,

feasible regions for any two lamination parameters can be obtained

analytically using the method of Lagrange multipliers. Finally, the

homogenization criterion of 2%has been drawn in the feasible region

of DD laminates, and combination sequences of staggered 1 and 3

have been proved to be able to reach all the design space covered by

the 2% homogenization criterion with only 16 plies (four repeats).

Appendix A: A List of 10 Solution Types for Feasible
Regions of General DD Laminates

There are 10 possible types, as given in the following list, where

superscripts x and y equal A, B, or D and denote the lamination

parameters to be plotted on the x and y axes, respectively:
Type (1,1) compares ξx1 and ξy1: f�θ1;θ2� � p1c1 � p2c2;

g�θ1;θ2� � q1c1 � q2c2.
Type (2,2) compares ξx2 and ξy2: f�θ1;θ2� � p1C1 � p2C2;

g�θ1;θ2� � q1C1 � q2C2.

Type (3,3) compares ξx3 and ξy3: f�θ1;θ2� � p1s1 � p2s2;
g�θ1;θ2� � q1s1 � q2s2.
Type (4,4) compares ξx4 and ξy4: f�θ1;θ2� � p1S1 � p2S2;

g�θ1;θ2� � q1S1 � q2S2.
Type (1,2) compares ξx1 and ξy2: f�θ1;θ2� � p1C1 � p2C2;

g�θ1;θ2� � q1c1 � q2c2.
Type (1,3) compares ξx1 and ξy3: f�θ1;θ2� � p1s1 � p2s2;

g�θ1;θ2� � q1c1 � q2c2.
Type (1,4) compares ξx1 and ξy4: f�θ1;θ2� � p1S1 � p2S2;

g�θ1;θ2� � q1c1 � q2c2.
Type (3,2) compares ξx3 and ξy2: f�θ1;θ2� � p1C1 � p2C2;

g�θ1;θ2� � q1s1 � q2s2.
Type (2,4) compares ξx2 and ξy4: f�θ1;θ2� � p1S1 � p2S2;

g�θ1;θ2� � q1C1 � q2C2.

Type (3,4) compares ξx2 and ξy4: f�θ1;θ2� � p1S1 � p2S2;
g�θ1;θ2� � q1s1 � q2s2, where

c1 � cos�2θ1� c2 � cos�2θ2�;
C1 � cos�4θ1� � 2c21 − 1 � 1–2s21 C2 � cos�4θ2� � 2c22 − 1

� 1–2s22

s1 � sin�2θ1� s2 � sin�2θ2�
S1 � sin�4θ1� � 2c1s1 S2 � sin�4θ2� � 2c2s2

and �p1; p2� and �q1; q2� are the coefficients of the trigonometric

functions in the objective function and constraint, respectively.

Appendix B: Feasible Regions of Lamination Parameters

The specific solutions for the DD laminates are −90 ≤ ϕ and

ψ ≤ 90.
There is no need to compare a parameterwith itself. Also, ξA1 � ξD1 ,

ξA2 � ξD2 and ξA3 � ξA4 � 0. So, there are 28 comparisons [i.e.,

C�8; 2� � 28] between the pairs of the four ξD1;2;3;4 parameters and

the four ξB1;2;3;4 parameters.

Note that, the solutions in Table B1 are for DD laminates with

angles ranging from−90 to 90 deg. Each feasible region for staggered
1, staggered 2, and staggered 3, and paired can be simply achieved by

adding angle constraints (0 or 90 deg) onto the boundaries.

Fig. 8 A tailored feasible region for a combination of staggered 1 and 3.
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Table B1 Feasible regions of different combinations of lamination parameters
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