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Abstract. We consider Schrödinger operators of the form HR = − d2/ dx2+
q + iγχ[0,R] for large R > 0, where q ∈ L1(0, ∞) and γ > 0. Bounds for
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1. Introduction

There has recently been a surge of interest concerning bounds for the magni-
tude of eigenvalues and the number of eigenvalues of Schrödinger operators
with complex potentials. In this paper, we consider Schrödinger operators of
the form

HR = − d2

dx2
+ q + iγχ[0,R] on L2(0,∞) (R > 0), (1)

endowed with a Dirichlet boundary condition at 0, where γ > 0 and the
background potential q ∈ L1(0,∞) (which may be complex-valued) are re-
garded as fixed parameters. Perturbations of the form iγχ[0,R] are referred to
as dissipative barriers and arise in spectral approximation, where they can
be utilised as part of numerical schemes for the computation of eigenvalues
[2,22–24,31,34]. Our aim is to prove estimates for the magnitude and number
of eigenvalues of HR for large R.

1.1. Existing Bounds for the Magnitude and Number of Eigenvalues

Let us first discuss some relevant existing results concerning the eigenvalues
of (non-self-adjoint) Schrödinger operators and apply them to operators of
the form HR.

In [1], Abramov, Aslanyan and Davies investigated bounds for com-
plex eigenvalues of Schrödinger operators, in particular obtaining a bound
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[1, Theorem 4] for Schrödinger operator on L2(R) with a potential V ∈
L1(R)∩L2(R). Such magnitude bounds were later generalised to include more
general potentials, higher dimensions and more general geometries [6,8,10–
12,15,17,20,21,29]. The work most relevant to this paper was undertook by
Frank, Laptev and Seiringer [14], where they show that any eigenvalue λ of
a Schrödinger operator −d2/dx2 + V on L2(R+), endowed with a Dirichlet
boundary condition at 0, satisfies

√
|λ| � ‖V ‖L1 . (2)

Note that the right hand side of the bound presented in [14] depends on arg λ
and is sharper than (2). An application of this result to operators of the form
HR gives an estimate

√|λR| = O(R) as R → ∞ for any eigenvalue λR of
HR.

Proving bounds for the number of eigenvalues of a Schrödinger operator
is often regarded a more difficult problem. A sufficient condition for the po-
tential V to ensure that the number of eigenvalues of a Schrödinger operator
on L2(R+) is finite is the Naimark condition [25]:

∃a > 0 :
∫ ∞

0

eat|V (t)|dt < ∞. (3)

There exist other such sufficient conditions and it is known that the number
of eigenvalues may not be finite for certain potentials decaying only sub-
exponentially [3,27,28].

Quantitative bounds for the number of eigenvalues of a Schrödinger op-
erator on L2(Rd) were proved by Stepin in [32,33] for dimensions d = 1, 3.
Bounds for arbitrary odd dimensions were later proved by Frank, Laptev and
Safronov in [13], which give better large R estimates when applied to opera-
tors HR of the form (1). Frank et al. [13, Theorem 1.1] states that the number
of eigenvalues N (counting algebraic multiplicity) of a Schrödinger operator
−d2/dx2 + V on L2(R+) endowed with a Dirichlet boundary condition at 0
satisfies

N � 1
ε2

(∫ ∞

0

eεt|V (t)|dt

)2

. (4)

for any ε > 0. With the assumption that the background potential q satisfies
the Naimark condition, applying this inequality to HR with ε = 1/R gives an
estimate N(HR) = O(R4) as R → ∞ for the number of eigenvalues (counting
algebraic multiplicities) N(HR) of HR.

Additionally, Korotyaev has proved in [19, Theorem 1.6] a bound specific
to Schrödinger operators with compactly supported potentials: the number
of eigenvalues N of a Schrödinger operator −d2/dx2+V on L2(R+) endowed
with a Dirichlet boundary condition at 0, with V ∈ L1(R+) and suppV ⊆
[0, Q], satisfies

N � C1 + C2Q‖V ‖L1 (5)

where C1, C2 > 0 are some numerical constants. With the assumption that
the background potential q is compactly supported, applying this inequality
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to HR gives an estimate N(HR) = O(R2) as R → ∞. We mention also other
estimates for numbers of eigenvalues in [5,18,30].

1.2. Summary of Results

Table 1 summarises our results for the large R behaviour of the eigenvalues of
HR and compares them to the application of the existing results to operators
of the form HR.

Let H
(0)
R denote the operator HR for the case q ≡ 0. The semi-infinite

strip

Γγ := (0,∞) + i(0, γ) ⊂ C (6)

plays an important role throughout the paper and has the property that its
closure Γγ is equal to the numerical range of the operator H

(0)
R for any R > 0.

An open ball in C of radius r > 0 about a point z0 ∈ C is denoted by Br(z0).
Note that in this paper we make no attempt to optimise numerical constants.

Our first result gives a uniform in R enclosure for the eigenvalues of HR:

(A) (Theorem 4(a)) There exists X = X(q, γ) > 0 such that, for any R > 0,
the eigenvalues of HR lie in BX(0) ∪ Γγ .

In particular, the imaginary and negative real components of the eigenvalues
are bounded independently of R.

Our next result is a bound for the magnitude of eigenvalues of HR for
sufficiently large R. The bound gives the estimate

√|λR| = O(R/ log R) as
R → ∞ for any eigenvalue λR of HR providing a logarithmic improvement
to the application of the result [14] of Frank, Laptev and Seiringer to this
system.

(B) (Theorem 4(b)) There exists R0 = R0(q, γ) > 0 such that for every
R � R0, any eigenvalue λ of HR in Γγ satisfies

√
|λ − iγ| � 5γR

log R
. (7)

The first inequality in (9) shows that the estimate
√|λR| = O(R/ log R) is in

fact sharp. (B) is obtained by considering an analytic function whose zeros
are the eigenvalues of HR and applying large-|λ| Levinson asymptotics. The
enclosure that results from combining (A) and (B) is illustrated in Fig. 1.

The fact that large eigenvalues of HR for large R must be contained
in the numerical range of H

(0)
R and the right hand side of inequality (7) is

independent of q indicates that the effect of the background potential q on
the large eigenvalues is dominated by effect of the dissipative barrier iγχ[0,R]

for large R.
Our first estimate for the number of eigenvalues N(HR) for HR is for

the case that the background potential q is compactly supported. It gives
the estimate N(HR) = O(R2/ log R) as R → ∞, which offers a logarithmic
improvement to the application of the result [19, Theorem 1.6] of Korotyaev
to this system.
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Table 1. A summary of the large R asymptotic estimates
for the eigenvalues of HR implied by our results compared
to estimates obtained by applying various results in the lit-
erature

Literature Our results

Magnitude
√|λR| = O(R)

√|λR| = O(R/ log R)
bound Frank, Laptev, Theorem 4

Seiringer (2011)
Number of eigenvalues N(HR) = O(R2) N(HR) = O(R2/ log R)
(q compactly Korotyaev (2020) Theorem 8
supported)
Number of eigenvalues N(HR) = O(R4) N(HR) = O(R3/(log R)2)
(Naimark condition) Frank, Laptev, Theorem 10

Safronov (2016)

Figure 1. Illustration the enclosure for the eigenvalues of
HR provided by Theorem 4

(C) (Theorem 8) If q is compactly supported then there exists R0 = R0(q, γ) >
0 such that for every R � R0,

N(HR) � 11
log 2

γR2

log R
.

The second inequality in (9) shows that the estimate N(HR) = O(R2/ log R)
is sharp. The proof consists in an application of Jensen’s formula.

The case in which the background potential q merely satisfies the Naimark
condition requires more sophisticated techniques compared to the compactly
supported case. Our result gives the estimate N(HR) = O(R3/(log R)2) as
R → ∞, providing a more significant improvement to the application of the
result [13, Theorem 1.1] of Frank, Laptev and Safronov to this system, which
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gives N(HR) = O(R4). The reasons for the more significant improvement are
discussed below.

(D) (Theorem 10) If there exists a > 0 such that
∫ ∞

0

e4at|q(t)|dt < ∞.

then there exists R0 = R0(q, γ) > 0 such that for every R � R0,

N(HR) � C

√
X + a

a2

γ2R3

(log R)2
(8)

where X = X(q, γ) > 0 is the constant appearing in (A) and C = 88788.

The proof of (D) involves first obtaining a bound which counts the
number of zeros in a strip for an arbitrary analytic function in the upper
half plane (Proposition 9). This bound can be applied to the estimation of
N(HR) thanks to the uniform in R enclosure (A), which implies that the
square-roots of the eigenvalues of HR are contained in a strip, uniformly
in R. Without the uniform enclosure, we would have to use the magnitude
bound (B) in place of the uniform enclosure with which the best we could
obtain is inequality (8) with

√
X replaced by O(R/ log R), giving the large R

estimate N(HR) = O(R4/(log R)3). This indicates that the more significant
improvement in (D) is due to the combination of a bound for the quantity
√

λ of the eigenvalues λ with the bound Proposition 9 for analytic functions.
Operators of the form H

(0)
R , corresponding to the special case q = 0,

have been studied by Bögli and Štampach in [4], by Golinskii in [16] and by
Cuenin in [7]. A consequence of [7, Theorem 4] is that there exists constants
C1, C2 > 0 such that for all large enough R > 0,

sup
λ∈σ(H

(0)
R )

√
|λ| � C1

R

log(R)
and N(H(0)

R ) � C2
R2

log(R)
. (9)

Note that although this result was formulated for the Schrödinger operator
on R, it applies to Schrödinger operators on R+ endowed with a Dirichlet
or Neumann boundary condition since the author constructs both odd and
even eigenfunctions of H

(0)
R in [7, Section 7.1]. As already mentioned, the

inequalities (9) show that Theorem 4(b) and Theorem 8 provide optimal
large R estimates.

The reader is referred to [31, Section 5] for numerical illustrations of the
eigenvalues of operators of the form HR for large R.

1.3. Notations and Conventions

Throughout the paper, C > 0 denotes a constant, whose dependencies are
generally indicated, that may change from line to line. ψ′(x, λ) will denote
d
dxψ(x, λ) throughout. The branch cut of

√· is made along σe(HR) = [0,∞),
so that √

z � 0 for all z ∈ C. N(HR) shall denote the number of eigenvalues
of HR, counting algebraic multiplicities (as above). Finally, note that fR will
always denote an analytic function but will be redefined in each section.
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2. Magnitude Bound

Since q ∈ L1(0,∞), we can employ Levinson’s asymptotic theorem which
states that the solution space of the Schrödinger equation −u′′ + qu = λu on
[0,∞) is spanned by solutions ψ+ and ψ−, which admit the decomposition
[26, Appendix II, Theorems 1 and 3] [9, Theorem 1.3.1]:

ψ±(x, λ) = e±i
√

λx(1 + E±(x, λ))

ψ′
±(x, λ) = ±i

√
λe±i

√
λx(1 + Ed

±(x, λ)) (x ∈ [0,∞), λ ∈ C\{0}).
(10)

Here, E± and Ed
± are some functions such that,

|E±(x, λ)| + |Ed
±(x, λ)| → 0 as x → ∞ (11)

for all λ ∈ C\{0}, and

|E±(x, λ)| + |Ed
±(x, λ)| � C(q)

√|λ| (12)

for all x ∈ [0,∞) and λ ∈ C with |λ| � 1.
While the error E+(x, λ) tends to 0 as x → ∞ uniformly for λ ∈

C\Bδ(0), δ > 0, the error E− does not have this property. For this reason,
we will need to utilise large-|λ| asymptotics of ψ± in this section.

Lemma 1. λ ∈ C\[0,∞) with λ �= iγ is an eigenvalue of HR if an only if
fR(λ) = 0, where

fR(λ) := ψ−(0, λ − iγ)
(√

λ −
√

λ − iγ + E1(R, λ)
)
ei

√
λ−iγR

− ψ+(0, λ − iγ)
(√

λ +
√

λ − iγ + E2(R, λ)
)
e−i

√
λ−iγR.

Here, E1, E2 are defined, for any R > 0 and λ ∈ C\{0, iγ}, by
E1(R, λ) =

√
λ
(
E+(R, λ − iγ) + Ed

+(R, λ) + E+(R, λ − iγ)Ed
+(R, λ)

)

−
√

λ − iγ
(
Ed

+(R, λ − iγ) + E+(R, λ) + Ed
+(R, λ − iγ)E+(R, λ)

)
, (13)

E2(R, λ) =
√

λ
(
Ed

+(R, λ) + E−(R, λ − iγ) + Ed
+(R, λ)E−(R, λ − iγ)

)

+
√

λ − iγ
(
E+(R, λ) + Ed

−(R, λ − iγ) + E+(R, λ)Ed
−(R, λ − iγ)

)
(14)

and, for some C1 = C1(q, γ) > 0, satisfy

|E1(R, λ)| + |E2(R, λ)| � C1 (15)

for all R > 0 and all λ ∈ C with |λ| � 1 + γ. Furthermore, fR, E1(R, ·) and
E2(R, ·) are analytic on C\([0,∞) ∪ (iγ + [0,∞))).

Proof. Let λ ∈ C\[0,∞) with λ �= iγ. λ is an eigenvalue of HR if and only if
there a solution to the boundary value problem

− ψ′′ + (q + iγχ[0,R])ψ = λψ on [0,∞), ψ(0) = 0, ψ ∈ L2(0,∞). (16)

Any solution to (16) on [0, R] must be of the form C1ψ1(·, λ), where

ψ1(x, λ) := ψ−(0, λ − iγ)ψ+(x, λ − iγ) − ψ+(0, λ − iγ)ψ−(x, λ − iγ) (17)
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and C1 ∈ C is independent of x. Any solution to the boundary value problem
(16) on [R,∞) must be of the form C2ψ+(x, λ), where C2 ∈ C is independent
of x. Hence λ is an eigenvalue if and only if there exists C1, C2 ∈ C\{0}
independent of x such that the function

x �→
{

C1ψ1(x, λ) if x ∈ [0, R)
C2ψ+(x, λ) if x ∈ [R,∞)

is continuously differentiable which holds if and only if

ifR(λ)ei
√

λR ≡ ψ1(R, λ)ψ′
+(R, λ) − ψ′

1(R, λ)ψ+(R, λ) = 0. (18)

The required expression for fR holds by a direct computation, using expres-
sions (10) for ψ±.

For λ ∈ C with |λ| � 1 + γ we have |λ| � 1 and |λ − iγ| � 1. Therefore,
estimates (12) apply to all the terms in (13) and (14) involving E± or Ed

±.
The O(1/

√|λ|) decay of the terms involving E± or Ed
± as |λ| → ∞ cancel

the growth of the square roots hence estimate (15) holds. Finally, fR, E1(R, ·)
and E2(R, ·) are analytic on C\([0,∞) ∪ (iγ + [0,∞))) because

√·, E±(R, ·)
and Ed

±(R, ·) are analytic on C\[0,∞). �

In the special case q ≡ 0, fR is denoted by f
(0)
R and we have that:

λ ∈ C\[0,∞) is an eigenvalue of H
(0)
R if and only if f

(0)
R (λ) = 0.

The terms E± and Ed
± in Levinson’s asymptotic theorem are simply zero for

this case, so

f
(0)
R (λ) =

(√
λ −

√
λ − iγ

)
ei

√
λ−iγR −

(√
λ +

√
λ − iγ

)
e−i

√
λ−iγR. (19)

Lemma 2. There exists a constant C2 = C2(q, γ) > 0 such that

|fR(λ) − f
(0)
R (λ)| � C2e

�√
λ−iγR

for all R > 0 and all λ ∈ C with |λ| � 1 + γ.

Proof. By a direct computation, using Lemma 1 and the fact that

ψ±(0, λ − iγ) = 1 + E±(0, λ − iγ),

we have

(fR(λ) − f
(0)
R (λ))ei

√
λ−iγR = E−(0, λ − iγ)[∗]

√
λ −

√
λ − iγe2i

√
λ−iγR

−E+(0, λ − iγ)[∗]
√

λ +
√

λ − iγ

+(1 + E−(0, λ − iγ))E1(R, λ)e2i
√

λ−iγR

−(1 + E+(0, λ − iγ))E2(R, λ). (20)

Each term on the right hand side of (20) is bounded uniformly for all R > 0
and all λ ∈ C with |λ| � 1+ γ; this follows using the boundedness for E1 and
E2 proved in Lemma 1 as well as the large-|λ| asymptotics of E±(0, λ− iγ) in
(12). In particular, inequality (12) implies that E±(0, λ − iγ) = O(1/

√|λ|)
as |λ| → ∞, balancing the growth of the factors

√
λ ± √

λ − iγ in the first
two terms of (20). �
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Recall that Γγ is an open strip defined by Eq. (6). We shall need the
following elementary inequalities:

Lemma 3. (a) If λ ∈ Γγ ∪ [0,∞) then

|
√

λ +
√

λ − iγ| � γ
√|λ − iγ| and |

√
λ −

√
λ − iγ| �

√
|λ − iγ|.

(b) If λ ∈ C\(Γγ ∪ [0,∞)) then

|
√

λ +
√

λ − iγ| �
√

|λ| and |
√

λ −
√

λ − iγ| � γ
√|λ| .

(c) If λ ∈ Γγ then


√

λ − iγ � 1√
2

γ
√|λ − iγ| .

Proof. (a) If λ ∈ Γγ ∪ [0,∞) then

sgn�
√

λ − iγ = −sgn�
√

λ, |�
√

λ − iγ| � 
√

λ − iγ and |�
√

λ| � 
√

λ

so

|
√

λ −
√

λ − iγ|2 = (�
√

λ)2 + (�
√

λ − iγ)2 + (
√

λ)2 + (
√

λ − iγ)2

−2�
√

λ�
√

λ − iγ − 2
√

λ
√

λ − iγ

� |λ − iγ|. (21)

The inequality for
√

λ +
√

λ − iγ follows from the identity
√

λ +
√

λ − iγ =
iγ√

λ − √
λ − iγ

. (22)

(b) If λ ∈ iγ + C+ ∪ [0,∞) or λ ∈ C− then, similarly to (21),

sgn�
√

λ = sgn�
√

λ − iγ ⇒ |
√

λ +
√

λ − iγ|2 � |λ|.
If λ ∈ (−∞, 0]+ i[0, γ] then |�√

λ| � √
λ and |�√

λ − iγ| � √
λ − iγ

so

|
√

λ +
√

λ − iγ|2 � |λ − iγ| + |λ| � |λ|
hence the inequality for

√
λ +

√
λ − iγ holds. The inequality for

√
λ −√

λ − iγ follows from (22).
(c) Let λ ∈ Γγ and let z = λ − iγ. Then |z| � γ so

2(√
z)2 = |z| − �z =

(z)2

|z| + �z
� γ2

|z| .

�

Using the function fR for the eigenvalues of HR, combined with the
large-|λ| asymptotics of ψ±, we can estimate the location of the eigenvalues
of HR:

Theorem 4. (a) There exists X = X(q, γ) > 0 such that, for any R > 0,
the eigenvalues of HR lie in BX(0) ∪ Γγ .
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(b) There exists R0 = R0(q, γ) > 0 such that for every R � R0, any eigen-
value λ of HR in Γγ satisfies

√
|λ − iγ| � 5γR

log R
. (23)

Proof. (a) Let R > 0. HR has no eigenvalues in [0,∞) (indeed, this follows
from the Levinson asymptotic formulas (10)) so it suffices to show that
any zero of fR in C\(Γγ ∪ [0,∞)) must lie in an open ball in the complex
plane, whose radius is independent of R. Let λ ∈ C\(Γγ ∪ [0,∞)) be
such that |λ| � X, where X = X(q, γ) > 0 is a large enough constant
to be further specified. Let X > 0 be large enough so that |λ| � 1 + γ.
By the expression for fR in Lemma 1,

∣∣
∣fR(λ)ei

√
λ−iγR

∣∣
∣ �

∣∣
∣
∣∣
∣ψ+(0, λ − iγ)

(√
λ +

√
λ − iγ + E2(R, λ)

)∣∣
∣

−
∣
∣∣ψ−(0, λ − iγ)

(√
λ −

√
λ − iγ + E1(R, λ)

)∣
∣∣ e−2�√

λ−iγR
∣
∣∣ .

(24)

By the boundedness of E1 and E− (Lemma 1 and estimates (12)),
as well an inequality in Lemma 3(b), there exists C1 = C1(q, γ) > 0
such that

∣∣∣ψ−(0, λ − iγ)
(√

λ −
√

λ − iγ + E1(R, λ)
)∣∣∣ e−2�√

λ−iγR � C1. (25)

Let δ > 0. Recall that |E2(R, λ)| � C1, where C1 > 0 is the constant
appearing in Lemma 1. Let X > 0 be large enough such that |ψ+(0, λ−
iγ)| � 1

2 and
√

|λ| � 2(C1 + δ) + C1.

Then, using Lemma 3(b),
∣∣∣ψ+(0, λ − iγ)

(√
λ +

√
λ − iγ + E2(R, λ)

)∣∣∣ � 1
2

∣∣∣
√

|λ| − C1

∣∣∣ � C1 + δ.

(26)

Combining (24), (25) and (26), we have

|fR(λ)| � δ > 0.

Consequently, λ is not an eigenvalue of HR proving that there are no
eigenvalues of HR in C\Γγ with magnitude greater than X.

(b) Let R � R0, where R0 = R0(q, γ) > 0 is a large enough constant to be
further specified. Let λ ∈ Γγ be such that

√
|λ − iγ| log |λ − iγ| � 8γR. (27)

We aim to prove that λ is not an eigenvalue of HR.
Using the expression (19) for f

(0)
R ,

|f (0)
R (λ)|

|λ − iγ|1/4
e−�√

λ−iγR �
∣∣∣
∣∣
|√λ − √

λ − iγ|
|λ − iγ|1/4

e−2�√
λ−iγR − |√λ +

√
λ − iγ|

|λ − iγ|1/4

∣∣∣
∣∣
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Using the inequality (27) and Lemma 3(c), λ satisfies

e−2�√
λ−iγR � e−√

2γR/
√

|λ−iγ| � e−
√

2
8 log |λ−iγ| =

1
|λ − iγ|√2/8

. (28)

Ensure R0 > 0 is large enough so that |λ− iγ|1/4 � 2|λ− iγ|
√
2/8. Then,

using Lemma 3(a),

|√λ − √
λ − iγ|

|λ − iγ|1/4
� |λ − iγ|1/4 � 2|λ − iγ|

√
2/8. (29)

Ensure also that R0 > 0 is large enough so that |λ − iγ| � γ4/3. Com-
bining (29) with (28) and using Lemma 3(a) again,

|√λ − √
λ − iγ|

|λ − iγ|1/4
e−2�√

λ−iγR � 2 � 1 +

∣∣∣
√

λ +
√

λ − iγ
∣∣∣

|λ − iγ|1/4
.

and hence

|f (0)
R (λ)| � |λ − iγ|1/4e�√

λ−iγR. (30)

In particular, f
(0)
R (λ) �= 0.

Recall that C2 = C2(q, γ) > 0 denotes the constant appearing in
Lemma 2. Ensure that R0 > 0 is large enough so that |λ| � 1 + γ and
|λ − iγ|1/4 � 2C2. By (30) and Lemma 2,

|fR(λ) − f
(0)
R (λ)| � C2e

�√
λ−iγR � 1

2
|λ − iγ|1/4e�√

λ−iγR � 1
2
|f (0)

R (λ)|

therefore fR(λ) �= 0 and, consequently, λ is not an eigenvalue of HR.
This proves that any eigenvalue of HR must satisfy

√
|λ − iγ| log

√
|λ − iγ| � 4γR. (31)

Let W denote the Lambert-W -function (also known as the product
log function). W satisfies

W (x) = log
(

x

W (x)

)
and y log y = x ⇐⇒ y =

x

W (x)
(x > 0, y > 0).

Hence (31) can be written as
√

|λ − iγ| � 4γR

W (4γR)
=

4γR

log(4γR) − log(W (4γR))

from which (23) follows.
�

Remark 1. The constant X = X(q, γ) > 0 in Theorem 4(a) satisfies

X = O(‖q‖3L1) as ‖q‖L1 → ∞.

This can be seen by noting that E±(R, λ), Ed
±(R, λ) = O(‖q‖L1) (see [9,

Chapter 1.4]), C1 = O(‖q‖2L1) and C1 = O(‖q‖3L1).
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3. Number of Eigenvalues

In this section, we estimate the number of eigenvalues for HR, for which we
necessarily need to add additional assumptions on the background potential
q.

3.1. Preliminaries

Let ψ± denote the solutions (10) for the Schrödinger equation and

ϕ(x, z) := ψ+(x, z2) (x ∈ [0,∞), z ∈ C+).

ϕ is commonly referred to as the Jost solution. For each R > 0, define function
fR : C+ → C by

ifR(z)eizR = θ(R, z)ϕ′(R, z) − θ′(R, z)ϕ(R, z) (z ∈ C+).

where, for any z ∈ C, θ(·, z) is defined as the solution to the initial value
problem

− θ′′ + qθ = (z2 − iγ)θ, θ(0) = 0, θ′(0) = 1. (32)

By the same arguments as in Lemma 1, we have the following.

Lemma 5. fR is analytic on C+ and any z ∈ C+ satisfies

fR(z) = 0 ⇐⇒ z2 is an eigenvalue of HR. (33)

ϕ can be decomposed in a similar way to ψ±,

ϕ(x, z) = eizx(1 + E(x, z))

ϕ′(x, z) = izeizx(1 + Ed(x, z))
(x ∈ [0,∞), z ∈ C+) (34)

for some functions E and Ed whose properties will be later specified, for the
different assumptions on the background potential q that we consider. We
shall need the following facts concerning fR and θ. Note that in Lemma 6,
E1 and E2 are defined in a different way than in Lemma 1.

Lemma 6. Suppose that, for each R > 0, ϕ(R, ·) and ϕ′(R, ·) admits an ana-
lytic continuation from C+ into some open U ⊂ C. Then, fR admits analytic
continuation into U . Furthermore, for each R > 0 and z ∈ U\{±√

iγ},
fR(z)u(z) = ψ−(0, z2 − iγ)

(
z −

√
z2 − iγ + E1(R, z)

)
ei

√
z2−iγR

−ψ+(0, z2 − iγ)
(
z +

√
z2 − iγ + E2(R, z)

)
e−i

√
z2−iγR (35)

where

u(z) := ψ−(0, z2 − iγ)ψ′
+(0, z2 − iγ) − ψ+(0, z2 − iγ)ψ′

−(0, z2 − iγ), (36)

E1(R, z) := z
(
E+(R, z2 − iγ) + Ed(R, z) + E+(R, z2 − iγ)Ed(R, z)

)

−
√

z2 − iγ
(
Ed

+(R, z2 − iγ) + E(R, z) + Ed
+(R, z2 − iγ)E(R, z)

)

(37)
and E2(R, z) := z

(
Ed(R, z) + E−(R, z2 − iγ) + Ed(R, z)E−(R, z2 − iγ)

)

+
√

z2 − iγ
(
E(R, z) + Ed

−(R, z2 − iγ) + E(R, z)Ed
−(R, z2 − iγ)

)
. (38)
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Proof. Analytic continuation holds by the fact that θ(R, ·) is entire [35,
Lemma 5.7] for each R > 0. If z �= ±√

iγ then the functions ψ±(·, z2 − iγ)
span the solution space of the Schrödinger equation −ψ′′ + qψ = (z2 − iγ)ψ
so

θ(R, z) =
ψ−(0, z2 − iγ)ψ+(R, z2 − iγ) − ψ+(0, z2 − iγ)ψ−(R, z2 − iγ)
ψ−(0, z2 − iγ)ψ′

+(0, z2 − iγ) − ψ+(0, z2 − iγ)ψ′−(0, z2 − iγ)

=
ψ1(R, z2)

u(z)
where ψ1 denotes the function defined by (17) in Lemma 1. The lemma follows
by a direct computation, similar to one in Lemma 1. �

Lemma 7. For any x ∈ [0,∞) and z ∈ C\{±iγ}, the solution θ to the initial
value problem (32) satisfies the inequality

|θ(x, z)| + |θ′(x, z)| � (1 + x)e|�
√

z2−iγ|x exp
(∫ x

0

(1 + t)|q(t)| dt
)

.

Proof. Let μ = μ(z) :=
√

z2 − iγ. θ and θ′ satisfy the integral equations

θ(x, z) =
sin(μx)

μ
+

∫ x

0

sin(μ(x − t))
μ

q(t)θ(t, z) dt

and

θ′(x, z) = cos(μx) +
∫ x

0

cos(μ(x − t))q(t)θ(t, z) dt

hence satisfy the integral inequality

|θ(x, z)| + |θ′(x, z)| � (1 + x)e|�μ|x[∗]1 +
∫ x

0

e−|�μ|t|q(t)|(|θ(t, z)| + |θ′(t, z)|) dt

where we used the fact that | sin(μx)||μ|−1 � xe|�μ|x and | cos(μx)| � e|�μ|x.
The result follows from an application of Grönwall’s Lemma. �

3.2. Compactly Supported Potentials

Assumption 1. q is compactly supported, that is, there exists Q > 0 such
that

supp q ⊂ [0, Q].

If Assumption 1 holds and then the Jost solution ϕ satisfies

ϕ(R, z) = eizR (R > Q, z ∈ C) (39)

hence, for each x ∈ [0,∞), ϕ(x, ·) can be analytically continued to C. Conse-
quently, for R > Q, fR can be analytically continued to C and can be written
as

fR(z) = zθ(R, z) + iθ′(R, z) (z ∈ C). (40)

Theorem 8. Suppose that Assumption 1 holds. Then there exists R0 = R0(q, γ) >
0 such that for every R � R0,

N(HR) � 11
log 2

γR2

log R
. (41)
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Proof. Let z0 ∈ C+ be such that

ψ+(0, z20 − iγ) �= 0, 
√

z20 − iγ � 1 and
√

|z20 − iγ| � 2. (42)

In fact, by choosing z0 to be the minimiser of some suitable total order on
C in the set of points that maximise z �→ ψ+(0, z2 − iγ) while satisfying the
latter two inequalities of (42), z0 can be determined uniquely by q and γ,
z0 = z0(q, γ). Define r = r(R) > 0 by

r

2
= γ1/2 + |z0| +

5γR

log R
. (43)

By the triangle inequality,

|z − z0| � |z| + |z0| �
√

|z2 − iγ| + γ + |z0| �
√

|z2 − iγ| + γ1/2 + |z0|
(44)

so,

SR := {∗}z ∈ C+ :
√

|z2 − iγ| � 5γR

log R
⊆ Br/2(z0). (45)

Let R > Q > 0 be large enough so that estimate (23) of Theorem 4(b)
holds. Since the zeros of fR in C+ have a bijective correspondence with the
eigenvalues of HR, the set SR contains all the zeros of fR in C+ and hence
the number of eigenvalues of HR is bounded by the number of zeros for fR

in the ball Br/2(z0),

N(HR) � |f−1
R {0} ∩ Br/2(z0))|. (46)

Since fR is entire, Jensen’s formula gives us

|f−1
R {0} ∩ Br/2(z0)| � 1

log 2
log

∣
∣∣∣∣

1
fR(z0)

sup
|z−z0|=r

|fR(z)|
∣
∣∣∣∣
. (47)

Since R > Q, the terms E1(R, z) and E1(R, z), defined by (37) and (38)
respectively, vanish. Hence, by Lemma 6 and the fact that 

√
z20 − iγ � 1,

|fR(z0)u(z0)| � |ψ+(0, z20 − iγ)
(

z0 +
√

z20 − iγ

)
|eR

−|ψ−(0, z20 − iγ)(z0 −
√

z20 − iγ))|e−R.

Note that 
√

z20 − iγ � 1 implies that z0 �= ±√
iγ so Lemma 6 is indeed

applicable here. Then, since ψ+(0, z20 − iγ) �= 0,
√

|z20 − iγ| � 2 and z0 =
z0(q, γ),

|fR(z0)| � C(q, γ) (48)

for large enough R.
By expression (40) for fR and the estimates in Lemma 7 for θ and θ′,

for all z ∈ ∂Br(z0),

|fR(z)| � C(q)(1 + R)(1 + |z|)e|
√

z2−iγ|R. (49)
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Furthermore, by the triangle inequality and expression (43) for r, for all
z ∈ ∂Br(z0),

√
|z2 − iγ| � |z − z0| + |z0| + γ1/2 = 3γ1/2 + 3|z0| +

10γR

log R
. (50)

Noting that for z ∈ ∂Br(z0), the factor (1 + |z|) in (49) is o(R), combining
(46)–(50) gives us

N(HR) � 1
log 2

(
log o(R2) +

(
3γ1/2 + 3|z0|

)
R +

10γR2

log R

)

as R → ∞. Estimate (41) follows. �

3.3. Exponentially Decaying Potentials

Assumption 2. (Naimark Condition) There exists a > 0 such that
∫ ∞

0

e4at|q(t)|dt < ∞.

If Assumption 2 is satisfied then for each x > 0 the functions ϕ(x, ·)
and ϕ′(x, ·) admit analytic continuations from C+ into {z > −2a}. For each
x > 0, the functions E and Ed appearing in the decomposition (34) of the
Jost solution ϕ satisfy

|E(x, z)| + |Ed(x, z)| � C(q) if z � −a (51)

and

|E(x, z)| + |Ed(x, z)| � C(q)
|z| if  z � −a and |z| � 1. (52)

See [25, Theorem 2.6.1] and [32, Lemma 1] for proofs of the above claims.
The next proposition allows us to utilise the uniform enclosure of The-

orem 4(a) in the estimation of the number of eigenvalues of HR.

Proposition 9. Suppose that f is an analytic function defined on an open
neighbourhood of the closed semi-disc Dr := Br(0) ∩C+ for some r > 0. Let
α and β be any numbers in the interval (0, 1) satisfying

β

(
1 − α

α + β

)2

>
Y

η
(53)

and let N(αr) denote the number of zeros in the region

Dαr,η,Y := {z ∈ C : η � z � Y, |z| � αr} (54)

where Y, η > 0 are given parameters satisfying η < Y < r. Then,

N(αr) � 2
log Λ(r)

log
(

1
min {β, 1 − β}

supz∈∂Dr
|f(z)|

|f(iβr)|
)

(55)

where

Λ(r) :=
1 + 4βη

(α+β)2
1
r

1 + 4Y
(1−α)2

1
r

. (56)
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Figure 2. Illustration for the setup of Proposition 9

Remark 2. One can always guarantee that condition (53) for α and β is
satisfied by choosing, for instance,

α = β =
1
4

η

2Y + η
. (57)

Proof of Proposition 9. Let {zj}N(αr)
j=1 denote the set of zeros of f in the set

Dαr,η,Y and consider the Blaschke product

b(z) :=
∏

j

z − zj

z − zj
≡

∏

j

bj(z).

Note that higher multiplicity zeros of f are repeated in the set {zj} accord-
ingly. Let z0 := iβr. The function f(z)b(z) is analytic on an open neighbour-
hood of Dr so by Cauchy’s formula,

1
2πi

∮

∂Dr

f(z)b(z)
z − z0

dz = f(z0)b(z0). (58)

Observing that |z − z0| � min {β, 1 − β}r for all z ∈ ∂Dr, it holds that

1
2π

∮

∂Dr

|dz|
|z − z0| � 1

min {β, 1 − β}
which can be used to estimate the integral in (58) to get

∏

j

|bj(z0)|
supz∈∂Dr

|bj(z)| �
supz∈∂Dr

|f(z)|
|f(z0)|

1
min {β, 1 − β} . (59)

By a direct computation, we have

|bj(z)| =

√

1 +
4zzj

|z − zj |2 .
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Since

z0 = βr, zj � η, |z0 − zj | � (α + β)r,

giving us a lower bound for |bj(z0)|, and since for any z ∈ C with |z| = r

z � r, zj � Y, |z − zj | � (1 − α)r,

giving us an upper bound for |bj(z)|, we have

|bj(z0)|
|bj(z)| � Λ(r)1/2 (60)

for any z ∈ ∂Dr with |z| = r. Furthermore, if z ∈ R then |bj(z)| = 1 so (60)
in fact holds for every z ∈ ∂Dr. Combining (60) with (59) gives us

Λ(r)N(αr)/2 � 1
min {β, 1 − β}

supz∈∂Dr
|f(z)|

|f(z0)| . (61)

If hypothesis (53) for α and β holds then Λ(r) > 1 so we can take the
logarithm of both sides of (61) and rearrange to obtain inequality (55). �

Theorem 10. Suppose that Assumption 2 holds. Then there exists R0 = R0(q, γ) >
0 such that for every R � R0,

N(HR) � C

√
X + a

a2

γ2R3

(log R)2
(62)

where C = 88788 and X = X(q, γ) > 0 is the constant appearing in Theorem
4(a).

Proof. Let f̃R(z) := fR(z − ia) and let α, β > 0 satisfy Eq. (57) of Remark 2
with η = a and Y =

√
X + a where X = X(q, γ) is the constant appearing

in Theorem 4. Then hypothesis (53) of Proposition 9 is satisfied. Note that
with this choice of β we have β < 1/2, so,

min {β, 1 − β} = β. (63)

The zeros of f̃R in {z > a} have a bijective correspondence to eigen-
values of HR given by

(z − ia)2 ∈ σd(HR) ⇐⇒ z > a and f̃R(z) = 0. (64)

Assuming without loss of generality that X � γ, the square root of the
enclosure BX(0) ∪ Γγ is contained in the strip {0 � w �

√
X} ⊂ C. Then

by the uniform enclosure of Theorem 4(a), the zeros of f̃R in {z > a} are
contained in the strip {a � z �

√
X + a}. By the triangle inequality and the

magnitude bound of Theorem 4(b), any zero z of f̃R with z > a satisfies

|z| � γ1/2 + a +
√

|(z − ia)2 − iγ| � αr (65)

where r = r(R) is defined by

αr = γ1/2 + a +
5γR

log R
. (66)

Hence the zeros of f̃R in {z > a} are contained in Dαr,η,Y .
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Applying Proposition 9, we get an estimate for the number of eigenvalues
of HR,

N(HR) = |f̃−1
R {0} ∩ Dαr,η,Y | � 2

log Λ(r)
log

(
1
β

supz∈∂Dr
|f̃R(z)|

|f̃R(iβr)|

)

(67)

where

Λ(r) =
1 + C1/r

1 + C2/r
(68)

for some constants C1 > C2 > 0 depending only on X and a. The remainder
of the proof consists in estimating the right hand side of (67).

Let zR := iβr(R) − ia. By Lemma 6,

|fR(zR)u(zR)| � |ψ+(0, z2R − iγ)(zR +
√

z2R − iγ + E2(R, zR))|

−|ψ−(0, z2R − iγ)(zR −
√

z2R − iγ + E1(R, zR))| (69)

for large enough R. By estimates (12) for E± and Ed
±, and the corresponding

estimates (52) for E and Ed,

|u(zR)| + |ψ−(0, z2R − iγ)| + |E1(R, zR)| + |E2(R, zR)| � C(q, γ) (70)

and

|ψ+(0, z2R − iγ)| � C(q, γ) (71)

for large enough R. By Lemma 3,

lim
R→∞

|zR +
√

z2R − iγ| = ∞ and lim
R→∞

|zR −
√

z2R − iγ| = 0. (72)

Combining (69) with (70), (71) and (72) gives us

|f̃R(iβr)| = |fR(zR)| � 1 (73)

for large enough R.
The factor involving Λ(r) on the right hand side of (67) can be estimated

using the expression (68) for Λ and the inequality log x � (x − 1)/(x + 1)
(x � 1),

log Λ(r) � Λ(r) − 1
Λ(r) + 1

=
(C1 − C2)/r(R)

2 + (C1 + C2)/r(R)
� C1 − C2

3r(R)
(74)

for large enough R.
The function f̃R is estimated from above using the bound in Lemma 7

for θ and θ′ and the uniform bounds (51) for E(R, ·) and Ed(R, ·),

|f̃R(z)| � C(q)(1 + R)(1 + |z|)eaRe|
√

(z−ia)2−iγ|R (z ∈ C+). (75)

Using the expression (66) for r, for any z ∈ ∂Dr we have
√

|(z − ia)2 − iγ| � γ1/2 + a + |z| � O(1) +
5γR

α log R
(76)
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as R → ∞. Combining (67) with (73), (74), (75) and (76), noting that |z| =
o(R) for z ∈ ∂DR and β−1 = O(1), gives

N(HR) � 6
C1 − C2

(
O(1) +

5γR

α log R

)(
O(R) +

5γR2

α log R

)

as R → ∞ and so

N(HR) � 151γ2R3

(C1 − C2)α2(log R)2
(77)

for large enough R.
Finally, we put the constant into a more illuminating form. By the

definition (56) of Λ in Proposition 9,

C1 =
η

α
and C2 =

4Y

(1 − α)2
. (78)

Since η
12Y � α � η

8Y , we have

(C1 − C2)α2 = ηα − 4Y α2

(1 − α)2
� η2

12Y
− 4Y α2

(1 − η
8Y )2

(79)

and since 0 � η/Y � 1, we have

α2

(1 − η
8Y )2

=
η2

64Y 2

1
(1 + η

2Y )2(1 − η
8Y )2

� η2

49Y 2
(80)

Combining (79) and (80), we have

(C1 − C2)α2 � 1
588

η2

Y
. (81)

which gives estimate (62) when substituted into (77), with Y =
√

X + a and
η = a. �

Acknowledgements

The author would like to express his gratitude to his PhD supervisors Jonathan
Ben-Artzi and Marco Marletta, for helpful discussion and guidance. Funding
was provided by Engineering and Physical Sciences Research Council (Grant
No. EP/R513003/1 2106294).

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


IEOT Bounds for Schrödinger Operators on the Half-Line Page 19 of 21 60

References

[1] Abramov, A.A., Aslanyan, A., Davies, E.B.: Bounds on complex eigenvalues
and resonances. J. Phys. A Math. Gen. 34(1), 57–72 (2001)

[2] Aljawi, S., Marletta, M.: On the eigenvalues of spectral gaps of matrix-valued
Schrödinger operators. Numer. Algorithms 86, 637–657 (2020)
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