
A Comparison of Dijkstra’s Algorithm Using Fibonacci Heaps,
Binary Heaps, and Self-Balancing Binary Trees

Rhyd Lewis

School of Mathematics,
Cardiff University, Cardiff, Wales.

LewisR9@cf.ac.uk, http://www.rhydlewis.eu

March 22, 2023

Abstract
This paper describes the shortest path problem in weighted graphs and examines the differences in efficiency that

occur when using Dijkstra’s algorithm with a Fibonacci heap, binary heap, and self-balancing binary tree. Using C++
implementations of these algorithm variants, we find that the fastest method is not always the one that has the lowest
asymptotic complexity. Reasons for this are discussed and backed with empirical evidence.

1 Introduction
Dijkstra’s algorithm is an efficient, exact method for finding shortest paths between vertices in edge- and arc-weighted
graphs. It is particularly useful in transportation problems when we want to determine the shortest (or fastest) route be-
tween two geographic locations on a road network [7, 10, 14]. It is also applicable in areas such as telecommunication,
social network analysis, arbitrage, and currency exchange [15, 18].

In this paper, we examine the changes in computational complexity and computing times that occur when using
either a self-balancing binary tree, binary heap, or Fibonacci heap within Dijkstra’s algorithm. As part of this work,
we give an efficient C++ implementation of the algorithm and of Fibonacci heaps. Many programming languages,
including C++, contain versions of self-balancing binary trees and binary heaps as part of their libraries; however,
implementations of Fibonacci heaps are less common. Existing C++ implementations of Fibonacci heaps are also
buggy, inefficient, and/or difficult to use. This is not the case for the custom implementation used here, which has been
fully tested and evaluated.

The next section formally defines the shortest path problem and surveys several algorithms for solving it. Section 3
gives a detailed description of Dijkstra’s algorithm, while Section 4 shows how the efficiency of this method can be
improved through the use of priority queues. In Section 5 we describe implementations of four variants of Dijkstra’s
algorithm, which are then compared and evaluated in Section 6. Conclusions are drawn in Section 7.

2 Problem Definition and Existing Algorithms
Let G = (V,A) be an arc-weighted, directed graph in which V is a set of n vertices, and A is a set of m arcs (directed
edges). In addition, let Γ(u) denote the set of vertices that are neighbours of a vertex u. That is, Γ(u) = {v : (u, v) ∈
A}. Finally, we also define a nonnegative weight (or length) w(u, v) for each arc (u, v) ∈ A. The weight (or length)
of a path is defined by the sum of the weights of its arcs.

According to Cormen et al. [9], three problems involving shortest paths on arc-weighted graphs can be distin-
guished:

The single-source single-target shortest path problem. This involves finding the shortest path between a particular
source vertex s and target vertex t. In other words, we want to identify the s-t-path in G whose length (weight)
is minimal among all possible s-t-paths.

The single-source shortest path problem. This involves determining the shortest path from a source s to all other
reachable vertices in G. In this sense, we are seeking a “shortest path tree rooted at s”. An example of such a
tree is shown in Figure 1.

The all-pairs shortest path problem. This involves finding the shortest path between every pair of vertices in G.
That is, we are seeking the shortest u-v-paths for all u, v ∈ V .

1

ar
X

iv
:2

30
3.

10
03

4v
2

 [
cs

.D
S]

 2
1

M
ar

 2
02

3

LewisR9@cf.ac.uk
http://www.rhydlewis.eu

Figure 1: An example graph with n = 100 vertices (the black circles). In this case, arcs are drawn with straight lines,
and arc weights correspond to the lengths of these lines. This particular graph is also symmetric in that (u, v) ∈ A if
and only if (v, u) ∈ A, with w(u, v) = w(v, u). The highlighted arcs show a shortest path tree rooted at the vertex s.
Because this graph is a strongly connected component, the shortest path tree is also a spanning tree.

In this work, we will use Dijkstra’s algorithm to solve the second problem in the above list. It can, however, also
be used for the other two variants. To do this with the single-source single-target shortest path problem, we simply
need to halt Dijkstra’s algorithm as soon as the target vertex becomes “distinguished” (see Section 3). For the all-pairs
shortest path problem, meanwhile, it is sufficient to execute Dijkstra’s algorithm n times, using each vertex u ∈ V as
the source in turn.

Several other algorithms also exist for the above three problems. In cases where graphs feature negative arc weights,
a more suitable alternative is the O(nm)-time Bellman-Ford algorithm [9]. Although this algorithm has a higher
growth rate than that of Dijkstra’s, it has the added advantage of being able to detect if a particular instance of the
shortest path problem is “ill-defined”, in that it contains negative cycles. Bellman-Ford can also be augmented with
additional data structures to form Moore’s algorithm [16] which, though still featuring a complexity ofO(nm), usually
features faster run times than Bellman-Ford.

For the single-source single-target shortest path problem, other specialised algorithms exist, though none of these
is known to run asymptotically faster than Dijkstra’s algorithm. One well-known alternative is the A* algorithm of
Hart et al. [11, 12]. This is a heuristic-based variant of Dijkstra’s algorithm and usually gives much faster run times
in applications involving transportation networks. Algorithms for variants of the single-source single-target shortest
path problem have also been proposed by Yen [19] and Bhandari [8]. Yen’s algorithm is used to find the k shortest
s-t-paths, where k is a user-defined parameter. The methods of Bhandari, meanwhile, are used to produce a pair of
shortest s-t-paths that are either edge-disjoint and/or vertex-disjoint.

Finally, alternative algorithms are also available for the all-pairs shortest path problem. One well-known approach
is the O(n3) Floyd-Warshall algorithm, which is also able to handle graphs containing negative arc weights. Another
option in the presence of negative weights is the algorithm of Johnson [13]. This operates by transforming the input
graph into a second graph that has no negative weights but which maintains the same shortest-paths structure as the
original. This can be achieved through a single application of the Bellman-Ford algorithm. After this, n applications
of Dijkstra’s algorithm can then be performed.

3 Dijkstra’s Algorithm
In this section, we give a more detailed description of Dijkstra’s algorithm. We also describe its underlying data
structures and derive its complexity.

To produce a shortest-path tree rooted at s, Dijkstra’s algorithm operates by maintaining a set D of so-called “dis-
tinguished vertices”. Initially, only the source vertex s is considered distinguished. During execution, further vertices
are then added to D, one at a time, until all reachable vertices have been inserted. Two other data structures are also
maintained. First, a “label” L(u) is stored for each vertex u ∈ V in the graph. During execution, L(u) stores the
length of the shortest s-u-path that uses distinguished vertices only. Consequently, on termination of the algorithm,
L(u) gives the length of the shortest s-u-path in the graph. If a vertex u has a label L(u) = ∞, then no s-u-path is
possible. Finally, a “predecessor” P (u) is also stored for each vertex u ∈ V . During execution, P (u) stores the vertex
that occurs before u in the shortest s-u path (of length L(u)) that uses distinguished vertices only. If a vertex u has no
predecessor, then P (u) = NULL. On termination, these predecessor values can be used to construct the shortest paths
from s to all reachable vertices.

2

Algorithm 1: Dijkstra’s Algorithm (Basic Form)
input : An arc-weighted graph G = (V,A) and source vertex s ∈ V
output: A populated label array L and predecessor array P

1 Set L(u) =∞ and P (u) = NULL for all u ∈ V . Also let D = ∅, and set L(s) = 0.
2 Choose a vertex u ∈ V such that: (a) its value for L(u) is minimal; (b) L(u) is less than∞; and (c) u is not in

D. If no such vertex exists, then end; otherwise insert u into D and go to Step 3.
3 For all neighbours v ∈ Γ(u) that are not in D, if L(u) +w(u, v) < L(v) then set L(v) = L(u) +w(u, v) and

set P (v) = u. Now return to Step 2.

s = v1 v2 v3 v4

v5 v6 v7 v8

3 2 4 5 4 3

2 1 4

4 4

v1 v2 v3 v4 v5 v6 v7 v8

L 0 2 3 7 3 2 6 7

P NULL v1 v2 v3 v1 v1 v6 v3

Figure 2: Example output from Algorithm 1 using the indicated eight-vertex graph and source vertex s = v1. In
this case, the graph is undirected. Consequently, an arc (u, v) exists if and only if the arc (v, u) exists. In all cases,
w(u, v) = w(v, u), as shown. The shortest path tree rooted at s (defined by P) is shown by the bold lines in the graph.

Algorithm 2: GET-PATH

input : The arc weighted graph G, predecessors P , source vertex s, and an arbitrary vertex u
output: A vertex sequence π corresponding to the shortest s-u-path in G

1 Let π = (), and let v = u
2 if P (u) 6= NULL then
3 while v 6= s do
4 Append v to π and set v = P (v)

5 Append s to π and then reverse π

In its most basic form, Dijkstra’s algorithm can now be described by just three steps. These are given in Algo-
rithm 1. In these steps, note that one vertex is inserted into D at each iteration. This gives O(n) iterations of the
algorithm in total. Furthermore, within each iteration, we need to identify the vertex u /∈ D with the minimum label
(anO(n) operation) and then examine (and possibly update) the labels of all vertices v ∈ Γ(u). This leads to an overall
complexity of O(m+ n2). Since the upper bound of m = O(n2), this complexity can be simplified to O(n2). Output
from an example run of this algorithm is shown in Figure 2.

On completion of Dijkstra’s algorithm, the sequence of vertices that occurs in each shortest path starting at s
is stored in P . The shortest s-u-path (for all u ∈ V) can be constructed using the GET-PATH procedure shown in
Algorithm 2. As shown, this operates by starting at u, and taking each preceding vertex until the source s is encoun-
tered. The s-u-path is then the reverse of this sequence. For example, the shortest s-v8-path from Figure 2 is written
π = (s, v2, v3, v8). Note that, because all arc weights are assumed to be nonnegative, the paths returned by Dijkstra’s
algorithm will always be “simple”. That is, they will never contain the same vertex more than once.

As mentioned earlier, Dijkstra’s algorithm is also exact, meaning that it is guaranteed to determine the shortest s-
u-path for all reachable vertices u ∈ V . Short proofs of this correctness can be found in several well-known textbooks
such as [9] and [17].

4 Using Priority Queues
Although the complexity of Dijkstra’s algorithm isO(n2), for sparse graphs its run times can be significantly improved
by making use of a priority queue. During execution, this priority queue is used to hold the labels of all vertices that
have been considered by the algorithm but that are not yet marked as distinguished. It should also allow us to quickly
identify the undistinguished vertex that has the minimum label value. This “improved” version of Dijkstra’s algorithm
is expressed in Algorithm 3.

As shown, the DIJKSTRA procedure in Algorithm 3 uses four data structures, D, L, P and Q. The first three of
these contain n elements and should allow direct access (e.g., by using arrays). D is used to mark the distinguished
vertices, while L and P hold the labels and predecessors of each vertex as before. In this pseudocode, the priority
queue is denoted by Q. At each iteration, Q is used to identify the element (L(u), u), representing the undistinguished

3

Algorithm 3: DIJKSTRA

input : An arc weighted graph G = (V,A), and source vertex s ∈ V
output: A populated label array L and predecessor array P

1 For all u ∈ V , set L(u) =∞, set D(u) = false, and set P (u) = NULL
2 Set L(s) = 0 and insert the ordered pair (L(s), s) into Q
3 while Q is not empty do
4 Let (L(u), u) be the element in Q with the minimum value for L(u)
5 Remove the element (L(u), u) from Q
6 Set D(u) = true
7 foreach v ∈ Γ(u) such that D(v) = false do
8 if L(u) + w(u, v) < L(v) then
9 if L(v) <∞ then

10 Decrease the key of (L(v), v) to L(u) + w(u, v). That is, replace the element (L(v), v) in Q
with the element (L(u) + w(u, v), v)

11 else
12 Insert the element (L(u) + w(u, v), v) into Q

13 Set L(v) = L(u) + w(u, v) and set P (v) = u

Identify-Minimum Remove-Minimum Insert Decrease-Key
Self-balancing binary tree O(1) O(1)† O(lg n) O(lg n)
Binary heap O(1) O(lg n) O(lg n) O(lg n)
Fibonacci heap O(1) O(lg n)† O(1) O(1)†

Table 1: Complexities of several operators using self-balancing binary trees, binary heaps, and Fibonacci heaps. Here,
n represents the number of elements in the data structure. All entries are worst-case run times except for those marked
by †, which are amortised run times. Note that the Decrease-Key operation is not available in the binary heap imple-
mentation provided by std::priority_queue in C++ [1].

vertex u with the minimal label value. In the remaining instructions, this element is removed from Q, u is marked
as distinguished and, if necessary, adjustments are made to the labels of undistinguished neighbours of u and the
corresponding entries in Q.

The running time of DIJKSTRA now depends on the data structure used for the priority queue Q. Our first option
here is to use a self-balancing binary tree. These are a class of binary trees that automatically keep their height loga-
rithmic to the number of elements they contain. In C++, implementations of a self-balancing binary tree are provided
by the std::set container, usually using a red-black tree [2].

A second option for Q is to use a binary heap. Binary heaps are data structures that take the form of complete
binary trees. Because of this restriction, unlike self-balancing binary trees they can be implemented using an array.
This allows them to be stored in contiguous memory and also means that the parent and children of any node can
be determined using arithmetic on array indices, as opposed to pointers. In C++, binary heaps are provided by the
std::priority_queue container [1].

Our final option for Q is to use a Fibonacci heap. This data structure operates by maintaining several heap-ordered
trees. It also features better amortized running times than the previous two options for some of the operations used
by Dijkstra’s algorithm. Note, however, that C++ does not contain a Fibonacci heap in its standard library. Instead, a
custom class is required.

Table 1 considers these three alternatives forQ and uses big O notation to summarise the complexities of operations
relevant to Dijkstra’s algorithm. Further information on how these data structures work “under the hood” can be
found in [9]. For self-balancing binary trees, observe that the removal of the minimum element (L(u), u) (Line 5
of DIJKSTRA) takes constant amortised time. At Line 10 of the algorithm, Decrease-Key operations are then carried
out by finding and removing the element (L(v), v) in Q and inserting the new element (L(u) + w(u, v), v). This
process has a complexity O(lg n). Similarly, the Insert operation on Line 12 also has a complexity of O(lg n). Using
a self-balancing binary tree for Q, therefore, leads to an overall complexity for DIJKSTRA of O(m lg n).

As shown in Table 1, the operations with binary heaps show similar complexities to self-balancing binary trees,
though the removal of the minimum element is nowO(lg n) as opposed to constant amortised time. Note, however, that
the std::priority_queue container in C++ does not feature the functionality for performing Decrease-Key operations or
for removing arbitrary elements inQ. The use of this data structure, therefore, requires modifications to the DIJKSTRA
procedure. Specifically, at Line 10, instead of replacing the element (L(v), v) in Q with (L(u) +w(u, v), v), the latter

4

Variant Complexity Comments
Basic form (Section 3) O(n2) Minimum label L(u) found using linear search. Optimal

bound for dense graphs.
Self-balancing binary tree O(m lg n) More efficient than the basic form with sparse graphs.
Binary heap O(m lg n) Same complexity as previous. Note that the C++ implementation of

binary heaps (std::priority queue) does not allow the removal of
arbitrary elements, so the size of the heap is O(m), leading to a
complexity of O(m lgm).

Fibonacci heap O(m+ n lg n) Lower complexity than the previous variants.

Table 2: Complexities of the different variants of Dijkstra’s algorithm considered in this paper. Recall that n gives the
number of vertices in the graph, and m is the number of arcs.

element is now simply inserted into Q alongside the former. This means that, unlike previously, a vertex v can occur
in several elements of Q. Because of this, an additional check is now required between Lines 5 and 6 of DIJKSTRA to
determine if the selected vertex u is already distinguished (that is, ifD(u) = true). If this is the case, then the remaining
steps in the while-loop should not be considered, and the process should return to Line 3. Note that this modification
increases the overall complexity of DIJKSTRA to O(m lgm). On the other hand, binary heaps are usually seen to
be faster than self-balancing binary trees because they use contiguous memory, require fewer memory allocations,
and therefore tend to feature lower constant factors in their operators. The effects of this trade-off are considered in
Section 6.

Finally, Table 1 also shows the complexities of these operations using Fibonacci heaps. For this data structure,
Insert and Decrease-Key operations both take place in constant amortised time. In particular, unlike self-balancing
binary trees, the Decrease-Key operation does not involve a removal followed by an insertion; instead, it operates by
identifying the correct element (L(v), v) in the heap, and then lowering the first value of the element to L(u)+w(u, v),
modifying its position in the heap as applicable. The use of a Fibonacci heap for Q, therefore, leads to an overall
complexity for DIJKSTRA of O(m + n lg n). This is better than both of the previous options. Despite this, however,
Fibonacci heaps are often considered to be slow in practice due to their larger memory consumption and the high
constant factors contained in their operators. Indeed, it is noted by Cormen at al. [9] that:

“the constant factors and programming complexity of Fibonacci heaps makes them less desirable than
ordinary binary (of k-ary) heaps for most applications. Thus Fibonacci heaps are predominantly of theo-
retical interest.”

This claim will also be investigated further in the next section. A summary of the complexities of these algorithm
variants is provided in Table 2.

5 An Implementation
In this section, we consider four C++ implementations of Dijkstra’s algorithm. The first three use a self-balancing
binary tree (std::set), a binary heap (std:priority_queue), and a Fibonacci heap, as described in the previous section.
The fourth implements the basic form of Dijkstra’s algorithm seen in Section 3.

A complete listing of our code is shown in Appendix A and can be downloaded at [3]. The bespoke FibonacciHeap

class is defined on Lines 79 to 296. Lines 299 to 448 then give our four implementations of Dijkstra’s algorithm:
dijkstraFibonacci(...), dijkstraTree(...), dijkstraHeap(...), and dijkstraBasic(...). The main() function on Lines
464 onwards applies these methods to a small toy graph. The output is shown at the end of Appendix A.

The following features in this code should be noted.

• Here, graphs are defined using the custom Graph class. Graph objects are directed and are stored using the
adjacency list representation for weighted graphs [6]. It is assumed that the vertices are labelled from 0 to
n− 1 (where n is the number of vertices). The algorithm will also work perfectly well on undirected graphs by
ensuring that if an edge {u, v} is present in the graph, then both of the arcs (u, v) and (v, u) are present in the
adjacency list.

• All arc weights in the graph are assumed to be nonnegative integers. The code uses the inbuilt C++ constant
INT_MAX to represent infinity values. Exceeding this value will result in overflow and incorrect behaviour.

• Each version of Dijkstra’s algorithm returns two arrays (vectors): the label vector L and the predecessor vector
P .

5

Figure 3: Example of the dense planar graphs used in our trials. This particular instance has n = 1000 vertices and
m = 5984 arcs.

0

0.5

1

1.5

2

2.5

100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

CP
U

 T
im

e
(s

ec
)

Number of Vertices n

Fibonacci Heap

Self-Balancing Binary Tree

Binary Heap

Basic

Figure 4: Execution times of the four algorithm variants with dense planar graphs. Each point on the graph is the mean
taken from 100 runs. Error bars show one standard deviation on either side of the mean.

• Lines 450 to 462 of the code also give a function for extracting a path from P . This corresponds to Algorithm 2
above.

In the following, all trials were performed on a 64-bit Windows 10 machine with a 3.3 GHz Pro Intel Core i5-4590
CPU and 8 GB of RAM. In our case, the code was compiled using Microsoft Visual Studio 2019 under release mode.

6 Empirical Evaluation
To assess the performance of the four variants of Dijkstra’s algorithm, timed tests were carried out on two graph
topologies: dense planar graphs and random graphs. Planar graphs are a type of graph that can be drawn on a plane so
that no arcs intersect. Here, they were formed by randomly placing n vertices into a (10, 000 × 10, 000)-unit square
before generating a random Delaunay triangulation to give a graph with approximately (but not exceeding) 6n−12 arcs.
The weight of each arc was then set to the Euclidean distance between its two endpoints, giving w(u, v) = w(v, u)
for all (u, v) ∈ A. An example is shown in Figure 3. These planar graphs can be considered similar to road networks
which, as noted, are an important application area of shortest path algorithms. Our random graphs, meanwhile, were
generated by creating n vertices and then, for each ordered pair of vertices u, v, adding the arc (u, v) with a probability
p. This generation process leads to graphs with approximately pn(n − 1) arcs. Here, each arc was assigned a weight
between 1 and 10, 000, selected at random.

Execution times of the four algorithm variants with our dense planar graphs are summarised in Figure 4 using
a range of values for n. Across this range, we see that the use of a self-balancing binary tree gives faster run times
than Fibonacci heaps, though these differences are very marginal. On the other hand, the use of a binary heap gives
a noticeable improvement over these two variants, with run times dropping by approximately half. That said, each

6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CP
U

 T
im

e
(s

ec
)

Number of Vertices n

Fibonacci Heap

Self-Balancing Binary Tree

Binary Heap

Basic

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CP
U

 T
im

e
(s

ec
)

Number of Vertices n

Fibonacci Heap

Self-Balancing Binary Tree

Binary Heap

Basic

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CP
U

 T
im

e
(s

ec
)

Number of Vertices n

Fibonacci Heap

Self-Balancing Binary Tree

Binary Heap

Basic

Figure 5: Execution times of the four algorithm variants with random graphs using p = 0.1, 0.5 and 0.9 respectively.
Each point on the graph is the mean taken from 100 runs. Error bars are not shown here because all standard deviations
were seen to be less than 0.006 seconds.

of these three algorithms can compute shortest path trees of up to a million vertices in well under a second with
these graphs. As noted, the maximum number of arcs in a directed planar graph is 6n − 12 meaning that, in these
cases, m = O(n). Consequently, we can consider these three variants of Dijkstra’s algorithm to have a complexity
of O(n lg n) here. Given that binary heaps involve fewer computational overheads than self-balancing binary trees
and Fibonacci heaps, this helps to explain the superior performance of the binary heap variant in these cases. Finally,
observe that the basic form of Dijkstra’s algorithm shows both higher means and variances in run times compared to
the other three options. This is to be expected due to the sparsity of these graphs. The gap between the basic version
and the other three also widens with increases in n, highlighting the quadratic growth rate of the former.

The charts in Figure 5 show the results of the same experiments using random graphs with p = 0.1, 0.5 and 0.9
respectively. Note that, in these cases, the number of arcs is much higher than the number of vertices; consequently,
the value of m is now the dominant factor in the variants using priority queues. Since m ≈ pn(n− 1), increases to p
and/or n therefore result in longer run times.

For these graphs, we see that the relative performance of the Fibonacci heap variant improves, with its results
being almost indistinguishable from those of the binary heap. The reasons for this are that, with these denser graphs,
the number of neighbours per vertex is larger. This brings a higher number of Decrease-Key and Insert operations
during execution, which are more efficient with Fibonacci heaps. Despite this, however, the additional overheads
required by Fibonacci heaps seem to prevent the algorithm from improving on the binary heap’s run times. In cases
where n and/or p are high, the basic version of Dijkstra’s algorithm also sometimes outperforms the variant using
self-balancing binary trees. This is particularly the case for graphs with p = 0.9 where the number of arcs m in these
cases is close to n2.

Finally, note that the largest instances considered here involve n = 10, 000 vertices, density p = 0.9, and therefore
approximately 90 million arcs. In our runs, such graphs were seen to occupy around 900 MB of memory, but the run
times of the three variants using priority queues were still well below half a second in all cases. The times taken to
load these graphs into RAM are not included in the above timings, however.

7 Conclusions
This paper has described the shortest path problem and shown how the performance of Dijkstra’s algorithm can be af-
fected by the choice of data structure used for its priority queue. Using a C++ implementation tested over a large range
of problem instances, we have seen that the best-performing algorithm does not always have the lowest complexity.
Indeed, on the whole, the best performance has been seen when using Dijkstra’s algorithm with a binary heap, even
though its complexity of O(m lgm) is higher than the other variants. For dense graphs, however, the variant using a
Fibonacci heap features very similar run times to the binary heap version. Interestingly, this binary-heap variant is also

7

the chosen method of implementation in several open-source libraries including NetworkX [5] and GraphHopper [4].
As noted, our current implementation operates by loading the entire graph into RAM before execution. It also

assumes that vertices are labelled with indices from 0 to n − 1. In cases where these conditions are not possible, our
code will need to be modified to make use of associative arrays instead of vectors. In C++ these are provided by the
std::map and std::unordered_map containers.

References
[1] C++ priority queue documentation. https://en.cppreference.com/w/cpp/container/priority queue. Accessed 2023-03-15.

[2] C++ set documentation. https://en.cppreference.com/w/cpp/container/set. Accessed 2023-03-15.

[3] C++ source code and results datasets. https://doi.org/10.5281/zenodo.7741249. Accessed 2023-03-15.

[4] Graphhopper implementation of Dijkstra’s algorithm (in java). https://github.com/graphhopper/graphhopper/blob/master/core/src/main/
java/com/graphhopper/routing/Dijkstra.java. Accessed 2023-03-15.

[5] Networkx implementation of Dijkstra’s algorithm (in python). https://networkx.org/documentation/stable/ modules/networkx/algorithms/
shortest paths/weighted.html#single source dijkstra. Accessed 2023-03-15.

[6] Weighted graph representation. https://www.tutorialspoint.com/weighted-graph-representation-in-data-structure. Accessed 2023-03-15.

[7] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner, and R. Werneck. Route Planning in Transportation
Networks, pages 19–80. Springer International Publishing, Cham, 2016.

[8] R. Bhandari. Survivable Networks: Algorithms for Diverse Routing. Kluwer Academic Publishers, 1999.

[9] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 1st edition, 2000.

[10] L. Fu, D. Sun, and L. Rilett. Heuristic shortest path algorithms for transportation applications: State of the art. Computers and Operations
Research, 33(11):3324–3343, 2006.

[11] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[12] P. Hart, N. Nilsson, and B. Raphael. Correction to ‘A formal basis for the heuristic determination of minimum cost paths’. ACM SIGART
Bulletin, 37:28–29, 1972.

[13] D. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM, 24(1):1–13, 1977.

[14] R. Lewis. Algorithms for finding shortest paths in networks with vertex transfer penalties. Algorithms, 13(11), 2020.

[15] R. Lewis. Who is the centre of the movie universe? Using python and networkx to analyse the social network of movie stars. arXiv,
2002.11103, 2020. https://arxiv.org/pdf/2002.11103.pdf .

[16] F. Moore. The shortest path through a maze. Technical report, Bell Telephone System, 1959. vol. 3523.

[17] K. Rosen. Discrete Mathematics and its Applications. Mcgraw Hill, 8th edition, 2018.

[18] R. Sedgewick. Algorithms in Java, Part 5: Graph Algorithms. AddisonWesley Professional, 3rd edition, 2003.

[19] J. Yen. Finding the k shortest loopless paths in a network. Management Science, 17(11):712–716, 1971.

A Code Listing and Example Run
The following code, together with this paper’s experimental data can be be downloaded at [3]

1 #include <iostream >

2 #include <climits >

3 #include <algorithm >

4 #include <vector >

5 #include <tuple >

6 #include <set >

7 #include <queue >

8 #include <time.h>

9
10 using namespace std;

11
12 const int infty = INT_MAX;

13
14 //Code for printing a vector

15 template <typename T>

16 ostream& operator <<(ostream& s, vector <T> t) {

17 s << "[";

18 for (size_t i = 0; i < t.size(); i++) {

19 s << t[i] << (i == t.size() - 1 ? "" : ",");

20 }

21 return s << "] ";

22 }

23
24 // Struct used for each element of the adjacency list.

25 struct Neighbour {

26 int vertex;

8

https://en.cppreference.com/w/cpp/container/priority_queue
https://en.cppreference.com/w/cpp/container/set
https://doi.org/10.5281/zenodo.7741249
https://github.com/graphhopper/graphhopper/blob/master/core/src/main/java/com/graphhopper/routing/Dijkstra.java
https://github.com/graphhopper/graphhopper/blob/master/core/src/main/java/com/graphhopper/routing/Dijkstra.java
https://networkx.org/documentation/stable/_modules/networkx/algorithms/shortest_paths/weighted.html#single_source_dijkstra
https://networkx.org/documentation/stable/_modules/networkx/algorithms/shortest_paths/weighted.html#single_source_dijkstra
https://www.tutorialspoint.com/weighted-graph-representation-in-data-structure
https://arxiv.org/pdf/2002.11103.pdf

27 int weight;

28 };

29 //Graph class (uses adjacency list)

30 class Graph {

31 public:

32 int n; //Num. vertices

33 int m; //Num. arcs

34 vector <vector <Neighbour > > adj;

35 Graph(int n) {

36 this ->n = n;

37 this ->m = 0;

38 this ->adj.resize(n, vector <Neighbour >());

39 }

40 ~Graph() {

41 this ->n = 0;

42 this ->m = 0;

43 this ->adj.clear();

44 }

45 void addArc(int u, int v, int w) {

46 this ->adj[u]. push_back(Neighbour{ v, w });

47 this ->m++;

48 }

49 };

50
51 // Struct and comparison operators used with std::set std:: priority_queue)

52 struct QueueItem {

53 int label;

54 int vertex;

55 };

56 struct minQueueItem {

57 bool operator () (const QueueItem& lhs , const QueueItem& rhs) const {

58 return tie(lhs.label , lhs.vertex) < tie(rhs.label , rhs.vertex);

59 }

60 };

61 struct maxQueueItem {

62 bool operator () (const QueueItem& lhs , const QueueItem& rhs) const {

63 return tie(lhs.label , lhs.vertex) > tie(rhs.label , rhs.vertex);

64 }

65 };

66
67 // Struct used for each Fibonacci heap node

68 struct FibonacciNode {

69 int degree;

70 FibonacciNode* parent;

71 FibonacciNode* child;

72 FibonacciNode* left;

73 FibonacciNode* right;

74 bool mark;

75 int key;

76 int nodeIndex;

77 };

78 // Fibonacci heap class

79 class FibonacciHeap {

80 private:

81 FibonacciNode* minNode;

82 int numNodes;

83 vector <FibonacciNode*> degTable;

84 vector <FibonacciNode*> nodePtrs;

85 public:

86 FibonacciHeap(int n) {

87 // Constructor function

88 this ->numNodes = 0;

89 this ->minNode = NULL;

90 this ->degTable = {};

91 this ->nodePtrs.resize(n);

92 }

93 ~FibonacciHeap () {

94 // Destructor function

95 this ->numNodes = 0;

96 this ->minNode = NULL;

97 this ->degTable.clear();

98 this ->nodePtrs.clear();

99 }

100 int size() {

101 // Number of nodes in the heap

102 return this ->numNodes;

9

103 }

104 bool empty() {

105 //Is the heap empty?

106 if (this ->numNodes > 0) return false;

107 else return true;

108 }

109 void insert(int u, int key) {

110 // Insert the vertex u with the specified key (value for L(u)) into the Fibonacci

heap. O(1) operation

111 this ->nodePtrs[u] = new FibonacciNode;

112 this ->nodePtrs[u]->nodeIndex = u;

113 FibonacciNode* node = this ->nodePtrs[u];

114 node ->key = key;

115 node ->degree = 0;

116 node ->parent = NULL;

117 node ->child = NULL;

118 node ->left = node;

119 node ->right = node;

120 node ->mark = false;

121 FibonacciNode* minN = this ->minNode;

122 if (minN != NULL) {

123 FibonacciNode* minLeft = minN ->left;

124 minN ->left = node;

125 node ->right = minN;

126 node ->left = minLeft;

127 minLeft ->right = node;

128 }

129 if (minN == NULL || minN ->key > node ->key) {

130 this ->minNode = node;

131 }

132 this ->numNodes ++;

133 }

134 FibonacciNode* extractMin () {

135 // Extract the node with the minimum key from the heap. O(log n) operation , where n

is the number of nodes in the heap

136 FibonacciNode* minN = this ->minNode;

137 if (minN != NULL) {

138 int deg = minN ->degree;

139 FibonacciNode* currChild = minN ->child;

140 FibonacciNode* remChild;

141 for (int i = 0; i < deg; i++) {

142 remChild = currChild;

143 currChild = currChild ->right;

144 _existingToRoot(remChild);

145 }

146 _removeNodeFromRoot(minN);

147 this ->numNodes --;

148 if (this ->numNodes == 0) {

149 this ->minNode = NULL;

150 }

151 else {

152 this ->minNode = minN ->right;

153 FibonacciNode* minNLeft = minN ->left;

154 this ->minNode ->left = minNLeft;

155 minNLeft ->right = this ->minNode;

156 _consolidate ();

157 }

158 }

159 return minN;

160 }

161 void decreaseKey(int u, int newKey) {

162 // Decrease the key of the node in the Fibonacci heap that has index u. O(1)

operation

163 FibonacciNode* node = this ->nodePtrs[u];

164 if (newKey > node ->key) return;

165 node ->key = newKey;

166 if (node ->parent != NULL) {

167 if (node ->key < node ->parent ->key) {

168 FibonacciNode* parentNode = node ->parent;

169 _cut(node);

170 _cascadingCut(parentNode);

171 }

172 }

173 if (node ->key < this ->minNode ->key) {

174 this ->minNode = node;

175 }

10

176 }

177 private:

178 //The following are private functions used by the public methods above

179 void _existingToRoot(FibonacciNode* newNode) {

180 FibonacciNode* minN = this ->minNode;

181 newNode ->parent = NULL;

182 newNode ->mark = false;

183 if (minN != NULL) {

184 FibonacciNode* minLeft = minN ->left;

185 minN ->left = newNode;

186 newNode ->right = minN;

187 newNode ->left = minLeft;

188 minLeft ->right = newNode;

189 if (minN ->key > newNode ->key) {

190 this ->minNode = newNode;

191 }

192 }

193 else {

194 this ->minNode = newNode;

195 newNode ->right = newNode;

196 newNode ->left = newNode;

197 }

198 }

199 void _removeNodeFromRoot(FibonacciNode* node) {

200 if (node ->right != node) {

201 node ->right ->left = node ->left;

202 node ->left ->right = node ->right;

203 }

204 if (node ->parent != NULL) {

205 if (node ->parent ->degree == 1) {

206 node ->parent ->child = NULL;

207 }

208 else {

209 node ->parent ->child = node ->right;

210 }

211 node ->parent ->degree --;

212 }

213 }

214 void _cut(FibonacciNode* node) {

215 _removeNodeFromRoot(node);

216 _existingToRoot(node);

217 }

218 void _addChild(FibonacciNode* parentNode , FibonacciNode* newChildNode) {

219 if (parentNode ->degree == 0) {

220 parentNode ->child = newChildNode;

221 newChildNode ->right = newChildNode;

222 newChildNode ->left = newChildNode;

223 newChildNode ->parent = parentNode;

224 }

225 else {

226 FibonacciNode* child1 = parentNode ->child;

227 FibonacciNode* child1Left = child1 ->left;

228 child1 ->left = newChildNode;

229 newChildNode ->right = child1;

230 newChildNode ->left = child1Left;

231 child1Left ->right = newChildNode;

232 }

233 newChildNode ->parent = parentNode;

234 parentNode ->degree ++;

235 }

236 void _cascadingCut(FibonacciNode* node) {

237 FibonacciNode* parentNode = node ->parent;

238 if (parentNode != NULL) {

239 if (node ->mark == false) {

240 node ->mark = true;

241 }

242 else {

243 _cut(node);

244 _cascadingCut(parentNode);

245 }

246 }

247 }

248 void _link(FibonacciNode* highNode , FibonacciNode* lowNode) {

249 _removeNodeFromRoot(highNode);

250 _addChild(lowNode , highNode);

251 highNode ->mark = false;

11

252 }

253 void _consolidate () {

254 int deg , rootCnt = 0;

255 if (this ->numNodes > 1) {

256 this ->degTable.clear();

257 FibonacciNode* currNode = this ->minNode;

258 FibonacciNode* currDeg , * currConsolNode;

259 FibonacciNode* temp = this ->minNode , * itNode = this ->minNode;

260 do {

261 rootCnt ++;

262 itNode = itNode ->right;

263 } while (itNode != temp);

264 for (int cnt = 0; cnt < rootCnt; cnt++) {

265 currConsolNode = currNode;

266 currNode = currNode ->right;

267 deg = currConsolNode ->degree;

268 while (true) {

269 while (deg >= int(this ->degTable.size())) {

270 this ->degTable.push_back(NULL);

271 }

272 if (this ->degTable[deg] == NULL) {

273 this ->degTable[deg] = currConsolNode;

274 break;

275 }

276 else {

277 currDeg = this ->degTable[deg];

278 if (currConsolNode ->key > currDeg ->key) {

279 swap(currConsolNode , currDeg);

280 }

281 if (currDeg == currConsolNode) break;

282 _link(currDeg , currConsolNode);

283 this ->degTable[deg] = NULL;

284 deg ++;

285 }

286 }

287 }

288 this ->minNode = NULL;

289 for (size_t i = 0; i < this ->degTable.size(); i++) {

290 if (this ->degTable[i] != NULL) {

291 _existingToRoot(this ->degTable[i]);

292 }

293 }

294 }

295 }

296 };

297 //End of FibonacciHeap class

298
299 tuple <vector <int >, vector <int >> dijkstraFibonacci(Graph& G, int s) {

300 // Dijkstra ’s algorithm using a Fibonacci heap object

301 int u, v, w;

302 FibonacciHeap Q(G.n);

303 vector <int > L(G.n), P(G.n);

304 vector <bool > D(G.n);

305 for (int u = 0; u < G.n; u++) {

306 D[u] = false;

307 L[u] = infty;

308 P[u] = -1;

309 }

310 L[s] = 0;

311 Q.insert(s, 0);

312 while (!Q.empty ()) {

313 u = Q.extractMin ()->nodeIndex;

314 D[u] = true;

315 for (auto& neighbour : G.adj[u]) {

316 v = neighbour.vertex;

317 w = neighbour.weight;

318 if (D[v] == false) {

319 if (L[u] + w < L[v]) {

320 if (L[v] == infty) {

321 Q.insert(v, L[u] + w);

322 }

323 else {

324 Q.decreaseKey(v, L[u] + w);

325 }

326 L[v] = L[u] + w;

327 P[v] = u;

12

328 }

329 }

330 }

331 }

332 return make_tuple(L, P);

333 }

334
335 tuple <vector <int >, vector <int >> dijkstraTree(Graph& G, int s) {

336 // Dijkstra ’s algorithm using a self -balancing binary tree (C++ set)

337 int u, v, w;

338 set <QueueItem , minQueueItem > Q;

339 vector <int > L(G.n), P(G.n);

340 vector <bool > D(G.n);

341 for (u = 0; u < G.n; u++) {

342 D[u] = false;

343 L[u] = infty;

344 P[u] = -1;

345 }

346 L[s] = 0;

347 Q.emplace(QueueItem{ 0,s });

348 while (!Q.empty ()) {

349 u = (*Q.begin()).vertex;

350 Q.erase(*Q.begin());

351 D[u] = true;

352 for (auto& neighbour : G.adj[u]) {

353 v = neighbour.vertex;

354 w = neighbour.weight;

355 if (D[v] == false) {

356 if (L[u] + w < L[v]) {

357 if (L[v] == infty) {

358 Q.emplace(QueueItem{ L[u] + w, v });

359 }

360 else {

361 Q.erase({ L[v], v });

362 Q.emplace(QueueItem{ L[u] + w, v });

363 }

364 L[v] = L[u] + w;

365 P[v] = u;

366 }

367 }

368 }

369 }

370 return make_tuple(L, P);

371 }

372
373 tuple <vector <int >, vector <int >> dijkstraHeap(Graph& G, int s) {

374 // Dijkstra ’s algorithm using a binary heap (C++ priority_queue)

375 int u, v, w;

376 priority_queue <QueueItem , vector <QueueItem >, maxQueueItem > Q;

377 vector <int > L(G.n), P(G.n);

378 vector <bool > D(G.n);

379 for (u = 0; u < G.n; u++) {

380 D[u] = false;

381 L[u] = infty;

382 P[u] = -1;

383 }

384 L[s] = 0;

385 Q.emplace(QueueItem{ 0,s });

386 while (!Q.empty ()) {

387 u = Q.top().vertex;

388 Q.pop();

389 if (D[u] != true) {

390 D[u] = true;

391 for (auto& neighbour : G.adj[u]) {

392 v = neighbour.vertex;

393 w = neighbour.weight;

394 if (D[v] == false) {

395 if (L[u] + w < L[v]) {

396 Q.emplace(QueueItem{ L[u] + w, v });

397 L[v] = L[u] + w;

398 P[v] = u;

399 }

400 }

401 }

402 }

403 }

13

404 return make_tuple(L, P);

405 }

406
407 tuple <vector <int >, vector <int >> dijkstraBasic(Graph& G, int s) {

408 //Basic Dijkstra ’s algorithm (O(n^2) complexity)

409 int u, v, w, minL;

410 size_t i, uPos;

411 vector <int > L(G.n), P(G.n), Candidates;

412 vector <bool > D(G.n);

413 for (u = 0; u < G.n; u++) {

414 D[u] = false;

415 L[u] = infty;

416 P[u] = -1;

417 }

418 L[s] = 0;

419 Candidates.push_back(s);

420 while (! Candidates.empty ()) {

421 uPos = 0;

422 minL = L[Candidates [0]];

423 for (i = 1; i < Candidates.size(); i++) {

424 if (L[Candidates[i]] < minL) {

425 minL = L[Candidates[i]];

426 uPos = i;

427 }

428 }

429 u = Candidates[uPos];

430 swap(Candidates[uPos], Candidates.back());

431 Candidates.pop_back ();

432 D[u] = true;

433 for (auto& neighbour : G.adj[u]) {

434 v = neighbour.vertex;

435 w = neighbour.weight;

436 if (D[v] == false) {

437 if (L[u] + w < L[v]) {

438 if (L[v] == infty) {

439 Candidates.push_back(v);

440 }

441 L[v] = L[u] + w;

442 P[v] = u;

443 }

444 }

445 }

446 }

447 return make_tuple(L, P);

448 }

449
450 vector <int > getPath(int u, int v, vector <int >& P) {

451 //Get the u-v-path specified by the predecessor vector P

452 vector <int > path;

453 int x = v;

454 if (P[x] == -1) return path;

455 while (x != u) {

456 path.push_back(x);

457 x = P[x];

458 }

459 path.push_back(u);

460 reverse(path.begin (), path.end());

461 return path;

462 }

463
464 int main() {

465 // Construct a small example graph. (A directed cycle on 5 vertices here. All arcs have

weight 10)

466 Graph G(5);

467 G.addArc(0, 1, 10);

468 G.addArc(1, 2, 10);

469 G.addArc(2, 3, 10);

470 G.addArc(3, 4, 10);

471 G.addArc(4, 0, 10);

472
473 //Set the source vertex and declare some variables

474 int s = 0;

475 vector <int > L, P;

476
477 // Execute Dijkstra ’s algorithm using a Fibonacci heap

478 clock_t start = clock();

14

479 tie(L, P) = dijkstraFibonacci(G, s);

480 double duration1 = ((double)clock () - start) / CLOCKS_PER_SEC;

481
482 // Execute Dijkstra ’s algorithm using a self -balancing binary tree

483 start = clock ();

484 tie(L, P) = dijkstraTree(G, s);

485 double duration2 = ((double)clock () - start) / CLOCKS_PER_SEC;

486
487 // Execute Dijkstra ’s algorithm using a binary heap

488 start = clock ();

489 tie(L, P) = dijkstraHeap(G, s);

490 double duration3 = ((double)clock () - start) / CLOCKS_PER_SEC;

491
492 // Execute basic version of Dijkstra ’s algorithm

493 start = clock ();

494 tie(L, P) = dijkstraBasic(G, s);

495 double duration4 = ((double)clock () - start) / CLOCKS_PER_SEC;

496
497 // Output some information

498 cout << "Input graph has " << G.n << " vertices and " << G.m << " arcs\n";

499 cout << "Dijkstra with Fibonacci heap took " << duration1 << " sec.\n";

500 cout << "Dijkstra with self -balancing tree took " << duration2 << " sec.\n";

501 cout << "Dijkstra with binary heap took " << duration3 << " sec.\n";

502 cout << "Dijkstra (basic form) took " << duration4 << " sec.\n";

503 cout << "Shortest paths from source to each vertex are as follows :\n";

504 for (int u = 0; u < G.n; u++) {

505 cout << "v-" << s << " to v-" << u << ",\t";

506 if (L[u] == infty) {

507 cout << "len = infinity. No path exists\n";

508 }

509 else {

510 cout << "len = " << L[u] << "\tpath = " << getPath(s, u, P) << "\n";

511 }

512 }

513 }

Running this code produces the following output

1 Input graph has 5 vertices and 5 arcs

2 Dijkstra with Fibonacci heap took 1.9e-05 sec.

3 Dijkstra with self -balancing tree took 1.2e-05 sec.

4 Dijkstra with binary heap took 1.1e-05 sec.

5 Dijkstra (basic form) took 1.5e-05 sec.

6 Shortest paths from source to each vertex are as follows:

7 v-0 to v-0, len = 0 path = []

8 v-0 to v-1, len = 10 path = [0,1]

9 v-0 to v-2, len = 20 path = [0,1,2]

10 v-0 to v-3, len = 30 path = [0,1,2,3]

11 v-0 to v-4, len = 40 path = [0,1,2,3,4]

15

	1 Introduction
	2 Problem Definition and Existing Algorithms
	3 Dijkstra's Algorithm
	4 Using Priority Queues
	5 An Implementation
	6 Empirical Evaluation
	7 Conclusions
	A Code Listing and Example Run

