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In adaptive clinical trials, the conventional end-of-trial point estimate of a treat-
ment effect is prone to bias, that is, a systematic tendency to deviate from its true
value. As stated in recent FDA guidance on adaptive designs, it is desirable to
report estimates of treatment effects that reduce or remove this bias. However,
it may be unclear which of the available estimators are preferable, and their use
remains rare in practice. This article is the second in a two-part series that studies
the issue of bias in point estimation for adaptive trials. Part I provided a method-
ological review of approaches to remove or reduce the potential bias in point
estimation for adaptive designs. In part II, we discuss how bias can affect stan-
dard estimators and assess the negative impact this can have. We review current
practice for reporting point estimates and illustrate the computation of differ-
ent estimators using a real adaptive trial example (including code), which we
use as a basis for a simulation study. We show that while on average the values
of these estimators can be similar, for a particular trial realization they can give
noticeably different values for the estimated treatment effect. Finally, we pro-
pose guidelines for researchers around the choice of estimators and the reporting
of estimates following an adaptive design. The issue of bias should be consid-
ered throughout the whole lifecycle of an adaptive design, with the estimation
strategy prespecified in the statistical analysis plan. When available, unbiased or
bias-reduced estimates are to be preferred.
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1 INTRODUCTION

Traditional clinical trials follow a design that is fixed in advance, with the data only analyzed after completion when all
trial participants have been recruited and have accrued outcome data.1 In contrast, adaptive designs allow for pre-planned
modifications to the trial’s course based on data accumulating within the trial.2-4 Adding controlled flexibility to the trial
design in this way, while still maintaining scientific rigour, can lead to advantages in terms of efficiency and ethics com-
pared with a traditional fixed design.2,5 The uptake of adaptive designs in practice is becoming increasingly common,6-8

with the COVID-19 pandemic only accelerating their use.9,10 We start by briefly highlighting some well-established types
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2 ROBERTSON et al.

of trial adaptations below, which we will return to in this article before focusing attention to the question of treatment
effect estimation at trial completion.

Early trial stopping: Group sequential designs
When monitoring the accumulating outcome data of a clinical trial, it can be beneficial to have the option of stopping

the trial early for safety, futility (ie, lack of benefit), or efficacy as soon as sufficient evidence is reached to make a reliable
conclusion. As continuous monitoring after every trial participant is often impractical, it is more feasible to monitor the
data at (typically pre-specified) periodic intervals after a group of trial participants have accrued outcome data. This is
known as a group sequential design, and at each interim analysis, the trial can be stopped early for futility or efficacy
based on predefined stopping rules or boundaries.11 Researchers can derive their own stopping boundaries or use standard
ones such as the O’Brien-Fleming (OBF)12 and Haybittle-Peto13 stopping boundaries. Optimal stopping boundaries using
various optimization criteria have also been proposed.14,15

Treatment selection: Multi-arm multi-stage (MAMS) designs
In some therapeutic areas, there may be several treatments or combinations of treatments awaiting evaluation in

controlled clinical trials. One way of doing so efficiently is to use a MAMS design, where multiple experimental treatment
arms are compared simultaneously against a single common control.16 Similarly, to group sequential designs, MAMS
designs allow for early stopping of recruitment to a treatment arm for efficacy or futility (which also allows early stopping
of the whole trial). These pre-planned stopping rules can be chosen to find the single best treatment17 or all promising
treatments18 to carry forward for further evaluation. More flexible stopping rules and adaptation methods also exist.19-21

A variant of MAMS is the drop-the-loser design,22-24 where a pre-determined number of experimental treatment arms (ie,
the worst performing ones) are dropped at each stage, typically leaving a single treatment at the final analysis.

Population selection: Adaptive enrichment designs
There can sometimes be large uncertainty regarding which patients would benefit from a study treatment, combined

with some information to suggest that patients with certain characteristics may benefit more than others. For example, in
oncology, there is a recognition that tumors can have potentially large biological heterogeneity. This motivates characteriz-
ing and selecting sub-populations that are more likely to benefit from an experimental treatment.25 Adaptive enrichment
designs use interim analyses to decide which of the subpopulations should be recruited from for the remainder of the trial,
where the subpopulations can be defined using biomarkers for example. Such designs can increase recruitment to the sub-
populations that are estimated to receive the greatest benefit, and decrease (or stop) recruitment to the sub-populations
that do not. A variety of decision rules have been proposed to select subpopulations in this way, from both Bayesian25-27

and frequentist28-30 perspectives.
Changing randomisation probabilities: Response-adaptive randomisation (RAR)
Traditional clinical trials use fixed randomization schemes, which do not change as a result of patients’ response to

treatment. Alternatively, the accruing response data can be used to change the randomization probabilities for allocating
patients to treatment arms, which is known as response-adaptive randomization (RAR). A common motivation for doing
so is to allocate more patients to a treatment that is estimated to be more effective during the trial, but RAR can also be
used to target other experimental objectives such as increasing the power of a specific treatment comparison.31 Many
different types of RAR procedures have been proposed for various trial contexts.31-33 RAR can also be applied in adaptive
trials in combination with other adaptations such as treatment and (sub-) population selection.34,35

Changing sample sizes: Sample size re-estimation
When calculating the sample size for a trial, there may be substantial uncertainty around key design parameters (eg,

the variance of the outcome). Sample size re-estimation (or reassessment or recalculation) designs aim to help ensure
that the sample size for a trial is appropriate, by estimating design parameters at an interim analysis and using these
to recalculate the sample size based on, for example, conditional power considerations.36-38 This may be done in either
a blinded or unblinded manner.37,39 Sample size re-estimation can also be used in conjunction with other types of trial
adaptations, such as group sequential designs.40

Further educational material on all of these adaptive designs can be found in Burnett et al,5 Pallmann et al,2 and the
PANDA online resource (https://panda.shef.ac.uk/).

Regardless of the type of adaptive design, it is crucial that the integrity and validity of the trial is maintained.41 Appro-
priate estimation of treatment effects is a key part of trial validity, as stated in the FDA guidance on adaptive designs42(p8):
“It is important that clinical trials produce sufficiently reliable treatment effect estimates to facilitate an evaluation of
benefit-risk and to appropriately label new drugs (sic treatments), enabling the practice of evidence-based medicine”. The
issue with estimation after an adaptive clinical trial is that the conventional end-of-trial estimates can be prone to bias,
which is defined as “a systematic tendency for the estimate of treatment effect to deviate from its true value”.42(p3) It is
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ROBERTSON et al. 3

clear that (all else being equal, such as the variance) it is desirable to obtain unbiased point estimates of treatment effects
in order to make reliable conclusions about the treatments in a trial. While equally important, the construction of related
quantities for inference, such as confidence intervals or regions, is beyond the scope of this article so we signpost the
interested reader to related literature.43,44

This article is the second in a two-part series that studies the issue of potential bias in point estimation for adaptive
designs. In part I of the series,45 we reviewed and compared current methods for unbiased and bias-reduced estimation of
treatment effects after an adaptive clinical trial and critically discussed different approaches. In the current article (part
II), we consider point estimation for adaptive designs from a practical perspective, and propose a set of guidelines for
researchers around the choice of estimators and the reporting of estimates following an adaptive design. We first describe
the problem of estimation bias in an adaptive design in more detail in Section 2, and review current practice in Section 3.
We then provide an exemplary case study in Section 4 for a real adaptive trial, using different types of unbiased and
bias-reduced estimators (with R code provided) as described in part I of this article series. We also include a simulation
study and graphical representation of the sampling distribution of these different estimators. We conclude with guidance
for researchers and discussion in Sections 5 and 6.

2 THE PROBLEM OF ESTIMATION BIAS IN ADAPTIVE DESIGNS

The problem with using conventional estimators (ie, maximum likelihood estimators, MLEs) after an adaptive trial design
is that these are prone to bias. This can be because of population or treatment selection that takes place following an
interim analysis (see Bauer et al46 for a detailed explanation of why selection process results in bias) or other types of
adaptations, such as early stopping, that affect the sampling distribution of the estimator. The usual MLE is sometimes
referred to as the “naive” estimator for the trial as it does not take into account the planned and realized trial adaptations.

As introduced in part I of this article series, different definitions of an unbiased estimator are relevant in our context,
which we recapitulate below. We denote the population parameter of interest, the treatment effect, by 𝜃 and an estimator
thereof by 𝜃.

Mean-unbiased estimators
An estimator 𝜃 is called mean-unbiased if its expected value is the same as the true value of the parameter of interest,

that is, E(𝜃) = 𝜃.
Median-unbiased estimators
An estimator 𝜃 is called median-unbiased if P(𝜃 < 𝜃) = P(�̂� > 𝜃) that is, if the probability of overestimation is the same

as the probability of underestimation.
Conditionally and unconditionally unbiased estimators
An estimator is unconditionally unbiased (also known as marginally unbiased) if it is unbiased when averaged across

all possible realizations of an adaptive trial. In contrast, an estimator is conditionally unbiased if it is unbiased only
conditional on the occurrence of a subset of trial realizations. For example, in a drop-the-loser trial the interest will
typically be on estimating the performance of the ultimately selected arm, motivating the use of a conditionally unbiased
estimator (conditional on that arm being selected).

2.1 The potential negative impacts of reporting biased estimates

Adaptive designs play an important role in health care decision-making, increasingly providing evidence of the clinical
effectiveness of an intervention as well as key secondary outcomes such as health economic ones. Failing to account
for biases in point estimates can result in incorrect decision-making, potentially wasting limited resources, preventing
patients from receiving effective treatments, or exposing patients to unnecessary risks. In the following subsections, we
consider some potential negative impacts of reporting biased estimates.

2.1.1 Reporting biased primary outcomes

As highlighted by Dimairo et al,3,4 the goal of clinical trials should be to provide reliable estimates of the treatment
effect to inform accurate decision-making, but this can be compromised when an adaptive design is analyzed with
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4 ROBERTSON et al.

inappropriate statistical methods. Clearly, reporting substantially biased estimates for a primary outcome measure fol-
lowing an adaptive design can result in poor decisions. However, other negative impacts include the results of adaptive
designs being viewed with skepticism amongst stakeholders who are aware of potential biases but do not feel they have
been adequately addressed by researchers.47 This could impede the uptake of results from an adaptive trial design or
discourage research teams from using these designs in practice.

A further concern is the potential for over- or underestimation of treatment effects to affect further research. In a phase
II trial, for example, ineffective treatments with exaggerated effects may be wrongly selected for further investigations in
phase III trials or potentially effective treatments may not be pursued further when their effects are underestimated.48-52

However, Wang et al53 and Goodman54 suggest that group sequential trials that stop early do not produce materially
biased estimates.

The consequences following biased estimates from a phase III trial could include treatments being made available to
patients with an overstated benefit or treatments not being recommended for use in practice because of an understated
benefit, see Briel et al48 and Guyatt et al55 for example. Both scenarios can have a detrimental impact on patients, especially
in resource limited healthcare systems such as the National Health Service (NHS) in the UK, where resources spent on
a treatment with overstated benefit removes funding for alternative treatments elsewhere in the system. Mueller et al56

also argue that there are serious ethical problems when trialists fail to account for bias in estimates following an adaptive
design, as this may violate the scientific validity of the research and social value when these estimates are used to inform
clinical decision-making.

2.1.2 Secondary clinical outcomes

Clinical trials often collect information about a number of key secondary outcomes that may also require adjustment
in an adaptive design. If these secondary outcomes are strongly correlated with the primary outcome used to inform
the adaptations to the trial they will also be vulnerable to bias.57,58 This is highlighted in the FDA guidance on adaptive
designs,42 which states “It is widely understood that multiple analyses of the primary endpoint can [… ] lead to biased
estimation of treatment effects on that endpoint. Less well appreciated, however, is that [… ] biased estimation can also
apply to any endpoint correlated with the primary endpoint”.

As highlighted in the benefit-risk analysis literature, there can often be a trade-off between different outcomes when
developing and evaluating an intervention.59,60 In an example reported by Briel et al,48 a trial assessing the effectiveness of
vitamin E in premature newborns was stopped early based on an interim analysis of approximately half of the total number
of participants planned at the start of the trial. This early analysis showed a reduction in intracranial hemorrhage.61

However, a later evidence synthesis showed that this trial failed to identify that vitamin E increases the risk of sepsis.62

Failing to accurately estimate treatment effects on key secondary endpoints could result in an intervention being adopted
whose safety is overestimated or whose side effects are underestimated.

2.1.3 Meta-analysis and evidence synthesis literature

Meta-analysis and evidence synthesis provide frameworks for combining the results from several studies63 and are useful
tools for providing an overall understanding of what the synthesized research has found.64 In a review of 143 trials using
adaptive designs that stopped early, Montori et al65 found that few evidence syntheses and meta-analyses that included
these trials considered the possible biases resulting from using these designs.

Several authors have argued that failing to account for adaptive designs in a meta-analysis or evidence synthesis can
introduce bias.66,67,49,50 Cameron et al68 explored the impact of adaptive designs in a network meta-analysis. The authors
considered three alternative methods to convert outcome data derived from an adaptive design to non-adaptive designs
and found that failing to account for different study designs could bias estimates of effect in a network meta-analysis.
Additionally, Walter et al52 suggest that the estimate of treatment benefit can be calculated more accurately by applying
weights to subgroups of studies with and without stopping rules.

However, there are several authors that suggest the biases are minimal53,69-72 including Schou et al73 who argue that
removing truncated trials from a meta-analysis leads to substantial bias, whereas including these trials does not introduce
large biases. The authors therefore recommend that all studies regardless of whether they stop early should be included
in meta-analyses. Finally, Marschner et al74 and Luchini et al75 provide guidance on how sensitivity analyses may be
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ROBERTSON et al. 5

conducted to explore the impact of trials that stopped early for benefit in a meta-analysis in line with CONSORT and
GRADE76 reporting checklists.

2.1.4 Health economics

Increasingly clinical trials are designed with health economic objectives in mind, so that related outcomes are collected
to inform a health economic analysis following the trial.77 This may include clinical data on primary and secondary out-
comes to inform parameters in a health economic model or costs and quality of life data collected directly from participants
during the trial.78

Marschner and Schou79 discuss the underestimation of treatment effects in sequential clinical trials when they do
not stop early for benefit. The authors highlight the importance of an unbiased estimate of the treatment effect for
cost-effectiveness analyses using a reanalysis of the GUSTO study.80,81 They show that the treatment effect may have been
underestimated and the experimental therapy appeared less cost-effective than it actually was. Flight82 showed, using a
simulation study, that when there are high levels of correlation between primary and health economic outcomes collected
during a group sequential design, bias is introduced in the point estimates (and confidence intervals) of health economic
outcomes. The levels of bias may be reduced in a model-based health economic analysis but this will depend on several
factors such as the data structure, correlation, and adaptive design used.

A review by Flight et al83 found no health economic analyses were adjusted following a group-sequential design.
This potentially compromises decision-making if a decision to fund a treatment is based on biased estimates of
cost-effectiveness. Additionally, patients may be penalized when a treatment is not funded based on an underestimate
of cost-effectiveness, or resources may be wasted based on an overestimate of cost-effectiveness. Flight82 extended the
bias-adjusted maximum likelihood (ML) estimate approach proposed by Whitehead84 to health economic outcomes and
illustrated how this can reduce bias in a health economic analysis following an adaptive design.

2.2 The magnitude of the problem

In this subsection, we discuss the extent of the bias in point estimates of treatment effects as a result of interim monitoring
or data-dependent stopping of an adaptive design. This might be due to the pre-specified treatment selection criteria or
other stopping rules, that is, lack-of-benefit (futility) and/or efficacy boundaries. More generally, a number of authors
have discussed how the correlation between the MLE and the random design features in an adaptive design leads to bias
in the MLE.85-87 The random design features are features of the design (eg, the number of treatment arms, sample size,
allocation ratio) that are determined by the accumulating trial data and are therefore considered a random variable. As
an example that we expand on below, in a two-stage group sequential design the final sample size N is a random variable
that is equal to N1 if the trial stops at stage 1 or N2 if the trial stops at stage 2. If N =N1 then the MLE tends to be larger
than the true treatment effect, whereas if N =N2 then the MLE tends to be smaller than the true treatment effect (see
Figure 1). This may be interpreted as correlation between the MLE and the random design, which leads to conditional
bias in the MLE.

Indeed, it has previously been shown that the average treatment effect from a group sequential design is conditionally
biased when the trial terminates early.51,52,88 This conditional bias generally tends to be larger the “earlier” the selection
happens, that is, when the decision to stop the treatment arm or continue to the next stage is based on a relatively small
amount of information. By information, we mean statistical information which is driven by the number of participants
in trials with continuous and binary outcomes, and the number of primary outcome events in trials with time-to-event
outcomes. However, the degree of any potential bias will depend on the stopping rules, that is, how likely it is to stop the
trial early, as well as the underlying treatment effect, as we now illustrate using results from Walter et al.52

Consider a two-stage group sequential design using one-sided OBF efficacy stopping boundaries (see Section 4 for
a formal definition), where the interim analysis is conducted when 50% of the sample have provided outcome data (ie,
50% information fraction). We assume that the study outcome variable is normally distributed with known SD equal to
one. Figure 1 shows the bias of the estimated treatment effect and the probability of early stopping as the true treatment
effect μ varies from −0.5 to 1. The lines labeled “large”, “medium” and “small” correspond to studies with sample sizes
of N = 620, 100, and 40, respectively (which give 80% power when α= 0.05 to detect treatment effects of size μ= 0.2, 0.5,
and 0.8).
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6 ROBERTSON et al.

F I G U R E 1 Bias of the average treatment effect and probability of early stopping for a two-stage group sequential design using
one-sided O’Brien-Fleming efficacy stopping boundaries under different sample sizes (small, large, medium), with overall α= 0.05. The
interim analysis P-value threshold for efficacy is 0.0088. (A) The expected over-estimation in trial realizations that stop early for
overwhelming efficacy (ie, conditional bias), (B) The expected under-estimation in trial realizations that do not stop early for overwhelming
efficacy (ie, conditional bias at the final analysis), (C) the overall (unconditional) bias, and (D) the probability of early stopping.

Panel A shows that there can be a substantial positive conditional bias in the estimated treatment effect for trials that
stop early for efficacy, with the magnitude of this bias increasing as the sample size decreases. Conversely, Panel B shows
that there is a smaller negative conditional bias in the estimated treatment effect for trials that continue to the second
stage (ie, do not stop early), with the magnitude of this bias increasing as either the trial sample size or true treatment
effect increases. Panel C shows the overall (ie, unconditional) bias in the estimated treatment effect across all trials, which
is small but positive and particularly noticeable for small sample sizes.

These results need to also be interpreted in light of Panel D, which shows that there is a very small chance of stopping
for efficacy for small treatment effects when the sample size of the trial is itself small or medium. Hence, although there is
a large positive conditional bias for such trials that stop early for efficacy (Panel A), and these results may then be used for
recommending the adoption of a new treatment, such an event is very unlikely (Panel D). Similarly, although the negative
conditional bias in trials that do not stop early can be substantial for large treatment effects (Panel B), the probability of
such an event is negligible for large sample sizes (Panel D).

Previous empirical studies89 showed that in designs with lack-of-benefit stopping boundaries the size of the selection
bias for trials that reach the final stage is generally small. In fact, the bias is negligible if the experimental arm is truly
effective. For trials that stopped early for lack of benefit, by definition a claim that the study treatment is better than the
control is not made. Therefore, the fact that the treatment effect estimate is biased may be of less importance though results
are useful in evidence synthesis. Furthermore, in designs that utilize an intermediate outcome for treatment selection
it has been shown that this reduces the selection bias in the estimates of treatment effects in both selected and dropped
treatment arms. In these designs, the degree of bias depends on the correlation between the intermediate and definitive
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ROBERTSON et al. 7

outcome measures and this bias is markedly reduced by further patient follow-up and reanalysis at the planned ‘end’ of
the trial.89

In drop-the-loser designs, where treatment selection is done based on the relative performance (eg, ranking) of
research arms, the average treatment effect will be overestimated in the treatment arms that continue to the next stage,
and will be underestimated in deselected treatment arms. In these designs, the degree of bias depends strongly on the true
underlying treatment effects of the research arms, which is always unknown, the timing of treatment selection as well
as the number of treatment arms to select from. Generally speaking though, in many scenarios there is a fundamental
dilemma in that “the better the selection, the worse the bias”.46

It has been shown that in drop-the-loser designs, the bias tends to be largest, and confidence intervals have incorrect
coverage, where the underlying treatment effects of the treatment arms are equal, for example when all arms are under
the global null or global alternative hypothesis.24,90 More generally, bias will be smaller where the underlying effects differ
amongst the treatment arms than when they are similar. In contrast, when one treatment arm has a distinctly larger
treatment effect than those it is competing against, bias in the final average treatment effect is minimal for the arm which
is performing best when the selection takes place. Moreover, the number of treatment arms to select from was also found
to increase the degree of bias in the average treatment effects in pick-the-winner designs91 (a MAMS variant). Finally,
early stopping rules that are binding increase bias compared to a design with no early stopping rules, particularly under
the global null hypothesis or where only one treatment arm had the target treatment effect.46

3 REVIEW OF CURRENT PRACTICE

Given that there are a variety of potential negative impacts of reporting biased estimates following an adaptive design, we
reviewed the relevant literature to understand how often methods for reducing or removing bias in point estimates (as
described in part I of this article series) are used in practice. We focused on results reported from adaptive trials using the
different types of adaptations described in Section 1.

3.1 Search strategy

A review of group sequential trials was based on pre-existing reviews known to the authors by the May 30, 2022. For other
adaptive designs, we systematically searched the MEDLINE database via PubMed (from Jan 1, 2000 to May 30, 2022)
using the following search terms (Table 1).

3.2 Results

Group sequential designs
For group sequential designs, Stevely et al47 identified 68 trials that were published in leading medical journals, of

which 13 (19%) were multi-arm trials. A total of 46/68 (68%) were stopped early, primarily either for efficacy (10/46, 22%)
or futility (28/46, 61%). Of these trials, only 7% (3/46) disclosed the use of some form of bias correction. A subsequent
review of 19 two-arm group sequential trials92 in oncology that were stopped early found that none of these applied

T A B L E 1 Search strategy for the initial database search of MEDLINE.

Type of adaptive design Search terms

MAMS designs [(“multi-stage”) OR (“multi stage”) OR (“multi-arm multi-stage”) OR (“multi arm multi stage”) OR
(two-stage) OR (“two stage”) OR (“pick the winner”) OR (“pick-the-loser”) OR (“drop the loser”)
OR (“drop-the-loser”) OR (“dose selection”) OR (“seamless”)]

RAR designs [(“response adaptive”) OR (“response-adaptive”) OR (“adaptive randomization”) OR (“adaptive
randomization”) OR (“outcome adaptive”) OR (“outcome-adaptive”)]

Adaptive enrichment designs [(“adaptive enrichment”) OR (“population enrichment”) OR (“patient enrichment”) OR
(“enrichment design”) OR (“biomarker-adaptive”) OR (“biomarker adaptive”) OR (“subgroup
selection”) OR (“subpopulation selection”) OR (“enrichment”)]

Abbreviations: MAMS, multi-arm multi-stage; RAR, response-adaptive randomisation.
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8 ROBERTSON et al.

T A B L E 2 Summary of systematic search of adaptive designs from Jan 1, 2000 to May 30, 2022.

Type of adaptive
design

Number of
records
screened

Number of
randomized trials
that reported results

Number of randomized trials
that reported an unbiased or
bias-adjusted estimate

MAMS 773 22 2

RAR 59 17 0

Adaptive enrichment 530 3 0

any bias correction to the estimated hazard ratios. Case studies also highlighted the routine lack of use of bias-corrected
estimators in trials that are stopped early.93 In summary, in trials that use group sequential designs, bias-adjusted methods
are rarely used in practice and the implications are not well known.47,92-94

MAMS trials
A total of 765 records were retrieved and screened for MAMS trials. Only 14/765 (1.8%) reported results. These articles

were supplemented by an additional 8 trials from related work3 within the same search period. As a result, we reviewed
22 eligible MAMS trials; phase II (n= 10), phase II/III (n= 9), and phase III (n= 3). The vast majority of trials (95.5%,
21/22) had at least one treatment arm that was dropped early but the trial continued beyond the first interim analysis and
81.8% (18/22) used frequentist methods. Only 2/22 (9.1%) of the trials reported the use of a bias-adjusted point estimator
of the treatment effect. One described the use of a bias-adjustment for the mean of the selected dose in stage 2 (which
was then used to derive an adjusted t-test)95 while the other used a uniformly minimum variance conditionally unbiased
estimator.96

RAR designs
There were 59 records retrieved that used a RAR design; of which 22 were randomized trials. Of these 22, 17 were

reporting interim (n= 4), both interim and final results (n= 1) and final results (n= 12); phase II (n= 10), phase I/II
(n= 2), phase II/III (n= 1), phase III (n= 3) and phase IV (n= 1). Of the 5 that reported interim results, 2 were stopped
early for futility, 2 had a treatment that graduated (ie, was declared successful) for further evaluation at phase III, and
the remaining was stopped early for efficacy. Most of the trials (76.5%, 13/17) used Bayesian methods with the remaining
using hybrid (frequentist and Bayesian, n= 2) and frequentist methods (n= 2). None of the trials used bias correction
methods.

Adaptive enrichment trials
Of the 528 records screened, only 1 trial was an adaptive enrichment trial reporting results. There were an additional 2

known trials not retrieved in the search. Only 1 of these 3 trials reported interim results and was stopped early for futility.
Enrichment was triggered in 1 trial. All 3 trials used frequentist methods and none used any bias correction methods.

A summary of the results of the systematic search is given in Table 2 As can be seen, across the adaptive designs
considered, unbiased or bias-adjusted treatment effect estimates are currently rarely used and reported.

These results are in stark contrast with some of the recommendations for best practice that have been made around
bias-adjusted analyses in widely-used guidance on adaptive designs (namely, the FDA guidance,42 and the Adaptive
designs CONSORT Extension3,4(ACE)). The FDA guidance stresses the importance of using “methods for adjusting esti-
mates to reduce or remove bias associated with adaptations and to improve on performance such as the mean squared
error”, stating that “Such methods should be prospectively planned and used for reporting results when they are avail-
able”. In particular, for group sequential designs “a variety of methods exist to compute estimates and confidence intervals
that appropriately adjust for the group sequential stopping rules … To ensure the scientific and statistical credibility of
trial results and facilitate important benefit-risk considerations, an approach for calculating estimates and confidence
intervals that appropriately accounts for the group sequential design should be prospectively planned and used for report-
ing results.” As for the CONSORT Extension, the guidance is much less prescriptive, but nevertheless recommends the
discussion of “the implications of … potential bias and imprecision of the treatment effects if naïve estimation methods
were used”. The relevant parts of both these guidance documents are quoted in full in Appendix A.1.

4 CASE STUDY: GROUP SEQUENTIAL DESIGN

In this section, we illustrate how different types of unbiased and bias-reduced estimators (as reviewed in part I of this
article series) can be used in practice for a group sequential design that uses OBF stopping boundaries, which we now
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ROBERTSON et al. 9

briefly describe. In a group sequential design, participants are allocated to the treatments and the accumulating data
are analyzed after each complete group of data becomes available. When using OBF efficacy boundaries, the nominal
significance levels needed to reject the null hypothesis increases as the trial progresses, that is, it is more difficult to reject
H0 at earlier analyses. Given the standardized test statistics Zk for group k= 1, … , K, the one-sided OBF boundaries and
stopping rules take the following form11:

After group k= 1, … , K−1.

if Zk ≥C (K, 𝛼)
√

(K/k) stop, reject H0.

otherwise continue to group k+ 1.

After group K.

if Zk ≥C (K, 𝛼) stop, reject H0.

otherwise stop, do not reject H0.

Here, the values of C (K, 𝛼) are chosen to ensure that the overall type I error probability for the K stage trial is controlled
at preset level 𝛼.

We use a group sequential design as our case study in order to illustrate the widest range of different estimators (both
unconditional and conditional). As well, some adaptive designs (eg, certain types of MAMS designs) can be viewed as
an extension of group sequential designs and therefore we can illustrate more general underlying principles of point
estimation.

We consider the phase III MUSEC (multiple sclerosis and extract of cannabis) trial, as described by Bauer et al97

and Zajicek et al.98 This is an example of a two-stage group sequential design where the trial continued to the sec-
ond stage (as the criterion for early stopping was not met). The MUSEC trial investigated the effect of a standardized
oral cannabis extract (CE) on muscle stiffness for adult patients with stable multiple sclerosis. The primary endpoint
was a binary outcome—whether or not a patient had “relief from muscle stiffness” after 12 weeks of treatment, based
on a dichotomized 11-point category rating scale. A two-stage group sequential design with early stopping for supe-
riority using the OBF boundary was used, with a pre-planned maximum total sample size of 400 subjects (200 per
arm) and an unblinded interim analysis planned after 200 subjects (100 per arm) had completed the 12 week treatment
course.

In the actual trial, an unblinded sample size re-estimation based on conditional power considerations97 was also
carried out at the interim analysis, which reduced the total planned sample size from 400 to 300. For the purpose of
illustrating the calculation of a larger range of adjusted estimators, we ignore this sample size re-estimation in what
follows. If we were to take into account the sample size re-estimation then the methods for adaptive group sequential
designs would apply (see Section 6 of part I of this series), but only median-unbiased estimators are available in that
setting. For more general guidelines around best practice in this context, see Section 5.

Table 3 summarizes the observed data from the trial at the interim and final analyses, as well as the standardized test
statistics and the OBF efficacy stopping boundaries. As can be seen, at the interim analysis the boundary for early rejection
of the null hypothesis (no difference in the proportion of subjects with relief from muscle stiffness between treatment
arms) was almost reached, with the standardized test statistic being close to the stopping boundary.

T A B L E 3 Observed data from the MUSEC trial at the interim and final analyses, with standardized test statistics and
O’Brien-Fleming (OBF) group sequential boundary (one-sided, with early stopping only for superiority).

Interim data Final data

Placebo CE arm Placebo CE arm

Number of subjects with relief from muscle stiffness 12 27 21 42

Total number of subjects 97 101 134 143

Standardized test statistic 2.540 2.718

OBF boundary 2.797 1.977
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10 ROBERTSON et al.

4.1 Calculation of unbiased and bias-adjusted estimators

Using the observed data from the MUSEC trial, we now demonstrate how to calculate various unbiased and bias-adjusted
estimators for the treatment difference, from both a conditional and unconditional perspective. More formally, letting
pCE and p0 denote the response probability for patients on CE and the placebo respectively, we consider estimators of
𝜃 = pCE - p0. R code to obtain these estimators is provided in the Supporting Information.

The conventional end-of-trial estimator for the treatment difference, that is, the overall MLE, is given by 𝜃obs = p̂CE −
p̂0, where p̂CE and p̂0 are the observed proportions of successes on the CE and placebo arms respectively. In what follows,
it is also useful for illustrative purposes to consider the MLE calculated just using the interim data (stage 1 data), denoted
𝜃1, as well as the MLE calculated just using the stage 2 data (ie, only the data from after the interim analysis), denoted 𝜃2.
These estimators are inefficient (and potentially unethical) since they “discard” patient data, so we are not recommending
that these are used in practice.

Unconditional perspective
From an unconditional perspective, we want to estimate 𝜃 regardless of the stage that the trial stops, and are interested

in the bias as averaged over all possible stopping times, weighted by the respective stage-wise stopping probabilities. More
formally, letting T be the random variable denoting the stage that the trial eventually stops, we define the unconditional
bias of an estimator 𝜃 as

bias(𝜃) = E𝜃[𝜃] − 𝜃 =
2∑

k=1
E𝜃[𝜃|T = k] Pr

𝜃

[T = k] − 𝜃.

In the two-stage trial setting, Emerson99 presented an analytical expression for this bias of the overall MLE, which
depends on the unknown value of 𝜃:

bias𝜃(𝜃) =
I2 − I1

I2
√

I1
𝜙

(
e − 𝜃

√
I1

)
,

where e denotes the efficacy stopping boundary, I1 and I2 denote the (observed) information at stage 1 and stage 2 respec-
tively and 𝜙 denotes the probability density function (pdf) of a standard normal distribution. The full definitions of the
information I1 and I2 for our trial context are given in Appendix A.2, which depend on the number of observed successes.
Following Whitehead,84 we can use this expression to calculate an unconditional bias-corrected MLE 𝜃 (UBC-MLE),
which is the solution of the equation 𝜃 = 𝜃obs − bias

𝜃
(𝜃obs).

Alternatively, the uniformly minimum variance unbiased estimator (UMVUE) can be calculated by using the
Rao-Blackwell technique on the stage 1 MLE 𝜃1, which is unconditionally unbiased (see Section 4.1 of part I of this article
series for further details). More formally, the UMVUE in our two-stage trial context is given by E[�̂�1 | (T, �̂�obs)], with the
following closed-form expression when T= 2:

UMVUE = 𝜃obs −
√

I2 − I1
√

I1I1

𝜙

(
e−Z2

√
I1∕I2√

(I2−I1)∕I2

)

Φ

(
e−Z2

√
I1∕I2√

(I2−I1)∕I2

) ,

where Z2 is the (observed) overall standardized test statistic at stage 2, and Φ represents the cumulative distribution
function (cdf) of a standard normal distribution.

A median unbiased estimator (MUE) can also be calculated, which depends on a choice of the ordering of the sample
space with respect to evidence against the null hypothesis (see Section 4.2 of part I of this article series for further details).
In what follows, we use stagewise ordering, which has desirable properties described by Jennison and Turnbull.11 This
allows the use of the P-value function P(𝜃) to find the MUE, which is the solution to the equation.

P(𝜃MUE)= 0.5. The formula for the P-value function (for a trial that continues to the second stage) is as follows:

P(𝜃) =
∫

e

−∞∫

∞

z2

f2

(

(x1x2) ,
(
𝜃

√
I1𝜃

√
I2

)
,

(
1

√
I1∕I2√

I1∕I2 1

))

dx2dx1,

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9734 by T
est, W

iley O
nline L

ibrary on [06/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ROBERTSON et al. 11

where f2 ((x1x2) , 𝜇,Σ) is the density of a bivariate normal distribution with mean 𝜇 and covariance matrix 𝛴 evaluated at
the vector (x1, x2). See also the R code provided in the Supporting Information.

Conditional perspective
From a conditional perspective, we are interested in estimation conditional on the trial continuing to stage 2. We

define this conditional bias of an estimator 𝜃 as E[ 𝜃 |T = 2] − 𝜃. In the context of group sequential trials, as argued
by several authors,100-104 the conditional bias of an estimator is also an important consideration: given that the study
has in fact stopped with T= 2, we can use this knowledge in our bias calculations. As well, while the unconditionally
unbiased estimators are unbiased overall, they tend to overestimate the treatment effect when there is early stopping
and underestimate the effect when the trial continues to the end. The authors see value in both the conditional and
unconditional perspective. As the unconditional estimators tend to be biased once the stopping reason is known they do,
however, have a slight preference for conditional estimators. Nonetheless, there is no consensus in the literature and we
provide a few example quotations illustrating this in Appendix A.2.

We can calculate an analytical expression for the conditional bias of the overall MLE (ie, at the final stage), which is
given below and again depends on the unknown true parameter 𝜃:

Conditional bias𝜃(𝜃) = −
√

I1

I2

𝜙

(
e − 𝜃

√
I1

)

Φ
(

e − 𝜃

√
I1

) .

Using this expression, we can calculate a conditional bias-corrected MLE 𝜃c (CBC-MLE), which is the solution of the
equation �̃�c = 𝜃obs − conditional bias

�̃�c

(
𝜃obs

)
. As well, the uniformly minimum variance conditionally unbiased estima-

tor (UMVCUE) can be calculated by again using the Rao-Blackwell technique, but this time applied to the stage 2 MLE
𝜃2 (ie, excluding the stage 1 data), which is conditionally unbiased. See Section 4 of part I of this article series for details.
More formally, the UMVCUE is given by E[𝜃2 | (T = 2, �̂�obs)], resulting in a closed-form expression as follows:

UMVCUE = 𝜃obs − w1

𝜙

(
w2

(
𝜃obs − e∕

√
I1

))

Φ
(

w2

(
𝜃obs − e∕

√
I1

)) ,

where w1 = 1

(I2−I1)
√

I−1
1 +(I2−I1)−1

, w2 = I1

√
I−1

1 + (I2 − I1)−1.

Finally, a conditional MUE (CMUE), 𝜃CMUE, can be calculated following Koopmeiners et al105 and Grayling and
Wason106 It is defined as the value of 𝜃 that gives a conditional median equal to the observed overall MLE. More formally,
it is the solution to the following equation:

0.5 =
∫

𝜃obs

−∞
f (𝜃|T = 2)d𝜃,

where f (𝜃 | T = 2) is the conditional density of the overall MLE (conditional on continuing to stage 2), see Appendix A.2
for further details.

Table 4 gives the values of all of the estimators described above, calculated using the observed data and OBF stopping
boundaries from the MUSEC trial. For illustration purposes, we also calculated the Standard Error (SE) for all estimators
using a parametric bootstrap approach assuming that the true unknown difference in proportions (θ) is equal to 0.14,
which should be treated with caution as they will vary depending on this key assumption—see Section 4.2 for a simulation
study that gives the values of the SEs for different assumed values of θ. R code for calculating the SEs is given in the
Supporting Information.

The overall MLE is 0.1370 (with a SE of 0.054), and is the comparator for all the other estimators in Table 4 since it
is the conventional end-of-trial point estimate. Starting with the unconditionally unbiased and bias-adjusted estimators,
the stage 1 MLE is slightly larger (0.1436), but this is based on only the stage 1 data and hence is slightly inefficient: it
has an information fraction of 0.795 and a SE of 0.057. The MUE, UBC-MLE and UMVUE are all slightly lower than the
MLE, although they are all within 0.01 in absolute terms (ie, within 7% in relative terms). This downward correction is
intuitive − we would expect the MLE to overestimate the magnitude of θ averaged over the possible stopping times: if 𝜃1
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12 ROBERTSON et al.

T A B L E 4 Naive, unconditionally and conditionally unbiased/bias-adjusted estimates calculated using the observed data and
O’Brien-Fleming efficacy stopping boundaries from the MUSEC trial.

Type of estimator Estimator
Difference in
proportions (SE)

Relative difference
to overall MLE

MLE/naive MLE (overall) 0.1370 (0.054) –

Unconditionally unbiased/bias-adjusted MLE (stage 1) 0.1436 (0.057) +5%

Median unbiased estimator (MUE) 0.1341 (0.054) −2%

UMVUE 0.1278 (0.054) −7%

Bias-corrected MLE (UBC-MLE) 0.1328 (0.055) -3%

Conditionally unbiased/bias-adjusted MLE (stage 2) 0.1139 (0.111) −17%

Conditional MUE (CMUE) 0.1851 (0.080) +35%

UMVCUE 0.1724 (0.071) +26%

Bias-corrected MLE (CBC-MLE) 0.1909 (0.073) +39%

Note: Standard errors (SEs) are calculated using a parametric bootstrap approach with 105 replicates, assuming that the true difference in proportions is equal
to 0.14.

is sufficiently larger than θ, the trial stops with T= 1 and the MLE equals 𝜃1, whereas if 𝜃1 is lower than θ by a similar
amount, the trial can continue, allowing the stage 2 data to reduce the negative bias of the overall MLE. The SEs of
these estimators are all very similar to that of the MLE under the assumption of a true difference in proportions of 0.14,
reflecting the small corrections to the MLE. Finally, we see that MUE>UBC-MLE>UMVUE, which reflects the fact that
the MUE is not mean-unbiased, and the UBC-MLE will also be expected to have residual mean bias as it is not exactly
mean-unbiased (see Section 4.2 for simulation results).

Moving on to the conditionally unbiased and bias-adjusted estimators, the stage 2 MLE is substantially lower (0.1139)
than the overall MLE (and indeed any of the other estimators conditional or unconditional). However, the information
fraction for stage 2 was only 0.205 ignoring the 0.795 from stage 1, and hence this estimator has a substantially higher
variability with a (conditional) SE of 0.111. The CMUE, CBC-MLE, and UMVCUE are noticeably larger than the overall
MLE (in relative terms 35%, 39%, and 26% larger respectively). An upward correction is intuitive from a conditional
perspective: there is downward selection pressure on the stage 1 MLE 𝜃1, since if 𝜃1 is sufficiently larger than θ then the
trial does not continue to stage 2. Given that the stage 1 MLE was almost large enough for the standardized test statistic to
cross the OBF stopping boundary (note that on the test statistic scale, the OBF stopping boundary at stage 1 was 0.1581),
the relatively large correction to the overall MLE is not too surprising. These three estimators have substantially lower
(conditional) SE than the stage 2 MLE, since they are utilizing all of the trial data. However the conditional SEs are larger
than the unconditional ones. This is a general property of conditional estimators: by conditioning, the information that
is contained in the statistic that is conditioned on (in this case, the stopping stage) is lost. Finally, we see that both the
CMUE and CBC-MLE are larger than the UMVCUE, which again reflects the residual mean (conditional) bias in the
CMUE and CBC-MLE (see Section 4.2 for simulation results).

As pointed out by an anonymous reviewer, the observed stage at which the trial stops (or more generally, the observed
study design) will imply something about the treatment effect which can then be taken into account. In our case study,
the study proceeds to the second stage, which implies that the MLE is on average conditionally biased downwards101

(see Panel B in Figure 1). Therefore, it arguably is undesirable to apply an unconditional adjustment that adjusts the
MLE further downwards. Instead, a conditional approach may make more sense because it will adjust the MLE upwards
to take account of the fact that the MLE has a conditional negative bias (see Panel B in Figure 1). These trends are
all reflected in the results presented in Table 4. See also the discussion on the conditional vs unconditional perspective
in Section 5.1.

In summary, for the MUSEC trial data, the use of different estimators can give noticeably different values for the
estimated treatment effect, particularly when considering a conditional vs unconditional perspective. This could influence
the interpretation of the trial results in certain cases, and highlights the importance of pre-specifying which estimator(s)
will be reported following an adaptive design. The choice of estimator(s) will depend on what the researchers wish to
achieve regarding the estimand in question. There will be pros and cons for the different estimators, one key example
being the bias-variance trade-off. We explore these issues further in Section 5. We also note that there is a strong link

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9734 by T
est, W

iley O
nline L

ibrary on [06/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ROBERTSON et al. 13

between design and estimation—the estimated values above depend on the design of the trial, and would be different if
(eg,) the design had also included futility stopping boundaries.

4.2 Simulation study

Since the point estimates presented above represent one realization of the trial data given the trial design, in this subsec-
tion we carry out a simulation study to investigate the performance of the estimators under different scenarios. We stress
however that (unlike when calculating the standard errors of the estimates) we have not used the assumed unknown
value for the underlying treatment effect (θ) to calculate the unbiased and bias-adjusted estimates in Table 4. As can be
seen from the formulae in Section 4.1, these estimators do not depend explicitly on θ, but only on the observed data and
efficacy stopping boundary (in this case). Hence, the point estimates presented in the third column of Table 4 would not
change under different values of θ assuming that the realized trial data remained the same.

To demonstrate the bias-variance properties of the estimators when averaged over many trial realizations following
the two-stage design of the MUSEC trial, we ran simulations under different values of θ (0.10, 0.14, and 0.18). To do so,
we used the (asymptotic) canonical joint distribution of the standardized test statistics at each stage,11 which is bivariate
normal—for further details, see the R code included in the Supporting Information. For further comprehensive simula-
tion results comparing the different estimators in the context of two-stage group sequential trials, we refer the reader to
Grayling and Wason.106

For each value of θ, we simulated 105 trial replicates and calculated the mean values of the point estimators as well
as their standard errors across the trial replicates. Note that the unconditional estimators are all equal to the stage 1
MLE for the trial realizations that stop at the interim analysis. This is by definition for the overall MLE (since this is
the MLE calculated at the stage the trial stops at) as well as the MUE and the UMVUE, while the UBC-MLE would
depend on the unknown value of I2 and hence we simply set the UBC-MLE equal to the observed stage 1 MLE. As
for the conditional estimators, these are all conditional on the trial continuing to stage 2 (and so are calculated using
trial realizations that continue to stage 2, see the R code for further details). The simulation results are displayed
in Table 5 below.

The results for the mean values of the point estimators are what we would expect: on average, the unbiased estimators
are unbiased whereas the naïve and bias-adjusted estimators have a (small) positive bias due to the early stopping for
efficacy. The overall MLE has the largest mean bias out of the unconditional estimators, although this is less than 0.005
in absolute terms across the different values of θ. The MUE and UBC-MLE have a residual positive bias (less than 0.003
in absolute terms), reflecting how they are not mean unbiased. Looking at the conditional estimators, the CMUE and
CBC-MLE have a larger positive bias (up to 0.014 in absolute terms) while having a similar SE to the UMVCUE, and so
would likely not be recommended for use in this trial context.

T A B L E 5 Simulation results showing the mean values of the point estimators and the corresponding standard errors (SE) under
different assumed values of θ. There were 105 trial replicates for each value of θ.

Difference in proportions (SE)

Type of estimator Estimator 𝛉= 0.10 𝛉= 0.14 𝛉= 0.18

MLE/naive MLE (overall) 0.103 (0.054) 0.144 (0.054) 0.184 (0.053)

Unconditionally unbiased/bias-adjusted MLE (stage 1) 0.100 (0.057) 0.140 (0.057) 0.180 (0.057)

Median unbiased estimator (MUE) 0.101 (0.053) 0.142 (0.054) 0.182 (0.054)

UMVUE 0.100 (0.052) 0.140 (0.054) 0.180 (0.055)

Bias-corrected MLE (UBC-MLE) 0.101 (0.054) 0.142 (0.055) 0.183 (0.054)

Conditionally unbiased/bias-adjusted MLE (stage 2) 0.100 (0.111) 0.140 (0.111) 0.180 (0.111)

Conditional MUE (CMUE) 0.115 (0.083) 0.152 (0.080) 0.190 (0.081)

UMVCUE 0.100 (0.062) 0.140 (0.071) 0.179 (0.080)

Bias-corrected MLE (CBC-MLE) 0.111 (0.067) 0.154 (0.073) 0.194 (0.078)

Note: The probability of stopping at stage 1 was 0.15, 0.37 and 0.65 for θ= 0.10, 0.14 and 0.18, respectively.
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14 ROBERTSON et al.

T A B L E 6 Simulation results showing the mean values of the unconditional point estimators and the corresponding standard errors
(SE) under different assumed values of θ, separated by trial replicates that stop at the interim analysis and those that continue to stage 2.
There were 105 trial replicates in total for each value of θ.

Difference in proportions (SE)

Estimator 𝛉= 0.10 𝛉= 0.14 𝛉= 0.18

Trial stops early at the interim analysis MLE (stage 1) 0.188 (0.025) 0.197 (0.031) 0.212 (0.038)

Trial continues to stage 2 MLE (overall) 0.087 (0.043) 0.113 (0.038) 0.132 (0.033)

MLE (stage 1) 0.084 (0.045) 0.106 (0.038) 0.120 (0.030)

Median unbiased estimator (MUE) 0.086 (0.041) 0.109 (0.034) 0.126 (0.027)

UMVUE 0.084 (0.039) 0.106 (0.030) 0.120 (0.023)

Bias-corrected MLE (UBC-MLE) 0.085 (0.041) 0.110 (0.036) 0.128 (0.032)

Note: The probability of stopping at stage 1 was 0.15, 0.37, and 0.65 for θ= 0.10, 0.14, and 0.18, respectively.

Tables 4 and 5 demonstrate that while on average, the different point estimators will be close together, for a particular
trial realization, the estimates may be quite different. The differences between the estimators we see in Table 4 are a
consequence of the observed data for the MUSEC trial, which were quite “extreme” in the sense that the stage 1 MLE was
very close to the stopping boundary and substantially larger than the stage 2 MLE.

As for the SEs, for the unconditional estimators, the stage 1 MLE has the highest SE, reflecting how it only uses the
stage 1 data (with an information fraction of 0.795). The other unconditional estimators have very similar SEs, which
change little as θ increases. For the conditional estimators, the stage 2 MLE has a substantially higher SE since it only
uses the stage 2 data (with an information fraction of only 0.205). The UMVCUE and CBC-MLE have similar SEs (with
the CMUE having a slightly larger SE); however, their SEs increase as θ increases. This reflects how the stage 1 and stage
2 data will be expected to have a larger discrepancy as θ increases, since the stage 1 MLE will have to be below the efficacy
stopping boundary of 0.1581 in order for the trial to continue to the second stage.

Like in Section 2.2, it is informative to also report separate means for the unconditional estimators for the trial
replicates that stop early at the interim analysis and those that continue to stage 2. Table 6 shows these mean val-
ues of the unconditional point estimators as well as their corresponding standard errors across 105 trial replicates.
We see that for the trial replicates that stop at the interim analysis, the stage 1 MLE has a substantial positive con-
ditional bias, particularly for θ= 0.10 (but note that the probability of stopping in this case is only 0.15). Conversely,
for the trial replicates that continue to stage 2, all of the unconditional estimators are conditionally biased, with
a noticeable negative conditional bias across all three values of θ. These results need to be interpreted in light of
the probability of stopping at stage 1, which was 0.15, 0.37 and 0.65 for θ= 0.10, 0.14, and 0.18, respectively. Over-
all, the results again demonstrate that even if estimators are unconditionally unbiased, they may have considerable
conditional bias.

Apart from summarizing the mean values and SEs, it is also useful to look at the whole sampling distribution of
the point estimators. Figure 2 shows these sampling distributions, assuming θ= 0.14 and with 105 trial replicates. For
the unconditional estimators (except for the stage 1 MLE), the distributions are a mixture from the trial replicates that
stopped in stage 1 and those that continued to stage 2 (recall that for those trial replicates that stopped in stage 1, all
the unconditional estimators are equal to the stage 1 MLE). It is interesting to note that the sampling distribution of the
MUE is substantially smoother than those of all the other estimators (ignoring the stage 1 MLE), particularly compared
with the UMVUE and the overall MLE. As for the conditional estimators, the stage 2 MLE has a substantially wider
sampling distribution than the others, reflecting how it uses less information. Meanwhile, the sampling distributions of
the UMVCUE, CMUE and the CBC-MLE appear quite similar.

5 GUIDANCE: BEST PRACTICES FOR POINT ESTIMATION IN ADAPTIVE
DESIGNS

In this section, we give guidance on the choice of estimators and the reporting of estimates for adaptive designs. This builds
on the relevant parts of the FDA guidance for adaptive designs42 and the ACE.3,4 The issue of estimation and potential bias
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ROBERTSON et al. 15

F I G U R E 2 Sampling distributions of the point estimates from 105 trial replicates, assuming that θ= 0.14. CMUE, conditional median
unbiased estimator; MLE, maximum likelihood estimator; MUE, median unbiased estimator; UMVCUE, uniformly minimum variance
conditionally unbiased estimator; UMVUE, uniformly minimum variance unbiased estimator.

should be considered throughout the whole lifecycle of an adaptive trial, from the planning stage to the final reporting
and interpretation of the results. Indeed, the design and analysis of an adaptive trial are closely linked, and one should
not be considered without the other. In what follows, our main focus is on the confirmatory setting where analyses are
fully pre-specified, but some of the principles can also apply to more exploratory settings, particularly around the choice
of estimators and the final reporting of trial results.

5.1 Planning stage

The context, aims and design of an adaptive trial should all inform the analysis strategy used, which includes the choice
of estimators. These decisions should not only be left to trial statisticians, but also be discussed with other trial investi-
gators to ensure that it is consistent with what they want to achieve. Firstly, it is necessary to decide on what exactly is
to be estimated (ie, the estimands of interest; see also Appendix A.2). Secondly, the desired characteristics of potential
estimators should be decided. Two key considerations are as follows:
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16 ROBERTSON et al.

• Conditional vs unconditional perspective: The choice of whether to look at the conditional or unconditional bias of an
estimator will depend on the trial design. For example, in a drop-the-losers trial where only a single candidate treatment
is taken forward to the final stage, a conditional perspective reflects the interest being primarily in estimating the effect
of the successful candidate. On the other hand, for group sequential trials, the unconditional perspective is recognized
as being an important consideration (see Appendix A.2). As seen in the simulation study in Section 4.2, it can be the
case that these different point estimators are on average similar over repeated realizations of the trial, but for a single
realization are markedly different. As well, the standard errors of the conditional estimators can be larger than those
for the unconditional estimators. More generally, (as pointed out by an anonymous reviewer) in situations where the
observed design (see Section 2.2) implies a directionality to the MLE bias, the conditional estimation that takes this
directionality into account may be preferable. Stopping a group sequential trial for efficacy at the first interim analysis
(over-estimate) or at the final analysis (under-estimate) are examples of this situation.

A new perspective on the question of conditional vs unconditional inference has recently been provided by
Marschner.87 This work presents a unifying formulation of adaptive designs and a general approach to their analy-
sis, which is based on the partitioning of the overall unconditional information into its two component sources. More
precisely, the unconditional likelihood can be expressed as the product of the “design likelihood” (ie, the information
contained in the realized design) and the ‘conditional likelihood’ (conditioned on the realized design). Rather than
advocating for or against unconditional inference over conditional inference in general, the framework allows for the
exploration of the extent to which conditional bias is likely to be present within a given sample (using meta-analysis
techniques). For further details, we refer the reader to Marschner.87

• Bias-variance trade-off : Typically there will be a trade-off between the bias and variance of different estimators. Depend-
ing on the context and aims of the trial, different relative importance may be given to the two. For example, in a phase
II trial where a precise estimate of the treatment effect is needed to inform a follow-up confirmatory study, the variance
of an estimator may be of greater concern, whereas in a definitive phase III trial an unbiased estimate of treatment
effect is key for real-world decision-making, as discussed in Section 2.1 One proposal given in the literature is to use
the mean squared error as a way of encompassing both bias and variance.

Potentially different criteria will be needed for different outcomes, for example, when considering primary and sec-
ondary outcomes, which may then lead to using different estimators for different outcomes. As well, in some trial settings
such as multi-arm trials (and drop-the-loser designs) where more than one arm reaches the final stage, the bias of each
arm could be considered separately, but there may also be interest in calculating for example, the average bias at the across
all arms that are selected. In any case, once criteria for assessing estimators have been decided, the next step is to find
potential estimators that can be used for the trial design in question. Part I of this article series is a starting point to find
relevant methodological literature and code for implementation.

For more commonly used adaptive designs, a review of the literature may be sufficient to compare the bias and variance
of different estimators. Otherwise, we would recommend conducting simulations to explore the bias and variance of
potential estimators given the adaptive trial design. In either case, we recommend assessing the estimators across a range
of plausible parameter values and design scenarios, taking into account important factors such as the probability of early
stopping or reaching the final stage of a trial. More generally, any simulations should follow the relevant FDA guidelines
regarding simulation reports for adaptive designs42(pp28-29), see also guidance by Mayer et al.107

The simulation-based approach can also be used when there are no proposed alternatives to the standard MLE for
the trial design under consideration. Even in this setting, we would still encourage an exploration of the bias properties
of the MLE. If there is a potential bias of a non-negligible magnitude, then this can impact how the results of the trial are
reported (see Section 5.4).

5.2 Pre-specification of analyses

The statistical analysis plan (SAP) and health economic analysis plan (HEAP) should include a description of the esti-
mators that are planned to be used to estimate treatment effects of interest when reporting the results of the trial, and
a justification of the choice of estimators based on the investigations conducted during the planning stage. This reflects
the FDA guidance,42(p28) which states that there should be “prespecification of the statistical methods that will be used to
[… ] estimate treatment effects… ” and “evaluation and discussion of the design… which should typically include [… ]
bias of treatment effect estimates”. The trial statistician and health economist should work together to develop plans that
are complementary to both their analyses.
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ROBERTSON et al. 17

When available, unbiased or bias-reduced estimators should be used and (in line with the ACE guidance3,4) reported
alongside the standard MLE. In settings where multiple adjusted estimators are available and are of interest, one adjusted
estimator should be designated the “primary” adjusted estimator for the final reporting of results, with the others included
as sensitivity or supplementary analyses (depending on the estimand of interest108,109). This is to aid clarity in the inter-
pretation of the trial results, and to avoid “cherry-picking” the estimator that gives the most favorable treatment effect
estimate. Similarly, when only one adjusted estimate is reported alongside the standard MLE, it should be made clear
which one is the ‘primary’ result. More generally, guidelines for adaptive designs should have a clear requirement to
consider bias and bias-adjustment when analyzing trial results.

As an example of what this looks like in practice, we point the reader to the TAO (Treatment of Acute Coronary
Syndromes with Otamixaban) trial as described by Steg et al,110 particularly their appendix B, section 9. The authors
consider the MLE and a median-unbiased estimator (MUE), and explore the bias and MSE via simulations and conclude
that the MUE has a “consistently smaller” bias with no “noticeable difference in terms of MSE”. Therefore, they propose
to use the MUE as the point estimator in their trial.

We have deliberately avoided making recommendations on the most appropriate adjustment method because the most
appropriate choice of estimator depends heavily on the context and goals of the trial, as well as the type of adaptive design
(and trial adaptations) in question. In addition, given that estimation for adaptive designs is an ongoing research area,
there is a risk that any recommendations may become outdated. However, for some adaptive designs, such as the group
sequential design presented in our case study in Section 4, it is possible to provide stronger guidance (see the discussion
in Section 4.1 as an example).

5.3 Data monitoring committees (DMCs)

When presenting interim results to DMCs, the issue of potential bias should also be considered. We would recommend
that the sensitivity of the standard MLE (based on the interim data) to potential bias should be reported, for example
based on simulations conducted during the planning stage. As recommended by Zhang et al102 and Shimura et al,92 when
unbiased or bias-reduced estimators are available, these should also be presented to the DMC, as an additional tool for
appropriately considering potential bias in the decision-making process of whether to stop a trial early (or to perform
other trial adaptations such as modifying the sample size).

5.4 Reporting results for a completed trial

When reporting results following an adaptive design, there should be a clear description of the “statistical methods used
to estimate measures of treatment effects”.3(p16) Hence, when unbiased or bias-adjusted estimators are used, this should
be made clear, along with any underlying assumptions made to calculate them (eg, being unbiased conditional on the
observed stopping time). As reflected in the ACE guidance,3(p16) “when conventional or naive estimators derived from
fixed design methods are used, it should be clearly stated” as well.

The FDA guidance on adaptive designs42(p30) states that “treatment effect estimates should adequately take the design
into account”. Hence, we reiterate that adjusted estimates taking the trial design into account are to be preferred, if avail-
able. The FDA guidance goes on to say that “if naive estimates such as unadjusted sample means are used, the extent of bias
should be evaluated, and estimates should be presented with appropriate cautions regarding their interpretation”.42(p30)

Similarly, the ACE guidelines encourage researchers to discuss “Potential bias and imprecision of the treatment effects if
naive estimation methods were used”.

These discussions would naturally link back to the planning stage literature review and/or simulations (which could
potentially be updated in light of the trial results and any unplanned adaptations that took place), taking into account
important factors such as the probability of early stopping and plausible values of the unknown true treatment effect.
For example, if the potential bias of the MLE is likely to be negligible, this would be a reassuring statement to make. On
the other hand, in a setting where no adjusted estimators currently exist in the literature (eg, for trials which combine
multiple trial adaptations together) and there is the potential for non-negligible bias in the MLE, a statement flagging up
this potential concern would allow appropriate caution to be taken when using the point estimate to inform clinical or
policy decisions, future studies or meta-analyses.

As discussed in Section 5.4, it should be specified in advance (ie, in the SAP for a confirmatory study) which estimator
will be used for the primary analysis and which (if any) estimator(s) will be used as a sensitivity analysis. If an unbiased
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18 ROBERTSON et al.

or bias-adjusted estimator is reported, then it is useful to look at the similarity with the MLE as part of the sensitivity
analysis. If the two estimates are very close to each other, then it is reassuring that the trial results appear to be somewhat
robust to the estimation strategy used. Conversely, if the two estimates are substantially different, then this may indicate
that more care is needed in interpreting the trial results and when using the point estimates for decision-making or further
research. However, we caution that the observed difference between the MLE and an unbiased (or bias-adjusted) estimate
is not necessarily a precise measure of the actual bias in the observed MLE. Firstly, the bias of the MLE depends on the
true underlying treatment effect, which is unknown. Secondly, an unbiased estimator is only unbiased on average, and
not necessarily in any particular trial realization. To this end, a potentially more transparent way of reporting results is to
show the plausible extent of bias of the MLE across a practically reasonable range of the true treatment effect, in addition
to considering the corresponding probabilities of stopping (or reaching the final stage). Again this would build on the
planning stage review and simulations.

Finally, the reporting of appropriate measures of uncertainty for the estimators, such as confidence or credible inter-
vals, is also important. If methods exist for constructing confidence intervals associated with the adjusted estimator, then
clearly these can be reported. However, for many adjusted estimators it is not clear how to construct valid confidence
intervals, and hence the “standard” confidence interval for the MLE may be the only one available.

6 DISCUSSION

In this article, we have critically assessed how bias can affect standard estimators of treatment effects in adaptive designs
and the negative effects this can have. As discussed in part I of this article series,45 there is a growing body of methodolog-
ical literature proposing unbiased and bias-adjusted estimators for a wide variety of adaptive trial designs. However, as
shown in this article, there has been little uptake of adjusted estimators in practice, with the vast majority of trials contin-
uing to only report the MLE (if indeed it is made clear which estimation method is being used at all). There are a variety
of reasons why this may be the case. Firstly, there is a common belief that the bias of the MLE will typically be negligible
in realistic trial scenarios. This assumption is sometimes made without supporting evidence such as simulation studies
for a variety of trial contexts. In theory, the bias can be very large in certain scenarios111. However, as discussed through-
out this article, the magnitude of the bias depends on the type of design and whether we are interested in conditional or
unconditional bias. Hence, this issue needs to be carefully considered for the specific trial in question. Secondly, there is
perhaps a lack of awareness of the range of different unbiased and bias-adjusted estimators that exist in the methodolog-
ical literature. Linked with this, statistical software and code to easily calculate adjusted estimators is relatively sparse
(see also Grayling and Wheeler112), which is an obstacle to the uptake of methods in practice even if they exist. It also
remains the case that for more complex or novel adaptive designs, adjusted estimators may not exist (see part I of this
article series, particularly Section 6).

It is our hope that this article series will encourage the increased use and reporting of adjusted estimators in practice
for trial settings where these are available. As described in our guidance section, estimation issues should be considered
in the design stage of an adaptive trial. Bowden and Wason113 give a good example of how this can be done in a principled
way for two-stage trials with a binary endpoint. More generally, the estimation strategy should take the design of the trial
into account, which motivates the use of adjusted estimators. In terms of trial reporting, statements about the potential
bias of the reported estimates can indicate where more care is needed in interpretation of the results and the use of the
point estimates for further research including evidence synthesis and health economic analyses.

Finally, to improve the uptake of unbiased and bias-adjusted estimators in practice, there is the need for the further
development of user-friendly software and code to allow straightforward calculation of trial results and to aid in simu-
lations. Ideally, the calculation of adjusted estimators could be added to existing widely-used software for adaptive trial
design and analysis. Otherwise, there is scope for stand-alone software packages or code (such as that provided for our
case study) focusing on estimation after adaptive designs, particularly with simulation studies in mind.
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APPENDIX A

A.1 Guidance on bias-adjusted analyses for adaptive designs
A.1.1 FDA: Adaptive designs for clinical trials of drugs and biologics42

“Adaptive designs require specific analytical methods to avoid increasing the chance of erroneous conclusions and intro-
ducing bias in estimates. For complex adaptive designs, such methods may not be readily available, and simulations are
often critical”—page 6.

“It is important that clinical trials produce sufficiently reliable treatment effect estimates to facilitate an evaluation
of benefit-risk and to appropriately label new drugs, enabling the practice of evidence-based medicine. Some adaptive
design features can lead to statistical bias in the estimation of treatment effects and related quantities. For example,
each of the two cases of Type I error probability inflation mentioned in section III.A. above has a potential for biased
estimates. Specifically, a conventional end-of-trial treatment effect estimate such as a sample mean that does not take the
adaptations into account would tend to overestimate the true population treatment effect. This is true not only for the
primary endpoint which formed the basis of the adaptations, but also for secondary endpoints correlated with the primary
endpoint. Furthermore, confidence intervals for the primary and secondary endpoints may not have correct coverage
probabilities for the true treatment effects.

For some designs there are known methods for adjusting estimates to reduce or remove bias associated with adapta-
tions and to improve performance on measures such as the mean squared error (eg, Jennison and Turnbull 1999; Wassmer
and Brannath 2016). Such methods should be prospectively planned and used for reporting results when they are avail-
able. Biased estimation in adaptive design is currently a less well-studied phenomenon than Type I error probability
inflation, however, and methods may not be available for other designs. For these other designs, the extent of bias in esti-
mates should be evaluated, and treatment effect estimates and associated confidence intervals should be presented with
appropriate cautions regarding their interpretation.”—page 8.

“Finally, conventional fixed sample estimates of the treatment effect such as the sample mean tend to be biased toward
greater effects than the true value when a group sequential design is used. Similarly, confidence intervals do not have
the desired nominal coverage probabilities. Therefore, a variety of methods exist to compute estimates and confidence
intervals that appropriately adjust for the group sequential stopping rules (Jennison and Turnbull 1999). To ensure the
scientific and statistical credibility of trial results and facilitate important benefit-risk considerations, an approach for
calculating estimates and confidence intervals that appropriately accounts for the group sequential design should be
prospectively planned and used for reporting results.”—pages 12-13.

“Consider group sequential designs: It is widely understood that multiple analyses of the primary endpoint can inflate
the Type I error probability and lead to biased estimation of treatment effects on that endpoint. Less well appreciated,
however, is that Type I error probability inflation and biased estimation can also apply to any endpoint correlated with
the primary endpoint (Hung et al. 2007).”—page 22.

[Documentation Prior to Conducting an Adaptive Trial] “Evaluation and discussion of the design operating char-
acteristics, which should typically include Type I error probability; power; expected, minimum, and maximum sample
size; bias of treatment effect estimates; and coverage of confidence intervals. Such evaluations might be achieved through
analytical calculations and/or computer simulations. If operating characteristics are evaluated analytically, appropriate
details (eg, literature references or proofs) for the methodology should be submitted.”—page 28.

“Appropriate reporting of the adaptive design and trial results … For example, the trial summary should describe
the adaptive design utilized. In addition, treatment effect estimates should adequately take the design into account, or if
naive estimates such as unadjusted sample means are used, the extent of bias should be evaluated, and estimates should
be presented with appropriate cautions regarding their interpretation.”—page 30

A.1.2 The adaptive designs CONSORT extension (ACE) statement3,4

“A goal of every trial is to provide reliable estimates of the treatment effect for assessing benefits and risks to reach correct
conclusions. Several statistical issues may arise when using an AD depending on its type and the scope of adaptations,
the adaptive decision-making criteria and whether frequentist or Bayesian methods are used to design and analyses the
trial. Conventional estimates of treatment effect based on fixed design methods may be unreliable when applied to ADs
(eg, may exaggerate the patient benefit). Precision around the estimated treatment effects may be incorrect (eg, the width
of confidence intervals may be incorrect). Other methods available to summarize the level of evidence in hypothesis test-
ing (eg, P-values) may give different answers. Some factors and conditions that influence the magnitude of estimation
bias have been investigated and there are circumstances when it may not be of concern. Secondary analyses (eg, health
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economic evaluation) may also be affected if appropriate adjustments are not made. Cameron et al discuss methodolog-
ical challenges in performing network meta-analysis when combining evidence from randomized trials with ADs and
fixed designs. Statistical methods for estimating the treatment effect and its precision exist for some ADs and implemen-
tation tools are being developed. However, these methods are rarely used or reported and the implications are unclear.
Debate and research on inference for some ADs with complex adaptations is ongoing. In addition to statistical methods
for comparing outcomes between groups (item 12a), we specifically encourage authors to clearly describe statistical meth-
ods used to estimate measures of treatment effects with associated uncertainty (eg, confidence or credible intervals) and
P-value (when appropriate); referencing relevant literature is sufficient. When conventional or naïve estimators derived
from fixed design methods are used, it should be clearly stated. In situations where statistical simulations were used to
either explore the extent of bias in estimation of the treatment effects … or operating characteristics, it is good practice
to mention this and provide supporting evidence (item 24c).”—page 16.

“For AD randomized trials, further discussion should include the implications of: …
- Potential bias and imprecision of the treatment effects if naïve estimation methods were used;” —page 21.
“For some AD randomized trials, methods to derive statistical properties analytically may not be available. Thus,

it becomes necessary to perform simulations under a wide range of plausible scenarios to investigate the operating
characteristics of the design (item 7a), impact on estimation bias (item 12b), and appropriateness and consequences of
decision-making criteria and rules. In such cases, we encourage authors to reference accessible material used for this
purpose (eg, simulation protocol and report, or published related material). Furthermore, it is good scientific practice to
reference software, programs or code used for this task to facilitate reproducible research.”—page 24.

A.2 Case study: Group sequential design
A.2.1 Definition of the information at stages 1 and 2
At stage k (k= 1,2), let p̃k denote the pooled estimate of the mean overall success probability, that is, the total number of
observed successes divided by the total number of subjects. Then the observed information Ik is given by

Ik =
1

p̃k
(
1 − p̃k

)
(1∕n0k + 1∕nCEk)

,

where n0k and nCEk are the number of subjects on the placebo and CE arms, respectively, at stage k.

A.2.2 Definition of the conditional density of ̂𝜽
The conditional density of 𝜃, conditional on continuing to stage 2, is given by the following expression:

f (𝜃|T = 2) =
1 − Φ

(
c∕
√

I1−𝜃
1∕I1−1∕I2

)

1 − Φ
(

c − 𝜃

√
I1

)
exp

[
− I2

2
(𝜃 − 𝜃)2

]

√
2𝜋∕I2

,

where c is the stopping boundary at stage 1, that is, the trial stops at stage 1 if Z1 ≥ c.

A.2.3 Conditional vs unconditional perspectives
Below we give some quotations from the literature focusing on the issue of the conditional vs unconditional perspective
in the context of group sequential designs.

Troendle and Yu100(pp1617-1618):
“Suppose a group sequential clinical trial is undertaken to determine the effect of an experimental drug on the state

of a certain disease. Now suppose it is known that the trial was stopped at the first interim analysis because of treatment
efficacy, and that the estimated treatment effect was X1−Y1, the difference in sample means from the two groups… Is
X1−Y1 a reasonable estimate of the effect size? Although X1−Y1 is unbiased, the general estimator XT−YT, where T is the
random stopping time, is known to be biased. Recently, an unbiased estimator … and an essentially unbiased estimator
… have been developed for this problem. However, as will be shown later, these methods remain unbiased by overes-
timating the effect when there is early stopping while underestimating the effect when the trial stops later. The overall
effect is an unbiased estimator, but does that leave the scientist, who knows T = 1 any happier? We propose condition-
ing on the stopping time in a group sequential trial to reduce the discrepancy between the conditional expectation of the
estimator and the parameter value.”
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Fan et al101(pp506-507):
“We also note that the bias referred to is the marginal or overall bias [ie, the unconditional bias]. As much as the

importance of the marginal bias, sometimes we will also face the question of what the potential bias is given the fact that
the study is already stopped at this time, especially when it is a very early interim stage. To answer this question, we feel
it is more relevant to investigate the bias conditioning on the actual stopping time. In this article, we focus on the angle
of the conditional bias and in the meanwhile also keep in mind the marginal bias.”

“The conditional method is not meant to replace the unconditional methods because these two methods are developed
to address different issues. Instead it is proposed as an addition and alternative means that we can take advantage of when
the conditional bias is more concerning, rather than a replacement to the unconditional methods.”

Zhang et al102(p4876):
“Although this article focuses on the bias conditional on the observed stopping time, we also recognize the importance

of the marginal or unconditional bias … Evaluation of the unconditional bias is particularly helpful in the trial design
stage; however, there is also value in assessing the potential bias given that the trial has already stopped (conditional bias),
especially on the basis of a very early interim analysis. Fan and colleagues found that the conditional bias may be quite
serious, even in situations in which the unconditional bias is acceptable101 Most of the available adjustment methods
focus on the unconditional bias, which has little effect on the conditional bias.

Schoenbrot and Wagenmakers103(p140):
“Although sequential designs have negligible unconditional bias, it may nevertheless be desirable to provide a prin-

cipled ‘correction’ for the conditional bias at early terminations, in particular when the effect size of a single study is
evaluated.”

Shimura et al104(p2068):
“A reduction in conditional bias is as important as a reduction in overall bias because, in practice, researchers can

only obtain an estimate that is conditional on the stopping stages.”
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