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The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-
related alterations of the endosomal-autophagic-lysosomal
system
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ABSTRACT
Abnormalities in the endosomal-autophagic-lysosomal (EAL) system are
an early event in Alzheimer’s disease (AD) pathogenesis. However, the
mechanisms underlying these abnormalities are unclear. The transient
receptor potential channel mucolipin 1(TRPML1, also known as
MCOLN1), a vital endosomal-lysosomal Ca2+ channel whose loss of
function leads to neurodegeneration, has not been investigated with
respect to EAL pathogenesis in late-onset AD (LOAD). Here, we identify
pathological hallmarks of TRPML1 dysregulation in LOAD neurons,
including increased perinuclear clustering and vacuolation of
endolysosomes. We reveal that induced pluripotent stem cell (iPSC)-
derived human cortical neurons expressing APOE ε4, the strongest
genetic risk factor for LOAD, have significantly diminished TRPML1-
induced endolysosomal Ca2+ release. Furthermore, we found that
blocking TRPML1 function in primary neurons by depleting the
TRPML1 agonist PI(3,5)P2 via PIKfyve inhibition, recreated multiple
features of EAL neuropathology evident in LOAD. This included
increased endolysosomal Ca2+ content, enlargement and perinuclear
clustering of endolysosomes, autophagic vesicle accumulation and early
endosomal enlargement. Strikingly, these AD-like neuronal EAL defects
were rescued by TRPML1 reactivation using its synthetic agonist ML-
SA1. These findings implicate defects in TRPML1 in LOAD EAL
pathogenesis and present TRPML1 as a potential therapeutic target.
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INTRODUCTION
Increasing research evidence implicates defects in the endosomal-
autophagic-lysosomal (EAL) system as a very early event in the
genesis and progression of Alzheimer’s disease (AD) pathology,
including the buildup of amyloid-β (Aβ) and tau, and synaptic
pathogenesis (Lie and Nixon, 2019; Nixon, 2017, 2020; Van Acker
et al., 2019; van Weering and Scheper, 2019; Whyte et al., 2017).
Furthermore, studies indicate that expression of the APOE
ε4-encoding variant of apolipoprotein E (APOE) (Lin et al., 2018;
Nuriel et al., 2017) is the greatest genetic risk factor for late onset
AD (LOAD), which, along with many other LOAD risk genes and
genes causing familial AD (Hung and Livesey, 2018; Kwart et al.,
2019), converge to alter EAL function (Gao et al., 2018; Karch and
Goate, 2015; Pimenova et al., 2018; Van Acker et al., 2019).
However, it remains unclear which nodes of the EAL system are
primarily affected in AD and, hence, could be targeted
therapeutically to remediate AD pathogenesis.

The transient receptor potential channel mucolipin 1 (TRPML1;
also known as MCOLN1) is a non-selective cation channel that can
transport Ca2+, Fe2+ and Zn2+ (Dong et al., 2008; Kiselyov et al.,
2011). The primary function of TRPML1 is to induce Ca2+ release
from endolysosomal compartments, a vital process for endolysosomal
function (Di Paola et al., 2018; Venkatachalam et al., 2015; Waller-
Evans and Lloyd-Evans, 2015). TRPML1 is highly expressed in the
brain (Samie et al., 2009) and, although not investigated with respect
to EAL pathogenesis in LOAD, regulates many EAL functions known
to be impaired in AD neurons. The functions regulated by TRPML1
include: maturation of late endosomes to lysosomes; endolysosomal
trafficking; nutrient sensing and adaptation; positioning, exocytosis,
fission, clearance and reformation of lysosomes; autophagy,
phagocytosis and clearance of aggregated proteins and pathogens
(reviewed in Di Paola andMedina, 2019; Di Paola et al., 2018; Huang
et al., 2020; Kendall and Holian, 2021; Li et al., 2019). Loss-of-
function mutations in the human TRPML1 gene MCOLN1 cause
mucolipidosis type IV (MLIV) (Bargal et al., 2001; Bassi et al., 2000;
Slaugenhaupt, 2002; Sun et al., 2000), a rare recessive lysosomal
storage disorder (LSD). MLIV is characterized by neurodegeneration,
psychomotor impairment, ophthalmologic and gut defects
(Boudewyn and Walkley, 2019). MLIV patient cells show multiple
EAL abnormalities including defective endolysosomal trafficking,
vacuolation, altered positioning of the endolysosomal compartment,
compromised maturation of lysosomes, dysregulated pH and
autophagic defects (for a review, see Boudewyn and Walkley, 2019;
Cheng et al., 2010; Puertollano and Kiselyov, 2009).

The link between endolysosomal TRPML1 dysfunction and
neurodegenerative disease is further supported by findings that
TRPML1-mediated Ca2+ release is impaired in other LSDs,
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including Niemann–Pick C (NPC) disease (Lloyd-Evans and Platt,
2011; Shen et al., 2012). NPC disease shares the pathological
features of tau and Aβ accumulation with AD (Lloyd-Evans et al.,
2008). Furthermore, although not yet examined in LOAD,
alterations in TRPML1 function are associated with deletion of
the presenilin-1 (PS-1; also known as PSEN1) gene, which causes
familial AD (FAD) (Lee et al., 2015, 2010; Lie et al., 2022).
TRPML1 function is implicated in autophagic clearance of Aβ and
tau in AD by being the primary activator of transcription factor EB
(TFEB), the major regulator of lysosomal biogenesis and autophagy
(Medina et al., 2015; Napolitano and Ballabio, 2016; Zhang et al.,
2016). TFEB activation promotes clearance of Aβ and tau pathology
in preclinical models of AD (Akwa et al., 2023; Martini-Stoica
et al., 2018; Polito et al., 2014; Song et al., 2020; Xiao et al., 2015;
Xu et al., 2020), where TRPML1 activation has been shown to be
essential for TFEB-mediated clearance of tau-induced pathology
(Xu et al., 2020). Recent studies show that TRPML1-dependent
lysosomal Ca2+ release regulates dendritic lysosomal trafficking and
hippocampal neuronal function (Sun et al., 2022).
TRPML1 is one of the few ion channels gated by

phosphoinositide (PI) lipids, with PI(3,5)P2 being the primary and
only identified endogenous agonist of TRPML1 (Dong et al., 2010;
Zhang et al., 2012), and PI(4,5)P2 the TRPML1 antagonist (De Leo
et al., 2016; Feng et al., 2014a; Zhang et al., 2012). PI metabolism is
central to effective vesicular trafficking in the EAL system (Balla,
2013; Di Paolo and De Camilli, 2006) and attention has been drawn
to defects in PI metabolism in the AD brain (Morel et al., 2013;
Stokes and Hawthorne, 1987; Zhu et al., 2015) and as a target of
LOAD risk genes (reviewed in Raghu et al., 2019). Another
interesting feature of this system is that PI(3,5)P2, the TRPML1
agonist, is synthesized exclusively by the PIKfyve kinase complex
(McCartney et al., 2014). In concordance, inhibition of the PIKfyve
complex recreates endolysosomal defects similar to those in MLIV,
typified by vacuolation of endolysosomal compartments (Bissig
et al., 2017; Chen et al., 2017; Choy et al., 2018; Dong et al., 2010;
Ikonomov et al., 2002, 2001; Jefferies et al., 2008; Kim et al., 2014;
Martin et al., 2013; McCartney et al., 2014). Furthermore, as with
TRPML1, mutations in the human PIKfyve complex, namely the
FIG4 and Vac14 components, lead to neurodegeneration – in this
case, including amyotrophic lateral sclerosis (ALS), Charcot–
Marie–Tooth disease, and Yunis–Varon syndrome (Campeau et al.,
2013; Chow et al., 2009; Chow et al., 2007; Lines et al., 2017;
Nicholson et al., 2011; Zhang et al., 2008).
Interestingly, recent studies have shown that loss of PIKfyve

activity drives spongiform neurodegeneration and neuronal
vacuolation in prion disease, which can be rescued by PI(3,5)P2
supplementation (Lakkaraju et al., 2021). Conversely, other
publications show that PIKfyve inhibition reduces the transport of
tau and α-synuclein from early to late endolysosomes in vitro,
preventing their fibrillization, which is thereby considered as
neuroprotective (See et al., 2021 preprint; Soares et al., 2021).
Together, this draws attention to investigating the potential
mechanistic link between PIKfyve activity and TRPML1 function
in the context of EAL neuropathogenesis in LOAD and other
neurodegenerative diseases. It has been suggested that activation of
TRPML1 might represent a protective strategy against EAL defects
in LOAD (Hui et al., 2019). Importantly, synthetic small-molecule
compounds, including mucolipin synthetic agonist 1 (ML-SA1)
have been developed as PI(3,5)P2-independent specific TRPML1
agonists (Fine et al., 2020; Grimm et al., 2010; Shen et al., 2012).
ML-SA1 has been shown to protect against Alzheimer’s-like Aβ
pathology in other neurological conditions, particularly

HIV-1-associated neurocognitive disorders (Bae et al., 2014; Hui
et al., 2019, 2021). Furthermore, ML-SA1 protects against
endolysosomal pathology caused by FIG4 deficiency (Zou et al.,
2015). However, whether these TRPML1 agonists can protect
against potential EAL pathogenesis due to direct PIKfyve inhibition
in neurons is unknown.

In this study, we hypothesized that dysregulation of TRPML1-
mediated endolysosomal function is an underlying component of
EAL neuropathogenesis in LOAD. Therefore, we aimed to
determine whether indicators of TRPML1 function were altered in
LOAD patient brains and in induced pluripotent stem cell (iPSC)-
derived neurons expressing APOE ε4 compared to cells with other
APOE isoforms. We further investigated whether it was possible to
model key AD-related EAL phenotypes in primary neurons by
inactivating TRPML1 via inhibition of PI(3,5)P2 production, using
the PIKfyve inhibitor YM201636. Finally, we investigated whether
targeting TRPML1 withML-SA1 in primary neurons could provide
a novel approach to remediate AD-related EAL defects induced by
PIKfyve inhibition.

RESULTS
Endolysosomal neuropathology in the AD brain and altered
phosphoinositide dynamics indicate abnormalities in
TRPML1 function
TRPML1 function and PI dynamics closely relate to endolysosomal
integrity (Cao et al., 2017; Zhang et al., 2012). We thus first
interrogated endolysosomal integrity in post-mortem AD brain
tissue using an antibody against the endogenous endolysosomal
marker LAMP1, performing immunofluorescence microscopy of
post-mortem hippocampal sections from AD patients (n=10) and
matched controls (n=10) (Table 1). Our results demonstrated an
increase in LAMP1-positive endolysosomes, which was
particularly evident in the perinuclear region of hippocampal cells
in the CA1 and CA3 regions, in AD cases compared to in the
matched controls (Fig. 1A–C). A 3D reconstruction of LAMP1
immunoreactivity and positioning in a morphologically identifiable
CA1 pyramidal neuron in AD compared to control pyramidal
neurons is shown in Fig. 1B. Quantification, using CellProfiler,
revealed that LAMP1 intensity was significantly increased in the
perinuclear area of cells in the CA1 region in AD compared to in
control cases (Fig. 1D,E).

We performed double immunofluorescence with LAMP1 and the
astrocytic marker GFAP to investigate the cellular localisation of
LAMP1 pathogenesis in the AD brain. Here, our results showed that
increased levels of LAMP1-positive endolysosomes were observed
in the perinuclear regions of GFAP-negative pyramidal neurons in
the AD hippocampus (Fig. S1A). GFAP-labelled astrocytes with
increased levels of LAMP1 immunoreactivity in perinuclear regions
were also identified in the AD hippocampus (Fig. S1A).

Deletion of TRPML1 in MLIV and inhibition of the synthesis of
the TRPML1 agonist PI(3,5)P2 induce endolysosomal defects
including perinuclear clustering, as described above, as well as
enlargement of endolysosomal vesicles (Dong et al., 2010;
McCartney et al., 2014; Zhang et al., 2012). Notably,
vacuolisation of LAMP1-positive vesicles was observed in cells
with the morphology of neurons in the CA3 region in AD cases
(Fig. 1C). Quantification using ImageJ revealed a significant
increase in the number of enlarged LAMP1-positive vesicles in the
CA3 region in AD compared to in control cases (Fig. 1F). Vacuoles
were defined as large membrane-bound vesicular structures
immunoreactive to LAMP1. These vacuoles were larger than
vesicles (∼4–10 µm diameter). In granulovacuolar degeneration
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Table 1. Clinical and post-mortem details of cases used in this study

Cases Gender Age (years) Braak stage Plaques PMD (h) Tissue pH Brain weight (g)

Immunofluorescence analysis

Control

C1 M 93 0 A 07:40 6.20 1155

C2 F 72 I A 06:50 7.22 1165

C3 F 88 II O 05:35 6.89 1132

C4 F 76 II 04:45 6.40 1140

C5 M 95 II B 07:15 6.56 1387

C6 F 93 II O 07:35 6.27 1025

C7 F 89 III 06:35 6.73 1139

C8 M 88 III B 07:00 6.76 1230

C9 M 92 III B 07:45 6.55 1210

C10 F 95 III B 07:10 6.32 955

C11 F 81 II 07:40 6.60 1180

Alzheimer’s disease

A1 F 92 IV B 07:25 6.10 1081

A2 F 88 IV C 06:43 6.24 960

A3 M 73 V C 04:45 6.48 1205

A4 M 78 V C 05:55 6.40 1275

A5 M 82 V C 04:25 5.95 1225

A6 F 84 V C 04:50 6.26 948

A7 M 81 VI C 07:50 6.15 1120

A8 F 66 VI C 04:12 6.47 915

A9 F 90 VI C 05:40 6.60 1070

A10 F 91 VI C 04:20 6.32 900

A11 F 89 VI C 08:24 6.60 1065

Western blot analysis

Control

C1 F 61 0 O 06:50 6.50 1422

C2 F 77 I A 08:20 6.48 1212

C3 F 82 I A 05:30 6.60 1260

C4 F 84 I O 04:45 6.26 1104

C5 M 79 I A 05:20 6.72 1262

C6 M 85 I O 04:15 6.68 1121

Alzheimer’s disease

A1 F 84 V C 04:50 6.26 948

A2 M 65 V C 07:20 6.47 1173

A3 M 78 V C 07:45 6.40 1208

A4 M 85 V C 04:45 6.38 1215

A5 F 61 VI C 06:25 6.62 1072

A6 F 82 VI C 06:00 6.48 1010

Phosphoinositide analysis

Control

C1 M 93 0 A 07:40 6.20 1155

C2 F 72 I A 06:50 7.22 1165

C3 F 76 II 04:45 6.40 1140

C4 M 95 II B 07:15 6.56 1387

C5 F 93 II O 07:35 6.27 1025

C6 F 89 III 06:35 6.73 1139

C7 M 88 III B 07:00 6.76 1230

C8 M 92 III B 07:45 6.55 1210

C9 F 95 III B 07:10 6.32 955

Continued
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(GVD), described to occur in the AD brain (Funk et al., 2011;
Kohler, 2016; Thal et al., 2011), vacuoles are described to be
3–5 µm and to have a dense central core or central granule of
0.5–1.5 µm, which was not evident in the vacuoles we show. We
attempted to determine whether these vacuoles were similar to
those observed in GVD, using casein kinase-1δ (CK-1δ), a marker
for the granulovacuolar granule (Funk et al., 2011) and double
immunofluorescence with LAMP1. However, immunofluorescence
analysis with CK-1δ antibody did not reveal clear granulovacuolar
granule staining (data not shown).
In the AD cases, increased LAMP1 immunoreactivity was greater

in areas where many cells accumulated PHF-1 immunoreactive tau
(Fig. 1G, right) and was strongly enriched around senile plaques
(Fig. 1H). The observation that LAMP1 immunoreactivity is
enriched in plaques has been described in the AD brain
(Barrachina et al., 2006) and in preclinical mouse AD models
(Condello et al., 2011; Gowrishankar et al., 2015; Kandalepas et al.,
2013). Control and AD brain material was staged for disease
severity (Braak staging 0–VI, see Materials and Methods).
Alterations in the levels of LAMP1 and endolysosomal
enlargement were specific to AD cases irrespective of their Braak
stage. However, western immunoblot analysis (Fig. 1I) and
quantification (Fig. 1J) of temporal cortex membrane fractions
prepared from AD and control brain showed only a non-significant
trend towards an increase in LAMP1 levels in many AD samples
compared with control levels, which is in line with previous
literature (Bordi et al., 2016), and points rather to a shift in
localization resulting in regional accumulation of lysosomes in the
perinuclear region.
As TRPML1 is a PI-gated ion channel (Dong et al., 2010; Feng

et al., 2014a; Fine et al., 2018; Hille et al., 2015), which relies
heavily on effective PI dynamics, we thought it important to
determine whether levels of all measurable PIs were altered in the
AD brain.We quantified individual and total PI levels in brain tissue
of the AD and age-matched control groups using advanced mass
spectrometry approaches (Kielkowska et al., 2014). Results
demonstrated that levels of total PIP3 [PI(3,4,5)P3] and total PIP2
[regioisomers PI(4,5)P2, PI(3,4)P2 and PI(3,5)P2] were significantly
increased (P<0.05) in the mid temporal cortex of AD patients

(Braak IV–VI, n=12) compared to age-matched controls (Braak
0–III, n=12) (Table 1; Fig. 2). No significant differences were
detected in PI or total PIP [PI3P, PI4P and PI5P] levels when
comparing AD and control groups (Fig. 2). There was no correlation
between PI levels and post-mortem delay in these samples. Regio-
isomer classification of the primary (> 75%) lipid species (stearoyl/
arachidonoyl, ‘C38:4’) showed that increased PIP2 levels
represented PI(4,5)P2, as no PI(3,4)P2 levels were detected (data
not shown). Unfortunately, PI(3,5)P2, the major agonist of
TRPML1, cannot be distinguished yet using mass spectrometry
methodology as the abundance of this lipid species is extremely
low (Michell et al., 2006). Significantly, PIP3, whose levels we
show to be increased in the AD group, is the major activator of Akt
protein kinases, which are known to be hyper-activated in AD
neurons (Griffin et al., 2005; Moloney et al., 2010) and which are a
primary regulator of EAL dynamics via the mTOR signalling axis
(Boland et al., 2018). Taken together, the PI changes observed in
AD brains reflect significant defects in overall PI network integrity
that have the potential to impact TRPML1 and endolysosomal
function in AD.

We performed western immunoblot and immunofluorescence
analysis with TRPML1 antibodies in control and AD brain.
TRPML1 antibodies have been criticised due to possible non-
specificity and we found variability in antigenicity and immunoblot
profiles between TRPML1 antibody batches (Fig. S1B,C). Thus, we
were unable to make a definitive conclusion on whether the levels or
subcellular localisation of TRPML1 were altered in the AD brain
compared to matched controls. Nonetheless, we have included
representative immunoblots and immunofluorescence analysis of
TRPML1 in control and AD cases in Fig. S1B–D.

Lysosomal Ca2+ levels are increased and TRPML1 activity is
decreased in homozygous APOE ε4 neurons
Enlargement of the endolysosomal system has also been described
in APOE ε4 modified cell systems in vivo (Nuriel et al., 2017; Xian
et al., 2018), reflecting our findings in neurons in the LOAD brain.
A major functional consequence of defective TRPML1 function is
impaired Ca2+ efflux from late endolysosomes. TRPML1 activity is
not measurable in post-mortem brain tissue. We thus applied a more

Table 1. Continued

Cases Gender Age (years) Braak stage Plaques PMD (h) Tissue pH Brain weight (g)

C10 M 89 II O 06:50 6.23 1185

C11 F 78 I A 07:10 6.32 1120

C12 F 60 0 O 08:10 6.58 1310

Alzheimer’s disease

A1 F 92 IV B 07:25 6.10 1081

A2 F 88 IV C 06:43 6.24 960

A3 M 73 V C 04:45 6.48 1205

A4 M 78 V C 05:55 6.40 1275

A5 M 82 V C 04:25 5.95 1225

A6 F 84 V C 04:50 6.26 948

A7 M 81 VI C 07:50 6.15 1120

A8 F 66 VI C 04:12 6.47 915

A9 F 90 VI C 05:40 6.60 1070

A10 F 91 VI C 04:20 6.32 900

A11 F 94 V C 04:30 7.33 1021

A12 M 76 VI C 05:10 6.32 1116

PMD, post-mortem delay; h, hours; g, grams; M, male; F, female.
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dynamic physiological measurement of endolysosomal Ca2+ in an
APOE-modified AD neuronal system where we differentiated
human iPSC-derived neurons from cells expressing isogenic
APOE ε3, APOE ε4 and APOE ε2, and APOE−/− cells (Schmid
et al., 2019). Measurement of endolysosomal Ca2+ was obtained by

imaging Fura2-AM-labelled iPSC neurons that were first treated
with the Ca2+ ionophore ionomycin (2 µM), which induces Ca2+

release from the endoplasmic reticulum (ER), followed by the
lysosomal membrane disrupting agent, glycyl-L-phenylalanine
2-naphthylamide (GPN, 500 µM) to release endolysosomal Ca2+

Fig. 1. See next page for legend.
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into the cytosol (Bergling et al., 1998; Sage et al., 2011). Hence, the
resulting elevation in fluorescence of the Ca2+ probe allows for an
estimation of the lysosomal Ca2+ content. Using this experimental
paradigm, we found that neurons expressing APOE ε4, the greatest
genetic risk factor for LOAD, had significantly higher levels of
lysosomal Ca2+ compared with APOE ε3 (P=0.0102), APOE ε2
(P<0.0001) and APOE−/− (P<0.0001) neurons (Fig. 3A).
We performed further experiments to measure lysosomal Ca2+ in

situ with Oregon Green-conjugated BAPTA 5N (OGB) and Texas
Red-conjugated dextran as a loading control (Fig. 3B). Although not
significant compared with APOE ε3 and APOE ε2, the trend seen in
these data further confirms that lysosomal Ca2+ is indeed elevated in
APOE ε4-expressing iPSC neurons (P=0.0116 versus APOE−/−).
As Ca2+ accumulation itself and the KD of OGB are affected
by endolysosomal vacuolar pH (Gerasimenko et al., 1998), we
measured endolysosomal pH, using a pH-sensitive FITC–dextran
alongside Texas Red–dextran as loading control. Our results show
that endolysosomal pH is not changed in any of the APOE
isoform-expressing cortical neurons (Fig. 3C,D). This removes any
concerns about possible alterations in vacuolar pH in these neurons.
It also gives confidence that GPN in these neurons is being
hydrolysed correctly and that the Ca2+ buffering capacity of OGB
was unchanged.
To assess endogenous TRPML1 activity in finer detail, these

neurons were treated with low concentrations (200 nM) of
bafilomycin A1 (BafA1), which causes a mild increase in
lysosomal pH (Yoshimori et al., 1991), indicated to increase
TRPML1-mediated Ca2+ release (Lee et al., 2015; Li et al., 2017).
Following, BafA1 addition, the number of spontaneous Ca2+ sparks
was counted during a 5-min period. Results demonstrate that APOE
ε3, APOE ε2 and APOE−/− neurons had an average of 1.71±0.03,
1.63±0.03 and 1.49±0.04 spontaneous Ca2+ sparks/min,
respectively (mean±s.e.m.). In contrast, APOE ε4 neurons had a
significantly lower number of spontaneous Ca2+ sparks/min (1.16
±0.03, P<0.0001) (Fig. 4A,B). To determine whether these Ca2+

sparks were TRPML1 mediated, neurons were pre-treated with the
TRPML1 inhibitor GW405833, a close analogue of ML-SI1
(Rautenberg et al., 2022). Upon TRPML1 inhibition, the number
of spontaneous Ca2+ sparks were significantly reduced (P<0.001,
Fig. 4A,B) to 1.30±0.04 and 1.33±0.05 sparks/min in APOE ε3 and

APOE ε2 neurons, respectively (Fig. 4A,B) and to 1.36±0.04 sparks
in APOE−/− neurons (P=0.016). In contrast, APOE ε4 neurons
showed no change in the number of spontaneous sparks/min upon
TRPML1 inhibition (Fig. 4A,B).

Treatment with the synthetic TRPML1 agonist ML-SA1, which
locks the endolysosomal TRPML1 channel non-physiologically in
an open conformation (Feng et al., 2014b), showed that ML-SA1
could induce TRPML1-mediated Ca2+ release regardless of the
APOE isoform expressed (Fig. 4C). The ML-SA1-induced Ca2+

release was not significantly different when comparing APOE
isoforms, although there was a trend towards increased Ca2+ release
in the APOE ε4 cortical neurons (Fig. 4C). This increase is most
likely due to an ER compensatory effect, as ER Ca2+ release was not
blocked in these experiments, and the fact that ML-SA1 locks the
channel in an open conformation.

The cation selectivity for TRPML1 channels has been described
to include Ca2+, Fe2+ and Zn2+ (Dong et al., 2008; Kiselyov et al.,
2011). We performed experiments using the FluoZin3(AM) probe
to detect Zn2+ accumulation in endolysosomes. Our results show
that there were no significant differences in Zn2+ levels between the
cortical neurons expressing the differentAPOE isoforms (Fig. S2A–E).
This is not surprising, as Zn2+ accumulation in cells with a TRPML1
defect is only observed when the cells are grown in 100 µM
extracellular Zn2+ (Minckley et al., 2019). We did not investigate
this, as this concentration of ZnCl2 is toxic to cells. The Fura-2
fluorophore can detect Zn2+ in theoretical experimental conditions
when Zn2+ concentrations are high (Martin et al., 2006). These Zn2+

Fig. 1. Increased levels and altered subcellular distribution of LAMP1-
positive endolysosomes in the AD brain. (A,C) Representative images
showing the accumulation and swelling of LAMP1-positive vesicles in cells
of the CA1 (A) and CA3 (C) regions of hippocampal sections of AD (n=10)
and control cases (n=10). Scale bars: 20 µm. Detailed sections of single
neurons are shown in bottom panel of C. Scale bars: 5 µm. (B) Surface-
rendered 3D reconstruction of LAMP1-positive vesicles in a morphologically
identified CA1 pyramidal neuron of an AD patient and control. Scale bars:
10 µm. (D,E) Quantification of LAMP1 intensity in the CA1 region (D) and
specifically in the perinuclear area (E) from n=6 AD cases and n=8 control
cases with 2–5 representative images analysed for each case, together
analysing n=26 control images and n=26 AD images. (F) Quantification of
the number of enlarged LAMP1 immunoreactive vesicles per neuron in the
CA3 region. (G) Representative images showing increased LAMP1
immunoreactivity in cells of the CA1 region accumulating PHF-1
immunoreactive tau in AD patients (n=10, right) and control (n=10, left), and
areas of AD CA1 with little PHF1 immunoreactive tau (middle). (H)
Representative image of LAMP1 localisation to senile plaques decorated
with PHF-1 immunoreactive tau (n=10 AD cases). (I) Western immunoblot
analysis of temporal cortex membrane fractions (n=6) showing a trend
towards increased LAMP1 levels in AD patients compared with controls
(n.s.). LiCor total protein stain was used to ensure equal loading. (J)
Quantification of LAMP1 immunoblot data. Data are expressed as mean
±s.e.m. *P<0.05; **P<0.01 (unpaired two-tailed Student’s t-test).

Fig. 2. Levels of phosphoinositides with the potential to regulate
TRPML1 are altered in the temporal cortex of AD patients. HPLC-MS
analysis of PI per PI-internal standard (PI/PI-ISD), as described in the
Materials and Methods. Levels of total PIP, PIP2 and PI(3,4,5)P3 in mid
temporal cortex tissue of AD (n =12) and control (n=12) groups. Levels of
total PIP3 [PI(3,4,5)P3] and total PIP2 [PI(4,5)P2, PI(3,4)P2 and PI(3,5)P2],
were significantly increased (*P<0.05, unpaired two-tailed Student’s t-test) in
AD cases compared to controls. Regio-isomer classification showed that
increased total PIP2 levels in AD cases represented PI(4,5)P2 (data not
shown). Data are expressed as mean±s.e.m.
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concentrations are not attained in the cellular context (Bozym et al.,
2010, 2006), where Fura-2 has been shown to be unable to respond
to the small physiological changes in cellular Zn2+ concentrations
(Krezel and Maret, 2006). TPEN can be used as a cell permeant
Zn2+ chelator. However, we did not employ TPEN in these studies,
as it also chelates Ca2+ (Morgan et al., 2012).
Notably, increased cathepsin D levels have been described

previously in AD neurons (Cataldo et al., 1995, 1991). We used
BODIPY–pepstatin as an indicator of cathepsin D activity (Chen
et al., 2000). Our results show BODIPY-pepstatin fluorescence was
altered in APOE ε4 neurons, with significantly increased BODIPY-
pepstatin total spot fluorescence (P=0.0021 versus APOE ε2,
P=0.0153 versus APOE−/−) and spot area (P=0.0134 versus APOE
ε2) in APOE ε4 neurons compared to other APOE isoforms (Fig.
S2F–H). There was also a trend towards fewer BODIPY–pepstatin
fluorescent spots per cell in the APOE ε4 neurons, but this was not
significant (Fig. S2I). These data indicate that there are increased
levels of active cathepsin D in APOE ε4 neurons, further indicating,
albeit indirectly, that lysosomes are not de-acidified in APOE ε4
neurons.
Together, our results indicate that APOE ε4 neurons, which

model genetic risk for LOAD, have significantly higher levels of
endolysosomal Ca2+ and are unable to release Ca2+ via TRPML1 in
response to induced mild deacidification of endolysosomal
compartments. These defects in the ability of TRPML1 to release
Ca2+ in APOE ε4 neurons occur in the absence of any alteration in
endolysosomal pH or endolysosomal Zn2+ levels.

Inhibition of PIKfyve causes AD-like increases in
endolysosomal Ca2+ content, which are rescued by the
TRPML1 agonist ML-SA1
PI(3,5)P2 is currently the only known endogenous agonist of
TRPML1 (Dong et al., 2010; Zhang et al., 2012). Thus, inhibition of

PIKfyve, the unique PI(3,5)P2-synthesising enzyme complex, by
the pharmacological inhibitors YM201636 (Jefferies et al., 2008)
and apilimod (Cai et al., 2013) deprives TRPML1 of its agonist and
replicates many endolysosomal defects caused by loss of TRPML1
function in non-neuronal systems (Cai et al., 2013; Dong et al.,
2010; Jefferies et al., 2008; McCartney et al., 2014). Having
described TRPML1-related endolysosomal defects in AD neurons
and diminished TRPML1 activity in APOE ε4-expressing iPSC-
derived neurons, wewere next interested to determine whether these
TRPML1 defects could be replicated by PIKfyve inhibition in
primary neurons. Here, it is possible to link the effects of PIKfyve
inhibition specifically to TRPML1 function within neurons, by
investigating whether the small synthetic TRPML1 agonist
ML-SA1 protects against any EAL phenotypes induced by
PIKfyve inhibition. This was of major interest, as it has not been
investigated previously, and allows evaluation of the therapeutic
potential of ML-SA1 and thus TRPML1 activation, to protect
against AD-like endolysosomal phenotypes in a neuronal model
system (Fig. 5A).

Firstly, we treated primary rat cortical neurons with YM201636.
Endolysosomal Ca2+ content was measured in a similar manner to
that in human APOE-modified neurons – modifications of the
protocol are described in the Materials and Methods and included
differing Fura-2 concentrations due to the lysosomal Ca2+ release
levels in rat primary cortical neurons and lesser sensitivity of the
camera used. Our results show that endolysosomal Ca2+ levels were
significantly increased (P<0.0001) in the presence of 4 µM
YM201636 for 6 h (1.62±0.10 fold, data not shown; mean
±s.e.m.) and 24 h (1.63±0.07 fold), respectively (Fig. 5B).
Notably, although scale and effect size are different, this
pharmacological inhibition of PIKfyve in rat primary neurons
replicates the increased endolysosomal Ca2+ content we detected in
APOE ε4 neurons. Furthermore, when these neurons were

Fig. 3. Increased lysosomal Ca2+ levels in a neuronal LOAD iPSC model. (A) APOE ε3, APOE ε4, APOE ε2 or APOE−/− iPSC neurons were loaded with
Fura2-AM and treated with ionomycin followed by GPN to release lysosomal Ca2+. Representative traces (i) and quantification (ii) of GPN-induced Ca2+

release following ionomycin pre-treatment. (B) Quantification of in situ Ca2+ levels as fluorescence ratio between the Ca2+-sensitive OGB (0.5 mg/ml) and
Ca2+-insensitive Texas Red–Dextran (0.1 mg/ml) as loading control in n=5 biological replicates, n=1 technical replicate per APOE isoform. (C,D)
Quantification (C) and representative images (D) of APOE ε3, APOE ε4, APOE ε2 or APOE−/− iPSC neurons loaded with pH-sensitive FITC–dextran
(0.5 mg/ml) and pH-insensitive Texas Red–dextran (0.25 mg/ml), as loading control, showed no difference in lysosomal pH. Scale bars: 10 µm.
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co-treated with ML-SA1 (50 µM), the accumulated Ca2+ was
released from the lysosomes and the size of lysosomal Ca2+ stores
were restored to the levels of vehicle-treated cells (P=0.0003)
(Fig. 5B). ML-SA1 treatment alone did not deplete lysosomal Ca2+

stores within the time frames used in this study (Fig. 5C). Together,
these results indicate that therapeutic activation of TRPML1 has the
potential to protect against increased lysosomal Ca2+ levels in
primary neurons such as those evident in APOE ε4 LOAD model
systems.

Inhibition of PIKfyve replicates AD-like perinuclear
accumulation and vacuolation of endolysosomal
compartments, which are rescued by the TRPML1 agonist
ML-SA1
Next, we determined whether the perinuclear accumulation and
vacuolation of endolysosomes we describe in AD neurons could be
replicated by PIKfyve inhibition, and whether this could be rescued
by activation of TRPML1 with ML-SA1. Here, we employed the
endolysosomal marker Rab7 (Ginsberg et al., 2010), which
performed better as an endolysosomal marker in primary neurons
when compared to LAMP1. Furthermore, Rab7 is critical for
effective late endolysosomal function, including lysosomal
biogenesis and positioning in the perinuclear region (for review
see Guerra and Bucci, 2016). Our results revealed that YM201636

treatment induced a striking increase in the intensity of perinuclear
Rab7 (herein referring to Rab7a) immunoreactivity (Fig. 6A),
resembling the perinuclear accumulation of LAMP1 in CA1
neurons of AD patients (Fig. 1A,B). These Rab7-immunopositive
vesicles included enlarged vacuoles within the soma, which were
decorated with Rab7 immunoreactivity (Fig. 6A, zoom), as is
typical for PIKfyve inhibition in many cell types (Bissig et al., 2017;
Chen et al., 2017; Choy et al., 2018; Dong et al., 2010; Ikonomov
et al., 2002, 2001; Jefferies et al., 2008; Kim et al., 2014; Martin
et al., 2013;McCartney et al., 2014) and is similar to vesicles seen in
the CA3 region of AD patients (Fig. 1C). Specifically, YM201636
treatment exhibited a dose- and time-dependent effect to markedly
and significantly increase the number and size of Rab7-
immunopositive vesicles in primary neurons (Fig. 6A).

Notably, the colocalisation of Rab7 within and surrounding the
enlarged vacuoles was the most selective when comparing it with
that of several other endosomal-lysosomal markers including Rab5
(herein referring to Rab5a–Rab5c), EEA1 and lysobisphosphatidic
acid (LBPA) (Fig. S3). Importantly, we further show that co-
treatment of primary neurons with 4 µM YM201636 and 50 µM
ML-SA1 led to both a significant reduction in the intensity of Rab7
immunopositive vesicles in the perinuclear region and a highly
significant reduction in the number of vacuoles that were
immunolabelled with Rab7 at 24 h, both of which were restored

Fig. 4. Decreased TRPML1-mediated
lysosomal Ca2+ release in a neuronal
LOAD iPSC model. (A,B) APOE ε3,
APOE ε4, APOE ε2 or APOE−/− iPSC
neurons were loaded with Fura2-AM and
treated with the IP3 receptor antagonist
xestospongin C to block Ca2+ efflux from
the ER, followed by BafA1 to mimic age-
related mild deacidification. TRPML1
activity was assessed by counting
spontaneous sparks of Ca2+ release
during a 5-min period in the presence
[APOE ε3 (n=11, 235 traces), APOE ε4
(n=12, 243 traces), APOE ε2 (n=10, 226
traces), APOE−/− (n=11, 257 traces)] or
absence [APOE ε3 (n=6, 90 traces),
APOE ε4 (n=6, 101 traces), APOE ε2
(n=6, 130 traces), APOE−/− (n=7, 163
traces)] of the TRPML1 inhibitor
GW405833 (10 µM). The response of
representative cells is depicted and
expressed as the 340/380 nm ratio of
Fura2-AM florescence. Representative
traces (A) and quantification (B) of spark
number/minute induced by BafA1.
Significance levels were calculated
between all samples without GW405833
to detect APOE isoform-specific
alterations in TRPML1 response
(*P<0.05; **P<0.01; ***P<0.001, one-way
ANOVA followed by Bonferroni post-hoc
test) and for each APOE isoform between
GW405833-treated and untreated sample
to assess TRPML1 contribution (#P<0.05;
###P<0.001, unpaired two-tailed Student’s
t-test). (C) Quantification of full
physiological cellular Ca2+ release after
addition of 10 µM ML-SA1 including, but
not limited to lysosomal Ca2+ stores in
n=3 biological replicates, n=1 technical
replicate per APOE isoform. Data are
expressed as mean±s.e.m.
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to control levels (Fig. 6B). Together our results indicate that
reducing levels of the TRPML1 agonist PI(3,5)P2 induces an
increase and enlargement of the endolysosomal compartments in
neurons, similar to the endolysosomal pathology observed in LOAD
hippocampal neurons (Fig. 1), and that this endolysosomal
pathology can be remediated by ML-SA1 (Fig. 6B).

Inhibition of PIKfyve replicates AD-like enlargement of early
endosomes that is rescued by the TRPML1 agonist ML-SA1
Early endosomal swelling has been reported repeatedly as a very
early event in AD neuronal pathology (Cataldo et al., 2000; Decourt
et al., 2013; Nixon et al., 2001) using several early endosome
markers including EEA1, Rab4 (Rab4a and Rab4b) and Rab5.
Furthermore, pathological Rab5 activation has been shown to
mimic AD-like endosomal dysfunction (Pensalfini et al., 2020). We
investigated whether YM201636 would also induce enlargement of
early endosomes in primary neurons, and whether this could be
rescued by ML-SA1 co-treatment, by measuring EEA1
immunopositive vesicle size automatically using CellProfiler.
Vehicle treated early endosomes were on average 0.28±0.013 µm2

(mean±s.e.m.). Incubation with YM201636 demonstrated a dose-
dependent increase in EEA1 vesicle size to a maximum of 0.42
±0.019 µm2 (Fig. 7A). Notably, co-treatment with 4 µM
YM201636 and 50 µM ML-SA1 rescued this AD-like early
endosome enlargement partially by reducing the size of early
endosomes to 0.35±0.015 µm2 at 24 h (Fig. 7B).

Inhibition of PIKfyve leads to a dose-dependent
accumulation of autophagic vesicles that can be rescued by
the TRPML1 agonist, ML-SA1
The presence of various types of electron-dense autophagic vesicles
(AVs) has been reported by us and others in post-mortem neocortex
and hippocampus of AD cases (Boland et al., 2008; Bordi et al.,
2016; Tang et al., 2015). We investigated whether inhibition of
PIKfyve increases autophagy in rat primary cortical neurons by
measuring levels of LC3-II (the lipidated form of MAP1LC3 family
proteins), a marker of autophagic vesicles. After 6 h, treatment with
1 and 4 µM YM201636, LC3-II levels increased slightly, whereas
after 24 h a clear dose-dependent YM201636 (400 nM to 4 µM)
increase in LC3-II was observed (Fig. 7C). This was supported by
immunofluorescence data showing a strong increase in LC3 foci in

primary neurons treated with 4 µM YM201636 for 24 h (Fig. 7D).
In concordance with the ability of TRPML1 activation to rescue
early endosomal and endolysosomal AD-like EAL pathologies,
ML-SA1 abolished the accumulation of LC3-positive autophagic
puncta in rat primary cortical neurons (Fig. 7D). This was confirmed
measuring total protein levels by western blot analysis (data not
shown).

DISCUSSION
In this study, we demonstrate endolysosomal neuropathology in the
brains of individuals who have had LOAD, indicative of functional
defects in the endolysosomal TRPML1 Ca2+ channel. We further
reveal a diminished ability of TRPML1 to release Ca2+, resulting in
significant increases in endolysosomal Ca2+ in iPSC-derived human
neurons expressing APOE ε4, the greatest risk factor for LOAD.
Our results show that blocking the biosynthesis of PI(3,5)P2, the
endogenous agonist of TRPML1, in primary neurons by inhibiting
PIKfyve, recreated TRPML1 endolysosomal neuropathology
similar to that evident in LOAD neurons and APOE ε4 iPSC
neurons. In addition, this treatment induced enlargement of early
endosomes and the accumulation of autophagic vesicles, known to
be central to EAL neuropathogenesis in AD. Finally, we
demonstrate that the AD-like EAL neuropathology induced by
PIKfyve inhibition can be remediated by treatment with ML-SA1, a
small-molecule TRPML1 agonist. Together, these results highlight
key defects in the TRPML1 endolysosomal system in AD
pathogenesis and point to TRPML1 as a novel therapeutic target
to remediate EAL neuropathogenesis in AD and related
neurodegenerative disease.

TRPML1 is a master regulator of EAL health, whose malfunction
causes neurodegeneration (Boudewyn and Walkley, 2019).
Alterations in TRPML1 function have been associated with
deletion of the PS-1 gene, implicating TRPML1 in FAD (Lee
et al., 2015, 2010; Lie et al., 2022). However, little is known about
TRPML1 function in LOAD. In our study, analysis of late
endolysosomal health in LOAD hippocampal sections staged for
AD severity implicates TRPML1 abnormalities in AD
pathogenesis. We found levels of the endolysosomal marker
LAMP1 are increased in CA1 and CA3 regions of AD
hippocampi, and are enriched around senile plaques, consistent
with previous analysis in the AD frontal cortex (Barrachina et al.,

Fig. 5. ML-SA1 rescues YM201636-mediated Ca2+ accumulation in rat primary cortical neurons. (A) Scheme of TRPML1 inactivation by PIKfyve
inhibition and reactivation by ML-SA1. (B) Lysosomal Ca2+ was measured in neurons loaded with Fura2-AM, using 500 µM GPN to release lysosomal Ca2+

following a 2 µM ionomycin pre-treatment to clamp all other intracellular Ca2+ stores, in rat primary cortical neurons pre-treated with 4 µM YM201636 (red,
n=6, 72 traces) for 24 h when compared to vehicle (veh, black, n=7, 118 traces) only. Co-treatment with 50 µM ML-SA1 (grey, n=6, 77 traces) restored the
lysosomal Ca2+ pool. Representative trace (left) and quantification (right). (C) Rat primary cortical neurons were pre-treated with either 50 µM ML-SA1 (grey,
n=3, 388 traces) or vehicle (black, n=3, 381 traces) for 24 h. Lysosomal Ca2+ content was measured as in B, but no change was detected. ***P<0.001 (one-
way ANOVA, followed by Bonferroni post-hoc test). Data are expressed as mean±s.e.m.
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2006; Bordi et al., 2016; Piras et al., 2016). We demonstrate, for the
first time to our knowledge, that there is a pronounced perinuclear
clustering of endolysosomes in hippocampal AD neurons and,
moreover, that a significant vacuolation of endolysosomal
compartments is evident within CA3 cells with the phenotype of
neurons in the AD brain. Increased perinuclear clustering of
endolysosomes was also observed in GFAP-positive astrocytes in
the AD hippocampus. Interestingly, studies indicate that TFEB
function, a master regulator of lysosomal health, controlled by

TRPML1, is defective in astrocytes in the AD brain (Bordi et al.,
2016; Grubman et al., 2019; Martini-Stoica et al., 2018).

The perinuclear accumulation of endolysosomes in AD
hippocampi, including their vacuolation, resembles changes in
endolysosomal morphology that occur upon decreased activation of
TRPML1 (Dong et al., 2010; Zhang et al., 2012). In addition,
inhibition of PIKfyve kinase activity, including via loss of function
of FIG4 and Vac14, key components of the PIKfyve complex,
depletes cells of the vital TRPML1 agonist PI(3,5)P2. This causes a

Fig. 6. Enlargement of Rab7-positive endolysosomes is dose dependent for YM201636 and can be rescued by ML-SA1 co-treatment. (A)
Representative images (left) and quantification (right) showing that depletion of PI(3,5)P2 using 100 nM–4 µM YM201636 in rat primary cortical neurons led to
a dose-dependent increase in the size and intensity of Rab7-positive late endolysosomes. (B) Representative confocal images (left, top row), zoom (left,
bottom row) and quantification (right) showing endolysosomal vacuolation and perinuclear accumulation of Rab7-positive vesicles, in rat primary cortical
neurons after PIKfyve inhibition using 4 µM YM201636, which is restored by co-treatment with 50 µM ML-SA1. Quantitative data is based on four separate
experiments with three images for each condition from two separate coverslips. veh, vehicle. Scale bars: 10 µm (main images) and 2 µm (magnifications).
*P<0.05; **P<0.01; ***P<0.001 (one-way ANOVA, followed by Bonferroni post-hoc test). Data are expressed as mean±s.e.m.
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Fig. 7. Enlargement of EEA1-positive endosomes and increase in autophagy are dose dependent for YM201636 and can be rescued by ML-SA1
co-treatment. (A,C) Representative images (left) and quantification (right) showing that depletion of PI(3,5)P2 using 100 nM–4 µM YM201636 (YM) in rat
primary cortical neurons led to a dose-dependent increase in the size and intensity of early (EEA1) endosomes as well as to an accumulation of the
autophagic marker LC3-II (C). Image in C representative of three repeats. (B,D) Representative confocal images (left) and quantification (right) showing early
endosomal enlargement of EEA1-positive vesicles (B) and accumulation of LC3-II-positive autophagic vesicles (D) in rat primary cortical neurons after
PIKfyve inhibition by 4 µM YM201636, which is restored by co-treatment with 50 µM ML-SA1. Scale bars: 10 µm. Quantitative data is based on four separate
experiments with three images for each condition from two separate coverslips. *P<0.05; **P<0.01; ***P<0.001 (one-way ANOVA followed by Bonferroni
post-hoc test). Data are expressed as mean±s.e.m.
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number of defects in the endolysosomal system that are similar to
those in MLIV, the most prominent of which is vacuolated
endolysosomal compartments (Bissig et al., 2017; Chen et al.,
2017; Choy et al., 2018; Dong et al., 2010; Edgar et al., 2020;
Ikonomov et al., 2002, 2001; Jefferies et al., 2008; Kim et al., 2014;
Lines et al., 2017; Martin et al., 2013; McCartney et al., 2014; Zou
et al., 2015).
Multiple risk genes for LOAD, including APOE ε4, play central

roles in EAL function (Gao et al., 2018; Karch and Goate, 2015;
Pimenova et al., 2018; Van Acker et al., 2019). Previous studies
have shown that APOE ε4-encoding alleles cause EAL
enlargement, and endolysosomal trafficking impairments in vivo
(Nuriel et al., 2017; Xian et al., 2018), indicative of TRPML1
dysfunction, but whether APOE ε4, the greatest genetic risk factor
for LOAD, promotes TRPML1 defects was completely unknown.
We found that APOE ε4 leads to a diminished Ca2+ release via
TRPML1 in isogenic human iPSC-derived cortical neurons,
resulting in significant accumulation of endolysosomal Ca2+.
These TRPML1-induced defects in endolysosomal Ca2+ handling
were not accompanied by altered endolysosomal pH, indicating that
endolysosomes in APOE ε4 neurons are not de-acidified. This was
further indirectly verified by our finding that cathepsin D activity
was increased in APOE ε4 neurons, in concordance with previous
research showing increased cathepsin D levels in AD neurons
(Cataldo et al., 1995, 1991). It is possible that endolysosomal levels
of Fe2+ and Zn2+, or their release from endolysosomes, could be
altered due to the TRPML1 defects we describe in APOE ε4
neurons. We did not investigate this is detail; however, our results
show no significant difference in endolysosomal Zn2+ levels when
comparing the cortical neurons with differing APOE isoform
expression. Studies that interrogate TRPML1 regulation of
endolysosomal Fe2+ homoeostasis in APOE ε4 cells and AD are
an area deserving future investigation.
The pathological endolysosomal enlargement evident in AD

neurons, which is also apparent in APOE ε4-expressing cells
(Nuriel et al., 2017; Xian et al., 2018), coupled with the disruption
of TRPML1-mediated Ca2+ efflux that we describe here for the first
time, supports the idea that there is an inability to effectively
regulate lysosomal fusion–fission cycles, which are essential for
regulation of lysosome number, size and function, in AD (Bissig
et al., 2017; Li et al., 2016; Saffi and Botelho, 2019). In addition,
this would be predicted to impact other key endolysosomal and
autophagic functions that are regulated by TRPML1, as this
endolysosomal Ca2+ channel maintains the dynamic homeostasis
of the EAL system (reviewed in Di Paola and Medina, 2019; Di
Paola et al., 2018; Huang et al., 2020; Li et al., 2019;
Venkatachalam et al., 2015; Waller-Evans and Lloyd-Evans,
2015). Furthermore, recent studies show TRPML1 regulates
broader cell functions, especially inter-organellar Ca2+ signalling
(Kilpatrick et al., 2013). This includes regulation of mitochondrial
Ca2+ dynamics (Calvo-Rodriguez et al., 2020; Jadiya et al., 2019)
and ryanodine-receptor 2 (RyR2) Ca2+ release function (Thakore
et al., 2020), which are known to be impaired in AD neurons (Chami
and Checler, 2020; Kelliher et al., 1999; Lacampagne et al., 2017).
We were unable to obtain clear endolysosomal immunoreactivity

with multiple LAMP1 antibodies in primary rat neurons and thus we
employed the endolysosomal marker Rab7. LAMP1 is abundant on
the lysosomal membrane and is most commonly used to label
lysosomes (Wartosch et al., 2015). Rab7 is mechanistically
important in membrane transport from the late endosome to the
lysosome and is reported to label endolysosomal compartments
where it shows a strong colocalization with LAMP1 (Bucci et al.,

2000; Guerra and Bucci, 2016; Humphries et al., 2011). Although
LAMP1 and Rab7 colocalize in several endolysosomal
compartments they can also label mutually exclusive membrane
compartments, and the endolysosomal compartment in neurons has
an added complexity (Lie et al., 2021). These considerations should
be acknowledged when comparing our findings on endolysosomal
integrity in the human brain and rat cortical neurons.

Here, we tested the hypothesis that depleting rat primary cortical
neurons of PI(3,5)P2, the TRPML1 agonist, by inhibiting PIKfyve
kinase activity using the pharmacological inhibitor YM201636,
would recreate the key EAL defects we detected in AD brain and in
human neuronal APOE ε4 iPSCs. We found that PIKfyve inhibition
increased endolysosomal Ca2+ levels to thosewe found in APOE ε4-
expressing neurons and was associated with the marked vacuolation
of endolysosomal compartments. We further demonstrated that
blocking PIKfyve activity induced a significant increase in the size
of early endosomes in neurons. Notably, early endosomal swelling is
a very early event in AD neuropathology (Cataldo et al., 2000;
Decourt et al., 2013; Nixon et al., 2001). Finally, inhibiting neuronal
PIKfyve activity significantly increased the number of LC3-positive
autophagic puncta, which is in concordance with the presence of
various types of electron-dense autophagic vesicles (AVs) reported
in post-mortem neocortex and hippocampus of AD cases (Boland
et al., 2008; Bordi et al., 2016; Tang et al., 2015).

Induction of these broad AD-like EAL defects in neurons by
PIKfyve kinase inhibition has not been reported previously. However,
recent studies found that loss of PIKfyve due to prion infection drives
the spongiform neurodegeneration and neuronal vacuolation in prion
disease, which can be rescued by PI(3,5)P2 supplementation
(Lakkaraju et al., 2021). Other recent work demonstrates that
pharmacological inhibition of PIKfyve using YM201636 and
apilimod reduces the trafficking of tau and α-synuclein from early
endosomes to late endolysosomes, thus preventing fibril formation and
implicating PIKfyve inhibition as neuroprotective in these in vitro
models (See et al., 2021 preprint; Soares et al., 2021). However, the
degree of EAL defects we demonstrate in neurons upon PIKfyve
inhibition would advise caution in using PIKfyve inhibitors to protect
against tau or α-synuclein fibrillization and spread in
neurodegenerative disease, as also discussed by Lakkaraju et al.
(2021). Collectively, these studies drawattention to the potential role of
the PIKfyve complex in EAL defects in AD and other related
neurodegenerative diseases.With respect toAD, it has been shown that
the amyloid precursor protein (APP) binds to the PIKfyve complex and
can regulate PIKfyve function and the formation of PI(3,5)P2
(Balklava et al., 2015; Currinn et al., 2016). Endogenous levels of
the low abundance PI(3,5)P2, which localizes to the late
endolysosome, cannot be detected with current mass spectrometry
technology. However, our results show alterations in PI dynamics in
AD brain, selectively affecting two PI species with broad functions in
EAL trafficking and function, namely PI(3,4,5)P3 and PI(4,5)P2
(Balla, 2013; Botelho, 2009; Di Paolo and De Camilli, 2006;
Vanhaesebroeck et al., 2012), the latter of which operates as the
endogenous antagonist of TRPML1. Importantly, several LOAD risk
genes were shown to regulate enzymes that control PI dynamics and
interconversion (reviewed in Raghu et al., 2019), and altered PI
composition has been reported previously in the LOAD brain (Morel
et al., 2013; Stokes and Hawthorne, 1987; Zhu et al., 2015). Very
recent research suggests that it is possible to achieve independent
measurement of PIP2 regioisomers, enabling measurement of
PI(3,5)P2 (Morioka et al., 2022). Achieving this should enable
further understanding of mechanisms by which the dynamics of this
vital low abundance phosphoinositide couples late endolysosomal
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trafficking and function to TRPML1 activation in health and
neurodegenerative disease.
Remarkably, we demonstrated for the first time that TRPML1

activation, via the small-molecule agonist ML-SA1 (Fine et al., 2020;
Grimm et al., 2010; Shen et al., 2012), overrides the PI(3,5)P2 deficit-
induced defects caused by PIKfyve inhibition in neurons and protects
against multiple AD-related EAL neuropathologies. In agreement,
TRPML1-induced endolysosomal Ca2+ release ameliorated some
endolysosomal defects when PIKfyve activity was inhibited in other
cell types (Edgar et al., 2020; Li et al., 2016; Lines et al., 2017; Zou
et al., 2015). Interestingly, here we demonstrated a much broader
impact ofML-SA1 to remediate defects in EALmachinery induced by
PIKfyve inhibition in primary neurons. Thus, ML-SA1 enabled
normal Ca2+ release from endolysosomes and restored the size of
lysosomal Ca2+ stores, diminished late (Rab7) and early (EEA1)
endosomal enlargement and reduced the number of LC3-positive
autophagic puncta. Taken together, these results highlight the
mechanistic link between PIKfyve-PI(3,5)P2 and TRPML1 in
maintaining EAL neuronal health.
Interestingly, a protective effect of ML-SA1 has been demonstrated

against α-synuclein toxicity in human dopaminergic neurons
(Tsunemi et al., 2019), L-BMAA-induced neurodegeneration,
modelling ALS, in primary neurons and in FIG4 deficiency linked
to Charcot–Marie–Tooth disease (Edgar et al., 2020; Zou et al., 2015).
These results suggest that ML-SA1 remediation of FIG4 deficiency
and PIKfyve inhibition are mechanistically linked to activation of
TRPML1-induced lysosomal fission. Furthermore, ML-SA1 cleared
sphingomyelin and Aβ from LAMP1-positive lysosomes in an HIV
cell model (Bae et al., 2014), and ML-SA1-induced acidification of
endolysosomes blocked the LDL-induced increase in intra-neuronal
and secreted levels of Aβ (Hui et al., 2019). Hui et al. further showed
that antiretroviral drugs increase Aβ levels by de-acidifying
endolysosomes, and that ML-SA1 prevented the resulting Aβ
accumulation (Hui et al., 2021). Furthermore, TRPML1 activation is
essential for TFEB-mediated regulation of lysosomal exocytosis,
reducing tau pathology and spread in animal models (Xu et al., 2020).
Together, our study reveals that the TRPML1 agonist ML-SA1

reverses multiple key EAL abnormalities in primary neurons
caused by PIKfyve inhibition that are similar to those described in
AD neurons. These findings provide clear implications for our
improved understanding of abnormalities in the EAL system in AD
and other neurodegenerative diseases, highlight the mechanistic
importance of TRPML1 endolysosomal Ca2+ signalling in these
diseases and identify TRPML1 as a target for therapeutic
intervention.

MATERIALS AND METHODS
Antibodies and reagents
The following antibodies were used for immunofluorescence: anti-EEA1
(BD Biosciences, USA, #610456, 1:400), anti-LAMP1 (D2D11) (Cell
Signaling, USA, #9091, 1:50), anti-LAMP1 (H4A3) (Abcam, UK, ab25630
1:50); anti-LC3 (Cell Signaling, #2775, 1:250), anti-p-Ser396/404 tau
(PHF1, a generous gift from Dr Peter Davies, Albert Einstein College of
Medicine, NY, USA, 1:200), anti-Rab7 (Santa Cruz Biotechnology, USA,
sc-376362, 1:100), anti-GFAP (DAKO, Z0334, 1:200), anti-TRPML1
[Sigma, HPA031763, batch 2 (2017) 1:10], goat-anti-mouse-IgG conjugated
to Alexa Fluor 488 (Thermo Fisher Scientific, USA, A11001, 1:400),
donkey-anti-rabbit-IgG conjugated to Cy3 (Jackson Laboratories, USA,
#711-165-152, 1:400). The following antibodies were used for western
immunoblot analysis: anti-LAMP1 (H4A3) (Abcam, ab25630, 1:5000),
anti-LC3 antibody (Cell Signaling, US, #2775, 1:1000), anti-TRPML1
[Sigma, HPA031763, batch 1 (2016) 1:250, batch 2 (2017) 1:1000], horse-
anti-mouse-IgG conjugated to HRP (Cell Signaling, #7076, 1:1000) and goat

anti-rabbit-IgG conjugated to HRP (Cell Signaling, #7074, 1:1000). The
following reagents were used: B27™ Supplement (Invitrogen), BODIPY-
Pepstatin (Invitrogen, P12271), DNase1 (Sigma-Aldrich), FITC–dextran
(Sigma-Aldrich, FD10S), Fluozin-3-AM (Invitrogen, F24195), Fura2-AM
(Invitrogen), GlutaMAX™ (Invitrogen), Hank’s balanced salt solution
(HBSS) (Invitrogen), HEPES (Gibco, USA), ML-SA1 (Sigma-Aldrich,
#SML0627), GW405833 (Sigma-Aldrich, #G1421), Neurobasal medium
(Invitrogen, USA), Oregon Green™ 488 BAPTA-1, AM (Invitrogen,
O6812), Pluronic™ F-127 (Sigma Aldrich, US, P2443), Poly-D-lysine
(Sigma Aldrich, US), papain (Worthington, US), Pen/Strep (Invitrogen, US),
sodium pyruvate (Invitrogen, US), Texas Red-dextran (Invitrogen, US,
D1863), YM201636 (Invivogen, US, #INH-YM20).

Brain tissue
Brain tissue was provided by the Netherlands Brain Bank (NBB; see Table 1
for case details). Ethical approval and written informed consent from the
donors or the next of kin was obtained in all cases (Griffin et al., 2005;
Moloney et al., 2010) and all clinical investigation have been conducted
according to the principles expressed in the Declaration of Helsinki. The
work of the NBB abides by the ethical code of conduct approved by the
Ethics committee and strict ethical guidelines as stated in Brain Net Europe
Ethical Code of Conduct for brain banking (Klioueva et al., 2015). Clinical
diagnosis of probable Alzheimer’s disease was made according to the
NINCDS–ADRDA criteria, and severity of dementia rated by the Global
Deterioration Scale. Non-demented controls had no history or symptoms of
neurological or psychiatric disorders. All cases were neuropathologically
confirmed, using conventional histopathological techniques, and diagnosis
performed using the CERAD criteria. Neuropathological staging of
neurofibrillary changes (0–VI) was performed according to Braak and
Braak (Braak and Braak, 1991). The degree of Aβ deposition in neuritic
senile plaques was assessed in the temporal cortex, indicated as 0, A, B
and C, for no, mild, moderate and high levels of senile plaques, respectively.
Tissue fractions for western immunoblot and phosphoinositide analysis
were prepared from AD and matched control mid-temporal cortex samples
as described below. Brain tissue for immunofluorescence analysis was
provided as formalin fixed and paraffin-embedded 8-µm-thick consecutive
sections prepared on Superfrost slides as previously described (Moloney
et al., 2010). Control and AD tissue was matched for post-mortem delay,
tissue pH, age, and agonal status as described previously (Griffin et al.,
2005; Moloney et al., 2010). Western blot analysis using anti-TRPML1
batch 1 (2016) antibody was performed on brain tissue published previously
in (Moloney et al., 2010) as well as tissue listed in Table 1.

Preparation of tissue fractions
Brain material for western immunoblotting was obtained as ∼1 g frozen
pieces, which were thawed, homogenised and fractionated. Tissue fractions
were prepared as previously described (Griffin et al., 2005; Moloney et al.,
2010). Briefly, membrane-enriched fractions (100,000 g pellet) were
separated from the soluble cytosolic fractions (100,000 g supernatant)
following centrifugation of tissue homogenates in a Beckman
ultracentrifuge (type 42.1 rotor) at 100,000 g for 60 min at 4°C. Tissue
fractions were stored at −70°C.

Human iPSC culture and neural differentiation
The isogenic APOE ε2/ε2 (BIONi010-C-6), APOE ε3/ε3 (BIONi010-C-2),
APOE ε4/ε4 (BIONi010-C-4) and APOE-null (BIONi010-C-3) iPSC lines
were obtained from the EBiSC stem cell repository (https://cells.ebisc.org).
iPSCs were cultured on vitronectin (Life Technologies)-coated six-well
plates with E8 flex medium (Life Technologies) at 37°C and 5% CO2. The
medium was changed 1 day after plating and subsequently every other day
until cells were 60–70% confluent. On the day of embryoid body (EB)
formation, cells were washed once with PBS, treated with ReLeSR (Stem
Cell Technologies, USA), collected as clumps, and transferred to a non-
adherent dish where they were maintained overnight. The next day, EBs
were washed with PBS and cultured on SLI medium, which contained
advanced DMEM F-12 medium (ADF) supplemented with GlutaMAX™,
penicillin and streptomycin (Life Technologies), 2% NeuroBrew 21 without
retinoic acid (Miltenyi Biotec, Germany), the SMAD pathway inhibitors
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LDN193189 (1μM, Stemgent, USA) and SB431542 (10μM, Abcam), and
the WNT pathway inhibitor IWR1 (1.5μM) (Tocris, UK; Chambers et al.,
2009). On day 6, the mediumwas replaced by SB431542- and LDN193189-
containing medium without IWR1. On day 8, cells were treated with
ReLeSR and plated onto a Matrigel (Corning, USA)-coated dish and
cultured to day 16 in NMM medium [ADF with 2% Neuro Brew 21 with
retinoic acid (Miltenyi Biotec) and 10 ng/ml FGF]. Neural progenitor cells
were either frozen or further expanded.

Neuronal differentiation was initiated by seeding neuronal progenitor
cells on a substrate of growth factor-reduced Matrigel and poly-L-lysine
(Sigma-Aldrich) at a density of 105 cells/cm2 and cultured for 7 days in
SynaptoJuice A medium which contained ADF, 2% NeuroBrew 21 with
retinoic acid, 2 µM PD0332991 (Selleckchem, USA), 10 µM DAPT
(Sigma-Aldrich), 10 ng/ml BDNF (Miltenyi Biotec), 500 nM LM22A4
(Tocris), 10 µM Forskolin (Tocris), 3 µM CHIR99021 (Tocris), 300 µM
GABA (Sigma-Aldrich), 1.8 mM CaCl2 (Sigma-Aldrich) and 200 mM
ascorbic acid (Sigma-Aldrich). Half of the medium was refreshed every
2–3 days. After 7 days, the medium was replaced by SynaptoJuice B
medium, which contained ADF and Neurobasal Amedium in equal volume,
2% NeuroBrew 21 with retinoic acid, 2 µM PD0332991, 10 ng/ml BDNF,
1.8 mM CaCl2 and 200 mM ascorbic acid. Neurons were kept in
SynaptoJuice B for up to 2 weeks, refreshing half the medium every
2–3 days. Extensive characterization of neurons obtained using this protocol
has been published previously in various iPSC lines (Telezhkin et al., 2016).
Cells were routinely monitored for mycoplasma and bacterial or yeast
contaminations.

Primary cortical neuron culture
Primary cortical neurons were derived from embryonic day 18 wild-type
Sprague-Dawley rat embryos as previously described (Boland et al., 2008).
All animal experiments were performed according to approved guidelines.
Single-cell suspensions obtained from cortices of individual embryos
were plated on a poly-D-lysine-coated surface in neurobasal medium
supplemented with 0.5 mMGlutaMAX™, 50 U/ml penicillin-streptomycin
and 2% B27™ Supplement (50×). Cortical neurons were maintained at
37°C and 5% CO2, with half of the plating medium being replaced every
3 days with neurobasal medium supplemented with 0.5 mM GlutaMAX™
and 2% B27 supplement (50×). Cortical neurons were cultured for 6 to
8 days in vitro (DIV6–8) before drug treatments were applied. Neurons
were treated with YM201636 (Invivogen) or ML-SA1 (Sigma-Aldrich)
diluted in neuronal medium for the time and concentration indicated in
the results section. Cells were routinely monitored for bacterial or yeast
contaminations.

Ca2+ measurements
Neuronal iPSCs were plated in 8-well chamber slides (Ibidi, Germany) and
loaded with 1 µM Fura-2-AM in culture medium containing 1% BSA at
room temperature for 30–60 min, then washed with 1× HBSS with 10 mM
HEPES, 1 mM MgCl2 and 1 mM CaCl2, left for 10 min to allow de-
esterification of the Ca2+ dye, and imaged in 1× HBSSwith 10 mMHEPES,
1 mM MgCl2 and 50 µM CaCl2. Fluorescence was recorded using a Zeiss
Axiovert 35 microscope with a CAIRN Optospin filter wheel, EXFO X-cite
120Pc light source and an ORCA-flash4.0 LT camera at two different
excitation wavelengths (340 and 380 nm) and a single (495 nm) emission
wavelength. Videos were recorded using theMetaFluor software (Molecular
Device, Sunnyvale, CA, USA) and the ratio (F340/F380) was used to detect
changes in intracellular [Ca2+] from whole-cell ROIs with background
subtracted. Changes in cytoplasmic Ca2+ levels were recorded after addition
of 2 µM ionomycin (Calbiochem, USA) to clamp non-lysosomal stores
followed by addition of 500 µM GPN (AlfaAesar, USA) to release
lysosomal Ca2+ or 200 nM bafilomycin A1 (Sigma-Aldrich) to activate
TRPML1 via mild deacidification. Cells were pre-treated for 10 min with
10 µM GW405833 (Sigma-Aldrich) for TRPML1 inhibition and 5 µM
xestospongin-C (Sigma Aldrich) for IP3 receptor inhibition where needed.
Cells were not pre-treated with ionomycin or xestospongin to record Ca2+

release via 10 µM ML-SA1 alone, to capture the full physiological cellular
response including subsequent Ca2+ release from other compartments. Ca2+

measurements on primary rat cortical neurons were carried out in a similar

fashion but using 5 µM Fura-2-AM and an Olympus IX51 inverted
fluorescence microscope equipped with a 75-W xenon arc lamp, an
Optiscan monochromator (Cairn, Kent, UK), an Orca-ER charged-coupled
device (CCD) camera (Hamamatsu Photonics, Hertfordshire, UK), and an
Olympus UplanF1 1.3 NA 100× oil-immersion objective. Images were
acquired and analysed with Andor iQ Bioimaging software version 1.9
(Andor, Belfast, UK) including subtracting of background by masking. In
situ Ca2+ levels were measured as previously described (Lloyd-Evans et al.,
2008), but using the cell-impermeant high molecular mass Ca2+-sensitive
OGB (0.5 mg/ml) alongside Texas Red–dextran (0.1 mg/ml, not sensitive to
Ca2+) as loading control (protocol adapted from Lelouvier and Puertollano,
2011 to measure lysosomal Ca2+). The ratio of green (OGB) to red (Texas
Red–dextran) fluorescence, when calibrated against luminal pH, is
indicative of the luminal Ca2+ concentration in endolysosomes.

Lysosomal pH assay
Neurons were loaded with 500 µg/ml pH-sensitive FITC–dextran
(10,000 kDa) and 250 µg/ml Texas Red-dextran (10,000 kDa, non-pH-
sensitive loading control) in 1:1 Advanced DMEM/F12 (with
GlutaMax™): Neurobasal A (Life Technologies), 1% penicillin/
streptomycin (Life Technologies), 2% NeuroBrew21 with Retinoic Acid
(Miltenyi Biotec), 0.3 mM CaCl2 (to give 1.8 mM CaCl2 in final complete
medium; Sigma-Aldrich) and 200 µM ascorbic acid (Sigma-Aldrich) for
24 h. Then dextran medium was removed, and cells were washed in fresh
medium and incubated for a further 24 h in fresh medium. The medium was
removed, and nuclei stained with Hoechst 33342 (1 µg/ml in warmed
HBSS; Sigma-Aldrich) for 10 min, washed in HBSS and imaged using a
Perkin Elmer Operetta high content imaging system. To determine the ratio
of FITC/Texas Red fluorescence, cells were first identified using the
Hoechst 33342 staining (352 nm/454 nm). Texas Red-positive vesicles
within the cell body were identified, and fluorescence intensity for both
Texas Red (586 nm/603 nm) and FITC (491 nm/516 nm) was measured
within each vesicle. The FITC/Texas Red ratio was calculated for each
vesicle and averaged per well. Three plates with two wells per plate were
imaged for each APOE genotype.

Subcellular distribution of cathepsin D
The subcellular distribution of processed active cathepsin D was analysed
using BODIPY-pepstatin (Invitrogen) following the manufacturer’s
instructions, but at a 1:500 dilution and incubating for 15 min at 37˚C
followed by three washes in Dulbecco’s PBS (DPBS). Images were taken
and analysed using a Perkin Elmer Operetta high content imaging system.

Zn2+ measurement
Cells were stained with 5 µM Fluozin-3-AM (Invitrogen) [in SynaptoJuice
B containing 0.0025% pluronic acid F127 (Sigma-Aldrich) dissolved in
DMSO] for 30 min at 37˚C. Cells were washed twice and imaged in HBSS
containing 1 mMCaCl2, 1 mMMgCl2 and 5 mMHEPES (pH 7.2). Images
were taken on the Colibri LED microscope system at 470 nm (excitation)/
510 nm (emission) or Perkin Elmer Operetta high-content imaging system.

Western immunoblot analysis
A BCA protein assay (Millipore) was used for protein measurements. Cell
and tissue extracts were run on 8–16% Tris-glycine gels in Tris-glycine
running buffer and transferred onto 0.2 µm nitrocellulose membranes. LiCor
total protein stain (LI-COR, USA) was used to ensure equality of protein
loading and is presented in Fig. S4. After blocking in 5% non-fat milk or 5%
BSA, membranes were processed for immunoblotting. Immunodetection
was obtained using ECL reagent (GE Healthcare, USA) and developed
using Fujifilm X-ray film.

Immunofluorescence of brain sections
Immunofluorescence analysis was performed as described previously
(Moloney et al., 2010). Briefly, sections were deparaffinised and hydrated
prior tomicrowave pre-treatment (30 min in 10 mMcitrate buffer pH 6.4). After
cooling, nonspecific binding was blocked using 5% normal donkey serum
(Sigma-Aldrich) in PBS pH 7.4 for 30 min at room temperature, followed by
overnight incubation with primary antibodies in blocking buffer. Slides were
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then incubated in secondary antibodies diluted in blocking buffer for 1 h at
room temperature in the dark. Nuclei were stained using 4′,6-diamidino-2-
phenylindole (DAPI; 1.25 µg/ml,) (Sigma-Aldrich). To lower the intensity of
lipofuscin auto-fluorescence, slides were finally incubated for 10 min with
0.1% Sudan Black B (Sigma-Aldrich) in 70% ethanol, washed with 1× PBS
and mounted using fluorescence mounting medium (DAKO, USA). Images
were visualised on a Leica DMI 3000B inverted fluorescence microscope and
captured using a LeicaDFC420C digital camera, and on anOlympus FluoView
FV10i. Confocal images were captured on an inverted Zeiss LSM 510 Meta
confocal microscope, using a PlanApo 63×1.6 N/A oil immersion objective.
Images were processed using ImageJ/Imaris 7.2 (Bitplane, CH).

Immunofluorescence of primary neuronal cultures
Cells were fixed (4% paraformaldehyde, 15 min, RT or MeOH, 10 min,
−20°C), quenched (50 mM NH4Cl, 15 min, room temperature) and
permeabilized (0.3% Triton-X-100 in 1% BSA-PBS, 10 min, room
temperature) for indirect immunofluorescence. Incubation with primary
antibodies in blocking solution (5% BSA-PBS, 2 h, room temperature) was
followed by a 1 h incubation with Alexa Fluor-488- or Cy3-conjugated
secondary antibodies (in 5% BSA-PBS, room temperature) and mounting in
Mowiol. Images were captured using a Zeiss LSM 510 Meta confocal
microscope system and oil-immersion Plan-Apochromat 63× A/1.40 NA
objective lenses. Data were collected using Zeiss ZEN software and
processed in ImageJ. Quantitative Rab7, EEA1 and LC3 data is based on
four separate experiments with three images for each condition from two
separate coverslips (24 images per treatment).

Mass spectrometry analysis of phosphoinositide levels
Mass spectrometry was used to measure phosphoinositide lipid levels
essentially as previously described (Furlong et al., 2019; Kielkowska et al.,
2014), using a QTRAP 4000 (AB Sciex) mass spectrometer and employing
the lipid extraction and derivatization method described for whole tissue
(temporal cortex 0.5 mg wet weight ground tissue), with the modification
that 10 ng C17:0/C16:0 PI(3,4,5)P3 internal standard (ISD) and 10 ng
C17:0/C16:0 PI ISD were added to primary extracts. Measurements were
conducted for an n=12 for human temporal cortex samples of AD patients
and controls (Table 1). PIP, PIP2 and PIP3 response ratios were calculated by
dividing the total PIP, PIP2 and PIP3 response areas for the most abundant
molecular species present [C38:4+C38:3] in the cortex by the
corresponding response areas of the PIP2−ISD (for PIP and PIP2) and
PIP3−ISD (PIP3 only) in each sample. PI response ratios were calculated by
dividing PI response areas by the response area for the PI−ISD. PIP, PIP2,
and PIP3 response ratios were then normalised to the PI response ratio to
account for any cell input variability. In some experiments, C38:4-PI(3,4)P2
and C38:4-PI(4,5)P2 regioisomers were distinguished and quantified in
parallel ground cortex samples (0.5 mg wet weight), employing previously
described methods (Malek et al., 2017).

Statistical analysis
Data are expressed as means±s.e.m. and statistics are based on at least n=3
(biological replicates) if not stated otherwise. Significance levels for
comparisons between two groups were determined using an unpaired two-
tailed Student’s t-test. Significance levels for comparisons between more
than two groups were determined using one-way ANOVA, followed by the
Bonferroni post-hoc test. A P-value of 0.05 was considered as the borderline
for statistical significance. GraphPad Prism™ 8 and Microsoft Excel
software were used for statistical analysis and generation of graphs.
Significance is denoted as *P<0.05; **P<0.01; ***P<0.001.
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