
1.  Introduction
A hydrological model normally aims to simulate streamflow (Q, runoff or discharge) in a river basin (Ellenburg 
et  al.,  2018). Although complexities of conceptualizations and structures vary for hydrological models 
(Beven, 2012), precipitation (P, or rainfall) and potential evapotranspiration (PET) are two essential inputs. This is 
due to the fact that P and actual evapotranspiration (ET, which depends on PET) constitute two major components 
of the water balance and terrestrial water cycle for a basin (Nonki et al., 2021; Samain & Pauwels, 2013). Gener-
ally, P is relatively easy to measure while measuring ET is challenging, time-consuming and costly (Doorenbos & 
Pruitt, 1977; Nonki et al., 2021). As a theoretical estimation of ET, PET is proposed to represent the upper limit 
of ET under the scenario of the unlimited supply of soil water (Allen et al., 1998).

Ideally, we use the “true” value of P and PET data for driving the hydrological model to reproduce reliable Q. 
However, even for ground-based observations, errors inevitably occur in the input data due to various reasons, 
such as measurement issues, interpolation methods, wind, obstruction, incorrect equation assumptions, etc 
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(Sevruk, 1996; Xu et al., 2006). Consequently, these input errors can introduce significant errors in model cali-
bration and Q outputs (Nandakumar & Mein, 1997).

Complicated combinations of different error types would make it hard to interpret the corresponding changes 
(Oudin et al., 2006), thus most studies have focused on two simple types of errors, namely, systematic and random 
errors. Paturel et al. (1995) found that errors (both systematic and random) in P were amplified on Q outputs by 
the hydrological model, and this amplification behavior varied with the phase of the hydrograph. Xu et al. (2012) 
also reported that a bias of ±1% in P resulted in ±3.35% error in Q on average in 193 study catchments across 
Australia. Xu and Vandewiele (1994) compared the random errors with systematic errors in P data and found 
that systematic errors were less important for estimating monthly Q. On the contrary, more studies revealed that 
the systematic errors in P data had the most severe effect on Q simulations (Nandakumar & Mein, 1997; Oudin 
et al., 2006; Xu et al., 2006). This is because a systematic error in P causes a bias in the water balance, thereby 
leading to a systematic error when calibrating the model's parameters (Xu et al., 2006). Wang et al. (2023) also 
found that biases in rainfall inputs are of great importance for the reliability of Q simulations. By comparing two 
hydrological models, Oudin et al. (2006) suggested that the sensitivity of a hydrological model to errors in rainfall 
might depend partly on the model structure itself.

Likewise, the influence of different errors in PET inputs on hydrological modeling has also been explored. It has 
been found that poor PET inputs could result in poor hydrological model performance (Samain & Pauwels, 2013), 
while many studies concluded that hydrological models were less sensitive to errors in PET than errors in P 
data (Nandakumar & Mein, 1997; Oudin et  al., 2005; Paturel et  al., 1995). As reported by Nandakumar and 
Mein (1997), a 10% bias in P might cause a bias of up to 35% in simulated Q, while the same amount of bias in 
PET might result in up to 10% bias in Q in five experimental catchments in Australia. Also, most studies found 
that systematic errors in PET presented a more serious impact than random errors (Oudin et al., 2005, 2006; 
Parmele, 1972). Jayathilake and Smith (2022) found that the hydrological model was more sensitive to negative 
PET biases than positive ones. Nandakumar and Mein (1997) used a PET factor to compensate for the under/
over estimation of PET data. Similarly, Oudin et al. (2005) introduced a scaling factor to eliminate the systematic 
biases (systematic difference) in PET values. Samain and Pauwels (2013) also suggested that model recalibration 
was needed when the PET input data has systematic errors without rescaling.

Previous studies also indicated that the hydrological model calibration could compensate for inaccurate P input 
data to a certain degree (Beck et al., 2017; Essou et al., 2016; Wang et al., 2023; Xu et al., 2006), as well as for 
inaccurate PET inputs (Andréassian et al., 2004; Bai et al., 2016; Nonki et al., 2021). This can result in good 
hydrological model performance even though there are biases in P and PET inputs. However, it is worth pointing 
out that inaccurate input data would conceivably lead to nonrepresentative parameter optimization to match the 
recorded Q time series (Kabir et al., 2022; Parmele, 1972).

In addition, Hagemann and Jacob  (2007) found that the overestimations in modeled P and ET fluxes from a 
climate model (known as HadAM3H) compensated for each other, making the simulated runoff in agreement 
with the observed Q. Nandakumar and Mein (1997) also pointed out that errors in P and PET may mutually 
offset each other to reproduce satisfactory Q simulations. However, previous studies assumed that errors in P and 
PET were independent and their effects on hydrological modeling have been well documented. So far, there has 
been a lack of studies focused on exploring the mutual compensation between 𝐴𝐴 𝐴𝐴  and PET inputs for hydrological 
modeling. It remains unknown how, and to what extent the joint interaction of errors in P and PET affects the 
hydrological model performance.

The objective of this study is to explore the joint interaction between P and PET errors in response of hydrological 
model simulations. In particular, we paid more attention to uncovering the potential compensational relationship 
between P and PET errors to reproduce Q. This analysis is focused on the biases (systematic errors) in P and PET 
inputs since they bring more significant effects than random errors on hydrological model simulations based on 
previous studies. The specific research questions are: (a) Are there any interacting effects between P and PET 's 
biases in the simulated Q response? (b) Is there any relationship between the biases in P and PET data that can 
still reproduce Q well? (c) How does this compensational relationship change with different situations (the length 
of modeling period, model equifinality, hydrological model, and catchment aridity condition)?

The rest of the paper is organized as follows. Section 2 details the data and models used in the analysis. Section 3 
presents the results and discussion; Section 4 provides a summary and concluding remarks.
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2.  Data and Methods
2.1.  Study Area

To address the above questions, five benchmark (near-natural) catchments 
including three humid catchments and two arid catchments in Great Brit-
ain were selected for the analysis (Figure 1). The Brue catchment has the 
availability of high-quality observation data. It was first used to investigate 
the existence, stationarity and stability of the compensational relationship 
between P and PET inputs' quality for hydrological modeling. The Brue catch-
ment has been widely used in past hydrological studies (Borga, 2002; Borga 
et al., 2006; Liu & Han, 2010; Moore et al., 2005; Srivastava et al., 2014). 
The catchment drains an area of 135 km 2 and had a dense network of 49 
tipping-bucket rain gauges (TBRs) operating between 1993 and 1997 (Wood 
et  al.,  2000). The TBRs have a resolution of 0.2  mm and the time of the 
tips is recorded to the nearest 10 s (Wood et al., 2000). The elevation of the 
catchment ranges between 23 and 253 m, with an average of 104 m (Wood 
et  al.,  2000). This catchment is predominantly rural and is dominantly 
covered by grass (79%) (Roberts et  al.,  2000). The remaining four catch-
ments were used to investigate how the compensational relationship would 
change in different regions. The catchments are: Scar Water at Capenoch (No 
79004), South Tyne at Haydon Bridge (No 23004), Isbourne at Hinton on 
the Green (No 54036) and Stainfield Beck at Cream Poke Farm (No 30012). 
As shown in Table 1, which is derived from the daily CAMELS-GB data 
set (Coxon et al., 2020a, 2020b), the five catchments vary in climatic and 
hydrological characteristics, especially the aridity and runoff ratio. The Scar 
Water and South Tyne catchments have lower aridity ratios than the Brue 
catchment, whereas the Isbourne and Stainfield Beck catchments have higher 
aridity ratios than the Brue catchment. The Baseflow index (BFI) repre-
sents the contribution of groundwater/stored sources to stream flow and it 
is given by the ratio between the long-term baseflow and the total stream 
flow (Bloomfield et al., 2009). The BFI is between 0.43 and 0.59 for those 
catchments, indicating a small groundwater/stored sources contribution to 
the river discharge for all five catchments.

Figure 1.  Location map of the catchments used in this study.

Table 1 
Basic Information of the Catchments Derived From the Daily CAMELS-GB Data (Coxon et al., 2020a, 2020b)

Catchment 
ID Catchment name

Area 
(km 2)

𝐴𝐴 𝑃𝑃  
(mm/
day)

���  
(mm/
day)

𝐴𝐴 𝑄𝑄 
(mm/
day)

Aridity 
ratio 

��� ∕�

Runoff 
ratio 

𝐴𝐴 𝑄𝑄∕𝑃𝑃

Baseflow 
index 
(BFI)

𝐴𝐴 𝑇𝑇  
(°C)

Dominate land 
cover

Percentage of sand, 
silt, and clay (%)

79004 Scar Water at Capenoch 142.68 4.73 1.25 3.56 0.26 0.75 0.43 7.42 Grass and Pasture 46.84, 26.25, 26.91

23004 South Tyne at Haydon 
Bridge

749.89 3.18 1.26 2.11 0.4 0.66 0.45 7.29 Grass and Pasture 42.88, 33.73, 23.39

52010 Brue at Lovington 137.81 2.45 1.44 1.21 0.59 0.5 0.54 10.08 Grass and Pasture 37.11, 29.96, 32.93

54036 Isbourne at Hinton on the 
Green

92.83 1.96 1.39 0.62 0.71 0.32 0.59 9.68 Grass and Pasture 28, 30.59, 41.41

30012 Stainfield Beck at Cream 
Poke Farm

38.22 1.77 1.42 0.56 0.8 0.32 0.51 9.53 Crops 45.18, 29.59, 25.23

Note. 𝐴𝐴 𝑃𝑃  , ���  , 𝐴𝐴 𝑄𝑄 , and 𝐴𝐴 𝑇𝑇  represent annual mean values of precipitation, potential evapotranspiration, streamflow, and temperature respectively averaged over several 
years.
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2.2.  HYREX Data

The in-situ data for the Brue catchment were collected from HYREX (HYdrological Radar EXperiment) 
(Wallingford, 2007). HYREX was a project founded by Natural Environment Research Council and ran from May 
1993 to April 1997 in the Brue catchment (data collection was extended to 2000). Hydrological data (P and Q) 
were collected at 15-min intervals. For this study, the 15-min data were converted to hourly data. The hourly areal 
P data were calculated by averaging the retrievals of the 49 tipping bucket rain gauges available within the catch-
ment using the Thiessen polygon technique. The River Brue is gauged at the catchment outlet at Lovington. The 
river level is recorded every 15 min and is converted to flow using a well-established rating curve. The 15-min 
data were converted to hourly Q data, which were used as the observed Q to calibrate the hydrological models.

The estimates of PET are computed from meteorological data. Many formulations have been developed to esti-
mate PET (Allen et  al.,  1994; Ekström et  al.,  2007; Penman,  1948). The most widely used is the Food and 
Agricultural Organization (FAO) Penman-Monteith method (Allen et  al.,  1998), also called grass reference 
ET. The FAO PET computation is usually considered to be the most appropriate and physically satisfactory 
by many hydrologists and meteorologists worldwide (Andréassian et al., 2004; Nonki et al., 2021; Samain & 
Pauwels, 2013; Shuttleworth, 1993). As such, hourly PET values in this study were calculated based on the actual 
data from meteorological stations installed during HYREX. An automatic weather station and an automatic soil 
water station were located in the catchment and recorded the net solar radiation, wind speed, wet and dry bulb 
temperatures, barometric pressure and other atmospheric parameters (Wallingford, 2007).

Due to data discontinuity, we selected a 2-year period from the HYREX data, from June 1994 to May 1996 
which includes two high-flow and two low-flow periods for the analysis. These 24 months of hourly data contain 
various rainfall events with a wide range of flow conditions. They provide sufficient information for calibrating 
the hydrological models.

2.3.  CAMELS-GB Data

The CAMELS-GB (Catchment Attributes and Meteorology for Large-sample Studies in Great Britain) data set 
contains daily time series of various hydro-meteorological variables encompassing P, PET, and Q for 671 catch-
ments across Great Britain (Coxon et al., 2020). However, for this analysis, we needed hourly data (P, PET and 
Q) and thus hourly data were compiled from a range of sources as follows. The hourly P data were derived from 
the hourly Gridded Estimates of Areal Rainfall (CEH-GEAR1hr) product, developed by the Centre for Ecology & 
Hydrology (CEH) (Lewis et al., 2019). This data set contains 1 km gridded estimates of hourly P for Great Britain 
from January 1990 to December 2014. The estimates were derived by applying the nearest neighbor interpolation 
method to a national database of hourly rain gauge observations (Lewis et al., 2018). Catchment-averaged P time 
series are then produced by averaging values of all grid squares that lay within the catchment boundary for each 
catchment. Hourly PET data were disaggregated from the daily PET data contained within the CAMELS-GB data 
set. These daily PET time series were derived from the Climate Hydrology and Ecology research Support System 
Potential Evapotranspiration (CHESS-PE) data set, which is a 1 km 2 gridded product of PET time series for Great 
Britain (Robinson et al., 2016). To disaggregate to hourly, the daily PET is distributed across daylight hours using a 
simple sine distribution accounting for the latitude and longitude of the catchment and the length of day throughout 
the year. Observed hourly Q time series for the period from 1990 to 2014 were retrieved from the Environment 
Agency (EA), Natural Resources Wales (NRW) and the Scottish Environment Protection Agency (SEPA).

There is a need to validate the robustness of the potential compensational relationship that we aim to investigate. 
Therefore, we selected a 10-year period (from June 2003 to May 2013) from the CAMELS-GB database (P, PET 
and Q) over the five catchments to further validate the stationarity of the compensational relationship and to 
explore how the relationship varies in different catchments.

2.4.  Rainfall-Runoff Models

We selected the Xinanjiang (XAJ) model for simulating Q due to its efficiency and minimal preparation require-
ment for input data. The XAJ model has been widely applied to various catchments and has shown good perfor-
mance worldwide (Sheng et al., 2020; Yang et al., 2020; Zhao, 1992; Zhao et al., 1980; Zhuo, Han, et al., 2015). 
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The XAJ model consists of four modules: evapotranspiration module, runoff production module, runoff 
separation module and runoff concentration module. A detailed description of the model is outside the scope of 
this paper, but can be found in previous studies (Zhao, 1992; Zhao et al., 1980). The ranges for parameter values 
were determined based on preliminary experiments and related studies (Ye et al., 2014; Zhuo & Han, 2016). The 
XAJ parameters were calibrated by using a standard gradient-based automatic optimization method (Lagarias 
et al., 1998).

Further, the Probability Distributed Model (PDM) was employed to explore if the compensational relationship 
changes with different models. The PDM is a conceptual rainfall-runoff model with analytical and computational 
simplicity (Beven, 2012; Moore, 2007). Its soil moisture storage capacity is characterized by a simple probability 
distribution curve (Liu & Han, 2013). This model has been widely applied in the UK and other countries. In 
particular, many studies on the Brue catchment used the PDM model for hydrological applications (Borga, 2002; 
Borga et al., 2006; Liu & Han, 2010; Moore et al., 2005; Srivastava et al., 2014). A detailed description of the 
model can be found in previous studies (Beven, 2012; Liu & Han, 2013; Moore, 2007; Samain & Pauwels, 2013). 
Both models (XAJ and PDM) use P and PET data as the main inputs.

As concluded by previous studies (Samain & Pauwels, 2013; Wang et al., 2023; Xu et al., 2006), the model 
recalibrations could partly compensate for the inputs' errors by altering the model parameters. This would cause 
a misrepresentation of input data accuracy. Thus, the XAJ and PDM models were calibrated by using the original 
(unbiased) P and PET input data in each experiment. No recalibration was carried out in the biased input scenario 
runs to avoid the compensational effect from model recalibration.

2.5.  Evaluation Criteria

The Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) was used as the objective function for model cali-
bration. NSE is a widely used indicator in hydrology (e.g., Beck et al., 2017; Liu & Han, 2010; Wang et al., 2023; 
Zhuo, Dai, & Han, 2015). In particular, NSE is highly sensitive to peak flows (Krause et al., 2005), as well as 
long-term biases (Gupta et al., 2009). This makes NSE suitable since we were focused on exploring the joint 
interaction from the inputs' biases. The NSE is given by:

NSE = 1 −

∑𝑇𝑇

𝑖𝑖=1 (𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)
2

∑𝑇𝑇

𝑖𝑖=1

(

𝑂𝑂𝑖𝑖 − 𝑂𝑂

)2� (1)

where i refers to the time step in hours, T is the total number of hours, 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑖𝑖 are the simulated and observed 
Q, and 𝐴𝐴 𝑂𝑂 is the mean value of 𝐴𝐴 𝐴𝐴𝑖𝑖 . The closer the NSE is to 1, the better the simulation is.

The NSE can be decomposed into three distinctive components, correlation (r), relative variability (α), and 
normalized bias (β) according to Gupta et al.  (2009). The decomposed components are beneficial to identify 
which aspects of NSE impact the simulation performance (Lane et al., 2019). They are also helpful in providing 
insight into the compensational effects between the quality of P and PET inputs in simulating Q. In this study, β 
was calculated based on the Equations proposed by Gupta et al. (2009), and r and α were computed by using the 
Equations shown in Lane et al. (2019).

The Percent Bias (PBIAS, %) was used to further evaluate the systematic bias of Q simulations. PBIAS measures 
the average tendency of the simulated Q to be greater or smaller than the observation. A value of zero suggests a 
perfect case, while positive or negative values indicate an overestimation or underestimation of the Q simulation 
respectively. PBIAS is given by:

PBIAS = 100 ×

∑𝑇𝑇

𝑖𝑖=1(𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)
∑𝑇𝑇

𝑖𝑖=1 𝑂𝑂𝑖𝑖

� (2)
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2.6.  Biased Input Scenarios

In this study, we added various biases (systematic errors) to the original P and PET data to generate biased input 
scenarios. This was carried out by introducing two bias coefficients, 𝐴𝐴 ∆𝑃𝑃 (%) and ∆���  (%), to the original P and 
PET time series. The bias coefficients are applied to the whole time series and the new estimates are given by:

𝑃𝑃
′
𝑖𝑖
= (1 + ∆𝑃𝑃 ) × 𝑃𝑃𝑖𝑖� (3)

��� ′
� = (1 + ∆��� ) × ����� (4)

where 𝐴𝐴 𝐴𝐴
′
𝑖𝑖
 and ��� ′

�  represent biased P and PET time series. The bias coefficients indicate how much the origi-
nal data has been scaled. They are helpful to test the effect of under- or overestimations of P and PET inputs on 
simulating 𝐴𝐴 𝐴𝐴 . Based on previous studies dealing with systematic errors to the inputs (Bai et al., 2016; Jayathilake 
& Smith, 2022; Oudin et al., 2006), a range of −40% to 40% with a step of 1% was applied to 𝐴𝐴 ∆𝑃𝑃 and ∆���  
individually. The biases within ±40% are able to cover the systematic errors that happened in most hydrological 
applications. A negative bias coefficient means underestimation and a positive one means overestimation, and a 
value of “0” refers to the original (unbiased) data. There were 6560 biased scenarios in total. These biased P and 
PET data were used to drive the hydrological models without recalibration.

Ideally, a good Q simulation should meet the requirement of NSE ≥ 0.8 and |PBIAS|  ≤ 5%. The biased scenarios 
that meet this requirement would be selected to investigate the specific mutual relationship between the biased P 
and PET data in reproducing good Q. However, there are large discrepancies in hydrological model performance 
in different catchments across Great Britain as investigated by Lane et al. (2019). Some of their results showed 
catchments with NSE values below 0.6 in terms of the best flow simulation performance. Therefore, we expect 
the NSE performance to vary across the selected catchments and we expect some of the best performing models 
to show NSE values lower than 0.8 in some cases.

3.  Results and Discussion
3.1.  Compensational Relationship of P and PET Inputs' Errors in Simulating Q

The simulated Q based on the HYREX data in the Brue catchment is shown in Figure S1 in Supporting Infor-
mation S1, with an NSE of 0.82 and a PBIAS of 3.4%. The XAJ hydrological model was run for the 6560 biased 
scenarios in order to test how the hydrological model performance changes with biased P and PET input data. 
Figure 2 presents the hydrological performance results (NSE and PBIAS) under different combinations of biased 
P and PET input data. It can be seen that within a certain range of biased scenarios (i.e., within the red solid 
boundary), P and PET can compensate for each other, thereby generating a satisfactory hydrological performance 

Figure 2.  The Xinanjiang (XAJ) model performance results, Nash-Sutcliffe Efficiency (NSE) (a) and Percent Bias (PBIAS) 
(b) under different scenarios of biased precipitation (P) and potential evapotranspiration (PET ) inputs (𝐴𝐴 ∆𝑃𝑃 and ∆���  ). The 
scenarios with the best performance are within the red solid boundary. Within a certain range of biases combination (such as 
along the dotted line L), P and PET can compensate for each other, and thereby generate satisfactory streamflow simulations.
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(NSE ≥ 0.8 in Figure 2a, and ⎥PBIAS⎜ ≤ 5% in Figure 2b). The bias combinations that appear along the line L 
are selected as a representative example to further analyze the mutual compensation between P and PET input 
data's quality in reproducing Q simulations.

Figure 3 shows the performance of the hydrological simulation under different biased input scenarios. The accu-
racy of P data is found to be more important than the accuracy of PET. By introducing the same magnitude of bias 
to only one input (Figures 3a and 3b), biased P data generates simulations with even worse hydrological perfor-
mance than using biased PET. It can be seen that the model's efficiency significantly decreases when there is a 
systematic bias of ±20% only in P inputs, while insignificantly decreases when the bias only occurs in PET inputs 
(Figures 3a and 3b). This confirms again that the hydrological model is less sensitive to systematic errors  in PET 
than in P data. These findings are in good agreement with previous studies (Nandakumar & Mein, 1997; Paturel 
et al., 1995).

Further, P and PET data with the same biases fail to mutually offset each other to reproduce satisfactory 𝐴𝐴 𝐴𝐴 simu-
lations, which can be found in Figure 3c. The model performance becomes worse if P and PET have an opposite 
bias (i.e., P with overestimation while PET with underestimation) (Figure 3d). For example, when PET has a 
negative bias while P has a positive bias with the same magnitude (Figure 3d), the Q simulations are found to be 
poorer than the scenario in which P and PET have the same negative biases (Figure 3c). Moreover, the overesti-
mation of inputs has a more severe effect on the Q outputs, which is in line with the study of Xu et al. (2006). As 

Figure 3.  The Xinanjiang (XAJ) model performance under different biased input scenarios: (a) with a bias in precipitation 
(P) only; (b) with a bias in potential evapotranspiration (PET ) only; (c) with the same bias in P and PET; (d) with opposite 
bias in P and PET; (e, f) with biased scenarios along the line L shown in Figure 2.
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shown in Figures 3a–3c, the slopes of the overestimation scenarios (the right side of each plot) are greater than 
the underestimation scenarios (the left side of each plot).

On the contrary, if the biases in P and PET inputs meet a certain relationship, such as that shown appear along 
the line L in Figure 2, they can offset each other's biases to produce good Q simulations, which can be found 
in Figures 3e and 3f. The XAJ NSE scores of these biased scenarios are about 0.82 and the PBIAS scores are 
about  3%.

3.2.  Compensational Relationship Between P and PET Biases That Produce Good Q Simulations

To figure out the specific mutual relationship of biases in P and PET in Q modeling, we selected the biased scenarios 
that can produce good Q simulations (NSE ≥ 0.8 and 𝐴𝐴 |PBIAS|  ≤ 5%) in the Brue catchment. As shown in Figure 4a, 
a region has been formed and there exists a certain angle and range of values that compensate for the biases in P and 
PET data. It can also be found that except for a few scenarios, the majority of bias combinations stay along the lines 
which are parallel to Line L. The gradient of L is tan(18.43°) ≈ 0.33, which means the slope 𝐴𝐴 ∆𝑃𝑃 ∶ ∆𝑃𝑃𝑃𝑃𝑃𝑃 ≈ 1 ∶ 3. In 
other words, if the bias in PET input data is three times the bias in P data, then the biases could mutually offset each 
other to reproduce good Q. Certainly, there are thresholds for the range of P and PET biases.

Figure 4b shows a scatter plot between the bias ratio (∆�∕∆��� ) and the square root of the sum of squared biases 
(

√

∆2
� + ∆2

���

)

 for the selected biased scenarios that generate satisfactory Q simulations (the region in Figure 4a). 

A certain pattern can be found in most of those biased scenarios. As the square root becomes greater than 10%, 
the ratio turns asymptotically closer to tan(18.43°). Although there are a few combinations whose absolute ratio 

Figure 4.  (a) Biased precipitation (P) and potential evapotranspiration (PET ) scenarios that can produce good Xinanjiang 
(XAJ) model simulations based on 2-year hourly data from HYdrological Radar EXperiment. (b) A scatter plot between the 
bias ratio and the square root of the sum of squared biases for these scenarios. Normal probability plots for the bias ratio (c) 
and the square root (d), where the data appear along the reference line (in red) indicate that they follow a normal distribution.
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|∆�∕∆��� | are more than 1, their square root is less than 5%. In these cases, both 𝐴𝐴 ∆𝑃𝑃 and ∆��� are quite small. 
This means P and PET input data are almost unbiased, making them still behave well in terms of Q modeling. 
Additionally, we used the normal probability plots to statistically test the normality of the distributions. As shown 
in Figures 4c and 4d, a normal distribution fits well the central part of the quantified distributions (∆�∕∆��� and 
√

∆2
� + ∆2

���  ), which is approximately symmetrical to the vertical line x = tan(18.43°), but fails to fit the tails.

On the basis of the above-mentioned, a new hydrological proxy, named Compensational Interaction Angle (CIA, 
θ) is proposed in this study to quantitatively and intuitively understand the mutual compensational relationship 
between the biases in P and PET inputs. In specific, the CIA can be extracted from the plot shown in Figure 4a, or 
be approximately computed as the arctangent of the mean bias ratio (∆�∕∆���  ) of the central part of the scatter 
plot (Figure 4b). The maximum square root 

√

∆2
� + ∆2

���  is about 45% in each case. This is expected since we 

assume the maximum bias in P or PET is 40%, thus the maximum is 𝐴𝐴

√

(40%)2 + (40%)2 ≈ 45%. It can also be 

derived from Figure 4b that 
√

∆2
� + ∆2

���  varies from 0% to 45%.

The CIA is found to be 18.43° for the Brue catchment. The next step is to further explore how CIA varies in differ-
ent situations (the length of modeling period, model equifinality, hydrological model and catchment condition).

3.3.  How Does the CIA Vary With Different Modeling Scenarios?

3.3.1.  Using Different Modeling Periods

The above analysis was based on the 2-year hourly HYREX rain gauge data. Although HYREX data are of 
high quality, the short availability is inadequate in investigating the stationarity (i.e., stability with time) of the 
compensational relationship. In order to test if the CIA changes with the length of the simulation period, we used 
additional data sets. Thus, two 5-year periods (from June 2003 to May 2008, and from June 2008 to May 2013) 
and one 10-year period (from June 2003 to May 2013) from the hourly CAMELS-GB data were used to validate 
the stationarity of the CIA. The corresponding Q simulated by using these 3 additional periods are shown in 
Figures S2, S3, and S4 in Supporting Information S1. All simulations have reached satisfactory performance with 
NSE greater than 0.8 and PBIAS within ±5%.

Similar to Figure 4 in Section 3.2, Figure 5 shows the biased input scenarios that reproduce Q well using biased P 
and PET from different time periods. Notably, the CIA turns out to be the same (19.95°) in these 3 modeling periods 
(Figures 5a–5c). As shown in Figures 5d–5f, the central parts of the scatter plots between the bias ratio and the square 
root of the sum of squared biases for these scenarios, also follow a similar normal distribution, which is symmetrical 
to the vertical line x = tan(19.95°). This indicates the stationarity of the CIA. Additionally, the angle of 19.95° (found 
by using the CAMELS data) is very close to the angle 18.43° derived from the HYREX data. The small difference 
in this angle might be due to the different data sources and length of time periods used in the analysis were used.

Moreover, by comparing the biased input scenarios demonstrated in Figures 5a–5c, a wider range of biased input 
scenarios and greater NSE scores can be found as the data are more recent and longer. This means the hydro-
logical model appears to be more adaptable to the joint biases when using longer time periods in the input data. 
Specifically, the bias combinations in P and PET data over the period from June 2008 to May 2013 (Figure 5b) 
generate better Q simulations than those from June 2003 to May 2008 (Figure 5a). Similarly, Figure 5c (using 
the 10-year data) has a better NSE performance than Figures 5a and 5b (using the 5-year data). By comparing 
the results in different periods (Figures 5d–5f), the central parts of the scatter plot become closer to a normal 
distribution as the data used are more recent and longer. This might be attributed to the better quality of more 
recent data, which are derived from more accurate and advanced measurements. In this study, the data with the 
longer time period are more reliable than the data with the shorter time period given that the information content 
contained in the former is greater than in the latter.

3.3.2.  Assuming Hydrological Model Equifinality

It is well known that various model parameter sets could be equally capable of reproducing similar hydrological 
outputs, which is called equifinality (Beven & Freer, 2001). This means the optimal parameter set for calibrating 
the XAJ model is not unique. Many other parameter sets could also generate equally good Q simulations as well. 
Thus, there is a need to further investigate if the compensation relationship would change in terms of model 
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equifinality. Two different parameter sets were calibrated using the original 2-year HYREX data and the 10-year 
CAMELS-GB data (Figures S5 and S6 respectively in Supporting Information S1).

Then, the XAJ model was rerun without recalibrations using the 6560 biased input scenarios. Figure 6 shows the 
biased scenarios that reproduce Q well using the HYREX and CAMELS-GB data sets. It can be seen that the CIA 
remains the same as the one using the previous parameter set, namely, 18.43° for the 2-year HYREX and 19.95° 
for the 10-year CAMELS-GB data sets (Figures 6a and 6c). A similar normal distribution can also be found in 
the central part of the scatter plots in Figures 6b and 6d for both model results. This indicates the stability of the 
compensational relationship under model equifinality.

3.3.3.  Using a Different Hydrological Model

Further, as only the XAJ model is considered in this study, there is a question on whether the compensational 
relationship would change when using a different hydrological model. We tested this by using the 10-year 
CAMELS-GB data as input data to force the PDM model. The Q simulated by the PDM model after calibration 
can be found in Figure S7 in Supporting Information S1. The NSE and PBIAS scores are 0.84 and −2.2%, respec-
tively. The PDM model was rerun using the 6560 biased input scenarios.

Figure 7 shows the performance results of these 6560 biased input scenarios. It can be seen that the interaction 
between biased P and PET inputs is very similar to the one using the XAJ model. The CIA appears to almost 
remain the same as using the XAJ model, namely, 19.95°. Similarly, the normal distribution fits well with the 
central part of the scatter plot, which is approximately symmetrical along a vertical line x = tan(19.95°), but fails 
to fit the tails (Figures 7e and 7f). These results indicate that the compensational relationship is stable when using 
a different hydrological model.

Figure 5.  Top row: biased precipitation (P) and potential evapotranspiration (PET ) input scenarios that produce good model results using different time periods 
from Catchment Attributes and MEteorology for Large-sample Studies in Great Britain data, including from June 2003 to May 2008 (a), from June 2008 to May 2013 
(b), and from June 2003 to May 2013 (c). Bottom row: corresponding scatter plots between the bias ratio and the square root of the sum of squared biases for these 
scenarios.
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3.3.4.  Using Different Catchments With Varied Aridity Conditions

There is a more interesting question on whether the compensational relationship changes with different aridity 
conditions. The Scar Water and South Tyne catchments (more humid than the Brue catchment) and Isbourne and 
Stainfield Beck catchments (arider than the Brue catchment) were selected to explore this question. As found 
in the previous section, the PDM model shows similar results to the XAJ model. For simplicity and efficiency, 
the PDM model with fewer parameters was used to simulate Q using 10-year hourly data for the 4 catchments 
independently. The corresponding simulated Q for these catchments can be found in Figures S8, S9, S10, and S11 
in Supporting Information S1. It is important to highlight that the simulations using the original data exhibited 
an optimal NSE of 0.76 for the Isbourne catchment and 0.68 for the Stainfield Beck catchment. Therefore, the 
satisfactory simulations using the biased inputs for the Isbourne and the Stainfield Beck catchments were defined 
as having an NSE greater than 0.7 and 0.62, respectively, as well as a PBIAS within ±5%. The Scar Water and 
South Tyne catchments showed better NSE performance (NSE greater than 0.8). Figure 8 shows the biased input 
scenarios that reproduce Q well in different catchments. A similar compensational relationship was identified in 
these four catchments. The central parts of the scatter plots shown in Figures 8e–8h also follow a normal distri-
bution, which is symmetrical along a vertical line x = tan(θ).

Moreover, it can be found from Figures  8a–8d that the catchments with greater aridity have larger CIA (θ) 
whereas the more humid catchments showed smaller CIAs values. P is higher than ET in humid regions, thereby 
the bias in PET needs to be higher to accommodate even a small bias in P to be able to produce good model 
results. For example, in the Stainfield Beck catchment (Figure 8d), the CIA is 25.45° and tan(25.45°) ≈ 0.476, 
namely, ∆� ∶ ∆��� ≈ 1 ∶ 2.1 , which indicates that the bias in PET is 2.1 times higher than the bias in P, then the 
biases could mutually offset each other to reproduce good Q. However, for the more humid Scar Water catchment, 

Figure 6.  Left column: biased precipitation (P) and potential evapotranspiration (PET ) scenarios that produce good model 
outputs using a different parameter set for the 2-year HYdrological Radar EXperiment data (a), and the 10-year Catchment 
Attributes and MEteorology for Large-sample Studies in Great Britain data (c). Right column: corresponding scatter plots 
between the bias ratio and the square root of the sum of squared biases for these scenarios (b and d).
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the CIA is 11.25° and tan(11.25°) ≈ 0.2, namely, ∆� ∶ ∆��� ≈ 1 ∶ 5 , which indicates that the bias in PET should 
be five times higher than the bias in P for the model to produce acceptable Q simulations.

3.4.  Which Aspects of NSE Significantly Affect the Compensational Relationship?

The NSE decomposition can give us some insights into how its different components (r, α, and β) are related to 
the compensational relationship. As found in Section 3.3.1, a longer time period gives us a better model perfor-
mance. Thus, we used the 10-year hourly CAMELS-GB data to drive the XAJ and PDM models for the Brue 
catchment for further investigation. The three distinct components (r, α, and β) of NSE were calculated for each 
biased input scenario. As shown in Figure 9, the correlation (r) seems to remain at a value of more than 0.9 in 
most of the biased scenarios (Figures 9a and 9e), implying that the bias added in the inputs does not largely affect 
the correlation of the model simulations. However, α (relative variability) and β (normalized bias) vary for most 
biased scenarios (Figures 9b, 9c, 9f, and 9g).

We selected the biased scenarios that appear along the lines L1 and L2 in Figure  9 as representative exam-
ples to intuitively understand the variability of α and β. The line L1 has been defined previously and it has a 
slope of tan(19.95°) ≈ 0.363, while the line L2 is perpendicular to L1 and is made up of biased scenarios that 
do not follow  the compensational relationship.  It is found that all the biased scenarios along L1 in the XAJ 
and PDM models (Figures 9i and 9k) can produce good model performance, with NSE, r, α, and β remaining 
almost unchanged. However, most biased scenarios along L2 fail to produce good model performance, with large 
discrepancies in α, β, and NSE, except for r, which still seems to show a high correlation (r > 0.9). These findings 
suggest that it is mainly the joint response of the relative variability and normalized bias that contribute to the 
NSE result in our study, which is in agreement with the study of Wang et al. (2023). In particular, the normalized 

Figure 7.  The Probability Distributed Model (PDM) simulation performance, Nash-Sutcliffe Efficiency (NSE) (a) and Percent Bias (PBIAS) (b) in 6560 biased 
Precipitation (P) and Potential Evapotranspiration (PET ) input scenarios. (c) Biased input scenarios that can produce good model performance. (d) A scatter plot 
between the bias ratio and the square root of the sum of squared biases for these scenarios. Normal probability plots for the bias ratio (e) and the square root of the sum 
of squared biases (f).
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bias has the same pattern as the CIA relationship. This is mainly because the CIA identified in the Brue catchment 
was constrained not only by NSE but also by PBIAS (NSE ≥ 0.8 and 𝐴𝐴 |PBIAS| ≤ 5%).

3.5.  Why Does This Compensational Pattern Exist?

Based on the above analysis, P and PET 's biases have a mutual compensational relationship to reproduce Q well. 
This compensational pattern appears to be stationary with time and stable with different hydrological models, and 
taking into account model equifinality. Moreover, arid catchments have larger CIAs. The question is, why does 
this compensational pattern exist? The water balance principle could provide some hints to answer this question 
since P, PET, and Q are three essential components of the terrestrial water cycle (Lehmann et al., 2022). The 
long-term water balance equation for a catchment can be simplified as,

𝑄𝑄 = 𝑃𝑃 − 𝐸𝐸𝐸𝐸 − 𝜔𝜔� (5)

where ω denotes water budget imbalance (including the change in soil water storage, surface water, groundwater, 
snow, and canopy) (Scanlon et al., 2018). P, ET, and Q are the major components of the terrestrial water balance, 
and generally, ω is assumed to be zero when assuming a longer time period (for a catchment with negligible 
groundwater flow such as the Brue catchment), However, ω cannot be ignored over shorter time periods or for 
catchments where groundwater effects are important. ET is considered to have an approximately proportional 
relationship with PET, which can be expressed as:

�� = � ⋅ ���� (6)

where 𝐴𝐴 𝐴𝐴 refers to the proportional coefficient.

If there are biases in P and PET, then Equation 5 could be rewritten as,

Figure 8.  Top row: biased Precipitation (P) and Potential Evapotranspiration (PET ) input scenarios that produce good simulations using the Probability Distributed 
Model (PDM) and a 10-year hourly data period for the Scar Water (a), South Tyne (b), Isbourne (c) and Stainfield Beck (d) catchments, respectively. Bottom row: 
scatter plots between the bias ratio and the square root of the sum of squared biases for these scenarios for each catchment respectively (e, f, g, and h). The catchments 
are presented from left to right in ascending order of their aridity ratios.
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� = � ⋅ (1 + ∆� ) − � ⋅ ��� ⋅ (1 + ∆��� ) − �� (7)

� = � − � ⋅ ��� − � + � ⋅ ∆� − � ⋅ ��� ⋅ ∆���� (8)

For a hydrological model to produce a good performance even if there are biases in P and PET, the sum of the 
last two terms of Equation 8 should be close to zero and therefore:

0 = � ⋅ ∆� − � ⋅ ��� ⋅ ∆���� (9)

∆�

∆���
= � ⋅ ��� ∕� = �� ∕�� (10)

The mean ET values based on the PDM simulations using the 10-year unbiased CAMELS-GB data for the Scar 
Water, South Tyne, Brue, Isbourne, and Stainfield Beck catchments are 1.17, 0.86, 1.18, 1.14, and 1.15 mm/day, 
respectively. Given the mean values of P introduced in Table 1 (4.73, 3.18, 2.45, 1.96, and 1.77 mm/day, respec-
tively for each catchment), we can conclude that ∆�∕∆���  values are 0.25, 0.27, 0.48, 0.58, and 0.65, respectively 
for each catchment. The results are a little bit higher than the values of tan(CIA) (0.2, 0.24, 0.36, 0.46, and 0.48, 
respectively for each catchment) found in Section 3.3, but this might be due to the assumptions used to derive the 
long-term water balance equation (Equation 5).

Overall, Equation 10 suggests that the ratio of biases in P and PET inputs for producing good Q simulations 
(∆�∕∆���  ), namely, tan(CIA), is highly related to the ratio of mean actual ET and P of the catchment. It is 
also linked to the ratio of mean PET and P, that is, the aridity ratio. Different CIAs found in the five studied 
catchments and catchments with greater aridity have larger CIAs also support this conclusion (Section 3.3.4.). 

Figure 9.  Model performance in terms of Nash-Sutcliffe Efficiency (NSE) decomposition. The top row shows correlation (r), relative variability (α), normalized bias 
(β), and NSE for the Xinanjiang (XAJ) model, the middle row shows r, α, β, and NSE for the Probability Distributed Model (PDM), and the bottom row demonstrates 
the performance of the biased scenarios along the lines (L1 and L2).
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Certainly, more investigations in a wider range of catchments are needed to better understand the compensational 
relationship.

3.6.  What Is the Use of the Compensational Relationship?

The water balance-based Budyko hypothesis (Budyko, 1974) is a widely applied empirical “top-down” approach 
in catchment hydrology (Wang et al., 2016). It hypothesizes that the ratio between mean ET and P is primarily 
a function of the ratio between the mean annual PET and P, which is the long-term climate aridity ratio. The 
compensational relationship identified in our study is also linked to the Budyko curve. The CIA might be used 
to elucidate some important relationships of the terrestrial water balance. This compensational relationship also 
varies with the aridity of the catchments. Additionally, it may also provide useful information for ungauged catch-
ments nearby the gauged ones since it indicates relevant hydrological characteristics in local regions.

However, it is important to highlight that the Brue catchment is a near-natural catchment with insignificant 
human impact (e.g., no reservoirs or river diversion). This might be the main reason that the compensational 
pattern is stable using different modeling periods. However, the pattern is likely to be unstable in those regions 
where noticeable human activities are involved (i.e., reservoir and urbanization).

Since various P and PET data sets have been developed in recent decades from different sources, these data sets 
are inevitably prone to different sources of biases (Dai & Han, 2014; Levy et al., 2017), caused by different factors 
(Sevruk, 1996; Xu et al., 2006), encompassing instrument measurement error, improper placement of measur-
ing equipment, biases in climate model outputs, etc. Consequently, these errors result in different magnitudes 
of biases with different data sources during different periods (Wang et al., 2023). The compensational pattern 
identified in the present study could be useful for anticipating how hydrological modeling behaves in such cases. 
If the biases in P and PET data sets follow the CIA relationship, then they are highly likely to yield satisfactory 
hydrological performance.

4.  Summary and Conclusions
In this study, we explored the joint interaction of P and PET input data biases in the response of Q simulations. 
Different biases (systematic errors) were added to the original P and PET data to produce 6560 biased input 
scenarios. Those biased inputs were then independently used for driving the XAJ and PDM models to investigate 
the existence of compensational interaction in simulating Q. Two-year HYREX data for the Brue catchment and 
10-year CAMELS-GB data over five benchmark catchments in Great Britain were used for the analysis. The 
compensational relationship was investigated under various situations, including different data period lengths, 
model equifinality, hydrological models, and catchment conditions. The contributions of the present study are 
threefold.

First, the results confirm findings reported in previous studies, such as (a) the hydrological model is more sensi-
tive to the bias in P than in PET data, and (b) overestimation of P and PET has a greater impact on Q simulations 
than underestimation. Second, the study reveals the following new findings: (a) the biased P and PET inputs 
could compensate for each other to some extent in reproducing Q well; (b) this compensational relationship is 

further quantified as the CIA. The normal distribution fits well with the central part of the scatter plot between the 

bias ratio (∆�∕∆���  ) and the square root of the sum of squared biases 𝐴𝐴

(

√

∆2
𝑃𝑃
+ ∆2

𝑃𝑃𝑃𝑃𝑃𝑃

)

 , which is approximately 

symmetrical to the vertical line x = tan(CIA); (c) further, the CIA appears to be stationary with the length of the 
modeling period and is stable despite model equifinality (i.e., using a different optimal parameter set). The hydro-
logical model is more adaptable to the joint biases in inputs that contain much more information (i.e., 10-year data 
provide more information than 2-year data); (d) the CIA is also similar when using different hydrological models; 
(e) the CIA is highly linked to the long-term climate aridity ratio. The catchments with greater aridity have larger 
CIAs whereas humid catchments show smaller CIAs. Third, a great number of data sets have emerged in this big 
data era, making it hard for the research community to choose suitable P and PET data sets. The compensational 
pattern diagnosed in our study may provide helpful information in selecting and evaluating suitable P and PET 
data sets for hydrological application, as well as provide insights into P and PET data bias correction and data 
fusion.
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This study aims to provide a new perspective for hydrologists to analyze the input errors and water balance in 
hydrological modeling. Any generalization would need the use of various input data sets, study areas and hydro-
logical models. The methodology in this study can be easily applied to other catchments and using different 
hydrological models. Except for the CIA proposed in this study, more perspectives need to be further explored to 
comprehensively understand the compensational relationship. Additionally, as only five near-natural catchments 
were analyzed in our study, we recommend using the proposed method in a wider range of catchments (especially 
the catchments affected by human activities) to further validate our findings and explore the spatial heterogeneity 
of the compensational relationship. Further investigation is warranted to provide a bigger picture and detailed 
understanding of the hydroclimatic conditions worldwide, which will be useful for forecasting extreme events 
(e.g., floods and droughts).

Data Availability Statement
The HYREX rainfall data are publicly available at https://data.ceda.ac.uk/badc/hyrex. The daily CAMELS-GB 
can be freely downloaded from https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9. The hourly 
hydro-meteorological data sets (P, PET and Q) are under license and were compiled by the Hydrology group in 
Geography at the University of Bristol. Please email Dr. Gemma Coxon (gemma.coxon@bristol.ac.uk) to discuss 
access to the data. The hourly CEH-GEAR1hr P time series are available at https://doi.org/10.5285/d4ddc781-
25f3-423a-bba0-747cc82dc6fa. The Q time series are available upon request from the Environmental Agency 
(EA), Natural Resources Wales (NRW), and Scottish Environmental Protection Agency (SEPA). Daily CHESS 
PET time series are available at https://doi.org/10.5285/8baf805d-39ce-4dac-b224-c926ada353b7. Additional 
codes that support the findings of this study are available from the corresponding author upon request.
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