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A B S T R A C T   

Digital twin (DT) has been moving progressively from concept to practice for bridge operation and maintenance 
(O&M), but its issues of data synchronization and fault tolerance remain problematic. This paper investigates the 
time delay of bridge DT services according to communication and computation complexity, revealing the distinct 
impact of their sequence, and proposes an AIoT-informed DT communication framework to solve the above 
issues. The information hierarchy and two-way communication can be leveraged to minimize communication 
complexity in the framework. Meanwhile, the data flow and resilience of the proposed framework are demon-
strated using a Petri net. Moreover, the framework is developed into a prototypical DT through cross-platform 
integration and validated with different cases. The results demonstrate that compared with other existing 
bridge DTs, the proposed framework has high efficiency, low-latency, and excellent fault tolerance, which can 
contribute to the efficiency and safety of bridge O&M, especially under communication-constraint circumstances. 
The framework is also promising for federated learning to protect the AI-model privacy of different stakeholders 
and has the potential to support agent-based intelligent bridge management in the future with little human 
intervention.   

1. Introduction 

Bridges play a critical role in transport systems, and their failure will 
result in traffic disruption, economic loss, or even severe casualties. 
According to the ASCE report in 2021, 6154 (over 7.5%) of the nation’s 
bridges are considered structurally deficient in the US, and unfortu-
nately, 178 million trips are taken across these bridges every day [1]. 
Similarly, over 3105 bridges (around 4.3%) are identified as substand-
ard in the UK until Jan 2021 [2]. As the deterioration and failures of 
aging bridges increase every year, it is necessary to keep regular in-
spections, effective monitoring, timely condition assessment, and 
optimal maintenance for the safety of bridge operation, and prolong 
their service life. Currently, autonomous inspection with drones [3] or 
climbing robots [4], and real-time structural health monitoring (SHM) 
with various sensors [5] have been accepted as effective methods to 
indicate structural deficiency and the influence on bridge capability 
before maintenance. Meanwhile, artificial intelligence (AI), big-data 
analysis [6], knowledge-based reasoning [7], and multi-objective opti-
mization [8] are explored for bridge operation and maintenance (O&M), 
showing the potential for intelligent bridge management in the future 
with very little human intervention. 

Digital twin (DT) is promising to achieve smart bridge O&M through 
different DT services. It should be able to process big data from multiple 
sources in near real-time, such as physical bridges, traffic, weather 
forecast, inventory, and historical records, and make holistic decision- 
making for bridge O&M. For example, a bridge DT can release early 
warnings and quick response for physical bridges and public users when 
a disaster is happening or predicted to happen; it can also provide the 
optimized maintenance planning considering the benefits of different 
stakeholders, such as the minimal traffic disruption. However, when DT 
comes to practical application for bridges, most successful frameworks 
and systems from mature fields, e.g., intelligent manufacturing, cannot 
be employed directly due to bridge characteristics. For example, when 
DT implementation concerns bridge locations, it may have issues, such 
as restricted communication. At the same time, massive heterogeneous 
data from regular inspection and real-time SHM on physical bridges 
makes it difficult to design an appropriate bridge DT framework to 
support timely DT services in a communication-constrained environ-
ment such as a low-power wide area network (LPWAN). Currently, most 
existing bridge DTs [9–11] are cloud-based and rely on excellent 
communication without any consideration of fault tolerance, e.g., to 
endure a temporary loss of communication. In practice, such an issue 
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about resilience is critical for physical entities (PE), which can put 
physical bridges and public users in danger, especially in case of emer-
gency. Moreover, the transmission of massive data can result in a sig-
nificant time delay for DT synchronization as well, which will decrease 
the efficiency of DT services in bridge maintenance such as inspection. 
Hence, it is necessary to propose a highly efficient, low-latency, and 
resilient DT framework, which can work under communication- 
constraint circumstances to support bridge O&M. 

This work proposes an AIoT-informed DT communication framework 
to solve the above issues. At first, the study indicates that the time delay 
in DT services consists of computation and communication time costs, 
depending on computational and communication complexity respec-
tively. Edge computing can reduce the time delay of DT services 
significantly when communication time cost dominates in the process, 
which usually occurs under restricted communication. Moreover, the 
information hierarchy, also known as the DIKW pyramid, can be lever-
aged to indicate how to decrease the complexity of the transmission 
using AI-based edge computing. Two-way communication is recom-
mended to minimize the communication complexity for big-data anal-
ysis in a communication-constraint environment involving different 
data sources owned by edge and cloud, such as holistic bridge assess-
ment, thereby decreasing the time delay. A hierarchical architecture 
with high resilience based on the mesh network is designed to endure a 
temporary loss of communication at different levels. The bridge DT 
system is idealized mathematically in state-space representation with 
time delay and inequalities for hardware processing capability. More-
over, the proposed framework is modeled using a Petri net to demon-
strate the data flow for DT services and framework resilience using 
tokens and conditional probability respectively. Furthermore, the pro-
posed framework is developed into a cross-platform prototype step by 
step, integrating AIoT-based edge devices, LPWAN, MQTT protocols, 
cloud servers, and a web-based platform with both GIS and BIM. Finally, 
the framework is validated with different cases for bridge O&M, i.e., 
drone-enabled bridge inspection, vibration-based monitoring (VBM), 
and dynamic route planning for evacuation. The performance demon-
strates the high efficiency, low latency, and excellent fault tolerance of 
the framework, which can contribute directly to enhancing the effi-
ciency and safety of bridge O&M through DT. 

The contribution of this research is three-fold:  

1) An AIoT-informed DT communication framework is proposed to 
support smart bridge O&M under communication-constrained cir-
cumstances with high efficiency, low latency, and excellent fault 
tolerance to endure a temporary loss of communication. Further-
more, the framework is developed into a cross-platform prototype, 
integrating AIoT-based edge devices, LPWAN, MQTT protocols, 
cloud servers, and a web-based platform, and validated with 
different cases for bridge O&M.  

2) The study investigates the time delay of bridge DT services according 
to communication and computation complexity, which reveals the 
distinct impact of their sequence. AI-based edge computing can 
decrease the time delay of DT services significantly when commu-
nication time dominates in the process. Moreover, the information 
hierarchy can be leveraged to reduce communication complexity, 
and two-way communication is recommended to satisfy restricted 
communication with minimal complexity for big-data analysis 
involving different sources owned by edge and cloud separately.  

3) The bridge DT is idealized in state-space representation with time 
delay, which is beneficial to understanding the bridge control based 
on DT. Meanwhile, the data flow and resilience of the proposed 
framework are demonstrated using a Petri net with tokens and 
conditional probability respectively. 

The rest of this paper is structured as follows: Section 2 overviews the 
related work and technologies with bridge DTs and introduces the 
research problems. Section 3 presents the theoretical foundation for the 

proposed framework. Section 4 is for framework design and prototype 
development. Section 5 is framework validation with different cases 
during bridge O&M. Section 6 concludes the work and discusses the 
further direction for this research. 

2. Literature review 

2.1. Bridge DT review 

Although there is hardly a unified definition for DT in different dis-
ciplines and domains currently, the ongoing research exhibits a notable 
characteristic that DTs are designed and developed for specific purposes 
and circumstances [12,13]. For example, a bridge DT for SHM is defined 
as a virtual representation of the physical bridge, which does not only 
update as new data is collected in near real-time but also provides 
feedback into the physical bridge and performs ‘what-if’ scenarios for 
assessing asset risks and predicting asset performance [14]. A DT for 
bridge maintenance aims to be updated along with visual inspection and 
non-destructive test (NDT) continuously [15–17] and integrated with 
other multi-source data, such as original design, damage history, in-
ventory, traffic, weather, disaster, to support holistic decision-making 
for maintenance planning [18,19]. Moreover, multiple bridges DTs 
can be considered as a bridge network and utilized for intelligent 
transport, which is usually represented topologically on a map [20]. A 
comprehensive and sophisticated DT system to support bridge O&M in 
this research aims to take all the above purposes (or services) into ac-
count. The bridge DT models can be created by different approaches 
technically, including building information modeling (BIM), physics- 
based approach (such as finite element modeling), data-driven 
approach (such as statistical modeling), and data-centric engineering 
approach (i.e., hybrid modeling) [14]. Their key features include digital 
replica (including geometry, materials, etc.); data composition; bidi-
rectional connection (update and feedback) in near real-time; the life- 
cycle span of a physical bridge; common data environment (CDE); 
visualization; simulation; learning from actual measurement data [14]. 

Over the past decade, the interest in bridge DT has grown signifi-
cantly, and a few prototypes and pilot projects have been proposed and 
demonstrated successfully. For example, a DT system for two pilot 
railway bridges [21] was developed, which integrates Fiber Bragg 
Gratings (FBG) sensors, laser rangefinders, and other additional sensors 
to achieve on-going monitoring for train-bridge coupling parameters (e. 
g., strains, accelerations, train axle positions). It can calculate the key 
indicators (e.g., curvature, end rotations, displacements, axle weights) 
for SHM in the cloud, as well as use a web-based platform embedded 
with Unity for human-machine interaction (HMI). Another cloud-based 
bridge DT for SHM [22] employs a finite element model with damaged 
states and data synthetically created, real-world monitoring data (such 
as vibration and strain) from multiple sensors, and a pre-trained surro-
gate model based on deep learning to detect damage existence, identify 
damage location, and quantify damage severity on a practical bridge, 
thereby achieving proactive maintenance. Moreover, a conceptual 
bridge DT [11,17,23] for preventative maintenance is developed using a 
surface model, BIM model, and simulation model. The surface model is 
generated continuously through reverse engineering (photograph 
mapping and 3D scanning) and aligned parametric modeling during the 
bridge lifecycle O&M. Damage information through image processing 
after visual inspection can be recorded in a code system and linked to 
specific BIM elements. The simulation model is achieved with FEM, 
wherein the detected deterioration of structural elements is evaluated 
and employed to update the structural parameters. Another exemplary 
openBIM-based bridge DT [1] was developed by industry, which can 
enable long-term monitoring of bridge condition and predictive main-
tenance (PM) with aggregated information, by combining traditional 
inspections with digital information (from structural diagnosis and 
monitoring) and injecting the derived semantic information into the BIM 
model. Furthermore, there are also many other frameworks or systems 
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developed in the forms of the bridge management system (BMS) or 
bridge information modeling (BrIM) for bridge SHM [5,24–27], and 
O&M [19,28–30]. They are very instructive due to the close relationship 
to bridge DT, which can be taken as resorts and further developed to 
bridge DT. 

Although there are already some successful designs and imple-
mentations for bridge DT, most of them relied on excellent communi-
cation [21,31,32], such as Ethernet, 4G, and 5G, or even did not reveal 
communication approaches such as conceptual designs [11,17,23]. 
However, in practice, when bridge DT implementation concerns bridge 
location, many bridges are working under communication-constraint 
circumstances, which can be attributed to either geographic or eco-
nomic reasons. For example, there are thousands of bridges in the UK 
like the one in the pilot project, which has successful DT implementation 
based on excellent communication [21], but widely spreading such ex-
emplars will lead to large expenditures on middleware and data plans. 
Meanwhile, storing such a huge amount of inspection and monitoring 
data will also become a heavy burden in terms of both technology and 
the economy. Moreover, most of the existing bridge DTs work in a 
centralized mode based on the cloud [10,33–35], as shown in Fig. 1. As 
can be seen, the digital bridge can synchronize with the physical bridge 
through the triplet bridge-machine-human interaction, which involves 
four significant components, i.e., data acquisition and preprocessing, 
communication, cloud servers, human-machine interface (HMI), to 

achieve multiple DT services at the back end. However, the issue of 
resilience in such an architecture [36,37] is usually neglected. Hence, it 
raises two questions. Firstly, do we need to transmit such massive het-
erogeneous data for bridge DT, especially in a communication- 
constraint environment? Secondly, how can we enable bridge DT with 
fault-tolerant capability, e.g., under a temporary loss of communica-
tion? As indicated in the investigation based on practitioners’ views in 
the UK [38], the first question is also related to the major disconnect 
between academia and industries towards DT applications in bridge 
O&M, which is the difficulty to keep the bridge DT models updated 
automatically in routine practice. It can be solved by collecting data 
continuously from traditional inspections and ongoing structural 
monitoring, but one of the bottlenecks is focused on the synchronization 
of massive heterogeneous data. Meanwhile, to our best knowledge, there 
is no precedent of bridge DT framework considering resilience to endure 
a temporary loss of communication. This work is going to study the 
bridge DT communication to solve the above issues from the following 
perspectives: 1) to enhance DT service efficiency, i.e., to bridge the gap 
between complexity and time delay of service; 2) to enable bridge with 
excellent fault tolerance to endure a temporary loss of communication at 
different levels. 

Fig. 1. Current cloud-based Bridge DT Architecture.  
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2.2. DT related technologies 

This part aims to investigate the technologies related to bridge DT, 
which is useful for the following framework design and prototype 
development. The content will be organized in the form of a triplet 
bridge-machine-human interaction, as shown in Fig. 2. 

2.2.1. Bridge-machine interaction 
Bridge-machine interaction includes various sensing and robotic 

technologies. Recently, elaborated attached sensors or handheld 
equipment have been successfully applied on bridges [39] for global 
structural health monitoring (SHM), including accelerometers [24], 
strain gauges [35], fiber optical sensors [5], etc., and local non- 
destructive testing (NDT), such as passive acoustic emission (AE) 
monitoring [40], active sonar [41] and ultrasonic coda wave interfer-
ometry (CWI) detection [42]. Additionally, a high-speed motion camera 
can be used to monitor bridge vibration and displacements with high 
accuracy under dynamic loadings based on motion amplification tech-
nology [26]. Digital single-lens reflex (DSLR) [43,44] and infrared (IR) 
cameras [43,44], are also widely used for vision-based bridge inspection 
to identify surface deficiencies due to their easy integration into tradi-
tional inspection workflows. LiDAR (i.e., 3D laser scanning) is another 
powerful vision-based method as a supplementary to 2D inspection [45] 
for bridge inspection, which can provide more detailed information such 
as depth. These sensors and equipment in the regular inspection and 
real-time monitoring will generate massive heterogeneous data, which is 
important for bridge condition assessment and decision-making but also 
puts forward a challenge for DT synchronization. 

Traditional bridge inspection with manual access is costly, time- 
consuming, and even dangerous [4,46,47]. Nowadays, it has got a lot 
of help from versatile robotic systems, e.g., drones [4,46,47], climbing 
robots [4,46,47]. Such robotic inspection systems can work with various 
payloads (i.e., sensors) to access limited areas and better angles, which 
are difficult or even dangerous for people to reach. Moreover, they are 
not only carriers of inspection payloads, but they can also improve or 
assist the inspection with the data from their control system. For 
example, mobile robots and drones can use the approaches based on 
Global Navigation Satellite System (GNSS) [48] – i.e., real-time kine-
matic (RTK) and post-processing kinematic (PPK) positioning, obstacle 
avoidance system – camera, ultrasonic distance ranger or LiDAR, inertial 
measurement units (IMUs) to help with defect localization, as shown in 
Fig. 3. Thus, it will further increase the amount of data for 
synchronization. 

2.2.2. Machine-human interaction 
Machine-human interaction includes data communication, storage, 

common data environment (CDE), and HMI. Transmitting such massive 
data from bridge-machine interaction requires abundant bandwidth. 
Therefore, data acquisition in many DTs is based on a wired connection, 
such as Fieldbus and Ethernet, which can provide fast (up to 10Gbps) 
and robust data transmission, but it has low scalability and leads to high 
installation and maintenance costs [49]. Wireless communication is 

more flexible, which can enable the monitoring of bridges that used to 
be inaccessible by cables, although it is susceptible to distance and ob-
stacles. The capability of different wireless communication technologies 
[50–52] is shown in Fig. 4. Short-range wireless communication, such as 
WIFI, Zigbee and Bluetooth, is only suitable for data collection in situ. 
Commercial cellular networks operate at a medium range with service 
costs (charge of data plan). Their bandwidth increases along with fre-
quency bands, i.e., data rate – 5G > 4G > 3G, but their coverage de-
creases, i.e., distance – 3G > 4G > 5G. Additionally, the low-power 
wide-area network (LPWAN) technology, which is long-distance wire-
less communication, includes cellular and non-cellular. Cellular 
LPWAN, such as NB-IoT and LTE-M, relies on existing commercial 
cellular networks. In contrast, non-cellular LPWAN, including LoRa, 
Sigfox, Ingenu, etc., works on free unlicensed industrial, scientific, and 
medical (ISM) bands. LPWAN is a restricted communication, which 
works with limited bandwidths (i.e., low data rates), e.g., LoRa (sub- 
GHz) – up to 50 kbps, NB-IoT – up to 158.5 kbps, GBAN – up to 800 kbps, 
LTE-M – up to 1Mbps, and is usually bounded by small payload size and 
duty cycle, such as LoRa and Sigfox, but it also has many advantages, 
such as long-distance, scalable, and low-cost, which is suitable for 
bridges in the resource-constraint environment, such as remote areas, 
and is promising for widespread application. 

A CDE is required for bridge DT to store massive heterogeneous data 
from multiple data sources to support seamless collaboration among 
different stakeholders across the bridge life cycle, including monitoring 
data, inspection report, bridge design and construction documents, 
historical records, rules and standards, inventory, as well as ambient 
data, such as traffic, weather, air salinity, water speed, and natural di-
sasters. The models and data are conditionally accessed and modified by 
different users [14]. Meanwhile, each user should have a corresponding 
priority and resource budget, including time and payment, to avoid 
potential conflicts with others [35]. It is also worth noting that the 
required computation and storage resources should not exceed the total 
capacity of the service provider [35]. BIM with Industry Foundation 
Classes (IFC) format files is the most popular choice to create such a CDE 
[53,54] thanks to the consistent and sharable data schema. For example, 
a dynamic data-driven environment [55] based on IoT-informed BrIM 
was developed for bridge SHM to support dynamic visualization, 
seamless updating, long-term monitoring, and data exchange with IFC. 
Another framework based on BrIM for drone inspection was proposed 
for data storage and management, which can assign deficiency evalua-
tion to the corresponding element [56]. 

A virtual platform in computer terminals integrating multiple tools 
and applications is required to support human-machine interaction 
[55,57–59]. A few tools have been successfully validated for bridge DT 
visualization, including Unity [59], Xeokit [60–62], and Visualization 
Toolkit (VTK) [63]. Docker is recommended for platform deployment as 
it is less resource-intensive (i.e., multiple containers can share a common 
kernel) than virtual machines (VMs), and the services can be distributed 
among a cluster of nodes via Docker Swarm [64]. The Hadoop frame-
work can be used for big-data storage. Meanwhile, NoSQL (such as 
MongoDB) and NewSQL databases with MapReduce and Spark can 

Fig. 2. Triplet bridge-machine-human interaction.  
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Fig. 3. Defect localization with the drone control system.  

Fig. 4. Capability of typical IoT wireless communication technologies.  
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accelerate computation for data management [65]. Moreover, the web- 
based application relying on microservices [27] has been taken as an 
alternative to a desktop-based application recently due to its lightweight 
and excellent cross-platform capability. Additionally, extended reality 
and gaming technologies, such as augmented reality (AR), virtual reality 
(VR), mixed reality (MR), and Unity engine, are brought in to develop 
new HMI [66–68]. Emails, text messages, as well as social media (such 
as Twitter and Facebook), can be also adopted in the platform [69,70]. 

2.2.3. Human-bridge interaction 
Human-bridge interaction aims to make holistic decision-making 

based on human knowledge or human-designed computational pro-
grams. It is reflected in the various DT functions (or services) for bridge 
O&M, such as condition assessment, maintenance planning, and multi- 
objective optimization. Traditionally, bridge structural integrity and 
serviceability are assessed by human engineers based on experience and 
standards [71], while many data-driven and knowledge-driven ap-
proaches are employed in the workflow currently, e.g., data analysis, 
data mining, machine learning, and knowledge discovery. The data 
usage in this process can be either indicator-based [72] or the direct use 
of data in the time or frequency domain [73]. For example, structural 
damage diagnosis can be achieved through a fully convolutional 
encoder-decoder architecture using vibration signals from a grid sensor 
network with high accuracy, to locate damage and classify multiple 
damage mechanisms [74]. Moreover, bridge deterioration can be pre-
dicted based on data mining and knowledge discovery from multi-source 
data, such as design and construction documents, inspection reports, 
traffic, weather, disasters, and inventory [19]. Meanwhile, the inter-
vention duration and impact caused by maintenance can also be pre-
dicted through a deep neural network (DNN) with embedded entities 
[8], which can help to make optimal maintenance planning. Addition-
ally, early warnings and protective measures, such as weight restriction, 
traffic diversion, or even closure, are significant for the safety of physical 
bridges and users on-site, especially in case of emergency. Such decision- 
making is also required in the bridge DT, which is usually achieved by 
knowledge-based reasoning, such as ontology [7] or knowledge graph 
[7,28,29]. The human-bridge interaction can also enhance maintenance 
efficiency and save costs both socially and economically. 

3. Methodology 

As can be seen from 2.2, massive heterogenous data from regular 
inspection and real-time monitoring of physical bridges has become a 
challenge for bridge DT synchronization, especially under 
communication-constraint environments and for large-scale applica-
tions. Meanwhile, DT computation and performance are also influenced 
by the complexity of enormous multi-source data and inevitable system 
faults (e.g., loss of communication) in terms of time delay and resilience. 
Although some research [75,76] explored edge computing and feder-
ated learning for SHM, which has relatively low communication 
complexity, they were not developed into a complete and comprehen-
sive bridge DT system. Recently, the concept of Artificial Intelligence of 
Things (AIoT) has received widespread attention, which is the combi-
nation of AI technologies with the Internet of things (IoT) infrastructure 
to achieve more efficient IoT operations, improve human-machine in-
teractions and enhance data management and analytics [77]. This 
research aims to study the time delay, complexity, and fault tolerance of 
bridge DT and reveal how to design a bridge DT to overcome the barriers 
of data synchronization and communication faults theoretically, as well 
as develop an AIoT-informed DT communication framework to support 
bridge O&M with high efficiency, low latency, and excellent resiliency. 

3.1. Time delay and complexity 

Although there is always a time delay between the physical entity 
(PE) and the virtual entity (VE) in a DT system, how much of it can be 

tolerable depends on pre-designed purposes (services) and practical 
application scenarios. For bridge operation, a short time delay of DT 
services can enable timely “what-if” analysis and quick emergency 
response. Specifically, the time delay of DT services, such as early 
warnings and protective measures, is critical for the safety of physical 
bridges and the public traveling on the bridges when a disaster is 
happening or predicted to happen. Meanwhile, a short delay between 
the physical bridge and the digital-twin bridge can also enhance main-
tenance efficiency, such as inquiry, inference, and decision-making 
during the inspection, especially when a complex issue requires big- 
data analysis or involves multiple stakeholders. 

Time delay of DT services consists of communication time Tcomm and 
computation time Tcomp, indicated in Eq. 1. Here, comm and comp are 
the abbreviations for communication and computation respectively. 

Tdelay = Tcomm + Tcomp (1) 

Computation time is directly proportional to computational 
complexity O(n), which is indicated in Eq. 2 [78]. n is the number of 
variables. Computational complexity includes time complexity, i.e., the 
time taken by the algorithm to execute each set of instructions, and 
space complexity, i.e., the amount of memory consumed by the algo-
rithm [79]. By contrast, the computational time is inversely propor-
tional to the clock frequency of processors when all the processes are 
sequential, i.e., only one pulse at one time on a single core. For example, 
suppose an algorithm running on a Y MHz processor takes t seconds to 
execute, then moves the same algorithm to a Z MHz processor. In that 
case, the program is reasonably expected to be executed in approxi-
mately (Y/Z) × t seconds [80]. Although it is no longer the case currently 
due to non-sequential ways (such as multi-core and multi-threading), 
this relationship is still valid. 

Tcomp∝
Computational Complexity

Clock Frequency
(2) 

Note: I/O and bus time for connecting peripheral devices are 
negligible. 

Communication time is determined by communication complexity, 
bandwidth, and latency, as indicated in Eq. 3. Here, communication 
complexity (one-way or multiparty) is the amount of exchanged infor-
mation (e.g., bits) among PE and VE necessary to perform the compu-
tation of certain DT services. The bandwidth is the maximum data 
transmission speed of specific communication technology. Finally, the 
latency depends on the distance between communication nodes. Hence, 
the complexity determines the lower bound of the communication time, 
especially when communication is restricted with limited bandwidth, 
such as LPWAN. Therefore, how to reduce communication complexity 
becomes a critical issue to decrease time delay. 

Tcomm =
Communcation Complexity

Bandwidth
+ Latency (3) 

There is a directly proportional relationship between data ambiguity 
and complexity, i.e., more ambiguity means more complexity. There-
fore, the information hierarchy, i.e., the DIKW pyramid, can be lever-
aged to decrease complexity [81], as shown in Fig. 5. Routine bridge 
inspection by engineers is a typical DIKW process, which reduces am-
biguity by extracting information and knowledge from inspection data 
based on the engineer’s experience. Similarly, structural damage 
detection involves complexity reduction by obtaining information or 
knowledge from real-time SHM based on statistical models. Big-data 
analysis, and machine learning. Moreover, knowledge from human en-
gineers can be transferred to machines by AI (such as supervised or 
unsupervised learning) and knowledge engineering, thereby achieving 
the automatic process to reduce complexity in the workflow. For 
example, agent-based drone inspection can contextualize bridge defi-
ciency and ambient conditions automatically through localization, ob-
ject detection, and semantic segmentation, instead of human engineers 
[82]. 
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Edge devices and the DT platform can be taken as two parties with 
different data sources, e.g., the former includes data collected on the site 
of physical bridges (x ∈ X). At the same time, the latter involves multi- 
source data (y ∈ Y) at the cloud server, such as historical records, in-
ventory, weather, and natural disasters. Hence, it brings in an issue that 
how many bits they need to communicate with each other for computing 
the function f on X × Y until one party knows the value of f(x,y) for 
decision-making. cost(P) is the worst case of bits exchanged (maximum) 
for a protocol P, which can solve this problem, over all inputs (x,y) ∈ X 
× Y. Finally, the communication complexity D(f) is determined with Eq. 
4 [83]. 

D(f ) = min{cost(P)|P(xy) = f (xy) for all (xy) ∈ X × Y } (4) 

Note: x and y are n-bit strings; assume no concerns of computational 
power. 

Theoretically, a communication protocol P can be defined as a rooted 
binary tree with internal nodes labeled by either E (edge) or C (cloud), as 
shown in Fig. 6, indicating PE and VE respectively. Each leaf has an 
output weight w in {0,1} (bit exchanging or not). For simplicity, the 
function f : X × Y → {0,1}n, encoded as a finite sequence of zeros and 
ones. fv is associated with node v (if v is labeled by E, fv(x) → {0,1}m, and 
vice versa). The bits at node a are sent by E with the calculated value 

fa(x), which is a binary string. The number of bits transmitted to C is wa ⋅ 
(log2(f(x)) + 1). Therefore, the number of bits exchanged to compute f(x, 
y) in the path of a → b → c → d is log2(fa(x)) + log2(fb(y)) + 1. 

There is always a simple protocol that sends all x ∈ X to Y, per-
forming the same as one-way communication, in which D(f) = O(n). This 
way is the best one can do for the equality function (EQ), which outputs 
one if x = y. However, for other tasks requiring bidirectional commu-
nication, i.e., f computation is achieved by both parties, communication 
complexity can be decreased by a few methods, such as edge computing, 
so there is D(f) ≤ O(n). For example, for a parity function ⊕2n(x,y), the 
best way is to send b = ⊕n(x) to y, then calculate b ⊕ (⊕n(y)), in which D 
(f) is only 1 bit. 

In practice, many tasks do not need to always consume the maximum 
bits exchanged under the worst case. For example, for the structural 
assessment process (query problem) based on a decision tree (shown in 
Fig. 7), its cost(P) follows the longest path of the tree. However, many 
non-severe defect assessments do not need to cost as much complexity as 
cost(P), so we can properly use hierarchical or interactive data exchange 
to reduce the practical communication. Furthermore, communication 
complexity can also be reduced by turning deterministic communication 
complexity D(f) into randomized communication complexity Pr[R(x)] 
even in one-way communication, e.g., only update the changing data 
beyond a threshold θ to the DT for synchronization as long as θ can meet 
the precision requirement of services. 

Moreover, as TDelay is comprised of Tcommunication and Tcomputatiom, the 
sequence of communication and computing can also have a distinct 
impact on TDelay of DT services, even if communication and computation 
complexity is constant, i.e., with a certain protocol and algorithm, as 
shown in Fig. 8. Such impact can be amplified when either of Tcommuni-

cation and Tcomputation plays a dominant role in the process, e.g., commu-
nication protocols are quite restricted, such as LPWAN. For such a case, 
which is the research objective in this work, the total time delay TDelay 
can be reduced significantly with appropriate edge computing before 
communication, as shown in Fig. 8. 

3.2. Fault tolerance and topology 

Fault tolerance is the property that enables a system to continue 
operating correctly in the event of a failure due to one or more faults of 
its components. The fault-tolerant capability allows DT to continue its 
intended services, possibly at a reduced level, rather than failing when 
some part of the system fails [84]. Currently, most bridge DTs offer data 
storage and analysis on the cloud (Fig. 1), but the services will fail when 
cloud servers become unresponsive, such as under a temporary loss of 
communication. If it occurs when a disaster is happening or is predicted 
to happen, it might be fatal to the physical bridge and the users on-site, 
so it is necessary to develop a bridge DT with the required fault-tolerant 
capability. Edge computing within AIoT can also help to enhance the 

Fig. 5. Complexity/ambiguity decreasing along the information hierarchy.  

Fig. 6. A rooted binary tree for computing f(x,y) through two-way 
communication. Fig. 7. Bridge structural assessment based on a decision tree.  
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current bridge DT system resilience significantly. For example, even if 
communication between the edge and cloud breaks down, the edge 
devices can still make an AI-based decision to take an appropriate and 
timely measure via bridge or transport control systems as a response, e. 
g., load restriction, traffic diversion, or even closure. Such edge 
computing can be designed on base stations, gateways, embedded sys-
tems, or sensor nodes, depending on task complexity. The closer to the 
physical bridge, the more resilient the design will be. 

Besides, the communication topology is also significant to system 
resilience. A decentralized mesh network (even partial mesh) has better 
fault tolerance than a centralized star network, as shown in Fig. 9. As 
presented in 2.2.2, non-cellular LPWAN is suitable for remote bridge 
management thanks to its decentralized transmission mode and long- 
distance coverage (over 10 km in rural areas), such as LoRa. There-
fore, non-cellular LPWAN with a mesh network can be utilized for local 
communication on the site of physical bridges and integrated into the 
cloud-based DT architecture to enable fault tolerance for a temporary 
loss of communication. Meanwhile, by combining AI-based edge 
computing, the edge devices and control system of physical bridges can 
perform as a self-adaptive subsystem when the cloud servers become 
unresponsive, and their performance can be simulated and predicted at 
the cloud level. Hence, the whole bridge DT can continue to work at a 
reduced level without complete failure. Finally, the physical bridge and 
digital-twin bridge can re-synchronize after the restoration of 
communication. 

3.3. Mathematical idealization 

A physical bridge, i.e., PE, can be described as a discrete system in 
Eq. 5. xt and xt+1 are the states of PE at time t and t + 1. ut is the input 
variable at time t. yt is the observed variable from IoT sensors. et is the 
error of the measurement. 

xt+1 = f (xtut), yt = h(xt, ut, et) (5) 

Here, ℝnx × ℝnu × ℝne → ℝny. The edge-computing model was trained 
with the observed variable y ∈ ℝny, so the inference can be represented as 

υt = g(yt). υt is the result to support decision-making, i.e., to calculate the 
input variable ut+1 at time t + 1. Therefore, ut+1 = d(ut,υt). 

If such computing is taken on the cloud, i.e., xt, yt and ut are trans-
mitted to VE, it can leverage powerful computational capability and 
massive multi-source data (φ ∈ ℝnφ) in the cloud, which can help to make 
more precise and holistic decisions. Therefore, there is Vt = G(yt,φt). 

However, it will also bring in the time delay Tdelay between edge and 
cloud, i.e., PE and VE. Given bi-directional time delay in both uplink and 
downlink, the input variable u derived from cloud computing has a lag of 
2d behind the result based on edge computing, i.e., ut+2d = D(ut,Vt,θ). θ 
∈ ℝnθ is the set of model parameters for prediction to offset the time 
delay. d is the ratio of Tdelay to the measurement period Tperiod. Therefore, 
the cloud-based bridge system considering the time delay between PE 
and VE can be represented as Eq. 6. 

xt+2d+1 = F(xtut+2d), yt+2d = h(xt+2d , ut+2d , et+2d) (6) 

Therefore, edge computing is suggested for quick analysis and 
response due to its low latency, such as under emergent circumstances. 
Moreover, edge-based algorithms also pursue low computational 
complexity in practice, e.g., ut+1 = s(υt) in edge computing is usually 
based on straightforward “what-if” analysis or fuzzy control rules. In 
contrast, cloud computing is recommended for holistic decision-making 
with big-data analysis from multiple sources to achieve a long-term 
maintenance strategy for the bridge. 

For one-way communication, i.e., sending all the three variables xt, 
yt, ut to the cloud, the communication complexity D(F) = O(x) + O(y) +
O(u), where the variables have x bits, y bits, and u bits respectively. Most 
of the time, the communication time in and among edge devices on a 
single physical bridge can be negligible. 

Furthermore, the total computational resources required by tasks, 
which are running on the edge device, should not exceed its processing 
capability [22], indicated in Eqs. 7 and 8.  

Cprocessor
edge >

∑
taskprocessor

i (7)  

CRAM
edge >

∑
taskRAM

i (8) 

Fig. 8. Edge computing reduces time delay significantly when Tcommunication (dominates)  

Fig. 9. (a) Cellular network based on star network (b) Non-cellular LPWAN based on the mesh network.  
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3.4. Petri-net modeling 

The bridge DT can be taken as a discrete event dynamic system with 
distributed architecture. Therefore, it can be described with a Petri net 
(PN), i.e., a bipartite, weighted, and directed graph (digraph) that has 
been proven to be an efficient tool for the modeling, analysis, and 
control of a discrete event system (DES) [85]. A stochastic time PN can 
help to demonstrate system resilience and time delay, as well as to trace 
data flow and sources in the system for DT services. 

A PN comprises two kinds of nodes, named places, and transitions, 
with arc connections either from a place to a transition or a transition to 
a place. In the graphical representation, a place p ∈ P is drawn as a circle, 
representing a condition (a particular state of the system). In contrast, a 
transition t ∈ T is drawn as a box, representing an event (dynamic ac-
tivity). Arcs are labeled with the corresponding weights w ∈ W (w = 1 by 
default). Places are visited by k tokens, representing data items moving 
through a PN, which is like communication packages. Marking M is a 
raw vector that refers to the distribution of tokens throughout the PN at 
a specific time, indicating the state of the PN. The firing rules indicate 
when and how tokens are created and destroyed in a new marking M′. 
More details about Petri nets can be found in [86,87]. 

Mathematically, a stochastic time PN can be described as below: 

N = (P,T,A,W,Λ,Θ)

Where P is the finite set of places, P ∕= ϕ; T is the finite set of tran-
sitions, T ∕= ϕ; A ⊆ (P × T) ∪ (T × P) is the set of arcs; W : A → {1,2,3…} 
is the weight function on the arcs; λ ∈ Λ is the firing rates associated with 
transition, which are related to probabilities of successful communica-
tion; θ ∈ Θ is the time elapsed in state transition. 

Here, the firing rules are summarized as follows:  

1. Transition ti consume the tokens from each available input arc and 
generate ωi, output tokens at each output arc. ωi, output is the weight on 
the output arc.  

2. Transition ti is enabled if the input place pj has at least ωj, input tokens. 
ωj, input is the weight on the input arc.  

3. An enabled transition ti fires according to the firing rate λi. With 
probability R, it can be expressed as below: 

ti =

{
1 (R = λi)

0 (R = 1 − λi)

4. After firing, transition ti removes all the tokens in the place pi and add 
wi, output ⋅ ti tokens into the next place. 

The proposed framework is modeled in a PN, which has seven places 
(p1, p2, …p7) and six transitions (t1, t2, …t6), as shown in Fig. 10. The 
starting place p1 holds the token of the observed variable y from PE, i.e., 
physical bridge. t1 and t5 are taken on edge devices, such as sensor 
nodes, embedded systems, and gateways. t2 and t4 are communication 
between PE and VE and fired according to the firing rates λ2 and λ4. t3 is 
taken on cloud servers. p4 holds the token of the variable ν collected 
from multiple resources in the cloud. Finally, the decision-making var-
iables from edge computing and (or) cloud computing converge at p7 for 
the control or adjustment of PE to generate a new token of the observed 
variable y′. 

As can be seen from the PN, there is an edge-based loop t1 → t5 and a 
cloud-based loop t1 → t2 → t3 → t4. Here, assume the edge loop working 
as E and failure as E′, and so does the cloud loop, i.e., C and C′. Therefore, 
the edge loop working probability is R(E) = λ5 and the cloud loop 
working probability is R(C) = λ2 ⋅ λ3 ⋅ λ4. 

If both loops (after t1) are mutually independent, the results can be 
divided into three categories: a) the result is determined with both edge 
and cloud loops, wherein the probability is R(E) ⋅ R(C); b) determined 
with either edge or cloud loop, wherein the probability is R(E′) ⋅ R(C) or 
R(E) ⋅ R(C′) respectively; c) system failure, wherein the probability is R 
(E′) ⋅ R(C′). Because of 0 < λi < 1, R(C′) − R(E′) ⋅ R(C′) = λ5 ⋅ (1 − λ2 ⋅ λ3 ⋅ 
λ4) > 0. Therefore, the system failure probability decreases by adding 
the edge loop. Moreover, to achieve a significant enhancement of system 

from edge

from cloud

Physcial Bridge

Edge Devices

Cloud Servers

Actuators

Edge Computing

Communication

Data Fusion

Performance

Fig. 10. Petri-net modeling for a bridge DT system initialized from M0  
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robustness, λ5 should be much greater than λ2 ⋅ λ3 ⋅ λ4.  

1) If both loops (after t1) are mutually exclusive with an extra rule that 
t5 only fires when t2 or t3 or t4 does not fire, i.e., the edge loop is only 
enabled when the cloud loop fails. Thus, according to conditional 
probability, there is R(C′) − R(E′|C′) = R(E|C′) = (1 − λ2 ⋅ λ3 ⋅ λ4) ⋅ λ5 
> 0. Therefore, the system becomes more robust by adding the edge 
loop in this case.  

2) Moreover, the total time elapsed in a path can be calculated by 
summing all the elapsed times in the firing schedule [87]. For the 
edge loop, the time elapsed θedge = θ1 + θ5, while for the cloud-based 
loop, the time elapsed θcloud = θ1 + θ2 + θ3 + θ4. Hence, the difference 
is Δ = θ2 + θ3 + θ4 − θ5. Here, θ2 and θ4 are communication time 
elapsed, which θ3 and θ5 are computational time at the cloud and the 
edge. Hence, a trade-off between computing and communication 
complexity is required to guarantee the system’s performance (as 
explained in Fig. 8). 

4. Framework design and development 

A bridge DT is not a single technology but a cross-platform integra-
tion of devices, communication middleware, and software packages, and 
expected to perform a highly automated pipeline with little human 
intervention, including data acquisition, machine-to-machine (M2M) 
communication, back-end services, and physical-world response. This 
works aims to design a specific DT framework to support bridge O&M 
under the communication-constraint circumstance. To this end, an 
AIoT-informed bridge DT framework with high efficiency, low latency, 
and excellent fault tolerance is proposed as shown in Fig. 11, which 
integrates AI-based edge computing, LPWAN communication, cloud 
servers for storage and processing multi-source data, MQTT protocols, 
and a web-based interface. Furthermore, the framework is developed to 
the level of a prototype based on cross-platform integration. This part 
presents the framework design and prototype integration step by step, as 
well as the logic behind each section. 

4.1. AI-based edge computing 

Firstly, agent-based drones and robots, as well as versatile sensor 
networks are leveraged for bridge regular inspection and real-time 
monitoring. AI-based edge computing can enable them with autono-
mous capability for preliminary analysis and decision-making, such as 

damage detection, bridge assessment, and early warnings. 
An advantage in this way is that edge computing can reduce data 

complexity significantly by converting them to advanced information or 
knowledge according to information hierarchy (i.e., DIKW), as shown in 
Fig. 12. This can enable bridge DT to satisfy the requirement of restricted 
communication, i.e., LPWAN. The derived information or knowledge 
can be transmitted to cloud servers to either achieve DT services directly 
(such as visualization) or join the bipartite interactive computing for 
function F (see 3.1 and Eq. 6) – due to different data sources owned by 
edge and cloud. It can reduce the time delay of cloud-based DT services 
significantly with appropriate sequential design (as Fig. 8). For example, 
in the drone-enabled bridge inspection, the extracted semantic infor-
mation based on deep learning and computer vision, such as defect 
location and severity, can be synchronized to the bridge DT quickly and 
conveniently through LPWAN, instead of defect images, point cloud, etc. 
This method can enhance maintenance efficiency through DT services 
such as historical query, big-data analysis for defect causes, and opti-
mization for inspection and repair. 

Another advantage is that preliminary decision-making based on 
edge computing can provide the quickest response and can still perform 
the task even if cloud servers become unavailable. For example, the 
detected bridge damage from a sensor network, which has influenced 
bridge serviceability, can trigger weight restriction, or even closure 
through actuators and monitors immediately. Moreover, it can also 
transmit the derived information to cloud servers or adjacent bridges for 
collaboration, such as traffic diversion. 

Notably, edge computing can be taken on different roles in archi-
tecture, such as sensor nodes or gateways, as well as various edge de-
vices equipped with robotic agents or attached on physical bridges, 
including field-programmable gate array (FPGA), microcontrollers, 
single-board computers, etc. The power can be supported by batteries, 
sustainable power supply, and energy harvest [88]. The edge-computing 
tasks should not exceed the device’s computational capability (Eqs. 7 
and 8) and power restriction. Meanwhile, the data owned by the edge is 
limited to the local physical bridge and environment, so edge computing 
only aims to provide preliminary analysis and decision-making. More-
over, to achieve high resilience, the edge device for decision-making is 
usually supposed to be placed as close to physical bridges as possible 
(explained in 3.2), but it can also be designed to hierarchical architec-
ture for different-level tasks, which is going to be discussed in the next 
section. 

Fig. 11. Proposed AIoT-informed DT framework to support bridge O&M in communication-constraint environment.  
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4.2. LPWAN communication 

As reviewed in 2.2.2, LPWAN is a set of low-power long-distance 
communication technologies. As claimed [50–52,89,90], they can sus-
tain a long-term work of up to several years for battery-operated sensor 
nodes and over 10 km coverage in rural areas, which is beneficial to the 
connection for bridges in resources-constraint environments. However, 
LPWAN is restricted by its low data rates, duty cycle, etc., so it is not 
available for transmission of the massive heterogenous data in the reg-
ular inspection and real-time monitoring, e.g., images, and point clouds. 
Thus, AI-based edge computing is designed to reduce complexity 
significantly (see 4.1), by converting data to advanced information or 
knowledge according to DIKW. The derived information can be orga-
nized in a code system with a predefined protocol [91]. Moreover, 
appropriate compression methods can be also applied before trans-
mission to achieve more efficient transmission, such as run-length 
encoding (RLE), which is a lossless compression approach especially 
suitable for binary images. 

Moreover, non-cellular LPWAN does not require commercial base 
stations and can take advantage of free ISM bands, which provides an 
option for flexible and low-cost communication to create bridge DTs. It 
can be utilized in a hierarchical communication architecture designed 
for different-level tasks, wherein sensor nodes, gateways, and cloud 
servers are organized from bottom to top. Gateways can manage mul-
tiple sensor nodes and embedded systems (e.g., multiple bridges and 
robotic agents) in an area through LPWAN simultaneously and can 
communicate with cloud servers as well as with each other. This enables 
bridge DTs with fault tolerance by combing edge-based AI for normal 
functions when cloud servers become unavailable temporarily (resil-
ience). Furthermore, sensor nodes are designed to not only communicate 
with gateways but also connect to each other via non-cellular LPWAN, 
which can guarantee preliminary decision-making and quick response 
on physical bridges even if gateways break down (resilience). In the 
prototype, LoRa is selected for DT communication to support bridge 
O&M. The complete hierarchical communication architecture is shown 
in Fig. 15. 

4.3. Cloud and protocols 

Cloud servers are designed to provide a CDE for data from multiple 

sources, including not only edge-based data from regular inspection and 
real-time monitoring but also cloud-based data such as design and 
construction documents, historical records, inventory, traffic, weather, 
and disasters. Both relational and non-relational databases and tools, 
such as MySQL and MongoDB, are utilized to store and manage such 
heterogeneous data and information. Meanwhile, cloud computing is 
another crucial function. The huge and sophisticated models for com-
plex DT services, e.g., structural analysis, deep learning, multi-objective 
optimization, and holistic decision-making, which require powerful 
computational capability, are deployed on cloud servers within dockers. 
Such models and data can be conditionally accessed and modified by 
different stakeholders. The results can be sent back to end devices on 
physical bridges through the downlink of LPWAN for performance. 

The proposed information or knowledge from cloud servers can be 
transmitted to HMI through HTTP or MQTT protocols. In the prototype, 
the TTN (The Things Network) server and the desktops in the lab are 
integrated as cloud servers to support the web-based platform. The 
bidirectional communication among cloud servers and the interface is 
achieved with MQTT protocol thanks to its lightweight and fast trans-
mission capability. Specifically, it can be implemented with “subscribe” 
and “publish” between brokers and clients using Eclipse Mosquito or 
Node-RED, as shown in Fig. 13. 

4.4. Web-based platform 

The bridge DT platform is designed to perform through web services 
based on RESTful architecture. It has a user-friendly interface, which can 
enable users to access the available information according to their per-
missions. In the prototype, Cesium and Xeokit are both employed in the 
platform for the geographic information system (GIS) and BIM respec-
tively, as shown in Fig. 14. Node.js and npm-anywhere (a static file 
server) are employed to support the web-based interface. In the Cesium, 
the bridge location, traffic conditions, ambient situation (such as 
weather and tides), and project description are displayed, wherein 3D 
tiles are utilized for bridge visualization. In the Xeokit, IFC models are 
utilized to enable users with the capability of manipulating each element 
of the BIM model. Then the bridge condition, such as defect location and 
severity, bridge serviceability, and structural assessment, are displayed. 
The web-based click event can be employed to trigger various DT ser-
vices, such as query, knowledge-based reasoning, and maintenance 

Fig. 12. The edge loop according to DIKW to reduce complexity.  
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planning. Such a platform can enable users to interact with entities and 
nodes in VE and PE, e.g., to reconfigure and reboot the edge device in the 
VE remotely from the platform if the device is registered with a fault. 

Finally, following the above sections, the proposed AIoT-informed 
framework and its cross-platform prototype are shown in Fig. 15. The 
framework and prototype have high efficiency and low latency, which 
are achieved through AI-based edge computing. Moreover, edge 
computing and the resilient hierarchical communication architecture 
with cellular and non-cellular LPWAN can enable PE with the capability 
of preliminary data analysis, decision-making, and quick response, even 
under the temporary loss of communication, which can guarantee the 
system fault tolerance. Especially, the PE (physical bridges) with edge 
devices can perform as a self-adaptive subsystem when cloud servers 
become unavailable. Meanwhile, their performance can be predicted by 
cloud-based VE using simulation or machine learning. Then PE and VE 
will synchronize again after communication recovery. 

5. Proof of concept – framework validation 

In this section, firstly the proposed framework is validated under 
three different cases during bridge O&M to demonstrate its function-
ality, i.e., 1) drone-enabled bridge inspection; 2) vibration-based bridge 
monitoring; 3) dynamic evacuation when cloud servers become unre-
sponsive. Then a comparative analysis between the proposed framework 
and the previous bridge DTs is conducted. 

5.1. Drone-enabled bridge inspection 

This experiment aims to synchronize the sufficient defect charac-
teristics to the bridge DT during drone flight in a communication- 
constraint environment (e.g., LoRa) to update the bending stiffness 
(BS) reduction coefficient for structural assessment instead of taking 
large numbers of inspection images back to the office in the traditional 
workflow or bring them to another place with excellent communication 

for synchronization. This enables on-site inspection and back-end DT 
services to collaborate simultaneously, e.g., structural assessment, his-
torical query, in-depth inspection, mechanism analysis, and even instant 
repair, thereby enhancing maintenance project efficiency. 

The AI-based processing is taken on a Raspberry Pi 4 Model B, which 
can be utilized as a drone on-board computer or a controller in situ. As a 
prerequisite, the drone needs calibration before inspection using a 
chessboard at different distances and angles from the lens, to obtain the 
explicit proportional scale between pixels and actual length (or width). 
Deep convolutional neural networks (DCNN) can enable drones with 
automatic defect-detection ability, which has been widely accepted and 
commonly used in image-based defect detection. Here, a dataset created 
for bridge crack detection [92] is selected for the experiment, including 
the 2011 background and 4058 crack images (224 × 224). To accelerate 
the on-board process, the images are resized to 32 × 32 and trained with 
a simplified LeNet-5 (fewer parameters) through TensorFlow on the 
Google Codelab, i.e., train-validation-test split – 60%:20%:20%; opti-
mizer – stochastic gradient descent (SGD); learning rate – 0.001; batch 
size – 128. The training process and model performance in the test set 
are shown in Fig. 16 and Table 1. Then the model is converted into a 
specific version for tinyML through TensorFlow Lite, which is especially 
suitable for deep-learning model deployment on microcontrollers and 
embedded systems with improved efficiency. The crack identification 
for one image is <1 s in the experiment. 

Subsequently, detected crack images are segmented into binary im-
ages with background and crack through image processing (OTSU 
thresholding and morphological operations). Then the crack character-
istics can be calculated statistically, such as Hcrack, Wmax and L, as shown 
in Fig. 17, by combining the distance from the lens to the objective 
surface (measured with an ultrasonic ranger or a laser scanner, etc.) 

Crack orientation can be determined with the camera angle and the 
flight attitude from IMUs, such as transverse or longitudinal. Further-
more, the defect (e.g., crack) can be localized in the bridge coordinate by 
combing GNSS positioning (such as RTK or PPK), IMUs, and distance 

Fig. 13. MQTT implementation between cloud servers and HMI.  

Fig. 14. Platform interface switch between Cesium and Xeokit.  
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ranger during flight, as shown in Fig. 18 [48]. Given the situation 
without stable GNSS signals, computer vision (such as bridge element 
recognition), IMUs, and distance rangers can be leveraged for both 
drone positioning and defect localization through Kalman Filter. 

Given the earth’s ground can be taken as a plane within just a few- 
kilometer distance, Ddrone can be calculated as Eq. 9. The defect co-
ordinates can be calculated as Eqs. 10, 11 and 12. Then the coordinates 

can be further linked to the precise bridge element, such as the beam, 
deck, and pier, according to geometric information. 

Ddrone = R
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ϕ2 − ϕ1)
2
+ (λ2 − λ1)

2
√

(9) 

Where, L – horizontal distance; R – earth’s radius (the parameter that 
needs to be calibrated); φ1, φ2 – base and drone latitude; λ1, λ2 – base and 
drone longitude. 

Xcrack = Ddronesinθ − Dcrackcosβcosα (10)  

Ycrack = Ddronecosθ − Dcrackcosβsinα (11)  

Zcrack = Hdrone − Hbase + hequip − Dcracksinβ (12) 

Fig. 15. Proposed framework and developed prototype for bridge DT.  

Fig. 16. Training and test for crack detection.  

Table 1 
Model performance evaluation.  

Model Accuracy Precision Recall F1 score 

LeNet-5 0.95 0.95 0.91 0.93  

Y. Gao et al.                                                                                                                                                                                                                                     



Automation in Construction 150 (2023) 104835

14

The AI-derived critical information for structural assessment, i.e., 
defect types, characteristics, coordinates, and orientation, can be enco-
ded as Fig. 19 with three significant digits (i.e., a single float) for 
transmission. It can satisfy the strictest payload requirement of LoRa (at 
SF12/125 kHz) with the maximum range in EU868. The calculated 
airtime is 2.138 s, which can achieve synchronization in near real-time. 

BS reduction coefficient β is calculated as β = Ki/K1, where K1 is the 
initial stiffness of the beam in the elastic stage and Ki is the ith loading. 
The relationship of β to Wmax and Hcrack can be derived from the test on 
the specimen as Eq. 13 [93]. Therefore, β can be calculated using the 
synchronized crack information, so that the BS reduction can be assessed 
successfully. 

β =
{

f (Wmax) g(Hcrack/h) }min (13) 

Where h is the beam height. 
Sometimes, defect profiles are unusual, such as the crack shown in 

Fig. 20. The segmented crack profile can be losslessly compressed via 
RLE significantly, i.e., 8048 bytes to 654 bytes, and then can be 
completely recovered in the cloud server. This approach performs better 
than the previous research for image transmission through LoRa based 
on lossy compression [94,95], and can still satisfy the DT services, such 
as visualization and evaluation. However, it is worth noting that the 
LoRa data rate is still relatively low, even if the example image only 
requires three communication packets at SF7/125KHz, it still needs the 
airtime of 1.107 s and duty cycle of 73.8 s for such a transmission. In this 
case, other LPWAN technologies with higher bandwidth, such as NB-IoT, 
are more recommended. 

This experiment demonstrates that the proposed framework with the 

Fig. 17. Crack segmentation through image processing.  

Fig. 18. PPK approach for defect localization in the bridge coordinate system.  

Fig. 19. Encoded defect information to synchronize for structural assessment.  
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developed prototype can synchronize the drone-enabled inspection to 
the cloud server in near real-time for bridge DT services, such as struc-
tural assessment and visualization. Meanwhile, the feedback can be 
transmitted to local inspectors or agent-based drones through the on- 
board computer or the drone controller. The complete procedure can 
be shown in Fig. 21. 

5.2. Vibration-based monitoring 

Previous research [22] developed a cloud-based bridge DT to achieve 
real-time SHM based on vibration signals using a pre-trained surrogate 
model based on deep learning, but it relies on excellent communication 
(i.e., 5G) and its services will fail when cloud servers become unre-
sponsive (lack of resilience). This experiment aims to achieve similar 
real-time SHM in the prototype and demonstrates the fault tolerance of 
the proposed framework for temporary loss of communication between 
edge and cloud. 

The public dataset of acceleration signals from the VBM project of 
the KW51 bridge [74], is employed in the experiment, generated from 6 
uniaxial accelerometers during train pass before and after bridge repair 
(i.e., the damaged and healthy condition respectively). Its sampling 
frequency is 825.8 Hz and the resolution is 24-bit. Such a huge amount 
of data is a challenge for synchronization, especially in a 
communication-constraint environment, i.e., LoRa here. Edge 
computing is taken on the Raspberry Pi 4 model B. Two different 
machine-learning approaches are developed for bridge risk identifica-
tion. One is based on the support vector machine (SVM) with hand- 
crafted features, including signal features [96] or wavelet-packet en-
ergy (WPE) as Eq. 14, and the other is based on 1D-CNN with multi- 
channel input (shown as Fig. 22), which is similar to the DNN model 
used in previous bridge DT [22]. 

WPElevel,i =
∑

|x(n) |2 (14) 

Note: wavelet-packet energy (WPE) of discrete-time signal for each 

Fig. 20. Synchronization of crack profile through LoRa and RLE.  

Fig. 21. Developed bridge DT prototype for drone-enabled bridge inspection.  
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node (level = 3, i = 1–7). 
The SVM model with the hand-crafted features is trained on a laptop 

using GridSearchCV to find the optimal parameter values. Its confusion 
matrices on the test set are shown in Fig. 23 and Table 2. The 1D-CNN 
model with raw data (50,176 × 6) is trained through TensorFlow on 
the Google Codelab, i.e., train-validate-test split – 60%:20%:20%; 
optimizer – SGD; learning rate – 0.001; batch size – 64. Then it is con-
verted to a tinyML version. Its performance is shown in Table 2. Finally, 
all the models are deployed on the Raspberry Pi, which can be utilized in 
the embedded system installed on the physical bridge. Two LED lights 
(green and red) are connected to the GPIO pins of the Raspberry Pi, 
whereby the result can be displayed by switching either of them on. 
With normal communication, the edge can transmit the identified bridge 
pattern and the timestamp to the cloud using a predefined code system, 
and then receive cloud-based feedback. Otherwise, when there is a loss 

of communication between the edge and cloud, the local embedded 
system can still perform preliminary pattern recognition and trigger 
corresponding measures on the physical bridge, such as weight restric-
tion, traffic diversion, or even closure. The edge-based inference of SVM 
with signal features or WPE takes the average time of 1.2104 and 

Fig. 22. 1D-CNN architecture with multi-channel input utilized for pattern recognition.  

Fig. 23. Test confusion matrices for SVM with signal features and SVM with WPE.  

Table 2 
Model performance for pattern recognition.  

Model Input Accuracy Precision Recall F1 score 

SVM SF 0.85 0.83 0.88 0.86 
SVM WPE 0.96 0.98 0.95 0.96 
1D-CNN Acceleration 1 1 1 1 

Note: SF – signal features; WPE – wavelet-packet energy (level-3); acceleration 
data – 50,176 × 6. 
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1.5309 s respectively on the test set, while 1D-CNN with raw data takes 
0.7825 s. Meanwhile, 1D-CNN has the best performance, shown in 
Table 2. 

It is worth noting that the derived signal features and WPE can be 
either utilized at the edge or transmitted to the cloud, e.g., signal fea-
tures require a total of 33 bytes with the calculated airtime of 2.302 s at 
SF12/125 kHz for LoRa, because their communication complexity has 
become much lower than the transmission of raw data in the previous 
DT. This experiment demonstrates that the proposed framework with 
the developed prototype can achieve similar performance to the previ-
ous research [22] for real-time SHM but does not rely on excellent 
communication anymore, and has better fault tolerance in the operation 
to guarantee the safety of the physical bridge. The complete procedure is 
shown in Fig. 24. 

5.3. Dynamic evacuation 

As an emergency response, dynamic evacuation with route planning 
is necessary when a disaster is happening or is predicted to happen on 
the site of physical bridges, such as flash floods or earthquakes. Route 
planning is a well-known problem, which can be solved with many 
approaches, such as Floyd [97] and Dijkstra [98] algorithms. However, 
under extreme weather conditions, the cloud server likely becomes 
unresponsive, e.g., the internet or gateways break down temporarily, 
thereby resulting in the failure of DT service for dynamic route planning 
in the cloud-based system. This is dangerous for public users traveling on 
the site of bridges. This experiment aims to demonstrate the resilience of 
the proposed framework to endure a temporary loss of communication 
at different levels. 

An open-source emulator for the LoRa network [99] is employed for 
the experiment. Suppose there is an area with multiple bridges under the 

threat of flash flooding, as shown in Fig. 25. People need to evacuate 
from the left side (flooding area) to the right side (safe area) of the 
dashed line in the bridge network. The LoRa sensor nodes for water-level 
monitoring are activated by gateways and can also exchange messages 
with each other. The stars represent the gateways, while the squares 
stand for the bridges. The dashed line in communication topology is the 
LoRa connection, while the complete line and weight in the bridge 
network are the road and distance between bridges. As a prerequisite, 
the LoRa module of end-devices is designed to be at least Class B during 
an emergency, making them reachable at preconfigure times. Gateways 
have eight channels (sub-bands), allowing sufficient capability for up-
link and downlink, thereby minimizing the duty-cycle influence, and can 
also transmit messages through LoRa between each other as well. 

For simplicity, there are only two conditions for bridge serviceability 
in the simulation, i.e., Y - available, and N - closed. The route planning is 
only updated when a gateway or sensor node receives the message that a 
bridge becomes closed, and then the affected weights become infinitely 
great. The information is encoded as a message of characters indicating 
the bridge’s location and condition. For example, “BN” means bridge B 
becomes unavailable. Because LoRa gateways are usually built on the 
Raspberry Pi, they have sufficient computing capability to find the new 
shortest path via the Floyd algorithm (considering all the nodes) with 
computational complexity is O(n3) and space complexity is O(n), where 
n is the number of nodes. Similarly, the sensor nodes built on Arduinos 
can also perform computing to find the new shortest path from their own 
to the safe area via the Dijkstra algorithm with computational 
complexity O((n + m)logn) and space complexity n + m, where n is the 
number of nodes and m is the number of edges in the graph. Therefore, if 
cloud servers become unresponsive temporarily, the dynamic route 
planning for evacuation can still work as the following procedures. 

Procedures. Dynamic route planning for evacuation 

Fig. 24. Proposed framework and developed prototype for bridge VBM.  

Y. Gao et al.                                                                                                                                                                                                                                     



Automation in Construction 150 (2023) 104835

18

The simulation is initialized with all the bridges available. When 
bridge B becomes closed in the simulation, and cloud servers are out of 
the connection, the gateways can transmit the messages through LoRa 
and take the job of dynamic route planning. Moreover, when the gate-
ways become unresponsive as well, the sensor nodes will relay the 

message through LoRa between each other and find the shortest evac-
uation route on their own, which becomes a decentralized mode. The 
difference between gateway-based and sensor-node-based route plan-
ning is shown in Fig. 26. 

The results are shown in Table 3. Taking “BN” as an example, when 
cloud servers become unresponsive, it will result in new route planning 
at nodes A, B, C, and D based on the gateways. The downlink instruction 
message can be encoded as “BDES CDES DES” (i.e., 13 bytes), which will 
take up to 2.8017 s of airtime at the mode SF12/125 kHz for both uplink 
and downlink between nodes and gateways. Moreover, when gateways 
become unresponsive either, “BN” can be relayed through LoRa to all the 
nodes (i.e., B → C, D → E → F, H). The communication time cost is up to 
3.4653 s. This experiment demonstrates the excellent fault-tolerant 
capability of the proposed framework for DT services to endure a tem-
porary loss of communication, especially under emergent situations. In 
practice, PE (i.e., multiple bridges) in the proposed framework becomes 
a resilient and self-adaptive subsystem under such conditions, of which 
the behavior can be predicted and simulated in the cloud, so PE and VE 
can be re-synchronized seamlessly when the communication recovers. 

Fig. 25. (1) bridge network; (2) communication topology.  

Fig. 26. (1) gateway-based route planning (2) sensor-node-based route planning.  

Table 3 
Simulation result for dynamic route planning.  

Nodes Initial Route and 
Distance 

BN Route and 
Distance 

Communication 
Time 

A A C B S and 4 A D E S and 6 2.8017 s / 3.4653 s 
B B S and 1 B D E S and 4.7 2.8017 s / 3.4653 s 
C C B S and 2.5 C D E S and 4.5 2.8017 s / 3.4653 s 
D D B S and 2.2 D E S and 3.5 2.8017 s / 3.4653 s 
E E S and 1 E S and 1 0/ 3.4653 s 
F F E S and 2 F E S and 2 0/ 3.4653 s 
G G F E S and 4 G F E S and 4 0/ 3.4653 s 
H H S and 1 H S and 1 0/ 3.4653 s  

Table 4 
Comparative analysis between the proposed framework and previous bridge DTs.  

Features Proposed Framework cDTSHM [31] Broo et al. [21] Shim et at. [17] Jeong et al. [100] 

Level Prototype Prototype Pilot project Concept Prototype 
Data type Heterogenous time-series time-series Heterogenous time-series 
Data collection Automatic Semi-automatic Automatic Manual Semi-automatic 
Pre-processing Edge Fog layer Cloud Cloud Cloud 
Computing Edge & Cloud Cloud Cloud Local server Cloud 
Communication LPWAN 5G Ethernet and 4G N/A 4G 
Resilience Yes No No N/A No 
HMI Web Web Web Desktop Web 
Time delay Near real-time Near real-time Near real-time Periodic Near real-time  
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5.4. Comparative analysis 

A comparative analysis between the proposed framework and the 
existing bridge DTs is presented in Table 4. As can be seen, although 
most of the previous bridge DTs can achieve near real-time DT services 
based on cloud computing, they relied on excellent communication for 
data acquisition such as Ethernet, 5G, and 4G, and did not consider the 
system resilience. Compared with the previous works, the proposed 
AIoT-informed DT framework and the developed cross-platform proto-
type can handle massive heterogeneous data efficiently using AI-based 
edge computing and perform DT services in near real-time, even under 
the communication-constraint circumstance, i.e., LPWAN. Moreover, it 
has excellent fault tolerance, which can endure a temporary loss of 
communication rather than fail completely, and is scalable to support 
single or multiple bridges in a large area. 

6. Conclusion and discussion 

With the development of sensing and IoT technologies, massive 
heterogeneous data from regular inspection and real-time monitoring 
has become a huge challenge for bridge DT synchronization. However, 
when DT implementation concerns bridge locations, it may have many 
issues, such as restricted communication. Meanwhile, most existing 
bridge DTs are cloud-based and rely on excellent communication 
without consideration of system resilience to endure a temporary loss of 
communication. To solve these issues, this work proposed an AIoT- 
informed DT communication framework to support bridge O&M in a 
communication-constraint environment with high efficiency, low la-
tency, and excellent fault tolerance. 

Firstly, the research indicates that the time delay of DT services 
consists of computation and communication time costs, which depend 
on computational and communication complexity respectively, and re-
veals the distinct impact of their sequence on time consumption for DT 
services, i.e., edge computing can help to reduce time delay significantly 
when communication time is dominant in the process. Information hi-
erarchy (i.e., DIKW) is leveraged to indicate how to reduce communi-
cation complexity using AI-based edge computing theoretically. 
Moreover, two-way communication between edge and cloud is recom-
mended to satisfy the restricted communication with minimal 
complexity for big-data analysis, which involves different data sources 
owned by edge and cloud, thereby decreasing the time delay. AI-based 
edge computing can enable the system with resilience to endure a 
temporary loss of communication, such as preliminary analysis and 
decision-making, which is especially beneficial to the safety of physical 
bridges and public users when a disaster is happening or is predicted to 
happen. Furthermore, a hierarchical communication architecture with 
excellent fault tolerance can be designed based on LPWAN and the mesh 
network for different-level tasks. 

Then a bridge DT system is idealized mathematically, including 
state-space representation with time delay and inequalities for hardware 
processing capability. Meanwhile, the data flow for DT services and the 
resilience of the proposed framework are demonstrated based on Petri- 
net modeling with token and conditional probability. Furthermore, the 
framework is developed to the level of a prototype with cross-platform 
integration for bridge O&M, including AI-based edge computing, 
LPWAN communication, cloud servers, MQTT protocols, and a web- 
based platform with both GIS and BIM. 

Finally, the proposed framework and prototype are validated with 
different cases for bridge O&M, including drone-enabled inspection, 
VBM, and dynamic evacuation. To enhance the efficiency of AI-based 
inference at the edge, the deep-learning model is trained on Google 
CodeLab and then converted to a tinyML version for deployment in the 
cases. The results demonstrate that 1) the proposed framework can 
achieve DT synchronization during drone inspection in near real-time 
under communication-constraint circumstances such as LPWAN; 2) the 
prototype can achieve similar performance to the previous cloud-based 

DT [22] in near real-time for vibration-based SHM without relying on 
excellent communication and has extra resilience; 3) the framework can 
achieve excellent fault tolerance for DT services through the hierarchical 
communication architecture to endure a temporary loss of communi-
cation at different levels for single or multiple bridges in a large area. 
These benefits can contribute directly to the efficiency and safety of 
bridge O&M through DT. 

In the next step, the proposed DT framework and prototype will be 
implemented on a real bridge in the UK for practical application. This 
framework is also promising for federated learning to protect privacy 
because different stakeholders prefer to preserve their AI models, which 
are derived from specific domain knowledge and experience, rather than 
share them on the cloud. Although this framework has many benefits, 
which can contribute directly to the efficiency and safety of bridge O&M 
through DT, it still has some limitations. For example, LPWAN can 
reduce the power consumption of communication significantly, but AI- 
based edge computing raises a high requirement for power supply ac-
cording to the tasks and algorithms, which can be an issue under 
resource-constraint circumstances. Hence, edge-based AI can only 
perform preliminary analysis and decision-making currently. Therefore, 
the sustainable power supply for edge devices and the trade-off between 
edge and cloud in data storage and computation have great research 
significance in the future. 
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