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1. Introduction

The applicability of K-theory to conformal field theory (CFT), e.g. to D-brane charges 
[58] or to the fusion rings [37], is clear. In a series of papers [26,28,30,32,33], the authors 
have been extending the range of these applications. This paper is part of that sequence, 
in that much of its inspiration derives from that story.

This paper brings together three themes. One is the elegance of using K-theory and 
KK-theory to capture fusion categories and module categories. The fusion ring, de-
scribing the product structure of the primary fields or sectors, is the most elementary 
structure of chiral CFT (which also contains a modular tensor category). Analogously, 
the most elementary object in the full CFT (which is a module category over that mod-
ular tensor category) is the modular invariant partition function (modular invariant for 
short), which describes how the two chiral halves glue together. It is an integral matrix 
indexed by the primaries (the preferred basis in the fusion ring, namely the irreducible 
representations of the chiral algebra or vertex operator algebra or conformal net). In par-
ticular, when the fusion ring has a natural K-group realisation K(X), then the modular 
invariant is a linear map between K-groups, i.e. is an element of KK(X, X). We expect 
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in these cases that the modular invariants can be expressed in a natural way as very 
special KK-elements. The most important manifestation of this idea will be to realise 
them as spectral triples (see [41] for a preliminary step in this direction). As a first step 
however, in this paper we realise these KK-elements with correspondences. The result, 
as we’ll see, is the most elegant expression for those modular invariants that we have 
seen.

We see this strategy implicitly for the case of finite groups in [32] (developed further 
and more explicitly in [33]). The fusion ring of the Drinfeld double D(G) of a finite 
group G is naturally identified with the equivariant K-group K0

G(G), where G acts on 
itself by conjugation. Finite group doubles describe the representation theory of finite 
group orbifolds of a chiral algebra with a trivial representation theory. By abstract 
considerations [62], the module categories of D(G) are parametrised up to equivalence 
by a subgroup H ≤ G × G and a 2-cocycle class [ψ] ∈ H2

H(pt; T ) (here and elsewhere, 
T denotes the unit circle in C). However, it is difficult to identify the corresponding 
modular invariant matrix (or indeed most other aspects of the full CFT). But KK-
theory provides an elegant answer. We explain in [33] that this matrix is given by the 
correspondence (in the sense of [18], [24])

(H//Hadj , βψ)

G//Gadj G//Gadj

pL pR

(1.1)

where G/ /Gadj refers to the groupoid with G acting adjointly on itself, and where pL,R

are the obvious coordinate maps and βψ is a certain line bundle depending on ψ. From 
this the matrix entries and other information of the modular invariant (e.g. its type 1 
parents) can be immediately read off. Indeed, (1.1) describes the geometric realisation 
of the module category parametrised by (H, ψ), as bundles over groupoids.

The loop groups are an important source of theories, and they have a similar K-
theoretic description. In seminal work, Freed-Hopkins-Teleman [37–40] identified the 
fusion ring of the loop group LG at level k, for any compact simple connected simply-
connected Lie group G, with the twisted equivariant K-group τKd

G(G) for some τ ∈
Z3
G(G; Z) depending on k, where d is the dimension of G and G acts on itself by conju-

gation. In this paper we identify the KK-description of almost all module categories of 
the loop groups.

Another class of simple examples are the loop groups of tori Rd/Zd. Here, the possible 
chiral data (e.g. modular tensor categories) are parametrised by d-dimensional even 
lattices L. For example, the fusion ring will be the group ring Z[G] of the finite abelian 
group G = L∗/L, where L∗ is the dual of L, and the inner product 〈, 〉 on L identifies G
with its irreps Ĝ. We give many different parametrisations of their modular invariants, 
each with their associated KK-element. Here is one such parametrisation: pairs (H, [ψ]), 
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where H ≤ G and [ψ] ∈ H2
H(pt; T ). Compare this classification with that of the modular 

categories for finite group doubles given a couple paragraphs earlier. Using H and ψ, 
there is a second homomorphism G → Ĝ, which we call ε, and the modular invariant is 
the comparison of the two:

K(G) K(G)

K(Ĝ)

〈, 〉 ε

(1.2)

Any modular tensor category comes with a unitary matrix representation of SL2(Z)
(hence their name). Building on the discussions mentioned above, we conclude the paper 
with a K-theoretic reinterpretation of modular data for these finite group, loop group, 
and toroidal modular tensor categories.

The examples mentioned so far are quite classical, being completely group or Lie 
theoretic. In this paper we unexpectedly discover a nonclassical family possessing a K-
theoretic description, and this leads to our second theme: the Tambara-Yamagami fusion 
categories [65]. They are the simplest quadratic categories, i.e. quadratic extensions of 
fusion categories with fusion ring Z[G]. The quadratic categories have attracted attention 
recently as many of them (most famously the Haagerup [51,29]) seem to be exotic in the 
sense that they have no known direct constructions starting from classical structures like 
finite groups or Lie algebras. The Tambara-Yamagami fusion ring is spanned by [αg] for 
g ∈ G (G a finite additive abelian group), and [ρ], and obeying the relations

[αg][αh] = [αg+h] , [αg][ρ] = [ρ] = [ρ][αg] , [ρ]2 =
∑
g∈G

[αg] (1.3)

In any case, we realise the full Tambara-Yamagami categories (including associators) 
naturally as categories over groupoids. We also realise their module categories as KK-
elements. It would be very interesting to apply similar techniques to explore which other 
exotic fusion categories have natural K-theoretic descriptions.

In order to discuss modular invariants, we need to bring in modular tensor cat-
egories. Given a fusion category, one can always obtain a modular tensor category 
through the double construction. Moreover, we show here that the Tambara-Yamagami 
categories have a Z2-crossed braiding, and when the order |G| is odd, their Z2-
equivariantisations are modular. These modular tensor categories are closely related to, 
but rather simpler than, the doubles. We show the fusion rings of both the doubles and 
Z2-equivariantisations are also captured by K-theory. Being metaplectic categories, they 
have enormous numbers of modular invariants, but few of these will be sufferable (i.e. 
correspond to module categories or full CFTs). We show how to realise some of these 
sufferable modular invariants by KK-elements.
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Theme 3 concerns a foundational question in the theory, namely reconstruction: 
whether or not it is possible to realise all (unitary) modular tensor categories as the 
category of modules of an RCFT chiral algebra, i.e. of a rational vertex operator algebra 
or local conformal net of factors. This is trivial for the torus and loop group examples, 
and in [32] we show this is true for any twisted double of a finite group. In this paper 
we establish reconstruction for both the doubles and Z2-equivariantisations of Tambara-
Yamagami categories. This generalises the work of Marcel Bischoff [7], who established 
reconstruction for Tambara-Yamagami when |G| is odd. Bischoff’s work for odd |G| was 
independent and simultaneous to ours — we announced our reconstruction for even and 
odd |G| in a talk by the second author at the Isaac Newton Institute, available online 
[45].

In the process of doing this we prove that any pointed modular tensor category (i.e. 
one whose simple objects are all invertible) can be reconstructed as a lattice theory. 
This was an explicit assumption in Bischoff [7]. More generally, a weakly-integral fusion 
category is one where all dimensions-squared are integers. It is tempting to guess that 
any weakly-integral modular tensor category can be reconstructed as a group orbifold 
of a lattice theory. This generalises what we now know to be true for doubles and Z2-
equivariantisations of the Tambara-Yamagami categories.

One reason for being especially interested in Tambara-Yamagami categories is because 
of their possible relevance to reconstruction for the doubles of the Haagerup-Izumi series 
of subfactors. More precisely, the modular data of the double of the Haagerup can be 
most easily recovered as the grafting (see [32]) of the Z2-equivariantisations of a Z3×Z3
and Z13 Tambara-Yamagami category. We describe this in section 5.6.

2. Background

2.1. KK-theoretic background via correspondences

The KK-groups can be defined as follows. For C∗-algebras A, B, E, the extensions

0 → K⊗B → E → A → 0 (2.1)

together with suspensions, where K is the algebra of compact operators of a separable 
infinite-dimensional Hilbert space, yield the Kasparov groups KK�(A, B) (p. 118 of [34]). 
Now, the Universal Coefficient Theorem (see e.g. section 23.1 in [8]) says there is a short 
exact sequence

0 → Ext1Z(K�(A),K�−1(B)) → KK�(A,B) → Hom(K�(A),K�(B)) → 0 . (2.2)

Therefore if either K�(A) or K�(B) is a free finitely generated Z-module — which will 
always the case for us — then KK�(A, B) ∼= Hom(K�(A), K�(B)).

For spaces (the language we find more convenient), this becomes KK�(X, pt) =
K�(X), K�(pt, Y ) = K�(Y ), and KK�(X, Y ) = Hom(K�(X), K�(Y )). In particular, 
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taking X = Y to be the object giving the fusion ring, a modular invariant is an element 
of End(K(X)) and so gives rise to an element of KK(X, X).

Hence a modular invariant gives rise to very special KK-elements, as do other struc-
tures in CFT such as sigma-restriction and alpha-induction. The intersection or Kasparov 
product of KK-elements then corresponds to the usual matrix multiplication of modular 
invariants. And so on.

Elements of KK-groups can be described through spectral triples, Fredholm modules 
and Dirac operators [17]. However the approach we take in this paper is to follow the 
correspondence description due to Connes and Skandalis [18] for topological manifolds, 
in particular manifolds and foliations, and most recently developed by Emerson and 
Meyer [24] for groupoid equivariant theory on manifolds.

Let X, Y be smooth manifolds. A correspondence (defined in [18], refined by [24]; see 
also [14] for a gentle introduction) is given by the diagram

(Z,E)

X Y

f b

where Z is a smooth manifold, E is a complex vector bundle over Z, the forward map 
f : Z → X is smooth and proper, and the backward map b : Z → Y is K-oriented. Any 
correspondence naturally defines a class

b!(f∗(−) ⊗E) (2.3)

in the bivariant K-theory group KK(X, Y ) := KK(C0(X), C0(Y )), where f∗ is the 
pullback and b! is the pushforward. The collection of all correspondences for X, Y forms 
an additive category under disjoint union:

(Z1, E1) + (Z2, E2) = (Z1 	 Z2, E1 	E2) . (2.4)

Quotienting by appropriate notions of cobordism, direct sum and vector bundle modifi-
cation recovers the KK-theory group KK(X, Y ). In this quotient, a special case of (2.4)
is [Z, E1] + [Z, E2] = [Z, E1 ⊕E2].

In the correspondence picture, the intersection product on KK-theory is the bilinear 
associative map

⊗M : KK(X,M) ×KK(M,Y ) → KK(X,Y )

defined by the pullback, sending two correspondences
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(Z1, E1) (Z2, E2)

X M Y

f bM fM b

to the single correspondence (Z, E) = (Z1, E1) ⊗M (Z2, E2) with Z = Z1 ×M Z2 =
{(z1, z2) ∈ Z1 × Z2 : bM (z1) = fM (z2)}, the fibred product, and E = E1 ⊗M E2 is the 
restriction of the Z1 ×Z2-bundle E1 ⊗E2 to Z1 ×M Z2. The maps f ′ and b′ from (Z, E)
are then just the obvious restrictions. This definition requires a transversality condition 
on the two maps fM and bM in order to ensure that the fibred product Z is a smooth 
manifold.

Equivariant KK-theory on topological spaces is too narrow for us, as we will have 
different groups acting on different algebras or spaces. In general we need KK-theory on 
groupoids. We describe next how to modify the correspondence picture on topological 
spaces and manifolds to correspondences between groupoids and hence elements of their 
KK-groups.

A groupoid is a category whose morphisms f have both left and right inverses. 
Groupoid theory is summarised for instance in Appendix A of [38]. When a group G
acts on a set X, we will write X/ /G for the corresponding groupoid. A morphism (or 
map) between groupoids is a functor between the corresponding categories. In the loop 
group setting, topology must be considered, and Lie groupoids used; in this case all maps 
are required to be smooth.

We will be twisting our groupoids by 2- and 3-cocycles; in this framework, the twist 
does not affect the underlying groupoid but does affect the class of bundles considered. An 
(untwisted) bundle over a groupoid is simply a functor from the groupoid to the category 
of finite-dimensional vector spaces; the twist controls the projectivity of the groupoid 
action on the fibres. For example, untwisted bundles over pt/ /G (G a finite group) 
correspond precisely to representations of G; for ψ ∈ Z2

G(pt; T ), ψ-twisted bundles on 
pt/ /G correspond precisely to projective representations of G with cocycle ψ. By a slight 
abuse of notation, we will speak of e.g. bundles over pt/ /ψG rather than ψ-twisted bundles 
over pt/ /G. Given a groupoid G and such a twist τ , let Cτ (G) denote the category whose 
objects are τ -twisted bundles over G, and whose morphisms are natural transformations 
between those bundles. The corresponding K-group will be denoted τK0(G) (or τK0

G(X)
in the case of action groupoids X/ /τG). See section 2.2 for detailed examples.

The weak pullpack for groupoids is defined in section 2.5 of [24] and section 2 of [3]: 
given groupoid maps

T S

X

q p
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the pullback P will have objects consisting of all triples (s, t, α) where s and t are objects 
of groupoids S and T respectively, and α : p(s) → q(t) is a morphism in X. A morphism 
in P from (s, t, α) to (s′, t′, α′) consists of a morphism f : s → s′ in S and a morphism 
g : t → t′ in T such that the diagram

p(s) q(t)

p(s′) q(t′)

p(f)

α

α′

q(g)

commutes. P inherits its (Lie) groupoid structure from S and T . A weak pullback P
satisfies the weak universality property, in the following sense. Suppose R is a groupoid, 
and F : R → S and G : R → T are groupoid morphisms. We say that the diagram

R

T S

X

G F

q p

(2.5)

commutes if for each object r of R, there is a morphism α ∈ HomX(p(F (r)), q(G(r)))
of X, and for each morphism h of R we have α′p(F (h)) = q(G(h))α (where α, α′ are 
associated to the head resp. tail of h). Weak universality means that the map R → P

exists but is not necessarily unique. It is elementary to verify that P constructed above 
is a weak pullback in this sense.

The pullback E of bundles ES and ET over groupoids S and T respectively, is 
now defined as before: it is the functor defined by E(s, t, α) = ES(s) ⊗C ET (t) and 
E(f, g) = ES(f) ⊗ET (g), restricted to the pullback P defined last paragraph. Composi-
tion of correspondences in this more general picture is again defined using the pullback. 
Equivalence of correspondences is defined in section 2.2 of [24].

2.2. Warm-up examples

We are interested in interpreting, in as natural a way as possible, the sufferable 
modular invariants (i.e. those realised by module categories, defined in section 2.3) as 
KK-elements. To get comfortable with these KK-groups, this subsection gives exam-
ples, including matrix units, for the KK-rings of finite groupoids. By matrix units Ei,j

in a matrix ring Md×d(Z) we mean the standard bases (matrices with all 0’s except for 
a 1 in the ij-entry). These obey Ei,jEk,l = δjkEi,l.
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Begin with KK(pt, pt) = Z. We realise the number n ≥ 0 through the correspondence

	n
j=1{pt}

pt pt
f b

Composition of these correspondences amounts to multiplying the numbers. Equivalently, 
we could have replaced the discrete union 	n

j=1{pt} here with the bundle Cn over a 
single point: in this case, f∗ associates to k ∈ K(pt) the vector space Ckn, while b!
takes dimension. Composition of the correspondences for Cm and Cn is manifestly the 
correspondence for Cm ⊗ Cn ∼= Cmn. As always, negative elements of KK come from 
taking virtual or K-theoretic bundles.

Now let G be any finite group. We can identify the representation ring K�
G(pt) = RG

with KK(pt, pt/ /G). We can realise any given representation V as the correspondence

(pt//G, V )

pt pt//G

π id

(2.6)

where π sends G to 1. Here π∗ associates n to the trivial G-representation Cn and 
id! : RG → RG is the identity, so the correspondence (2.6) corresponds to the class 
n �→ Cn ⊗ V in KK(pt, pt/ /G). Instead of the bundle (pt/ /G, V ), we could instead 
use the disjoint union 	j(pt/ /G, ρj) where V = ⊕jρj is a sum of irreps (=irreducible 
representations).

Consider now KK(pt/ /G, pt/ /G), which we identify with End(RG). Let us construct 
using correspondences the matrix units for this ring. For any irreducible G-modules V, W
define EW,V to be the element of KK(pt/ /G, pt/ /G) given by the product

(pt//G, V ∗) (pt//G,W )

pt//G pt pt//G

id πR πL id

Pulling this back gives the correspondence
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(pt//(G×G), V ∗ ⊗W )

pt//G pt//G

π′
L π′

R

(2.7)

where the morphisms are the obvious left/right projections, and V ∗ denotes the contra-
gredient of V . In V ∗ ⊗W in (2.7), the left G acts on V ∗ and the right acts on W . Then 
π′ ∗
L lifts V ′ ∈ RG to V ′ ⊗ 1 (where the left G acts on V ′ and the right acts trivially), 

while π′
R! sends the G ×G-rep VL ⊗ VR to the G-rep 〈VL, 1〉VR. Here and elsewhere we 

let 〈V, ρj〉 denote the multiplicity of irrep ρj in G-rep V , and extend the definition to 
other ρ by 〈V, ⊕jnjρj〉 =

∑
j nj〈V, ρj〉. From this we obtain that EW,V sends V ′ ∈ RG

to 〈V ′, V 〉W , and so for irreps V, W ∈ Irr(G), EW,V is the (W, V ) matrix unit, as the 
notation suggests.

Note that the inputs for correspondences are on the left, whereas inputs for matrices 
are written on the right. Hence in compositions, the order of operators in the correspon-
dence picture is the reverse of that of matrices.

This describes the matrix units for any finite groupoid G, by working locally in terms 
of orbits and stabilisers. For example, the K-theory for such a G is K0(G) = ⊕oRG(o)
where o runs over all orbits in G and G(o) is the stabiliser (as an abstract group) of o in 
G. We can identify this with KK(pt, G). Then (2.6) generalises to G as follows. Fix some 
representative x of orbit o, and let Gx

∼= G(o) be its stabiliser. Then to any Gx-module 
V , we obtain an element of KK(pt, G) by the correspondence

(x//Gx, V )

pt G
π ι

(2.8)

where π sends x to pt and Gx to 1, and where ι embeds x/ /Gx into the component o of G. 
As o runs over the different components of G and V runs over all simple Gx-modules, we 
recover the canonical basis of KK(pt, G). The KK-group KK(G, G) becomes the direct 
sum ⊕o,o′Hom(RG(o), RG(o′)), one summand for each orbit o (where Hom here denotes 
the space of linear maps between vector spaces RG(o) and RG(o′)).

Our main examples in this paper are groupoids over finite groups. However, in sec-
tion 6, as well as isolated places in sections 4 and 7, we consider cases where G is a 
compact connected Lie group. This involves a more elaborate treatment, which we will 
describe in those subsections.

2.3. Chiral and full data of a CFT

The chiral data of a conformal field theory (CFT) can be identified with a vertex 
operator algebra (VOA) or, what should be the same thing (at least in the unitary 
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setting), a conformal net of factors on S1. The only place we refer to these is section 4.2, 
where we discuss lattice theories, and section 5.4, where we discuss their Z2-orbifolds. 
For an introduction to their complicated theory, see e.g. [55,16].

A fusion category is a semisimple abelian rigid monoidal category with irreducible 
tensor unit. A modular tensor category C is a fusion category with a braiding which is 
maximally non-degenerate in a certain sense. The category of representations Rep(V) of 
a rational VOA or conformal net V (such as the lattice theories and their Z2-orbifolds) 
will be a modular tensor category.

Let Φ denote the (finite) set of isomorphism classes λ of irreducible objects in C; we 
call these primaries. The Grothendieck ring of C is called the Verlinde or fusion ring Fus, 
and has basis Φ. A modular tensor category has an associated unitary representation 
(unique up to a cube root of 1) of the modular group SL2(Z) on the complexification 
C⊗ZFus, called the modular data. Now, SL2(Z) is generated by 

(0
1
−1
0
)

and 
(1 1

0 1
)
, so this 

representation is uniquely determined by the matrices S, T ∈ MΦ×Φ(C) corresponding to 
those generators. T is a diagonal matrix, whereas S determines the structure constants 
Nν

λ,μ of Fus through Verlinde’s formula

Nν
λ,μ =

∑
κ

Sλ,κ
Sμ,κ

S0,κ
Sν,κ (2.9)

where here and elsewhere we use 0 to denote the isomorphism class of the tensor unit.
A full CFT associated to a given rational VOA or conformal net V, consists of two 

local extensions V+ and V−, and a braided equivalence Rep(V+) → Rep(V−). These 
extensions V+, V− are called the type 1 parents. Write b± for the restriction (branching 
rules) from V±-modules to V. Then associated to the full CFT we have the matrix

Z = b−σb
t
+ , (2.10)

where σ is a permutation matrix corresponding to the braided equivalence mentioned 
above.

Definition 1. A matrix Z = (Zλ,μ)λ,μ∈Φ is called a modular invariant if ZS = SZ, 
ZT = TZ, each entry Zλ,μ is a nonnegative integer, and Z0,0 = 1.

For example, Z = I is always a modular invariant. The matrix Z in (2.10) coming from 
a full CFT is a modular invariant. Conversely, a given modular invariant may come from 
many, one, or no full CFTs. When it comes from at least one, we call it sufferable. For 
instance, Z = I is always sufferable. The modular invariant is a combinatorial shadow 
cast by the full CFT. Our real interest of course is in this full structure, although in this 
paper we only really use this full structure in sections 4.4, 5.4, 5.5 and 6.2.

This full structure was first captured mathematically in the language of factors [9,10], 
and then axiomatised in the language of module categories [61]. A module category M
over a fusion category C consists of a bifunctor ⊗ : C × M → M (corresponding to the 
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nimrep) together with compatible associativity and unit isomorphisms. There are obvious 
notions of equivalence and direct sums of module categories, and of indecomposable 
module categories. Given any module category M over C, there is an algebra A in C
such that the category ModC(A) of right A-modules in C is equivalent to M.

Now consider C a modular tensor category. The category BimodC(A) of A-A-bimodules 
in C is a fusion category called the full system. There are tensor functors α± from C into 
BimodC(A) called the alpha-inductions. The modular invariant (2.10) associated to the 
module category M is [12]

Zλ,μ = dim HomBimodC(A)(α+(λ), α−(μ)) (2.11)

The intersection of the images α±(C) is called the ambichiral system, the modular tensor 
category shared by the two type 1 parents of M. By sigma-restriction we mean the 
forgetful functor from the full system to C; restricted to the ambichiral system, it recovers 
the branching rules familiar to CFT.

Type 1 module categories (i.e. those of pure extension type) in a modular tensor 
category C correspond to rigid commutative algebras A with trivial twist. In this case, 
α± are equivalent (though non-equal); they can be recast as a tensor functor from C
to ModC(A), with the latter now regarded as the full system. The local (or dyslectic) 
A-modules form the ambichiral system. The modular invariant will be block-diagonal. 
The other extreme is the type 2 module categories (i.e. those of pure automorphism 
type), where the modular invariant is a permutation matrix. As (2.10) suggests, any 
(indecomposable) module category will be a combination of two type 1’s linked by a 
type 2.

Any full rational CFT is expected to correspond in this way to a module category. 
This framework captures its boundary data, defect lines, spaces of conformal blocks in 
arbitrary genus, etc (see e.g. [64]).

2.4. Two lemmas

Throughout this paper, we let Ĝ denote the 1-dimensional representations of a group 
G. For G abelian, we call γ : G ×G → T a pairing (or bicharacter) if

γ(gh, k) = γ(g, k) γ(h, k) , γ(g, hk) = γ(g, h) γ(g, k) ∀g, h, k ∈ G .

A pairing is called non-degenerate if 〈g, h〉 = 1 for all h ∈ G implies g = 0. Equivalently, 
a pairing is a group homomorphism G → Ĝ, and is non-degenerate when this is an 
isomorphism. We call a pairing symmetric if γ(g, h) = γ(h, g) ∀g, h ∈ G, and alternating
if γ(g, h) = γ(h, g) ∀g, h ∈ G. Symmetric non-degenerate pairings, which exist for any 
finite abelian group, are central to section 4.

Given any (not necessarily abelian) finite group G and 2-cocycle ψ ∈ Z2
G(pt; T ), write 

β[ψ] for the element of 
∏

g∈G
̂CG(g) with components β[ψ]

g defined by
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β[ψ]
g (h) := ψ(g, h)ψ(h, g) = β

[ψ]
h (g) (2.12)

for all h ∈ CG(g), the centraliser of g in G. Indeed, the 2-cocycle condition for ψ directly 
yields

β[ψ]
g (hk) = β[ψ]

g (h)β[ψ]
g (k) , (2.13)

for all g ∈ G and h, k ∈ CG(g), so in particular β[ψ]
g lies in ̂CG(g). It is now easy to 

verify that this map [ψ] �→ β[ψ] yields a well-defined group homomorphism H2
G(pt; T ) →∏

g∈G
̂CG(g). When G is abelian, β[ψ] is an alternating pairing. The second sentence of 

part (b) is implicit in the proof of Theorem 2 in [49], but our proof — an immediate 
consequence of the much more general part (a) — seems to be new.

Lemma 1. Let G be any finite group.

(a) This homomorphism H2
G(pt; T ) →

∏
g∈G

̂CG(g), [ψ] �→ β[ψ], is one-to-one.
(b) Suppose in addition that G is abelian. Then the map [ψ] �→ β[ψ] is an isomor-

phism from H2
G(pt; T ) to the group AP(G) of alternating pairings γ on G (γ(g, h) =

β
[ψ]
g (h)). Moreover, the class [ψ] ∈ H2

G(pt; T ) contains a cocycle γ ∈ AP(G), iff [ψ]
is a square, i.e. iff [ψ] = [ψ′]2 for some [ψ′] ∈ H2

G(pt; T ), in which case γ = β[ψ′] is 
that cocycle.

Proof. We begin by proving part (a) for p-groups. Let p be any prime. Suppose for 
contradiction that there exists a p-group G and a nontrivial class [ψ] ∈ H2

G(pt; T ) such 
that βψ(g, h) = 1 whenever g, h ∈ G commute. Without loss of generality we may 
assume G has minimal order amongst such counterexamples. Being a p-group, G has 
nontrivial centre Z = Z(G). Because Z ≤ CG(g) for all g ∈ G, we can restrict β[ψ] ∈∏

g
̂CG(g) to a group homomorphism β̃[ψ] : G → Ẑ, namely by β̃[ψ](g)(z) = β

[ψ]
g (z). But 

β̃[ψ] is identically 1, by hypothesis. By Theorem 4.3 of [63], there exists a 2-cocycle ψ′

cohomologous to ψ, such that ψ′(zg, z′g′) = ψ′(g, g′) for all g, g′ ∈ G, z, z′ ∈ Z. This 
means ψ′ descends to a 2-cocycle on G/Z. But β[ψ′] = β[ψ], so ψ′ ∈ Z2

G/Z(pt; T ) has 
β[ψ′] identically 1. Because G is by hypothesis a minimal counterexample (and Z �= 1), 
this means [β′] = 1 as a 2-cocycle of G/Z, which means it is also trivial as a 2-cocycle 
of G. Hence [ψ] itself is trivial, as desired.

Now we can do the general case of (a). Let G be any finite group, and [ψ] ∈ H2
G(pt; T )

is nontrivial. Pick any prime p dividing the order of [ψ]. Then p will divide |G|, so let 
P denote a Sylow p-subgroup of G. By transfer (see e.g. Theorem III.10.3 of [15]), 
the restriction resGP maps the p-primary part of H2

G(pt; T ) isomorphically onto the G-
invariant elements of H2

P (pt; T ). In particular, the restriction of [ψ] to P is nontrivial. 
By the argument of the previous paragraph, this means the restriction of β[ψ] to P will 
be nontrivial, hence β[ψ] certainly can’t be identically 1 on G, and we’re done.
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Now turn to the proof of part (b). Suppose G is abelian. We may write G = 〈g1〉 ×
· · · × 〈gt〉 ∼= Zn1 × · · · ×Znt

where nt|nt−1| · · · |n1 are the orders of gt, . . . , g1 resp. Then 
H2

G(pt; T ) ∼=
∏t

i=2 Z
i−1
ni

, thanks to Künneth. This is isomorphic to the group AP(G), 
as γ ∈ AP(G) is uniquely determined by its values γ(gi, gj) = γ(gj , gi) for i < j, where 
gi ∈ G is a generator of the subgroup Zni

, and that value will be an njth root of unity 
(since nj |ni). But for any 2-cocycle ψ, γψ(g, h) := β

[ψ]
g (h) lies in AP(G), thanks to (2.13). 

Thus the map [ψ] �→ β[ψ], which is injective by part (a), must indeed be an isomorphism 
onto AP(G).

In particular, any pairing γ ∈ AP(G) is a normalised 2-cocycle. We need to determine 
when γ, γ′ ∈ AP(G) lie in the same cohomology class. That is, we must identify the 
functions f : G → T satisfying

f(g2) = f(g)2 , f(gh)2 = f(g)2f(h)2 , f(ghk) f(g) f(h) f(k) = f(gh) f(gk) f(hk)

and f(gi) = 1 (we can assume f(gi) = 1, as dividing f by the character φ ∈ Ĝ matching 
the values f(gi) does not change the associated 2-coboundary). Then f2 ∈ Ĝ and is 
trivial on all generators. Thus f : G → {±1}.

It is elementary to verify that such an f is uniquely determined by the values fij :=
f(gigj) for i < j: indeed, f(g2h) = f(h) and f(gl1 · · · glk) =

∏
1≤i<j≤k flilj . Moreover, 

for any 1 ≤ i < j ≤ t define f (ij) : G → T by f (ij)
ij = −1 and all other f (ij)

i′j′ = +1; then 
it is easy to verify that f (ij) is a solution. This means that the number of solutions f is 
precisely 2

(
L
2
)
. It also means that the number of γ ∈ AP(G) lying in cohomologically 

distinct classes is precisely equal to the number of classes in H2
G(pt; T ) which are perfect 

squares. That each one of these classes does intersect AP(G), is clear from the map 
γψ(g, h) defined above. Indeed, it is trivial that γψ ∈ AP(G) for any 2-cocycle ψ, and 
that if [ψ] = [ψ′], then γψ = γψ′ as functions on G ×G. Likewise, it is elementary that, 
for finite abelian G, 2-cocycles ψ(g, h) and ψ(h, g) lie in the same class.

It suffices to show that any 2-cocycle ψ with γψ identically 1, must be coboundary. 
We have ψ(g, h) = ψ(h, g), and any cohomologous cocycle will likewise be symmetric. 
Since H2

Zn
(pt; T ) = 1, we may assume ψ(gai , gbi ) = 1 for all i, a, b (this only involves 

the values f(gci ), so we can do each 〈gi〉 separately). Now, assume there is a k ≥ 1
such that ψ(ga1

1 · · · gak

k , gb11 · · · gbkk ) = 1 for all ai, bj . Indeed, k = 1 works. Induce on 
k. By defining f(ga1

1 · · · gak

k gbk+1) appropriately, we can require ψ(ga1
1 · · · gak

k , gbk+1) = 1. 
The cocycle condition on ψ, for x = ga1

1 · · · gak

k , y = gb11 · · · gbkk , z = gck+1 then says 
ψ(ga1

1 · · · gak

k , gb11 · · · gbkk gck+1) = 1, while the choice x = ga1
1 · · · gak

k , y = gbk+1, z = gck+1
says ψ(ga1

1 · · · gak

k gbk+1, g
c
k+1) = 1. From these, the choice x = ga1

1 · · · gak

k , y = gbk+1, z =
gc11 · · · gck+1

k+1 then establishes the induction hypothesis for k + 1. Thus if γψ is identically 
1, ψ must be coboundary. QED to Lemma 1

The following simple observation (which also follows from Pontryagin duality) will 
also be useful.
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Lemma 2. Let J1, J2 be finite abelian groups, and ε : J1 → Ĵ2 be a pairing. Then there 
exists a subgroup J0 ≤ J2 such that φ ∈ Ĵ2 is in the image of ε iff kerφ contains J0. 
Moreover, J1/ker ε ∼= J2/J0.

Proof. Fix any generators hi resp. h′
j of J1 resp. J2. Define the (rectangular) matrix 

E with entries Ej,i ∈ Q defined by ε(hi)(h′
j) = e2πiEj,i . The entries are only uniquely 

determined mod 1, but that isn’t important. Then, using Smith normal form over Z, 
there exist integer matrices P, Q invertible over Z such that PEQ is diagonal, with 
entries r1, r2, . . . , rt ∈ Q. What matters are the denominators ni of the ri (when the 
ri are written in reduced form). Then the image of ε is ∼= Zn1 × Zn2 × · · · . To see 
the order nk generator, let u be the kth column of Q, and v the kth row of P . Then 
ε(
∑

i uihi)(
∑

j vjh
′
j) = e2πirk , which has order nk as desired.

Define ε̃ : J2 → Ĵ1 by ε̃(g)(h) = ε(h)(g). The treatment for ε̃ is similar. Its matrix 
Ẽ, and its Smith normal form, is the transpose of that for E. Hence the image of ε̃ is 
also ∼= Zn1 ×Zn2 × · · · , for the same reason. Therefore J2/ker ε̃ ∼= J1/ker ε. We find that 
J0 = ker ε̃, the common kernel of all the ε(g)’s, works. QED to Lemma 2

2.5. Categories of bundles over groupoids

Consider a groupoid X/ /G, where both G and X are finite. By a bundle V over X/ /G, 
or a G-equivariant vector bundle over X, we mean a choice of vector space Vx over each 
x ∈ X, and an action of G on the total space V = ⊕x∈XVx such that g(Vx) = Vg.x

and (g1g2)v = g1(g2v). We write V ∈ K0
G(X). Here, K1

G(X) = 0. Equivalently, a bundle 
V ∈ K0

G(X) is a choice of vector space Vx for each orbit representative x ∈ X, such that 
Vx carries a representation of the stabiliser of x in G.

Given a 2-cocycle ψ ∈ ZG(pt; T ), by a ψ-twisted bundle V over X/ /G we mean 
(g1g2)v = ψ(g1, g2)g1(g2v), or equivalently to each orbit representative x ∈ X, Vx carries 
a projective representation of the stabiliser of x in G, with cocycle given by ψ. By a 
slight abuse of notation, we speak of bundles over X/ /ψG rather than ψ-twisted bundles 
over X/ /G. We write V ∈ ψK0

G(X). Again, ψK1
G(X) = 0.

Direct sums of bundles are defined in the obvious way. A bundle is indecomposable 
iff Vx = 0 for all but one orbit, and for that orbit, Vx is an irrep of the stabiliser.

A morphism V → W between bundles V, W ∈ ψK0
G(X) is a set of linear maps 

⊕x∈OVx → ⊕x∈OWx for each orbit O ⊂ X which commute with the G action. We write 
Bun(X/ /ψG) for the category of bundles over the groupoid X/ /ψG. When a twist ψ is 
identically 1, or a group is trivial, we usually drop it from the notation.

Defining a multiplicative structure on the bundles is much more delicate, as the usual 
ring structure isn’t correct. Here is a basic (though rather ad hoc) alternative. First, 
we have the natural identification K0

G(X) × K0
G(X) → K0

G×G(X × X), because K1

vanishes (X is finite). Embedding the diagonal subgroup ΔG = {(g, g)} in G ×G gives the 
restriction K0

G×G(X×X) → K0
ΔG

(X×X). Now, suppose we have a map M : X×X → X

which is G-equivariant in the sense that M(g.x, g.y) = g.M(x, y). Suppose also we choose 



16 D.E. Evans, T. Gannon / Advances in Mathematics 421 (2023) 109002
any subset Y ⊂ X×X stable under the action of ΔG. Then this gives a wrong-way map 
M! : K0

ΔG
(X × X) → K0

G(X) in K-theory, sending some bundle V on X × X to the 
bundle on X whose fibre at x ∈ X is ⊕(x′,x′′)∈Y ∩M−1(x)V(x′,x′′). Composing all three 
maps gives a product K0

G(X) ⊗K0
G(X) → K0

G(X) of bundles. We give examples of this 
in section 5.5.

More generally, consider any X/ /G and any X ′/ /ψH. Suppose we have a group homo-
morphism φ : H → G and a function M ′ : X ×X ′ → X ′ which is H-equivariant in the 
sense that M ′(h.x, h.y) = h.M ′(x, y) (where H acts on X through φ). Take Y ′ to be any 
subset of X × X ′ which is stable under the diagonal H action. Then the bundles over 
X/ /G multiply those over X ′/ /ψH, in an obvious modification of the previous argument. 
We get a product K0

G(X) ⊗ ψK0
H(X ′) → ψK0

H(X ′).
Most of the axioms of fusion category and module category are automatically satisfied 

by these categories of bundles. The exception is associativity of tensor products. More 
specifically, for Bun(X/ /G) to be a fusion category, we require for each triple X, Y, Z
of bundles a specific choice of associator aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) in our 
category, which are required to satisfy

(IX ⊗ aY,Z,W )aX,Y⊗Z,W (aX,Y,Z ⊗ IW ) = aX,Y,Z⊗W aX⊗Y,Z,W

For Bun(X ′/ /ψH) to be a module category over Bun(X/ /G), we require an analogous 
condition. In both cases, it suffices to consider indecomposable bundles. Certainly this has 
no chance to work unless the G-orbits of M(M(x, y), z) and M(x, M(y, z)) coincide (with 
a similar condition for M ′). Situations where we do get fusion and module categories 
through this approach are given in section 5.5.

For a simple example, let G be finite (and not necessarily abelian). Then the fusion 
category Rep(G) is realised as bundles over the groupoid pt/ /G, where G fixes pt. Here, 
M(pt×pt) = pt and Y = pt×pt. Indecomposable bundles correspond to irreps Vφ of G. 
The tensor product of bundles Vφ ⊗ Vρ is simply their usual tensor product Vφ⊗ρ as G-
representations, as the K-theoretic description mimics the usual coproduct. Associators 
aφ,ρ,χ can be taken to be 1. The indecomposable module categories of Rep(G) are in 
bijection with pairs (H, [ψ]) where H ≤ G and [ψ] ∈ H2

H(pt; T ). These categories can be 
realised as bundles over the groupoid pt/ /ψH. Here, M ′(pt× pt) = pt and Y ′ = pt× pt. 
We find that for φ ∈ Irr(G) and χ ∈ Irrψ(H), φ ⊗ χ = φ|Hχ. Again, the associators are 
all trivial.

3. Simple-currents

Amongst the most accessible and important modular invariants, are the simple-current 
modular invariants. These are always sufferable. In this section we describe these, for 
any choice of modular data, in a uniform way that makes the subsequent KK analysis 
more straightforward. The result is remarkably similar to the classification of the module 
categories of finite group doubles by Ostrik [62]: for the untwisted double of G, these are 
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in bijection with pairs (H, [ψ]) of subgroups H ≤ G × G and classes [ψ] ∈ H2
H(pt; T ). 

There is some overlap of our Theorem 1 with [54], although our proof is unrelated.
For an arbitrary modular tensor category, it is natural (though probably naive) to 

hope for some correspondence as in section 2, between module categories and some sort of 
cohomological data. This is known to happen for the 1-dimensional lattice theory 

√
2nZ

[11]: there the modular invariants are in one-to-one correspondence with the subgroups 
of Zn. In this subsection we generalise this characterisation to all simple-current modular 
invariants for all modular data. (Recall that in that lattice case, all modular invariants 
are simple-current ones.)

3.1. Simple-currents and modular data

As always, we let Ĝ denote the 1-dimensional representations. By definition, a simple-
current is an invertible object in a modular tensor category, or equivalently any primary 
with Perron-Frobenius dimension 1. The simple-currents form a finite abelian group J
of the modular tensor category. The multiplication in this group is restriction of the 
fusion product. The terminology simple-current is rather obscure and comes from the 
CFT literature. The basic properties of simple-currents we need are proved in [44].

To each simple-current j ∈ J are associated two things: a permutation of the primaries 
Φ given by the fusion product, and a grading of the fusion ring coming from Verlinde’s 
formula. More precisely, we have a faithful group homomorphism J → perm(Φ), and a 
surjective grading Q : Φ → Ĵ : for any primaries a, b, c ∈ Φ, if c appears in the fusion 
product of a and b, then QaQb = Qc. In particular,

Qja = QjQa . (3.1)

Moreover, we have the reciprocity [44]

Qj(j′) = Qj′(j) ∀j, j′ ∈ J . (3.2)

Simple-currents respect modular data:

Sja,b/Sja,0 = Sb,ja/S0,ja = Qb(j)Sa,b/Sa,0 , (3.3)

Tja,jaTa,a = Qa(j)Tj,jT0,0 , (3.4)(
Tj,jT0,0

)2 = Qj(j) , (3.5)

for all simple-currents j ∈ J and primaries a, b ∈ Φ. (3.3) can be taken as the definition 
of Qb(j). When the order of j is odd, Tj,jT0,0 also has odd order. When the modular data 
comes from a so-called unitary CFT (the case of interest in this paper), the denominators 
Sja,0 and Sa,0 in (3.3) are equal and can be dropped; in nonunitary theories such as the 
Yang-Lee model, they contribute a sign.
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For example, the group J (G/ /G) of simple-currents for the double of a finite group 
G consists of all pairs (z, ψ) where z is in the centre of G and ψ is a 1-dimensional 
representation of G = CG(z): J ∼= Z(G) × ̂G/[G,G]. The action on Φ is (z, ψ)(g, χ) =
(zg, ψχ). The grading is Q(g,χ)(z, ψ) = χ(z)ψ(g)/χ(1), and T(z,ψ),(z,ψ) = ψ(z).

For another example, every primary for the loop groups of tori twisted by an even 
lattice L, are simple-currents: J = Φ = L∗/L, with group operation being addition, 
Q[λ]([μ]) = e−2πiλ·μ and T[λ],[λ]T[0],[0] = eπiλ·λ. For loop groups of compact simply-
connected groups G, the group of simple-currents is isomorphic to the centre Z(G) (with 
one source of exceptions: E8 at level 2).

Incidentally, all abelian groups can arise as a group of simple-currents, even among 
the fusion rings of simply-connected loop groups: e.g. Z(SU(n1) × · · · × SU(nt)) ∼=
Zn1 × · · · × Znt

.
For each j, j′ ∈ J , write q(j) = Tj,jT0,0 and 〈j, j′〉 = Qj(j′). Together, (3.1)

and (3.2) say 〈, 〉 is a symmetric pairing. (3.4), (3.5) then say q(−j) = q(j) and 
〈j, j′〉 = q(j)q(j′)q(j + j′). We define a quadratic form in section 4.1; this q(j) satis-
fies all properties of a quadratic form except possibly the non-degeneracy of 〈, 〉.

Proposition 1. [44] Fix any modular data. Let J be its group of simple-currents, and let 
Z be any modular invariant. Let j, j′ ∈ J be such that Zj,j′ �= 0. Then Zja,j′b = Za,b

for all a, b ∈ Φ, and Za,b �= 0 only when Qj(b) = Qj′(a).

3.2. Simple-current modular invariants

Call j ∈ J quaternionic if Qj(j) has the same order in C× as j has in J , and this 
order is even. Equivalently (using (3.5)), j ∈ J is quaternionic iff (Tj,jT0,0)ord(j) = −1
(that power is always either ±1). We want to avoid these, for this reason (though they 
do play a role in supersymmetric theories):

Lemma 3. Let J be a subgroup of the group of simple-currents. Then J contains no 
quaternionic elements, iff there is a pairing ε for J satisfying

Qj(j′) εj(j′) εj′(j) = 1 ∀j, j′ ∈ J , (3.6)

εj(j) = Tj,jT0,0 ∀j ∈ J . (3.7)

The set of all such ε is in bijection with H2
J (pt; T ) (provided J contains no quaternionic 

elements).

Proof. One direction is clear: if j ∈ J is quaternionic, then the order of Tj,jT0,0 doesn’t 
divide that of j, so ε cannot be a pairing.

Now suppose J contains no quaternionic elements. Write J = 〈h1〉 × · · ·× 〈hs〉, where 
ns|ns−1| · · · |n1, the orders of hs, hs−1, . . . , h1. Write 〈j, j′〉 = Qj(j′) and q(j) = Tj,jT0,0
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as in section 3.1. For any j, j′ ∈ J write j =
∑

i jihi and j′ =
∑

i j
′
ihi, for ji, j′i ∈ Z. 

Define

εJj (j′) =
s∏

i=1
q(hi)jij

′
i

s−1∏
i=1

〈πi(j), j′ihi〉 (3.8)

where πi(j) =
∑

k>i jkhk. This is manifestly a pairing, thanks to the absence of quater-
nionic elements in J . Moreover, it satisfies (3.6), (3.7) by the properties of 〈, 〉 and q(j)
mentioned in section 3.1. So there is at least one solution.

Note that ε is a pairing on J satisfying (3.6), (3.7), iff ε εJ is an alternating pairing on 
J . By Lemma 1(b), we get the bijection ε = β[ψ]εJ with H2

J(pt; T ). QED to Lemma 3

More precisely, the set of all such ε forms a torsor over H2
J(pt; T ) — the choice of 

base-point εJ is arbitrary. The relevance of the equations (3.6), (3.7) will become clear 
in the proof of Theorem 1.

For a ∈ Φ, write stabJ (a) = {j ∈ J : ja = a}. Given a subgroup J ≤ J , we call 
a ∈ Φ J-free if stabJ(a) = {0}, i.e. if the cardinalities ‖Ja‖ = |J |.

Call the modular data sufficiently nonzero if for any ψ, ψ′ ∈ Ĵ there exists a, b ∈ Φ
with Qa = ψ, Qb = ψ′, and Sa,b �= 0. The modular data is sufficiently nonzero if for any 
a ∈ Φ and ψ ∈ Ĵ with stabJ (a) ≤ kerψ, there exists b ∈ Φ J -free such that Qb = ψ

and Sa,b �= 0. (If instead stabJ (a) was not a subgroup of kerψ, then any b ∈ Φ with 
Qb = ψ would necessarily have Sa,b = 0, thanks to (3.3).) To see why this implies the 
sufficiently nonzero hypothesis, apply it twice: firstly to a′ = 0 to get a J -free b′ ∈ Φ
with Qb′ = ψ, and secondly to a = b′ to get b ∈ Φ with the desired properties.

This notion of sufficiently nonzero is needed for the strongest results. As stated, it 
is stronger than we need, but it is hard to find any examples of modular data which is 
not sufficiently nonzero. For example, the only SU(n) level k modular data which is not 
sufficiently nonzero, is SU(2) level 2. Torus modular data is always sufficiently nonzero, 
as are the untwisted doubles of abelian groups and all (unitary or nonunitary) minimal 
models except for the Ising.

In the following theorem, we parametrise modular invariants associated to simple-
currents, by subgroups J of simple-currents and 2-cocycles ψ. More precisely, the modular 
invariants (in fact, module categories) associated to J form a torsor over H2

J(pt; T ).
Parts (a) and (b) in the following theorem are the important cases for us; their proof 

is essentially the same as that of part (c), which perhaps is of independent interest. 
It cannot be a coincidence that H2

J(pt; T ) ∼= H3
J(pt; Z) and H1

J(pt; Z2) ∼= J/2J are 
the standard twists for the K-group K�

J(pt). Compare Example 9.7.2 of [25], which 
gives module categories over VectωG, and [54], which concerns simple-current modular 
invariants in rational conformal field theory.

Theorem 1. (a) Let J be any subgroup of J containing no quaternionic elements, and 
choose any class [ψ] ∈ H2

J(pt; T ). Define the pairing ε = β[ψ]εJ on J , where β[ψ] resp. 
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εJ is defined in (2.13) resp. (3.8). Let J0 ≤ J be as in Lemma 2 for ε. Then there is a 
modular invariant Z = Z(J, [ψ]) = Z(J, ε) whose nonzero entries are

Za,ja = |J0|
‖J0a‖

(3.9)

for all j ∈ J and a ∈ Φ satisfying Qa|J = εj.
(b) Any modular invariant constructed in (a) satisfies

Za,b �= 0 ⇒ b ∈ J a . (3.10)

Conversely, suppose the modular data is sufficiently nonzero. Then any modular invariant 
satisfying (3.10) equals Z(J, [ψ]) for one and only one pair (J, [ψ]).
(c) There is an analogous classification of all matrices Z with nonnegative integer entries 
and Z0,0 = 1, which commute with S, and triples (J, [ψ], [φ]) where J and ψ are as in 
(a), and [φ] ∈ H1

J(pt;Z2) ∼=J/J2 (interpret [φ] as a homomorphism J → {±1}, and 
replace q(hi) in (3.8) with q(hi) [φ](hi)).

Proof. Begin with part (a). For any subgroup J and pairing ε as in the theorem, let 
JL = J0 be as in Lemma 2, and define JR = ker ε. We will first show that (3.6), 
(3.7) imply that the matrix Z = Z(J, ε) defined by (3.9) commutes with S and T . 
Commutation with T is trivial: by (3.4), it is equivalent to (3.7).

To show Z commutes with S, first observe using (3.6) that JL, the common kernel of 
all εj , equals {j′ ∈ J : Qj′ |J = εj′}. Moreover, if j ∈ J and ja = a for some a ∈ Φ, then 
Qj is identically 1 thanks to (3.1), in which case j ∈ JL iff j ∈ JR. Thus for all a ∈ Φ, 
‖JLa‖ = ‖JRa‖.

We compute directly from (3.3) that

(SZ)a,b = |JL|
{
Sa,j′b if Qa(JL) = 1 and Qj′b|J = εj′ for j′ ∈ J

0 otherwise (3.11)

(ZS)a,b = |JL|
{
Sja,b if Qb(JR) = 1 and Qa|J = εj for j ∈ J

0 otherwise , (3.12)

since ‖JRa‖ = ‖JLa‖. From Lemma 2 and (3.6) we see that Qa(JL) = 1 iff there is 
a j ∈ J such that Qa|J = εj ; likewise, Qb(JR) = 1 iff there is a j′ ∈ J such that 
Qj′b|J = εj′ . Hence, the commutation (SZ)a,b = (ZS)a,b is the trivial 0 = 0, unless 
Qa(JL) = Qb(JR) = 1 in which case it reduces to Sa,j′b = Sja,b for Qa|J = εj and 
Qj′b|J = εj′ , which holds thanks to (3.6), (3.3).

Now turn to part (b). Consider any modular invariant Z satisfying (3.10), and assume 
the sufficiently zero hypothesis. Define JL = {j ∈ J : Zj,0 �= 0} and JR = {j ∈ J :
Z0,j �= 0}. Then it is elementary to see (equation (5.2c) of [44]) that Zja,j′b = Za,b for 
all j ∈ JL, j′ ∈ JR and a, b ∈ Φ. This implies JL, JR are both groups, and Zj,j′ = 1
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for all j ∈ JL, j′ ∈ JR. Moreover (equation (5.2b) of [44]), Za,b �= 0 implies Qa(JL) =
Qb(JR) = 1, and conversely, Qa(JL) = 1 implies there exist b ∈ Φ such that Za,b �= 0.

Note that TZ = ZT implies that if Za,ha �= 0, then by (3.4)

Th,hT0,0 = Qa(h) . (3.13)

Choose any a ∈ Φ with Qa(JL) = 1; evaluating SZ = ZS at (a, 0) says that each row 
sum 

∑
b∈J a Za,b equals |JL| or equivalently that

∑
[h]∈J /JR

Za,ha = |JL|
‖JRa‖

. (3.14)

This implies (taking a = 0) that |JL| = |JR|. It also implies that if such an a is JR-free, 
then there exists a unique class [ha] ∈ J /JR such that Za,b = δJRb,JRhaa for all b.

Define

J = 〈{j ∈ J : Za,ja �= 0 for some JR−free a ∈ Φ}〉 . (3.15)

Suppose for contradiction that for some a ∈ Φ (not necessarily JR-free), there are h, h′ ∈
J such that both Za,ha �= 0 and Za,h′a �= 0, for h′h−1 /∈ 〈JR, stabJa〉. Then there 
exists some character ψ of J/〈JR, stabJa〉 such that ψ(h′) �= ψ(h). By the sufficiently 
nonzero hypothesis, there exists some J -free b ∈ Φ such that Qb|J = ψ. For this choice 
we find by the triangle inequality and (3.14) |(ZS)a,b| < |JL| |Sab|, which contradicts 
(SZ)a,b = |JL| Sab (since b is J-free). Thus for all a ∈ Φ with Qa(JL) = 1, there is a 
unique class [ha] ∈ J /JR such that Za,b = |JL|

‖JRa‖δJRb,JRhaa for all b. The argument with 
left and right interchanged now forces ‖JLa‖ = ‖JRa‖ for such a. Now ZS = SZ reduces 
to Shaa,hbb = Sa,b whenever Qa(JL) = 1 = Qb(JL). As usual the sufficiently nonzero 
hypothesis then leads to

Qha
(hb)Qa(hb)Qb(ha) = 1 , (3.16)

for these a, b. For each j ∈ J , (3.15) says there exists an a ∈ Φ such that Za,ja �= 0. 
Define a map ε : J → Ĵ by εj = Qa|J . This assignment εj is well-defined (i.e. independent 
of a), because we can use (3.2) to rewrite (3.16) as Qa(hb) = Qhbb(ha), which tells us 
that if ha1JR = ha2JR, then Qa1 = Qa2 . The same equation also tells us this ε is a 
homomorphism.

For this choice of ε, Z is given by (3.9), and (3.16), (3.13) reduce to (3.6), (3.7). It 
suffices to show that any ε satisfying (3.6), (3.7) come from a 2-cocycle [ψ]. For this 
purpose, let γ(j, j′) = εj(j′)/ε′j(j′) be the quotient of two solutions to (3.6), (3.7). Then 
γ ∈ AP(G), so by Lemma 1(b) does indeed come from a 2-cocycle, and we’re done.

Now suppose Z(J, ε) = Z(J ′, ε′). If J �= J ′, then there exists j ∈ J , j /∈ J ′ (or the other 
way around). By the sufficiently nonzero hypothesis, there exists a 〈j〉-free a ∈ Φ such 
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that Qa = εj . Then Z(J, ε)a,ja �= 0 but Z(J ′, ε′)a,ja = 0, a contradiction. Thus J = J ′. 
If now εj �= ε′j for some j ∈ J , then for the same a, Z(J, ε)a,ja �= 0 but Z(J ′, ε′)a,ja = 0, 
another contradiction. This means Z(J, ε) = Z(J ′, ε′) forces J = J ′, ε = ε′ as desired. Of 
course, Lemma 3 tells us ε = ε′ is equivalent to [ψ] = [ψ′]. This completes the proof of 
part (b).

Finally, turn to part (c). Dropping the condition ZT = TZ amounts to dropping (3.7). 
Note that (3.6) for j = j′ reduces to the square of (3.7), thanks to (3.5). This means that 
the values of εj(j) are determined only up to signs. These signs are arbitrary, provided 
ε is a pairing. The possibilities for these signs are then captured by a homomorphism 
J → {±1}, i.e. by a class in H1

J (pt; Z2). QED to Theorem 1

By definition, a simple-current modular invariant Z is any modular invariant of the 
form (3.9). The modular invariants (3.9) all correspond to at least one module category 
(see [43]). Different pairs J, φ can correspond to the same modular invariant (e.g. SU(2)
at level 2, J = 1 and J = Z2 both correspond to the identity matrix). But as explained 
in the proof, the correspondence is one-to-one if, for every ψ ∈ Ĵ , there is a J -free a ∈ Φ
with Qa = ψ.

For example, consider an (untwisted) finite group double G/ /G. There, the group of 
simple-currents is Z(G) × ̂G/[G,G]. No simple-current j = (z, ψ) can be quaternionic 
here. If we take Z ′ to be a subgroup of Z(G), and an arbitrary φ ∈ Z2

Z′(pt; T ), then in 
Ostrik’s parametrisation this corresponds to subgroup H = ΔG(1 ×Z ′) and φ lifts to φH

on H by defining φH((g1, g1z1), (g2, g2z2)) = φ(z1, z2) (this satisfies the cocycle condition 

because Z ′ is in the centre). On the other hand, if Z ′ is a subgroup of ̂G/[G,G], and φ ∈
Z2
Z′(pt; T ), then H = ΔG′ where Z ′ = ̂G/G′, i.e. G′ = ∩ψ∈Z′kerψ. Incidentally, when 

G is abelian and the 3-cocycle ω is trivial, Theorem 1 classifies all modular invariants, 
and we can explicitly recover Ostrik’s parametrisation.

The fusion rules obeyed by modular invariants (more precisely, module categories) 
was first explored in [35]. Here we can be very explicit.

Corollary 1. Given any two modular invariants Z = Z(J, [ψ]), Z ′ = Z(J ′, [ψ′]), their 
matrix product satisfies ZZ ′ tr = nZ(J ′′, [ψ′′]) for some admissible (J ′′, [ψ′′]), where 
n = ‖{a ∈ Φ : both Z0,a �= 0 and Z ′

0,a �= 0}‖.

Proof. Let JR = {j ∈ J : Z0,j �= 0} and J ′
R = {j ∈ J : Z ′

j,0 �= 0} as usual. Then 
Proposition 1 says Za,jb = Za,b and Z ′

a,j′b = Z ′
a,b for all j ∈ JR, j′ ∈ J ′

R, and a, b ∈ Φ. 
In particular, JR, J ′

R are groups, and Z0,j = 1 = Z ′
0,j′ for all j ∈ JR, j′ ∈ J ′

R.
We compute (ZZ ′ tr)0,0 =

∑
a Z0,aZ ′

0,a = |JR ∩ J ′
R|, which equals what we call n

above. Moreover, for any a, b ∈ Φ with (ZZ ′ tr)a,b �= 0, there must exist j0 ∈ J , j′0 ∈ J ′

such that Za,j0a �= 0 and Z ′
b,j0a

�= 0 where b = j′−1
0 j0a. In this case, j0 ∈ J and j′0 ∈ J ′

satisfy Qa = εj0 on J and Qb = ε′j′0 on J ′. Using (3.6), we can rewrite the latter as 
Qa = Qj0(�) ε′�(j′0) on J ′.
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We learn from the proof of Theorem 1(b) that J ′′ will be the set of all j ∈ J such 
that (ZZ ′ tr)a,ja �= 0 for some a. The previous paragraph shows that such j can always 
be written as j0j′−1

0 for some j0 ∈ J, j′0 ∈ J ′, i.e. J ′′ ⊆ JJ ′. So j0j
′−1
0 ∈ J ′′, for j0 ∈ J

and j′0 ∈ J ′, if there is some a ∈ Φ with Qa on J resp. J ′ given as above. Those formulas 
for Qa can be taken to define a. But there is a consistency relation: for all j ∈ J ∩ J ′, 
εj0(j) = Qj0(j) ε′j(j′0). Putting this together, we get that

J ′′ = {j0j′−1
0 : j0 ∈ J, j′0 ∈ J ′, ε�(j0)|J∩J ′ = ε′�(j′0)|J∩J ′} .

Moreover, for any j0j
′−1
0 , jj′−1 ∈ J ′′,

ε′′
j0j

′−1
0

(jj′−1) = εj0(j)Qj0(j′) ε′j′(j′0) .

Write JR,a and J ′
R,a for the groups containing j ∈ JR resp. j′ ∈ J ′

R which fix a. Using 
(3.9) and Proposition 1,

(ZZ ′ tr)a,b = ‖JR,a‖‖J ′
R,a‖(|JR ∩ J ′

R|/‖JR,a ∩ J ′
R,a‖) = n‖JR,aJ

′
R,a‖ .

Thus all entries of ZZ ′ tr are divisible by n, as desired. Thus ZZ ′ tr = nZ(J ′′, ε′′) for 
J ′′, ε′′ defined above. As in the proof of Theorem 1(b), such an ε′′ corresponds to a unique 
class [ψ′′]. QED to Corollary 1

(This Corollary should be compared with section 3.3 of [54].) For the special case where 
J = J ′ and ψ = ψ′, we get J ′′ = J and ψ′′ = 1. Note that in general, Z(J, ε)tr = Z(J, εtr), 
where εtrj (j′) = εj′(j).

4. Pointed modular tensor categories

4.1. Quadratic forms and pointed categories

As before, T denotes the complex numbers of modulus 1 and Ĝ denotes the 1-
dimensional irreps of G. Write ξm = e2πi/m.

Let G be a finite abelian group (written additively). Recall the definition of non-
degenerate symmetric pairing from section 2.4. We will denote these by 〈·, ·〉. Unless 
otherwise stated, all symmetric pairings in this section are assumed to be non-degenerate. 
A quadratic form on G is a map q : G → T obeying q(−g) = q(g) for all g ∈ G, such 
that the formula

〈g, h〉 := q(g) q(h) q(g + h) (4.1)

defines a non-degenerate symmetric pairing 〈·, ·〉 on G. We call two quadratic forms q, q′
on G equivalent, if there is a group automorphism α of G such that q ◦α = q′. Lemma 4
explains to what extent the correspondence 〈, 〉 ↔ q is a bijection.



24 D.E. Evans, T. Gannon / Advances in Mathematics 421 (2023) 109002
Lemma 4. Let 〈·, ·〉 be any non-degenerate symmetric pairing on G.

(a) 〈·, ·〉 has precisely 2l associated quadratic forms, where 2l is the order of the largest 
elementary 2-subgroup Z2 × · · · × Z2 of G.

(b) At most two of those quadratic forms will be inequivalent. All 2l of them will be 
equivalent, unless there is an order 4 element g ∈ G with 〈g, g〉2 = −1.

We prove this at the end of the subsection. We use Lemma 4 in section 5.2.
Given any quadratic form q on G, define the matrices

Tg,h =xq(g) δg,h , (4.2)

Sg,h =
√
|G|−1〈g, h〉 (4.3)

where x−1 is any cube root of 
√
|G|−1 ∑

k∈G q(k). This defines a representation of SL2(Z)
called the Weil representation, through 

(0
1
−1
0
)
�→ S and 

(1
0

1
1
)
�→ T .

The pointed modular tensor categories (i.e. those whose simple objects are all simple-
currents) are described in section 8.4 of [25]. In particular, given a quadratic form q on 
G, there exists a skeletal pointed unitary modular tensor category C(q, G) with simple 
objects g ∈ G and modular data given by the Weil representation. Its fusion ring is 
isomorphic to the group ring Z[G]. Here, x = e−πic/12 where c is the central charge 
(unique up to a shift by 8Z). Any pointed modular tensor category is braided tensor 
equivalent to some C(q, G). Moreover, C(q, G) is braided tensor equivalent to C(q′, G′)
iff there is a group isomorphism ϕ : G → G′ (since the fusion rings are isomorphic) 
such that q = q′ ◦ ϕ (since the T -matrices must match). Thus pointed modular tensor 
categories are identified up to braided tensor equivalence by their modular data.

Let q1 resp. q2 be quadratic forms on G1 resp. G2. Then q1 × q2 defined by (q1 ×
q2)(g1, g2) = q1(g1) q2(g2) is a quadratic form on G1 ×G2. Moreover, C(q1 × q2, G1 ×G2)
is braided tensor equivalent to the Deligne product C(q1, G1) × C(q2, G2). An x for q1×q2
is the product of x’s for q1 and q2.

In e.g. [60] we learn that any quadratic form is a direct product of indecomposable 
ones. These are:

type pks : G = Zpk for p an odd prime and k ∈ Z≥1, and s = ±1. Then q(�) = ξm2

pk for 
� ∈ G, where 2m is/is not a quadratic residue mod p, for s = +1 resp. −1. Here, 
x3 = skεpk where εn = 1 resp. −i for n ≡ 1 resp. −1 (mod 4).

type 2km: G = Z2k , and m = ±1, ±3, with q(�) = ξm2

2k+1 . Here, x3 = εmξ−m
8 where 

εm = −1 if both k odd and m = ±3, otherwise εm = +1.
type 2k2ki: G = Z2k × Z2k and q(�, m) = ξm2k . Here, x3 = 1.
type 2k2kii: G = Z2k × Z2k and q(�, m) = ξ

2+m+m2

k . Here, x3 = (−1)k.
2
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Proof of Lemma 4. Write G ∼= Zm1 × · · · × Zmn
and let gi generate the Zmi

factor. 
When mi is odd, put q(gi) = 〈gi, gi〉(mi−1)/2; when mi is even, let q(gi) =

√
〈gi, gi〉, for 

either choice of square-root. Now define

q(
∑
i

kigi) =
∏
i

q(gi)k
2
i

∏
i<j

〈gi, gj〉
kikj

Then q is well-defined, and is a quadratic form on G realising the given 〈, 〉.
Suppose q′ is another quadratic form realising the same symmetric pairing. Define 

ψ(g) = q′(g)q(g). Then (4.1) implies ψ ∈ Ĝ. Moreover, ψ(g)2 = 1 for all g ∈ G. Con-
versely, given any ψ ∈ Ĝ satisfying ψ2 = 1, q′(g) := ψ(g)q(g) will be a quadratic form 
realising 〈, 〉. Thus there are precisely 2l different q′ realising 〈, 〉, where l is the num-
ber of even mi. These correspond precisely to the different square-roots in the previous 
paragraph.

Now turn to part (b). We know that q, q′ realise the same symmetric pairing iff q′ = ψq

for some ψ ∈ Ĝ obeying ψ2 = 1. It thus suffices to consider 2-groups G.
Suppose first that q is type 2k2ki. Write ψa,b(�, m) = (−1)a+mb. When k ≥ 2, the 

quadratic forms q and ψa,bq are equivalent, through the automorphism α(�, m) = (� +
bm2k−1, m +a�2k−1). Type 2k2kii when k ≥ 2 is treated identically. When q is type 2121

i

or 2121
ii, ψa,bq will also be either type 2121

i or 2121
ii.

Finally, consider type 2km and ψ is the unique nontrivial choice. Then ψq will be of type
2k(2k+1)m. But 2k + 1 is a perfect square mod 2k+1 (namely it equals (2k−1 + 1)2) when 
k ≥ 3. Trivially, type 21

m coincides with type 21
m+4. However, type 22

m is inequivalent to
type 22

m+4 (to see this, note that the T matrices in the associated modular data (4.2)
will be different).

It thus suffices to consider products of type 22
m quadratic forms for various m’s. 

Note that type 22
m × 22

m′ is equivalent to type 22
m+4 × 22

m′+4, through automorphism 
α(�, �′) = (� + 2�′, �′ + 2�). Using this, any product of type 22

m’s is equivalent to a 
product of type 22

±1’s together with at most one of type 22
±3. QED to Lemma 4

4.2. Lattices and reconstruction for pointed categories

We follow the notation and terminology of [19]. An even positive-definite lattice L is a 
free Z-module of finite rank together with a positive-definite symmetric bilinear form u ·v
on L, such that u ·u ∈ 2Z for all u ∈ L. By the dual L∗ we mean {v ∈ R ⊗ZL : v ·L ⊆ Z}. 
Then for L even, GL := L∗/L is a finite abelian group, and for any classes [u], [v] ∈ L∗/L

the norm u ·u is well-defined mod 2, and u ·v is well-defined mod 1. Hence qL([u]) := eπiu·u

is a (well-defined) non-degenerate quadratic form on GL.
Given an even positive-definite lattice L, we get a rational vertex operator algebra 

V(L) (see e.g. sections 6.4,6.5 of [55]) and rational local conformal net A(L) [22], and 
the category of modules for both is braided tensor equivalent to C(qL, GL). For later 
convenience, we’ll sketch some of this. As a vector space, V(L) is spanned by combinations 
of the form
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h
(1)
−n1

h
(2)
−n2

· · ·h(m)
−nm

ev

where h(i) ∈ C ⊗Z L ∼= Cdim L (corresponding to the Heisenberg part of the VOA), 
ni ∈ Z>0, and ev (for v ∈ L) is the standard basis of the group ring C[L]. We may 
demand n1 ≥ n2 ≥ · · · ≥ nm and that each h(i) is taken from a basis of L. The conformal 
weight of that combination is 

∑
i ni + v · v/2.

The main purpose of this subsection is to show that every category C(q, G) can be 
realised through positive-definite even lattices in this way. Though often stated, a com-
plete explicit proof seems to be lacking in the literature (positive-definiteness is crucial 
for the complete rationality of the VOA and conformal net).

Given any classes [ui] ∈ GL satisfying ui · ui ∈ 2Z and ui · uj ∈ Z, write 
G = 〈[u1], [u2], . . .〉. Then L[G] := ∪[v]∈G[v] is an even positive-definite lattice satisfying 
L[G]/L = G and |L[G]∗/L[G]| = |L∗/L|/|G|2. This is called the gluing construction in 
[19].

The following result should be well-known — see e.g. [46].

Lemma 5. Let L be an even positive-definite lattice. Then there exists an even self-dual 
positive-definite lattice Λ, such that L is isomorphic to a sublattice of Λ. Then L⊥ :=
{v ∈ Λ | v · L = 0} is also an even positive-definite lattice, with a group isomorphism 
ϕ : GL → GL⊥ satisfying qL⊥(ϕ([u])) = qL([u]) for all [u] ∈ GL.

Here, ‘isomorphic lattice’ means the isomorphism preserves the inner product. In fact 
Λ can be taken so that the orthogonal direct sum L ⊕L ⊕L ⊕L ⊕L ⊕L ⊕L ⊕L is finite 
index in it, though which particular Λ is chosen is not important to us. This Lemma will 
be used shortly in the proof of Theorem 2.

The main purpose of this subsection is reconstruction for pointed modular tensor 
categories (see also Corollary 1.10.2 in [60]):

Theorem 2. Let C be a pointed modular tensor category. Then there is an even positive-
definite lattice L such that the lattice VOA V(L) and conformal net A(L) both have their 
category of modules Mod(V(L)) and Rep(A(L)) braided tensor equivalent to C.

Conversely, it is certainly not the case that only lattice VOAs have pointed 
Mod(V(L)). For example, the cyclic orbifold V = (V � ⊗ V �)Z2 of the Moonshine module 
has category of modules Mod(V) tensor equivalent to the Drinfeld double D(Z2) [32], 
which is pointed, but its associated Lie algebra V1 is trivial so it cannot be a lattice 
VOA (a lattice VOA V(L) has associated Lie algebra V(L)1 ⊇ CdimL).

The remainder of this subsection is devoted to a proof of Theorem 2. It suffices to 
show that any non-degenerate quadratic form q on an abelian group G can be realised 
as qL on GL for some even positive-definite lattice L. We can restrict to the 4 types 
of quadratic forms listed last subsection, as (q, G) ∼= (qL, GL) and (q′, G′) ∼= (qL′ , GL′)
implies (q × q′, G ×G′) ∼= (qL⊕L′ , GL⊕L′) where L ⊕ L′ denotes orthogonal direct sum.
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We begin by realising quadratic forms of type pks (p an odd prime). Consider first 
primes p ≡ −1 (mod 4) (so −1 is not a quadratic residue of p). Note that the root lattice 

L = Apk−1 has GL
∼= Zpk , with generator [1] satisfying [1] · [1] ≡ pk−1

pk (mod 2), so this 
realises m = (pk − 1)/2, or equivalently m = −2. Letting L⊥ be as in Lemma 5, we can 
also realise m = +2. Hence we have realised both s = ± (again, −1 is not a quadratic 
residue of p), and we’re done type pks for those primes.

Next consider p ≡ 1 (mod 4). Choose any prime p′ ≡ −1 (mod 4) with Legendre sym-
bol 

(
p′

p

)
= s (there are infinitely many such p′). Then by quadratic reciprocity, 

(
p
p′

)
= s. 

By the previous paragraph (because p′ ≡ −1 (mod 4)), there is an even positive-definite 
lattice L′ with GL′ ∼= Zp′ and with generator [γ] satisfying γ ·γ ≡ −2pk/p′ (mod 2). Take 
L to be the lattice gluing (

√
2p′pkZ ⊕L′⊕

√
2Z)〈[p′pk, 0, 1], [2pk, γ, 0]〉, where [p′pk, 0, 1]

and [2pk, γ, 0] denote the cosets containing the dual lattice vectors ( p′pk√
2p′pk

, 0, 1√
2) resp. 

( 2pk√
2p′pk

, γ, 0). Then L is even (since [p′pk, 0, 1] · [p′pk, 0, 1] ≡ p′pk

2 + 1
2 ≡ 0 (mod 2), 

[2pk, γ, 0] · [2pk, γ, 0] ≡ 2pk

p′ − 2pk

p′ ≡ 0 (mod 2), and [p′pk, 0, 1] · [2pk, γ, 0] ≡ 0 (mod 

1)) and positive-definite (since 
√

2p′pkZ ⊕ L′ ⊕
√

2Z manifestly is). Moreover, GL has 
order (2p′pk)(p′)(2)/(2p′)2 = pk and contains [2p′, 0, 0] (since [2p′, 0, 0] · [p′pk, 0, 1] ≡
0 ≡ [2p′, 0, 0] · [2pk, γ, 0] (mod 1)), so GL

∼= Zpk with generator [2p′, 0, 0] having 

[2p′, 0, 0] · [2p′, 0, 0] ≡ 2p′

pk (mod 2). Thus L realises type pks .
Type 2km is now easy. First, L =

√
2kZ works for m = +1. To do m = 3, let L′

be a type 31
s lattice for G = Z3 with generator [γ] satisfying [γ] · [γ] ≡ 2k+1

3 (mod 2) 
(explicitly, we can take L′ to be the root lattice A2 resp. E6 if k is even resp. odd). Then 
L = (

√
3 · 2kZ ⊕L′)〈[2k, γ]〉 is even positive-definite, and L∗/L ∼= Z2k has generator [3, 0]

having [3, 0] · [3, 0] ≡ 3
2k (mod 2), i.e. realising m = 3. The L⊥ argument from Lemma 5

then takes care of m = −1 and m = −3.
Now look at type 2k2ki. Choose any L′ from case (ii) with GL′ ∼= Z2k and m = −1, 

and let [γ] ∈ GL′ be a generator with γ · γ ≡ −1
2k (mod 2). Let L = (2kZ ⊕ 2kZ ⊕ L′ ⊕

L′)[1, 1, γ, γ]. Then L is positive-definite and even, and |GL| = 24k/(2k)2 = 22k, with 
generators a = [1, 0, 0, γ] =: (1, 0) and b = [0, −1, 0, 0, γ] =: (0, 1), so GL

∼= Z2k × Z2k , 
and we recover the desired quadratic form.

Type 2k2kii is similar. Choose any L′ from type 2k−3, and let [γ′] ∈ GL′ be a generator 
with γ′ · γ′ ≡ −3

2k (mod 2). Let L = (2kZ ⊕ 2kZ ⊕ 2kZ ⊕ L′)[1, 1, 1, γ′]. The desired 
generators are [1, 1, 0, 0] =: (1, 0) and [1, 0, 1, 0] =: (0, 1), and we have recovered type
2k2kii.

Incidentally, since V(L) has central charge d equal to the dimension of L, in all cases 
we obtain that x3 = e−πid/4 (this recovers Milgram’s signature theorem).

4.3. Chiral data associated to tori

Let T be a d-dimensional torus. Section 2.2 of [28] describes the possible twists 
H3

T (T ; Z) and H1
T (T ; Z2), where T acts trivially on itself, while section 5.1 of [36]
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identifies the transgressed ones. In particular, transgressed (non-degenerate) twists τL
correspond bijectively to even positive-definite d-dimensional lattices L.

Fix a positive-definite inner product u · v ∈ R on Rd. We interpret these L as d-
dimensional Z-submodules of Rd, on which L ·L ⊆ Z and u ·u ∈ 2Z ∀u ∈ L. As mentioned 
last subsection, the dual L∗ contains L. If we realise the torus T by TL = Rd/L, then 
we get the natural identifications L = Hom(T , T ) and L∗ = Hom(T, T ).

Recall that τLKd
T (T ) is naturally isomorphic to the group ring of L∗/L, which is 

isomorphic as a ring to K0
L∗/L(pt) (on the other hand, τLKd+1

T (T ) = K1
L∗/L(pt) = 0). 

This can be understood through the calculation

κKT (T ) = RT ⊗RT∗ KT∗(T ) ,

where T ∗ is regarded as the quotient T/L∗, so that RT∗ is naturally a subring of RT , 
together with the identification KT∗(T ) ∼= Z (on which RT∗ acts by dimension) coming 
from [39], and the natural identification of RT ⊗RT∗ Z with RT /RT∗ = RL∗/L.

As mentioned last subsection, the modular data corresponding to lattice L is given 
by (4.2), (4.3), where G = L∗/L, q([v]) = eπiv·v and 〈[u], [v]〉 = Q[u]([v]) = e−2πiu·v. The 
tensor unit is [0]. In terms of VOAs and conformal nets, the torus theory TL is captured 
by the lattice VOA V(L) and the lattice conformal net.

The question of which lattices have quaternionic simples, is a little subtle. For example, 
the root lattice L = D8 has L∗/L ∼= Z2×Z2, but none of these 4 simples is quaternionic. 
On the other hand, the root lattice L = A1 ⊕ E7 also has L∗/L ∼= Z2 × Z2, but now 2 
of its 4 simples are quaternionic.

There are two frameworks here, related by the short exact sequence

1 → L∗/L → TL → TL∗ → 1 .

We will work first with the finite group framework, then switch to the toroidal one. These 
two frameworks are elegantly related by [36] into C = (Rd × L∗)/L, where L embeds 
diagonally in Rd and L∗ (their Π resp. Λ are our L resp. L∗). We would expect that 
much of our work in this section can be rephrased in that language.

Let G be a finite abelian group, and H any subgroup. Then Ĥ is naturally a quotient 
of Ĝ: the projection Ĝ → Ĥ is just restriction to H. Let K ≤ Ĝ be the kernel of that 
projection. Now suppose G has a non-degenerate pairing γ : G → Ĝ (not necessarily 
symmetric). Write H⊥ = γ−1(K): i.e.

H⊥ = {k ∈ G | γ(k)(h) = 1 ∀h ∈ H} (4.4)

Then H ∼= G/H⊥, so in particular |H⊥| = |G|/|H|. Of course we also have K̂ ∼= ̂̂
G/

̂̂
H, 

i.e. H⊥ ∼= G/H. When γ is in fact symmetric, then (H⊥)⊥ = H.
Another little fact which can be useful: given lattices M ⊇ L of the same dimension, 

there is a natural group isomorphism M/L ∼= ̂L∗/M∗, by m �→ e2πiλ·m.
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4.4. A Galois correspondence and Jones tower for lattices

Let L ⊆ M be arbitrary lattices of equal dimension, and write G = M/L. There 
is an elementary correspondence between intermediate lattices L ⊆ D ⊆ M , and sub-
groups H ≤ G, through H = D/L and D = ∪[v]∈H [v]. Write MH for the sublattice 
corresponding to subgroup H. In the language of section 4.2, D is the gluing L[H].

When there is a non-degenerate pairing γ on G, this becomes a Galois (contravariant) 
correspondence using (4.4). More precisely, given a subgroup H ≤ G, define MH to be 
the lattice MH⊥ . Then L ⊆ MH ⊆ M , MH/L ∼= H⊥ and M/MH ∼= (M/L)/(MH/L) =
G/H⊥ ∼= H. Moreover, when H ≤ K ≤ G, we have MH ⊇ MK and MH/MK ∼=
H⊥/K⊥ ∼= K/H.

This has a direct Galois interpretation. For any x ∈ C⊗L, define a map on the group 
algebra C[M ] by x.ev = e2πix·vev. Note that x ∈ M∗ acts trivially. Through the pairing, 
we identify G = M/L with Ĝ = L∗/M∗, g ∈ G �→ [xg] ∈ L∗/M∗. Then G acts on the 
group algebra through xg. Now choose any subgroup H ≤ G. Define K ≤ Ĝ as at the 
end of section 4.3, and interpret K ≤ L∗/M∗ as usual. Then the fixed-point subalgebra 
C[M ]K is naturally identified with C[MH ]. Choosing a different K would recover C[MH ]
spot-on.

Indeed, this action of G on lattice group algebras plays a fundamental role in VOA 
theory. Let L be any even positive-definite lattice of dimension d. Write GL := L∗/L

and for each [v] ∈ GL put qL([v]) = eπiv·v. Recall the sketch of lattice VOAs offered 
in section 4.2. The automorphism group of the VOA V(L) (cf. [21]) is generated by 
isometries of the lattice, as well as automorphisms of the form αx for x ∈ C ⊗ L. An 
isometry σ of L sends ev to eσ(v) and each h(i) to σ(h(i)), whereas αx fixes the h(i)

and sends ev to x.ev as above. The corresponding orbifolds behave very differently — in 
particular, orbifolding by isometries σ generally gives a nonlattice theory (see section 5.4), 
whereas orbifolding by x ∈ Q ⊗Z L always yields a lattice VOA. We need both kinds of 
orbifolds in section 5, but in this subsection we consider only the latter.

Lemma 6. Let L be an even positive-definite lattice, and let L0 be a sublattice of L of finite 
index. Then the lattice VOA V(L0) is a VOA orbifold of V(L), by a group G ∼= L/L0.

Proof. The automorphism αx is trivial iff x ∈ L∗ so we are really only interested in x
mod L∗. When x ∈ Q ⊗ZL, αx is finite order. Choose any finite set of x′

i ∈ Q ⊗ZL; then 
the group G′ generated by the automorphisms αx′

i
is finite, and the orbifold V(L)G′ is a 

lattice theory V(L′) where L′ = {u ∈ L : xi · u ∈ Z ∀i}.
In particular, choosing xi ∈ L∗

0 so they generate L∗
0/L

∗ =: G, we obtain V(L)G =
V(L0). As mentioned in section 4.3, L∗

0/L
∗ ∼= L/L0. QED to Lemma 6

Now let n be the exponent of G, so nG = 0. We have nL ⊆ nMH ⊆ nM ⊆ L and both 
nMH/nL ∼= H and nM/nL ∼= G, so we get intermediate lattices LH and LG satisfying 
nL ⊆ LG ⊆ LH ⊂ L, L/LG ∼= G, L/LH ∼= H, and LH/LG ∼= H⊥.
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We can also go in the other direction, though it is less natural. Find some m ∈ Z>0 for 
which m−1L ⊃ M . Then m−1M/m−1L ∼= G so there is a quotient (hence subgroup G′) 
of the abelian group m−1M/M which is isomorphic to G. Let L′ be the lattice gluing 
M [G′], so L′/M ∼= G. Then for each subgroup H ≤ G, we get as before the lattices 
L′H , L′

H intermediate to M ⊂ L′, with the desired quotients. We use this construction 
in section 4.6.

Thus, given L ⊆ M , a non-degenerate pairing on G = M/L, and a subgroup H ≤ G, 
we get a tower

· · · ⊂ M−2
H
⊂ M−1

H⊥

⊂ M0
H
⊂ M1 ⊂ · · ·

such that M0 = L, M1 = MH , M2 = M , M2i/M2i−1 ∼= H⊥ and M2i+1/M2i ∼= H. In the 
special case H = G, this is analogous to the Jones tower of subfactors corresponding to 
the inclusions AG ⊂ A ⊂ A×G.

This tower of lattices lifts to a tower of lattice VOAs, in the negative direction (in the 
positive direction, it terminates when Mi is no longer even). Note that not all VOAs can 
belong to such a tower — e.g. any tower containing a Virasoro minimal model would 
necessarily be finite.

4.5. The finite group framework

Let L be any even positive-definite lattice. The modular data associated to L is 
described in section 4.3. Note that for this modular data, any modular invariant automat-
ically satisfies (3.10). Moreover, S[a],[b] never vanishes and the simple-current stabiliser 
of any [a] ∈ Φ is trivial. This means it is sufficiently nonzero, in the sense of section 3.2, 
and Theorem 1 exhausts all modular invariants.

Theorem 3. (a) Let L be even and write G = L∗/L. Let q and 〈·, ·〉 denote the associated 
quadratic form and symmetric pairing on G. The following are in bijection:

(i) the modular invariants M for L;
(ii) all pairs (J, [φ]) where J ≤ G containing no quaternionic elements, and [φ] ∈

H2
J(pt; T );

(iii) subgroups D± of G with q|D± = 1, together with an isomorphism σ : D⊥
+/D+ →

D⊥
−/D− satisfying q(k) = q(σ(k)) for all k ∈ D⊥

+;
(iv) subgroups Z of G ×G with Z = Z⊥ and q2|Z = 1, where on G ×G we use the non-

degenerate pairing 〈(g, h), (g′, h′)〉2 = 〈g, g′〉〈g′, h′〉 and associated quadratic form 
q2(g, h) = q(g)q(h).

(b) There is a one-to-one correspondence between all subgroups Z ≤ G × G satisfying 
Z⊥ = Z, and all triples (J, [ψ], φ) where J ≤ G, no elements of J are quaternionic, 
φ ∈ ̂J/2J and [ψ] ∈ H2

J(pt; T ).
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The notation D⊥ is defined in (4.4) where γ(g)(h) = 〈g, h〉. In (iii), as explained in the 
proof, we have that D⊥

± ≥ D±, and both the pairing and quadratic form of G restrict to 
well-defined functions on D⊥

±/D±, so we use the same symbols. The parametrisation of 
(ii) is given in Theorem 1, and directly describes the nimrep as we’ll see. Part (iii) gives 
the type 1 parents and permutation σ appearing in (2.10). Part (iv) gives a geometric 
interpretation of these modular invariants: they are the self-dual lattices lying between 
the indefinite lattice L ⊕

√
−1L and its dual. As we will see in the proof, the relation 

between the subgroup Z of (iv) and the matrix Z of (i) is

g, h ∈ Z iff Zg,h = 1 , ∀g, h ∈ G (4.5)

(the other entries Zg,h all equal 0). There is a similar 4-part description for (b), but we 
only list two.

Proof. The equivalence of (i) and (ii) is given by Theorem 1. The equivalence of (i) and 
(iii) is given in Proposition 1(a) of [30]. We will complete the proof of Theorem 3(a) by 
establishing the equivalence of (iii) and (iv).

First, consider any subgroup D ⊆ G with q(d) = 1 for all d ∈ D. Then (4.1) implies 
that D⊥ ⊇ D, and also that the quadratic form q (hence the pairing 〈, 〉) is well-defined 
on D⊥/D. Hence any such D with quadratic form q defines a possible extension (type 1 
module category) for (G, q). As discussed in section 2.3, sigma-restriction is the branching 
rules from the modular tensor category of (D, q) (with simples in D⊥/D), to that of 
(G, q). Sigma-restriction here is given by the correspondence

Z[D⊥]

Z[D⊥/D] Z[G]

π ι

where we identify the K-group K(G) etc with the group ring Z[G], where π denotes the 
obvious projection D⊥ → D⊥/D, and ι is inclusion D⊥ → G.

Let’s begin by showing that (iii) implies (iv). Let D± and σ be as in (iii). Then the 
matrix product (2.10) is captured by the composition

Z[D⊥
+ ] Z[D⊥

−]

Z[G] Z[D⊥
+/D+] Z[D⊥

−/D−] Z[G]

ι+ π+

σ

π− ι−

of correspondences. This composition collapses (pulls back) to
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Z[Z]

Z[G] Z[G]

p+ p−

where Z is the group

0 → D− → Z → D⊥
+ → 0

consisting of all (g+, g−) ∈ D⊥
+ × D⊥

− satisfying π−(g−) = σ(π+(g+)), and where 
p±(g+, g−) = g±. This pullback defines the modular invariant matrix Z (as well as 
the group Z) and we see (4.5) holds.

Conversely, let Z ≤ G × G be as in (iv). Write D+ = {g ∈ G | (g, 0) ∈ Z} and 
D− = {g ∈ G | (0, g) ∈ Z}. Then q(D±) = 1 because q2(Z) = 1. Hence (g+, g−) ∈ Z

implies g± ∈ D⊥
± because Z⊥ = Z. Also, both (g, h), (g, h′) ∈ Z only when h − h′ ∈ D−. 

Thus |Z| is at most |D⊥
±| |D∓| = |G| |D∓|

|D±| . But Z⊥ = Z forces |Z| = |G|. Hence for every 

g ∈ D⊥
+ there is an h ∈ D⊥

− such that (g + d+, h + d−) ∈ Z for all d± ∈ D±, and this 
assignment σ(g +D+) = h +D− defines an isomorphism D⊥

+/D+ → D⊥
−/D−. Of course 

q2(Z) = 1 requires that q(g) = q(σ(g)) for all g ∈ D⊥
+ .

The proof of part (b) is similar. QED to Theorem 3

In terms of the parametrisation (iii), the full system is Z[G/D− × G/D⊥
+ ]. Alpha-

induction α± : Z[G] → Z[L∗/D− × L∗/D⊥
+ ] are given by α+ = (σ ◦ π+, π⊥

+) and α− =
(π−, 0), where π⊥

+ : G → G/D⊥
+ is the obvious projection. In particular, these α± are 

linear, and so respect tensor products, and through (2.11) recovers the modular invariant 
Z of (4.5). In terms of the parametrisation (iii), the Grothendieck group of the associated 
module category is Z[G/J ], and the action of the fusion ring Z[G] on it (called the 
nimrep) is g.[h] = [g + h]. To see this, note that the exponents (i.e. the diagonal entries) 
of the modular invariant are the j ∈ J⊥ (all with multiplicity 1), so the complete list of 
eigenvalues of the nimrep action of g is required to be 〈g, j〉 for all j ∈ J⊥.

The relation between the (J, [ψ]) parametrisation of (ii), and the (D±, σ) parametri-
sation of (iii), is as follows. Given any subgroup J ≤ G and class [ψ] ∈ H2

J(pt; T ), define 
the homomorphism ε : J → Ĵ as in Theorem 1. Let ϕ : G/J⊥ → Ĵ be the isomorphism 
ϕ([g])(j) = 〈g, j〉, and define ε = ϕ−1 ◦ ε : J → G/J⊥. From the proof of Theorem 1(a), 
we find in this notation D− = JR = ker(ε) and D+ = J0 = {j ∈ J | ε(j) = −j +J⊥}. By 
Lemma 2, the image of ε is D⊥

+/J⊥, and thus ε gives an isomorphism J/D− → D⊥
+/J⊥

is an isomorphism. Therefore, given any a ∈ D⊥
+ , there is a unique class [j] ∈ J/D− such 

that a + J⊥ = ε(j). Define σ(a) = a + j + D−. We know that σ is constant on each D+

class, and that it defines an isomorphism D⊥
+/D+ ∼= D⊥

−/D−.
For example, the identity modular invariant Z[u],[v] = δ[v],[u] corresponds to J = 0. 

More generally, the type 1 modular invariant (pure extension type) with D+ = D− = D
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corresponds to J = D and ε(j) = 0 (equivalently, ε(j) = 1). ‘Charge-conjugation’ 
Z[u],[v] = δ[v],[−u] corresponds to J = 2G and ε(j) = −j/2.

4.6. The toroidal framework

As warm-up for section 6, we should also reinterpret the previous subsection using 
Dixmier-Douady bundles for the torus acting on the torus. Recall from [28] the con-
struction of this bundle. As mentioned in section 4.3, a transgressed (non-degenerate) 
twist for the trivial action of a torus on itself can be identified with the choice of an 
even d-dimensional lattice L. It is convenient to identify the torus T with TL = Rd/L. 
Let π denote the regular representation of TL on the Hilbert space H = L2(TL). For 
any γ ∈ L∗ we have a character (1-dimensional representation) χγ for TL defined by 
χγ(t) = e2πi γ(t); we can extend it linearly to a functional on Rd. As in [28,29], choose 
any unitary Uγ satisfying UγπU

∗
γ = χγπ. The bundle on TL, with fibres the compacts 

K = K(H), is defined using the gluing conditions f(t) = Uf(t + �)U∗
 , for all � ∈ L, 

t ∈ Rd. We denote these bundles symbolically by T/ /LT or just AL.
By the K-group LKT

0 (T ) we mean the K-theory of the C∗-algebra of K-valued sections 
of AL. It is readily computed to be isomorphic to the ring Z[L∗/L], which we recognise 
as the fusion ring for the lattice theory of section 4.3.

Consider first a type 1 modular invariant, corresponding to a pair L ⊂ D of even 
lattices (i.e. they are both transgressed) and identity map σ. Sigma-restriction here is 
clear: it corresponds to the bundle map AL → AD arising from the natural projection 
TL → TD sending x + L to x + D. The associated modular invariant bbt, as an element 
in KK(AL, AL), can be pulled-back to give the diamond

AD′

AL AL

AD

p′ p′

p p

where D′ ⊂ L satisfies L/D′ ∼= D/L (using the tower of section 4.4), and p is the obvious 
projection TD′/L = TL.

The other extreme, type 2, when D± = L and σ is nontrivial, requires that we con-
struct a new bundle. Representations of TL can be regarded as projective representations 
of the quotient TL∗ = TL/L

∗, with twists given by ψ ∈ L∗/L. This allows us to decompose 
the compacts K = K(H(TL)) into the finite sum ⊕ψKψ. We get a vector bundle over TL, 
with components parametrised by ψ ∈ L∗/L, with fibres Kψ, equivariant with respect 
to TL∗ , with sections in the ψ-component satisfying fψ(t + λ) = ψ(λ)AdUλ fψ(t + λ), 
∀λ ∈ L∗, ψ ∈ L∗/L. Call this bundle BL or T/ /L∗T . We get a natural map ι : AL → BL, 
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which is basically the identity on the base with a projection π : TL → TL∗ of the groups 
of morphisms. Then the modular invariant corresponds to

AL AL

BL BL

ι ι
σ

where σ permutes the components of the bundle.
The general modular invariant can be understood through the combination b−σbt+ as 

the composition

AL AL

AD+ AD−

BD+ BD−

p+ p−

ι+

σ

ι−

It is elementary to translate the alpha-induction given in the previous subsection, into 
this language: e.g. the obvious projection π± on morphisms (and identity on base space) 
sends the bundle corresponding to TD± acting on TL, to the bundle corresponding to TL

acting on TL, and corresponds to the right-way map π± : D±/L → L∗/L (embedding) 
and wrong-way map π±! : L∗/L → D±/L (projecting away cosets not in D±) of K-
groups.

5. Tambara-Yamagami categories

The Tambara-Yamagami categories T Y±(G, 〈, 〉) are parametrised by a finite abelian 
group G, a non-degenerate symmetric pairing 〈·, ·〉 on G, and a sign ±. As shown in [65], 
these are the only fusion categories whose primaries (equivalence classes of simples) are 
[αg] (g ∈ G) and [ρ], and which obey the fusions (1.3).

These categories are pairwise distinct: T Ys(G, 〈, 〉) and T Ys′(G′, 〈, 〉′) are tensor equiv-
alent iff s = s′ and 〈g, h〉 = 〈ϕ(g), ϕ(h)〉′ ∀g, h ∈ G, where ϕ : G → G′ is a group 
isomorphism. The Tambara-Yamagami categories are amongst the simplest examples of 
near-group categories.

The sign ± is not at all mysterious. Any fusion category with a grading by some 
(not necessarily abelian) group K, can have its associativity isomorphisms twisted by a 
cocycle in H3(G; T ). This is the explanation for the H3 twists [20] of the category of G-
graded vector spaces VectG, and for the Zn twists of the Kazhdan-Wenzl sl(n) quantum 
group categories [53]. Each Tambara-Yamagami category has a Z2 grading, where αg
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has grading 0 and ρ has grading 1. Thus it can be twisted by H2(Z2; T ) ∼= Z2. This is 
the source of the sign ±.

5.1. Tambara-Yamagami as a Potts model

Izumi (Example 3.7 in [50]) realised each T Y±(G, 〈, 〉) as a system of endomorphisms 
on a Cuntz algebra (though in a somewhat ad hoc manner). In this subsection we re-
cover this in a calculation-free way, using the Potts model. This subsection, apart from 
Theorem 4, is not used in the rest of the paper.

By the Cuntz algebra On, we mean the universal C∗-algebra generated by n generators 
Si (and their adjoints) satisfying S∗

i Sj = δi,j and 
∑

j SjS
∗
j = 1. Fix a finite abelian group 

G. We will label the generators of O|G| by Sg for g ∈ G (so S∗
gSh = δg,h etc).

An excellent way to realise fusion categories is using endomorphisms on an algebra 
A. Objects are algebra endomorphisms; given endomorphisms ρ and τ , by Hom(ρ, τ)
we mean the space of intertwiners {t ∈ A | tρ(a) = τ(a)t, ∀a ∈ A}. Tensor product 
becomes composition, and direct sum is realised using e.g. Cuntz generators. When the 
category is unitary and A is e.g. a C∗-algebra (the situation considered here), then the 
endomorphisms should be ∗-endomorphisms, and the dual of an object is given by its 
adjoint. See e.g. [51,31] for details.

In particular, we say that a system of ∗-algebra endomorphisms αg, ρ on O|G| realises 
the fusion category T Y±(G, 〈, 〉), if the compositions αg◦αh, αg◦ρ, and ρ ◦αg, equal αg+h, 
ρ, and ρ resp., up to conjugations by unitaries of O|G|, and ρ(ρ(x)) =

∑
g Sgαg(x)S∗

g .

Theorem 4. [51] Each T Ys(G, 〈, 〉) can be realised by the following system αg, ρ of endo-
morphisms on O|G|: for each g ∈ G, define αg(Sh) = Sg+h and

ρ(Sh) = U(h) s√
n

∑
k∈G

SkU(h)∗ (5.1)

where U(h) =
∑

k〈h, k〉SkS
∗
k is unitary. Then

αgαh = αg+h , U(g)U(h) = U(g + h) , U(g)∗ = U(−g) , αg(U(h)) = 〈g, h〉U(h) ,

αg ◦ ρ = ρ , ρ ◦ αg = Ad(U(g)) ◦ ρ , ρ(U(g)) =
∑
h

Sh−gS
∗
h , ρ2(Sh) =

∑
g

SgSg+hS
∗
g

The subtle aspect here of course is the endomorphism ρ. In this subsection we see 
that this can be derived from the high temperature - low temperature duality in the 
Potts model just as the Ising fusion category is related to Krammers-Wannier duality in 
the Ising model [27]. This can be regarded as a conceptual explanation for the ρ formula 
(5.1).

The Ising model can be generalised to a Q-state standard Potts model, where Q = |G|. 
The transfer matrix formalism for the Q-state Potts Hamiltonian
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H(σ) = −∑
i,j n·nJδ(σi, σj) (5.2)

on the two dimensional lattice Z2 leads to the following algebraic set up. For each 
g ∈ G, define Q ×Q matrices Ug = diagk∈G〈g, k〉 and Vg by (Vg)h,k = δk,g+h. Then both 
assignments g �→ Ug, Vg define Q-dimensional unitary representations of G. Moreover, 
VhUg = 〈g, h〉UgVh and together the Ug, Vg generate the Q ×Q complex matrix algebra 
MQ = End(CQ). For each g ∈ G, define a sequence of unitaries W g

i in MQ⊗MQ⊗MQ⊗
· · · by

W g
2i+1 = 1 ⊗ · · · ⊗ 1 ⊗ U−g ⊗ Ug ⊗ 1 ⊗ · · · (5.3)

with Ug appearing as the (i + 1)th factor, and

W g
2i = 1 ⊗ · · · ⊗ 1 ⊗ Vg ⊗ 1 ⊗ · · · (5.4)

with Vg appearing as the ith factor. Then

(W g
j )Q = 1 , W g

i W
h
i+1 = 〈g, h〉Wh

i+1W
g
i , W g

i W
h
j = Wh

j W
g
i , |i− j| > 1 . (5.5)

The symmetric group SQ acts on CQ by permuting basis vectors and so induces a product 
action on the UHF C∗-algebra FQ = ⊗NMQ. In particular, for each g ∈ G there is a 
G-action on FQ by 

⊗
i Ad(Vg) =

∏
i Ad(W g

2i). The Temperley-Lieb operators in FQ are 
the spectral projections of W g

i corresponding to eigenvalue 1, namely

ei = 1
Q

(∑
g

W g
i

)
. (5.6)

In particular

e2i−1 = 1 ⊗ · · · ⊗ 1 ⊗ π ⊗ 1 ⊗ · · · (5.7)

e2i = 1 ⊗ · · · ⊗ 1 ⊗ π′ ⊗ 1 ⊗ · · · (5.8)

where π (occupying the ith and (i + 1)th spots) and π′ (occupying the ith spot) are 
projections in MQ ⊗MQ and MQ respectively given by

π =
Q∑
i=1

Eii ⊗ Eii , π′ =
Q∑

i,j=1
Eij/Q (5.9)

if {Eij : i, j = 1, 2, . . . , Q} are matrix units for MQ. In the Ising case:

e2i = (1 + σi
z)/2 , e2i+1 = (1 + σi

xσ
i+1
x )/2 . (5.10)
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The transfer matrix for the two dimensional Q-state Potts model is then (cf. Chapter 12 
of [6]) described as

V = exp
(
K2

∑
e2i+1

)
, W = exp

(
K∗

1
∑

e2i

)
(5.11)

with Kramers-Wannier duality being the shift ρ : ei → ei+1. Here the family {ei} satisfy 
the relations that non-nearest neighbours commute:

eiej = ejei |i− j| > 1 (5.12)

whilst nearest neighbours satisfy

eiei±1ei = τei (5.13)

where τ−1 = Q. The family {ei} is SQ invariant, and the {W g
i } generate the G fixed 

point algebra of FQ. This formulation is related to that of generalised Clifford algebras 
as follows. The formulae

Γg
i = W g

1 W
g
2 · · ·W g

i , W g
i = (Γg

i−1)
−1Γg

i (5.14)

is the generalised Jordan-Wigner transformation required between (5.5) and

(Γg
i )

Q = 1 , Γg
i Γ

h
j = 〈g, h〉Γh

j Γg
i , i < j . (5.15)

We extend the endomorphism ρ on FSQ

Q to FG
Q by W g

i �→ W g
i+1, i.e. V

g
i �→ U−g

i Ug
i+1

and U−g
i Ug

i+1 �→ V g
i+1. Next, extend ρ to FQ by Ug

i �→ V g
1 V

g
2 · · ·V g

i . In particular Ug
1 �→

V g
1 . In the Cuntz algebra description of OG, with generators Sg, this means that the 

spectral projection corresponding to 1 namely S0S
∗
0 is taken to Σh,kShS

∗
k/|G|. So one 

could try as an ansatz to define an endomorphism ρ on OG by S0 → ±(ΣhSh/
√
|G|), 

and similarly since SgS
∗
g is taken to Ad(U(g))(Σh,kShS

∗
k) so we should take ρ(Sg) =

±Ad(U(g))(ΣhSh/
√
|G|), on the Cuntz algebra. Here g �→ U(g) = Σh〈g, h〉ShS

∗
h is 

basically the regular unitary representation of G in OG. Then indeed ρ is a well defined 
endomorphism on the Cuntz algebra induced by high temperature - low temperature 
duality. The sign choice ± determines the two Tambara-Yamagami categories associated 
to the same group and non-degenerate pairing. Denote by αg the automorphisms on OG

defined by αg(Sh) = Sg+h. We have recovered the realisation of T Y±(G, 〈, 〉) given in 
Theorem 4.

5.2. The double of Tambara-Yamagami

Fix any Tambara-Yamagami fusion category T Ys(G, 〈, 〉). Let q be any quadratic form 
on G realising 〈·, ·〉 (Lemma 4(a) says that such q always exist).
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T Ys(G, 〈, 〉) is realised as a system of endomorphisms in a Cuntz algebra in Theorem 4
above. From this the modular data of its double can be computed (cf. section 3 of [51]). 
We find there are precisely 4n + n(n − 1)/2 primaries (equivalence classes of simples), 
which we will parametrise by βg

i , ρ
g
j , σg,h = σh,g, where g, h ∈ G, g �= h, and i, j ∈ {0, 1}. 

For each g ∈ G, fix a square-root 
√
q(g). Then the modular data for the double is

Tβg
i ,β

g
i

= 〈g, g〉 , Tρg
i ,ρ

g
i

= (−1)i(±x3)−1/2/
√

q(g) , Tσg,h,σg,h
= 〈g, h〉 ,

Sβg
i ,β

h
j

= 〈g, h〉2

2n , Sβg
i ,ρ

h
j

= (−1)i 〈g, h〉
2
√
n

, Sβg
i ,σh,k

= 〈g, h + k〉
n

, Sσg,h,ρk
j

= 0 ,

Sσg,h,σg′,h′ = 〈g, h′〉〈h, g′〉 + 〈g, g′〉〈h, h′〉
n

, Sρg
i ,ρ

h
j

= (−1)i+jx−3

2n
√

q(g)
√
q(h)

∑
k

〈k − g − h, k〉 ,

where x is defined in section 4.1.
Different choices of 

√
q(g) in the previous paragraph are absorbed into the choice of 

which ρgi we call i = 0 or i = 1.
Using Gauss sums, it is possible to evaluate the sum in Sρg

i ,ρ
h
j

more explicitly. In 
particular, write 〈·, ·〉 as a product of the indecomposables of section 4.1. Then the sum 
in Sρg

i ,ρ
h
j

will be the product of the corresponding sums for each indecomposable. These 

sums for each indecomposable are readily computed: e.g. for type pks we obtain

pk−1∑
=0

〈�− a, �〉 = εpk

(
2
pk

)
sk〈a/2, a/2〉

√
pk

whilst for type 2km we compute

2k−1∑
=0

〈�− a, �〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if k > 1 and a odd

(1 − i)εm
√

2k
( 2
m

)k 〈n/2, n/2〉 if k > 1 and a even
2 if k = 1 and a odd
0 if k = 1 and a even

We compute (from Verlinde’s formula (2.9)) the fusions

βg
s · βh

s′ = βg+h
ss′ , βk

s · σg,h = σg+k,h+k , βg
s · ρhs′ = ρh+2g

ss′ ,

σg,h · σg′,h′ = σg+g′,h+h′ + σg+h′,h+g′ , σg,h · ρks = ρg+h+k
+ + ρg+h+k

− ,

ρgs · ρhs′ =
∑

[k] �=[(g+h)/2]

σk,g+h−k +
∑

,2=g+h

β
ss′

where the first sum in the ρgs ·ρhs′ fusion product is over the size-2 orbits of k ↔ g+h −k

(to avoid over-counting σ’s), and the second sum is over the size-1 orbits �. On the right 
side of the σg,h · σg′,h′ fusion product we use the convention σk,k = βk

+ + βk
−.
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Note that the Tambara-Yamagami categories depend on 〈·, ·〉 and not q, but we de-
scribed the modular data of their doubles in terms of q. As explained in Lemma 4, 
different q can correspond to the same 〈·, ·〉. Is it clear that they will give rise to the 
same modular data? This point is somewhat subtle. If q, q′ are equivalent, then so will 
be the corresponding modular data. However, compare q of type 22

1 with q′ of type 22
−3

(these are inequivalent but correspond to the same pairing 〈, 〉). The T matrices using q
vrs q′ are identical, except for the 8 entries for ρgi : when s = +, using q gives exactly 2 
entries Tρg

i ,ρ
g
i

equal to 1, whereas using q′ none equal 1. For s = −, these are reversed. We 
find that if q describes the modular data of the double of T Ys(G, 〈, 〉), then q′ describes 
that of T Y−s(G, 〈, 〉).

5.3. The Z2-crossed braiding of Tambara-Yamagami

There is a simpler way to associate to T Ys(G, 〈, 〉) a modular tensor category (when 
|G| is odd).

Given a group Γ, a Γ-crossed category C (cf. [66,59,23]) is a modoidal category with 
a Γ-action by automorphisms and a Γ-valued grading ∂ such that ∂(gX) = g ∂X g−1. 
A Γ-braiding on a Γ-crossed category is a choice, for any objects λ, μ ∈ C where λ is 
homogeneous, of an operator ελ,μ ∈ Hom(λμ, ∂(λ)μλ) subject to initial conditions

εidA,μ = ελ,idA
= 1 ,

and the naturality and braiding-fusing equations (which for later convenience we write 
in the endomorphism language)

εν,κsλ(t) = ∂λt ∂μ(s)ελ,μ ,

ελ,μ◦κ = ∂λμ(ελ,κ)ελ,μ ,

ελ◦ν,μ = ελ,∂νμλ(εν,μ) ,

γ(ελ,μ) = εγ(λ),γ(μ) ,

(5.16)

whenever λ, μ, ν, κ ∈ C (with λ, ν homogeneous), s ∈ Hom(λ, ν), t ∈ Hom(μ, κ), and 
γ ∈ Γ.

If C carries an action of Γ, then the Γ-equivariantization CΓ is a tensor category whose 
simple objects are pairs (X, {uγ}γ∈Γ) where X is an orbit of Γ and uγ for each γ ∈ Γ is an 
isomorphism in Hom(g(X), X) — see [59] for details. The point is that if C is Γ-crossed 
braided, then the Γ-equivariantisation CΓ will be braided [59,23].

Now, if we realise C as endomorphisms on a Cuntz algebra O (recall Theorem 4), then 
any C∗-algebra automorphism γ extends to an automorphism of C: endomorphism ρ gets 
mapped to γρ = γ ◦ ρ ◦ γ−1.

For example, On has an order-2 automorphism ϕ sending Sh to S−h. Then we find 
ϕαg = α−g, ϕ(U(g)) = U(−g), and ϕρ = ρ: e.g.
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(ϕρ)(Sh) = ϕ(ρ(ϕ−1(Sh))) = ϕ(U(−h) 1√
|G|

∑
k∈G

SkU(h)∗)

= U(h) 1√
|G|

∑
k∈G

S−kU(−h)∗ = ρ(Sh)

Hence Γ = 〈ϕ〉 ∼= Z2 acts on any T Ys(G, 〈, 〉). The corresponding Z2-grading has ρ odd 
and the αg even.

Theorem 5. Any Tambara-Yamagami category T Ys(G, 〈, 〉) is Z2-crossed braided. This 
Z2-braiding is non-degenerate iff |G| is odd. In this case, the Z2-equivariantization 
T Ys(G, 〈, 〉)Z2 has primaries σg = σ−g (g �= 0), β±, ρ±, and modular data

Sσg,σh
= 2λ (〈g, h〉2 + 〈g, h〉−2) , Sβt,βt′ = λ , Sσg,ρt = Sρt,σg

= 0 ,

Sρt,ρt′ = s(−1)(|G|2−1)/8tt′/2 , Sσg,βt = Sβt,σg
= 2λ , Sρt,βt′ = Sβt′ ,ρt = t′/2 ,

Tσg,σg
= x〈g, g〉 , Tρt,ρt = t/

√
sx , Tβt,βt = x ,

(5.17)

where λ−1 = 2
√

|G| and x (corresponding to (G, 〈, 〉)) is defined in section 4.1.

Proof. First we must verify the Z2-braiding, for the action and grading defined in the 
paragraph before Theorem 5. As explained more generally in section 2.2 of [12], to do this, 
it suffices to consider equivariance γ(ελ,μ) = εγ(λ),γ(μ) and the braiding-fusing relation

εν,∂κμ ν(εκ,μ) s = ∂λμ(s) ελ,μ (5.18)

and its adjoint, for all γ ∈ Γ and s ∈ Hom(λ, ν ◦ κ), as κ, λ, μ, ν run through representa-
tives of the equivalence classes of simples. In our case, we take those representatives to 
be αg and ρ.

Our starting point is the realisation (Theorem 4) of Tambara-Yamagami as a system 
of endomorphisms on the Cuntz algebra OG. We have OG-algebra endomorphisms ρ, αg

and intertwiners U(g), Sh ∈ OG, such that Hom(ρ, αgρ) = C1, Hom(αg, ρ2) = CSg, and 
Hom(ρ, ραg) = CU(g). Taking adjoints, this implies Hom(αgρ, ρ) = C1, Hom(ρ2, αg) =
CS∗

g , Hom(ραg, ρ) = CU(g)∗.
The relevant intertwiner spaces are Hom(αgαh, αhαg) = C1, Hom(αgρ, ραg) =

CU(g)∗, Hom(ραg, α−gρ) = CU(−g), Hom(ρρ, ρρ) =
∑

g CSgS
∗
g , so that Z2-crossed 

braidings would be εαg,αh
= εg,h1, ερ,αg

= ερ,gU(g)∗, εαg,ρ = εg,ρU(g), and ερ,ρ =∑
k ε

k
ρ,ρSkS

∗
k , where εg,h, ερ,g, εg,ρ, εkρ,ρ ∈ T (since the category is unitary). The braiding-

fusing relations are then:

εg,h εg,k = εg,h+k , εg,k εh,k = εg+h,k , (5.19)

εg+h,ρ = εg,ρεh,ρ〈g, h〉 , ερ,g+h = ερ,gερ,h〈g, h〉 , (5.20)

〈g, k〉εg,ρ εk−g
ρ,ρ = εkρ,ρ = 〈g, k〉ερ,g εg+k

ρ,ρ , (5.21)
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εg,k = 〈k, g〉 (5.22)

ερ,−k ερ,k〈k, g + k〉 = εg,k (5.23)
s√
|G|

∑
 ε


ρ,ρε

k
ρ,ρ〈�, k − g〉 = 〈g, k〉εg,ρ (5.24)

while equivariance gives

εg,h = ε−g,−h , ερ,g = ερ,−g , εg,ρ = ε−g,ρ , εkρ,ρ = ε−k
ρ,ρ . (5.25)

Equation (5.22) says εg,h = 〈g, h〉. Equation (5.20) and (5.25) say εg,ρ = a(g) for some 
quadratic form a associated to 〈·, ·〉. Equation (5.21) and (5.25) force ερ,h = εh,ρ. Then 
(5.21) gives εkρ,ρ = ε0ρ,ρa(k). The value of ε0ρ,ρ is fixed, up to a sign, by (5.24): we find 
ε0 2
ρ,ρ = s x−3 where x is defined in section 4.1. It is readily seen that these values satisfy 

all equations.
Now consider the Z2-equivariantisation T Ys(G, 〈, 〉)Z2 . Its simple objects are σg =

σ−g = αg +α−g (for any g ∈ G with 2g �= 0), ρ± = (ρ, ±1), and β±
h = (αh, ±1) whenever 

2h = 0. It is convenient to write σg = β+
g + β−

g when 2g = 0. Fusion products are (cf. 
Definition 2.1 of [59])

[σg][σh] = [σg+h] + [σg−h] , [ρt][σg] = 2[ρt] , [ρt][ρt
′
] =

∑
h

[βtt′

h ] +
∑
[g]

[σg] ,

[σg][βt
h] = [σg+h] , [ρt][βt′

h ] = [ρtt
′
] , [βt

h][βt′

h′ ] = [βtt′

h+h′ ] , (5.26)

for any t, t′ ∈ {±} (in the case of greatest interest here, when |G| is odd, the only 
β±
h are β±

0 ). Hence the categorical dimensions (which must equal the Perron-Frobenius 
dimensions, since the category is unitary) of the simple objects βt

h, σg and ρt are 1, 2 
and 

√
|G|, respectively.

The braiding cx,y on the Z2-equivariantisation is as follows (cf. Proposition 2.2 of 
[59]). Choosing the obvious bases, we get

cσg,σh
= diag(εg,h, ε−g,h) = diag(〈g, h〉, 〈g, h〉) ∈ End(σg+h + σg−h) (5.27)

cβt
h,β

t′
h′

= 〈h, h′〉 (5.28)

cρt,ρt′ = diagg(t′ ε0ρ,ρa(g)) (5.29)

cσg,ρt = diag(a(g), a(g)) , cρt,σg
=

(
0 t a(g)

t a(g) 0

)
(5.30)

cσg,βt
h

= 〈g, h〉 = cβt
h,σg

(5.31)

cρt,βt′
h

= t′ a(h) , cβt′
h ,ρt = a(h) (5.32)

For example, the difference between cσg,ρt and cρt,σg
is due to the fact that the braidings 

εx,y lie in Hom(x ⊗ y, ∂xy ⊗ x). Thus up to a global normalisation λ, we obtain the 
S-matrix:
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Sσg,σk
= λ2 (〈g, k〉2 + 〈g, k〉−2) , Sβt

h,β
t′
h′

= λ , Sρt,ρt′ = λtt′sx−3 ∑
g〈g, g〉 (5.33)

Sσg,βt
h

= Sβt
h,σg

= λ2 , Sσg,ρt = Sρt,σg
= 0 , Sρt,βt′

h
= Sβt′

h ,ρt = t′a(h)2/2 (5.34)

For example, the extra 
√
|G| in Sρt,βt′

h
comes from the dimension of ρt, which enters 

here through the trace of the identity endomorphism on ρt. Also, note that 〈g, h〉2 = 1
when 2h = 0. It is explained after equation (10) in [12] how to obtain the T matrix 
directly from the braidings – that the modular group normalisation is x for |G| odd 
comes from the fact that the double of Tambara-Yamagami is the Deligne product of 
the equivariantisation by the opposite of the metric group (G, 〈, 〉). The result is as in 
the statement of Theorem 5.

Note that if 2 divides |G|, then the S matrix is degenerate. The reason is that only 
the two ρt rows have the possibility of distinguishing the βt′

h columns. If G is even order, 
then there will be at least two h �= 0 with 2h = 0, hence at least four such βt

h. The 
calculation of Sρt,ρt′ when |G| is odd requires that we compare 

∑
g a(g) to 

∑
g a(g)2. 

Both of these are Gauss sums; their ratio equals the Jacobi symbol 
(

2
|G|

)
, which equals 

(−1)(|G|2−1)/8. When |G| is odd, the invertibility of S follows from the calculation of the 
double given in section 5.2. QED to Theorem 5

For |G| odd, the category will be a modular tensor category. In this case there will 
be only βt

0, which we will abbreviate to βt. The tensor unit is β+, and β− is a simple-
current. This modular tensor category corresponds to a Z2-orbifold of a lattice theory 
associated to G, as we see next subsection.

5.4. Reconstruction for Tambara-Yamagami

In this subsection we construct a strongly rational VOA V and conformal net A whose 
representation theories Mod(V) and Rep(A) are both tensor equivalent to the double of 
Tambara-Yamagami T Ys(G, 〈, 〉) (we also do the same for its Z2-equivariantisation when 
|G| is odd). Being the double of a fusion category, we should be able to obtain V and A
from some sort of orbifold of a holomorphic theory (i.e. one with trivial representation 
theory). However, the double of Tambara-Yamagami is manifestly not the double of a 
group fusion category VectωG (its quantum dimensions are not all integers). This implies 
that we cannot obtain V and A directly from a holomorphic theory through a group 
orbifold. However, we do the next best thing.

We obtain V and A by first performing an orbifold by G of a self-dual lattice theory 
V(Λ) (which is necessarily holomorphic), resulting in a different lattice theory V(L), and 
then orbifolding V(L) by an involution of L. Because the involution doesn’t descend to 
an automorphism of V(Λ), we cannot combine these two orbifolds into a single group 
orbifold.

For a simple example, first perform a Z3 orbifold of the E8 lattice theory, giving the 
A2 ⊕ E6 lattice theory, followed by an orbifold of either the A2 or E6 piece (which one 
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depending on the choice of 〈·, ·〉) by the v �→ −v lattice isometry; the result is the double 
of T Ys(Z3, 〈, 〉) for one choice of sign s. (The construction we give below is necessarily a 
little more complicated, in order that it also works for even |G|.)

Let L be any even positive-definite lattice of dimension d. We discussed the auto-
morphisms of the VOA V(L) in section 4.4, and Lemma 6 describes one class of VOA 
orbifolds, namely by ax for x ∈ Q ⊗Z L.

The other class of orbifolds we need are by isometries of L. The most familiar of 
these corresponds to the isometry θ : v �→ −v, and orbifolding by it is denoted V(L)+. 
The resulting VOA V(L)+ is known to be rational, and its irreducible modules are 
(see [1]): the simple-currents β±

[v] for each [v] ∈ GL with 2[v] = [0]; the dimension-2 
simples σ[v] = σ[−v] for each [v] ∈ GL with 2[v] �= 0; and ρχ± for each χ ∈ R/2L, 
where R = {v ∈ L : v · L ⊇ 2Z} (these come from twisted V(L)-modules). We have 
Tβ±

[v],β
±
[v]

= qL([v])e−πid/12 = Tσ[v],σ[v] and Tρχ
±,ρχ

±
= ∓e−πid/8. The Frobenius algebra 

A describing the (simple-current) extension of V(L)+ to V(L) is β+
[0] + β−

[0]. As always 
with type 1 systems, there are two equivalent alpha-inductions, so choose one of them. 
Then it sends β±

[v] to the (local simple) V(L)-module [g], σ[v] to the local V(L)-module 
[v] +[−v], and each ρχ± to a twisted V(L)-module ρχ. We use this orbifold to reconstruct 
below the equivariantisation T Ys(G, 〈, 〉)Z2 . For the double, when |G| is even, another 
isometry is needed.

Theorem 6. Consider any Tambara-Yamagami category T Ys(G, 〈, 〉). Then both the dou-
ble of T Ys(G, 〈, 〉) (for any G) and the Z2-equivariantization T Ys(G, 〈, 〉)Z2 (when |G|
odd) are realised as Mod(V) and Mod(V ′), for certain completely rational VOAs V and 
V ′ which are Z2-orbifolds of lattice VOAs.

Proof. Let L resp. L′ be any positive-definite even lattices realising the pointed modular 
tensor category C(q, G) resp. C(q, G), as promised by Theorem 2. So G = GL and q = qL. 
Define L̂ to be the lattice gluing (L ⊕L ⊕L′⊕L′)〈[(g, g, g, g)]g∈G〉 (recall the discussion in 
section 4.2), where we identify each g ∈ G with the corresponding coset in GL and GL′ . 
Then L̂ is even and positive-definite, and GL̂

∼= G ×G has elements [g, h] := (g+h, 0, g, h), 
for all g, h ∈ G. We find that L̂ has quadratic form qL̂([g, h]) = 〈g, h〉.

Now, it is manifest that L̂ has an isometry τ sending any (a, b, c, d) ∈ L̂ to (a, b, d, c). 
So τ sends [g, h] ∈ GL̂ to [h, g]. Then (see [4,22]) τ lifts to an order-2 automorphism 
of the VOA or conformal net V(L̂) resp. A(L̂) (a priori the order could also be 4, a 
complication due to the 2-cocycle implicit in the construction of V(L), but for our τ the 
order is 2). We claim that the orbifold A(L̂)τ has category of representations Rep(A(L̂)τ )
which is braided tensor equivalent to the double of T Ys(G, 〈, 〉) for some choice of sign.

To see this, let’s first note (using [22]) that the modules βg
±, σg,h, ρ

g
± for A(L̂)τ match 

those for T Ys(G, 〈, 〉). The nontrivial check is the twisted or solitonic modules ρg±: the 
twisted A(L̂)-modules are in bijection with τ -invariant classes in GL̂, i.e. the [g, g] for 
g ∈ G, and when restricted to A(L̂)τ each of these splits into what we call ρg+ + ρg−.
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A third conformal net is relevant here. Consider the lattice gluing Λ = L̂〈[g, 0]〉g∈G: it 
is also even and positive-definite, and is self-dual. Thus the corresponding conformal net 
A(Λ) is holomorphic, i.e. its category of representations is Vect. These three conformal 
nets are related by the conformal inclusions

A(L̂)τ ⊂ A(L̂) ⊂ A(Λ)

These two inclusions correspond to Frobenius algebras θ12 = β0
+⊕β0

− and θ23 = ⊕g[g, 0], 
respectively. The algebra θ13, governing the extension A(L̂)τ ⊂ A(Λ), is determined 
shortly. To identify Rep(A(L̂)τ ) with the Drinfreld double D(T Ys(G, 〈, 〉)) for some 
sign, we will identify the full system, i.e. Rep(A(L̂)τ )θ13 (of course the local modules are 
Rep(A(L̂)τ )locθ13

= Rep(A(Lsd)) = Vect).
As always, there are two different inductions, corresponding to using the braiding or 

its reverse, but in this type 1 (pure extension) setting they are equivalent, so choose either 
one. First consider alpha-induction from A(L̂)τ to A(L̂). Then clearly Indβg

± = [g, g], 
Indσg,h = [g, h] ⊕ [h, g] and Ind ρg± = ρg, the A(L̂)-twisted sectors.

Hence the Frobenius algebra governing the A(L̂)τ ⊂ A(Λ) extension is θ13 =
β0

+ ⊕ β0
− ⊕⊕g �=0σg,0. We compute dim Hom(Indβg

i , Indβh
j ) = dim Hom(βg

i ⊗ θ13, βh
j ) =

1, so Indβg
i is a simple object in the full system which we’ll call αg (these are 

also the twisted sectors for A(L̂) ⊂ A(Λ)). Because alpha-induction is a tensor 
functor, we have αg ⊗ αh = αg+h. Likewise, dim Hom(Indσg,h, Indσg,h) = 2 and 
dim Hom(Indβk

i , Indσg,h) = dim Hom(⊕ �=0σk+,k, σg,h) = δk,h + δk,g, so Indσg,h =
αg + αh. Finally, dim Hom(Ind ρgi , Ind ρhj ) = dim Hom(⊕k,±ρ

k
±, ρ

h
j ) = 1, so let ρ denote 

this common simple object Ind ρg± in the full system. Again, using the fact that alpha-
induction respects fusions, we find αg ⊗ ρ = ρ = ρ ⊗ αg and ρ ⊗ ρ = ⊕gαg. Thus the 
full system must be T Ys(G, 〈, 〉′) for some symmetric pairing 〈·, ·〉′ on G. By Corollary 
4.8 in [13], the modular tensor category Rep(A(L̂)τ ) must be braided tensor equivalent 
to the double of T Ys(G, 〈, 〉′). By comparing T -eigenvalues, we find that 〈·, ·〉′ = 〈·, ·〉, as 
desired. Thus the full system must be T Ys(G, 〈, 〉) for some sign s.

To get the other sign, consider instead the lattice L̂′ = L̂⊕E8 and the automorphism 
(τ, αv) where v = ([1], [1]) ∈ A∗

1 ⊕ E∗
7 ⊂ 1

2E8. Then V(L̂⊕ E8)(τ,αv) is a simple-current 
extension of V(L̂)τ ⊗ V(A1 ⊕ E7). Again, the full system is a Tambara-Yamagami cate-
gory for G. We determine the pairing and sign from the modular data: in particular, we 
find that this E8 trick changes the T -eigenvalues for the twisted modules ρg± by a factor 
of i, i.e. the sign s has changed.

Now restrict to odd-order G. Similar considerations show that the conformal embed-
ding A(L)+ ⊂ A(L) has full system T Y+(G, 〈, 〉). This means (Corollary 4.8 in [13]) 
that the double of that Tambara-Yamagami is braided tensor equivalent to the Deligne 
product Rep(A(L)+) × Rep(A(L))opp (here ‘opp’ means the category with the opposite 
braiding coppX,Y = (cY,X)−1). So

Rep(A(L)+) × C(G, q) ∼= Z(T Y+(G, 〈, 〉)) ∼= T Y+(G, 〈, 〉)Z2 × C(G, q)
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where the second tensor equivalence comes from the previous subsection. Now, let C
resp. C′ be the full subcategory of Rep(A(L)+) × C(G, q) resp. T Y+(G, 〈, 〉)Z2 × C(G, q)
generated by all objects which are invertible of odd order. Both C and C′ can be identified 
with the C(G, q) factors. Then the subcategories commuting with C resp. C′ must be 
tensor equivalent. Thus we obtain Rep(A(L)+) ∼= T Y+(G, 〈, 〉)Z2 , as desired. The other 
sign is obtained from the E8 trick, as done previously. QED to Theorem 6

5.5. K-theory of Tambara-Yamagami and its orbifold

Until now, the examples we’ve studied K- and KK-theoretically are classical, either 
coming directly from finite groups or Lie theory. In this subsection we realise the fusion 
category of T Ys(G, 〈, 〉) as a fusion category of bundles over a groupoid. This allows 
us to likewise identify the modular tensor category of its double and (when |G| is odd) 
its Z2-equivariantisation, as modular tensor categories of bundles over groupoids. We 
explain how to realise their module categories using bundles. We hope in the future to 
find such geometric interpretations of other exotic fusion categories.

Let G be a finite abelian group as before. Fix a non-degenerate symmetric pairing 
〈·, ·〉 on G. Using it, we can identify G as a group with Ĝ, its group of irreps, through 
g �→ ĝ := 〈g, �〉 ∈ Ĝ. Likewise, we’ll write ψ̂ for the element in G corresponding via 〈, 〉
to ψ ∈ Ĝ.

Our first task is to capture the fusion ring (1.3) using groupoids. Recall the discussion 
in section 2.5. Let X = G ∪ pt. Consider the equivariant K-group K�

G(X), where G acts 
on G ⊂ X by left translation, and fixes pt ∈ X. There are two orbits in X: G with 
trivial stabiliser, and pt with stabiliser G. The indecomposable bundles with support 
pt are in natural bijection with ψ ∈ Ĝ — call them aψ (we can use 〈, 〉 to parametrise 
these by g ∈ G if we like). There is only one indecomposable bundle with support G
(corresponding to the trivial representation of the trivial group), which we shall call 
ρ. Thus as an additive group, K0

G(G ∪ pt) = K0
G(GL) ⊕ K0

G(pt) = Z ⊕ RG, whilst 
K1

G(G ∪ pt) = 0.
Recall the discussion of product of bundles in section 2.5. Consider the map M :

X × X → X defined by M(g, pt) = M(pt, g) = g, M(pt, pt) = pt, and M(g, h) = pt
(this choice is necessary in order to recover the Tambara-Yamagami fusions). Then M
is G-equivariant. We need to modify slightly the generic product defined in section 2.5. 
The tensor product V ⊗W of bundles carries naturally an action of G ×G as mentioned 
there; use the pairing to identify this group with G × Ĝ, and restrict this action to the 
diagonal Δ′

G = {(g, ̂g) | g ∈ G}. For the union of orbits Y take

Y = pt × pt ∪ pt × Ĝ ∪ G× pt ∪ Δ′
G

which we identify with a subset of X ×X in the obvious way, again using the pairing.
Consider first the product ρ ⊗ ρ. It will be a bundle over the orbit M(0, 0) = pt, 

namely IndG
1 (C ⊗ C) = ⊕ψψ, the regular representation of G, where the superscript 
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G is the stabiliser of pt, where the subscript 1 denotes the stabiliser of 0 ∈ G ⊂ X in 
G, and we take the tensor product of the fibres over 0. Thus we recover the formula 
[ρ] · [ρ] =

∑
g[αg] in (1.3). Shortly, we will need to understand this more explicitly: we 

can naturally identify the tensor product C[G] ⊗G C[Ĝ] of bundles with both C[Ĝ] and 
C[G], as we now show. Indeed, the representation ψ ∈ Ĝ is isomorphic to the submodule 
C
∑

g ψ(g)g⊗ ĝ of C[G] ⊗G C[Ĝ]; likewise the basis element eh ∈ C[G] is identified with 

eh =
∑

g ĝ(h)eg ⊗ eĝ ∈ C[G] ⊗G C[Ĝ].
The product ψ ⊗ ρ will be a bundle over the orbit of M(0, pt) = 0, namely C ⊗

ResG1 (ψ) = C. More explicitly, the total space Cψ ⊗ Vρ has basis vψ ⊗ eg, which maps 
G-equivariantly to ψ(g)eg, a basis for C[G]. Thus ψ ⊗ ρ ∼= ρ.

Likewise, the product ρ ⊗ αψ will also be a bundle over the orbit of M(0, pt) = 0, 
namely C ⊗ ResG1 (ψ) = 1. More explicitly, eg ⊗ vψ maps equivariantly to egψ̂. Thus 
again ρ ⊗αg

∼= ρ. It will be important in the following though that although the bundles 
Cψ ⊗G Vρ and Vρ ⊗G Cψ are equivalent, they are certainly not equal.

Finally, the product αψ ⊗ αφ will be a bundle over the orbit pt, with Δ′
G-module 

Cψ⊗Cφ̂ naturally identified with G-module Cψφ (or equivalently Cψ̂φ̂). Thus, αψ⊗αφ =
αψφ.

Thus for this choice of M etc, we obtain a ring structure on K0
G(X) isomorphic to the 

fusion ring (1.3) of the Tambara-Yamagami category T Ys(Ĝ, 〈, 〉), or equivalently that 
of T Ys(G, 〈, 〉). But much more is true. As we know, this ring structure is independent of 
the sign and choice of pairing on G. The point of introducing the pairing, and of tweaking 
the product of section 2.5, is to recover the full fusion category of Tambara-Yamagami. 
To do this, we need to identify the associators.

Consider first the associator aψ,ρ,φ. First note that (Cψ ⊗ ρ) ⊗Cφ maps equivariantly 
to ρ through (vψ ⊗ eg) ⊗ vφ �→ ψ(g)egφ̂, whereas Cψ ⊗ (ρ ⊗ Cφ) maps to ρ through 

vψ ⊗ (eg ⊗ vφ) �→ ψ(gφ̂)egφ̂. Thus the natural map (Cψ ⊗ ρ) ⊗ Cφ → Cψ ⊗ (ρ ⊗ Cφ) is 
multiplication by ψ(φ̂) = 〈ψ, φ〉. We choose this to be the associator aψ,ρ,φ.

For comparison, consider the associator aψ,φ,ρ. Then (Cψ⊗Cφ) ⊗ρ maps to ρ through 
(vψ⊗vφ) ⊗eg �→ ψ(g)φ(g)eg, whereas Cψ⊗ (Cφ⊗ρ) maps to ρ through vψ⊗ (vφ⊗eg) �→
ψ(g)φ(g)eg. Thus the natural map (Cψ⊗Cφ) ⊗ρ → Cψ⊗ (Cφ⊗ρ) (hence the associator 
aψ,φ,ρ) is multiplication by 1. Likewise, aψ,φ,ρ = 1 = aφ,φ′,φ′′ .

Consider next the associator aρ,ψ,ρ. Since (ρ ⊗αψ) ⊗ρ ∼=
∑

φ αφ
∼= ρ ⊗ (αψ⊗ρ), aρ,ψ,ρ

is a vector with |G| components, each component indexed by some φ ∈ Ĝ. First note that 
eg × eĝ ∈ M−1(pt) ∩ Y contributes the vector egψ̂ ⊗ eĝ to (ρ ⊗ αψ) ⊗ ρ and ψ(g)eg ⊗ eĝ

to ρ ⊗ (αψ ⊗ ρ), hence contributes to the φ-component the terms 
√
|G|−1

φ(gψ̂)egψ̂ ⊗ eĝ

and 
√
|G|−1

ψ(g)φ(g)eg ⊗ eĝ, respectively. Thus the φ-component of the associator is 
multiplication by ψ(φ̂) = 〈ψ, φ〉. On the other hand all |G| components of the associators 
aρ,ρ,ψ and aψ,ρ,ρ are 1.

Finally, consider the associator aρ,ρ,ρ. Since (ρ ⊗ ρ) ⊗ ρ ∼= |G|ρ ∼= ρ ⊗ (ρ ⊗ ρ), aρ,ρ,ρ
is a |G| × |G| matrix with rows and columns indexed by ψ ∈ Ĝ. The associator is the 
change of basis matrix from the natural basis bψ(g) = ψ(g)eg of the multiplicity space of 
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(ρ ⊗ρ) ⊗ρ, to the natural basis cφ(g) = egφ̂ of the multiplicity space of ρ ⊗(ρ ⊗ρ). We find 

that cψ corresponds in the second basis to the Fourier transform 
√
|G|−1 ∑

φ ψ(gφ̂)egφ̂, 
and thus the change of basis matrix is aρ,ρ,ρ =

√
|G|−1〈ψ, φ〉−1.

By comparison with [65], we find that these associators match spot on with the as-
sociators of T Y+(Ĝ, 〈, 〉). Thus the category of bundles of X/ /G form a fusion category 
tensor equivalent to T Y+(Ĝ, 〈, 〉). It would be interesting to recover the s = −1 analogue 
as a groupoid. As mentioned earlier, s = ± corresponds to the twist of the associator 
coming from H3 of the grading Z2 of Tambara-Yamagami, and so only appears in aρ,ρ,ρ
(as a sign change).

Our groupoid picture also constructs with ease some module categories. The module 
categories for T Ys(G, 〈, 〉) were classified by [57], and come in two classes. The first class 
is parametrised by a subgroup H ≤ G and any ψ ∈ H2(H, T ). Recall the treatment of 
the module categories for Rep(G) at the end of section 2.5. The irreducible ψ-twisted 
bundles V over X/ /ψH, where H acts on X = G ∪ pt as usual, correspond to a ρ[g] for 
each coset [g] ∈ H\G (with support on [g] and trivial stabiliser) and each χ ∈ Irrψ(H)
(with support on pt). Define M ′ = M and Y ′ = Y as before. We compute φ ⊗χ ∼= φ|H χ, 
φ ⊗ρ[g] ∼= ρ[φ̂g], ρ ⊗χ ∼=

∑
[k]∈G/H ρ[k], and ρ ⊗ρ[g] is the regular representation 

∑
χ∈Ĥ

χ.
Consider further the case [ψ] = [1] for simplicity. Note that the module categories 

Bun(X/ /H) and Bun(X/ /H⊥) are equivalent: through the isomorphisms Ĥ ∼= G/H⊥

and Ĥ⊥ ∼= G/H given by the pairing 〈, 〉, the indecomposable bundles φ ∈ Ĥ for X/ /H
correspond to the bundles ρ[k] of X/ /H⊥, whilst the ρ[g] of the former groupoid corre-
spond to χ ∈ Ĥ⊥. Generalising this to arbitrary ψ recovers Lemma 30 of [57].

The other class is much more complicated to describe, and exists only for very special 
G (e.g. 

√
|G| must be integral); it is testament to the K-theory method that it provides 

these with an elegant formulation. Suppose for instance that G = A × Â with pairing 
〈(a, ̂a), (b, ̂b)〉 = â(b) ̂b(a). Then we can reinterpret the groupoid XG/ /G as one copy 
of A acting on the left and the other copy acting on the right. The reason for this 
is that it gives another expression for the product of bundles: as before, first identify 
KAL×ÂR(X) ×KAL×AR(X) with KAL×AR×AL×AR(X×X). Then restrict to the subgroup 
AL × 1 × 1 ×AR. If we now have a map M : X ×X → X which is G-equivariant in the 
sense that M(xa, y) = M(x, ay), then the wrong-way map composed with the other two 
produce a multiplication KAL×AR(X) × KAL×AR(X) → KAL×AR(X). In terms of the 
notation in section 2.5, choose the same M and Y as before, except that Δ′

G is replaced 
with (A × 1) × (1 × Â). In this equivalent formulation of T Y+(G, 〈, 〉), the αg correspond 
to pairs (φ, a) where φ ∈ Â and a ∈ A, with the obvious product.

Given any subgroup B ≤ A, we can interpret ̂A/B as the subgroup of ψ ∈ Â with 
kernel ker(ψ) ≥ B. The point is that for any subgroup B ≤ A, the category Bun(pt/ /B×
̂A/B) naturally forms a module category for the fusion category Bun(X/ /A × Â) ∼=
T Y+(G, 〈, 〉), for any subgroup B ≤ A, where now we choose the constant map M ′ :
X×pt → pt, and Y ′ = pt×pt∪B×̂A/B. The module category has simples (χ, a′B) where 
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χ ∈ B̂ and a′B ∈ A/B; the nimrep is (φ, a).(χ, a′B) = (φ|Bχ, aa′B) and ρ.(χ, a′B) =∑
χ′,a′′B(χ′, a′′B) where the sum is over all χ ∈ B̂ and all a′′B ∈ A/B.
Now turn to the Z2-equivariantisation T Ys(G, 〈, 〉)Z2 . Here, G must be odd order. We 

wish to identify its fusion ring with the equivariant K-group KDG
(X), where DG is the 

generalised dihedral group G×Z2 (Z2 acts on G by taking inverse) and X = G ∪ pt as 
before. DG fixes pt. The additive group structure is again easy:

KDG
(X) = KZ2(0) ⊕KDG

(pt) = RZ2 ⊕RDG

(More precisely, what should appear is RD
Ĝ
, which we identify with DG using 〈, 〉 as 

usual.) We identify ρ± with R
Ẑ2

, so these correspond to bundles at 0 ∈ G. The irreducible 

representations of D̂G consist of two one-dimensional representations, which we identify 
with β±, and for each ψ ∈ Ĝ, ψ �= 1, we have the two-dimensional representation 
σψ = σψ. We identify σg = σ−g with σĝ.

To recover the multiplicative structure, use the same M as before. To compute the 
products, use IndDG

Z2
± = β± +

∑
ψ σψ and σψ ⊗ σψ′ = σψψ′ + σψ′ψ. Otherwise the 

calculation is as for Tambara-Yamagami. Note that the category Bun(X/ /DG) naturally 
possesses a fusion category (in fact modular tensor category) structure, by applying the 
Z2-equivariantisation procedure to the category Bun(X/ /G).

A large class of module categories for the Z2-equivariantisation are Bun(X/ /ψH), 
where H ≤ G and [ψ] ∈ H2

H(pt; T ). The indecomposable bundles, as we know, are 
ψ ∈ Ĥ and ρ[kH]. The nimrep is β±.ψ = ψ, β±.ρ[kH] = ρ[kH], σg.ψ = ĝ|Hψ + ĝ|Hψ, 
σg.ρkH] = ρ[(g+k)H] + ρ[(k−g)H], ρ±.ψ =

∑
kH ρ[kH] and ρ±.ρ[kG] =

∑
ψ ψ. The modular 

invariant is given by the correspondence

X//DG X//DG

X//G pt//Z X//G

pt//G pt//G

ι ι

ι′ ι′p+ p−

where notation is taken from section 4.5 (in particular Z depends on H, ψ) or is otherwise 
clear. These module categories correspond to first extending both sides by the simple-
current β−, resulting in the lattice theory of Theorem 6. The type 1 parents are thus 
lattice theories. The most important of these choices is G = H and ψ = 1, with modular 
invariant |χβ+ + χβ− |2 + 2 

∑
±g �=0 |χσg

|2. It undoes the Z2-orbifold of Theorem 6.
We also get a groupoid interpretation of the double of T Ys(G, 〈, 〉), namely the bundles 

over G ∪{pt}/ /(G×G)×Z2 , where Z2 here permutes (g, h) ↔ (h, g). (g, h, 0) ∈ (G ×G)×Z2
sends γ ∈ G to g + γ − h whilst (0, 0, 1) sends γ to −γ. Module categories can be easily 
constructed as we just did for the Z2-equivariantisation.
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5.6. Tambara-Yamagami and grafting

In [29] the authors introduced the notion of grafting, and used it to generalise the 
modular data of e.g. the double of the Haagerup subfactor. The key ingredient there is 
the notion of Z2-laminated modular data. In [29], the modular data for the Haagerup 
double was constructed from the loop group LSpin(13) at level 2 together with the double 
D(S3).

Based on the work of this section, a much more natural approach suggests itself. First, 
note that any Z2-equivariantisation, e.g. that of T Ys(G, 〈, 〉), is Z2-laminated. Moreover, 
the double of the Haagerup can be obtained from grafting T Ys(Z3 × Z3, 〈, 〉)Z2 and 
T Ys′(Z13, 〈, 〉)Z2 for certain choices of signs and symmetric pairings. This generalises to 
all known examples D0Hgν in the Haagerup-Izumi series. Namely, replace Z3 with Zν

and Z13 with Zν2+4. Here ν can be any odd positive integer.
Grafting the Haagerup-Izumi series from the Z2-equivariantisations of two Tambara-

Yamagami categories seems much more natural and promising than the suggestion of 
[29], which proposed grafting finite group doubles to the loop group categories at level 
2.

Recall that the Z2-equivariantisation of T Ys(Z3×Z3, 〈, 〉) has simple objects σα, where 
α ∈ Z3 × Z3 and α ∼ −α �= 0, simple-currents β± generating Z2, and twisted fields ρ±
(‘twisted’ is in reference to the Z2-orbifold of the lattice theory, given in Theorem 6). Its 
fusions are given in (5.26).

The fusion rules for the double of the Haagerup can be read off from section 3.2 of 
[29]. They can be written in a more coherent (and general) form as follows. The grafted 
fusion rules amalgamate the simple-currents β± of the Zν ×Zν and Zν2+4 theories into 
simples called 0 and b in [29], amalgamate the orbifold fields σα from the Zν × Zν and 
twisted fields ρτ from the Zν2+4 called cα, and amalgamate the orbifold fields σα from 
the Zν2+4 and the twisted fields ρτ from the Zν × Zν called da, to obtain the elegant 
fusion rules (first announced in Oberwolfach in a March 2015 talk by the first author) 
(we write c0 = 0 + b and d0 = 0 − b):

b2 = 0 + b +
∑

cα +
∑

da =: R , cαdb = R− 0 =: R− ,

cαcβ = R− + cα+β + cα−β , dadb = R− − da+b − da−b ,

bcα = R− + cα , bda = R− − da .

Instead of calling cα and da amalgamations, perhaps we should say the twisted fields of 
Zν × Zν and Zν2+4 are dropped as being non-local.

6. Loop groups

The final important example for us is the loop group LG at level k ∈ Z>0, where G
is a compact, connected, simply-connected Lie group. We write Fusk(G) for its fusion 
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ring and P k
+(G) for its primaries Φ. For G of rank r, we can identify λ ∈ P k

+(G) with the 
affine highest-weight λ = (λ0; λ1, . . . , λr) ∈ Zr+1

≥0 where 
∑

a∨i λi = k for certain positive 
integers a∨i (the co-labels) depending only on G. For all G, a∨0 = 1 and (k; 0, . . . , 0)
denotes the fusion unit 0. Fusk(G) can be expressed as RG/Ik(G) for some ideal Ik(G)
of the representation ring RG called the fusion ideal, and primary λ is associated to 
class [ρλ] ∈ RG/Ik(G) where ρλ is the G-irrep with highest-weight λ = (λ1, . . . , λr). For 
example, for G = SU(n), we have all a∨i = 1, there are n simple-currents (namely the λ
with some component λi = k), and charge-conjugation λ �→ λ∗ is nontrivial iff n > 2.

The Dixmier-Douady bundles were constructed in [28]. Let us review that construc-
tion. Recall the construction of bundles for tori in section 4.6. Let G be a compact 
semi-simple Lie group of rank r of A-D-E type, e.g., G = SU(r + 1). Fix a maximal 
torus T ∼= Rr/Q∨ of G (Q∨ is the coroot lattice). The orbits of G acting adjointly on 
itself are the conjugacy classes of G, which are parametrised by the Stiefel diagram, 
which is an affine Weyl chamber. More precisely, remove from the Cartan subalgebra 
Rr = R ⊗Z Q∨ the hyperplanes fixed by a Weyl reflection rα, as well as the translates 
of those hyperplanes by elements of Q∨. The Stiefel diagram S is the closure of any 
connected component. Any orbit of the adjoint action intersects S in one and only one 
point. Points in the interior of S correspond to generic (so-called regular) elements of G
and have stabiliser T , but points on the boundary have larger stabiliser.

Consider G = SU(2) for concreteness. We can identify its maximal torus with the 
circle R/Q where Q =

√
2Z is the (co)root lattice and a Stiefel diagram S with half a 

fundamental domain of T , i.e. 0 ≤ x ≤ 1/
√

2. The Hilbert space is H = L2(G), and 
the fibres will be the compacts K(H). We want to associate a unitary Uγ to any weight 
γ ∈ Q∗ = ZΛ1 (Λ1 is the fundamental weight). For any subrepresentation σ in L2(G), 
define “σ⊗γ” as follows: restrict σ to T (i.e., write its weight-space decomposition), and 
in the Weyl-image wS ⊂ T act like the character χwγ(e2πit) = e2πiwγ(t). Apply this to 
the regular representation π in H. Then thanks to infinite dimensionality, π ⊗ γ � π as 
both a representation of T and the Weyl group, so let Uγ be the unitary defining that 
equivalence. We can cover G � S3 with two G-equivariant patches: D1 about the scalar 
matrix I and D2 about the scalar matrix −I. The bundle for G on G with level k ∈ Z

is defined by the following G-equivariant gluing condition: for x ∈ T ∩D1 ∩D2 identify 
(gxg−1, c) in D1 with (gxg−1, Ad(πgUκπ

−1
g )c) in D2 for any g ∈ G, c ∈ K, where κ = k+2

and we abbreviate UκΛ1 to Uκ. We call Uκ the twisting unitary. The consistency condition 
for these bundles is then that when gxg−1 = x, then Ad(πgUκπ

−1
g U−1

κ ) should be the 
identity, i.e., πgUκπ

−1
g = λgUκ for some character (i.e., one-dimensional representation) 

g �→ λg of the stabiliser CG(x).
The construction for general G is similar; there κ = k + h∨ where h∨ =

∑r
i=0 a

∨
i

is the dual Coxeter number. Denote this bundle symbolically by G/ /κG or just Aκ

when G is understood. Here, the group G acts on the base G by conjugation, and 
κ ∈ Z ∼= H3

G(G; Z) is the twist. The K-group κKG
0 (G) is the K-theory of the C∗-algebra 

of K-valued sections of Aκ. The theorem of Freed-Hopkins-Teleman (Theorem 1 of [40]) 
is that κKG

0 (G) ∼= κKdimG
G (G) is isomorphic as a ring to the fusion ring Fusk(G).
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We expect that (dual) Dirac operators can be used to construct the matrix units 
for this bundle G/ /κG. More precisely, [38] explain how to obtain elements of twisted 
equivariant K-theory using families of Dirac operators. Section 3 of [39] describes how 
to do this for κK�

G(G). They obtain (for each integrable representation of the centrally 
extended loop group (LG)κ) a family of Dirac operators parametrised by the affine 
space of connections (this has underlying vector space given by the loop algebra Lg). 
The connections correspond bijectively to the splittings of 0 → Lg → L̂g → iRrot → 0
or the linear splittings of the surjection (Lg)κ → Lg. This family of Dirac operators 
is equivariant with respect to (LG)κ. This gives an element in the (LG)κ-equivariant 
K-theory on the space of connections, or equivalently on the κ-twisted G-equivariant K-
theory on G. In [41], the fusion category of the integrable lowest-weight representations 
of the loop group LG of a compact Lie group G, regarded only as a linear category, is 
identified with the twisted, conjugation-equivariant curved Fredholm complexes on the 
group G: namely, the twisted, equivariant matrix factorisations of a super-potential built 
from the loop rotation action on LG.

These Dirac families define elements in the KK-group KK(Aκ, pt), which can be 
identified with κK�

G(G). We would like to construct (in the spirit of Kasparov [52]) 
the dual Dirac family. This will lie in KK(pt, Aκ) = κKG

� (G). We expect that the 
composition of these will be a matrix unit in KK(G/ /κG, G/ /κG), while the composition 
in the other direction will be δλ,μ ∈ KK(pt, pt) = Z ⊕ 0. We plan to return to this in a 
future publication.

The generic module categories for the loop group modular tensor categories C(G, k)
are now known [47] to be built in standard ways from symmetries of the extended Dynkin 
diagram of G: for any G, there is a bound K (growing cubically with the rank) such that 
any module category for C(G, k), when k > K, is generic in that sense. In the remainder 
of this section we give the K-theoretic description of these generic module categories. It 
would be very interesting to do the same for the known exceptional module categories 
— see section 6 in both [28] and [30] for work in this direction.

6.1. Outer automorphism modular invariants

The most obvious modular invariant Z, other than the identity I, is charge-
conjugation Z = S2. In the loop group LG setting, charge-conjugation corresponds 
to an outer automorphism of G. More generally, see [30] where the K-theoretic interpre-
tation of the nimrep, alpha-induction etc for the modular invariants associated to any 
outer automorphism of G is developed and given in more detail.

Let G be as above and write κ = k + h∨ for some level k ∈ Z≥0 as before. The group 
of outer automorphisms of G is naturally identified with the group of symmetries of 
the Dynkin diagram of G, and as a permutation of these vertices also permutes highest 
weights of G in the usual way. More precisely, pick an outer automorphism ω of G, and 
define ω(λ) to be the weight whose ith component is λωi (ω fixes λ0). Through this, ω
permutes the level k primaries λ ∈ P k

+(G). For example, an automorphism of G = SU(n)
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realising the charge-conjugation automorphism is taking the complex conjugation of the 
unitary representations.

The modular invariant Zω corresponds to the KK-element coming from the bundle 
map Aκ → Aκ associated to the automorphism ω : G → G. The full system is the fusion 
ring, and alpha-induction is α+ = ω and α− = id.

On the other hand, inner automorphisms are invisible as they act trivially on P k
+(G), 

so from this point of view can be ignored.

6.2. Simple-current modular invariants

The other generic source of modular invariants for the loop groups are the simple-
current modular invariants. These correspond to strings living on non-simply-connected 
groups G/Z where Z is some subgroup of the centre Z(G) of G.

Recall the discussion of simple-current from section 3.1. The group of simple-currents 
for G ×H is the direct product of those for G and for H, so it suffices to consider simple 
G. All of these simple-currents correspond to extended Dynkin diagram symmetries, 
with the single exception Fus2(E8) which we will ignore as it does not yield a modular 
invariant (module category) for E8. For any G and k, the simple-currents and outer 
automorphisms together generate all symmetries of the extended Dynkin diagram.

For example, the group of simple-currents for Fusk(SU(n)) is cyclic of order n, gen-
erated by J = (0; k, 0, . . . , 0) which permutes P k

+(SU(n)) through (λ0; λ1, . . . , λn−1) �→
(λn−1; λ0, λ1, . . . , λn−2). Then the grading is Qλ(Jd) = ξ

d
∑n−1

i=1 iλi
n and TJd,JdT0,0 =

ξ
kd(n−d)
2n , where we write ξn = e2πi/n.

The K-theoretic treatment of simple currents was developed in [30]. Restrict to Gn =
SU(n), the most interesting case. Fix any divisor d|n and level k, and write n′ = n/d

and κ = k + n. The simple-current modular invariant Z〈Jn′〉 exists (i.e. there are no 

quaternions in 〈Jn′〉) iff n′(n + 1)k is even. Write Zd for the order-d subgroup of the 
centre Z(Gn) ∼= Zn. The corresponding nimrep has Grothendieck group τKGn

0 (Gn/Zd) �
τKGn×Zd(Gn) for some twist τ , with the module structure coming from the pushforward 
of the obvious multiplication Gn × (Gn/Zd) → Gn/Zd of the bases. The type 1 parents 
have fusion ring τ

′
K

Gn/Zd′
0 (Gn/Zd′) for some subgroup Zd′ of Zd and twist τ ′. The full 

system should be RZd′ ⊗Z
τ ′′
K

Gadj
n ×ZL

d′
0 (Gn), where the product is component-wise, with 

the second component product coming from the pushforward of multiplication on Gn. 
The appropriate twists τ, τ ′, τ ′′ are given in section 5 of [30]. These K-homology groups 
all vanish in degree 1.

Let G be any simply-connected, connected, compact Lie group G. For such G, mul-
tiplication by the centre Z(G) should correspond naturally to the action of the simple-
currents in the fusion ring κKdimG

G (G), in the following sense. The primaries λ ∈ P k
+(G)

are identified with certain conjugacy classes — this yields a geometric picture of Fusk(G)
dual to the usual representation ring description RG/Ik. Now, Z(G) permutes these con-
jugacy classes by multiplication, and this permutation agrees with the simple-current 



D.E. Evans, T. Gannon / Advances in Mathematics 421 (2023) 109002 53
action on primaries. For example, for G = SU(2), the level k primaries are λ = (k−λ1; λ1)
for integers 0 ≤ λ1 ≤ k; this corresponds to the conjugacy class intersecting the Stiefel di-
agram S (half of the maximal torus T ) at diag(exp[2πi(λ1+1)/2κ], exp[−2πi(λ1+1)/2κ])
for κ = k + 2. By multiplication, the central element z = −I sends the λ1 conjugacy 
class to the λ1 + κ one, which the Weyl group identifies with κ − λ1 − 2. This matches 
the action of the simple-current.

The relation between the centre of G and the simple-currents is part of CFT folklore. 
The generalisation of this calculation to all simple simply connected connected compact 
G is central to what follows. To each element z of the centre of G, we obtain an invertible 
bundle map Aκ → Aκ given by multiplication of the base space by z, and hence an in-
vertible element Jz ∈ KK(G/ /κG, G/ /κG). [30] conjectured that this should correspond 
directly to the multiplication of the simple-current in the fusion ring. We can now prove 
it:

Proposition 2. For each central element z of G and each level k ∈ Z>0, there exists 
a simple-current jz ∈ k+h∨

K�
G(G) such that the map Jz : k+h∨

K�
G(G) → k+h∨

K�
G(G)

corresponds to the fusion product by jz. Moreover, provided (G, k) �= (E8, 2), this map 
z �→ jz is a group isomorphism.

The easiest way to reduce this to a familiar calculation from CFT, is perhaps 
Theorem 4.13 of [56], which builds k+h∨

KG
0 (G) up from the conjugacy classes clξ of 

prequantised elements exp(ξ) at level k. If we let μ = B�(kξ) denote the associated 
weight, then the pushforward of the inclusion clξ ↪→ G sends the fundamental class 
[clξ] ∈ KG

0 (clξ, Cl(Tclξ)) (where Cl(TCξ) is the Clifford bundle on the conjugacy class) 
to the element [χμ] ∈ RG/Ik = k+h∨

KG
0 (G). If we restrict to ξ from the level k alcove, 

this gives a natural basis for k+h∨
KG

0 (G). Then Jz acts on conjugacy classes by sending 
clexp(ξ) to clz exp(ξ) = zclexp(ξ). Then z exp(ξ) is also prequantised at level k, and it is 
known that its weight is jzμ for some simple-current jz. This defines an injective group 
homomorphism from Z(G) to the level k simple-currents of G. The latter was computed 
in [42], and it is found that except for E8 at level 2, the group of simple-currents is the 
same (finite) size as that of Z(G). The obvious analogue of Proposition 2 holds when G
is no longer simple.

Fix any subgroup Z of the centre Z(G) and write G for G/Z. The embedding Z ↪→ G

of groups and of the fixed-point pt = 1 into the space G, yields the K-theory map 
(restriction) κK�

G(G) → K�
Z(pt) = RẐ . This is how we recover here the fact (recall 

section 3.1) that the fusion ring Fusk(G) carries a grading a �→ Qa by representations of 
Z: Fusk(G) = ⊕ψ∈ẐFusk(G)ψ.

To understand the modular invariants which aren’t type 1, note that G has a well-
defined adjoint action on G since the centre of G on G acts trivially. Now, H3

G
(G; Z) ∼=

Z ⊕RZ , where Z = H3(G; Z) and RZ = H3
G

(pt; Z), as is easily verified using the spectral 
sequence associated to the fibration G → (EG × G)/G → BG. To help identify levels 
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etc, we find that H3
G

(G; Z) = H3(G; Z), transgression H4
G

(pt; Z) → H3(G; Z) is ×n for 
SU(n), and H3(G; Z) → H3(G; Z) is ×2 or ×1 depending on n and d.

Now, any representation λ of G projects to a projective representation of G = G/Z, 
with multiplier ψ given by the restriction Qλ|Z of the representation to the abelian group 
Z (more precisely, a G-irrep ρ restricts to ρ|Z , which will consist of dim ρ copies of the 
same irrep ψρ ∈ Ẑ). Indeed, H2

G
(pt; T ) ∼= RZ parametrises the projective equivalence 

classes of projective representations of G. Mimicking the construction of G/ /κG, we can 
construct a bundle G/ /κG with components (subbundles) for each ψ ∈ Ẑ. We denote 
these subbundles by G/ /(κ,ψ)G, or simply Aψ

κ .
We have proved:

Proposition 3. Let G be compact, connected and simply-connected, of dimension d. Fix 
any subgroup Z of the centre Z(G) and nonzero level k, and write κ = k + h∨. Then the 
fusion ring κKd

G(G) = Fusk(G) is graded by restriction to Z: Fusk(G) = ⊕ψ∈ẐFusk(G)ψ. 
For each level k and ψ ∈ Ẑ, (κ,ψ)Kd

G/Z(G) ∼= Fusk(G)ψ (as an abelian group) and 
(κ,ψ)Kd+1

G/Z(G) = 0.

We get something analogous when G/Z acts on G/Z0 for Z0 ≤ Z ≤ Z(G) — in fact 
this is used at the end of this subsection.

Let’s turn now to the modular invariants. Let G be as above. Recall the parametri-
sation of simple-current modular invariants in Theorem 1, given by a subgroup J and 
group homomorphism ε : J → Ĵ . The subgroup J there is our subgroup Z ≤ Z(G). 
More precisely, we have the isomorphism z �→ jz of Proposition 2, from the centre Z(G)
to the group of simple-currents. For convenience, we’ll write εz and q(z) in place of εjz
and Tjz,jzT0,0. When Z is cyclic (which is automatic for all simple G except Spin(4n)), 
ψ ≡ 1 and ε is completely determined by the value q(z) for a generator z ∈ Z.

Consider first a type 1 module category (Z, ψ) (i.e. one of extension type). This 
requires q(z) = 1 for all z ∈ Z, and ψ ≡ 1. Write G = G/Z. As before, we can define 
a bundle G/ /κ′G (as usual throughout this subsection we largely suppress the subtleties 
of the twists, but these are addressed in section 5.2 of [30]), and as before this falls 
into subbundles Aψ

τ ′ parametrised by ψ ∈ Ẑ. Sigma-restriction is the obvious projection 
π : Aκ → A1

κ′ , which kills any λ ∈ P k
+(G) unless Qλ|Z = 1, in which case it sends λ to 

its Z-orbit. This type 1 modular invariant is the correspondence

Aκ Aκ

Aκ′

π π

Writing H = ΔG(1 × Z), we can pull this back to a bundle of type H/ /H, formally 
reminiscent of (1.1).
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Consider next the type 2 module categories (Z, ψ) (i.e. those of pure automorphism 
type). This requires ε : Z → Ẑ to be an isomorphism; in the case where Z = 〈z〉 is cyclic, 
this is equivalent to demanding that q(z) is a primitive |Z|-root of unity. The associated 
KK-element is then

Aκ Aκ

⊕z∈ZAεz
κ ⊕z∈ZAεz

κ

π π
×z

(6.1)

where the diagonal maps act on morphisms by projecting G → G/Z, and π∗ lifts pro-
jective G-representations to ordinary G-representations. Explicitly, π puts λ ∈ P k

+(G)
into the component Aφ

τ where φ = Qλ; unlike the type 1 π, its kernel is trivial. The 
horizontal map is multiplication of the subbundle Aεz

κ by z (recall Proposition 2). This 
recovers the modular invariant which Theorem 1(a) associates to (Z, ψ).

Using the preceding two paragraphs, it now is easy to find the KK-element cor-
responding to any (Z, ψ). Write ZR for the kernel of ε, and ZL for the kernel of 
the transpose of ε, as in the proof of Theorem 1(a). Then ε yields an isomorphism 

ε̃ : Z/ZR → ̂Z/ZL. The two type 1 parents are A1
κL

:= (G/ZL)/ /(κL,1)(G/ZL) and 

A1
κR

:= (G/ZR)/ /(κR,1)(G/ZR), and they are linked by ε̃:

Aκ Aκ

A1
κL

A1
κL

⊕z∈Z/ZL
Ãε̃z

κL
⊕z∈Z/ZL

Ãε̃z
κR

πL πR

π′
L π′

R

×z

(6.2)

where we write Ãφ
κL

and Ãφ
κR

for the obvious subbundles of (G/Z)/ /κL
(G/Z) (where 

φ ∈ ̂Z/ZL) and (G/Z)/ /κR
(G/Z) (where φ ∈ ̂Z/ZR). In particular, πL kills λ ∈ P k

+(G)
unless Qλ|ZL

= 1, in which case π′
L sends the ZL-orbit of λ to Ãφ

κL
with φ = Qλ|Z ∈

̂Z/ZL. The horizontal map is as before.
Combining simple-current modular invariants with outer automorphisms is trivial 

here: compose (multiply) the correspondence for (Z, ψ) with that for ω.

7. Modular data reinterpreted

It would be highly desirable to interpret K-theoretically the modular group repre-
sentation ρ associated to these fusion rings τK�

G(G). For instance, this would allow us 
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in principle to understand intrinsically (i.e. in the KK- or K-world) why the modular 
invariants are invariant under the action of SL2(Z). It suffices to focus on the genera-
tors S := ρ 

( 0
1
−1
0
)

and T := ρ 
( 1

0
1
1
)
. However, these matrices S, T in the Verlinde (i.e. 

primary) basis are complex — more precisely cyclotomic — and never integral. So that 
means we need to realise them in the complexification C ⊗Z KK(G/ /τG, G/ /τG). This 
suggests to use (twisted equivariant) Chern characters, which is a ring isomorphism from 
complexified K-groups to cohomology rings.

In this section we consider the Chern character maps. At least for the cases in which 
we are interested, the target of these maps (some cohomology space) comes with a 
preferred basis, and in terms of this basis the Verlinde (fusion) product is diagonal. This 
change-of-basis may make the matrices S, T look messier.

7.1. Finite groups and cyclic homology

As warm-up, let’s begin with the Chern character for the G/ /G groupoid, where G is 
finite.

The primaries for G/ /G are pairs [g, φ], where g labels conjugacy classes and φ ∈
Irr(CG(g)), and form a basis for the complexified fusion ring C ⊗Z Fus. Another basis, 
called the monomial basis, is parametrised by equivalence classes [(g, h)] of commuting 
pairs g, h ∈ G, up to simultaneous conjugation (g, h) ∼ (gk, hk). In terms of the monomial 
basis, the SL2(Z)-action is especially simple:

(
a

c

b

d

)
.[(g, h)] = [(gahb, gchd)] . (7.1)

The change-of-basis between the primary basis {[g, φ]} and the monomial basis 
{[(g, h)]}, involves the character tables of the centralisers CG(g). We will show here 
that this change of basis can be interpreted naturally using equivariant Chern charac-
ters. Our treatment of Chern characters follows [5], which describes these for G finite. We 
will specialise their discussion to the case where G acts on itself by conjugation (which 
we write as a right-action, to match [5]).

Write cp(G) = {(g, γ) ∈ G × G : gγ = γg} for the set of all commuting pairs. G
acts on cp(G) by simultaneous conjugation: (g, γ)κ = (κ−1gκ, κ−1γκ). Let Gγ = CG(γ). 
Then cp(G) can be regarded as the disjoint union 	γ∈GG

γ , where Gγ denotes all g ∈ G

fixed by this action of γ. The target for the Chern map is

HP 0(G//G) ⊕HP 1(G//G)=H�
c (cp(G)/G;C)=H�

c (cp(G);C)G = (⊕γ∈GH
�
c (Gγ ;C))G ,

where HP � denotes periodic cyclic cohomology and Hc denotes Čech cohomology. Be-
cause the base space of G/ /G is 0-dimensional, HP 1(G/ /G) = Hod

c (cp(G); C)G = 0 while 
HP 0(G/ /G) = Hev

c (cp(G); C)G can be identified with all C-valued maps f from the set 
of commuting pairs, which are constant on the G-orbits: f(gκ, γκ) = f(g, γ).
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Take some G-equivariant bundle over G: E(h,φ) where h ∈ G is a representative of a 
conjugacy class and φ is an irrep of CG(h). Then γ acts on the fibre (E(h,φ))g, whenever 
g commutes with γ. This fibre is 0-dimensional unless g is conjugate to h, in which case 
the fibre carries an action of CG(g) ∼= CG(h) equivalent to φ. Diagonalise that action by 
γ: φ(γ) ∼= V1 ⊕ · · · ⊕ Vr where Vi is the eigenspace of dimension di, with eigenvalue λi. 
Define

chγ
G(E(h,φ)) =

r∑
i=1

λich(Ei) , (7.2)

where ch(Ei) is the usual (non-equivariant) Chern character of the di-dimensional trivial 
bundle over CG(γ). We can think of ch(Ei) as die[g,γ]G where [g, γ]G denotes the G-orbit 
(acting by simultaneous conjugation), and eS, for S a set, is the characteristic function 
of S written formally as eS =

∑
s∈S es. Packaging these together,

chG(E(h,φ)) = ⊕γ∈Gchγ
G(E(h,φ)) . (7.3)

So for finite groups at least, the Chern character maps to functions on commuting 
pairs. The ring homomorphism property tells us that the fusion ring structure is the 
usual tube algebra one (cf chapter 12 of [34]), so in terms of the cohomology basis, 
the fusion product has been diagonalised. Theorem 1.19 of [5] tells us chG : K0

G(G) ⊗Z

C → HP 0(G/ /G) is an isomorphism of C-vector spaces. (Of course in odd degree, both 
vanish.) Any field in which the relevant eigenvalues live, would have worked in place of 
C, so we could have used e.g. the cyclotomic field Q[ξ|G|] in place of C, if we had wanted.

Our point is that not only the fusion product has a simplified interpretation in 
the cohomology basis. We can think of the SL2(Z)-representation as living in bivari-
ant cohomology HP �(G/ /G, G/ /G). The homology group of the torus is of course 
H2(T 2; Z) ∼= Z2. The set of all group homomorphisms f : H2(T 2; Z) → G are in natural 
bijection with pairs (g, h) ∈ cp(G), namely f(1, 0) = g and f(0, 1) = h. The group G acts 
naturally on itself by conjugation, and hence likewise on these maps f(m, n) by conju-
gation. This recovers the G-action on cp(G) given above. The modular group SL2(Z) of 
the torus acts naturally on homology H2(T 2; Z) (as change of basis), and hence likewise 
on the f(m, n), and hence HP �(G/ /G).

This SL2(Z)-action can be worked out explicitly. For each μ =
(

a
c
b
d

)
∈ SL2(Z), 

construct a correspondence

G//G G//G

(G×G//G×G,Pμ)

ιL ιR

(7.4)



58 D.E. Evans, T. Gannon / Advances in Mathematics 421 (2023) 109002
where Pμ is the element of HP 0(G ×G/ /G ×G) with fibre 0 everywhere except for C above 
the point (g, γ; gaγc, gbγd) ∈ cp(G)2. Then the combination of pullback, multiplying by 
Pμ and pushforward is the map sending (g, γ) to (gaγc, gbγd).

The Chern character in the presence of a 3-cocycle ω is not much different. The target 
will consist of maps cp(G) → C which are covariant with respect to a G-action which 
twists C by a factor coming from ω. The resulting SL2(Z)-action is (7.1) with phases 
thrown in.

7.2. The torus

Determining the Chern character for twisted equivariant K-theory such as τK�
G(G)

for G compact is the main purpose of [37]. We specialise to the case of the torus here 
and give the more general result next subsection.

Recall a transgressed twist of T acting trivially on itself is given by an even lat-
tice L ⊂ Rd. The Chern character of τLK�

T (T ) should localise to conjugacy classes, 
i.e. elements μ + L ∈ T for all μ ∈ L∗, where T is identified with Rd/L. We obtain 
τLK�

T (T ) ⊗Z C = ⊕[μ]∈L∗/L
τLH�

T (T ), where τLH�
T (T ) is C or 0 depending on whether 

or not � = d. Thus we can regard the vector space τLK�
T (T ) ⊗Z C as having a ‘Chern’ 

basis parametrised by classes [μ] ∈ L∗/L, which we can embed into the Cd algebra as 
[μ] �→ (e2πi〈μ,λ1〉, . . . , e2πi〈μ,λd〉) where λj is some basis of L∗. That this is a ring homo-
morphism, means the Chern character diagonalises the fusion product, as with the last 
subsection.

A natural guess is that, at least for the torus, the SL2(Z)-action on the (complexified) 
fusion ring is related to Mukai’s projective SL2(Z)-action on the derived category for 
abelian varieties. We sketch how this should go in the following, which is a twisted version 
of [48].

Suppose that G is a (commutative) torus T . Then in the standard (non-equivariant) 
T -duality one takes

T T ∗

T × T ∗
(7.5)

where T ∗ is not the Pontryagin group dual of T (relevant to the usual Fourier transform) 
but the dual torus. In the equivariant case, one takes

T//LT T ∗//L∗T ∗

((T × T ∗)//L×L∗(T × T ∗), P )
(7.6)
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where P is the Poincaré bundle, which can be thought of as the equivariant T×T ∗ bundle 
P on T×T ∗ which lives on (g, π) with representation (π, −g). The (equivariant) Fourier-
Mukai functor S : Db

T (T ) → Db
T∗(T ∗) is a triangulated category equivalence between 

those derived categories, built from P . This map is defined over K-theory on Z. Fix a 
non-degenerate line bundle L over T (this will correspond to a choice of ‘level’). Then we 
get a projective SL2(Z)-action on the complexification of the K-group of Db

T (T ), where 
the modular matrix Tmod corresponds to multiplying a K-class by L and the modular 
S matrix corresponds to φ∗

L ◦ S, for φL : T → T ∗ an isogeny. These matrices can be 
computed using the pre-quantised points which carry the K-theory, as in the proof of 
Proposition 2 in section 6.2 above. This action is merely projective because S4

L acts as 
degree shifts (rather than the identity); put another way, we are missing the e−πic/12

factor (here a 24th root of 1) in the matrix TL. This projectivity is similar to what 
happens in a modular tensor category, and isn’t significant. Apart from it, this should 
match the SL2(Z)-representation (4.2), (4.3) at the appropriate level. This action then 
descends to the Grothendieck group K(Db

T (T )) = LK0
T (T ).

7.3. G compact connected simply-connected

Consider finally the (most interesting) case of the loop group of compact connected 
simply-connected G. Understanding the (twisted equivariant) Chern character here is the 
main point of [37]. There, τK�

G(G) ⊗ZC is identified with ⊕g
τH�

Z(g)(Gg; τL(g)), where the 
sum is over conjugacy class representatives modulo the Weyl group. All but finitely many 
of those twisted cohomology groups are trivial; the only g that contribute are when g lies 
in the conjugacy classes exp(2πi(λ + ρ)/(k + h∨)) as λ runs through the level k highest 
weights P k

+, which each contribute 1-dimension when � equals the rank(G). For SU(2)
these conjugacy classes have representatives diag(ξl2(k+2), ξ

−l
2(k+2)) where l = 1, . . . , k + 1

and ξn = e2πi/n. We should think of the direct sum of those twisted cohomology groups 
as the space spanned by the characters of G evaluated at those special g. That is how 
to think of the Chern characters here: as a vector-valued map (one component for each 
special conjugacy class g). As it must be, this is a ring homomorphism. One can think 
of this as the map associating primary λ to the vector (Sλ,μ/S0,μ)μ∈Pk

+
. Although this 

is a ring homomorphism, it is simpler to drop the denominators, and regard this as 
a map λ �→ (Sλ,μ)μ∈P+ . In either case, SL2(Z) doesn’t act any simpler: 

(
0
−1

1
0

)
again 

corresponds to S and 
(1

0
1
1
)

goes to STS∗ = T ∗S∗T ∗. So the image of 
(1

0
1
1
)

is no longer 
diagonal. However, the matrix corresponding to 

(1
1

0
1
)

will be diagonal, and correspond 
to T . So although we haven’t simplified the SL2(Z) action, we are now in a complex 
vector space, and we have diagonalised the fusion products.

The expectation here is that we can derive the SL2(Z) action from that of the maximal 
torus, equivariantised over the (finite) Weyl group W . In particular, Atiyah [2] proved 
that the restriction map from K�

G(X) → K�
T (X) has a natural left inverse, so K�

G(X)
is a direct summand of K�

T (X), contained in the W -invariant part. This W -action on 
K�

T (X) can be realised by KK-elements. Presumably this extends to Z3-twists. We’re 
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interested in X = G, and then we project K�
T (G) → LK�

T (T ), where L = (k + h∨)Q∨, 
through the inclusion of the space T into G. The latter is the fusion algebra of the 
torus, with a basis parametrised (if we like) by theta functions (which carry the SL2(Z)
action corresponding to its modular data), and because of Kac-Peterson we know we can 
identify the characters of the loop group with alternating sums over W of those theta 
functions, divided by some anti-symmetric denominator. It all sounds like we should 
be able to recover not only the loop group modular data, but in fact the characters 
themselves by reducing it to the maximal torus and (anti)-symmetrising over W in the 
appropriate way.
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