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ABSTRACT 

 Chronic Kidney Disease (CKD) is associated with markedly increased 

cardiovascular (CV) morbidity and mortality, but the mechanisms are not fully understood. 

Notably, atherosclerosis, an inflammation-driven thickening of the vascular wall which 

underlies most CV events, is aggravated in CKD. This work identified 4 known endogenous TLR 

agonists, Damage-Associated Molecular Patterns (DAMPs), namely Hsp70, Calprotectin, 

Hyaluronic acid and HMGB-1, elevated in CKD plasma and demonstrated that these DAMPs 

can differentially drive key cellular functions and responses in endothelial cells, monocytes 

and macrophages that are associated with worsening of atherosclerosis. Specifically, CKD-

associated DAMPs induced loss of trans-endothelial resistance, enhanced chemokine-driven 

monocyte migration, increased cytokine production and atherosclerosis-associated gene 

expression by macrophages, and promoted foam cell formation by reducing cholesterol 

efflux. These activities were mostly mediated by TLR2 and TLR4. In mice, CKD induction also 

led to increased DAMP plasma levels and induced a range of short and long-term systemic 

inflammatory, immune and atherosclerosis-promoting responses that are known to drive 

CVD. In vivo, both a multi-TLR inhibition approach and a Calprotectin-specific targeting 

approach reduced or prevented CKD-induced systemic inflammatory and pro-atherogenic 

responses, such as cytokine production, gene expression and increase inflammatory 

leukocyte proportions. Furthermore, Calprotectin inhibition robustly reduced the CKD-

induced increased aortic expression of atherosclerotic-promoting genes. These findings 

identify specific DAMPs elevated in CKD that can critically promote pro-inflammatory and 

atherogenic responses and demonstrate that specific targeting within the DAMP/TLR 

pathway is a promising therapeutic strategy to reduce chronic inflammation and lower the 

atherosclerotic burden in CKD, ultimately reducing CV risk in this patient population.
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I-1. Chronic kidney disease (CKD) and cardiovascular (CV) complications 

I-1.1. Definition of CKD 

CKD is a major public health problem worldwide, affecting up to 15% of the global 

population, with a particularly high incidence in high-income countries (1). In the UK, the NHS 

spent an estimated £1.45 billion on CKD in 2009/2010 for a prevalence of renal replacement 

therapy (RTT) of 832 per million population (2). At the end of 2017, the prevalence of CKD in 

the UK reached 983 per million population as reported by the UK Renal Registry (3) with a 

prevalence of stage 3-5 of 4.1% in UK population aged more than 18 years old in 2016/2017 

(4). CKD is characterised by renal dysfunction and is associated with high morbidity and 

mortality.  

 CKD is classified into 5 stages according to its severity (Table 1), which is determined 

by a combination of the estimated glomerular filtration rate (GFR) and the presence of 

markers of renal injury, such as raised albuminuria, for a duration of more than 3 months (5-

7).  

- Stages 1-2 are typically asymptomatic with a high to normal GFR (≥60 ml/min/1.73 

m2). At these stages, there is no CKD in the absence of markers of kidney damage.   

- Stage 3 is considered early CKD. The GFR rate displays a moderate to severe reduction 

(30-59 ml/min/1.73 m2). If CKD is due to external factors, the disease may still be 

reversed or stopped at these stages. Treatment will certainly include a change of 

lifestyle, with notably a change of diet.  

- Stages 4-5 are characterised by a severe reduction in GFR (≤29 ml/min/1.73 m2) and 

are non-reversible. Proper management of lifestyle is not sufficient to ameliorate the 

patient conditions. Stage 5 (GFR <15 ml/min/1.73 m2), also called End-Stage Renal 
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Disease (ESRD), is the stage of kidney failure. Stage 5 CKD patients need RTT, either 

dialysis (hemo- or peritoneal dialysis), or a kidney transplant.  

 
 
 
Table 1. Classification of CKD stages according to GFR and protein albumin-to-creatinine ratio (ACR) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Levey AS &al, 2011 (8) 
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I-1.2. Causes and management of CKD 

The exact causes of CKD are not always clear and are often complex and this 

multivariate aetiology leads to different progression rates and prognoses. There are several 

well-accepted risk factors for the development of CKD, including:  

- Monogenic disorders e.g. autosomal dominant polycystic kidney disease, Fabry 

disease, Alport syndrome, atypical haemolytic-uraemic syndrome (9). These 

conditions are mostly inherited and kidney disease progress is not reversible/ 

stoppable.  

- Congenital abnormalities such as, congenital anomalies of the kidney and the urinary 

tract (10); 

- Co-morbidities: Age, diabetes, hypertension, obesity; 

- Prolonged exposure to medication, notably nephrotoxic nonsteroidal anti-

inflammatory drugs or chemotherapy; 

- Infections: e.g. Human immunodeficiency virus (HIV), hepatitis virus, malaria, bacterial 

infections (11); 

- Kidney malignancy (12); 

- Episode of Acute Kidney Injury (AKI), which, because of a maladaptive repair process, 

may lead to chronic damage (13-17). 

 

No curative treatment for CKD exists at present, but guidelines and medication exist 

to control the co-morbidities and symptoms associated with CKD (18, 19) :  

- Reversing or stopping CKD progression: As previously mentioned, moderate stages of 

CKD may still be reversed with lifestyle changes such as adopting a healthy and 
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balanced diet, quitting smoking, lowering alcohol intake, exercising regularly and 

avoiding nonsteroidal anti-inflammatory drugs (20, 21).  

- RRT: In patients reaching stage 5 CKD, the last option of treatment is RRT to replace 

kidney function, or a renal transplant (see next Section I-1.3 for details). 

- CV pathologies: CV mortality is the leading cause of death in CKD patients (see Section 

I-1.4 for details). Angiotensin converting enzyme (ACE) inhibitors and diuretics to 

reduce water retention may be used to help control hypertension as a result of 

hypervolemia. Lipid lowering drugs, such as statins, will reduce high cholesterol (22).  

- Anaemia: In more advanced stages of CKD, a large number of patients develop 

anaemia and injection of erythropoietin (to stimulate the production of red blood 

cells) and iron supplements can be prescribed (23). 

- Hyperphosphatemia: Loss of kidney function leads to a build-up of metabolic waste 

products, such as phosphate, which is detrimental if unbalanced. In that case, calcium 

acetate or calcium carbonate, that are classified as phosphate binders, will be given 

(24).  

- Vitamin D deficiency will be treated with supplements deficiency (25). 

- Glomerulonephritis, an inflammation of glomerulus, will typically be treated with 

steroids or cyclophosphamide (26).  

 

Given the lack of cure for CKD, in addition to CKD increasing in occurrence, it is also 

on the rise as a cause of mortality and now contributes in 1.35% of the global burden of 

disability life years lost, growing at a rate of 1% per year (6). Premature mortality increases 

with decreasing GFR and increasing albuminuria and is highest in patients on RRT. Life 
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expectancy for those on dialysis is roughly one-third of that of the general population (age- 

and sex-matched).  

 

I-1.3. RRT and kidney transplant in ESRD 

When ESRD is reached, RRT is required for patients to remain alive, either while 

waiting for a kidney transplant or as the only treatment option in patients who cannot have 

or do not want a transplant. Currently, there is an estimated 3.8 million people worldwide 

who rely on one or another form of dialysis (27). As stated previously, two modes of dialysis 

exist:  peritoneal dialysis (PD) and hemodialysis (HD). Both have advantages and drawbacks.  

 

a. Peritoneal Dialysis  

PD uses the peritoneal membrane as a dialysis membrane: a hypertonic dialysis fluid 

is instilled into the peritoneal cavity with the aim to create a pressure gradient between the 

blood from peritoneal capillaries and the dialysate. Consequently, water and waste products 

are drawn out from the blood into the dialysate. The dirty dialysate is removed and replaced 

with clean PD solution. The number of times that this process is repeated daily varies with 

remaining kidney function: exchange may only be performed overnight if there is still a 

substantial residual kidney function, or several times daily when kidney function is low (28). 

PD is often implemented before HD, if there is no medical contraindication, especially in 

developed countries, as it is much cheaper than HD. It also does not require a healthcare 

setting and is typically performed at home by the patient. For this reason, PD is often 

associated with better quality of life and gives the patient more freedom than HD (29). A 

major complication of PD is the occurrence of infectious peritonitis (30), which is most 

commonly driven by gram-positive bacteria (e.g. S.epidermidis) and less often gram-negative 
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bacteria (e.g. E.coli). Fungal peritonitis may also happen, and although less common it is the 

most threatening, as it cannot be treated with antibiotics and catheter removal is needed (31, 

32). 

 

b. Hemodialysis 

HD is based on a hydrostatic pressure being used to create an external blood circuit 

and divert the whole blood volume of the patient into a machine acting as an artificial kidney. 

Blood will then be filtered and returned to the body. This type of dialysis is very efficient and, 

unlike PD, does not need to be performed several times daily. HD is typically performed 3 

times a week, and a session will last about 3h. On HD-free days, patients will need to 

thoroughly control their diet and fluid intake. HD is typically performed in a hospital ward, 

although technical improvements have made it more and more possible to carry out at home 

in recent years, thus significantly improving patients’ quality of life. A downside of HD is the 

high infection rate and its severe consequences (33). In the HD patient population, infection 

is the second leading cause of mortality, after CV death, with 169 per 1000 patient-years at 

risk (34). The pathogens can be exogenous or endogenous and cause different types of 

infections: 

- Bloodstream infections: They are the most common type among HD patients and 

represent a leading cause of hospitalisations, morbidity and mortality. Bloodstream 

bacterial infections are closely linked to the vascular access site, notably the majority 

of vascular access-associated bloodstream infections occur in patients dialysing with 

central vein catheters compared to grafts or fistulas (35). These infections can cause 

disseminated bacteremia or loss of the vascular access which are major problems. As 

observed in PD, gram-positive bacteria (e.g. S. aureus and coagulase negative 
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staphylococci) are the most commonly reported pathogen to trigger bloodstream 

infections and access-related bloodstream infections (32% to 53% of cases and 20% 

to 32% of cases, respectively) in HD (36). Interestingly, a study reported that 28% of 

infections in HD patients involved the vascular access and 25% the lung showing the 

urge to reduce access-related bloodstream and respiratory infections in this 

population (37).  

- Respiratory-track infections: In HD patients, hospital admissions for pneumonia are 

102% higher compared with the general population (38). Patients with pneumonia 

present a poor prognosis (0.17 survival probability after 5 years), and it is often the 

antecedent of CV death (39). Other respiratory infections include seasonal influenza 

with complications, tuberculosis infection, or more recently Middle East respiratory 

syndrome caused by corona virus. However, with an exception for pneumonia, other 

respiratory infections can be effectively prevented by vaccination of patients and 

health workers (33).  

- Viral infections: Outbreaks of transmission of Hepatitis B, C and HIV have been 

observed in the dialysis setting, mostly because of failure to adhere to infection 

control practices (33). 

 

c.  Kidney transplant 

The first successful kidney transplantation was performed by Joseph Murray in 1954, has 

been greatly improved and has become the treatment of choice for ESRD since (40). ESRD 

patients have better long-term survival (about 10 years), as well as improved quality of life if 

they undergo a kidney transplantation, when possible, than those who stay on dialysis (41). 

Kidney recipients do not have to have dialysis anymore. They also present a reduced long-
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term risk of myocardial infarction compared with dialysis patients (42). The ESRD patients 

who benefit the most from a kidney transplant in terms of years of life gain are young patients 

with diabetes. In this sub-population, aged from 20 to 39, patients on dialysis live about 8 

years, while after a transplant expectancy increases to 25 years (43). However, the number 

of patients on the kidney waiting list rapidly increased in the past years while the number of 

transplants performed each year has remained the same (43). Although kidney transplant is 

considered the best treatment option for ESRD patients, it also presents complications. The 

procedure itself is associated with immediate or short-term risks, among them haemorrhage, 

thrombosis, infections as patients are heavily immune-suppressed during the first 3-6 months 

post-operation, disruption of lymphatics (lymphocele) and disruption of the urinary collecting 

system (urinoma) (40). A major long-term complication is chronic kidney transplant rejection 

triggered by both immunologic and non-immunologic factors leading to late allograft loss (43, 

44). Understanding of the molecular and cellular mechanisms underlying rejection is 

improving, but remains to be translated in better early detection and effective therapies. 

 

I-1.4. Cardiovascular disease (CVD) in CKD 

CVD is the leading cause of death worldwide, irrespective of race and ethnicity (22). 

As for CKD, CVD is the consequence of multifactorial risk factors, both traditional 

(Framingham) risk factors including ageing, hypertension, diabetes, smoking, dyslipidemia 

and obesity, homocysteine blood levels and left ventricular hypertrophy, as well as non-

traditional risk factors. An increase in CV mortality was first observed in patients undertaking 

HD by Lindner and colleagues in 1974. Since then, studies around this issue have been 

increasing and it is now well accepted that CVD is more frequent and severe in patients with 

CKD than in the general population (45). CVD risk is increased by CKD by 2 to 20 times 
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depending on CKD stage (46). In patients with stage 3 CKD, CV mortality is about twice as high 

as in individuals with normal kidney function. However, in ESRD patients (Stage 5 CKD), the 

risk of CV mortality increases 10 to 20-fold compared to the normal population of the same 

age, race and sex, accounting for around 50% of overall mortality among these patients (45, 

47). This strong interrelation between CVD and CKD is often referred to as CardioRenal 

Syndrome (CRS) (48), and is clinically characterised by the presence of lung rales, increased 

jugular venous pressure and tachypnea, while systolic blood pressure is > 160mmHg without 

fatigue. The relationship between the two pathologies is complex, and the increased CV risk 

in CKD patients is in part due to the high prevalence of multifactorial risks described 

previously, which are classical risk factors for both CKD and CVD (22, 49). However, traditional 

risk factors are insufficient to explain the high incidence of CVD in CKD patients. This is 

highlighted by the fact that prevention of CVD by controlling traditional risk factors, such as 

smoking, obesity, cholesterol levels and hypertension, although effective in the general 

population, does not significantly lower CVD mortality in CKD patients (50). This suggests that 

other links exist between CKD and CVD that need to be investigated and that more innovative 

therapeutical strategies need to be evaluated (22, 45). In 1990, Guyton proposed that CKD-

specific factors were emerging as causes for the co-existence of renal failure and heart disease 

(51). His theory was that regulation of extracellular volume, blood pressure and renal sodium 

handling, controlled through mediators such as the renin-angiotensin system and endothelin, 

are the major parameters responsible for the crosstalk between both diseases. Since this 

description, the model had been refined and extrapolated, and the non-traditional, CKD-

specific, risk factors of CVD now accepted include: 

- Mineral abnormalities, e.g. reduced calcitriol activation for control of calcium levels 

and impaired phosphorus removal. This in turn promotes arterial vascular 
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calcification, the predominant form of vascular disease found in CKD patients and is 

associated with poor cardiovascular outcomes (22, 52). 

- Oxidative stress, due to accumulation of uremic toxins because of deficient renal 

clearance. This is notably believed to lead to abnormal lipid modifications, such as 

excessive oxidation of Low-Density Lipoprotein (LDL) cholesterol in CKD patients (45), 

a key step in the initiation of atherosclerotic disease.  

- Volume overload, due to reduced urine output. This will lead to hypertension.  

- Malnutrition, e.g. increased protein catabolism and Vitamin D deficiency due to kidney 

dysfunction. 

- Endothelial dysfunction, characterised by phenotypic changes, decreased viability and 

senescence of endothelial cells, notably as a consequence of increased uremic toxins 

which activate pro-inflammatory and fibrogenic factors. 

- Sympathetic nervous system (SNS) excessive activation, which may induce cardiac 

myocytes apoptosis, myocardium hypertrophy and focal myocardial necrosis (53), as 

well as dysregulated lipid metabolism (54, 55) and enhanced renin release in patients 

with renal failure (56). Notably, SNS activation can also induce inflammation via 

increased cytokine production from both the liver and the heart, and potentially 

promotes the formation of atheromatous plaques in the carotid artery indirectly (48). 

- Chronic inflammation. Persistent, low-grade inflammation is now considered a 

hallmark feature of CKD, as demonstrated by the presence of modest to moderate 

levels of circulating inflammatory markers in CKD patients (57-59). The causes of the 

inflammatory burden in CKD are not fully understood but higher systemic 

inflammation levels have been linked to worst patient outcomes in general (58-61) 

and CVD mortality in particular (60, 62). Epidemiological and clinical studies have 
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shown strong and consistent relationships between markers of inflammation and risk 

of CV events (63). Inflammation underlies many aspects of CVD, and notably plays a 

crucial role in all stages of atherothrombosis (63-65) (see Section I-3.1 for details). 

 

I-2. Toll-like receptors (TLRs), major mediators of inflammation 

I-2.1. TLRs as microbial sensors 

TLRs are a class of Pattern Recognition Receptors (PRRs) that are part of the innate 

immune system and were first described for their critical role in initiating and mediating 

inflammation in response to infections (66, 67). TLRs are thus named because they are 

homologous to the Toll-receptors first identified in the fruit fly, Drosophila Melanogaster and 

found to play a critical role in the insect’s immunity to infections (68). TLRs are type I 

transmembrane receptors with an extracellular domain rich in Leucine-Rich Repeat (LRR) 

domains responsible for ligand recognition and co-receptor interactions, and an 

intracytoplasmic domain homologous to that of Interleukin-1 Receptor (IL-1R), termed 

Toll/IL-1R (TIR) domain. TLRs extracellular domain is responsible for recognition of microbial 

components, termed Pathogen Associated Molecular Patterns (PAMPs) expressed by 

microbes such as bacteria, viruses or fungi (69-73). Ten TLRs have been identified in human, 

each capable of recognising different PAMPs from different pathogens, including bacteria, 

viruses and fungi (Table 2):  

- TLR2 and TLR4 are probably the best characterised TLRs and are major players in 

bacterial recognition. TLR2 senses mainly cell wall components from gram-positive bacteria, 

such as peptidoglycan (PGN) and acylated lipopeptides, while TLR4 is the main receptor for 
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lipopolysaccharide (LPS, also known as endotoxin) from gram-negative bacteria (74). Both 

TLR2 and TLR4 can also sense some viral proteins.  

- TLR5 mostly senses flagellin, a major protein constituent of microbial flagella.  

- TLR3/7/8 sense viral nucleic acids. 

- TLR9 senses unmethylated CpG DNA, mostly from bacteria and viruses. 

- TLR10 remains an orphan receptor, with no well described ligand and function. It is 

believed to either have pro-infectious/inflammatory role in some cases notably when 

it forms heterodimers with TLR1 or TLR6, or on the contrary be an anti-inflammatory 

receptor, notably via dampening other TLRs’ responses. This is particularly true via its 

binding to some TLR2 ligands (75-78). 
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Table 2. Human TLRs and their PAMP ligands 

TLRs Ligands Sources 

TLR2 (dimerisation with 
TLR1 or TLR6)  

Lipoprotein/lipopeptides Bacteria, mycobacteria 

Triacylated lipopeptides (P3CSK4) Bacteria, mycobacteria 

Diacylated lipopeptides Mycoplasma 

Peptidoglycan (PGN) Gram-positive bacteria 

Lipoteichoic acid (LTA) Gram-positive bacteria 

Lipoarabinomannan (LAM) Mycobacteria 

Zymosan Fungi 

Hemagglutinin Measles virus 

TLR3 dsRNA Viruses 

TLR4 Lipopolysaccharide (LPS) Gram-negative bacteria 

Fusion protein Respiratory syncytial virus 

Envelope proteins Mouse mammary tumor virus 

TLR5 Flagellin Bacteria 

TLR7 ssRNA Viruses 

TLR8 ssRNA Viruses 

TLR9 Unmethylated CpG DNA Bacteria, virus, yeast, insects 

TLR10 Structural proteins HIV-1 virus 

Triacylated lipopeptides (P3CSK4) Bacteria, mycobacteria 

Synthetic diacylated lipopeptides (FSL-1) Mycoplasma 

LPS Gram-negative bacteria 

Borrelia burgdorferi, 
 

Anaerobic bacteria 

Listeria monocytogenes  
 

Spirochete bacteria 

Helicobacter pylori 
 

Gram-negative bacteria 

Herpes Simplex Keratitis Virus 

H1N1 Virus 

RNA-protein complexes H5N1 influenza virus 

dsRNA Viruses 

Flagellin Bacteria 
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I-2.2. TLRs as sensors of sterile damage 

In addition to microbial PAMPs, an increasing number of endogenous agonists, or so 

called Damage-Associated Molecular Patterns (DAMPs), are being reported as ligands of TLRs 

(79-82) (Table 3). DAMPs are endogenous host-derived components that are typically not 

accessible to TLRs due to their localisation, but become so as they are released by necrotic 

cells or damaged tissues. In normal physiological conditions, most DAMPs are expressed 

ubiquitously in a variety of cells and tissues and carry out essential cellular maintenance 

functions without being detected by the immune system, notably because they are not 

localised in the same cellular compartment as their receptors. Early during an injury, DAMPs 

are released from intracellular compartments or from the extracellular matrix and can engage 

TLRs (mostly TLR2, TLR4 and TLR9), which leads to sterile inflammatory response. Of note, 

some reports have shown that DAMPs may use the same binding sites as PAMPs (83), 

however, they may also use different accessory proteins to bind to TLRs, therefore triggering 

different, sometimes opposite, downstream signaling pathways. Therefore, different DAMPs 

may induce very different responses while binding to the same TLR (84). In health, DAMPs 

contribute to the initiation of normal repair processes and tissue healing. However, in 

pathological conditions, release of endogenous molecules become misallocated, and can lead 

to a systemic distribution and ultimately, to a state of chronic inflammation because of a 

maladaptive inflammatory response (67, 85-87) (Figure 1). 
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          Adapted from McCarthy CG. et al., 2013 (88) 

Figure 1. Paradoxical effects of TLRs activation 
Short-term and controlled TLR activation by their endogenous ligands on innate immune system cells 
initiates an inflammatory response which play a major role in homeostasis maintenance and wound 
healing. However, excessive and dysregulated TLR activation due to the chronic presence of DAMPs 
abolish beneficial effects and leads to a pro-inflammatory state, blood pressure elevation and 
maladaptive tissue repair.  

 

 

 Examples of the best described DAMPs ligands for TLRs include:  

High-mobility Group Box 1 Protein (HMGB-1): HMGB-1 is one of the best characterised DAMP 

and is one rare endogenous molecule to have the ability to activate TLR2, TLR4 and TLR9 (89-

93). Structurally, HMGB-1 is a 25-30 kDa nuclear nonhistone DNA-binding protein that acts as 

a regulator for gene transcription and DNA repair. It is expressed ubiquitously and in its fully 

reduced form in all nucleated cells (94). During injury, cellular stress or necrosis, HMGB-1 is 

released extracellularly, either passively by necrotic, apoptotic or injured cells (95) or actively 

by activated immune cells such as monocytes and macrophages (96). Depending on its release 

route, HMGB-1 can initiate or promote inflammation, via cytokine production, chemotaxis 
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and dendritic cells (DCs) maturation (97-99), thereby initiating or contributing to 

inflammatory and immune responses. These responses can be mediated via HMGB-1 

interaction with different receptors, namely TLR2, TLR4, TLR9 and the Receptor for Advanced 

Glycation End-products (RAGE) (100-102). RAGE is a multifunctional transmembrane protein 

of the immunoglobulin superfamily, expressed at low baseline levels in the majority of tissue 

and increased under inflammatory conditions (103). It was the first receptor described for 

HMGB-1 (100). HMGB-1 binding to RAGE leads to the activation of Ras, PI3K, and Rho, which 

trigger nuclear factor-κB (NF-κB) pathway activation (104). Moreover, the activation of RAGE 

by HMGB-1 also triggers the activation of the Mitogen-activated protein kinases 

(MAPKs)/Extracellular signal-regulated kinase (ERK) pathway, which is important in cell 

migration, tumor proliferation and invasion, and expression of matrix metalloproteinases 

(MMPs). The implication of HMGB-1/RAGE in cell recruitment and migration is directly 

mediated by the increase in adhesion molecule expression such as Vascular cell adhesion 

molecule 1 (VCAM-1) and Intercellular adhesion molecule 1 (ICAM-1) (93), or indirectly by 

inducing secretion of chemokines, in particular chemokine C-X-C Motif Chemokine Ligand 

(CXCL) 12 (105). In addition, HMGB-1 binding with RAGE can induce autophagy (106). In 

addition to RAGE, HMGB-1 has been reported to directly interact with TLR2, TLR4 and TLR9, 

as well as to act as a co-receptor for these TLRs (107). For example, HMGB-1 can enhance 

TLR9 sensitivity towards CpG-DNA by forming complexes with it, which will lead to increase 

cytokine production in plasmacytoid DCs (108), and HMGB-1 binding to nucleosomes from 

apoptotic cells activates macrophages and DCs through TLR2 (109). However, the responses 

activated by the HMGB-1/TLR4 pathway have been the main research focus, notably because 

of its wide and well-described contribution in inflammation and immune regulation (110-

112). As mentioned above for HMGB-1/RAGE signaling, NF-κB is activated when HMGB-1 
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interacts with TLRs, with Cluster of Differentiation (CD) 14 being mandatory for activation in 

the case of TLR4 (108, 113-115). More recently, numerous reports demonstrated a critical 

importance of the redox state of cysteines in the structure of HMGB-1 in the binding to its 

inflammatory receptors, and therefore in its function.  

HMGB-1 contains 3 cysteines: C23 and C45 can form a disulfide bond, and C106 is 

unpaired. These cysteines are modified by post-translational modifications leading to 3 

different isoforms: i) “fully reduced HMGB-1” for the all-thiol form, ii) “disulfide HMGB-1” for 

the partially oxidized form, and iii) “sulfonyl HMGB-1” for the terminally oxidized form. When 

fully reduced, HMGB-1 interacts with CXCL12 to form a heterocomplex which binds to CXCL12 

receptor, C-X-C Motif Chemokine Receptor (CXCR) 4, with increased affinity to promote cell 

migration. Immune cells secrete CXCL12 after NF-κB activation, and HMGB-1 itself is able to 

induce CXCL12 production via RAGE engagement (116). When released and/or secreted 

extracellularly, oxidation of C23 and C45 of the fully reduced HMGB-1 results in disulfide 

HMGB-1. The extracellular TLR4 adaptor myeloid differentiation factor 2 (MD-2) only binds 

specifically to this isoform, and TLR4/MD-2 complex induces cytokines/chemokines 

production (117). Finally, all 3 cysteines being terminally oxidized to sulfonates, sulfonyl 

HMGB-1 does not present any pro-inflammatory or chemoattractant activities. This indicates 

that the disulfide bond between C23 and C45 is essential to the inflammatory activity of 

HMGB-1 (118). Interestingly, because of the nature of redox modifications caused by reactive 

oxygen species (ROS), the immune activities of HMGB-1 at any location can vary over time 

and space and according to intra- and extracellular events e.g. cell stress amounts and 

intercurrent events as in ischemia/reperfusion (I/R) can affect HMGB-1 to mediate from 

chemotaxis activity to cytokine production to inactivity during the course of the same 

inflammatory response (119). 
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HMGB-1 has widely been reported as an important player in promoting tissue 

regeneration after acute inflammation in different models of tissue injury including spinal 

cord, skin, muscle and heart (118, 120, 121). Of note, a selective suppressive mechanism for 

immune responses induced by HMGB-1 has been identified by its interaction with another 

receptor complex, namely CD24 associated with Siglec-10, a sialic acid-binding Ig-like lectin 

(122, 123). However, HMGB-1-driven responses can become dysregulated and HMGB-1 has 

been shown to act as a late-phase pro-inflammatory mediator in a variety of pathological 

conditions such as sepsis and sterile inflammatory conditions (124, 125), rheumatoid arthritis, 

Systemic Lupus Erythematosus (SLE), Cutaneous SLE, scleroderma, Alzheimer’s disease (126, 

127). HMGB-1 blocking was found to have beneficial effects in different animal models of 

spinal cord, liver, brain and myocardial damage after I/R injury (128). However, other studies 

have reported beneficial effects of HMGB-1 administration, notably in acute coronary 

syndromes, including better outcomes and recovery after myocardial infarction in the 

presence of HMGB-1, although it is considered to be one of the mediators in ischemic heart 

disease. HMGB-1 injection to the myocardium, from as soon as 1 minute to 3 weeks after 

injury (e.g. coronary ligation or acute global I/R) resulted in the development of new myocytes 

and reduced DC numbers, cardiomyocyte hypertrophy and extra-cellular collagen deposition 

at the injured site, for a better recovery (100, 121). Transgenic mice with cardiac 

overexpression of HMGB-1 were able to release more systemic HMGB-1 after ligation of the 

left anterior descending coronary artery, and had smaller infarcted areas, improved cardiac 

function and higher survival rates compared to control mice (129). Discrepancies between 

reports may in part be from the redox state of HMGB-1, which was not discussed in the 

studies, or the fact that the fully reduced and the disulfide forms can interconvert once added 

in vitro or in vivo, even when the fully reduced recombinant form is used. Of note, the 
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presence of disulfide HMGB-1 has been correlated by several studies with the onset of 

pathologies such as brain injury, liver damage, myositis, and juvenile idiopathic arthritis (126, 

130-132). Interestingly, patients with early macrophage activation syndrome (affecting about 

10% of children with juvenile idiopathic arthritis) have dramatically increased systemic levels 

of disulfide HMGB-1 isoform (126, 131-133). Moreover, disulfide HMGB-1 (and no other 

isoforms) is able to activate TLR4 in order to contribute to the transmission of nociceptive 

signals (134). It has been recently reported that blockade of HMGB-1 release with Ethyl 

Pyruvate, or inhibition of its activity with a neutralising antibody, lead to decreased liver 

inflammation as well as ameliorated liver injury in a model of heatstroke-induced liver injury 

requiring Nlrp3 inflammasome, thus demonstrating a role for HMGB-1 in mediating activation 

of inflammasome (135). Of particular relevance to our study, HMGB-1 expression is quickly 

up-regulated in renal and hepatic I/R injury and is believed to mediate a strong necrosis-

induced inflammatory response via TLR4-signaling predominantly (89, 91, 136, 137). There is 

also evidence of HMGB-1 presence in serum of patients with glomerulonephritis (85, 138), 

and increased HMGB-1 levels correlate in CKD with pro-inflammatory markers and declining 

kidney function (139-141). HMGB-1 serum levels are also significantly higher in both diabetic 

and non-diabetic patients with acute coronary syndromes compared to those without acute 

coronary syndromes (142). Atherosclerosis-focused studies also reported significantly 

increased expression of HMGB-1 in the nuclei and the cytoplasm of macrophages and smooth 

muscle cells (SMCs) localised near the intima in human atherosclerotic lesions from the aorta, 

carotid and coronary arteries compared to normal human arteries, as well as in areas adjacent 

to the necrotic core of atherosclerotic lesions (143). Another study using atherosclerosis-

prone animals, apolipoprotein E deficient (ApoE-/-) mice fed with high-fat diet, has 

demonstrated the pro-atherogenic effect of HMGB-1 by administration of neutralising 
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antibodies for HMGB-1 which resulted in a decrease in atherosclerosis by 55%, notably via a 

decrease in macrophages, DCs, and CD4+ T-cell accumulation in atherosclerosis lesions and a 

reduced expression of VCAM-1 and Monocyte Chemoattractant Protein-1 (MCP-1) (144). 

Consistent with these results, other reports using recombinant HMGB-1 demonstrated its 

ability to activate vascular endothelial cells leading to the expression and secretion of ICAM-

1, VCAM-1, E-selectin, granulocyte colony stimulating factor (G-SCF), RAGE, Tumor Necrosis 

Factor (TNF) , MCP-1, interleukin (IL)-8, plasminogen activator inhibitor 1, and tissue 

plasminogen activator (145).  

 

Heat-shock Proteins (Hsps): Hsps are a group of proteins that are evolutionarily conserved 

and show high sequence homology between species, from bacteria to humans. They are 

classified in 6 families based on their approximate molecular weights: small Hsps, Hsp40, 

Hsp60, Hsp70, Hsp90 and Hsp110. In physiological conditions, Hsps are intracellular 

chaperones that guide newly synthetised polypeptide chains to prevent aggregation and 

misfolding and mediate the refolding and stabilisation of damaged polypeptides. They are 

present in the cytoplasm and nucleus of eukaryotic cells, except Hsp60 and small Hsps which 

are mostly located in mitochondria and less so in the cytoplasm. Hsps can also be released 

extracellularly via an active route using non-classical pathways in both physiological and stress 

conditions, or passively by necrotic cells. Endothelial and other cells in the vessel wall notably 

are able to upregulate their expression of Hsps under cellular stress. Once in the extracellular 

compartment, Hsps act as DAMPs which are able to trigger a wide range of immunological 

effects via their interaction with several receptors, including PRRs which causes pro-

inflammatory cytokine and chemokine release (146). Hsps can also serve as 

chemoattractants, and can promote maturation of antigen-presenting cells. Hsps, especially 
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Hsp70, have also been demonstrated to help antigen presentation by binding and presenting 

antigens to cell surface MHC class I molecules (85, 147, 148). Of note, there is evidence for a 

role of Hsps as major antigens and very strong inducers of humoral and cellular immune 

responses in the context of infectious diseases from studies revealing increased levels anti-

Hsps antibodies in patients or experimental disease models. However, more recently it has 

been suggested that the phylogenetically conserved nature of Hsps across species could 

facilitate immunological cross-reactions between pathogen and self-Hsps potentially 

resulting in autoimmune diseases. This hypothesis has been widely studied in experimental 

models of arthritis and patients with rheumatoid arthritis, and vascular diseases. In addition, 

increased levels of Hsp70 have notably been found to circulate in sepsis and septic shock and 

are believed to contribute to the pathology (149, 150). Hsps are also thought to play a role in 

kidney disease, as Hsp70 is up-regulated after I/R injury in rat kidneys (151), and levels of Hsp-

90α are higher in plasma from children and young adults with CKD (152). Furthermore, 

differential or opposite roles have been reported in disease for different Hsps. Indeed, Hsp22, 

Hsp27 and Hsp32 have been shown to have potential protective effects in heart infarction, 

atherosclerosis and oxidative stress respectively, while major pathogenic roles have been 

related to Hsp60, Hsp70 and Hsp90 in CVD. Notably, soluble Hsp60 is increased in patients 

with early carotid atherosclerosis and has been shown to promote atherosclerosis via its 

binding to TLR4 leading to the ERK/MAPKs pathway activation inducing SMCs migration (153, 

154). In another study, human Hsp60 increased SMCs proliferation in vitro in a dose-

dependent manner via its interaction with TLR2 and TLR4 (155). It was even suggested that 

atherosclerosis is initiated as a result of the inflammatory processes caused by autoimmunity 

to Hsps (156, 157). On the other hand, despite their pro-inflammatory properties, Hsps, 

notably Hsp70, Hsp40 and Hsp90, have neuroprotective role in neurodegenerative disorders. 
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Indeed, recombinant Hsp70/Hsp40 and Hsp90 were able to block the aggregation of amyloid-

 proteins, a major trigger in Alzheimer’s disease, and virally-induced Hsp70 overexpression 

rescued neurons culture from toxicity induced by amyloid- aggregation in vitro for example 

(158, 159). These apparent discrepancies may be the results of several factors, such as the 

formation of immune complexes (Hsp-Hsp antibody) or differential receptor engagement by 

different Hsps or in different locations or pathological scenarios. Of particular relevance to 

this study, Hsp70 has been shown to induce inflammatory responses via interaction with TLR2 

and TLR4, and the co-receptor CD14 (149, 160). Extracellular Hsp70 has also been observed 

to engage scavenger receptors, such as Lectin-like Oxidized LDL (OxLDL) receptor-1 (LOX-1), 

Scavenger Receptor expressed by Endothelial Cells-I (SREC-1), and Link Domain-Containing 

Scavenger Receptor-1 (FEEL-1), although the functional consequences on immune responses 

is still unclear. However, the association of CD91, another well-established receptor for 

Hsp70, with members of the scavenger receptors family, has been shown not only to enhance 

the proliferation of antigen-specific human CD4+ T-cells but also to promote the uptake of 

antigenic peptides (here tetanus toxin and influenza hemagglutinin) by monocytes upon 

exposure to Hsp70 in vitro. These results were also confirmed in the same study using a CD91 

knockdown in vitro model with addition of scavenger receptor antagonists in order to block 

their binding site, resulting in the reduction of Hsp70-induced proliferation of CD4+ T-cells 

confirming the role of Hsp70-CD91-scavenger receptors complex in immunological memory 

(161). Consistently, HEK293T cells transfected with CD40, a cell surface protein crucial for B-

cells function and autoimmunity, and exposed to Hsp70 displayed the ability to uptake Hsp70-

bound peptide (here using peptide C) suggesting a role of CD40-Hsp70 interaction in the 

cross-presentation of Hsp70-peptides complexes towards MHC class I molecules (162). In 

addition, Hsp70 has been described as a ligand for both Siglec-5 and Siglec-14, which share 
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identical ligand-binding domains, and are expressed on monocytes and neutrophils. The 

signal delivered through binding of Hsp70 to Siglec-5 was found to be anti-inflammatory, 

while Siglec-14 engagement was mostly pro-inflammatory, revealing a dual effect of Hsp70 

depending on its receptor, its localisation, and the intracellular signaling pathway associated. 

Moreover, some studies also reported a crosstalk between Siglecs and TLRs reinforcing the 

hypothesis of Siglecs as immunomodulatory receptors (163-166). 

 

S100A8/S100A9 (Calprotectin): The S100 proteins family is a large family of calcium-binding 

proteins implicated in a variety of normal cellular functions, such as protein phosphorylation, 

Ca2+ homeostasis, cytoskeleton dynamics and cell growth (167), exclusively expressed in 

vertebrates. Among S100 proteins, S100A8 and S100A9 are small cytoplasmic proteins 

expressed abundantly by neutrophils and monocytes. These proteins exist as homodimers, 

but preferably form more stable heterodimers, notably S100A8/A9, also called Calprotectin, 

formed in presence of calcium and zinc (168). When released extracellularly following cellular 

stress or necrosis, some members of the S100 family can function as DAMP and trigger 

immune responses, normal and pathological, via TLR4 and RAGE (169-172). A relatively new 

hypothesis regarding the effect of S100 family in promoting inflammation is the interaction 

with CD33 as a receptor, notably recognising S100A9 (173). CD33 is part of the Siglec 

receptors family and was implicated in certain cancers and Alzheimer’s disease (174). S100 

proteins have notably been associated with cancer, neurodegenerative disorders, and 

diseases of the kidney, heart, joints and lungs (168, 175-179). On the contrary, anti-

inflammatory and tissue protective functions (e.g. oxidant scavenging and inhibition of MMPs 

and ROS production in phagocytes) have also been reported for S100 proteins, notably 

S100A8 and S100A9, in complex or not. It is therefore speculated that the functions of these 
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proteins may be concentration-dependent and influenced by the cellular and biochemical 

composition of the local milieu (180, 181). As mentioned above, Calprotectin is the active 

S100A8/S100A9 complex, a 36 kDa molecule expressed at low levels constitutively. However, 

it becomes significantly upregulated and is released by phagocytes (mostly), especially 

neutrophils, in response to cellular stress. It contributes to pathological inflammatory 

processes (182, 183). For example, mice deficient in S100A9 were less severely affected and 

survived significantly longer to a lethal endotoxin-induced shock, while intravenous injection 

of Calprotectin markedly shortened the mice survival after shock, notably in part via release 

of TNF which demonstrate a role for Calprotectin in endotoxin-induced septic shock via its 

binding with TLR4 (184). Calprotectin is also believed to contribute significantly to acute 

coronary syndrome pathogenesis (185) as well as the pathology of sepsis in humans (184, 

186) via its interaction with TLR4 alone and TLR4-RAGE, respectively. RAGE signaling and 

subsequent activation of NF-B have been shown, in blocking experiments in vitro, to 

promotes tumor cell growth in the presence of low concentrations of Calprotectin (187). 

Calprotectin secretion can also be triggered by cellular interaction during neutrophil rolling 

and its release induces VCAM-1 and ICAM-1 expression in endothelial cells and increase the 

capacity of leukocyte Mac-1 (an adhesion molecule heterodimer formed by CD11b and CD18) 

to bind endothelial ICAM-1 in a TLR4-mediated pathway. This process results in reducing 

rolling velocity and faster adhesion for trans-endothelial migration (188). Furthermore, 

Calprotectin levels in various fluids and tissues have been investigated as potential disease 

biomarkers. In particular, fecal Calprotectin has typically been associated with intestinal 

inflammation and is a predictor of the course of inflammatory bowel disease (189, 190), one 

of the main risk factors for colorectal cancer. In colorectal cancer, clinical and experimental 

studies have suggested that malignant cells and tissues overexpress both S100A8 and S100A9 
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separately, and Calprotectin. Therefore, the Calprotectin in stool has been classified as a 

reliable and sensitive marker for the diagnosis of bowel cancer and postoperative evaluation 

of patients, but not for disease progression (191). Elevated serum levels of Calprotectin have 

also been identified in patients suffering from a number of infections and chronic 

inflammatory pathologies such as cystic fibrosis, tuberculosis, bronchitis and rheumatoid 

arthritis which suggest an active role in disproportioned inflammatory reactions. High levels 

of Calprotectin have also been found in the synovial fluid and plasma from patients with 

rheumatoid arthritis and gout.  

Of particular relevance to this study, clinical studies have positively correlated 

Calprotectin levels in the atherosclerotic plaque with plaque vulnerability (192, 193). 

Calprotectin has also been used as a biomarker of diabetes mellitus, and it has been suggested 

that high plasma levels may be associated with atherosclerosis in diabetic patients (193, 194). 

Furthermore, S100A8 and S100A9 are present in atherosclerotic plaques of both mice and 

humans, and can activate neutrophils and monocytes in arterial lesions, thus participating to 

atherogenesis (195). Consistently, elevated plasma Calprotectin levels have been described 

and associated with the development of larger atherosclerotic lesions in an experimental 

model of diabetic ApoE-/- mice (196). Indeed, plaque size reduction was demonstrated in 

experimental models of diabetes deficient in TLR4 or RAGE suggesting important roles for 

their endogenous ligands, notably Calprotectin, in the accelerated atherogenesis associated 

with diabetes (196, 197). In addition, inhibition of Calprotectin’s activity with Paquinimod 

(ABR-215757) resulted in vascular protection in diabetes-related CVD, which led the way 

towards the approvals of drugs associated with Calprotectin for clinical testing (168).  
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Hyaluronan (HA): HA, a proteoglycan that is ubiquitously and highly expressed, is a structural 

component of the extracellular matrix, especially prominent in soft connective tissue and the 

vasculature. It is also the largest polysaccharide found in vertebrate, and the only one 

produced at the cell surface and released into the extracellular matrix as a High Molecular 

Weight (HMW, 1,000 - 6,000 kDa) glycosaminoglycan. In healthy cells, HA is a critical regulator 

of cell phenotype in the context of wound healing and recovery (98, 198). Indeed, in case of 

epidermal barrier injury, HMW HA interacts with its main cell surface receptor, CD44, to 

promote keratinocyte differentiation, lamellar body formation, and permeability barrier 

homeostasis. Injured or necrotic cells can cleave HA, via the promotion of ROS, leading to the 

production and release of degradation products known as Low and Medium Molecular 

Weight (L+MMW, 10 - 500 kDa). While full length HA is involved in normal cellular function 

and has anti-inflammatory properties, such as inhibiting cell growth and division, L+MMW 

forms have been reported to serve as DAMP and trigger robust immune responses (199, 200), 

notably by promoting cell migration and differentiation. A role of HA in modulating 

phagocytosis has also been demonstrated in vitro: mouse peritoneal macrophages cultured 

in the presence of LMW HA (< 100 kDa), phagocytosed larger numbers of latex beads, while 

HMW HA (1,000 - 2,000 kDa) markedly inhibited phagocytosis (201).   

Mechanistically, CD44 is considered the main receptor for both HA full length and 

fragmented HAs, and its engagement results in different signaling pathways depending on HA 

molecular weight (202, 203). In addition, there is evidence for L+MMW HA interaction with 

TLR2 or TLR4, alone or in a complex with CD44 (202, 204-207). This interaction led to the 

expression of inflammatory cytokines by DCs and macrophages and promoted cell 

maturation. HA was found at increased levels in serum or tissues in a variety of diseases, 

notably lung or liver fibrosis, diabetes, cancer, vascular pathologies and kidney diseases (208-



 
38

214). In the context of lung injury, a HA/TLR2/TLR4 pathway has been clearly identified. 

Peritoneal macrophages from wild-type mice were able to release TNF after stimulation 

with HA MMW fragments (about 135 kDa), while the effect was lost in macrophages from 

either TLR2-/- or TLR4-/- mice (215). In the cardiovascular context, transgenic-induced HA 

overproduction targeted to the SMCs in atherosclerosis-prone animals (ApoE-/- mice) led to 

the thinning of the elastic membranes in the aorta, potentially promoting vessel stiffness, and 

to increased aortic HA fragments deposition, suggesting that accumulation of HA fragments 

accelerates the progression of aortic atherosclerosis (216). However, the mechanisms behind 

HA involvement in CV pathologies does not appear to have received as much focus as some 

other DAMPs, and its implication is still mostly indirectly suggested rather than strictly 

demonstrated. For example, the use of models deficient for both ApoE and HA synthase (HAS) 

3, one of the 3 enzymes responsible for HA synthesis, show an inhibition of atherosclerotic 

plaques development and plaque inflammation (217). Indirect evidence of the implication of 

HA in atherosclerosis was also gained via the investigation of its receptor CD44 and Receptor 

of HA motility (RHAMM). In particular, the absence of CD44 in ApoE-/- mice inhibited the 

inflammation caused by macrophages. This study also demonstrated the crucial role of HA via 

its binding to RHAMM in the migration and proliferation of SMCs, typically found in advanced 

atherosclerotic plaques (218). Regarding a potential role for HA in renal diseases, increased 

accumulation of HA and HAS expression has been reported in autoimmune renal injury, and 

serum HA levels were correlated with the degree of impaired renal function in advanced 

stages of CKD (219). Furthermore, increased serum HA levels in dialysis patients were found 

to correlate with increased disease severity and mortality (220, 221).  
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Table 3. Human DAMP ligands, their TLR receptors and other receptors 

TLRs Major DAMPs  Other immune receptors Origin 

TLR2 
(dimerisation 
with TLR1 or 
TLR6) 

Biglycan  NLRP3 Extracellular matrix 

Decorin Not reported  

Versican Not reported  

LMW Hyaluronan NLRP3, CD44  

S100 proteins RAGE, CD33 Cytosol 

Heat shock proteins CD91, LOX-1, SREC-1,  
FEEL-1, Siglec-5, Siglec-14 

 

A NLRP1, NLRP3, CD36, RAGE  

Oxidized LDL (OxLDL) LOX-1, CD36, SR-A  

Histones NLRP3 Nuclear 

HMGB-1 RAGE, CD24, Siglec-10  

Eosinophil-derived neurotoxin (EDN) Not reported Granule 

TLR3 RNA RIG-I, MDA5 Nuclear 

TLR4 Biglycan NLRP3 Extracellular matrix 

Decorin Not reported  

LMW Hyaluronan NLRP3, CD44  

Heparan sulfate  Not reported  

Fibronectin (EDA domain) Not reported  

Fibrinogen Not reported  

Tenascin C Not reported  

S100 proteins RAGE, CD33 Cytosol 

Heat shock proteins CD91, LOX-1, SREC-1,  
FEEL-1, Siglec-5, Siglec-14 

 

Modified LDL SR-A  

Histones NLRP3 Nuclear 

HMGB-1 RAGE, CD24, Siglec-10  

High Mobility Group Nucleosome Binding Domain 1 
(HMGN1) 

Not reported  

Defensins Not reported Granule 

Granulysin Not reported  

Syndecans 4 integrins, receptor tyrosine kinase Plasma membrane 

Glypicans Not reported  

TLR7 RNA RIG-I, MDA5 Nuclear 

TLR8 RNA RIG-I, MDA5 Nuclear 

TLR9 HMGB-1 RAGE, CD24, Siglec-10 Nuclear 

DNA AIM2  

mtDNA cGAS, NLRP3, NLRC4, AIM2 Mitochondria 

Adapted from Roh J. et al., 2018 (195), Schaefer L., 2014 (83), Babelova A. et al., 2009 (222) and Kim S. et al., 2009 (223). 
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AIM2, Absent in melanoma 2; FEEL-1, Fasciclin EGF-like, laminin-type EGF-like, and link domain-containing scavenger receptor-1; LOX-1, 
Leptin-like OxLDL receptor-1; MDA5, Melanoma differentiation-associated protein 5; NLRC4, Nucleotide oligomerisation domain (NOD)-like 
receptors family Caspase activation and recruitment domains (CARDs) domain-containing protein 4; NLRP1, NOD-like receptor family pyrin 
domain containing 1; NLRP3, NOD-like receptor family pyrin domain containing 3; RAGE, Receptor for advanced glycation end product; RIG-
I, Retinoid acid-inducible gene l; Siglec-5, Sialic-acid binding immunoglobulin-like lectins 5; Siglec-10, Sialic-acid binding immunoglobulin-like 
lectins 10; Siglec-14, Sialic-acid binding immunoglobulin-like lectins 14; SR-A, Scavenger receptor A; SREC-1, Scavenger receptor expressed 
by endothelial cells 1. 
 
 
 

I-2.3. TLR tissue and cellular distribution 

Consistent with their function in pathogen recognition and as a first line of defense, 

TLRs are widely expressed by immune cells and cells in tissues potentially exposed to infecting 

microorganisms, such as epithelial or endothelial cells. At a subcellular level, TLRs are found 

in 2 different locations: TLR1, 2, 4, 5 and 6, which recognise mostly components from 

extracellular pathogens such as bacteria or fungi, and extracellular DAMPs, are mainly 

expressed at the cell surface, while TLR3, 7, 8 and 9, involved mostly in viral, bacterial and 

host nucleic acid recognition, are mostly localised in intracellular compartments (224). Among 

blood leukocytes, TLR expression is greatest on innate immune cells and mRNA for all TLR 

members, except TLR3, are expressed in phagocytes, such as neutrophils, monocytes and 

macrophages (225, 226).  

In immune cells, TLR3 is expressed only in myeloid DCs, notably in the professional 

antigen-presenting CD141+ DCs subset, and macrophages (227, 228). Myeloid cells have also 

been shown to express TLR1-6, 8 and 10 (229). On the contrary, plasmacytoid DCs lack TLR3 

expression, but do express high levels of TLR7 and TLR9 leading to the secretion of large 

amounts of interferon (IFN)-α upon activation, as well as lower levels of TLR1 and TLR10 (230). 

Discrepancies exist on TLR3 expression related to adaptive immunity, especially in some T-

cells subsets and Natural Killer (NK) cells, although NK cells are major players in the antiviral 

response so TLR3 expression by these cells would be logical (225, 231-233). However, many 

other cell types express TLR3 as fibroblasts and a variety of epithelial cells including airway, 
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corneal, cervical, biliary, and intestinal cells, which are target sites of virus infection (234). 

TLR3 is also expressed in the kidney and on glomerular mesangial cells in physiological 

conditions and it has been demonstrated that its expression is increased in mesangial cells 

and macrophages infiltrating the nephritic kidney in a lupus-prone mice model compared to 

mice with healthy kidney (235, 236).  

Eosinophils express TLR1, 3, 4, 6, 7, 9 and 10 mRNAs constitutively, whereas basophils 

express TLR2 and TLR4, and mast cells TLR1, 2 and 6 mRNAs.  

TLRs are also expressed by lymphocytes, which are part of the adaptive immune 

system, and they participate in the regulation of responses to antigens. TLR2, 5, and 9 are 

expressed by NK cells. In addition, B-lymphocytes display high expression levels of TLR1, 6, 9 

and 10, together with lower levels of TLR2, 4 and 7. T-cells show differential TLR expression 

depending on the subset. Indeed, TLR3, 5, 6, 7 and 9 mRNAs have been detected in CD4+ T-

cells, and TLR2 and TLR4 proteins surface expression can be detected at the surface of 

activated and memory T-cells while naïve CD4+ cells do not show significant levels of protein 

expression. On the other hand, mRNA and protein expression for TLR2, TLR3, TLR4 and TLR5 

were reported in human CD8+ T-cells. TLR2, TLR3 and TLR5 protein expression levels have also 

been found higher in activated CD8+ T-cells than whose found on CD4+ T-cells. Consequently, 

TLR2 co-stimulation drives more proliferation in CD8 T-cells than in CD4 T-cells. In addition, 

TLR2 was found constitutively expressed on Listeria-specific CD8 memory T-cells. 

Furthermore, several studies reported a role for TLRs in the direct modulation – both up and 

downregulation – of regulatory T-cells (Treg) activity in vitro and in vivo (237-241). 

Besides immune cells, TLRs are expressed in tissues where they play a major role in 

stopping the entry of pathogens in the host organism. In this regard, TLR2 and TLR4 display a 

particularly wide/spread localisation, in line with their ability to recognise a large array of 
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ligands, either PAMPs or DAMPs. Indeed, mRNAs for TLR2 and TLR4 were detected in nasal 

mucosa, adenoids and salivary glands and studies using immunohistochemical staining of 

human airways reported surface expression of TLR2 throughout the epithelium, and TLR4 

expression in pulmonary epithelial cells as well as corneal epithelium (226, 242). Interestingly, 

mRNA for every TLR was detected in several layers of the eye, namely cornea, conjunctiva 

and retina while only mRNA for TLR4 is also detected in both the uvea, also expressing TLR4 

protein, and sclera (243). Keratinocytes express TLR1-5 constitutively (242), and TLR1, 2, 3, 5 

and 6 mRNAs were found in the lower female genital tract.  

Of particular relevance to this study, endothelial cells for both large vessels and micro-

vasculature, have been reported to express all TLRs, except TLR8 (244-248). Compared with 

leukocytes, endothelial cells express relatively low levels of most of the TLRs at baseline. 

However, TLR3 is highly expressed in human coronary artery endothelial cells compared to 

monocytes surface expression level, and both TLR3 and TLR4 are highly expressed in human 

micro-vascular endothelial cells from different locations (150). Notably, despite a lower 

expression at baseline, TLR2 was found strongly upregulated following stimulation of 

endothelial cells with bacterial lipopeptide, a TLR2 agonist (249, 250). This phenomenon has 

not been observed in human leukocytes suggesting that endothelial TLR2 serves as a host’s 

response calibrator to different levels of infectious threats or injuries (150, 251, 252). TLR2 

expression has also been shown to be increased in endothelial cells located in regions of 

disturbed flow, such as vessel bifurcations, thus promoting atherosclerosis by exacerbating 

the local inflammatory process in response to its wide range of agonists, both endogenous or 

exogenous (253-256). An in vitro investigation demonstrated that this differential TLR2 

expression in the arterial tree, both at mRNA and protein levels, was due to the 

phosphorylation of the transcription factor signal protein-1 (Sp-1) in laminar flow regions, 
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thereby blocking its binding to the TLR2 promoter required for TLR2 expression (257). Another 

example of differential TLR expression by the same cell type depending on localisation 

includes intestinal epithelial cells which mostly express TLR2 and TLR4, and TLR5 on the 

basolateral surface but not the apical side (258). Consequently, only pathogens invading the 

basolateral compartment of the epithelium elicit an inflammatory response, protecting the 

host from unwanted inflammatory responses to the natural gut flora.  

 

I-2.4. TLR signaling 

Most TLRs function mostly as homodimers, with the exception of TLR2 which forms 

heterodimers with TLR1 or TLR6, depending on the ligand being recognised (86, 259, 260). 

However, dimerisation is not sufficient to ensure signal transduction, receptors need to 

respect a correct orientation. Gay and co-workers, following previous experiments on Toll 

receptors, proposed a model of sequential activation of TLRs in which ligands binding at the 

N-terminus induces a conformational change at the C-terminal region of the TLR extracellular 

domain, and this change allows for a stable receptor-receptor interaction. This, in turn, 

promotes the rearrangement of the transmembrane helices of the receptor dimer allowing 

the initiation of the downstream signaling (261) (Figure 2). 
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Figure 2. Ligand-induced TLR conformational changes initiating signaling  
Binding of the ligand to the N-terminus domain of a TLR is thought to induce a conformational change 
in the C-terminus part of the ectodomain that allows for a successful contact between the 2 TLRs TIR 
domains. The BB loop of the signaling TIR domain is likely to be involved in receptor-receptor contacts. 
Formation of the signaling complex is proposed to generate a new interface for the recruitment of 
signal adaptors. ECD, Ectodomain; CT/NT, C/N-terminus.  
 

 

To achieve their optimal function, most TLR dimers also need the presence of co-

receptors. A major co-receptor utilised by most TLRs is CD14, a 55 kDa protein which can be 

anchored to the cellular membrane or found as a soluble form, sCD14 (262). mCD14 is mostly 

expressed at the surface of myeloid cells, and to a lesser extent, on B-lymphocytes and 

monocytes while sCD14 is present in different body fluids, notably in plasma, to enhance TLRs 

signaling by cells lacking mCD14 expression (263-265). Instead, CD14 binds to a wide variety 

of TLR ligands, exogenous and endogenous, via its LRR domains and then forms a complex 

with the TLR to allow for the ligand to be transferred from CD14 to the TLR (266). The 

requirement for CD14 varies with the ligand and the TLR, but CD14 enhancing effect has been 

reported for most TLRs (113, 267-272). In line with the dual implication of TLRs in immunity, 
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CD14, as essential accessory molecule with the ability to modulate TLR signaling, has been 

reported to exert significant impact in pathogenesis of several disease, notably in CVD and 

ischemic stroke (273-275).  

Another essential co-receptor for TLR4 signaling is MD-2. Even in the presence of 

CD14, TLR4 is unable to trigger a response to ligand binding if not complexed with MD-2 and, 

therefore, no physiological role of TLR4 has been demonstrated in the absence of MD-2. MD-

2 is a 18-25 kDa membrane-bound protein that binds to the ectodomain of TLR4 and can also 

be secreted as a soluble molecule. Interestingly, in atherosclerosis MD-2 has been 

demonstrated as critical for Ox-LDL-induced TLR4 dimerisation in monocytes and 

macrophages, downstream activation of NF-κB and subsequent production of pro-

inflammatory cytokines. In addition, MD-2 deficiency leads to reduced atherosclerotic 

plaques through reduced lesional macrophage content and expression of inflammatory 

cytokines (276).  

CD36, a member of the class B family of scavenger receptors, is also an accessory 

molecule for TLRs. It is a 88 kDa membrane glycoprotein considered to be the main receptor 

to mediate phagocytosis of OxLDL. In line with this primary role, CD36 is expressed in various 

cell types including monocytes, macrophages, DCs, platelets, microglia, cardiovascular cells 

and adipocytes (277), and is involved in different pathogenesis as inflammation, lipid 

metabolism and atherosclerosis progression (278). Furthermore, CD36 participates to the 

assembly of the TLR2/6 heterodimers following stimulation with bacterial lipoteichoic acid. 

More recently, Stewart et al. showed the inability of macrophages from TLR4 or TLR6-

deficient mice to express IL-1 mRNA following OxLDL stimulation. Moreover, using 

transfections experiments in HEK293 cells, they demonstrated that only cells transfected with 

both TLR4 and TLR6, as well as CD36, were able to trigger OxLDL or -amyloid-induced NF-B 
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expression. These findings suggested the formation of a CD36/TLR4/6 heterotrimer, initiated 

following OxLDL and -amyloid binding to CD36, therefore inducing pro-inflammatory 

mediators production, such as IL-1 and NF-B, and contributing to atherosclerosis and 

Alzheimer’s disease progression  (279).  

CD14, MD-2 and CD36 are the 3 main co-receptors for TLRs but there is more evidence 

for TLRs collaboration with other PRRs or proteins, to enhance ligand recognition. A non-

exhaustive list includes notably the LPS-Binding Protein (LBP), TLR4 Interactor with LRR (TRIL), 

radioprotective 105 (RP105), MD-1, Dectin-1, Vitronectin, CD44, RAGE, B-cells receptor (280). 

The large number of co-receptors and accessory molecules employed by TLRs underlies the 

ability of these receptors to bind wide variability of ligands as well as the complexity of the 

regulation of the subsequent signaling cascade. This concept is core to explaining the wide 

range of functions, and sometimes differential effects, mediated by TLR activation. 

 

Ligand binding initiates changes in TLR conformation from monomers to dimers 

resulting in the recruitment of specific signaling adaptors to the TLRs’ cytoplasmic TIR domain 

(281). Of note, the BB loops of TIR domains have a particular importance for TIR interaction 

between two different TLRs and their homo- or heterodimerisation (282, 283). In addition, it 

is now well established that the TIR-TIR platform formed by the dimerisation of two TLRs 

promotes homotypic protein-protein interactions with additional cytoplasmic adapter 

molecules, resulting in an active signaling complex. These adaptors initiate a chain of 

phosphorylation and ubiquitination events that lead to the activation of the transcription 

factor NF-B, MAPKs, and interferon-response factors (IRFs) (284).There are 5 TLRs adaptor 

proteins which have been identified: 

- Myeloid Differentiation Primary Response protein 88 (MyD88),  
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- MyD88 adaptor-like (MAL),  

- TIR domain-containing adaptor inducing IFN-β (TRIF),  

- TRIF-related adaptor molecule (TRAM),  

- Sterile-α and HEAT-Armadillo motifs-containing protein (SARM). 

Depending on the adaptor molecules involved, two signaling pathways have been described, 

the MyD88 dependent pathway and the MyD88 independent pathway also known as TRIF 

dependent pathway (285, 286) (Figure 3).  
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Figure 3. TLR signaling pathways 
Schematic representation of the MyD88- and TRIF-dependent pathways for TLR signaling (see 
description in the text). AP-1, activating protein-1; DD, death domain; IκB, inhibitor of NF-κB; IKK, IkB 
kinases; IL, interleukin; IL-1R, interleukin-1 receptor; INF, interferon; IRAK, interleukin-receptor-
associated kinase; IRF, interferon-response factor; ISRE, IFN-stimulated response element motifs JNK, 
c-jun-N-terminal kinase; Mal, MyD88 adaptor-like; MKKs, mitogen-activated protein-kinase kinases; 
MyD88, myeloid differentiation primary response protein 88; NEMO, NF-κB essential modulator; NF-
κB, nuclear factor-kappa B; RIP-1, receptor interacting protein-1; TAB, TAK-1 binding protein; TAK-1, 
TGF-b-activated kinase-1; TBK-1, TRAF-family member-associated-NF-κB activator (TANK)-binding 
kinase-1; TIR, Toll/interleukin-1 receptor domain; TLR, Toll-like receptor; TNF-α, tumour necrosis 
factor-α; TRAF, TNF-α-receptor-associated factor-6 TRAM, TRIF-related adaptor molecule; TRIF, TIR 
domain containing adaptor inducing INF-β; Ub C13, ubiquitin-conjugating enzyme 13; Uev 1A, 
ubiquitin-conjugating enzyme E2 variant 1. 
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MyD88 is a universal adaptor molecule used by almost all TLRs, except TLR3, and plays 

a crucial role in TLRs transduction signal. It was the first adaptor described as a member of 

“shared” signaling pathway induced by TLRs as well as by the IL-1R family. At its carboxy-

terminal, MyD88 possesses a TIR domain, and a Death Domain (DD) at its N-terminal. TLR 

ligand binding causes association of the TIR domains of MyD88 and the TLR which, followed 

by the recruitment of the first kinase of the signaling cascade, interleukin-receptor-

associated-kinase-4 (IRAK-4). The complex constituted of TLR/MyD88/IRAK-1/IRAK-4 is called 

Myddosome complex. IRAK-4 activates IRAK-1 which is then auto-phosphorylated at several 

sites. Phosphorylated IRAK-1 dissociates from the Myddosome complex, and associates with 

TNFα-receptor-associated factor-6 (TRAF-6). TRAF-6 links the IL-1R/IRAKs or TLR/IRAKs 

complexes with the activation of the NF-B and MAPKs cascade. Once activated via poly-

ubiquitination and oligomerisation, TRAF-6 associates with four downstream proteins: 

Transforming growth factor-β (TGF-β)-activated kinase-1 (TAK-1), and the TAK-1 binding 

proteins-1, 2 and 3 (TAB-1, TAB-2, TAB-3). Activation of the TAK-1/TAB complex enhances the 

activity of the inhibitor of NF-B (I-κB) kinases (IKK) complex. The IKK complex subsequently 

phosphorylates I-B proteins that are associated with NF-B in the cytoplasm of resting cells 

and degrades them which has as consequence to liberate NF-B. The release of NF-B leads 

ultimately to its nuclear translocation and the promotion of genes responsible for 

inflammatory responses such as TNFα, IL-1β, IL-6, IL-8 and MCP-1.  

TAK-1 also activates the MAPK pathway. TAK-1 phosphorylates MAPK kinases (MKKs), 

which in turn phosphorylate and activate the MAPKs p38 and c-jun-N-terminal kinase (JNK). 

Activated p38 and JNK then activate the transcription factor, activating protein-1 (AP-1). 

Similarly to NF-B, AP-1 initiates the transcription of genes coding for pro-inflammatory 

cytokines e.g IL-2, IL-8 and TNFα (287).  
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MyD88-dependent pathway can also activate members of the IRF family, notably IRF-

5, which in turn induces the production of TNFα, as well as IL-6 and IL-12 (288).  

 

TLR3 is the only member of the TLR family known to signal exclusively via the TRIF-

dependent pathway (289). As with the MyD88-pathway, TRIF-dependent signaling leads to 

NF-B activation but also to activation of the transcription factors IRF-3 and IRF-7, which 

activate the interferon IFN-β promotors, leading to several IFN-inducible genes responsible 

for the expression of type I IFNs as IFN-α and IFN-β. Consistent with the function of TLR3 as a 

sensor of viral nucleic acids, type I IFNs stimulate both macrophages and natural killer cells to 

elicit strong anti-viral responses. In addition to TLR3, it is now well accepted that TLR4 can 

also utilise the TRIF pathway, making it the only TLR able to activate both pathways. While 

TLR3 interacts with TRIF directly, TLR4 needs the TRAM molecule to complex with TRIF (289, 

290).  

SARM is unlike the other TLR adaptors because it acts as a negative regulator of 

signaling via inhibition of NF-B and IRF activation in response to TLR triggering (291), notably 

by interacting with TRIF. 

 

I-2.5. Regulation of TLR activation 

The regulation of the activation of the immune system is crucial as illustrated in this 

introduction with all the pathologies derived from excessive immune responses. Therefore, 

TLR activity has to be tightly regulated and a number of modulatory mechanisms exist to 

control it. These include: 

- Apoptosis of the activated cells, as TLRs can also function as death receptors (292); 
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- Reduction of TLR expression, which can be achieved by protein degradation or 

inhibition of their expression, notably by anti-inflammatory cytokines (293, 294); 

- Prevention of ligand binding to its TLR, mostly via the expression of soluble forms of 

TLRs or accessory molecules, which acts as ligand decoy receptors. Soluble forms of 

TLR2 (295), TLR3 (296) and TLR4 (297), consisting in the extracellular domains of these 

receptors, have been reported to inhibit TLR activation (298), although the presence 

of sTLR3 in vivo has not been demonstrated; 

- Inhibitors of TLR signaling cascade, such as SARM, the Single Immunoglobulin IL-1R-

related molecule (SIGIRR), ST-2, TNF-related apoptosis-inducing ligand receptor 

(TRAILR), and a number of others (299-301). 

 

I-3. Inflammation and CVD 

Chronic inflammation is a major contributor to CVD, notably by contributing to the 

development and progression of atherosclerosis, a lipid-driven chronic inflammatory disease 

of the arterial wall (302-304) which is the most common underlying CV pathology. Plaque 

rupture followed by thrombosis lead to myocardial infarction and stroke, the most common 

causes of death worldwide (305, 306).  

 

I-3.1. Aetiology of atherosclerosis 

Atherothrombosis, characterised by atherosclerotic lesion disruption with 

superimposed thrombus formation is the primary cause of heart disease and stroke. Over the 

past few decades, the viewpoint of atherosclerosis as an exclusively lipid-driven disease, has 

been gradually replaced by the concept of a chronic low-grade inflammatory process of the 
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arterial wall (307). While inflammation in itself is not sufficient to cause atherosclerosis in the 

absence of atherosclerotic lipids, it induces a series of responses that link lipid metabolism, 

with atherosclerosis plaque development (308, 309). Indeed, inflammation arises from an 

imbalance in lipid metabolism which leads to a subsequent accumulation of lipoproteins in 

the subendothelial space, followed by a maladaptive immune response. The arterial wall is 

composed of 3 layers which are, starting from the arterial lumen: i) the intima, lined and 

separated from bloodstream by endothelial cells composing the endothelium, ii) the tunica 

media composed mostly of SMCs, and iii) the adventitia. In normal conditions, resting 

endothelial cells do not attract blood leukocytes (308). An event (or association of several), 

such as injury, damage or stress to the endothelium, notably as a result of high circulating 

levels of cholesterol or persistent hypertension serves as the initial trigger for atherogenesis. 

Atherosclerosis evolves through several stages, each involving changes in the arterial wall 

(Figure 4). 
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Adapted from Nayor M. et al., 2021 (310) and Zhang S. et al., 2022 (311) 

ABCA1, ATP-binding cassette subfamily A member 1 transporter; ABCG1, ATP-binding cassette transporter G1; EC, Endothelial cell; ICAM-1, 
Intercellular adhesion molecule 1; IL-6, Interleukin 6; LDL, Low density lipoprotein; LOX-1, Lectin-like OxLDL receptor-1; MCP-1, Monocyte 
chemoattractant protein-1; MMP, Matrix metalloproteinases; MPO, Myeloperoxidase; OPN, Osteopontin; OxLDL, Oxidized LDL; RBC, Red 
blood cell; SMC, Smooth muscle cell; SR-A, Scavenger receptor A; TNF-, Tumor necrosis factor- ; VCAM-1, Vascular cell adhesion protein 
1; VSMC, Vascular smooth muscle cell. 

 

Figure 4. Schematic illustration of atherosclerosis progression and pathological mechanisms 
associated 
Top: The 4 stages of pathological progression of atherosclerosis. Initiation of atherosclerosis is 
triggered by a proatherogenic, lipid rich, inflammatory milieu leading to focal inflammation, 
maladaptive intimal and medial thickening, and endothelial damage. As atherosclerosis progresses, 
fatty streaks develop into atherosclerotic plaques. Bottom: This process is heavily influenced by 
different leukocytes species ’functions, including macrophage polarisation and transition to foam 
cells. At the bottom right, micro-calcifications and secondary necrosis, together with cholesterol, 
inflammatory cells and cytokines accumulation, promote a lipid-rich necrotic core, which, coupled 
with a thin fibrous cap, are characteristic of vulnerable plaques more prone to rupture compared with 
stable plaque (at the middle left). Complications of atherosclerosis primarily occur as a result of critical 
blockages and plaque rupture events leading to thrombosis and acute organ ischemia.  
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- First stage: Initiation of atherosclerosis associated with recruitment of immune cells 

The endothelial lining of arteries responds to mechanical and molecular stimuli, 

notably inflammation, throughout the circulation. As previously mentioned (Introduction, 

Section I-2.3), endothelial cell activation is more likely to occur in regions of arterial curves 

because of disturbed blood flow and low shear stress. These are also regions of facilitated 

accumulation and retention of blood circulating factors, such as cholesterol-rich LDL, a major 

atherogenic lipoprotein, rendering these regions atherosclerosis-prone areas (312). Once the 

endothelium has been activated by stress or injury, it will upregulate extracellular matrix 

components, notably proteoglycan, which has a high affinity for LDL. Consequently, LDL will 

aggregate at the lesion site. Accumulated LDL particles suffer modifications from the milieu 

environment such as oxidation leading to the formation of OxLDL (313, 314). LDL is notably 

also able to infiltrate into the endothelium via endocytosis leading to increased levels in the 

intima (315, 316). The accumulation of OxLDL in turn stimulates endothelial cells to produce 

pro-inflammatory cytokines and chemokines to attract circulating leukocytes to the lesion site 

(317, 318). Of particular importance in this process is MCP-1, which attracts monocytes to the 

lesion, but also direct the migration into the intima following a concentration gradient, after 

monocyte adhesion to the endothelium (305). MCP-1 is expressed in all steps of 

atherosclerosis and OxLDL has been shown to upregulate its mRNA levels in endothelial cells 

and SMCs (319, 320). Activated endothelial cells also upregulate the expression of adhesion 

molecules on their surface, notably VCAM-1 and ICAM-1 (321, 322). These adhesion 

molecules will interact with their ligands expressed on the surface of blood leukocytes (such 

as Mac-1 (CD11b/CD18) and integrin α41 on monocytes) to promote recruitment from the 

blood into the artery wall. The recruitment of immune cells follows 3 main steps, namely 
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rolling and firm adhesion to the endothelium via adhesion molecules interaction, then 

extravasation through the endothelial layer which displays an increased paracellular 

permeability (318, 323). The first cell type to be recruited to the site of OxLDL accumulation 

are monocytes, followed by lymphocytes (324). However, more recently some studies also 

showed evidence for neutrophils implication in atherosclerosis suggesting that they are also 

recruited (325, 326).  

- Second stage: Formation of fatty streaks 

Once the endothelial barrier is crossed, monocytes differentiate into macrophages in 

the intima (327). Interestingly, a specific pro-inflammatory subset of monocytes has been 

identified to trigger lesional macrophages, Ly6Chigh monocytes, in part because they express 

higher levels of adhesion molecules than Ly6Clow monocytes and are therefore preferentially 

recruited (328). Macrophage colony-stimulating factor (M-CSF), highly expressed at plaque 

site, is a major driver of monocyte to macrophage differentiation in atherosclerosis (329). 

Macrophages have the ability to uptake LDL either by phagocytosis, which is performed via 

scavenger receptors (317, 330), or by macropinocytosis which is a non-selective form of 

endocytosis (331). Initially, phagocytes may have anti-atherogenic effect as they uptake and 

process excess lipids from the extracellular space, and may  then leave the arterial wall (327). 

However, because of the accumulation of OxLDL and ongoing inflammation, notably 

chemoattractant secretion (332), macrophages keep accumulating and remain trapped in the 

arterial wall. In addition, it also has been demonstrated that they can proliferate into the 

intimal layer (333). Importantly, scavenger receptor A (SR-A) (334) and CD36 (335), expressed 

by macrophages, are two major receptors for modified LDL, which, in contrast to other LDL 

receptors, are not down-regulated in response to rising intracellular cholesterol content 
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(336). The excessive uptake of OxLDL by macrophages results in cholesterol-engorged 

macrophages, called foam cells (337, 338). Foam-cells in turn secrete inflammatory mediators 

and ROS, leading to the maintenance, rather than resolution, of inflammation (339). In 

addition, cholesterol-engorged phagocytes become unable to perform efficient efferocytosis, 

the clearance of apoptotic or necrotic cells. As a consequence, most apoptotic foam cells in 

the plaque will not be efficiently cleared and will undergo secondary necrosis. Necrotic foam 

cells then release their lipid-filled contents further contributing to the inflammatory burden 

as well as formation of lipid streaks which constitute the beginning of the plaque formation 

(340-342). It also has been recently observed in vivo that foam cells found at the lesion site 

could also be of SMC, rather than macrophage, origin, but both types of foam cells present 

markers in common (343, 344).  

Monocytes and lymphocytes are still recruited from the bloodstream at all stages of 

atherosclerosis. Monocytes and macrophages keep producing inflammatory mediators such 

as TNF, IL-6, IL-8 or MCP-1, growth factors and free radicals which leads to more recruitment, 

metabolic changes associated with more LDL oxidation, and more damage to the endothelium 

(345). T-lymphocytes, fewer in number than myeloid cells, drive the adaptive immune 

response but also interact with innate immune cells via production of mediators that notably 

control many of their functions (346).  

Fatty streaks do not result in clinical complications and can even undergo regression 

with lifestyle changes or treatments. However, once SMCs infiltrate, and the lesions become 

more advanced, regression is less likely to occur (312).  
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- Third stage: Plaque growth leading to atheroma formation 

Over time, fatty streaks will increase in size and may merge to  become a larger plaque 

(336). Of note, the release of lipids by necrotic foam cells plays a major role in the growth of 

the pro-thrombotic necrotic core of the lesion which is where the plaque is thicker and more 

vulnerable (347). The cooperation between innate and adaptive immunity stimulate the 

production of pro-inflammatory cytokines that sustain and amplify the local inflammatory 

response (348, 349). Of note, DCs are key players in this cooperation, as they are found in the 

intima of normal arteries and accumulate in atherosclerotic lesions, inducing T-cell activation 

via antigen presentation, notably that of antigens specific to the atherosclerosis process, such 

as modified LDL (340). In response to pro-inflammatory mediator production, especially IL-

1β, TNF and TGF-β, SMCs from the tunica media migrate into the intima where they synthetise 

and promote the accumulation of extracellular matrix (308, 317). These mechanisms lead to 

i) the expansion of the intima towards the vascular lumen which reduce the diameter 

available for blood flow and ii) the formation of the fibrous cap on the developing plaque. The 

fibrous cap is composed of collagen-rich fiber tissues, SMCs, macrophages and T lymphocytes 

which stabilise the plaque and prevent it from rupturing into the bloodstream (350, 351). The 

association of necrotic core and fibrous cap forms the mature atherosclerosis plaque (327). 

Small intimal calcifications are also found in more advanced plaques (352), as a result of SMCs 

osteogenic differentiation and mineralisation of the extracellular matrix in response to 

exposure to inflammatory cytokines (353, 354). Developed atherosclerotic plaques are harder 

than immature ones, thus leading to stiffer arteries.  
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- Fourth stage: Plaque rupture 

The cycle of chronic inflammation and cell death transform the stable plaque into a 

vulnerable plaque triggering an acute clinical event by plaque rupture and thrombosis (305, 

355-357). A first step towards plaque rupture is the thining of the fibrous cap, which is driven 

by the same cell types that have promoted its formation. Notably, foam cells, macrophages, 

SMCs and endothelial cells secrete MMPs which contribute to the lysis of extracellular matrix 

(targeting collagen especially), and activated T-cells prevents the collagen synthesis by SMCs 

via TNF production (358-360). As a result of fibrous cap degradation, lipids and collagen are 

released in the systemic circulation which contributes to the accumulation and adhesion of 

platelets at plaque site, promoting blood clot formation (361-363). This clot, also known as 

thrombus, can block the blood flow and trigger acute cardiac events, such as a heart attack 

or a stroke (350, 364-366). 

 

I-3.2. Macrophage heterogeneity in atherosclerosis 

Following activation of the endothelium by deposition of modified LDL, monocytes are 

reported as the first cell type to be recruited to the intima, where they differentiate into 

macrophages and contribute to the maintenance of chronic inflammation, leading to a 

worsening of the atherosclerotic disease. However, plaque macrophages also exert anti-

inflammatory functions that can contribute to disease resolution or plaque stabilisation and 

the mechanisms controlling macrophage phenotypes and functions are not fully understood 

(367).  Macrophages are a very heterogeneous cell population and several phenotypes 

typically co-exist, whether in the plaque or in other organs, in health or in disease. In an 

attempt to explain the diversity of macrophage phenotypes identified in vivo, a conceptual 
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framework evolved that classified macrophages as belonging to either an “M1” or “M2” 

phenotype analogous to the type 1 T helper (Th1)/type 2 T helper (Th2) concept that was 

dominating T-cell biology (Figure 5 (368)), and which display antagonist functions. Several 

ways to classify macrophages have been used, based on:  

- Their role in key macrophage homeostatic activities, namely host defense, wound 

healing, and immune regulation. This method distinguishes activated M1 

macrophages, whose major role is in pathogen killing and promote, and are promoted, 

by Th1 cellular immune responses, from wound healing macrophages - M2a-, and 

regulatory macrophages (both M2b and M2c subclasses) which also preferentially 

induce Th2-type humoral-immune responses to antigen. (369)  

- Their expression of cell surface markers and the production of specific factors, mainly 

levels and types of cytokines produced (370). This classification recognises, at least, 

M1, M2a, M2b and M2c distinct subclasses. M1 macrophages secreting pro-

inflammatory cytokines, and M2 macrophages overall presenting anti-inflammatory 

profiles, but with slight differences between each subtype.   

- The polarisation and activation pathways specific of each subtype. This is often useful 

in conjunction with the classification methods described above. For instance, M2a 

macrophages can be discriminate from M2c ones because they are induced by Th2 

cytokines, IL-4 and IL-13, whereas M2c macrophages are induced by glucocorticoids. 

(356, 370-372).  
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Adapted from Röszer T. (2015) (368) 

 
Figure 5. Overview of macrophage phenotypes  
Macrophage activation is widely considered as a polarisation towards M1 or M2 states. However, the 
M2 activation state involves heterogenous and functionally distincts macrophages. The diagram 
represents the most prevalent examples of the M2 activation and lists the markers associated with 
the distinct activation phenotypes. The upstream signals are labeled in dotted frames.  
 

 

 

Broadly, M1 macrophages, also known as “classically activated macrophages”, are described 

as pro-inflammatory, while M2 macrophages, “alternatively activated macrophages”, show 

anti-inflammatory properties (368, 373-378). The main role of M1 macrophages is believed 

to be the clearance of pathogens during infection through efficient phagocytosis, the 

generation of ROS and the production of pro-inflammatory cytokines such as TNF, IL-6 and IL-

1β (379, 380). On the other hand, an essential function of M2 macrophages is to promote 
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tissue repair and wound healing following an infection or injury (381-383). To perform this 

role, M2 macrophages are notably able to produce anti-inflammatory cytokines such as IL-10 

and TGF-β, thus defining them as potent inhibitors of acute inflammatory responses to 

bacterial ligands. In contrast to M1 macrophages, M2 macrophages are described as 

ineffective at intracellular pathogen killing (384, 385), but have a crucial role in the uptake of 

apoptotic cells, termed efferocytosis, and debris (340, 386, 387). Moreover, an ability of M2 

macrophages to produce several extracellular matrix components, such as fibronectin, or 

polyamine and proline promoting collagen formation, has been described, consistent with 

their role in wound healing (382, 388, 389). Notably, according to the M1/M2 paradigm, tissue 

resident macrophages in health are classified as M2 macrophages given their role in 

maintaining tissue homeostasis, notably by performing efferocytosis during routine cell 

turnover.  

 

The polarisation pathway undergone by macrophages depends in a very significant 

part on their microenvironment (371, 372, 390). Both tissue resident macrophages or 

monocytes-derived macrophages can become M1 or M2 macrophages (391, 392). In 

physiological conditions, the sensing of a threat such as an external pathogen, bacterial LPS, 

or sterile inflammatory signals, such as DAMPs, by macrophages triggers their polarisation 

towards an M1 phenotype. Given the potent pro-inflammatory activities of M1 macrophages, 

their numbers and activation must be spatially and temporally regulated to prevent 

uncontrolled tissue damage to the host. Regulation can come from the M1 macrophage itself, 

mostly via apoptosis, or from surrounding cells, notably by concomitant M2 polarisation. In a 

positive feedback loop, M2 macrophages stimulate T-cells to produce IL-4, which in turns lead 

to more M2 polarisation. M2 macrophages in turn secrete immunoregulatory cytokines, 
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especially TGF-β and IL-10, which dampen macrophage activation and therefore help to 

dampen the pro-inflammatory damage induced by M1 macrophages. Hence, the coexistence 

of both macrophages phenotypes creates a balance that aims at efficient pathogen clearance 

followed by then tissue healing (371, 393, 394).  

However, chronic inflammation may be associated with an imbalance between M1 and M2 

macrophages which promotes the chronic activation of the pro-inflammatory, M1, 

macrophages leading to tissue damage and impairment of wound healing (395, 396).  

 

Consistently, atherosclerosis was initially thought to be a mostly M1-driven chronic 

inflammatory condition of the arterial wall. Although both M1 and M2 macrophages have 

been detected in the plaque, the initial simplistic viewpoint was that pro-inflammatory, M1, 

macrophages are pro-atherosclerotic, while anti-inflammatory, M2, macrophages are anti-

atherogenic. This hypothesis was supported by several observations: 

- The recruitment and retention of macrophages is dramatically increased at the lesion 

site, besides an enrichment in M1 phenotype in advanced plaques (392, 397). Hence, 

the M1:M2 balance appears as a major component of atherosclerosis progression 

(333, 398).  

- M1 macrophages have been associated with symptomatic, unstable and progressing 

plaques, whereas M2 macrophages are found in more stable, asymptomatic or even 

regressing plaques (399-401). 

- The position of M1 and M2 macrophages within the plaque. Macrophages expressing 

mainly M1 polarisation markers have been located in one of the most unstable areas 

within the plaque called shoulder, whereas the fibrous cap which is a more stable 

location within the plaques contains both M1 and M2 phenotypes in similar numbers 
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(398, 402-404). This observation raised several questions about spatiotemporal 

monocytes recruitment and differentiation into macrophages. Notably, the fact that 

M1:M2 balance may depend on factors other than the microenvironment. It has been 

hypothesised that polarisation can also be influenced by macrophage origins, with 

circulating monocytes and tissue-resident macrophages not differentiating into the 

same phenotypes, although it is still a subject of debate (391, 404-408). Moreover, it 

has also been evoked that polarisation may depend on intrinsic cell properties, such 

as the levels of marker Ly6C expressed by recruited monocytes, with Ly6Chigh 

monocytes differentiating preferentially into M1, and Ly6Clow into M2 macrophages 

(328, 333, 392, 409-411). Interestingly, if the microenvironment is able to influence 

macrophages polarisation, the contrary is also true. Therefore, M1:M2 macrophages 

ratio has the ability to influence the plaque structure i.e the position of macrophages 

within the plaque which is a major component of the lesion phenotype and its 

evolution.  

- Inducing an aggressive lowering of lipids or raising High-Density Lipoprotein (HDL) 

levels triggered regression of atherosclerosis in mice. This effect was associated with 

a plaque enrichment in M2 macrophages, consistent with an atheroprotective 

function. This finding also suggested that the HDL:LDL ratio could also be a 

macrophage polarisation factor (412, 413).   

 

However, the simplistic M1 are pro-inflammatory and M2 are anti-inflammatory 

paradigm cannot fully explain atherosclerosis progression and does not take into 

consideration emerging evidence for more diverse roles within a same macrophage 

phenotype. Notably, anti-inflammatory – M2 – macrophages, originally described as anti-
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atherogenic, are now thought to have possible implications in atherosclerosis progression 

under specific conditions and depending on the stimuli they receive. For example, particular 

M2 macrophages subtypes have been found able to secrete large amounts of pro-

inflammatory cytokines (414-416).  It has also been described that M2-like macrophages may 

be more prone to foam cells formation, or that they can secrete large amounts of MCP-1 

when loaded with OxLDL. Moreover, a M2 subtype has been associated in hemorrhagic areas 

within the plaque which correlate with plaque progression (338, 415-418). Therefore, more 

recent studies argue for a greater complexity than the restricted paradigm of 2 main types of 

macrophages: M1 vs M2. As mentioned before, the M2 classification already regroups three 

subtypes (M2a, M2b and M2c), identified in both humans and mice based on differences in 

functions and expression markers. Besides, in the context of atherosclerosis in particular, 

extensive in vivo studies lead to the discovery of a wide range of intermediate macrophage 

phenotypes shown to be to some extent involved in plaques progression (Figure 6 (356)), 

notably: 

- Mox macrophages are characterised by increased expression of Nuclear Factor 

Erythroid 2-related factor 2 (NFR2) as well as reduced phagocytic and chemotactic 

capacities (419). They are thought to be induced by exposure to oxidized 

phospholipids present in OxLDL. 

- Mhem macrophages are polarised by exposure to heme, a precursor of hemoglobin, 

and display reduced levels of oxidative stress and lipid accumulation along with a 

reduced capacity for foam cells formation (420-422). 

- M(Hb) macrophages have characteristics very close to those of Mhem macrophages, 

but are induced by exposure to haemoglobin-haptoglobin complexes rather than to 

heme (423, 424). 
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- M4 macrophages are thus named because they are polarised by CXCL4. They are 

found in human atherosclerotic plaques and completely lack the capacity for 

phagocytosis but might prevent the development of Mhem phenotype in 

atherosclerotic plaques (425, 426). 

 

Interestingly, most of the described alternative macrophage phenotypes seem to 

display more M2 than M1 markers and functions. This is consistent with the large number of 

pathways leading to M2 polarisation but it also suggests that alternative macrophages might 

represent different stages of differentiation of the same cell population (356). For example, 

the very close phenotypes displayed by Mhem and M(Hb) macrophages and the fact that they 

are polarised by closely related factors, heme and hemoglobin, support this concept. In 

contrast, M1 macrophages polarisation pathway seems to be simpler and well established, 

and intermediate M1 phenotypes have not been described to date. (392, 413, 427, 428) 

 

This complex diversity is thought to be partly due to the complexity of the plaque 

microenvironment (355, 356, 429). For instance, a single factor can lead to both M1 and M2 

polarisation: in the plaque, OxLDL, a straightforward cue for pro-inflammatory polarisation, 

can lead to M1 phenotypes via TLR-signaling, but also induces expression of M2 macrophages 

phenotypic markers, notably arginase 1 via the activation of peroxisome proliferator 

activated receptor-γ (PPARγ) (430). Another example is that Granulocyte-Macrophage 

colony-stimulating factor (GM-CSF) and M-CSF, known to promote monocyte differentiation 

into opposing macrophage phenotypes, are both present in the atherosclerotic plaque (431, 

432). In addition to the increasing number of macrophage phenotypes being characterised in 

vivo, different studies have also reported macrophage plasticity, or the ability to switch 
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between phenotypes, during the course of atherosclerosis (425, 426). In mice, macrophages 

plasticity was observed during plaque regression, with a switch from M1 to M2 phenotype, 

suggesting that the stage of the disease may control both macrophages polarisation and 

plasticity (412, 413). In another study, pro-inflammatory cytokines and oxidized 

phospholipids found in the plaque could reduce macrophage expression of Krüppel-like 

factor-4 (KLF4), a transcription factor promoting M2 polarisation suggesting that the M2 

phenotype may be repressed during atherogenesis contributing to disease progression when 

pro-inflammatory signals predominate (400). Thus, it is now admitted that macrophages are 

extremely plastic cells and that their polarisation is not definitive. Phenotype switching may 

occur depending on complex environmental cues, contributing to the wide spectrum of 

plaque macrophages which are able to further evolve with disease progression or regression.  
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Adapted from Chinetti-Gbaguidi, G. et al. (2014) (356)                                                  

 
Figure 6. Main macrophage subtypes found in atherosclerotic lesions  
Stimuli present in atherosclerotic lesions drive the differentiation of monocytes towards different 
macrophage phenotypes. a. M1 macrophages release pro-inflammatory cytokines. b. M(Hb), Mhem, 
and M2 macrophages are resistant to lipid accumulation, possess iron-handling capacities, and have 
anti-inflammatory effects. c. Mox macrophages display an antioxidant gene expression profile. d. M4 
macrophages, like M1 macrophages, are pro-inflammatory but lack the capacity for phagocytosis.  
  

 

The in vivo complexity of the plaque microenvironment is currently impossible to 

reproduce in vitro, thereby limiting the relevance of in vitro only polarisation studies. 

However, various protocols have been described to promote the M1-like or M2-like 

phenotypes in vitro. Briefly, an M1-like phenotype can be obtained by:  

-  Macrophage exposure to a combination of two signals: IFN-γ and TNFα. The IFN-γ 

cytokine does not activate cells but is needed to prime them (433) along with 

exogenous TNFα, or an inducer of TNFα. Classically, microbes or microbial products 

such as LPS are very potent TNFα inducers and lead to M1 macrophage polarisation 
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(371, 373). Moreover, DAMPs that act as TLRs ligands have also been shown to 

promote a M1 phenotype (86, 204, 279). For example, in the context of 

atherosclerosis, increased OxLDL/Ox phospholipids concentration leading to TLRs 

signaling is a M1-activation signal (339, 434, 435).  

- In addition to the manipulation of the extracellular milieu, the more recent 

identification of transcriptional programs that regulate macrophage polarisation, has 

led to the development of other techniques to differentiate macrophages in vitro. For 

example, targeted depletion of the transcriptional factor KLF4, which promotes M2 

and inhibits M1 polarisation, leads to a M1-like macrophage phenotype (400, 436).  

 

On the other hand, in vitro conditions to obtain M2-like macrophages include: 

- Exposure of murine peritoneal macrophages to IL-4. This protocol results from the first 

description of “alternatively activated” – M2 – macrophages by Gordon and al., who 

observed an “alternative activation phenotype” when cells were exposed to IL-4 (437). 

- A two-signal polarisation pathway. It requires the ligation of Fcγ Receptors (FcγRs) 

coupled with a macrophage stimulatory signal to influence cytokine production 

induced by TLRs (LPS stimulation), CD40 (Lipoteichoic acid stimulation) or CD44 (HA 

stimulation) engagement. Without FcγRs ligation, all these stimuli induced pro-

inflammatory profiles, but with the ligation, authors noticed the induction of high 

levels of IL-10 and abrogation of IL-12 production. However, in contrast to M1 

polarisation, macrophages do not need to be IFN-γ primed (371, 393, 438).  

- Combined exposure to IL-4 and IL-13 (M2a differentiation) (369, 429). 

- Exposure of cells to classical activating signals – TNF, LPS, IL-1β – in the presence of 

immunoglobulin G immune complexes (M2b differentiation) (356, 414).  
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- Exposure to IL-10, TGF-β, IL-13 or glucocorticoids (M2c macrophages) (370, 439). 

 

A widely-used technique to differentiate primary blood monocytes into macrophages 

in vitro is by addition of growth factors, either GM-CSF, or M-CSF (415, 431, 440, 441). 

Macrophages express receptors for both GM-CSF and M-CSF, which trigger signaling pathway 

for cell survival, proliferation, differentiation and activation (442, 443). In physiological 

conditions, basal levels of GM-CSF are low but become dramatically elevated during 

inflammation, while M-CSF is found ubiquitously in many tissues and controls the number 

and function of resident macrophages (444). In atherosclerosis, the GM-CSF:M-CSF ratio 

changes with disease progression. M-CSF is expressed in both healthy arteries and 

atherosclerotic lesions, while GM-CSF expression is very low in healthy vessels but increases 

in SMCs and endothelial cells during disease progression and macrophage accumulation (431, 

432). In various studies, GM-CSF has been shown to trigger formation of cells with antigen-

presenting properties, and M-CSF-differentiated cells were found to be involved in 

inflammation resolution (445-447). Taken together, these observations led to the description 

of GM-CSF or M-CSF in vitro differentiated-macrophages as models of M1 or M2 macrophages 

respectively (441). However, an increasing number of studies describes that differentiation 

with GM-CSF/M-CSF only does not induce true M1/M2 phenotypes and that they should be 

used in combination with other factors to provide more physiologically relevant biological 

models. For example, both GM-CSF and M-CSF-derived macrophages can behave in an M1-

like manner if stimulated with TLR ligands while M-CSF differentiation requires addition of 

key cytokines, such as IL-4 or IL-13 to obtain a more physiological M2 phenotype (448).  
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Therefore, although in vitro experiments are essential and integral parts of studies 

aimed at deciphering macrophage-related immune mechanisms, it is important to bear in 

mind that no in vitro model of macrophage, no matter how complex, can fully represent the 

diversity, complexity and plasticity of primary macrophages in the in vivo setting, especially 

in an evolving disease scenario such as atherosclerosis.  

 

I-3.3. TLRs in atherosclerosis 

The role of TLRs in mediating and orchestrating the initiation and progression of 

atherosclerosis is now well accepted (307, 449, 450). An increase in TLR2 and TLR4 

expressions have been observed in monocytes from patients and mice with coronary artery 

disease (451, 452). Furthermore, TLR1, 2 and 4 expression levels are upregulated in human 

atheroma compared with healthy vessels, and NF-κB colocalises with both TLR2 and TLR4 in 

the plaque (254). Functionally, TLRs are implicated in a wide range of pro-atherogenic 

mechanisms, directly or indirectly, such as pro-inflammatory mediators’ production and 

secretion, macrophages recruitment, foam cells formation and subsequent differentiation of 

T-cells towards Th1 against Th2 phenotype (453). Therefore, the role of TLRs in mediating 

atherosclerosis has been the subject of intense study and it was shown that: 

- Knocking-out of MyD88, the main TLR signaling adaptor, reduced early atherosclerotic 

lesion development in hyperlipidemic mice via impairment of macrophage 

recruitment into the artery wall (454); 

- Deletion of TLR2 in LDLR−/− mice on a high fat diet reduced atherogenesis compared 

to LDLR−/− mice after 10 and 14 weeks on a high fat diet (455). Interestingly, in bone 

marrow transplantation experiments, loss of TLR2 expression in bone marrow-derived 

cells only did not reduce the atherosclerotic burden. This suggested that an unknown 
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endogenous TLR2 agonist influenced lesion progression by activating TLR2 in cells that 

were not of bone marrow origin. However, atherosclerosis was dramatically worsened 

by administration of the TLR2 agonist, Pam3CSK4 (P3C), a synthetic bacterial 

lipopeptide, and this effect could be reversed in full in LDLR-/- mice completely 

deficient for TLR2, or in bone-marrow only TLR2-deficient mice. These observations 

suggested a differential involvement of TLR2 on atherosclerosis initiation and 

progression or worsening in response to infections, depending on its tissue 

distribution (455). 

- TLR4 deficiency was associated with reduced aortic atherosclerosis burden in ApoE-/- 

mice which accompanied decreased lipid content in the plaque and lower levels of 

circulatory pro-inflammatory cytokines (197).  

 

Mechanistically, it was found that the stimulation of human macrophages with OxLDL 

induced foam cell formation, cytokine secretion, HLA-DR and CD86 expression and T-cell 

proliferation in vitro. Interestingly, antibody blocking of TLR2, TLR4 and CD36 reduced the 

secretion of IL-1β, IL-6 and IL-8, the expression of HLA-DR and CD86, T-cell proliferation and 

foam cell formation. However, the blockade of TLR2 did not affect the formation of foam cells 

(456). Stewart et al. also demonstrated that a complex composed of TLR4, TLR6 and CD36 

could recognise OxLDL and promote sterile inflammation (279). Interestingly, other forms of 

atherogenic lipids, such as minimally modified LDL, which are not recognised by scavenger 

receptors, can also activate TLRs, notably TLR4, with the classical involvement of the co-

receptors CD14 and MD-2 (457).  

Aside from oxidized/modified LDL recognition, TLRs also promote atherosclerosis 
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development in response to infections, in line with their long-described ability to sense 

microbial components (458). Infectious agents that have been linked to atherosclerotic 

disease include, but not limited to, Chlamydia pneumoniae (C. pneumonia), Porphyromonas 

gingivalis (P. gingivalis), Helicobacter pylori (H. pylori), influenza A virus, cytomegalovirus 

(CMV), Epstein-Barr virus, HIV, herpes simplex virus (HSV)-1 and 2, and hepatitis C virus (458, 

459). TLR2 and TLR4 were found involved in endothelium activation, leukocyte recruitment, 

foam cell formation and lesion rupture in atherosclerosis promoted by the bacteria C. 

pneumonia, P. gingivalis, H. pylori; while the intracellular TLR3, 7, 8 and 9 were involved in 

mediating the promoting effect of CMV, HIV and HSV (458). 

In terms of therapeutic exploitation of the role of TLRs in atherosclerosis, Arslan et 

al. demonstrated that a monoclonal antibody against TLR2 (OPN-301) resulted in reduced 

neutrophil, macrophage, and T-lymphocyte infiltration, and reduced the production of pro-

inflammatory TNF-α, IL-1α and GM-CSF in mice (460). The same group later described the first 

humanised anti-TLR2 antibody, OPN-305, which reduced infarct size, preserved systolic 

function and eventually prevented myocardial damage in a model of I/R Injury (461). 

Additionally, an established TLR4 antagonist, R. sphaeroides LPS (Rs-LPS), prevented the 

expression of the pro-atherogenic factors IL-6 and MMP-9, as well as macrophage 

accumulation in atherosclerotic plaques in ApoE−/− mice (462). However, the therapeutic 

options existing so far to target TLRs are quite limited and further preclinical development is 

needed. Although the evidence for TLR2 inhibition is somewhat stronger than for TLR4, this 

could simply be due to the existence of a powerful blocking antibody approved for use in 

clinical trials.  
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Of note, TLR activation is not always detrimental to atherosclerosis progression. 

Endosomal TLRs, TLR3 in particular, have been shown to play protective functions. In 

vivo, neointima formation following perivascular collar-induced injury model was reduced 

after administration of the TLR3 synthetic analog PolyI:C in TLR3+/+ApoE−/− mice compared 

with TLR3−/−ApoE−/− mice. Moreover, TLR3−/−ApoE−/− mice had earlier atherosclerosis 

than their TLR3+/+ApoE−/− counterparts, suggesting that TLR3 is protective. The TLR3 

downstream signaling cascade activates TRIF. LDLR−/− mice with lack-of-function mutation in 

TRIF (Lps2) were significantly protected from atherosclerosis, where the mice displayed fewer 

observed lesional macrophage (307). TLR7 was found to play a protective role by constraining 

monocyte/macrophage pro-inflammatory activity. TLR7−/−ApoE−/− mice displayed elevated 

levels of necrotic core formation, lipid deposition, macrophage infiltration, and pro-

inflammatory cytokine production, and reduced presence of SMC and collagen. It was 

suggested that TLR7 hinders the expression of inflammatory Ly6Chigh monocytes and 

inflammatory M1 macrophages, a MCP-1-mediated process, possibly triggered by the 

pathogenic TLR2 and TLR4. The mechanisms behind the atheroprotective effects of TLR7 are 

not well understood (307). Of note, extracellular TLRs may also mediate atheroprotective 

responses, notably via their ability to modulate the adaptive immune response. For example, 

MyD88-mediated DC activation provides atheroprotection by promoting Treg generation. 

Tregs, in turn, abolish T effector cells, inflammatory macrophages and attenuate monocyte 

recruitment by suppressing MCP-1 production in a TGF-β dependent manner (307). For 

example, ApoE−/− mice deficient in TLR4 infected with P. gingivalis were paradoxically more 

susceptible for developing atherosclerosis, presenting increased levels of inflammatory Th17 

cells.  
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Therefore, although TLRs are widely considered to be atherogenic, the resulting effect 

of TLR activation on the pathology is difficult to predict and will likely depend on the stage of 

atherosclerosis and the nature of the TLR ligands encountered (endogenous or exogenous, 

bacterial or viral). 

 

I-3.4. Atherosclerosis in CKD 

The first CV changes observed in patients with CKD are: i) arteriosclerosis, which is 

characterised by arterial stiffening and loss of cushioning function, often caused by 

atherosclerotic plaques as a result of dyslipidemia, ii) altered ventricular diastolic function, 

and iii) left ventricular hypertrophy. Overall, in patients suffering with CKD, atherosclerosis is 

worsened compared with non-CKD patient. This was confirmed in postmortem studies, which 

have reported extensive coronary artery disease in CKD patients, characterised by an 

increased number of plaques, as well as by their morphology which appears to be thicker and 

more often calcified (463-465). As mentioned before, a number of CKD-specific risk factors 

have been described as risk factors for increased atherosclerosis and CV risk (Introduction, 

Section I-1.2). Vitamin D deficiency has been associated with increased adhesion molecules 

expression in endothelial cells and the stimulation of a senescent phenotype in SMCs, which 

has notably been found in the neointima of atheroma plaques (466, 467). Reports have also 

linked vitamin D deficiency with an increased CV mortality and morbidity including vascular 

calcification and stiffness (468, 469). Of note, calcification is typically exacerbated in CKD 

patients, as calcification of atherosclerotic plaques is both more frequent and accelerated in 

CKD patients compared to non-CKD population (470-474). In addition to intimal calcification 

associated with the atherosclerosis plaque, which is also observed in non-CKD patients, 

medial calcification has been described specifically in CKD and can be found even outside of 
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plaque sites (475, 476). This was also observed in post-mortem studies, which reported a 

thickening of the arterial media and the presence of medial calcification in CKD compared 

with patients without impaired kidney function (464, 465, 477). This suggests a tendency to 

more rapid and more severe calcification of the vasculature in general in CKD patients. Medial 

calcification, in contrast to intimal calcification does not lead to obstruction of the lumen but 

still results in vascular stiffness, arteriosclerosis, and decreases the compliance of blood 

vessels which leads to hypertension (478) and left ventricular hypertrophy (479). Medial 

calcification is also considered a strong marker of future CV risk in patients suffering diabetes 

mellitus (480), as well as a powerful diagnostic marker for all-cause and CV mortality in 

patients receiving HD (481). Interestingly, medial calcification identified in renal failure 

patients present similarities with bone formation. Consistent with this finding, some reports 

have described the vessel wall calcification as an actively regulated process sharing 

similarities with osteogenesis, not directly specific to the uremic state, but rather due to a 

perturbed phosphate-calcium imbalance common in CKD patients (482, 483).  

Recent reports also described higher prevalence and occurrence of plaques in carotid 

and femoral arteries, characterised by intima-media thickness, in CKD patients on dialysis 

compared with predialysis patients or general population respectively, indicating a worsening 

atherosclerosis burden with CKD progression (484-486). Interestingly, there is some evidence 

for slower progression of atherosclerosis in advanced stage of CKD, however the CV risk is still 

increased compared to non-CKD patients (486). This may be the result of additional changes 

to the uremic milieu that increase the risk of an acute CV event once atherosclerosis is 

developed (for example by promoting fibrous cap thining), or because of non-atherosclerotic 

CV injury (50). Indeed, as mentioned, atherosclerotic plaques of CKD patients display more 

complex features that especially suggest greater instability such as lipid content, widespread 
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necrosis, disruption of the extracellular matrix, and enhanced inflammation notably increased 

by oxidative stress that develops early in CKD, persists through the disease and is not 

improved by dialysis treatment (487-489). Consistently, intravascular ultrasound assessments 

have showed that coronary plaques in CKD are characterised by a higher lipid core and a lower 

fibrous volume, creating less stable plaques with greater chance of rupture and acute clinical 

event (489-491). Interestingly, the composition of coronary plaques in CKD evolves with renal 

impairment progression, from necrotic core-rich to extremely calcium-rich (492). As 

described above, macrophages are involved, directly or indirectly, throughout atherosclerotic 

progression. A number of their atherosclerosis-associated functions have been shown to be 

affected by CKD, notably i) higher migratory activity in response to chemoattractants, (493, 

494), ii) impaired cellular mobility and sub-endothelial trapping and subsequent accumulation 

(495), iii) increased foam cell formation ability, due to upregulation of surface scavenger 

receptors levels (496) and downregulation of ATP-binding cassette subfamily A member 1 

transporter (ABCA1) function (497), which is a major macrophages transporter for cholesterol 

efflux, thus leading to a higher cellular accumulation of cholesterol (494).  
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II- AIMS OF THE STUDY 
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Beside shared traditional risk factors, the hallmark of both CKD and CVD is chronic 

inflammation. Tissue injury during CKD has been shown to lead to the increased release of 

TLR DAMPs in the kidney, contributing to the maintenance of the local chronic inflammatory 

state and thus to the progression of kidney damage. Dialysis treatments for CKD have also 

been shown to lead to the release of DAMPs in the peritoneal cavity (PD) (498) and the blood 

(HD) (499, 500). The concept that endogenous ligands for TLRs or other PRRs may mediate 

increased cardiovascular risk in CKD has been suggested increasingly in recent years. 

However, the specific mechanisms behind this concept are very poorly described. This study 

aims to: 

 
 

1- Identify the specific TLR DAMPs that are elevated systemically in patients with CKD 

 

2- Determine the ability of the DAMPs elevated systemically in CKD (identified in 1) to 

affect key pro-atherogenic responses and cellular functions 

 

3- Verify the contribution of TLRs to the atherogenic responses triggered by the DAMPs 

(described in 2) 

 

4- Determine the potential of the DAMP/TLR pathway as a therapeutic target to reduce 

the atherosclerotic burden in CKD 
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The overarching goal of this project is to identify promising therapeutic targets to pave 

the way towards the development of treatments/management/prevention options to lower 

CV risk in patients with CKD that are more effective than the currently available ones.  
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III- RESULTS   
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III-1. Plasma levels of endogenous ligands for TLRs in CKD patients  

III-1.1. Elevated levels of TLR DAMPs in CKD patients compared to healthy donors 

In order to identify DAMPs potentially involved in driving CVD in CKD, we obtained 

plasma samples from CKD patients (n=35, stage 5 on PD), and quantified the levels of known 

TLR DAMPs by ELISA. Plasma samples from age-matched (CKD: 66 (52-71); Healthy: 64 (49–

68)) healthy donors (n=30) were used as reference to identify which DAMPs may be increased 

systemically due to CKD. CKD patients with diabetes, cancer, prior CV event or diagnosed CVD 

were excluded from the analysis. The DAMPs to test were selected to encompass ligands for 

various TLRs and to represent a range of well-described DAMP families: 

- Chaperone proteins: Hsp60 and Hsp70 (TLR2 and TLR4 agonists); 

- DNA-binding proteins: HMGB-1 (TLR2 and TLR4 agonist), Histone H3 (TLR2 

agonist); 

- Extracellular matrix components: HA, Fibronectin and Decorin (TLR2 and TLR4 

agonists);  

- Ca2+ binding proteins: Calprotectin (S100A8/S100A9, a TLR4 agonist); 

- Self-nucleic acids: Histone-DNA complexes (TLR9 agonists). 

 

Out of the 9 known TLR DAMPs tested, 8 could be detected and quantified in most 

samples (Hsp60, Hsp70, HA, HMGB-1, Calprotectin, Fibronectin, Decorin and Histone-DNA) in 

healthy donors and CKD patients (Figure 7). Histone H3 was below the detection threshold 

for both groups. Four DAMPs were found significantly elevated in the plasma of patients 

compared to controls, namely Hsp70, HA, HMGB-1 and Calprotectin.  

These findings are in line with our working hypothesis that TLR activation by their 

endogenous ligands may aggravate CV risk in patients with CKD. However, different TLR 
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DAMPs have been shown to have different protective or detrimental effects on different 

cardiovascular pathologies (280). This is in part because different TLR ligands may induce 

qualitatively and quantitatively different responses (501-503), and different DAMPs may 

involve different TLR co-receptors, and have different additional immune receptors other 

than TLRs (504-506). Therefore, to assess a potential role for these particular CKD-associated 

TLR DAMPs in driving CV risk, their effect in vitro on key cell functions critical to 

atherosclerosis formation was evaluated next.  

 

 

 

 
Figure 7. Plasma levels of TLR DAMPs in CKD patients and healthy individuals  
Concentrations of TLR DAMPs were determined by ELISA performed on triplicate aliquots of plasma 
from healthy donors (white) or Stage 5 CKD patients (grey). Horizontal lines in boxes denote the 
median value, Open circles denote outliers which were defined as data points localised outside of the 
lower or upper lower range limits (1.5 times the inner quarter range). Hsp70, Hsp60, HA, Calprotectin, 
Fibronectin: Healthy n=30, CKD n=35; Decorin: Healthy n=20, CKD n=25; HMGB-1, Histone-DNA 
complexes: Healthy n=12, CKD n=15.  
*, p<0.05; ***, p<0.005, CKD patients vs healthy donors. 
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Prior to the start of these in vitro experiments, it was first confirmed that the purified 

DAMP preparations were not contaminated with functionally significant levels of endotoxin. 

Specifically, only Hsp70 exposure led to a measurable increase in IL-8 production by human 

monocytes, although these cells were sensitive to stimulation with low amounts of purified 

LPS (10 ng/ml, Figure 8.A). The Hsp70-induced IL-8 production could not be inhibited by the 

LPS antagonist Polymixin B but was abrogated following denaturation by boiling (Figure 8.B), 

which preserves endotoxin. Our LAL measurements confirmed the very low endotoxin 

content of the DAMP preparations (Figure 8.C).  

 

 

 

 
 
 
Figure 8. The preparations of CKD-associated DAMPs are not contaminated with significant amounts 
of endotoxin  
A-B. Triplicate cultures of human MonoMac6 (MM6) monocytes were stimulated (18 hours, 37°C) with 
LPS (10 ng/ml) or the indicated DAMPs (1 μg/ml) in the presence or absence of Polymixin B (5 μg/ml, 
A), or before and after boiling (95°C, 10 minutes). Results shown are mean +/- SD of 2 experiments.  
*, p<0.05; **, p<0.01; ***, p<0.005, TLR ligand vs no stimulation (NS) or #, +Polymixin B/Boiling vs No 
Polymixin B/no boiling. C. Endotoxin measurements in DAMP preparations by the LAL method.  
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III-1.2. Discussion 

This first part of the work identified 4 TLR DAMPs elevated in plasma from Stage 5 CKD 

patients compared to healthy donors. Donors in both groups were age-matched (Healthy: 64 

(49–68), CKD: 66 (52-71)) and CKD patients with diagnosed CVD, diabetes and malignancy 

were excluded from the analysis to avoid the confounding factor of additional chronic 

inflammation likely induced by these co-morbidities, which may also lead to increased DAMP 

plasma levels. However, the following factors could not be controlled for: 

- Sex: Healthy donors plasma samples were from a previous study, therefore it was not 

possible to fully (age and sex) match the healthy to the CKD samples. Age-matching 

was prioritised over sex-matching, as it was not expected that the male:female 

proportion would be significantly different between the healthy and the CKD cohort, 

while the CKD cohort may be expected to be older than the healthy cohort.  

- Co-morbidities: While CKD patients with diagnosed co-morbidities were excluded 

from the analysis, it is possible that some patients with underlying undiagnosed 

conditions were included in the analysis. Because CKD patients on Stage 5 have 

regular health checks, this proportion is probably minimal and the same issue may 

also apply to the healthy cohort. 

-  Treatments: It is likely that the CKD population was receiving more treatment 

interventions than the healthy population, likely including lipid-lowering (e.g. statins) 

or blood-pressure reducing (e.g. ACE inhibitors) drugs. However, most of these 

treatments are anti-inflammatory by nature (507, 508) and are therefore not 

expected to confound the analysis by increasing DAMPs plasma levels.  

- Dialysis: Blood samples are easier to obtain from CKD patients who routinely attend 

hospital-based clinics. For this reason, our cohort of patients are Stage 5 CKD patients, 
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who were on PD at the time of sampling. Therefore, we cannot exclude a contribution 

of PD, in addition to CKD itself, to the overall elevation of DAMPs plasma levels. 

However, this does not invalidate the relevance of the findings, as dialysis (PD or HD) 

is an integral part of higher stage CKD and is believed to further drive CV risk (509). 

Of note, it is possible that other or different DAMPs would be found elevated in 

patients receiving HD rather than PD.  

Following this comparison, Hsp70, Calprotectin, HMGB-1 and HA were selected for in vitro 

evaluation of their ability to drive typical pro-atherogenic responses. As described in the 

Introduction (Section I-2.2, p.37), HA comes in a wide range of molecular weights, with lower 

molecular weights driving pro-inflammatory responses while high-molecular weight HA is 

typically anti-inflammatory. It is relevant to note that it cannot be identified by ELISA which 

molecular weights are elevated in CKD plasma. However, it is expected that HA forms released 

from the extracellular matrix will have lower molecular weights, while large forms will remain 

embedded in the matrix. For this reason, a mix of low (15-40 kDa) and medium (75-350 kDa), 

but not high, molecular weight HAs were used in the in vitro experiments described here. 

Similarly, HMGB-1’s function varies with its redox state (Introduction, Section I-2.2, p.26), 

which was not controlled for here. Therefore, it is possible that the redox state of CKD plasma 

HMGB-1 is not fully similar to that of the purified recombinant HMGB-1 used in the in vitro 

studies.  
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III-2. Effect of CKD-associated DAMPs on typical endothelial dysfunction-

associated response by endothelial cells in vitro 

Endothelial cells are reportedly the first cell type to be stimulated by an increased 

concentration of modified LDL, which leads to the loosening of permeable tight intercellular 

junctions, and to the release of pro-inflammatory cytokines and chemokines, promoting the 

recruitment of circulating leukocytes to the intima. Therefore, the ability of the 4 identified 

CKD-associated DAMPs to trigger pro-atherosclerotic responses was first evaluated on human 

endothelial cells. 

 

III-2.1. Model selection 

The Human Aortic Endothelial Cell (HAEC) line was selected over other available 

models as they were generated from primary cells that: i) are isolated from healthy adults, 

and therefore display a fully mature phenotype, notably in terms of immune responses. This 

is of particularly relevance for research into endothelial dysfunction and atherosclerosis, 

which are mostly conditions of adulthood, and ii) are of arterial, rather than venous, origin, 

making them more relevant to the study of atherosclerosis-associated responses.  

Prior to testing the effect of DAMPs on these cells, we verified that TLR2, TLR4 and 

CD14 expression by HAEC was as reported for endothelial cells. As expected, expression levels 

were low altogether, with non-detectable levels of CD14, very low levels of TLR2 and 

moderate levels of TLR4 (Figure 9). This result is in line with reports of low baseline expression 

of TLRs (150).  
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Figure 9. TLR2, TLR4 and C14 expression by HAEC 
Resting HAEC were analysed by flow cytometry for cell-surface expression of TLR2, TLR4 and CD14. 
Table shows the MFI values of at least 10,000 cells/condition for each receptor.  
 

 

 

III-2.2. Release of pro-atherosclerotic mediators by HAEC 

As mentioned previously (Introduction, Section I-3.1, p.54), the production of pro-

inflammatory mediators by endothelial cells is an important initial step in the recruitment of 

monocytes to the lesion site. Hence, the effect of CKD-associated DAMPs on pro-

inflammatory and pro-atherogenic mediators production by HAEC was investigated. 

Specifically, the following cytokines were selected for testing:  

- MCP-1, well documented for its role in atherosclerosis by promoting recruitment of 

monocytes to the lesion site (410, 510).  

- IL-8, a potent neutrophil chemoattractant whose receptor (CXCR2) is also expressed 

at high levels in plaque macrophages and is believed to be critical to retention of lesion 

macrophages in atherosclerotic plaques as well as being an important modulator of 

monocyte-endothelial interaction under flow conditions (511-513).  

- IL-6, a potent inflammatory cytokine, is highly expressed in the plaque and elevated 

plasma levels have been associated with increased cardiovascular risk (514, 515). 
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Exposure of HAEC to Calprotectin, HA (Low and Medium Molecular weights combined) 

and HMGB-1 but not Hsp70 or to all CKD-associated DAMPs combined (Figure 10.A), led to a 

moderate increase in MCP-1 production, and Calprotectin also induced the modest but 

significant release of IL-8, which was otherwise mostly unaffected by exposure to the DAMPs 

(Figure 10.A). IL-6 was undetectable in these culture supernatants. This trend remained when 

pooling data from independent experiments (Figure 10.B), although statistical significance 

was lost due to heterogeneity in responses across experiments and the moderate extent of 

the responses. 

Confirming that HAEC are sensitive to TLR2 and TLR4 stimulation, HAEC released larger 

amounts of both MCP-1 and IL-8 in response to a purified TLR2 bacterial agonist, Pam3CSK4 

(P3C), and a TLR4 bacterial agonist, LPS (Figure 10.A and B). The strong response to P3C despite 

undetectable levels of TLR2 at rest is consistent with literature showing that TLR2 is strongly 

upregulated following stimulation of endothelial cells with bacterial TLR ligands. This 

difference in response to bacterial ligands and DAMPS is not surprising as bacterial agonists 

are typically more potent than endogenous ones at inducing TLR mediated responses.   
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Figure 10. CKD-associated DAMPs induce very modest pro-inflammatory and atherosclerotic 
cytokine release by HAEC 
Triplicate cultures of HAEC were stimulated (18 hours) with LPS (10 ng/ml), Pam3CSK4 (P3C, 500 ng/ml) 
or the indicated concentrations (or 1 μg/ml,) of Hsp70, Calprotectin, HA, or HMGB-1, alone or 
combined. Cytokine levels in culture supernatants are shown as mean +/- SD from 1 typical experiment 
out of 6 run (A) or from pooled data from 6 independent experiments (B).  
*, p<0.05; **, p<0.01; ***, p<0.005, Stimulation vs no stimulation.  
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In the context of chronic inflammatory conditions, such as CKD, high plasma levels of 

pro-inflammatory mediators can affect the extent and quality of subsequent immune 

responses. For example, higher plasma levels of TNF𝛼 have been found in CKD patients (516) 

and TNF𝛼 has the capacity to upregulate TLR expression, in particular TLR2 in immune cells 

(517, 518) and TLR4 in HAEC (519). Moreover, TNF𝛼 is overproduced at atherosclerotic plaque 

sites and plays a crucial role in the development of early lesions (520). Therefore, it was 

evaluated whether a TNF𝛼 priming step would affect the response of HAEC to CKD-associated 

DAMPs. However, although TNF𝛼 was able to induce the release of both MCP-1 and IL-8 by 

HAEC (Figure 11.A), it did not potentiate the response to TLR ligands, either LPS or DAMPs 

(Figure 11.B). On the contrary, the modest response seen before to some of the DAMPs was 

lost when cells were pre-exposed to TNF𝛼, although primed HAEC were still able to respond 

to LPS stimulation. This suggest that TNF𝛼 exposure initiated some negative feedback loop 

that reduced, but did not abrogate, TLR responsiveness to their ligands. Consequently, the 

modest DAMP-induced responses were lost while the more robust LPS-induced ones were 

still detectable.  
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Figure 11. TNF𝛼 pre-exposure does not potentiate DAMPs-induced pro-atherogenic cytokines 
release by HAEC 
Triplicate cultures of HAEC were pre-exposed (4 hours, A and B) or not (A) to TNF𝛼 (10 ng/ml), prior 
to stimulation (18 hours, B) or not (NS, A and B) with LPS (10 ng/ml) or the indicated concentrations 
of Hsp70, Calprotectin, HA, or HMGB-1 (B). Cytokine levels in culture supernatants are shown as mean 
+/- SD from 1 experiment. 
*, p<0.05; **, p<0.01; ***, p<0.005, TNF𝛼 (A) or DAMPs (B) Stimulation vs no stimulation.  
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In the context of atherosclerosis, exposure to modified LDL also activates endothelial 

cells and may modify their inflammatory responses. Therefore, a possible potentiating effect 

of OxLDL on HAEC was also investigated. However, pre-exposure to OxLDL did not alter the 

DAMPs response profile (Figure 12.A and B).  

 

  

 

 
Figure 12. Co-exposure to OxLDL does not increase DAMP-induced pro-inflammatory mediator 
production by HAEC 
Triplicate cultures of HAEC were stimulated (18 hours) with LPS (10 ng/ml), Pam3CSK4 (P3C, 500 ng/ml) 
or the indicated concentrations (or 1 μg/ml, B) of Hsp70, Calprotectin, HA or HMGB-1, separately (A) 
or together (B) in the presence (black bars) or absence (light grey bars) of OxLDL (10 µg/ml). Cytokine 
levels in culture supernatants are shown as mean of % change in the presence vs the absence of OxLDL 
+/- SD from 3 independent experiments (A), or cytokine concentrations from 1 experiment (B).  
*, p<0.05; **, p<0.01; ***, p<0.005; *, DAMP/LPS/P3C Stimulation vs no stimulation. 
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The release of Tissue Factor III (TFIII) by endothelial cells is a key initiator of the 

coagulation cascade (521), which can also contribute to vascular pathologies, notably the 

progression of atherosclerosis and thrombi. Therefore, the ability of CKD-associated DAMPs 

to induce TFIII release was investigated next. Basal expression levels of TFIII were either 

undetectable or very low and exposure of HAEC to the CKD-associated DAMPs did not lead to 

a significant increase in TFIII production (Figure 13). 

 

 

Figure 13. CKD-associated DAMPs do not induce Tissue Factor III (TFIII) release by HAEC 
Triplicate cultures of HAEC were stimulated (18 hours) with LPS (10 ng/ml), Pam3CSK4 (P3C, 500 ng/ml) 
or the indicated concentrations of Hsp70, Calprotectin, HA, or HMGB-1. Cytokine levels in culture 
supernatants are shown as mean +/- SD from 1 experiment. TFIII was undetectable in a further 2 
experiments. 
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III-2.3. Adhesion molecule expression by HAEC 

As an early step in the atherosclerotic process, modified LDL-activated endothelial 

cells upregulate surface expression of adhesion molecules to facilitate monocyte 

extravasation into the sub-endothelial space. VCAM-1 and ICAM-1 are major endothelial 

adhesion molecules of the Ig gene superfamily that participate in atherogenesis by promoting 

monocyte recruitment to the arterial intima (522), via interaction with α41 (e.g. VLA-4) and 

β2 (e.g. LFA-1: CD11a/CD18; Mac-1: CD11b/CD18) integrins on monocytes, respectively. 

ICAM-1 was expressed at moderate levels on the surface of resting HAEC, while VCAM-1 was 

undetectable (Figure 14). This is consistent with reports that ICAM-1 is expressed very broadly 

throughout the vasculature, in atherosclerotic plaques as well as in healthy vessels, while 

VCAM-1 expression is restricted to regions predisposed to atherosclerosis and at the 

periphery of established lesions (321). LPS, was able to increase both ICAM-1 and VCAM-1 

expression but exposure to CKD-associated DAMPs, alone (Figure 14.B) or combined (Figure 

14.A), did not. 
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Figure 14. CKD-associated DAMPs do not affect adhesion molecules expression by HAEC 
HAEC were stimulated or not (18 hours), with LPS (10 ng/ml, A); or 1 μg/ml of Hsp70, Calprotectin, 
HA, or HMGB-1, alone (B) or combined (A), and ICAM-1 and VCAM-1 surface expression levels were 
analysed by flow cytometry. Tables show the MFI values of at least 10,000 cells/condition for each 
receptor.  
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III-2.4. Atherosclerosis-related gene expression by HAEC 

In order to gain a broader understanding of the potential effects of CKD-associated 

DAMPs on endothelial responses, an atherosclerosis-focused gene array was performed. 

Consistent with our previous results, exposure of HAEC to the CKD-associated DAMPs 

(combined) only had a very minor effect on the expression profile of genes typically 

associated with atherosclerosis (Figure 15.A). Out of 84 genes tested, only 2 were found 

significantly downregulated (p<0.05, fold change ≤ 0.5) following exposure to the DAMPs: 

Laminin Subunit Alpha 1 (Lama1) and Platelet-Derived Growth Factor Subunit B (Pdgfb). By 

contrast, stimulation with LPS led to a number of genes being significantly up (fold change ≥ 

2) or down-regulated, confirming sensitivity of the cells to TLR stimulation (Figure 15.B, Table 

4). This reduced effect of the DAMPs on gene expression by HAEC is in line with the very 

modest effect on cytokine production and lack of effect on TFIII production and adhesion 

molecule expression.  

 
 
Figure 15. CKD-associated DAMPs do not robustly modulate atherosclerosis-related gene expression 
in HAEC 
HAEC were stimulated (6 hours) with a combination of all DAMPs (1 μg/ml, A) or LPS (10 ng/ml, B) 
prior to atherosclerosis-focused gene array. Red (upregulated, fold change ≥ 2) and green 
(downregulated, fold change ≤ 0.5) circles represent single genes significantly affected (p<0.05, 
represented by the horizontal line) by the DAMPs (A), or LPS (B) treatment.      
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Table 4. Changes in atherosclerosis-related gene expression in HAEC stimulated with LPS for 6 hours* 
*Only statistically significant (p<0.05) fold changes ≤ 0.5 (in green) or ≥ 2 (in red) are shown  

 
Gene symbol Description Fold change p value 

Birc3 Baculoviral IAP repeat containing 3 9.56 0.0001 

Ccl2 Chemokine (C-C motif) ligand 2 71.85 0.0036 

Ccl5 Chemokine (C-C motif) ligand 5 2.28 0.0001 

Csf1 Colony stimulating factor 1 (macrophage) 2.22 0.0001 

Csf2 Colony stimulating factor 2 (granulocyte-macrophage) 21.38 0.0001 

Icam1 Intercellular adhesion molecule 1 8.96 0.0001 

Il1a Interleukin 1, alpha 2.88 0.0001 

Sele Selectin E 66.35 0.0003 

Tnfaip3 Tumor necrosis factor, alpha-induced protein 3 3.85 0.0001 

Vcam1 Vascular cell adhesion molecule 1 19.60 0.0001 

Ace Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 -5.60 0.0002 

Ccr1 Chemokine (C-C motif) receptor 1 -22.97 0.0002 

Ccr2 Chemokine (C-C motif) receptor 2 -18.91 0.0014 

Col3a1 Collagen, type III, alpha 1 -1.20 0.0048 

Eln Elastin -10.14 0.0075 

Fga Fibrinogen alpha chain -13.33 0.0001 

Ifng Interferon, gamma -33.27 0.0001 

Il1r2 Interleukin 1 receptor, type II -3.68 0.0002 

Il2 Interleukin 2 -45.67 0.0001 

Il3 Interleukin 3 (colony-stimulating factor, multiple) -24.95 0.0001 

Il4 Interleukin 4 -18.30 0.0011 

Il5 Interleukin 5 (colony-stimulating factor, eosinophil) -43.48 0.0014 

Itgax Integrin, alpha X (complement component 3 receptor 4 subunit) -24.76 0.0001 

Itgb2 Integrin, beta 2 (complement component 3 receptor 3 and 4 
subunit) 

-5.54 0.0001 

Lpa Lipoprotein, Lp(a) -72.01 0.0001 

Lpl Lipoprotein lipase -3.98 0.0006 

Mmp3 Matrix metallopeptidase 3 (stromelysin 1, progelatinase) -6.13 0.0002 

Msr1 Macrophage scavenger receptor 1 -2.97 0.0001 

Nos3 Nitric oxide synthase 3 (endothelial cell) -2.67 0.0001 

Npy Neuropeptide Y -3.06 0.0381 

Pdgfrb Platelet-derived growth factor receptor, beta polypeptide -5.09 0.0007 

Ptgs1 Prostaglandin-endoperoxide synthase 1  -2.63 0.0001 

Spp1 Secreted phosphoprotein 1 -11.01 0.0037 

Thbs4 Thrombospondin 4 -4.50 0.0022 
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III-2.5. Trans-endothelial resistance 

A key function of endothelial cells is the maintenance of the endothelial barrier and 

the regulation of endothelium permeability. Increased vascular permeability promotes local 

inflammation and atherosclerosis development and occurs at a very early stage of the disease 

(523, 524). Using an in vitro model of trans-endothelial electrical resistance (TER) 

measurements previously described (525) we found that exposure of endothelial cells to our 

positive control LPS, Hsp70 or Calprotectin (Figure 16.A) or to a combination of CKD-

associated DAMPs (Figure 16.B) resulted in a significant drop in TER, starting between 1 hour 

and 5 hours following exposure to DAMPs (Figure 16.B). This decrease was associated with a 

reduction in cell-to-cell contacts levels of Zonula occludens-1 (ZO-1), a key scaffold protein 

involved in endothelial tight junctions (525) (Figure 16.C). This suggests an overall loss in ZO-

1 expression and/or ZO-1 relocation from the cell surface to the cytoplasm following DAMPs 

treatment, as previously reported (525) and consistent with the observed drop in TER.  

Thus, while the CKD-associated DAMPs did not induce robust inflammatory responses 

by endothelial cells, they were capable of disturbing the endothelial barrier, a first step 

towards endothelial dysfunction, which in turn facilitates atherosclerosis development. 
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Figure 16. CKD-associated DAMPs disturb the endothelial barrier  
Triplicate cultures of Human Umbilical Arterial Endothelial Cells (HUAEC) were grown to confluence 
prior to stimulation or not (NS) with LPS (10 ng/ml) or with single (A) or combined (B and C) CKD-
associated DAMPs at the indicated concentrations (A and B) or 100 ng/ml (C). Trans-endothelial 
electrical resistance (TER) was measured at the indicated time points (A and B) and ZO-1 expression 
levels at cell-to-cell junctions (C, arrows indicate examples) were visualised and quantified 5 hours 
following DAMPs stimulation; Histograms show mean +/- SD from 3 independent experiments (A and 
B) or 5 independent fields of view (C).  
*, p<0.05; **, p<0.01; ***, p<0.005, Stimulation vs no stimulation.  
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III-2.6. Discussion 

Endothelial cells have a complex and dual role in the function of the vascular system. 

They are able to actively control vascular permeability, coagulation, blood pressure and 

angiogenesis but also trigger and regulate inflammation (526, 527). In this Chapter, we 

demonstrate that in vitro exposure of aortic endothelial cells to Hsp70, Calprotectin or a 

combination of all 4 CKD-associated DAMPs led to a significant and immediate loss of trans-

endothelial resistance. This is expected to lead to an increase in vascular permeability, which 

can be assessed in vitro by measuring dextran transport across the endothelial cell monolayer 

in a dual chamber system. Unfortunately, it was not possible to run these experiments due to 

time and cost limitations, especially since the model used here was developed in Heidelberg, 

Germany, which is where the experiments were performed. However, it is expected that the 

decrease in resistance will coincide with an increase in permeability, as widely accepted (528). 

Of note, the loss of endothelial resistance was of only transient, typically peaking at around 5 

hours and coming back up to more normal levels at 24 hours. This is line with what has been 

described previously for this model (525) and is consistent with the fact that loss of vascular 

integrity is transient in the case of an acute inflammatory response (528). However, the 

endothelium of patients with CKD is chronically exposed to DAMPs and other inflammatory 

mediators, and chronic inflammation has been associated with sustained loss of resistance 

and increased permeability, which do not resolve spontaneously (528). Therefore, although 

this was not reproduced in our in vitro model, we speculate that continuous exposure to 

increased levels of DAMPs may lead to maintained loss of endothelial cell barrier and 

increased permeability in patients with CKD.  
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The responses of endothelial cells to CKD-associated DAMPs in terms of cytokine production 

and gene expression changes were found to be modest at best, or minimal. Explanations 

behind this observation likely include: 

- Expected lower sensitivity of endothelial cells to TLR stimulation: 

As shown above (Figure 9), HAEC expression levels of TLRs were low overall. This result 

is in line with reports of low baseline expression of TLRs (150). In addition, the 

expression of TLR2 and TLR4 was found to be lower in endothelial cells originating 

from large vessels compared to the microvasculature (529, 530). Therefore, it is 

expected that TLR-mediated responses by aortic endothelial cells may be more 

modest than that of immune cells or endothelial cells of other origins, that express 

higher levels of TLRs. Of note, the TLR co-receptor CD14 was not detected in our HAEC 

model, also in line with previous reports (531, 532). In vivo, the lack of membrane 

CD14 on endothelial cells is compensated for by the presence of soluble CD14 in 

human plasma, released by cell types that express the membrane bound form. This 

was reproduced in our in vitro settings by the addition of 10% FCS, which may not 

match the physiological concentrations of soluble CD14 and therefore may not 

provide the optimal amount of CD14. However, HAEC were able to mount stronger 

responses, in terms of cytokine production and gene expression changes, to the 

purified bacterial TLR ligands LPS and P3C. This suggests that TLR engagement by 

DAMPs may be counterbalanced by other DAMP receptors on HAEC (Introduction, 

Sections I-2.2 and I-2.3), although this issue was not investigated.  
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- Model limitations:  

It is likely that the low number of HAEC used in these experiments may in part explain 

the low levels of cytokines produced following DAMP stimulation. For example, typical 

stimulation experiments were run with 5,000 HAEC/well of a 96-well plate, while 

15,000 macrophages would be used for the same culture volume and area (Section III-

3. Effect of CKD-associated DAMPs on atherosclerotic functions by 

monocytes/macrophages in vitro). This was dictated by the size of the cells. It is also 

relevant to mention that TLR2 levels have been shown to be increased in endothelial 

cells located in regions of disturbed flow (533), a condition that is difficult to reproduce 

in vitro. As mentioned above, endothelial cells of other origins may have responded 

better to DAMP stimulation. However, because atherosclerosis is most common the 

large arteries of adults, HAEC were selected over other models of endothelial cells, 

notably cells of venous or embryonic origins.  

 

 

III-3. Effect of CKD-associated DAMPs on atherosclerotic functions by 

monocytes/macrophages in vitro  

As described above (Introduction, Section I-3.1), monocytes are major players in 

atherosclerosis initiation and progression, as they are among the first immune cells to be 

recruited to the intima, where they differentiate into macrophages.  
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III-3.A. Monocytes 

III-3.A.1. Atherogenic and inflammatory mediator production by monocytes  

Activated monocytes secrete large amounts of pro-inflammatory mediators. 

Continued or repeated activation of blood monocytes is expected to induce or worsen the 

development of a chronic inflammatory state, which will ultimately promote CV disease 

(Introduction, Section I-3.1, p.51). In the case of monocytes newly recruited to the plaque 

site, production of chemoattractants will increase the recruitment of more monocytes or 

other immune cells which will contribute to atherosclerosis progression. Therefore, the ability 

of CKD-associated DAMPs to induce the release of pro-inflammatory and pro-atherosclerotic 

mediators by monocytes was investigated. Exposure to Hsp70 led to the significant release of 

MCP-1 and IL-8 by human peripheral mononuclear cells in a dose-dependent manner (Figure 

17). This was true when pooling data from all donors (shown) and for all donors tested 

(individual donors not shown). When pooling data from all donors, Calprotectin, HA and 

HMGB-1 were not able to induce significant cytokine production although the response varied 

greatly with the donor tested, with these DAMPs inducing modest but significant mediator 

production in some donors but not others (data not shown). DAMPs exposure did not lead to 

the release of detectable levels of IL-6 although LPS stimulation did. This could in part be 

because the time point of culture surpernatants collection was not optimal for IL-6, which 

tends to be released somewhat later than IL-8 in our experience. Of note, Peripheral blood 

mononuclear cells (PBMCs), as opposed to purified monocytes were used in these 

experiments. However, we speculate that monocytes were the main source of cytokines as: 

i) the expression of TLRs by lymphocytes is minimal overall and ii) the mediators tested are 

not typically associated with lymphocyte responses. In addition, the conclusions drawn from 

these experiments regarding the overall effect of CKD-associated DAMPs on systemic pro-
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inflammatory/atherogenic mediators’ production would remain valid in the case of a 

contribution of lymphocytes towards the response. 

 

 

 

 

 

 
 
Figure 17. Hsp70 induces pro-inflammatory mediator production by monocytes  
Triplicate cultures of primary derived monocytes were stimulated (18 hours) with LPS (10 ng/ml), 
Pam3CSK4 (P3C, 500 ng/ml) or the indicated concentrations (or 1 μg/ml) of Hsp70, Calprotectin, HA, 
or HMGB-1 separately. Cytokine levels in culture supernatants are from 7 experiments (MCP-1, IL-8) 
or 3 (IL-6) performed with cells from different donors. Horizontal lines in boxes denote the median 
value. *, p<0.05; **, p<0.01; ***, p<0.005, Stimulation vs no stimulation.  
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III-3.A.2. Monocyte migration  

MCP-1 is the main monocyte chemoattractant expressed at the atherosclerotic plaque 

site. Therefore, the capacity of the 4 CKD-associated DAMPs to modulate the capacity of 

monocytes to migrate towards MCP-1 was evaluated next. Briefly, MonoMac 6 (MM6) 

monocytic cells were pre-stimulated with the DAMPs, alone or in combination, before 

seeding in the top chamber of a trans-well. MCP-1 was used as a chemoattractant in the 

bottom chamber. The number of monocytes in the bottom chamber was counted at the 

indicated time points (typically 2, 4, 6 and 24 hours). As expected, the number of cells 

migrated increased steadily until 24 hours, when MCP-1 was present in the bottom chamber, 

but not in its absence (Figure 18.A). As expected, MM6 pre-stimulation with LPS led to a 

dramatic increase in the number of cells migrated (Figure 18.B). In addition, pre-exposure to 

all CKD-associated DAMPs, either alone or in combination, also significantly increased the 

monocytic migratory capacity.   

In order to confirm that DAMP-induced increase in monocyte migration was mediated 

by TLRs, blocking experiments with specific TLRs neutralising antibodies were performed. As 

the 4 CKD-associated DAMPs identified are TLR2 and/or TLR4 ligands, a combination of anti-

TLR2 and anti-TLR4 antibodies was used. As expected, pre-exposure to the antibodies 

successfully inhibited the increase in migration induced by LPS. In addition, the combination 

of antibodies also inhibited almost completely the increase in monocyte migratory capacity 

induced by the CKD DAMPs (Figure 18.C), demonstrating that the effect of DAMPs on 

monocyte migration is mediated, in the most part, via TLR2/4 signaling.  

Mechanistically, the DAMPs were found to upregulate the expression of the main MCP-1 

receptor, C-C Motif Chemokine Receptor (CCR)2, and this effect was prevented by pre-

exposure to a combination of blocking TLR2 and TLR4 antibodies (Figure 18.D). This is 
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consistent with our findings that monocyte migration is increased by CKD DAMPs in a TLR2/4 

dependent manner. 

 

 

    

 
Figure 18. CKD-associated DAMPs increase the migratory capacity of monocytes towards MCP-1 in 
a TLR dependent manner 
Triplicate cultures of MonoMac6 monocytes were stimulated or not (18 hours, 37°C) with LPS (10 
ng/ml) or the indicated DAMPs (1 μg/ml), alone or in combination, after pre-exposure (1 hour, 37°C) 
or not (A and B) to a combination of anti-TLR2 and anti-TLR4 blocking antibodies (5 μg/ml) or the 
relevant isotype control (10 μg/ml). A-C. Cells were then starved in serum-free medium for 1 hour 
prior to seeding (200,000 cells, in triplicates) in the top chamber of 8 𝜇m pores transwells. The bottom 
compartment was filled with RPMI + 10% serum + MCP-1 (50 ng/ml) (A-C), or not (A, control 
experiment). Cell numbers were counted in the bottom compartment after 2 hours, 4 hours, 6 hours 
(A and B) and 24 hours (A-C). Results shown are mean +/- SD from 1 experiment representative of 7 
experiments (B, LPS and all DAMPs combined) or 3 experiments (B, single DAMPs, A, C and D). *, 
p<0.5; **, p<0.01; ***, p<0.005; *, Stimulation vs no stimulation or #, anti-TLR antibodies vs isotype 
control, unpaired Student t-test. D. Cells were then analysed by flow cytometry for the levels of CCR2. 
Results are shown as MFI for at least 10,000 cells/condition from 2 or 3 independent experiments 
(open circles denote individual experiments). Identical symbols identify paired results. *, p<0.05, All 
DAMPs vs no stimulation (NS), paired Student t-test. 
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III-3.A.3. Adhesion molecules expression by monocytes  

Monocyte migration to the inflamed intima involves notably: i) the rolling of 

monocytes along the endothelial cell surface, which occurs through interaction between P-

selectin glycoprotein ligand 1 (PSGL-1) and selectins expressed by endothelial cells, ii) the 

initial firm binding of monocytes to endothelial cells promoted notably by the interaction 

between Mac-1 (CD11b/CD18) on monocytes and ICAM-1 on endothelial cells, iii) the stable 

arrest and subsequent transmigration of monocytes, partly mediated by integrin 4 and its 

binding to VCAM-1 (Introduction, Section I-3.1, p.54) (534, 535). Therefore, the effect of the 

CKD-associated DAMPs on the expression of integrins PSGL-1, CD11b and 4 by monocytes 

was investigated.  
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Figure 19. CKD-associated DAMPs do not robustly modulate adhesion molecules expression by 
primary monocytes 
MM6 cells (A) or PBMC (B) were stimulated for the indicated duration (A) or 48 hours (B) with LPS (10 
ng/ml, A and B) or 1 𝜇g/ml of Hsp70, Calprotectin, HA or HMGB-1, alone or all DAMPs combined (B) 
prior to flow cytometry analysis for cell surface expression of CD11b, PSGL-1 and 𝛼4. Results are MFI 
of at least 10,000 cells/condition with subtracted background fluorescence. 
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To determine the best time-point at which to measure changes in expression in 

response to TLR triggering, a time course of LPS stimulation was carried out (Figure 19.A). 

Exposure of MM6 to LPS led to an increase in the expression of all adhesion molecules by 

monocytes (gated based on their FSC-SSC profile and expression of CD11b), but the timing of 

this effect varied. As the 3 adhesion molecules were found elevated after 48 hours of 

stimulation, this time point was selected to look at the effect of the DAMPs. Overall, there 

was no consistent and robust effect of DAMPs stimulation on adhesion molecule expression. 

Out of 4 monocyte donors tested, DAMPs stimulation did not lead to significant changes in 

expression of adhesion molecules in 2 donors (Donors 1 and 2, Figure 19.B), although there 

was a trend to slightly lower levels following stimulation with all DAMPs combined in Donor 

1. Hsp70, Calprotectin and all CKD-DAMPs stimulation of Donor 3’s cells led to a robust 

decrease in all 3 adhesion molecules, while HMGB-1 and HA had a more modest effect. In 

contrast, exposure to Hsp70 and all DAMPs combined led to the modest and very modest 

upregulation of PSGL-1 and CD11b, respectively in Donor 4. Therefore, the effect of CKD-

associated DAMPs on adhesion molecule expression by monocytes appears to vary with the 

individual and the adhesion molecule tested. To avoid the confounding factor of donors’ 

heterogeneity, these experiments were repeated in the monocytic cell line MM6. Exposure 

to DAMPs did not lead to significant changes in any of the 3 adhesion molecules tested in this 

model (Figure 20).  

The lack of robust DAMPs effect is in apparent contradiction with the effect of TLR4 

stimulation triggered by LPS (Figure 19.A). This highlights the fact that the resulting effect of 

TLRs ligation depends on the TLR ligand, as discussed previously (Results, I-1. p.75). It is also 

possible that the time point selected following LPS stimulation (48 hours) is not optimal to 

look at changes induced by DAMPs, because the signaling pathways involved will likely be, at 
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least in part, different. However, taking all results together we conclude that the effect of 

DAMPs on the expression of adhesion molecules, if any, will be very modest at most and is 

unlikely to affect the majority of the patients.  

 

 

  

 
 
 
 
 
 
Figure 20. CKD-associated DAMPs do not robustly modulate adhesion molecules expression by a 
monocytic cell line 
MM6 were stimulated for 48 hours with Hsp70, Calprotectin, HA or HMGB-1, alone or all DAMPs 
combined (1 𝜇g/ml) prior to flow cytometry analysis for cell surface expression of PSGL-1, CD11b or 
𝛼4. Results are MFI of at least 10,000 cells/condition with subtracted background fluorescence. 
 

 

Thus, the CKD-associated DAMPs could induce pro-inflammatory mediators’ production by 

monocytes and promote their chemokine-induced migration by increasing the expression of 

a chemoattractant receptor critical to atherosclerosis development, and without affecting 

their adhesion capacity.   
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III-3.B. Macrophages 

III-3.B.1. Macrophage model selection 

Tissue macrophages are typically heterogeneous and plastic populations, and this is 

also the case at the atherosclerotic plaque site (Introduction, Section I-3.2, p.58). Fully 

reproducing this heterogeneity in vitro is not possible, but to ensure the relevance of the 

findings described in this section, the appropriateness to evaluate our hypothesis of two in 

vitro models of macrophages was evaluated.   

There is evidence that exposure of monocytes to GM-CSF leads to a M1-like 

phenotype while culture with M-CSF leads to M2-like characteristics (415, 441). Therefore, 

two models of primary monocyte-derived macrophages, differentiated by exposure to GM-

CSF or M-CSF were characterised and compared.  

 

a. Morphological features 

Blood monocytes were obtained by adhesion of freshly isolated PBMC and 

differentiated into macrophages by addition of M-CSF (10 ng/ml) or GM-CSF (80 IU/ml). After 

7 days of differentiation, cells were strongly adherent and exhibited a change from the 

monocytic morphology with either M-CSF or GM-CSF. Consistent with the literature (536, 

537), microscopic examination revealed that GM-CSF-differentiated macrophages were 

round in shape with a big cytoplasm presenting inclusions (often referred to as “fried-egg 

shape”) while M-CSF-differentiated macrophages had a more elongated shape with less 

apparent cytoplasmic inclusions (Figure 21.A). 
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b. TLR expression 

Given their critical relevance to this study, TLR2, TLR4 and CD14 expression by both 

types of macrophage was determined by flow cytometry. Both TLR2 and CD14 expression 

were found decreased in either M-CSF or GM-CSF-differentiated macrophages compared to 

monocytes, as expected (538). However, M-CSF macrophages were found to express higher 

levels of TLR2, TLR4 and CD14 than GM-CSF ones (Figure 21.B), which was unexpected and 

may appear inconsistent with the description of GM-CSF macrophages as an in vitro model 

for M1 – or pro-inflammatory – macrophages and M-CSF macrophages as M2 – or anti-

inflammatory – macrophages. However, higher levels of TLR expression does not necessarily 

equate with higher pro-inflammatory responses, as TLRs activation also induces anti-

inflammatory responses in a negative feedback mechanism. Therefore, differences in pro-

inflammatory and pro-atherosclerotic responses between GM-CSF and M-CSF macrophages 

were evaluated next.  
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Figure 21. Characterisation of GM-CSF vs M-CSF-differentiated macrophages 
A. Light microscopy images of monocyte-derived macrophages differentiated with GM-CSF (80 IU/ml) 
or M-CSF (10 ng/ml) for 7 days. Pictures were taken with a 20x magnification. B. Monocytes (blue), 
GM-CSF (red) and M-CSF (green)-differentiated macrophages were analysed by flow cytometry for cell 
surface expression of TLR2, TLR4 and CD14 (unstained control in filled grey and isotype control in open 
black). Table shows the MFI values for each differentiation condition and each receptor. MFI were 
obtained from at least 10,000 cells/condition. 
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c. Atherosclerosis-associated mediators production  

To evaluate potential differences in function between GM-CSF and M-CSF 

macrophages, both sets were differentiated from the same monocyte preparation before 

stimulation with TLR bacterial agonists (LPS and P3C) or with CKD-associated DAMPs and the 

release of both pro- and anti-inflammatory cytokines known to play a role in atherosclerosis 

development was compared.  

Of the 4 CKD-associated DAMPs, only Hsp70 was able to stimulate significantly the release 

of MCP-1 (Figure 22.A), IL-8 (Figure 22.B) and IL-6 (Figure 22.C) in both M-CSF (white 

histograms) and GM-CSF macrophages (grey histograms). This is consistent with the findings 

made in monocytes (Results, Section III-3.A.1, Figure 17). In addition to Hsp70, all 3, 

Calprotectin, HA and HMGB-1 also appeared to have the ability to induce the release of IL-8 

(Figure 22.B), but not MCP-1 or IL-6. However, this effect was not reproduced in the 3 donors 

tested (not shown).  

Of note, M-CSF-differentiated released much larger amounts (up to hundred times more) of 

every pro-inflammatory cytokine tested, not only after Hsp70 stimulation, but also in 

response to bacterial ligands LPS and P3C. This suggests that M-CSF macrophages respond 

significantly more potently to TLR stimulation than GM-CSF macrophages, which is consistent 

with the higher TLR expression levels described in Figure 21.B.  
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Figure 22.  Comparison of DAMP-induced pro-atherogenic cytokine release by GM-CSF and M-CSF-
derived macrophages 
Triplicate cultures of GM-CSF or M-CSF macrophages were stimulated (18 hours), or not (NS), with LPS 
(10 ng/ml), Pam3CSK4 (P3C, 500 ng/ml) or the indicated concentrations of Hsp70, Calprotectin, HA, or 
HMGB-1. 
Results shown are mean +/- SD from 1 experiment representative of at least 2 independent 
experiments (GM-CSF macrophages: IL-8 and MCP-1 n=5; IL-6 n=2; M-CSF macrophages: IL-8 and MCP-
1 n=9; IL-6 n=2).  
*, p<0.05; **, p<0.01; ***, p<0.005, Stimulation vs no stimulation. 
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IL-10 is a potent anti-inflammatory cytokine described to be protective in 

atherosclerosis and believed to be produced mostly by M2-type macrophages (539, 540). M-

CSF macrophages, but not GM-CSF macrophages, were able to release significant amounts of 

IL-10 in response to both TLR2 and TLR4 bacterial ligands as well as following stimulation with 

Hsp70 (Figure 23). This is in line with the reports that M-CSF differentiation induces a M2-like 

phenotype.  

 

 

  

 

 
Figure 23. Comparison of DAMP-induced release of IL-10 by GM-CSF and M-CSF-derived 
macrophages 
Triplicate cultures of GM-CSF or M-CSF macrophages were stimulated (18 hours) with LPS (10 ng/ml), 
Pam3CSK4 (P3C, 500 ng/ml) or the indicated concentrations of Hsp70, Calprotectin, HA, or HMGB-1. 
Results shown are mean +/- SEM from 3 independent experiments.  
*, p<0.05; **, p<0.01; ***, p<0.005, Stimulation vs no stimulation. 
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d. Cholesterol uptake 

Cholesterol handling by plaque macrophages has a key impact on the development of 

atherosclerosis. Notably, LDL uptake is a driving mechanism of the pathology. Therefore, it 

was important to compare GM-CSF and M-CSF-differentiated macrophages for their ability to 

uptake modified LDL. Scavenger receptors are one main route of modified LDL uptake, 

notably SR-A and CD36. Therefore, their expression in both types of macrophages was 

compared. While SR-A and CD36 were detected on both macrophage types, M-CSF 

macrophages expressed much higher levels of SR-A but significantly less CD36 than GM-CSF 

(Figure 24.A). The resulting effect of this differential expression on modified LDL uptake is 

therefore difficult to predict. Modified LDL uptake by both macrophage types was therefore 

quantitated next. Cells were starved in serum-free medium for 18 hours before incubation 

with increasing concentration of fluorescent (Dil) acetylated LDL (AcLDL) for 24 hours prior to 

quantify modified LDL uptake using flow cytometry. Both GM-CSF and M-CSF macrophages 

were able to uptake cholesterol in a dose-dependent manner to very similar extents (Figure 

24.B). To confirm that the fluorescent signal observed is indeed from AcLDL uptake, rather 

than binding to the cell surface, the assay was repeated on ice (4°C), a temperature that 

allows binding but not internalisation. As significant cell death was likely to occur during a 24 

hours’ incubation on ice, the incubation time was reduced to 2 hours for the purpose of this 

experiment. Similar to the cells not incubated with AcLDL used as control, no increase in 

fluorescence was detected when incubation was performed at 4°C, as opposed to 37°C 

(Figure 24.C). This confirmed that the fluorescent signal observed is a result of LDL uptake, 

rather than surface binding. 
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Figure 24. Comparison of modified LDL scavenger receptors expression and uptake by GM-CSF vs M-
CSF-differentiated macrophages 
A. Flow cytometry analysis of cell surface expression of scavenger receptors CD36 and SR-A in GM-CSF 
and M-CSF-differentiated macrophages (150,000 cells/condition). Results are MFI of at least 10,000 
cells/condition. B. GM-CSF and M-CSF macrophages (40,000 cells/condition) were starved for 18 hours 
by culturing in serum free medium before addition of the indicated concentrations (B) or 10 µg/ml (C) 
of Dil-AcLDL. Phagocytosis was performed at 37°C for 24 hours (B) or for 2 hours at 4°C or 37 °C (C). 
Cells were then analysed by flow cytometry and results are shown as MFI of at least 10,000 
cells/condition.  
 

 

Altogether, the characterisation and comparison of the 2 in vitro macrophage models 

showed that: i) M-CSF-differentiated macrophages displayed higher expression of TLR2 and 

TLR4, the main TLR receptors for the 4 CKD-associated DAMPs identified, and of CD14, a 

critical TLR co-receptor; ii) M-CSF differentiated macrophages were more sensitive to 

stimulation with TLR bacterial ligands and Hsp70, and produced much higher levels of both 

pro- and anti-inflammatory/atherosclerotic mediators, and iii) M-CSF and GM-CSF 

macrophages  were similarly able to uptake modified LDL, a key function in atherosclerosis 
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development. In addition, the role of M-CSF in plaque progression is very well described (431, 

541, 542), confirming its relevance as a macrophage differentiation factor in atherosclerotic 

disease. Therefore, M-CSF-differentiated macrophages were selected as macrophage model 

for the remainder of the in vitro studies. 

 

III-3.B.2. Atherogenic mediator production by macrophages   

The ability of the CKD-associated DAMPs to induce pro-atherogenic cytokine 

production in M-CSF macrophages was further evaluated by testing more donors and 

evaluating the contribution of TLRs to these responses. As observed before, when looking at 

pooled data obtained from 6 different donors, only Hsp70 was able to stimulate the release 

of all 3 cytokines tested, although HMGB-1 could also induce the modest release of IL-8 

(Figure 25.A). Of note, Hsp70-induced IL-6 production was not statistically significant when 

pooling all donors, because of large donor variability in background levels of IL-6 and 

responses to Hsp70. However, it was significant for 3 out of 6 donors tested (not shown). As 

observed before for endothelial cells, co-stimulation with OxLDL did not alter the cytokine 

response to the TLR agonists, either bacterial or the DAMPs (Figure 25.B). 

In addition to TLR2 and TLR4, other non-TLR receptors for extracellular Hsp70 have been 

reported (Introduction, Section I-2.2, p.31). Therefore, to assess the contribution of TLRs to 

the Hsp70-induced release of pro-atherosclerotic mediators by macrophages observed here, 

specific blocking experiments were carried out using neutralising antibodies for TLR2 and 

TLR4. Hsp70-induced MCP-1 and IL-8 release was almost completely abrogated by co-

stimulation with the anti-TLR4 antibody, while it remained unaffected by the blocking of TLR2, 

indicating that TLR4 mediates most of the Hsp-70-induced release of pro-atherosclerotic 

mediators while TLR2 does not appear to be significantly involved (Figure 25.C).   
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Figure 25. Hsp70 induces pro-inflammatory mediator production by macrophages in a TLR4-
dependent manner 
A-B. Triplicate cultures of M-CSF-differentiated macrophages were stimulated (18 hours, 37°C) in the 
absence (A and B), or presence (B) of OxLDL (10 𝜇g/ml) with LPS (10 ng/ml), Pam3CSK4 (P3C, 500 ng/ml) 
or the indicated concentrations of Hsp70, Calprotectin, HA or HMGB-1. C. Triplicate cultures of 
macrophages were pre-exposed (1 hour, 37°C) to anti-TLR2 or anti-TLR4 blocking antibodies or the 
relevant isotype control (10 µg/ml) prior to stimulation (18 hours, 37°C) with Hsp70 (1000 ng/ml).  
Results shown in A are from 6 experiments performed with cells from different donors. Horizontal 
lines in boxes denote the median value. Results shown in B and C are the results of 3 experiments (+/- 
SEM) performed with cells from different donors. 
*, p<0.05; **, p<0.01; ***, p<0.005. (A and B) Stimulation vs no stimulation (C) *, stimulation vs no 
stimulation; #, anti-TLR2/TLR vs isotype control. 
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III-3.B.3.  Atherosclerosis-related gene expression by macrophages 

To further assess the range of Hsp70’s atherosclerosis-related effects, an 

atherosclerosis-focused gene array was performed following macrophages stimulation (or 

not) with Hsp70. Out of the 84 genes tested, 56 were found significantly upregulated (fold 

change ≥ 2, p ≤ 0.05) by treatment of macrophages with Hsp70 (Figure 26 and Table 5, genes 

indicated in red). They were involved not only in inflammatory cytokine/chemokine 

production (e.g. Nfkb1) but also in leukocyte recruitment (e.g., Mcp-1, Chemokine C-C motif 

ligand (Ccl) 5), monocyte to macrophage differentiation (e.g. M-csf, Gm-csf), macrophages 

retention in the plaque, lipid metabolism (e.g. Apoe, Ldlr), cell death (e.g. B-cell lymphoma 

(Bcl) 2, Fas) and matrix remodeling (e.g. Mmp1, Mmp3). In addition, 6 genes were found 

significantly downregulated (fold change ≤ 0.5, p ≤ 0.05, genes indicated in green) by Hsp70, 

notably Pparg, a receptor whose activation leads to potent anti-atherosclerotic responses 

and TgfB2, a well-described anti-inflammatory mediator which can also promote an M2 

macrophage phenotype (543), suggesting that stimulation with Hsp70 can lead to the 

downregulation of anti-atherosclerotic pathways. These results also indicate that Hsp70 does 

not only affect cytokines production but also potentially a wide variety of functions associated 

with atherosclerosis.  
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Figure 26. Hsp70 modulates the expression of a wide range of atherosclerosis-related genes by 
macrophages 
M-CSF-differentiated macrophages were stimulated (18 hours) with Hsp70 (1,000 ng/ml) prior to RNA 
extraction and atherosclerosis-focused gene array (RT-qPCR analysis). Red (upregulated, fold change 
≥ 2) and green (downregulated, fold change ≤ 0.5) circles represent single genes significantly affected 
(p<0.05, represented by the horizontal line) by the Hsp70 treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

-L
og

10
 (p

-v
al

ue
)

Log2 (Fold Change : Hsp70/NS)

Down-regulated genes

Up-regulated genes

Unchanged genes



 
123

Table 5. Changes in atherosclerosis-related gene expression in macrophages stimulated with Hsp70 
for 18 hours. * 
*Only statistically significant (p<0.05) fold changes ≤ 0.5 (in green) or ≥ 2 (in red) are shown.  

 
Gene symbol Description Fold change p value 

Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 3.30 0.0008 

Ace Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 2.56 0.0004 

Apoe Apolipoprotein E 2.74 0.0001 

Bax BCL2-associated X protein 2.77 0.0001 

Bcl2 B-cell CLL/lymphoma 2 7.16 0.0001 

Bcl2a1 BCL2-related protein A1 3.02 0.0006 

Bcl2l1 BCL2-like 1 2.10 0.0019 

Bid BH3 interacting domain death agonist 7.30 0.0001 

Birc3 Baculoviral IAP repeat containing 3 13.31 0.0001 

Ccl2 Chemokine (C-C motif) ligand 2 28.38 0.0001 

Ccl5 Chemokine (C-C motif) ligand 5 516.28 0.0001 

Ccr1 Chemokine (C-C motif) receptor 1 5.45 0.0001 

Ccr2 Chemokine (C-C motif) receptor 2 2.45 0.0464 

Cd44 CD44 molecule (Indian blood group) 12.72 0.0001 

Cdh5 Cadherin 5, type 2 (vascular endothelium) 8.13 0.0001 

Cflar CASP8 and FADD-like apoptosis regulator 10.55 0.0001 

Csf1 Colony stimulating factor 1 (macrophage) 2.88 0.0001 

Csf2 Colony stimulating factor 2 (granulocyte-macrophage) 2.45 0.0430 

Eng Endoglin 2.48 0.0001 

Fas Fas (TNF receptor superfamily, member 6) 13.15 0.0001 

Fgf2 Fibroblast growth factor 2 (basic) 5.53 0.1115 

Fn1 Fibronectin 1 2.47 0.0001 

Icam1 Intercellular adhesion molecule 1 13.93 0.0001 

Ifnar2 Interferon (alpha, beta and omega) receptor 2 3.32 0.0009 

Il1a Interleukin 1, alpha 151.38 0.0001 

Il1r2 Interleukin 1 receptor, type II 5.04 0.0001 

Il4 Interleukin 4 2.03 0.4233 

Il5 Interleukin 5 (colony-stimulating factor, eosinophil) 7.54 0.1133 

Itga2 Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) 5.25 0.0001 

Itga5 Integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 6.27 0.0006 

Itgb2 Integrin, beta 2 (complement component 3 receptor 3 and 4 subunit) 2.97 0.0004 

Kdr Kinase insert domain receptor (a type III receptor tyrosine kinase) 4.06 0.0911 

Ldlr Low density lipoprotein receptor 5.56 0.0004 

Lif Leukemia inhibitory factor (cholinergic differentiation factor) 2.68 0.0007 

Lpl Lipoprotein lipase 2.42 0.0001 

Mmp1 Matrix metallopeptidase 1 (interstitial collagenase) 173.22 0.0001 

Mmp3 Matrix metallopeptidase 3 (stromelysin 1, progelatinase) 4.46 0.0108 

Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 4.13 0.0018 

Nr1h3 Nuclear receptor subfamily 1, group H, member 3 6.70 0.0001 

Pdgfa Platelet-derived growth factor alpha polypeptide 13.25 0.0001 

Pdgfb Platelet-derived growth factor beta polypeptide 5.85 0.0001 

Pdgfrb Platelet-derived growth factor receptor, beta polypeptide 9.81 0.0052 

Ppard Peroxisome proliferator-activated receptor delta 3.87 0.0001 
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Gene symbol Description Fold change p value 

Sell Selectin L 11.76 0.0020 

Serpine1 Serpin peptidase inhibitor, clade E, member 1 4.55 0.0001 

Spp1 Secreted phosphoprotein 1 2.67 0.0001 

Tgfb1 Transforming growth factor, beta 1 2.70 0.0001 

Tnc Tenascin C 2.64 0.0001 

Tnf Tumor necrosis factor 28.70 0.0002 

Tnfaip3 Tumor necrosis factor, alpha-induced protein 3 19.45 0.0001 

Vcam1 Vascular cell adhesion molecule 1 13.40 0.0001 

Vegfa Vascular endothelial growth factor A 6.36 0.0001 

Col3a1 Collagen, type III, alpha 1 -2.91 0.0025 

Egr1 Early growth response 1 -2.39 0.0001 

Il1r1 Interleukin 1 receptor, type I -6.39 0.0001 

Pparg Peroxisome proliferator-activated receptor gamma -2.36 0.0013 

Tgfb2 Transforming growth factor, beta 2 -5.71 0.0002 

Thbs4 Thrombospondin 4 -4.28 0.0002 

 
 

III-3.B.4. Foam cells formation by macrophages 

Foam cells are disease macrophages unique to the atherosclerotic plaque, which 

become engorged with cholesterol. Foam cells formation is the result of excessive intake 

and/or reduced efflux of cholesterol. As described in the Introduction (Section I-3.1, p.56), 

the transition from macrophage to foam cell is a hallmark of the atherosclerosis process and 

foam cells are major contributors towards disease progression. Therefore, the effect of CKD-

associated DAMPs on foam cell formation, modified LDL uptake and cholesterol efflux was 

investigated.  

 

a. Foam cell formation 

To induce foam cell formation, macrophages were exposed to large amounts of LDL 

(25 𝜇g/ml) for 24 hours, in the presence or absence of CKD-associated DAMPs, prior to 

staining of intracellular neutral lipids with Oil Red-O followed by microscopy analysis, as 

previously described (544). As a measure of foam cell formation, the percentage of foam cells 
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was determined for each condition. To avoid experimenter’s bias, the first 20 cells from the 

top left corner of each picture were selected for analysis. Cells with detectable intracellular 

red staining were considered foam cells, while cells without staining were considered normal 

macrophages. The process was repeated with the 5 pictures taken for each condition (total 

of 100 cells counted/condition). Exposure to LDL alone resulted in a modest rise in the 

number of foam cells which was significantly increased by co-treatment with LPS (Figure 

27.A). Co-exposure of macrophages to LDL and CKD-associated DAMPs, either alone or in 

combination, also led to a robust increase in foam cell formation compared to LDL exposure 

alone (Figure 27.B). Although this remains to be confirmed in a higher number of donors, 

stimulation with all DAMPs combined did not appear to increase foam cells formation 

significantly more than most individual DAMPs (Donor 1). If confirmed, this may suggest that 

i) TLR triggering can only increase foam cells formation to a certain extent, which cannot be 

exceeded with further triggering and/or ii) the amount of LDL used here cannot induce foam 

cells formation past the observed threshold. 

 

TLR involvement in the CKD-DAMPs promotion of foam cell formation was assessed 

by specific TLR2 and TLR4 blocking experiments using neutralising antibodies, which revealed 

that the increase in foam cell formation induced by the CKD-DAMPs was mediated by TLR2 

and TLR4, the latter having seemingly a bigger involvement (Figure 27.C).  
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Figure 27. Effect of CKD-associated DAMPs on foam cell formation and cholesterol handling by 
macrophages 
A-C. Primary monocyte M-CSF-derived macrophages were exposed (24 hours) to LDL (25 µg/ml) in the 
presence or absence of LPS (10 ng/ml, A and B) or the indicated DAMPs (B), alone or in combination 
(1 µg/ml), and of the indicated anti-TLR blocking antibodies (10 µg/ml, C) prior to staining with Oil 
Red-O for lipid visualisation by light microscopy (representative images shown). Histograms show the 
percentage of foam cells in each condition. Results are mean +/- SD run with macrophages prepared 
from 3 different donors.  
#, p<0.05; ###, p<0.005, LDL vs no LDL.  
*, p<0.05; ***, p<0.005, LPS or DAMP stimulation vs no ligand.  
$, p<0.05; $$$, p<0.005, 𝛼TLR antibodies vs LDL+DAMPs stimulation.  
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Foam cells formation is the result of excessive intake and reduced efflux of cholesterol. 

Therefore, the effect of the CKD-associated DAMPs on these macrophage functions was 

evaluated to investigate the mechanisms behind their ability to increase foam cells formation. 

 

b. Modified LDL uptake and scavenger receptors expression by macrophages 

A potential effect of CKD-associated DAMPs effect on AcLDL uptake was analysed by 

flow cytometry as described above (Figure 24.B). Based on the titration shown in Figure 24.B, 

a suboptimal concentration of 10 µg/ml of Dil-AcLDL was selected for these experiments, to 

allow for the detection of potential up or down modulation of AcLDL uptake following DAMPs 

treatment. Macrophages were starved in medium supplemented with 0.2% fatty-acid free 

BSA (18 hours) and pre-exposed, or not, to the 4 CKD-associated DAMPS identified, prior to 

24 hours’ incubation with Dil-AcLDL (10 µg/ml). When DAMPs were added in macrophages 

culture during the starvation step, and although each batch of macrophages responded 

slightly differently, repeated experiments carried out with macrophages isolated from 4 

different donors indicated that most DAMPs, apart from HA and as opposed to LPS, induced 

a slight reduction in AcLDL uptake. This effect was significant for HMGB-1 or a combination 

of all DAMPs (Figure 28.A). Given that the combination of all DAMPs did not lead to a stronger 

inhibition than HMGB-1 alone, and the fact that other single DAMP failed to show a significant 

effect on AcLDL uptake, we speculate that the effect observed with all DAMPs is mostly due 

to the activity of HMGB-1. Although a reduction of around 10% in AcLDL uptake may not seem 

biologically relevant, this value is in within the range of what is regarded as noteworthy in 

published findings (545). It is important to consider that, while our experiments run over a 

short period of time, CKD patients’ macrophages are exposed to DAMPs for months or years, 
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and even a moderate reduction in AcLDL uptake may have a biological relevance if maintained 

over time.  

Uptake of maximally modified LDL is mostly driven by interaction with SR-A and CD36. 

Thus, the effect of CKD-DAMPs exposure on expression of these scavenger receptors was 

analysed as a first step to investigate the mechanisms behind reduced cholesterol uptake.   

CD36 expression by macrophages remained mostly unaffected by stimulation with LPS 

or the CKD-associated DAMPs, alone or combined, although Hsp70 induced its modest 

upregulation. On the contrary, SR-A expression was modestly decreased following stimulation 

with LPS as well as the 4 CKD-associated DAMPs, alone (but Hsp70) or in combination (Figure 

28.B).  

 

As uptake of modified cholesterol is a driver of foam cell formation, the reduction in 

uptake induced by the combination of DAMPs may be thought to be atheroprotective. 

However, uptake of modified LDL can be both atheroprotective and atherogenic depending 

notably on the type of macrophage involved, namely healthy macrophage or foam cell (303, 

546). Briefly, uptake of modified LDL by healthy macrophages, which are able to process and 

efficiently clear it, limits LDL accumulation in the intima, therefore avoiding formation of foam 

cells which are detrimental and major players in maintaining chronic inflammation and 

worsening atherosclerosis. On the other hand, increased uptake of modified LDL by foam 

cells, which are already engorged with cholesterol and no longer able to process it, will favor 

the maintenance of chronic inflammation in the intima and promote plaque development by 

promoting foam cell secondary necrosis and the formation of more foam cells as neighboring 

phagocytes attempt to clear the cholesterol burden released by dying foam cells. For this 

reason, the effect of the DAMPs on modified LDL uptake by foam cells was investigated next.  
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Figure 28. CKD-associated DAMPs moderately reduce modified cholesterol uptake by healthy 
macrophages 
A. M-CSF-differentiated macrophages were starved in medium supplemented with 0.2% fatty-acid 
free BSA (18 hours) in the presence or absence or the indicated DAMPs, alone or in combination (1 
𝜇g/ml) before addition of Dil-AcLDL (10 μg/ml). After 24 hours, internalised Dil-AcLDL was quantified 
by flow cytometry (at least 10,000 cells/condition, MFI shown). Results are the average (+/- SEM) of 4 
independent experiments. B. M-CSF-differentiated macrophages were stimulated (18 hours) with LPS 
(10 ng/ml), or Hsp70, Calprotectin, HA or HMGB-1, alone or combined (1 𝜇g/ml) prior to flow 
cytometry analysis of cell surface expression of scavenger receptors CD36 and SR-A (at least 10,000 
cells/condition, MFI shown). Results are shown as percentage change compared to the no ligand 
reference expression and are the average (+/- SEM) of 4 independent experiments.  
*, p<0.05; **, p<0.01; ***, p<0.005 DAMPs/LPS Stimulation vs no stimulation. 
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c. Modified LDL uptake and scavenger receptors expression by foam cells  

To set up a foam cell model in vitro, monocytes were differentiated into macrophages 

with addition of M-CSF as before. After 7 days, a large concentration of OxLDL (50 µg/ml) was 

added in the culture medium (48 hours) for the macrophages to uptake and become foam 

cells, as previously described by others (544, 547). OxLDL, rather than AcLDL or LDL, was used 

as it is harder to degrade and therefore is more efficient at inducing cholesterol engorgement 

and foam cell formation (548). The medium with OxLDL was then removed and Dil-AcLDL 

uptake and CD36 and SR-A expression were analysed as before. 

These experiments showed that foam cells uptake significantly larger amounts of 

AcLDL than healthy macrophages (Figure 29.A). However, as opposed to what was observed 

for healthy macrophages, exposure of foam cells to all DAMPs, either alone or in combination, 

did not reduce foam cell formation to a significant extent (Figure 29.B). Although there was a 

statistically significant reduction with both HA, and HMGB-1, it only averaged to 4.18% and 

3.98%, therefore is unlikely to be biologically relevant (Figure 29.B).  

In apparent opposition with the lack of effect on modified LDL uptake, DAMPs 

stimulation upregulated the expression of both scavenger receptors. Specifically, CD36 

(Figure 29.C) was strongly upregulated following activation with Hsp70, HMGB-1 and a 

combination of all DAMPs, moderately with LPS and Calprotectin, and remained not affected 

by exposure to HA. The expression of SR-A (Figure 29.C) in foam cells was found moderately 

increased following exposure to all CKD DAMPs, alone or combined, or to LPS. Importantly, 

these results need to be confirmed in foam cells generated from monocytes from other 

donors, as only 1 donor was tested here. If confirmed, this increase in scavenger receptor 

expression would be in opposition with what was observed in healthy macrophages (Figure 

28.B), suggesting a differential effect of DAMPs on both cell types. As a first step towards 
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investigating the mechanisms behind this difference, it may be interesting to compare TLR 

expression levels between healthy macrophages and foam cells.   

 

Therefore, the results of the experiments described here suggest that DAMPs 

exposure may inhibit beneficial LDL clearance by healthy macrophages at the start of the 

atherosclerotic process but do not inhibit detrimental uptake by foam cells.  
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Figure 29. CKD-associated DAMPs do not affect modified cholesterol uptake by foam cells 
A. M-CSF-differentiated macrophages (A) or foam cells (A and B) were starved in medium 
supplemented with 0.2% fatty-acid free BSA (18 hours) in the presence (B) or absence (A and B) or the 
indicated DAMPs, alone or in combination (1 𝜇g/ml) before addition of Dil-AcLDL (10 μg/ml). After 24 
hours, internalised Dil-AcLDL was quantified by flow cytometry (at least 10,000 cells/condition, MFI 
shown). Results in A are from 1 experiment representative of 2. Results in B are the average (+/- SEM) 
of 3 independent experiments. C. M-CSF-differentiated foam cells were stimulated (18 hours) with 
LPS (10 ng/ml), or Hsp70, Calprotectin, HA or HMGB-1, alone or combined (1 𝜇g/ml) prior to flow 
cytometry analysis of cell surface expression of scavenger receptors CD36 and SR-A. Results are MFI 
of at least 10,000 cells/condition from 1 donor, with subtracted background fluorescence.  
**, p<0.01; ***, p<0.005; DAMPs/LPS Stimulation vs no stimulation. 
 

 
 
 
 
 
 
 
 
 
 

0

20

40

60

80

100

120

NS All endos

A
cL

D
L 

up
ta

ke
, M

FI
Macrophages
Foam cells

No ligand

Hsp70
Calprotectin
HA
HMGB-1
All DAMPs

LPS

0
20
40
60
80

100
120
140
160

CD36

M
FI

0
100
200
300
400
500
600
700
800

SR-A

M
FI

No ligand

Hsp70
Calprotectin
HA
HMGB-1
All DAMPs

LPS

A. B.

%
 D

il-
A

cL
D

L 
up

ta
ke

 
(c

om
pa

re
d 

to
 N

S 
re

fe
re

nc
e)

*** **

LP
S

H
sp

70

Ca
lp

ro
te

ct
in H
A

H
M

G
B-

1

A
ll 

D
A

M
Ps

C.



 
133

d. Cholesterol efflux by macrophages 

Cholesterol efflux was measured using the fluorescent sterol dipyrromethene boron 

difluoride (BODIPY) cholesterol (549). Briefly, macrophages were exposed to BODIPY 

cholesterol in the absence of DAMPs (18 hours, RMPI 1640 supplemented with 0.2% fatty-

acid free BSA) prior to medium removal and equilibration (1 hour) with or without DAMPs (no 

cholesterol, serum-free medium). Medium was removed once more and replaced with 

medium containing 10% FCS as a cholesterol acceptor, again with or without DAMPs (Material 

and Methods, Section V-9.). At the indicated time points between 1 hour and 24 hours, 

cholesterol efflux was measured by detection of BODIPY fluorescence in the culture 

supernatants. In macrophages from all donors tested, all CKD-associated DAMPs, either alone 

or in combination, significantly reduced the efflux of cholesterol (Figure 30). The extent and 

timing of the reduction varied with the donor tested. 

Thus, the experiments shown in this section indicate that CKD-associated DAMPs can 

promote foam cell formation in a TLR2/4-dependent manner and that this effect is likely the 

result of the DAMPs’ ability to reduce cholesterol efflux.  
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Figure 30. CKD-associated DAMPs inhibit cholesterol efflux by macrophages 
Triplicate cultures of M-CSF-differentiated macrophages were loaded with BODIPY-labelled 
cholesterol (5 μM, 18 hours), before medium removal and exposure to the indicated DAMPs, alone or 
in combination (1 𝜇g/ml). After equilibration (1 hour), medium was removed and replaced with fresh 
medium containing the same concentrations of DAMPs in the presence of 10% FCS as a cholesterol 
acceptor. BODIPY-associated fluorescence was measured in culture supernatants at the indicated time 
points. Results are mean +/- SD run with macrophages prepared from 3 different donors.  
*, p<0.05; **, p<0.01; ***, p<0.005, DAMP Stimulation vs no stimulation. 
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Altogether, the data presented in this Chapter demonstrate the ability of CKD-

associated DAMPs to promote several key pro-atherosclerotic functions by monocytes and 

macrophages, notably:   

- Enhanced monocyte migratory capacity; 

- Increased pro-atherogenic mediator production by both cell types; 

- Modulation of a number of atherosclerosis related genes by macrophages; 

- Increased foam cell formation.  

These results support our hypothesis of a role for TLR DAMPs in promoting vascular 

inflammation and atherosclerosis progression in CKD patients, thereby contributing to the 

elevated CV risk in this population. 

 

III-3.B.5. Discussion 

In this Chapter, we demonstrate the ability of CKD-associated DAMPs to differentially 

promote a number of monocyte/macrophage responses typically associated with 

atherosclerosis development. These included higher pro-atherogenic cytokine production by 

both cell types, increased monocytic migratory capacity, increased atherosclerosis-associated 

gene expression as well as reduced cholesterol efflux and increased foam cell formation by 

macrophages. It is important to highlight that not all DAMPs affected all functions to a similar 

extent: while only Hsp70 induced robust cytokine production, all CKD-associated DAMPs, 

alone or in combination promoted monocyte migration and foam cell formation, and reduced 

cholesterol efflux. This differential effect suggests that different signaling pathways are 

involved in these responses. Because we demonstrated that TLR2/4 were major mediators 

for all of these responses, we hypothesise that the differences may be a result of DAMPs 
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interaction with their other, non-TLRs, immune receptors, which differ between DAMPs 

(Introduction, Section I-2.2., p.26, p.31, p.34 and p.37).   

Regarding the monocytic functions tested, it is to be mentioned that primary cells, our 

preferred model, were used to measure cytokine production, while a cell line had to be used 

to evaluate migration, which may have contributed to the differential effect of the DAMPs 

observed between the 2 functions. The use of the MM6 monocytic cell line for migration was 

for technical reasons, as we found that primary monocytes isolated by adhesion of PBMCs 

tended to adhere to the membrane, making it difficult to count the number of cells migrated.  

Although cytokine production was tested in both monocytes and macrophages, it is not 

expected that cytokines produced by monocytes prior to their recruitment to the aortic wall 

will contribute directly to the atherosclerotic process itself. However, these cytokines will 

contribute to the establishment and/or maintenance of chronic systemic inflammation, which 

in turn may accelerate the atherosclerotic process, notably by promoting endothelial cell 

activation, priming leukocytes for recruitment and increasing LDL oxidation (345, 550). 

Conversely, pro-inflammatory mediators’ production by macrophages in the intima is 

a major driver of atherosclerosis progression. While only Hsp70 showed the ability to induce 

robust cytokine production, it is to be noted that we have not evaluated the effect of the 

combination of the 4 CKD-associated DAMPs on this readout. We expect that combining the 

3 DAMPs that did not induce cytokine production with Hsp70 will lead to results similar to 

those observed with Hsp70 alone. Similarly, the effect of the combination of CKD-associated 

DAMPs on atherosclerosis-associated gene expression by macrophages remains to be 

evaluated.  

In addition to cytokine production, a major macrophage-driven pathway promoting 

atherosclerosis progression is the transition from plaque macrophage to foam cell. In this 
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Chapter, we report the ability of all CKD-associated DAMPs, as well as their combination, to 

promote foam cell formation, in line with their ability to reduce cholesterol efflux. The fact 

that all DAMPs had the same effect on these functions suggests that this effect is a result of 

TLRs engagement, rather than of the engagement of other DAMPs receptors. This was 

confirmed in specific TLR2/4 blocking experiments. Of note, LDL, rather than OxLDL, was used 

to induce foam cell formation in our model. This is because OxLDL is a much more potent 

inducer of foam cell formation, rendering the system less sensitive to potential DAMP-

induced changes. This is consistent with the previous finding that LPS-promoting effect on 

foam cell formation is not detectable when OxLDL, as opposed to LDL, is used to induce foam 

cells (446, 453, 551, 552). This can in part be explained by the fact that OxLDL is a TLR ligand 

in itself (Introduction, Section I-3.3., p.71). Therefore, exposure to OxLDL provides a very 

potent foam cell formation dual signal (high cholesterol load + TLR triggering), that cannot be 

easily potentiated by further TLR triggering (with LPS or DAMPs). Importantly, although OxLDL 

is an effective inducer of foam cell formation in vivo, minimally-modified or non-modified 

forms of LDL also drive foam cell formation in physiological conditions (551, 553). On a similar 

issue, fluorescent acetylated LDL, which is not physiological, was used to measure LDL uptake 

by macrophages. This is a well-accepted protocol which has been used ever since Brown and 

Goldstein found that it is avidly taken up by macrophages (554). Of note, while uptake of 

AcLDL tends to be larger than that of OxLDL, the same scavenger receptors are involved and 

studies have found that interventions typically give similar result profiles irrespective of the   

modified LDL form used to measure uptake (545). Of note, LDL and modified LDL can also be 

taken up by micropinocytosis, a potential effect of DAMPs on which we have not tested here, 

as it does not tend to be the main uptake route (331).  
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While CKD-patients’ blood monocytes will be chronically exposed to the elevated plasma 

levels of DAMPs, determining what combination of DAMPs plaque macrophages will be 

exposed to is less straightforward. We carried out our in vitro work with macrophages under 

the assumption that DAMPs elevated in plasma will find their way to the intima through the 

endothelium rendered more permeable by chronic inflammation or pre-existing 

atherosclerosis in most CKD patients. However, it is likely that other DAMPs may also be found 

elevated at the plaque site, or that the same DAMPs may be further elevated, as previously 

described (555-559). Therefore, our in vitro work provided the proof-of-concept that TLR-

DAMPs elevated in CKD have the capacity to drive a variety of cellular responses associated 

with atherosclerosis progression. However, it is not presented as an exhaustive list of the 

DAMPs that may play a role in promoting atherosclerosis progression in CKD.  

 

In order to assess the in vivo relevance of the in vitro effects of CKD-associated TLR 

DAMPs described here, and to evaluate potential therapeutic strategies, we next tested in 

mice the therapeutic potential of a multi-TLR targeting strategy and the pharmacological 

inhibition of specific DAMP to reduce chronic vascular inflammation and early vascular 

alterations induced by CKD.  
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III-4. In vivo assessment of the capacity of CKD-DAMPs to promote vascular 

inflammation and early atherosclerotic responses 

III-4.1. Effect of multi-TLR inhibition on systemic chronic inflammation induced by CKD 

in mice  

A previously-described mouse model of Aristolochic Acid-induced Nephropathy (AAN) 

(560) was used (Figure 31.A) to: 

- Investigate the impact of CKD on systemic inflammatory, immune and pro-

atherosclerosis responses; 

- Evaluate the therapeutic potential of TLR/DAMP inhibition to reduce these effects. 

 

Repeated administration of AA induces tubular injury leading to inflammation followed by 

tissue remodeling and fibrosis, as well as decreased kidney function. As expected, 

nephropathy was confirmed by kidney histology and increased creatinine plasma levels 

(Figure 31.B and C). In line with what we observed in CKD patients, plasma levels of TLR 

DAMPs were found elevated following AA administration. Specifically, Calprotectin levels 

were significantly increased at Day 10 and remained elevated (although not statistically 

significant) at Day 21. HMGB-1 levels were also increased, which became statistically 

significant by Day 21 (Figure 32.A). Levels of Hsp70 and HA were not affected in this model. 

Species differences or differences in the stage of CKD between patients and mice may explain 

this finding.  
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Figure 31. Kidney damage and loss of function following repeated AA injections in mice 
C57BL/6J mice (n=5 per group) were injected intraperitoneally with AA (2.5 mg/kg) or PBS on days 0, 
3, 7, and 10 (A). AAN was verified at Day 21 by the development of kidney fibrosis (B) and a significant 
elevation in plasma creatinine (C). B. Representative images of Masson trichrome stain of kidneys 
from a healthy mouse (left panels) and a mouse with chronic AAN (right). Cytoplasm is stained red, 
nuclei are in dark brown and collagen is stained blue, identifying renal fibrosis. Scale bars: 100 μm. 
Graph shows the percentage of collagen positive stain for each group (3 non-overlapping fields of view 
scored for each of 5 animals/group). C. Creatinine measurements in plasma, **, p<0.01 AA Day 21 vs 
PBS Day 21. 
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To evaluate the therapeutic potential of TLR inhibition in CV risk in CKD, the effect of the 

soluble form of TLR2 (sTLR2) was tested in this model. sTLR2 is a natural TLR inhibitor with 

anti-inflammatory capacity (298, 498, 561-563). It inhibits TLR activation by i) acting as a 

decoy receptor, binding to TLR2 ligands and preventing their recognition by membrane TLR2, 

and ii) binding to the common TLR co-receptor CD14 (298). Because most TLRs rely on CD14 

activity for efficient activation, sTLR2 can inhibit the activation of TLRs other than TLR2, 

notably TLR4 (498, 562, 563).  
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Figure 32. Effect of sTLR2 administration on AAN-induced systemic inflammatory and pro-
atherosclerotic responses in vivo 
C57BL/6J mice (n=5 per group) were injected intraperitoneally 4 times at 3 day-intervals with AA (2.5 
mg/kg) or PBS, in the presence or absence of sTLR2 (250 ng/mouse). Blood was obtained at Day 10 or 
Day 21, Day 0 being the day of the first injection. DAMP (A) and cytokine (B) plasma levels were 
determined by ELISA and innate leukocyte proportions and PSGL-1 expression levels (C) by flow 
cytometry.  
*, p<0.05; **, p<0.01; ***, p<0.005 (*, AAN vs PBS; #, AAN +sTLR2 vs AAN). 
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Repeated AA injections led to an early increase (Day 10) in plasma levels of the prototypical 

neutrophil chemoattractant KC (murine equivalent of IL-8). KC levels were reduced by sTLR2 

administration, although the changes were not statistically significant (Figure 32.B). 

Consistent with the increase in KC, CKD induction resulted in a marked increase in the 

proportion of neutrophils (CD11b+/Ly6G+) and monocytes (CD11b+/Ly6G-) within 24 hours of 

the last AA injection (Figure 32.C). Notably, the increase in total monocytes was mostly driven 

by the Ly6Chigh subset, considered as pro-inflammatory (564), being preferentially recruited 

to inflamed tissues, like the atherosclerotic plaque (565). Of note, higher proportions of the 

human equivalent “pro-inflammatory” monocytic population (CD16+/CD14++ or CD14+) have 

been shown to correlate with the incidence of cardiovascular events in CKD patients and 

other cohorts (566-568). The proportions of neutrophils, total monocytes and Ly6Chigh 

monocytes were significantly reduced by administration of sTLR2. This reduction was robust, 

as leukocyte levels were similar to PBS-injected mice (Figure 32.C). Although the proportion 

of Ly6Clow monocytes was not significantly affected by AAN, in this subset, there was a 

significant increase in the expression of PSGL-1 (CD162), which mediates monocyte adhesion 

to the endothelium during atherosclerosis (Figure 32.C). This increased expression was not 

significantly affected by sTLR2. To gain a better insight into the range of systemic 

inflammatory changes induced by AAN and the efficacy of sTLR2 as an anti-inflammatory 

strategy, the blood expression of 84 genes associated with inflammation and immunity was 

investigated. The effect of AAN on inflammation-related gene expression at Day 10 was 

modest with 5 genes significantly upregulated (Figure 33.A), coding for proteins related to 

inflammation (Serum amyloid P, a mice acute phase protein (569), and IL-1β), innate 

immunity (Nlrp3 and Tlr5) and adaptive immunity (Histocompatibility 2, Q-region-locus-10) 

and this profile was not markedly affected by sTLR2 administration (Table 6).  
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Figure 33. Effect of sTLR2 administration on AAN-induced changes on inflammation-related genes 
in vivo 
C57BL/6J mice (n=5 per group) were injected intraperitoneally 4 times at 3 day-intervals with AA (2.5 
mg/kg) or PBS, in the presence or absence of sTLR2 (250 ng/mouse). Blood was obtained at Day 10 or 
Day 21, Day 0 being the day of the first injection. Volcano plots compare the effect of AAN and AAN + 
sTLR2 on inflammation and immune responses-associated gene expression at Day 10 (A) and Day 21 
(B). Red (upregulated, fold change ≥ 2) and green (downregulated, fold change ≤ 0.5) circles represent 
single genes significantly affected (p<0.05, represented by the horizontal line) compared to PBS 
control.  
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Table 6. Effect of sTLR2 on AAN-induced changes in inflammation and immunity gene expression in 
blood at Day 10 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

*Only statistically significant (P<0.05) AAN-induced ≤ 0.5 (in green) or ≥ 2 (in red) fold changes were 
considered.  
**Compared to PBS control group. 
 

 

Table 7. Effect of AA+ sTLR2 administration (compared to control) on inflammation and immunity 
gene expression in blood at Day 10 
 

  AAN + sTLR2 

Gene 
symbol 

Description 
Fold 

Change* 
P Value* 

Apcs Serum amyloid P-component 40.2 0.0001 

Ccl12 Chemokine (C-C motif) ligand 12 5.4 0.0067 

Ccl5 Chemokine (C-C motif) ligand 5 2.3 0.0293 

Crp C-reactive protein, pentraxin-related 22.8 0.0001 

H2-q10 Histocompatibility 2, Q region locus 10 2.8 0.0001 

Il1b Interleukin 1 beta 3.0 0.0001 

Mbl2 Mannose-binding lectin (protein C) 2 15.2 0.0002 

Nlrp3 NLR family, pyrin domain containing 3 2.4 0.0001 

Tlr5 Toll-like receptor 5 3.6 0.0019 

Csf2 
Colony stimulating factor 2 (granulocyte-
macrophage) 

-4.3 0.0014 

Ifna2 Interferon alpha 2 -3.3 0.0004 

Ifnb1 Interferon beta 1 -2.5 0.0279 

ll5 Interleukin 5 -2.4 0.0060 

Mpo Myeloperoxidase -3.0 0.0001 

Rag1 Recombination activating gene 1 -91.3 0.0001 

Rorc RAR-related orphan receptor gamma -8.13 0.0001 

Tlr3 Toll-like receptor 3 -2.8 0.0001 

   

*Compared to PBS control group. 
 

  
AAN * 

  
AAN + sTLR2 

Gene 
symbol 

Description 
Fold 

Change** 
P 

Value** 
Fold 

Change** 

P 
Value*

* 

Apcs Serum amyloid P-component 3.7 0.0001 10.2 0.0001 

H2-q10 Histocompatibility 2, Q region locus 10 2.3 0.0001 2.8 0.0001 

Il1b Interleukin 1 beta 3.2 0.0001 3.0 0.0001 

Nlrp3 NLR family, pyrin domain containing 3 2.5 0.0027 2.4 0.0001 

Tlr5 Toll-like receptor 5 3.0 0.0004 3.6 0.0019 

Il10 Interleukin 10 -2.9 0.0028 -1.2 0.073 

Mpo Myeloperoxidase -2.6 0.0016 -3.0 0.0001 

Rag1 Recombination activating gene 1 -17.2 0.0001 -21.3 0.0001 

Rorc RAR-related orphan receptor gamma -4.8 0.0001 -8.13 0.0001 
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At Day 21, 14 genes were upregulated by AAN (Figure 33.B), among them those coding for 

acute phase proteins (Serum amyloid P and C-reactive protein) and pro-inflammatory 

mediators (Colony stimulating factor 2; IFN2α; IL-2; IL-6; IL-17α; IL-23α, Myeloperoxidase). 

Several transcripts upregulated at this later time point were associated with the adaptive 

immune response: FOXP3, a transcription factor, specific marker of Tregs; IL-2, which 

promotes T cell proliferation and activity; IL-17 and IL-23, indicative of Th17 activity; IL-5, 

which promotes Th2 differentiation and IL-6, which can promote T cell differentiation towards 

Th17 and Tregs. Administration of sTLR2 led to a reduction in the expression of over half of 

the AAN-upregulated genes (Table 8). 

 

Table 8. Effect of sTLR2 on AAN-induced changes in inflammation and immunity gene expression 
the blood at Day 21 
 

  
AAN * 

  
AAN +sTLR2 

Gene 
symbol 

Description 
Fold 

Change** 
P 

Value** 
Fold 

Change** 

P 
Value*

* 

Apcs Serum amyloid P-component 3.0 0.0003 1.3 0.0084 

Crp C-reactive protein, pentraxin-related 4.5 0.0004 1.7 0.222 

Csf2 Colony stimulating factor 2 (granulocyte-
macrophage) 

3.9 0.0072 1.1 0.8473 

Foxp3 Forkhead box P3 2.4 0.0017 1.8 0.0041 

Ifna2 Interferon alpha 2 2.9 0.0007 -1.6 0.0280 

Ifnb1 Interferon beta 1 2.5 0.0004 -1.3 0.0904 

Il17a Interleukin 17A 3.5 0.0006 -1.6 0.1015 

Il2 Interleukin 2 2.2 0.0009 -1.2 0.0256 

Il23a Interleukin 23, alpha subunit p19 2.3 0.0106 2.7 0.0003 

Il5 Interleukin 5 3.6 0.0001 2.5 0.0303 

Il6 Interleukin 6 3.0 0.0048 2.6 0.0001 

Mbl2 Mannose-binding lectin (protein C) 2 5.8 0.0006 2.9 0.2093 

Mpo Myeloperoxidase 2.6 0.0061 2.6 0.0044 

Mx1 Myxovirus (influenza virus) resistance 1 2.2 0.0001 2.4 0.0142 

Rag1 Recombination activating gene 1 -3.2 0.0001 -5.8 0.0001 

  
*Only statistically significant (P<0.05) AAN-induced ≤ 0.5 (in green) or ≥ 2 (in red) fold changes 
were considered.  
**Compared to PBS control group. 
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Table 9. Effect of AA + sTLR2 administration (compared to control) on inflammation and immunity 
blood gene expression in blood at Day 21 
 

  AAN + sTLR2 

Gene 
symbol 

Description 
Fold 

Change* 
P 

Value* 

Cd14 CD14 antigen 2.2 0.0001 

Cd80 CD80 antigen 2.0 0.0000 

Il6 Interleukin 6 2.5 0.0001 

Mx1 Myxovirus (influenza virus) resistance 1 2.4 0.0143 

Rag1 Recombination activating gene 1 15.8 0.0001 

Rorc RAR-related orphan receptor gamma 10.5 0.0001 

   

*Compared to PBS control group. 
 

Thus, sTLR2 partially reduced the expression of a wide range of inflammatory/immunity 

genes, and showed the ability to control monocyte and neutrophil numbers and the levels of 

KC, all critical to the inflammation underlying CV pathology. These findings raised the question 

of whether specific DAMP inhibition may present an even better therapeutic alternative.    

 

III-4.2. Effect of Calprotectin inhibition on vascular inflammation and early 

atherosclerosis-associated gene expression in mouse CKD  

Both Calprotectin and HMGB-1 were elevated following CKD induction in mice (Figure 

32.A). Their levels were compared in plasma from CKD patients who had not versus those 

who had been diagnosed with CVD at the time of sampling (the latter were excluded from the 

analysis in Figure 7). Plasma levels of Calprotectin were further elevated in the latter group 

(Figure 34.A), while HMGB-1, Hsp70 and HA levels were not (not shown). Therefore, a 

Calprotectin-targeting strategy was selected for in vivo evaluation. Paquinimod (ABR-215757) 

is a well-documented pharmacological inhibitor of Calprotectin, which works by interacting 

specifically with the S100A9 subunit, preventing its recognition by TLR4 (570, 571).  
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Figure 34. Effect of blocking Calprotectin on AAN-induced systemic inflammatory and pro-
atherosclerotic responses in vivo. 
A. Calprotectin levels in plasma from healthy donors (n=30), Stage 5 CKD patients (n=35) or Stage 5 
CKD patients with diagnosed CVD (n=38). Horizontal lines in boxes denote the median value, Open 
circles denote outliers. p value, CKD patients vs healthy donors or CKD vs CKD + CVD. B-C. C57BL/6J 
mice (n=5 per group) were injected intraperitoneally 4 times at 3 day-intervals with AA (2.5 mg/kg) or 
PBS, in the presence or absence of Paquinimod (20 μg/mouse). Blood was obtained at Day 10. 
Cytokine plasma levels were determined by ELISA (B) and innate leukocyte proportions and PSGL-1 
expression levels (C) by flow cytometry.  
*, p<0.05; **, p<0.01; ***, p<0.005 (*, AAN vs PBS; #, AAN +Paquinimod vs AAN). 

 

 

Similar to sTLR2, Paquinimod prevented the AAN-induced increase in plasma KC levels (Figure 

34.B) and innate immune cell proportions at Day 10 (total monocytes, Ly6Chigh monocytes, 

neutrophils; Figure 34.C). The effect of Paquinimod on AAN-associated inflammation-related 

gene expression was profound at both short and longer term, as it reduced to normal levels 

the expression of 4 out of the 5 genes upregulated by AAN at Day 10 (Figure 35.A, Table 10) 

and of 10 out of 14 at Day 21 (Figure 35.B, Table 12). Interestingly, Paquinimod, as opposed 
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to sTLR2, did not result in a reduction in the expression of FOXP3, suggesting that this 

approach may preserve Treg anti-inflammatory activity, beneficial in the context of chronic 

inflammation.  

 
 
Table 10. Effect of Paquinimod on AAN-induced changes in inflammation and immunity gene 
expression in blood at Day 10 
 

  
AAN * 

  
AAN + Paquinimod 

Gene 
symbol 

Description 
Fold 

Change** 
P 

Value** 
Fold 

Change** 

P 
Value*

* 

Apcs Serum amyloid P-component 3.7 0.0001 1.6 0.1512 

H2-q10 Histocompatibility 2, Q region locus 10 2.3 0.0001 1.8 0.0001 

Il1b Interleukin 1 beta 3.2 0.0001 2.5 0.0001 

Nlrp3 NLR family, pyrin domain containing 3 2.5 0.0027 1.9 0.0059 

Tlr5 Toll-like receptor 5 3.0 0.0004 1.9 0.0029 

Il10 Interleukin 10 -2.9 0.0028 -2.2 0.0030 

Mpo Myeloperoxidase -2.6 0.0016 -2.3 0.0076 

Rag1 Recombination activating gene 1 -17.2 0.0001 -6.6 0.0001 

Rorc RAR-related orphan receptor gamma -4.8 0.0001 -4.4 0.0001 

  
*Only statistically significant (P<0.05) AAN-induced ≤ 0.5 (in green) or ≥ 2 (in red) fold changes 
were considered.  
**Compared to PBS control group. 

 

 

 

 

 

 

 



 
150

Table 11. Effect of AA+ Paquinimod administration (compared to control) on inflammation and 
immunity gene expression in blood at Day 10 
 

  AAN + Paquinimod 

Gene 
symbol 

Description 
Fold 

Change* 
P 

Value* 

Crp C-reactive protein, pentraxin-related 3.0 0.0044 

Il1b Interleukin 1 beta 2.5 0.0001 

Csf2 
Colony stimulating factor 2 (granulocyte-
macrophage) 

-4.4 0.0021 

Ifna2 Interferon alpha 2 -3.1 0.0006 

Ifnb1 Interferon beta 1 -5.5 0.0086 

Il10 Interleukin 10 -2.2 0.0029 

Il1a Interleukin 1 alpha -4.0 0.0012 

Il1r1 Interleukin 1 receptor, type I -2.0 0.0189 

Il2 Interleukin 2 -2.5 0.0023 

ll5 Interleukin 5 -4.6 0.0012 

Il6 Interleukin 6 -3.3 0.0024 

Mpo Myeloperoxidase -2.3 0.0076 

Rag1 Recombination activating gene 1 -6.6 0.0001 

Rorc RAR-related orphan receptor gamma -4.4 0.0001 

Tlr3 Toll-like receptor 3 -2.1 0.0001 

   

*Compared to PBS group. 
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Figure 35. Effect of blocking Calprotectin administration on AAN-induced changes on inflammation-
related genes in vivo 
C57BL/6J mice (n=5 per group) were injected intraperitoneally 4 times at 3 day-intervals with AA (2.5 
mg/kg) or PBS, in the presence or absence of Paquinimod (20 μg/mouse). Blood was obtained at Day 
10 or Day 21. Volcano plots compare the effect of AAN and AAN + Paquinimod on inflammation and 
immune responses in the blood at Day 10 (A) and Day 21 (B). Red (upregulated, fold change ≥ 2) and 
green (downregulated, fold change ≤ 0.5) circles represent single genes significantly affected (p<0.05, 
represented by the horizontal line) compared to PBS control.  
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Table 12. Effect of Paquinimod on AAN-induced changes in inflammation and immunity blood 
gene expression in blood at Day 21 
 

  
AAN * 

  
AAN + Paquinimod 

Gene 
symbol 

Description 
Fold 

Change** 
P 

Value** 
Fold 

Change** 

P 
Value*

* 

Apcs Serum amyloid P-component 3.0 0.0003 -1.1 0.0019 

Crp C-reactive protein, pentraxin-related 4.5 0.0004 -3.1 0.0746 

Csf2 Colony stimulating factor 2 (granulocyte-
macrophage) 

3.9 0.0072 1.2 0.9455 

Foxp3 Forkhead box P3 2.4 0.0017 2.4 0.0002 

Ifna2 Interferon alpha 2 2.9 0.0007 1.0 0.9711 

Ifnb1 Interferon beta 1, fibroblast 2.5 0.0004 1.4 0.0456 

Il17a Interleukin 17A 3.5 0.0006 -1.2 0.4990 

Il2 Interleukin 2 2.2 0.0009 1.0 0.9242 

Il23a Interleukin 23, alpha subunit p19 2.3 0.0106 2.0 0.0003 

ll5 Interleukin 5 3.6 0.0001 1.6 0.1272 

Il6 Interleukin 6 3.0 0.0048 1.8 0.0002 

Mbl2 Mannose-binding lectin (protein C) 2 5.8 0.0006 -2.1 0.0514 

Mpo Myeloperoxidase 2.6 0.0061 2.6 0.0044 

Mx1 Myxovirus (influenza virus) resistance 1 2.2 0.0001 3.3 0.0001 

Rag1 Recombination activating gene 1 -3.2 0.0001 -3.1 0.0001 

  
*Only statistically significant (P<0.05) AAN-induced ≤ 0.5 (in green) or ≥ 2 (in red) fold changes 
were considered.  
**Compared to PBS control group. 
 
 
 
 
Table 13. Effect of AA+ Paquinimod administration (compared to control) on inflammation and 
immunity gene expression in blood at Day 21 
 

  AAN + Paquinimod 

Gene 
symbol 

Description 
Fold 

Change* 
P 

Value* 

Cxcl10 Chemokine (C-X-C motif) ligand 10 2.1 0.0003 

Foxp3 Forkhead box P3 2.4 0.0002 

Il23a Interleukin 23, alpha subunit p19 2.0 0.0003 

Mpo Myeloperoxidase 2.6 0.0044 

Mx1 Myxovirus (influenza virus) resistance 1 3.3 0.0001 

Myd88 
Myeloid differentiation primary response gene 
88 

2.1 0.0167 

Tbx21 T-box 21 2.1 0.0194 

Tnf Tumor necrosis factor 2.1 0.0028 

Rag1 Recombination activating gene 1 -3.1 0.0001 

  

*Compared to PBS control group. 
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Given the strong inhibitory effect of blocking Calprotectin on AAN-induced systemic 

inflammation, its potential effect on aortic atherosclerosis-associated gene expression was 

evaluated at the later time point (Day 21). Out of 84 genes tested, 23 were upregulated by 

AAN (Figure 36.A, full list of affected genes in Table 14), including a majority of genes involved 

in inflammation, endothelial activation and leukocyte recruitment to the plaque (Ccl2, Ccl5, 

Ccr2, Cd44, Cxcl1, Fga, Fgb, Icam1, Il1a, Il1b, Itgax, Sele, Sell, Selplg, Tnf, Tnfaip3, Vcam1), but 

also lipid metabolism and handling (Apoa1, Apob, Msr1), apoptosis (Birc3) and platelet 

activation (Ptgs1). Paquinimod treatment led to a robust reduction in AAN-induced aortic 

expression of atherosclerosis-associated genes: 17 out of the 23 genes were maintained at 

normal levels, while 3 were significantly reduced but remained elevated compared to the PBS 

control (Figure 36.A, full list of affected genes in Table 14).  
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Table 14. Effect of Paquinimod on AAN-induced changes in atherosclerosis-related aortic gene 
expression at Day 21  
 

  
AAN * 

  
AAN + Paquinimod 

Gene 
symbol 

Description 
Fold 

Change
** 

P Value** 
Fold 

Change
** 

P 
Value** 

Apoa1 Apolipoprotein A-I 33.4 0.0001 21.0 0.0001 
Apob Apolipoprotein B 27.5 0.0001 12.0 0.0001 

Birc3 Baculoviral IAP repeat-containing 3 2.1 0.0006 -1.1 0.5215 

Ccl2 Chemokine (C-C motif) ligand 2 2.8 0.0001 1.2 0.2066 

Ccl5 Chemokine (C-C motif) ligand 5 2.6 0.0002 1.0 0.9266 

Ccr2 Chemokine (C-C motif) receptor 2 2.1 0.0004 -1.2 0.0429 

Cd44 CD44 antigen 2.6 0.0001 1.3 0.0009 

Cxcl1 Chemokine (C-X-C motif) ligand 1 4.8 0.0046 2.2 0.0077 

Fga Fibrinogen alpha chain 25.6 0.0001 10.0 0.0001 

Fgb Fibrinogen beta chain 28.7 0.0001 15.9 0.0001 

Icam1 Intercellular adhesion molecule 1 2.8 0.0001 1.3 0.0080 

Il1a Interleukin 1 alpha 5.4 0.0006 1.7 0.1557 

Il1b Interleukin 1 beta 5.8 0.0001 -2.1 0.0309 

Itgax Integrin alpha X 3.0 0.0003 1.5 0.0042 

Msr1 Macrophage scavenger receptor 1 2.1 0.0001 -1.3 0.0007 

Nyp Neuropeptide Y 5.7 0.0001 9.0 0.0112 

Ptgs1 Prostaglandin-endoperoxide synthase 1 2.2 0.0001 -1.2 0.0231 

Sele Selectin, endothelial cells 2.1 0.0031 -1.4 0.1607 

Sell Selectin, lymphocytes 7.8 0.0001 -1.4 0.0584 

Selplg Selectin, platelet (p-selectin) ligand 2.4 0.0001 -1.1 0.5787 

Tnf Tumor necrosis factor 15.4 0.0030 3.6 0.1639 

Tnfaip3 Tumor necrosis factor, alpha-induced protein 3 2.3 0.0001 1.6 0.0258 

Vcam1 Vascular cell adhesion molecule 1 4.5 0.0001 1.0 0.8135 
Il2 Interleukin 2 -2.9 0.0008 -1.9 0.0028 
Serpinb2 Serine (or cysteine) peptidase inhibitor, mbr 2 -4.7 0.0002 -1.2 0.2618 

 
*Only statistically significant (P<0.05) AAN-induced ≤ 0.5 (in green) or ≥ 2 (in red) fold changes 
were considered.  
**Compared to PBS control group. 
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Figure 36. Effect of blocking Calprotectin on AAN-induced systemic pro-atherosclerotic responses in 
vivo  
C57BL/6J mice (n=5 per group) were injected intraperitoneally 4 times at 3 day-intervals with AA (2.5 
mg/kg) or PBS, in the presence or absence of Paquinimod (20 μg/mouse). Aortas (A) and blood (B) 
were obtained at Day 21. Volcano plots compare the effect of AAN and AAN + Paquinimod on 
atherosclerosis-associated gene expression. Red (upregulated, fold change ≥ 2) and green 
(downregulated, fold change ≤ 0.5) circles represent single genes significantly affected (p<0.05, 
represented by the horizontal line) compared to PBS control.  
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Table 15. Effect of AA + Paquinimod administration (compared to control) on atherosclerosis-
related aortic gene expression at Day 21  
 

  AAN + Paquinimod 

Gene 
symbol 

Description 
Fold 

Change* 
P 

Value* 

Apoa1 Apolipoprotein A-I 21.0 0.0001 
Apob Apolipoprotein B 12.0 0.0001 

Cxcl1 Chemokine (C-X-C motif) ligand 1 2.2 0.0077 

Fga Fibrinogen alpha chain 10.0 0.0001 

Fbg Fibrinogen beta chain 15.9 0.0001 

Nyp Neuropeptide Y 9.0 0.0112 

Serpine1 Serine (or cysteine) peptidase inhibitor, mbr 
1 3.1 0.0003 

Spp1 Secreted phosphoprotein 1 4.0 0.0003 
Il1b Interleukin 1 beta -2.2 0.0310 
Il4 Interleukin 4 -3.1 0.0050 
Itga5 Integrin alpha 5 (fibronectin receptor alpha) -2.3 0.0000 
Klf2 Kruppel-like factor 2 (lung) -3.8 0.0000 

   

*Compared to PBS control group. 
 
 
 

Of note, AAN also led to the upregulation of atherosclerosis-associated genes in blood cells 

at Day 21, which could also be inhibited by treatment with Paquinimod (Figure 36.B and Table 

16). Specifically, out of 84 genes tested, 24 were upregulated by AAN and half of these genes 

were maintained at normal levels when Paquinimod was co-administered with AA. These 

included genes encoding notably Apolipoprotein B, the primary apolipoprotein in LDL;  CCR1, 

a chemokine receptor involved in leukocyte recruitment to the intima; ICAM-1, which is 

upregulated on activated leukocytes and contributes to various immune cell effector 

functions;  Integrin α5, the knock-down of which reduces atherosclerosis; PDGFB, which, 

together with hypercholesterolaemia, promotes atherosclerosis development; Serpin-e1 (or 

Plasminogen activator inhibitor-1), a key regulator of fibrinolysis and promoter of cell 

migration in atherosclerosis; and TNFα-induced protein 3, which is involved in negative 

feedback loop to end TNFα-induced responses, notably in atherosclerosis. Interestingly, only 
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1 gene was found downregulated in AAN after 21 days, Platelet-derived growth factor α, and 

its expression was not affected by Paquinimod treatment. 

 

Table 16. Effect of Paquinimod on AAN-induced changes in atherosclerosis-related gene 
expression in blood at Day 21  
 

  
AAN * 

  
AAN + Paquinimod 

Gene 
symbol 

Description 
Fold 

Change** 
P 

Value** 
Fold 

Change** 
P 

Value** 

Ace Angiotensin I converting enzyme 1 2.1 0.0001 3.1 0.0000 

Apoa1 Apolipoprotein A-I 11.2 0.0029 -4.6 0.1038 

Apob Apolipoprotein B 16.5 0.0001 -5.2 0.0001 

Bcl2 B-cell leukemia/lymphoma 2 2.1 0.0002 1.9 0.0002 

Birc3 Baculoviral IAP repeat-containing 3 2.4 0.0001 2.1 0.0001 

Ccr1 Chemokine (C-C motif) receptor 1 2.3 0.0001 1.7 0.0001 

Ccr2 Chemokine (C-C motif) receptor 2 2.9 0.0002 2.8 0.0001 

Cdh5 Cadherin 5 4.2 0.0005 3.6 0.0061 

Eng Endoglin 2.3 0.0001 1.2 0.0042 

Fga Fibrinogen alpha chain 10.1 0.0006 -24.3 0.0002 

Fgb Fibrinogen beta chain 29.9 0.0001 -6.2 0.1081 

Icam1 Intercellular adhesion molecule 1 2.3 0.0010 1.7 0.0027 

Il1b Interleukin 1 beta 3.0 0.0001 2.1 0.0034 

Itga5 Integrin alpha 5 (fibronectin receptor alpha) 2.1 0.0010 1.8 0.0038 

Itgax Integrin alpha X 2.2 0.0001 2.4 0.0001 

Klf2 Kruppel-like factor 2  2.7 0.0002 1.8 0.0013 

Ldlr Low density lipoprotein receptor 2.3 0.0001 2.5 0.0001 

Lif Leukemia inhibitory factor 2.1 0.0409 2.5 0.0076 

Pdgfrb 
Platelet derived growth factor receptor, beta 
polypeptide 2.4 0.0001 2.0 0.1988 

Ppara 
Peroxisome proliferator activated receptor 
alpha 

8.0 0.0004 2.7 0.0000 

Ppard 
Peroxisome proliferator activated receptor 
delta 

2.0 0.0007 1.7 0.0005 

Serpine1 Serine (or cysteine) peptidase inhibitor, mbr 1 3.6 0.0216 1.2 0.2897 

Tnf Tumor necrosis factor 2.9 0.0029 3.5 0.0004 

Tnfaip3 Tumor necrosis factor, alpha-induced protein 3 2.5 0.0005 1.9 0.0000 

Pdgfa Platelet derived growth factor, alpha -2.0 0.0042 -2.4 0.0022 

  
*Only statistically significant (P<0.05) AAN-induced ≤ 0.5 (in green) or ≥ 2 (in red) fold changes 
were considered.  
**Compared to PBS control group. 
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Table 17. Effect of AA + Paquinimod administration (compared to control) on atherosclerosis-
related gene expression in the blood at Day 21 
 

  AAN + Paquinimod 

Gene 
symbol 

Description 
Fold 

Change* 
P 

Value* 

Ace Angiotensin I converting enzyme 1 3.1 0.0000 

Bcl2a1a B-cell leukemia/lymphoma 2 related protein 
A1a 

2.1 0.0001 

Birc3 Baculoviral IAP repeat-containing 3 2.1 0.0001 
Ccr2 Chemokine (C-C motif) receptor 2 2.8 0.0001 
Cdh5 Cadherin 5 3.6 0.0061 
Fgf2 Fibroblast growth factor 2 2.0 0.0040 
Il1b Interleukin 1 beta 2.1 0.0034 
Itgax Integrin, alpha X 2.4 0.0000 
Ldlr Low density lipoprotein receptor 2.5 0.0000 
Lif Leukemia inhibitory factor 2.5 0.0076 

Ppara 
Peroxisome proliferator activated receptor 
alpha 

2.7 0.0000 

Pparg 
Peroxisome proliferator activated receptor 
gamma 

2.7 0.0009 

Sele Selectin, endothelial cell 2.2 0.0002 
Apob Apolipoprotein B -5.2 0.0000 

Csf2 
Colony stimulating factor 2 (granulocyte-
macrophage) 

-2.6 0.0111 

Cxcl1 Chemokine (C-X-C motif) ligand 1 -10.5 0.0008 
Fga Fibrinogen alpha chain -24.3 0.0001 
Pdgfa Platelet derived growth factor, alpha -2.4 0.0022 
Selp Selectin, platelet -2.3 0.0001 

  

*Compared to PBS control group. 

 

Taken together, the in vivo findings demonstrated that:  

- CKD induces a range of systemic inflammatory, immune and atherosclerosis-

promoting responses that are expected to drive CV risk; 

- Chronic nephropathy also led to a significant upregulation of atherosclerosis 

promoting-genes in the aortas;  

- TLR inhibition with sTLR2 is able to control chronic inflammation induced by CKD;  

- Pharmacologic inhibition of Calprotectin prevents a wide range of CKD-induced pro-

inflammatory and atherogenic responses, both in the blood and vessels.  
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Therefore, both DAMP/TLR pathway-targeting strategies represent promising therapeutic 

avenues to reduce atherosclerosis development in CKD.  

 

III-4.3. Discussion 

Following the description of the capacity of CKD-associated DAMPs to promote key 

cellular functions driving atherosclerosis in vitro, the work presented in this last Chapter 

focused on verifying our hypothesis of a role of DAMPs in promoting CV risk in CKD, and 

atherosclerosis in particular, in vivo. For this purpose, we selected an in vivo model of chronic 

nephropathy developed locally in the Welsh Kidney Research Unit (560). In this model, local 

inflammation and tissue damage develop in the kidney immediately after repeated injections 

of AA, while kidney fibrosis (increase in collagen deposition and α-smooth muscle actin 

expression) and increased plasma creatine (indicative of renal dysfunction) appear in the 

subsequent 2 weeks, modelling a transition from acute kidney injury to chronic kidney 

disease. Other available models of CKD include notably administration of other nephrotoxins 

(e.g. cisplatin (572), folic acid (573)) or surgical models (I/R injury (574), 5/6 nephrectomy 

(573)), which we considered but did not select due to: 

- Clinical relevance: Exposure to nephrotoxins, notably medication, is a leading cause of 

CKD. In particular, consumption of AA for its anti-inflammatory properties led to an 

epidemy of CKD, notably in the Balkans, over the last 20-30 years (575). While I/R 

injury also is a common cause of CKD, kidney removal cannot be considered as 

relevant.  

- Appropriateness to our hypothesis: The AAN model used here reproduces both kidney 

damage and loss of kidney function sufficient to induce uremia, 2 factors that may 

lead to DAMPs production in CKD patients. On the contrary, our in-house model of I/R 
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injury does not induce significant loss of kidney function and 5/6 nephrectomy is 

based on kidney removal rather than damage. Therefore, we speculate that DAMPs 

may not be produced at sufficient levels to test our hypothesis in either of these 

models. 

- Model severity and complexity: The AAN model is both simpler and less severe than 

surgical models of CKD or administration of other nephrotoxins. Notably, although 

widely reported, cisplatin injections lead to repeated animal deaths in our hands.  

 

To investigate the systemic and vascular consequences of AAN, readouts were 

evaluated at 2 times points, one immediately following the AA injections (Day 10) and one at 

the start of loss of kidney function (Day 21). Of note, inflammatory responses, such as 

cytokine production or increase in inflammatory leukocyte proportions were stronger at the 

early time point, in line with the fact that the model mimics an acute kidney damage episode, 

highly pro-inflammatory, progressing over time towards chronic nephropathy. However, 

inflammatory gene expression changes were maintained at the later time point, suggestive 

of a state of chronic inflammation. Interestingly, DAMPs blockade, either with sTLR2 or 

Paquinimod, led to a reduction of inflammation at both time points, suggesting that TLR 

DAMPs start mediating chronic inflammation early in CKD progression.  

One limitation of the model is that a potential direct effect of AA on the systemic 

readouts tested here could not be investigated. We verified that a single injection of AA, 

which does not lead to CKD, did not induce any changes in our readouts of interest, compared 

to the PBS control group (not shown). Nevertheless, it could be argued that, while a single 

injection has no direct effects, repeated administration does. However, given the reported 

anti-inflammatory properties of AA (576), it is unlikely that the pro-inflammatory responses 
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observed here are the result of a direct systemic effect of AA rather than that of AA-induced 

nephropathy.   

Although TLR2 and TLR4 were found to be the main mediators of the DAMPs-induced 

inflammatory and atherogenic responses in vitro, the multi-TLR inhibitor sTLR2 was not as 

efficient as the single DAMP (Calprotectin) inhibitor Paquinimod at reducing AAN-induced 

systemic inflammation. This may in part be because sTLR2-mediated inhibition of DAMPs 

ligands for TLRs other than TLR2 relies entirely on CD14 blocking (298, 498, 562). However, to 

what extent DAMPs recognition by TLRs requires CD14 is expected to vary with the DAMP 

and existing literature is limited. It is also possible that timing and dosage of sTLR2 

administration could be optimised for a more robust effect.  

Another interesting difference between Paquinimod and sTLR2 treatments is that 

Paquinimod did not impact on the extent of AAN, as judged by maintained creatinine plasma 

levels while sTLR2 did (Figure 37). This observation would need to be confirmed by 

quantifying kidney fibrosis as well as verifying creatinine levels at a later time point in this 

model (e.g. Day 28), when a bigger rise in plasma creatinine is expected. If confirmed, this 

would suggest that Calprotectin is not involved in inducing kidney damage in this model while 

other TLR-DAMPs are. This is in line with previous reports indicating that Paquinimod was not 

efficient at reducing nephrotoxin-induced kidney injury, although different models were used 

(577). Therefore, this would also suggest that the effect of Paquinimod described here is 

mediated via a true inhibition of the systemic consequences of CKD, while the effect of sTLR2 

may in part be the result of a reduction in kidney damage itself.  
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Figure 37. Creatinine measurements in plasma at Day 21 
C57BL/6J mice (n=5 per group) were injected intraperitoneally with AA (2.5 mg/kg) or PBS on days 0, 
3, 7, and 10. Plasma for each condition was extracted from blood at Day 21 and creatinine levels were 
measured.  
*, p<0.05; **, p<0.01; *Stimulation vs PBS. 
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IV- GENERAL DISCUSSION 
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From the early stages, CKD is associated with markedly increased cardiovascular 

morbidity and mortality. Atherosclerosis, a chronic inflammatory condition of the arterial 

wall, underlies the majority of cardiovascular events, and the atherosclerotic burden is 

increased in CKD (22, 578, 579). Established treatments for atherosclerotic disease in non-

CKD patients, including antiplatelet- and lipid-lowering therapy and percutaneous coronary 

angioplasty, are less effective in CKD patients (578). These suboptimal responses are believed 

to be underpinned by the unique state of chronic inflammation present in CKD patients, which 

may explain why treatment strategies that simply correct the biochemical abnormalities have 

not improved patient outcomes. Therefore, improved insights into the mechanisms that drive 

chronic inflammation and atherosclerosis in CKD are required before effective treatment 

strategies can be developed. 

 

Here, we identified specific TLR DAMPs as important contributors to chronic systemic 

inflammation and early atherosclerosis-associated responses in CKD and revealed the 

potential of a specific DAMP and a multi-TLR inhibitory strategy to prevent or reduce systemic 

inflammation and atherosclerosis-associated gene expression induced by chronic 

nephropathy in mice.   

The therapeutic potential of targeting TLR DAMPs to reduce CV risk in CKD was first 

highlighted by their increased levels in plasma from CKD patients. Our study has not 

investigated the source(s) of these DAMPs, as it is not of critical relevance to their function 

and potential as therapeutic targets. Nonetheless, it can be speculated that the DAMPs 

elevated in CKD plasma may originate from: 
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- The damaged kidneys: as increased local DAMP production in CKD is well described 

(85, 580, 581). From the kidneys, these DAMPs could cross to the bloodstream and to 

the systemic circulation.  

- The dialysis treatment: We have demonstrated that exposure to PD solutions leads to 

the release of DAMPs in the peritoneal cavity in mice and in PD patients (563). It is 

possible that some of these DAMPs also cross to the bloodstream via the peritoneal 

membrane. Similarly, HD can induce increased DAMP production (582, 583), although 

we have not look here at this particular patient population.  

- The damaged endothelium: Chronic exposure to inflammatory mediators and uremic 

toxins activates and damages the endothelium (584) and may induce DAMP 

production by endothelial cells, therefore contributing to the pool of elevated plasma 

DAMPs in CKD. 

- The activated leukocytes: As for the endothelium, circulating leukocytes are activated 

by uremic toxins and chronic inflammation, which may also lead to increased DAMPs 

release. Notably, Calprotectin expression is mostly restricted to phagocytes and 

makes up to 50% of the soluble protein content of neutrophils (585, 586). 

- Reduced plasma clearance: due to kidney failure 

- A combination of all of the above: Different plasma DAMPs are also likely to have 

different origins.  

 

Although increased local (aorta) or systemic TLR-DAMPs levels have been correlated 

with increased risk of CV event (Introduction, Section I-1.4, p.19), it has not been made clear 

whether the DAMPs released play a role in worsening CVD or are simply a consequence of 

increased chronic inflammation and vascular injury. While these reports highlight a strong 
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potential for DAMPs as biomarkers and predictors of CV risk, further studies are necessary to 

better characterise the pathological functions of the DAMPs and their potential as therapeutic 

targets. Therefore, following the identification of four CKD-associated DAMPs, we 

demonstrated their ability to promote a number of cellular responses typically associated 

with atherosclerosis development. These included loss of endothelial barrier function, 

increased monocytic migratory capacity, higher pro-atherogenic cytokine production and 

gene expression by macrophages as well as reduced cholesterol ‘efflux and increased foam 

cell formation. Of note, the cellular responses to the DAMPs found elevated in CKD could not 

be anticipated, as different TLR ligands may induce qualitatively and quantitatively different 

responses (501-503), and different DAMPs may involve different TLR co-receptors, and have 

different additional immune receptors other than TLRs (504-506). Accordingly, while only 

Hsp70 was found to induce cytokine production by macrophages, all of the CKD-associated 

DAMPs could promote monocyte migration and foam cell formation, suggesting the 

engagement of different signaling pathways.  

In addition to the cellular functions tested here, which are key to the development of 

atherosclerosis, a potential effect of the DAMPs on cellular responses associated with 

vascular calcification should also be considered and addressed. As mentioned before, 

atherosclerotic plaques tend to be more calcified in CKD patients than in the general 

population (578, 587). Vascular calcification induces a loss of vessel elasticity and is strongly 

associated with CV events. Excessive and premature calcification in CKD is thought to be 

driven a combination of metabolic disorders (e.g. elevated blood levels of calcium and 

phosphorous) and chronic exposure to inflammatory mediators. This combination of factors 

induces the trans-differentiation of vascular smooth muscle cells (VSMCs) in the intima media 

to resemble bone formative osteoblasts. This transition leads to well-characterised changes 
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in morphology, mediator production and gene expression profile (588). For example, VSMCs 

down-regulate production of smooth muscle specific genes, such as alpha-smooth muscle 

actin (α-SMA) and lose their contractile properties. Simultaneously they up-regulate markers 

of osteochondrogenesis such as Runx2, Osteopontin and alkaline phosphatase, and generate 

calcium and phosphate-rich matrix vesicles that mineralise the vascular wall. Recently, TLR2 

activation with bacterial ligands or Hsp60 has been shown to promote VSMC transformation 

to an osteochondrogenic phenotype (589). Therefore, an effect of CKD-associated DAMPs on 

VSMC-to-osteoblast transition may be worth investigating. In addition, endothelial cells are 

important regulators of VSMC differentiation: in health, they provide a barrier that prevents 

VSMC exposure to cytokines and produce Osteoprotegrin, an inhibitor of vascular 

calcification. In disease, they generate Bone Morphogenetic Protein-2, a potent osteoblastic 

differentiation factor that propagates the osteochondrogenic cascade in VSMCs. Therefore, a 

potential effect of the CKD DAMPs on the production by endothelial cells of mediators that 

promote or inhibit VSMC-to-osteoblast transition would also need clarifying.  

One limitation of this study is that healthy cells were used to carry out these experiments, as 

it was not possible to obtain endothelial cells from CKD patients or to obtain the large number 

of macrophages required to carry out foam cell formation experiments from the volume of 

CKD whole blood that could be drawn (up to 50 ml). However, we confirmed that uremic 

conditions, reproduced by 48 hours’ cell pre-exposure to 25% uremic patient serum, did not 

affect the ability of the cells to respond to DAMP stimulation, as judged by monocyte 

migration, pro-inflammatory mediators’ production by macrophages and foam cell formation 

(Figure 38). Of note, the proportions of foam cells were much higher in these experimental 

conditions than in the absence of pre-exposure to serum, either form CKD patients or healthy 

individuals, probably due to the high levels of LDL/modified LDL present in the serum. This 
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higher background proportion of foam cells likely underlies the fact that the effect of the 

combined DAMPs, although statistically significant, was smaller than previously observed 

(Figure 27).  

 

 

 

 
Figure 38. Culture in uremic conditions does not affect the effect of the DAMPs on monocyte 
migration, cytokine production and foam cell formation by macrophages 
Triplicate cultures of MM6 monocytes (A) or M-CSF-differentiated macrophages (B and C) were 
cultured for 48 hours in 25% normal AB serum (green) or serum from 5 pooled Stage 5 CKD patients 
(red) prior to assessing the effect of the indicated CKD-associated DAMPs on monocyte migration (A), 
IL-8 production by macrophages (B) and foam cell formation (C). These experiments were performed 
as previously described (Figures 18.B, 25.A and 27.A, respectively).  
*, p<0.05; ***, p<0.005, DAMPs stimulation vs no stimulation (NS), normal (green) or uremic (red) 
condition. 
 

The potential of TLRs and DAMPs as therapeutic targets was demonstrated by the 

ability of a multi-TLR inhibitor (sTLR2) and a specific Calprotectin inhibitor (Paquinimod) to 

prevent inflammation induced by AAN in mice, at early and late time points. The fact that 

both sTLR2 and Paquinimod were able to inhibit long-term AAN-induced changes while only 

being administered during CKD induction suggests that DAMPs are produced early in the CKD 

process and that early targeting may be beneficial to reduce chronic inflammation and overall 

CV risk in the long term. Although TLR2 and TLR4 were found to be the main mediators of the 
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DAMPs-induced inflammatory and atherogenic responses in vitro, the pan-TLR inhibitor sTLR2 

was not as efficient as the single DAMP (Calprotectin) inhibitor Paquinimod at reducing AAN-

induced systemic inflammation. While blocking TLR activity with specific anti-TLR neutralising 

antibodies may bring a more robust inhibition of AAN’s inflammatory consequences, full TLR 

blockade carries a risk of increased susceptibility to infections, whereas we demonstrated 

that sTLR2’s anti-inflammatory activity does not compromise bacterial clearance in vivo (498). 

This is particularly relevant when considering the long-term treatment or management of a 

patient population prone to infections (590).  

Of critical relevance to this study, AAN induced a range of atherosclerosis-promoting gene 

expression changes in the aortas, which were robustly inhibited by Calprotectin blockade. The 

potential of Calprotectin to inhibit CKD-associated development of full-blown atherosclerosis 

needs to be verified in mice prone to atherosclerosis development, which will require the 

development of a combined CKD and atherosclerosis model, for example inducing AAN in 

LDLR-/- mice on a high-fat diet. Nonetheless, it is reasonable to expect that maintained 

reduction of vascular chronic inflammation and arterial atherosclerosis-associated gene 

expression will result in a lower atherosclerotic burden in susceptible animals.   

Of note, Paquinimod co-administration with AA did not reduce the extent of AAN while sTLR2 

appeared to (Figure 37), at least as judged by creatinine levels. Therefore, a combination of 

Paquinimod and sTLR2 would be worth evaluating as it may bring a dual beneficial effect on 

lowering chronic inflammation and CV risk in CKD by: i) directly reducing the systemic and 

vascular consequences of CKD and ii) reducing kidney damage itself, although this effect of 

sTLR2 needs to be further demonstrated and likely depends on the primary cause and the 

extent of CKD.  
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Paquinimod was originally developed for the treatment of Systemic Lupus Erythematosus 

(591) and has shown efficiency in other immune diseases, such as diabetes (592), asthma 

(592) and systemic sclerosis (593). It was granted orphan drug status by the EU and US for the 

treatment of the latter. Notably, administration of Paquinimod has been shown to lead to the 

reduction of the atherosclerotic burden in diabetic mice via a reduction of diabetes-induced 

thrombocytosis (594).  

Targeting TLR DAMPs in CKD with a pharmaceutical inhibitor that has already been employed 

in humans could facilitate the translation of our findings into patient benefit. However, 

although Calprotectin was selected here as a proof-of-concept DAMP, it is possible that others 

among the CKD-associated DAMPs identified here, or DAMPs that we have not tested, could 

also be promising therapeutic targets to reduce CV risk in CKD. As DAMPs have also been 

found to drive CKD-associated pathologies other than CVD, such as diabetes (595), 

Alzheimer’s disease (596) or rheumatoid arthritis (557), targeting the DAMP/TLR pathway 

may help to better treat or manage multimorbidites in the CKD cluster.  
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V- MATERIAL AND METHODS 
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V-1. Patients samples 

Blood samples from aged-matched healthy individuals and Stage 5 CKD patients on PD 

were obtained in accordance with the institutional review board of Cardiff University and the 

local National Health Service Research Ethics Committee. Written informed consent was 

obtained from all donors. Samples from CKD patients with diabetes or malignancy were 

excluded from the analysis. For patients with prior CVD at the time of sampling (analysed in 

Figure 34.A), CVD diagnosis included ischemic heart disease, left ventricular dysfunction and 

peripheral vascular disease. Plasma samples were prepared by centrifugation (15 minutes, 

2,000 rpm), aliquoted (200 l) and promptly frozen at -80°C before testing. At the time of 

testing, samples were thawed and kept on ice for the duration of the preparation, then 

analysed by ELISA according to the manufacturer’s instructions.  

 
 

V-2. Cell culture and macrophage differentiation 

Human aortic endothelial cells (HAEC, NBS Biologicals) were cultured in M200 

supplemented with 2% Large Vessel Endothelial Supplement (Fisher Scientific) and 5% low 

endotoxin foetal calf serum (FCS, HyClone; < 0.06 U/mL endotoxin). 

Human Umbilical Arterial Endothelial Cells (HUAEC, Promo Cell) were cultured in endothelial 

low serum cell growth medium (Promo Cell). 

The human monocytic cell line, MonoMac6 (MM6), was cultured in RPMI-1640 

medium supplemented with 10% FCS, 1% insulin (Fisher Scientific), 1% Non-essential Amino 

Acids (Fisher Scientific) and 1% pyruvate (Fisher Scientific). 
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Human peripheral blood mononuclear cells (PBMC) were obtained from buffy coats from 

healthy donors (Welsh Blood Bank Services) through Histopaque 1077 (Merck) density-

gradient, as previously described (298).  

Blood was diluted 1:2 with room temperature PBS, and 25 ml were cautiously overlaid on top 

of 15 ml room temperature Histopaque 1077. Blood was then centrifuged at 2,300 rpm for 

30 minutes at room centrifuge without brake. After centrifugation, 4 phases are obtained 

(from bottom to top): the pellet containing red cells and neutrophils, cell-free Histopaque, 

the white ring containing PBMC, and plasma. PBMC were collected, washed 5 times with PBS 

at 4°C to remove platelets (1st wash 1,200 rpm for 7 minutes without brake, subsequent 

washes 1,200 rpm for 7 minutes with brake). PBMC were then cultured in RPMI-1640 medium 

supplemented with 10% low endotoxin FCS and 1% penicillin/streptomycin. Macrophages 

were differentiated from blood monocytes obtained by PBMC adhesion (2 hours in RPMI-

1640 supplemented with 1% FCS and 1% penicillin/streptomycin). Non-adherent cells were 

removed and adherent cells (monocytes) were rinsed 2 times with warm sterile PBS before 

being cultured for at least 7 days in complete medium (RPMI-1640, 10% FCS, 1% 

penicillin/streptomycin) supplemented with human M-CSF (10 ng/ml, Peprotech) or GM-CSF 

(80 IU/ml, Peprotech). M-CSF or GM-CSF was replenished every 3 days for the duration of the 

culture. Purity of the culture was evaluated by flow cytometry based on forward and side 

scatter profile as well as CD14, TLR2 and TLR4 expression and was always > 97%. 

Foam cells, if not stated otherwise, were differentiated from M-CSF macrophages by addition 

of an excess concentration (50 µg/ml) of OxLDL (InVitrogen) in culture medium for 48 hours.  

Cell viability was routinely assessed by Trypan Blue staining and was always > 90%. 
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V-3. Cytokine production assays  

For activation experiments, cells were resuspended in their respective complete 

medium (Material and Methods, Section V-2.) and were seeded in round bottom 96-well 

plates (PBMC) or flat bottom 96-well plates (HAEC and macrophages, to favour adhesion).  

Triplicate aliquots of HAEC (5 x 103 cells/well), PBMC (1.5 x 105 cells/well) or 

monocytes-derived (1.5 x 104 cells/well) macrophages were cultured (18 hours, 37°C) in the 

presence of the indicated concentrations of ultra-pure LPS (E. coli O111:B4 strain; Invivogen), 

the synthetic bacterial lipopeptide Pam3-CSK4 (EMC microcollections), recombinant human 

Hsp70 (active, functional grade, Abcam), recombinant human Calprotectin (S100A8/A9, 

functional grade, Biolegend), recombinant human HMGB-1 (functional grade, R&D) or 

hyalorunic acid (low - 15-40 kDa -  and medium - 75-350 kDa -  molecular weights, functional 

grade, R&D), or a combination of the 4 DAMPs. The activation step was performed in the 

absence or presence of OxLDL (10 g/ml, Invitrogen) for co-exposure experiments (Figure 12 

and Figure 25). For pre-exposure experiment in Figure 11, cells were pre-exposed to 

recombinant human TNF (10 ng/ml, Abcam) prior to stimulation.  

For endotoxin control experiments, cells were co-exposed to the indicated DAMPs or 

LPS, with or without Polymixin B (5 g/ml, Merck, Figure 8.A) or before and after Hsp70 

denaturation by boiling (10 minutes, 95°C; Figure 8.B). 

For TLR blocking experiments, cells were pre-incubated for 1 hour (37°C) with anti-

TLR2 (clone T2.5, Invivogen, 10 µg/ml) or anti-TLR4 (clone 3C3, Invivogen, 10 µg/ml) 

neutralising monoclonal antibodies, alone or combined, or an isotype control (clone MOPC21, 

10 µg/ml) prior to addition of 10 ng/ml of ultra-pure LPS (E. coli O111:B4 strain; Invivogen) or 

a combination of 4 DAMPs at 1 g/ml (recombinant human Hsp70 (active, functional grade, 
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Abcam), recombinant human Calprotectin (S100A8/A9, functional grade, Biolegend), 

recombinant human HMGB-1 (functional grade, R&D) or hyalorunic acid (low and medium 

molecular weight, functional grade, R&D)) in Figure 18.D. or 1,000 ng/ml of recombinant 

human Hsp70 (active, functional grade, Abcam) in Figure 25.C. for 18 hours.  

Cell viability was routinely assessed at the end of the experiments by Trypan Blue staining. It 

was always > 90% and was not affected by treatment.  

Culture supernatants were collected following incubation, and analysed by ELISA for 

the levels of MCP-1, IL-8, IL-6, IL-10 or TFIII according to the manufacturer’s instructions (all 

kits are from R&D). 

 
 

V-4. Focused gene arrays 

V-4.1. In vitro 

For activation, monocytes derived-macrophages or HAEC were seeded at a density of 

0.75 x 106 cells/well in a 6-well plate or T25 respectively. Macrophages were cultured for 18 

hours (37°C) in the absence or presence of 1,000 ng/ml of recombinant human Hsp70. HAEC 

were cultured for 6 hours in the absence or presence of 10 ng/ml of ultra-pure LPS (E. coli 

O111:B4 strain; Invivogen) or a combination of 4 DAMPs at 1 g/ml: recombinant human 

Hsp70 (active, functional grade, Abcam), recombinant human Calprotectin (S100A8/A9, 

functional grade, Biolegend), recombinant human HMGB-1 (functional grade, R&D) or 

hyalorunic acid (low and medium molecular weight, functional grade, R&D). Following 

activation, cells were collected and lysed with Red Blood Cells lysis buffer (Pharm Lyse, BD 

Biosciences). Total RNA was extracted and purified using a Qiagen RNeasy mini kit (Qiagen), 

following the manufacturer’s instructions. Final RNA concentration was quantified via 
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Nanodrop, and stored at -80°C until further use. When in use, purified RNA was thawed and 

kept on ice. Prior to RNA use in qPCR gene arrays, RNA quality was determined by evaluating 

the RNA integrity number (RIN) on an Agilent 2100 Bioanalyzer (Central Biotechnology 

Services, CBS, Cardiff University). RIN for all RNA preparations subsequently used in gene 

arrays was >8, indicating high quality RNA and low degradation (examples in Supplementary 

Figure 1).  

 

 

 
Supplementary Figure 1. RNA quality determination using the Agilent 2100 Bioanalyzer 
RNA integrity was evaluated by electrophoresis of 2µl of total RNA preparations on microchips (A) 
Images typically show 2 main bands comprising the 28S (upper) and 18S (lower) and RNI was 
determined by the ratio between these 2 bands, using the values given by the electropherograms (B). 
RNA is considered of high quality when RIN > 8. 6 (A) and 3 (B) of our total RNA samples are shown 
here as an example. 

 

 

Purified RNA (250 ng/condition for macrophages, and 500 ng/condition for HAEC) was 

converted into cDNA by reverse transcription (RT) using RT2 First Strand kit (Qiagen). 

Quantitative real-time PCR (qPCR) was then performed in triplicate for each experimental 

condition using RT2 SYBR Green ROX qPCR Mastermix (Qiagen), combined with the human 

A. B.
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Atherosclerosis RT2 Profiler PCR Array (Qiagen, 384 wells, Cat. No. PAHS-038Z) plate. 84 genes 

were profiled in addition to 5 housekeeping genes (Full list in Supplementary Table 1) as well 

as reverse transcription and positive PCR and human genomic DNA contamination controls). 

Thermocycler program was as recommended: 10 minutes at 95°C, followed by 40 cycles of 15 

seconds at 95°C and 1 minute at 60°C on a QuantStudio 12K Flex Real-Time PCR thermocycler. 

Reference genes were selected automatically from the housekeeping gene panel (based on 

least Ct variation between groups) and relative gene expression was calculated using the ΔΔCt 

method using the Qiagen Geneglobe analysis tool. 
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Supplementary Table 1. Genes analysed by human atherosclerosis-focused gene array 
House-keeping genes are shown in blue 

 
 

Gene symbol Description 

Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 

Ace Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 

Apoa1 Apolipoprotein A-I 
Apob Apolipoprotein B (including Ag(x) antigen) 

Apoe Apolipoprotein E 

Bax BCL2-associated X protein 

Bcl2 B-cell CLL/lymphoma 2 

Bcl2a1 BCL2-related protein A1 

Bcl2l1 BCL2-like 1 

Bid BH3 interacting domain death agonist 

Birc3 Baculoviral IAP repeat containing 3 

Ccl2 Chemokine (C-C motif) ligand 2 

Ccl5 Chemokine (C-C motif) ligand 5 

Ccr1 Chemokine (C-C motif) receptor 1 

Ccr2 Chemokine (C-C motif) receptor 2 

Cd44 CD44 molecule (Indian blood group) 

Cdh5 Cadherin 5, type 2 (vascular endothelium) 

Cflar CASP8 and FADD-like apoptosis regulator 

Col3a1 Collagen, type III, alpha 1 

Csf1 Colony stimulating factor 1 (macrophage) 

Csf2 Colony stimulating factor 2 (granulocyte-macrophage) 

Ctgf Connective tissue growth factor 

Egr1 Early growth response 1 

Eln Elastin 

Eng Endoglin 

Fabp3 Fatty acid binding protein 3, muscle and heart (mammary-derived growth 
inhibitor) 

Fas Fas (TNF receptor superfamily, member 6) 

Fga Fibrinogen alpha chain 

Fgf2 Fibroblast growth factor 2 (basic) 

Fn1 Fibronectin 1 

Hbegf Heparin-binding EGF-like growth factor 

Icam1 Intercellular adhesion molecule 1 

Ifnar2 Interferon (alpha, beta and omega) receptor 2 

Ifng Interferon, gamma 

Il1a Interleukin 1, alpha 

Il1r1 Interleukin 1 receptor, type I 

Il1r2 Interleukin 1 receptor, type II 

Il2 Interleukin 2 

Il3 Interleukin 3 (colony-stimulating factor, multiple) 

Il4 Interleukin 4 

Il5 Interleukin 5 (colony-stimulating factor, eosinophil) 

Itga2 Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) 

Itga5 Integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 
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Gene symbol Description 

Itgax Integrin, alpha X (complement component 3 receptor 4 subunit) 

Itgb2 Integrin, beta 2 (complement 3 receptor 3 and 4 subunit) 

Kdr Kinase insert domain receptor (a type III receptor tyrosine kinase) 

Klf2 Kruppel-like factor 2 (lung) 

Lama1 Laminin, alpha 1 

Ldlr Low density lipoprotein receptor 

Lif Leukemia inhibitory factor (cholinergic differentiation factor) 

Lpa Lipoprotein, Lp(a) 

Lpl Lipoprotein lipase 

Mmp1 Matrix metallopeptidase 1 (interstitial collagenase) 

Mmp3 Matrix metallopeptidase 3 (stromelysin, progelatinase) 

Msr1 Macrophage scavenger receptor 1 

Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 

Nos3  Nitric oxide synthase 3 (endothelial cell) 

Npy Neuropeptide Y 

Nr1h3 Nuclear receptor subfamily 1, group H, member 3 

Pdgfa Platelet-derived growth factor alpha polypeptide 

Pdgfb Platelet-derived growth factor, beta polypeptide 

Pdgfrb Platelet-derived growth factor receptor, beta polypeptide 

Plin2 Perilipin 2 

Ppara Peroxisome proliferator-activated receptor alpha 

Ppard Peroxisome proliferator-activated receptor delta 

Pparg Peroxisome proliferator-activated receptor gamma 

Ptgs1 Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and 
cyclooxygenase) 

Rxra Retinoid X receptor, alpha 

Sele Selectin E 

Sell Selectin L 

Selplg Selectin P ligand 

Serpinb2 Serpin peptidase inhibitor, clade B (ovalbumin), member 2 

Serpine1 Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 
1), member 1 

Sod1 Superoxide dismutase 1, soluble 

Spp1 Secreted phosphoprotein 1 

Tgfb1 Transforming growth factor, beta 1 

Tgfb2 Transforming growth factor, beta 2 

Thbs4 Thrombospondin 4 

Tnc Tenascin C 

Tnf Tumor necrosis factor 

Tnfaip3 Tumor necrosis factor, alpha-induced protein 3 

Vcam1 Vascular cell adhesion molecule 1 

Vegfa Vascular endothelial growth factor A 

Vwf Von Willebrand factor 

Actb Actin, beta 

B2m Beta-2-microglobulin 

Gapdh Glyceraldehyde-3-phosphate dehydrogenase 

Hprt1 Hypoxanthine phosphoribosyltransferase 1 

Rplp0 Ribosomal protein, large, P0 
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V-4.2. In vivo 

For gene arrays on mouse blood, blood from 3 animals from a same group were 

pooled to have enough volume to perform RNA extraction. Total RNA was extracted from 

mouse blood using QIAamp RNA Blood Mini Kit according to the manufacturer’s instructions, 

quantified by Nanodrop, and kept frozen (-80°C) until further use. For aortic gene arrays, 

thoracic portions of aortas were obtained at the time of culling, and frozen immediately on 

dry ice before storage at -80°C until further use. Aortic tissue was homogenised on a bead 

TissueLyser II (Qiagen, via CBS) by 1 minute disruption at 30 Hz. Total RNA was then extracted 

using the RNeasy Fibrous Tissue Mini Kit (Qiagen) according to the manufacturer’s 

instructions, quantified by Nanodrop, and kept frozen (-80°C) until further use. High-quality 

(RIN>8, see above and Supplementary Figure 1) purified RNA (325 ng/condition for blood, 

and 500 ng/condition for aortas) was converted into cDNA by reverse transcription (RT2 First 

Strand kit, Qiagen). Focused transcriptomic analysis was then performed by qPCR of the cDNA 

using a mouse Atherosclerosis (for aortas, Qiagen, 384 wells, Cat. No. PAMM-038ZE-4, full list 

of gene in Supplementary Table 2) or mouse Innate and Adaptive responses RT2 Profiler PCR 

Array (for blood, Qiagen, 384 wells, Cat. No. PAMM-052ZE-4, full list of gene in 

Supplementary Table 3). qPCR was then performed in triplicate for each experimental 

condition and 84 genes per array were profiled. qPCR conditions and data analysis were 

performed as described above for in vitro samples (Section V-4.1.). 
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Supplementary Table 2. Genes analysed by mouse atherosclerosis-focused gene array  
House-keeping genes are shown in blue 

 
 

Gene symbol Description 

Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 

Ace Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 

Apoa1 Apolipoprotein A-I 

Apob Apolipoprotein B 

Apoe Apolipoprotein E 

Bax BCL2-associated X protein 

Bcl2 B-cell leukemia/lymphoma 2 

Bcl2a1a B-cell leukemia/lymphoma 2 related protein A1a 

Bcl2l1 Bcl2-like 1 

Bid BH3 interacting domain death agonist 

Birc3 Baculoviral IAP repeat containing 3 

Ccl2 Chemokine (C-C motif) ligand 2 

Ccl5 Chemokine (C-C motif) ligand 5 

Ccr1 Chemokine (C-C motif) receptor 1 

Ccr2 Chemokine (C-C motif) receptor 2 

Cd44 CD44 antigen 

Cdh5 Cadherin 5 

Cflar CASP8 and FADD-like apoptosis regulator 

Col3a1 Collagen, type III, alpha 1 

Csf2 Colony stimulating factor 2 (granulocyte-macrophage) 

Ctgf Connective tissue growth factor 

Cxcl1 Chemokine (C-X-C motif) ligand 1 

Eln Elastin 

Eng Endoglin 

Fabp3 Fatty acid binding protein 3, muscle and heart 

Fas Fas (TNF receptor superfamily, member 6) 

Fga Fibrinogen alpha chain 

Fgb Fibrinogen beta chain 

Fgf2 Fibroblast growth factor  

Fn1 Fibronectin 1 

Hbegf Heparin-binding EGF-like growth factor 

Icam1 Intercellular adhesion molecule 1 

Ifng Interferon gamma 

Il1a Interleukin 1 alpha 

Il1b Interleukin 1 beta 

Il1r1 Interleukin 1 receptor, type I 

Il1r2 Interleukin 1 receptor, type II 

Il2 Interleukin 2 

Il3 Interleukin 3 

Il4 Interleukin 4 

Il5 Interleukin 5 

Itga2 Integrin alpha 2 

Itga5 Integrin alpha 5 (fibronectin receptor alpha) 
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Gene symbol Description 

Itgax Integrin alpha X 

Itgb2 Integrin beta 2 

Kdr Kinase insert domain protein receptor 

Klf2 Kruppel-like factor 2 (lung) 

Lama1 Laminin, alpha 1 

Ldlr Low density lipoprotein receptor 

Lif Leukemia inhibitory factor 

Lpl Lipoprotein lipase 

Lypla1 Lysophospholipase 1 

Mmp1a Matrix metallopeptidase 1a (interstitial collagenase) 

Mmp3 Matrix metallopeptidase 3 

Msr1 Macrophage scavenger receptor 1 

Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, 
p105 

Npy Neuropeptide Y 

Nr1h3 Nuclear receptor subfamily 1, group H, member 3 

Pdgfa Platelet-derived growth factor, alpha 

Pdgfb Platelet-derived growth factor, B polypeptide 

Pdgfrb Platelet-derived growth factor receptor, beta polypeptide 

Plin2 Perilipin 2 

Ppara Peroxisome proliferator activated receptor alpha 

Ppard Peroxisome proliferator activated receptor delta 

Pparg Peroxisome proliferator activated receptor gamma 

Ptgs1 Prostaglandin-endoperoxide synthase 1 

Rxra Retinoid X receptor alpha 

Sele Selectin, endothelial cell 

Sell Selectin, lymphocyte 

Selp Selectin, platelet 

Selplg Selectin, platelet (p-selectin) ligand 

Serpinb2 Serine (or cysteine) peptidase inhibitor, clade B, member 2 

Serpine1 Serine (or cysteine) peptidase inhibitor, clade E, member 1 

Sod1 Superoxide dismutase 1, soluble 

Spp1 Secreted phosphoprotein 1 

Tgfb1 Transforming growth factor, beta 1 

Tgfb2 Transforming growth factor, beta 2 

Thbs4 Thrombospondin 4 

Tnc Tenascin C 

Tnf Tumor necrosis factor 

Tnfaip3 Tumor necrosis factor, alpha-induced protein 3 

Vcam1 Vascular cell adhesion molecule 1 

Vegfa Vascular endothelial growth factor A 

Vwf Von Willebrand factor homolog 

Actb Actin, beta 

B2m Beta-2 microglobulin 

Gapdh Glyceraldehyde-3-phosphate dehydrogenase 

Gusb Glucuronidase, beta 

Hsp90ab1 Heat shock protein 90 alpha (cytosolic), class B member 1 

 



 
183

Supplementary Table 3. Genes analysed by mouse innate and adaptive 
responses-focused gene array 
House-keeping genes are shown in blue 

 
 

Gene symbol Description 

Apcs Serum amyloid P-component 

C3 Complement component 3 

C5ar1 Complement component 5a receptor 1 

Casp1 Caspase 1 

Ccl12 Chemokine (C-C motif) ligand 12 

Ccl5 Chemokine (C-C motif) ligand 5 

Ccr4 Chemokine (C-C motif) receptor 4 

Ccr5 Chemokine (C-C motif) receptor 5 

Ccr6 Chemokine (C-C motif) receptor 6 

Ccr8 Chemokine (C-C motif) receptor 8 

Cd14 CD14 antigen 

Cd4 CD4 antigen 

Cd40 CD40 antigen 

Cd40lg CD40 ligand 

Cd80 CD80 antigen 

Cd86 CD86 antigen 

Cd8a CD8 antigen, alpha chain 

Crp C-reactive protein, pentraxin-related 

Csf2 Colony stimulating factor 2 (granulocyte-macrophage) 

Cxcl10 Chemokine (C-X-C motif) ligand 10 

Cxcr3 Chemokine (C-X-C motif) receptor 3 

Ddx58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 

Fasl Fas ligand (TNF superfamily, member 6) 

Foxp3 Forkhead box P3 

Gata3 GATA binding protein 3 

H2-Q10 Histocompatibility 2, Q region locus 10 

H2-T23 Histocompatibility 2, T region locus 23 

Icam1 Intercellular adhesion molecule 1 

Ifna2 Interferon alpha 2 

Ifnar1 Interferon (alpha and beta) receptor 1 

Ifnb1 Interferon beta 1, fibroblast 

Ifng Interferon gamma 

Ifngr1 Interferon gamma receptor 1 

Il10 Interleukin 10 

Il13 Interleukin 13 

Il17a Interleukin 17A 

Il18 Interleukin 18 

Il1a Interleukin 1 alpha 

Il1b Interleukin 1 beta 

Il1r1 Interleukin 1 receptor, type 1 

Il2 Interleukin 2 

Il23a Interleukin 23, alpha subunit p19 
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Gene symbol Description 

Il4 Interleukin 4 

ll5 Interleukin 5 

Il6 Interleukin 6 

Irak1 Interleukin-1 receptor-associated kinase 1 

Irf3 Interferon regulatory factor 3 

Irf7 Interferon regulatory factor 7 

Itgam Integrin alpha M 

Jak2 Janus kinase 2 

Ly96 Lymphocyte antigen 96 

Lyz2 Lysozyme 2 

Mapk1 Mitogen-activated protein kinase 1 

Mapk8 Mitogen-activated protein kinase 8 

Mbl2 Mannose-binding lectin (protein C) 2 

Mpo Myeloperoxidase 

Mx1 Myxovirus (influenza virus) resistance 1 

Myd88 Myeloid differentiation primary response gene 88 

Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-
cells 1, p105 Nfkbia Nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, alpha Nlrp3 NLR family, pyrin domain containing 3 

Nod1 Nucleotide-binding oligomerisation domain containing 1 

Nod2 Nucleotide-binding oligomerisation domain containing 2 

Rag1 Recombination activating gene 1 

Rorc RAR-related orphan receptor gamma 

Slc11a1 Solute carrier family 11 (proton-coupled divalent metal ion 
transporters), member 1 Stat1 Signal transducer and activator of transcription 1 

Stat3 Signal transducer and activator of transcription 3 

Stat4 Signal transducer and activator of transcription 4 

Stat6 Signal transducer and activator of transcription 6 

Tbx21 T-box 21 

Ticam1 Toll-like receptor adaptor molecule 1 

Tlr1 Toll-like receptor 1 

Tlr2 Toll-like receptor 2 

Tlr3 Toll-like receptor 3 

Tlr4 Toll-like receptor 4 

Tlr5 Toll-like receptor 5 

Tlr6 Toll-like receptor 6 

Tlr7 Toll-like receptor 7 

Tlr8 Toll-like receptor 8 

Tlr9 Toll-like receptor 9 

Tnf Tumor necrosis factor 

Traf6 Tnf receptor-associated factor 6 

Tyk2 Tyrosine kinase 2 

Actb Actin, beta 

B2m Beta-2 microglobulin 

Gapdh Glyceraldehyde-3-phosphate dehydrogenase 

Gusb Glucoronidase, beta 

Hsp90ab1 Heat shock protein 90 alpha (cytosolic), class B member 1 
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V-5. Trans-endothelial resistance measurements 

Trans-endothelial electrical resistance (TER) was measured in collaboration with the 

team of Prof. Claus P. Schmitt (Heidelberg University, Germany) as previously described by 

them (597). Briefly, primary HUAEC were seeded on 0.4 µm polyester transwell-inserts placed 

in 24 well plates (50,000 cells/insert, low serum cell growth medium). TER was measured daily 

with an EVOM volt/ohm meter with STX-2 electrodes (World Precision Instruments) until it 

reached a plateau, indicating the formation of a confluent, well-polarised monolayer. 

Baseline TER was measured, and medium was exchanged for treatment solution containing 

LPS (10 ng/ml) or the indicated concentrations of DAMPs, alone or in combination. TER was 

then measured at the indicated time points. Plotted TER values were calculated by subtracting 

blank well measurement from control wells with cells and multiplying it by 0.33 (area) with 

resulting unit of Ω.cm2. A ratio was calculated between the TER values after the treatment at 

each time points and the baseline TER (0 hour) values to calculate % of initial TER for each 

condition.  

For ZO-1 visualisation, cells were fixed with 100% EtOH for (5 minutes, -20°C), followed 

by permeabilisation with 0.5% TritonX (10 minutes, RT). Cells were then incubated with 5% 

BSA for 60 minutes at room temperature before staining with an AF555-conjugated anti-ZO-

1 mAb (Invitrogen, MA3-39100-A555, 1:500, 1h, RT). Cells were washed 3 times and nuclei 

were stained with DAPI (Invitrogen, 30 nM, 15 minutes, RT). Transwell filters were cut out 

from the plastic and fixed in Prolong Gold (Thermo Fisher, 10 l) on a glass slide. Slides were 

allowed to harden for 24 hours. Cells were visualised using Acquifer widefield microscope 

(ACQUIFER Imaging GmbH). For each condition, z-stack images (10 slices, 3 μm slice distance) 

were acquired using a 20X objective. The Fiji software was used for image analysis. Greyscale 
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images were used to create z-stack projections using maximum intensity method to obtain a 

clear signal from cell membrane areas. 3 stacks were used for every condition. 5 different 

areas were randomly selected for each condition where the cell membranes were annotated 

manually, and ZO-1 signal intensity was measured at cell-to-cell junctions and corrected for 

analysed area to obtain the values shown. 

 
 

V-6. Monocyte migration  

For activation, MM6 (1 x 106 cells/well) were cultured (18 hours, 37°C) in the presence 

of the indicated concentrations of ultra-pure LPS (10 ng/ml), or recombinant human Hsp70, 

recombinant human Calprotectin, recombinant human HMGB-1 or hyalorunic acid (low and 

medium molecular weight), alone or in combination. For TLR blocking, cells were pre-

incubated for 1 hour (37°C) with a combination of anti-TLR2 (clone T2.5, 10 µg/ml) and anti-

TLR4 (clone 3C3, 10 µg/ml) neutralising monoclonal antibodies or an isotype control (clone 

MOPC21, 10 µg/ml) prior to addition of 10 ng/ml of ultra-pure LPS or a combination of the 4 

CKD-associated DAMPs, each at 1 g/ml for 18 hours.  

MM6 were then starved in serum-free medium for 1 hour prior to seeding (200,000 

cells, in triplicates) in the top chamber of 8 𝜇M pores trans-wells. The bottom compartment 

was filled with RPMI + 10% FCS + recombinant human MCP-1 (CCL2, active, functional grade, 

R&D, 50 ng/ml). Cell numbers were counted in the bottom compartment at the indicated time 

points, typically 2, 4, 6 and 24 hours.  
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V-7. Foam cells formation and Oil Red-O staining 

Monocytes-derived macrophages were seeded in 8-well microscopy slide (175,000 

cells/well) and starved in serum-free RPMI-1640, 0.2% fatty-acid free BSA for 24 hours. 

Following this starvation step, cells were activated by culturing (37°C) in serum-free medium 

in the presence, or not, of human LDL (Invitrogen, 25 µg/ml), alone or in addition of ultra-

pure LPS or recombinant human Hsp70, recombinant human Calprotectin, recombinant 

human HMGB-1 or hyalorunic acid (low and medium molecular weight), separately or in 

combination (1 g/ml) for 24 hours. For TLR blocking, cells were pre-incubated in serum-free 

RPMI-1640, 0.2% fatty-acid free BSA for 1 hour (37°C) with anti-TLR2 (clone T2.5, 10 µg/ml) 

or anti-TLR4 (clone 3C3, 10 µg/ml) neutralising monoclonal antibodies or an isotype control 

(clone MOPC21, 10 µg/ml) prior to addition, or not, of 1 µg/ml of all 4 DAMPs in the presence, 

or absence, of human LDL (25 µg/ml) for 24 hours.  

Following foam cell formation, cells were fixed using 10% phosphate buffered 

formalin (10 minutes), then rinsed briefly in PBS then in 60% isopropanol to facilitate the 

staining of neutral lipids. Oil Red-O (Sigma) was used to stain and visualise intracellular neutral 

lipids. Staining was performed following Xu S. and al. (544) improved protocol, with a  30-

minute incubation time (37°C in the dark) with Oil Red-O pigments. Cells were then destained 

briefly in 60% isopropanol and rinsed twice in PBS (3 minutes each). Slides were fixed and 

mounted using mounting medium with DAPI (Fluoroshield ab104139, Abcam) to preserve 

fluorescence and visualise cell nucleus. Microscopy photos were taken at 20X magnification 

on a Leica DM LA microscope, and 5 non-overlapping fields view were selected for each 

condition. To quantify foam cell formation, 20 cells were selected from the top left corner of 

each picture, each cell with detectable red staining was considered a foam cell, while cells 
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without staining were considered normal cells. The process was repeated with the 5 pictures 

taken for each condition (total of 100 cells counted/condition). The percentage of foam cells 

per condition was then used as a measure of foam cell formation. 

 
 

V-8. Modified cholesterol uptake 

For modified LDL uptake experiments, monocytes-derived macrophages were seeded 

in 24-well plates at a density of 40,000 cells/well, and starved in serum-free RMPI-1640 

supplemented with 0.2% fatty-acid free BSA for 18 hours (37°C) in the presence or absence 

of ultra-pure LPS (10 ng/ml) or recombinant human Hsp70, recombinant human Calprotectin, 

recombinant human HMGB-1 or hyalorunic acid (low and medium molecular weight), alone 

or in combination (each at 1 g/ml). Dil (554/571)-conjugated acetylated LDL (Dil-AcLDL, Alfa 

Aesar) was added to the culture medium at a concentration of 10 µg/ml, unless stated 

otherwise. After 24 hours, the Dil-AcLDL-containing medium was removed, the cells were 

rinsed twice with sterile PBS, and internalised Dil-AcLDL was quantified by flow cytometry on 

a FACS Canto II cytometer (at least 10,000 events/condition, Mean Fluorescence Intensity, 

MFI, shown). 

 
 

V-9. Modified cholesterol efflux 

Macrophages were seeded in 24-well plates at a density of 250,000 cells/well and 

starved in serum-free RPMI-1640 supplemented with 0.2% fatty-acid free BSA for 18 hours 

prior to experiment. Cells were then loaded with BODIPY-labelled cholesterol (5 µM, Cayman 

Chemical Company) in the same serum-free medium (0.2% fatty-acid free BSA) for 24 hours 

before medium removal. Cells were rinsed with PBS before addition of equilibrium medium 
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for 1 hour (RPMI-1640 + 0.2% fatty-acid free BSA) with or without exposure to ultra-pure LPS 

(10 ng/ml), or recombinant human Hsp70, recombinant human Calprotectin, recombinant 

human HMGB-1 or hyalorunic acid, alone or in combination (1 g/ml). After equilibration, 

medium was removed and replaced with fresh RPMI-1640 containing the same 

concentrations of LPS or DAMPs in the presence of 10% FCS as a cholesterol acceptor for the 

rest of the experiment. Supernatents were collected after 1, 2, 4, and 24 hours and 

transferred in a white bottom plate in order to detect fluorescence. BODIPY-associated 

fluorescence was then measured as described (598), using OMEGAstar software (excitation: 

485 nm, emission: 520 nm, gain: 500).  

 
 
V-10. Cell surface staining 

V-10.1. In vitro 

Expression levels of cell surface antigens were determined by flow cytometry. Cell 

suspensions (0.15-1 x 106 cells/staining) were prepared in sterile PBS and Fc receptors were 

blocked by incubation in 50% normal rabbit serum (10 minutes, room temperature) before 

incubation (45 minutes, 4oC) with directly conjugated monoclonal antibodies (Supplementary 

Table 4), at a concentration recommended by the manufacturer (typically 5 µg/ml in 100 µl 

incubation volume). Cells were rinsed twice with PBS before immediate flow cytometry 

analysis on a FACS Canto II cytometer. Cellular debris and doublets were excluded based on 

their FSC-A/SSC-A and FSC-H/FSC-A scatter profiles, respectively.  

HAECs were stained for TLR2, TLR4, CD14, ICAM-1 and VCAM-1. MM6 were stained 

for CCR2. Monocytes were stained for PSGL-1, CD11b and 4. GM-CSF and M-CSF-

differentiated macrophages were stained for TLR2, TLR4, CD14, CD36 and SR-A. M-CSF foam 
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cells were stained for CD36 and SR-A. All antibody clones, fluorophores and manufacturers 

are detailed in Supplementary Table 4. 

 

 

Supplementary Table 4. List of antibodies used for flow cytometry analysis of in vitro experiments 

 

Antigen Antibody clone Fluorophore Manufacturer 

TLR2 11G7 Brilliant Violet 421 BD Biosciences 

TLR4 HTA125 APC InVitrogen 

CD14 61D3 FITC eBioscience 

ICAM-1 HA58 FITC BioLegend 

VCAM-1 STA  APC BioLegend 

CCR2 K036C2 Brilliant Violet 421 BioLegend 

PSGL-1 688101 Alexa 488 R&D 

CD11b M1/79 PerCP Cy5.5 BioLegend 

4 7.2R Alexa 647 R&D 

CD36 5-271 FITC BioLegend 

SR-A 7C9C20 APC BioLegend 

 
 

V-10.2. In vivo 

Mouse blood was obtained by intra-cardiac puncture at cull points and immediately 

placed on ice until further processing. 30 l of blood/condition was used for flow cytometry 

analysis. Samples underwent red blood lysis (Pharm Lyse, BD Biosciences) for 15 minutes at 

room temperature, before centrifugation (450 x g, 5 minutes) and pellet resuspended in 

sterile PBS. Fc receptors were blocked (5 minutes, 4°C) by incubation with mouse Fc block 

(clone 2.4G2, BD Biosciences, 1:2,500) before incubation (45 minutes, 4oC) with a mix of 

directly conjugated monoclonal antibodies (see Supplementary Table 5), at concentrations 

recommended by the manufacturer (1:40 dilution for antibodies, 1:500,000 for live-dead 

stain, 100 µl incubation volume). Cells were rinsed twice with PBS before immediate flow 

cytometry analysis using an Attune NxT cytometer and software. Cellular debris and doublets 
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were excluded based on their FSC-A/SSC-A and FSC-H/FSC-A scatter profiles, respectively. 

Prior to fluorescent signal analysis, compensation, or the process of correcting for 

fluorescence spillover by removing the signal of any given fluorochrome from all detectors 

except the one devoted to measuring that dye, was done manually following acquisition. 

Single cell viability was always >95% and only live cells were included in the analysis (Fixable 

yellow negative). As described in the literature, neutrophils were defined as Ly6G+ and 

CD11b+ and monocytes as Ly6G- and CD11b+   (599, 600). Among total monocytes, Ly6Chigh and 

Ly6Clow populations were determined based on their Ly6C expression (Supplementary Figure 

2). 

 

 

 
 
Supplementary Figure 2. Gating strategy for defining leukocyte populations in blood  
Cellular debris and doublets were excluded based on their FSC-A/SSC-A and FSC-H/FSC-A scatter 
profiles, respectively. Neutrophils were defined as Ly6G+ and CD11b+ and monocytes as Ly6G- and 
CD11b+. Among total monocytes, Ly6Chigh and Ly6Clow populations were determined based on their 
Ly6C expression. 
 

 

Supplementary Table 5. List of antibodies used for flow cytometry analysis of in vivo experiments 

 

Antigen Antibody clone Fluorophore Manufacturer 

Ly6C HK1.4 AF488 BioLegend 

Ly6G 1A8 AF647 BioLegend 

CD11b M1/70 PerCP Cy5.5 BioLegend 

PSGL-1 2PH1 Brilliant Violet 421 BioLegend 

Live-dead - Fixable yellow Life Tech. 
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V-10.3. Use of isotype controls  

Isotype controls were used to verifying the efficacy of Fc receptor blocking and in 

experiments aimed at quantitative evaluation of expression levels (Figure 9, Figure 14.A, 

Figure 21.B). However, as recommended in specialised flow cytometry reports(601-603), they 

were not used when: 

- Populations were gated based on clear bi-model distribution of an antigen(601, 603), 

where one population provides an internal negative control for the other. For 

example, neutrophils express Ly6G while monocytes in the same sample do not (e.g. 

Leukocyte proportions in Figures 32.C, 34.C; Supplementary Figure 2).  

- Biological comparison samples are present(601, 603). For example, in stimulation 

assays, the unstimulated sample provides the reference level of antigen expression, 

and the aim is to evaluate changes in expression rather than actual expression levels 

(e.g. VCAM-1 and ICAM-1 expression in Figure 14.B; PSGL-1, CD11b and Integrin α4 

expression in Figures 19, 20; CD36 and SR-A expression in Figures 28.B, 29.B; PSGL-1 

expression in Figures 32.C, 34.C). 

 
 
V-11. Animal work 

All procedures were carried out under Home Office project license (PA4A9D766). 

Inbred 7 to 9-week-old wild-type C57/BL6J mice were obtained from Charles River. Mice 

(n=5/group) were intraperitoneally injected with PBS (500 μl), Aristolochic Acid (AA, Sigma, 

2.5 mg/kg), AA + sTLR2 (250 ng/mouse) or AA + Paquinimod (1 mg/kg). Concentrations of AA, 

sTLR2 and Paquinimod were selected following previous reports, by ourselves or others (298, 
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498, 560, 604). Injections were repeated every 3 days for a total of 4 times and mice were 

sacrificed 1 day (Day 10) or 10 days (Day 21) after the last injection. Blood was obtained by 

cardiac puncture and analysed by flow cytometry as described above. Following 

centrifugation (15 minutes, 800 x g, 4oC), plasma was kept frozen (-80°C) until analysis by 

ELISA (cytokines and DAMP levels) or for creatinine levels (Cardiff and Vale UHB, Medical 

Biochemistry services). RNA was extracted as described above from the total blood cell 

fraction. The heart was flushed with PBS (10 ml) prior to aorta and kidney isolation. The 

thoracic portion of the aorta was immediately snap-frozen prior to RNA extraction and the 

right kidney was halved lengthwise, transferred to a histology cassette, and fixed in 10% 

Neutral-Buffered Formalin (24 hours). Cassettes were then transferred to 70% ethanol and 

kept at 4°C prior to embedding, sectioning (8 µm) and Masson’s trichrome staining 

(Bioimaging Hub, Cardiff University).  

 
 
V-12. Statistical analysis 

Box-and-whiskers plots were used to visualise results of experiments where variability 

was an important factor, such as when data from different donors or animals were pooled 

(Figure 7, Figure 17, Figure 25.A, Figure 31.B, Figure 32, Figure 34 and Figure 37). For 

experiments where data were not normally distributed, p-values were calculated using a 

Mann-Whitney U test for independent samples (Figure 7, Figure 31.B, Figure 32, Figure 34 

and Figure 37) the non-parametric Wilcoxon signed-rank test for paired samples (Figure 17 

and Figure 25.A). For all other figures shown p values were calculated using an unpaired, 2-

tailed, Student’s t test. Significance levels were set at p<0.05. 
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