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Abstract

We report simulations of a frustrated odd-numbered macrospin ring system, with full point dipo-

lar interactions, driven by a rotating uniform applied magnetic field of constant magnitude. The

system is designed with equally-spaced radially-aligned macrospins, which must carry a frustrated

soliton defect in its ground state. It is shown how correctly tuning the applied field magnitude

can allow for non-trivial unidirectional propagation of the soliton, the required directional pressure

acquired via the curvature of the ring. Furthermore, the system, which may be employed as a

multiple rotation counter, is tested for robustness against quenched disorder as would be present

in an experimental realization.

PACS numbers: 75.60.Ej, 75.75.-c, 75.25.-j, 75.78.-n
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I. INTRODUCTION

The conception and construction of systems of well-defined coupled macrospins under-

pins both the fields of artificial frustrated magnetism1 and nanomagnetic logic.2,3 The two

communities however remain largely separate, balanced at the fundamental and applied

ends of the same physical problem: the predictable and controlled evolution of magnetic

configurations in patterns of nanomagnets. A carefully-designed balance of field scales al-

lows for the manipulation of well-defined defects or “frustrations” in the local ground state

(GS) macrospin order, forming the basis of interesting and useful operations. Quenched dis-

order (QD), the distribution in properties between the coupled components inherent from

nanopatterning, however acts to disrupt these processes.3,4

Antiferromagnetic Ising lattices5 and ice models1,6 have been realized from patterned

elements possessing well-defined bi-stable dipolar behavior, in which competing interac-

tions control collective ordering. Propagation of charge defects has generated substantial

interest7–11 due to a qualitative analogy with “monopole” excitations in rare-earth pyrochlore

materials.12,13 Magnetic islands and multilayer heterostructures have also been employed for

information processing, in the form of logic gates, shift registers and ratchets.2,14–20 A do-

main wall “soliton”21 at the boundary between two GS ordered phases can be unidirectionally

field-driven along a conduit given underlying symmetries are appropriately broken.

In this work, we introduce a novel system which exemplifies the equality of such con-

temporary works in nanomagnetism, and explore its potential in executing reliable and

repeatable operations. The system is a circular ring of radially-aligned evenly-spaced Ising-

like spin moments. Crucially, the number of moments n is fixed to be odd, which, as we

will show, forces the system to possess a frustrated topological soliton defect14,21 in its GS

and form an approximate realization of a magnetic Möbius loop.22 The curvature of the ring

imposes chirality under the application of a rotating constant-amplitude magnetic field, and

we use numerical simulations to show how this allows for a soliton to be driven around the

system. With experimental realization in mind, we make various assumptions appropriate

for patterned nanomagnets to build the model and further test for robustness against QD.

Furthermore, we discuss the application of the system as a multiturn counter.23–26
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FIG. 1. (Color online) Radial odd-n spin ring systems for (a) n = 3, and (b) n = 5. The

ring radius = rn. Spins are number from i = 1 to n. An intrinsic ground state defect can take

positions Pi as indicated by circles. The defect position for the given ground state configuration is

emboldened in red at Pn. H0 is the initial applied field used in simulations.

II. THE MODEL

The spin ring is illustrated in Fig. 1 for n = 3 and 5 spins. The Ising-like spins si,

represented by arrows numbered i = 1 to n anticlockwise, are radially-aligned and equally

spaced by an angle θn = 2π/n on a ring of radius rn. Spin i experiences a net point-dipolar

field from its neighbors sj

Hd
i =

n∑

i 6=j

[3x̂ij(sj · x̂ij)− sj ]/|xij
|3 (1)

where xij is the vector displacement from spin si to spin sj. We work in normalized units,

and set all |si| = 1.

It is instructive to first consider the ground state (GS) of the system. To minimize

the dominant pairwise interaction which exists between first nearest neighbors, an “in-out”

relative configuration must be adopted for a given pair. Further neighbor interactions,
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whilst not necessarily insignificant, will not alter this ordering rule. Because n is odd, if one

attempts to propagate the rule around a ring, a defect must always be ultimately formed,

consisting of a frustrated “in-in” or “out-out” arrangement, resembling a magnetic soliton

defect,27 as illustrated in Fig. 1. The frustrated defect can hence exist at positions Pi, as

indicated by circles, and we will refer to spins which constitute a soliton as “defected spins”.

It is important to note that the system can generally support only odd numbers of solitons

Similar solitons are found in linear 1D chains of Ising spins where two domains of opposite

phase meet,14,27 a result of a two-fold degenerate antiferromagnet-like GS. In our ring system,

the GS possesses an intrinsic local frustration, much like a 1D Ising chain with periodic

boundary conditions where setting n = odd imposes this “twist” in the local order parameter.

There are also n possible soliton positions. Calculation of the net Zeeman energy E =

−1
2
Σisi ·H

d
i shows that this is the GS, which is hence 2n-fold degenerate.

An interesting analogy exists here between the spin ring system and the Möbius loop, a

planar strip possessing only one side due a twisted topology.22,28 Following the antiferromag-

netic order parameter around the ring, one finds it must invert once each cycle at the defect,

which represents the topological kink of the Möbius loop. (This analogy would only stand

completely true for a spin ring possessing only 1st nearest neighbor interactions, however,

as we will show, this is the dominant interaction defining the system’s behavior, hence the

same qualitative behavior is expected.)

For now, we simply consider that each spin possesses an intrinsic switching astroid of

a given type. As for a linear 1D chain system,27 it is anticipated that dipolar interactions

result in a local instability at a frustrated defect, its two constituent spins being more willing

to flip their orientations than non-defected spins, and local stability elsewhere. Flipping an

unstable spin, e.g. by applying a suitable magnetic field (not large enough to reverse any

stabilized spins), acts only to move the soliton, creating an energetically equivalent GS if the

applied field is subsequently removed. However, for identical spins on the linear 1D chain,

an applied field cannot preferentially flip one defected spin over the other, due to symmetry,

hence a directional “pressure” cannot be established in the system. Whilst QD, e.g. in

the intrinsic switching fields of the spins, can locally break the symmetry, this produces no

net directionality in the system. As can be seen by simple geometrical considerations, the

employment of a curved chain, as for the ring system, potentially overcomes both of these

issues, by imposing asymmetry when a uniform global applied field is present. It is hence
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possible to favour the switching of one defected spin over the other, given QD is not too

strong. Under a uniform applied field, two defect spins are now generally inequivalent, and

their angular offset may be exploited.

A field sequence may hence be applied to propagate the soliton defect as desired. Due to

its simplicity in both experiment and simulation, we consider a uniform applied field Ha of

constant magnitude, rotating at a constant rate.4,23,29 Three field regimes must exist. There

are two trivial regimes, one in which the applied field magnitude Ha is too small to ever

reconfigure the system, and one in which the field is so large that it only acts to polarizes the

system. In between there exists a non-trivial field window in which meaningful dynamics

should be possible, exploiting the local instability/stability of defected/non-defected spins

imparted by the dipolar interactions and the form of the spins’ intrinsic switching astroid.

III. SIMULATIONS

Our simulations are similar to those recently presented in studies of artificial spin ice

systems.4,7 We set rn = n/3, which keeps the first nearest neighbor interaction approximately

constant at H1st ≈ 0.1 as a function of n (an approximation which improves as n increases).

For a given n, the system is primed from a GS configuration, as shown in Fig. 1, with a

defect existing at position P5. A field Ha is applied at an initial angle θ0 = −θn/2, aligned

with the initial net moment of the ring, taking field angle θ = 0 to be aligned with spin s1

and the anti-clockwise sense as positive. The field is incremented in anticlockwise angular

steps of dθ = +θn/24: this allows for a sufficient angular resolution, and for even division

of the 2π range, maintaining symmetry between θ and θ+ π. For a given simulation step, a

spin si is selected at (pseudo-)random and an attempt is made to flip its orientation. Spin

si experiences a total field

Ht
i = Ha +Hd

i . (2)

To represent realistic reversal behavior, a Stoner-Wolfarth (SW) switching criterion is

implemented.30 Even for elongated ferromagnetic nanowires which reverse via nucleation

and propagation of a domain wall, nucleation often occurs within a coherently rotating

sub-volume.31 Spin si flips given two inequalities are satisfied:
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π/2 < αi < 3π/2 (3)

and

|Ht
i| ≥ Ci(sin

2

3 (αi) + cos
2

3 (αi))
− 3

2 (4)

where αi is the angle between spin si and Ht
i. This allows for reversal given the projection of

Ht
i onto si is antiparallel with si (equation (3)), and that Ht

i lies outside the SW astroid of

spin si (equation (4)). The SW astroid varies between Ci and Ci/2 at its maxima and minima

respectively, occurring at and halfway between integer multiples of π/2 respectively, where

Ci is a constant. This random selection and test process is repeated until no further spins

can flip, upon which the step ends. Note that this is a zero-temperature simulation hence

the system only ever makes downward transitions in energy. This is an appropriate starting

point when considering nanomagnets which are robustly thermally stable at remanence1,32,33

and which will reverse their magnetization state effectively instantaneously relative to the

applied field rotation rate.4,7

IV. RESULTS: IDEAL BEHAVIOR

To illustrate the ideal behavior of the system, we first consider the case in which Ci = 1

for all i, n = 5 and Ha = 0.55. An animation of a simulation realization is shown in the

supplemental material,34 and we follow the initial behavior schematically in figures 1(b) and

2(a-d). Figure 2(e) shows a plot of the simulated soliton position Pi as a function of applied

field angle θ. In the initial configuration, the soliton exists at position P5, as illustrated in

Fig. 1(b), with spins s5,1 defected. Whilst Ha is anti-aligned with s3, s3 is unable to flip,

experiencing an opposing net field of 0.3 along its axis (≪ 1, at α3 = π). This is true even

as Ha rotates, as Ht
3 remains within the SW astroid of spin s3. As H

a approaches θ ≈ π/5,

spin s5 is allowed to flip, destabilized by its neighboring spin s1, forming the state shown in

Fig. 2(a). It is worth re-emphasizing that the shape of the SW astroid allows for reversal at

such a value of α5.
30 The reversal of s5 propagates the soliton from position P5 to position

P4, as shown in Fig. 2 (e), acting to stabilize(destabilize) s1(4). Spins s2,3 remain stabilized

by their nearest neighbors. As Ha continues to rotate, Fig. 2 (b), no spin flips occur until
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θ ≈ 4π/5 (Fig. 2(c)), at which spin s4 reverses, further incrementing the position of the

soliton to position P3.

Continued rotation of Ha continues to propagate the soliton in this manner (Fig. 2(d,e))

every (n−2)θn/2 rotation ofHa, equal to 3π/5 for n = 5. Note that the net “in/out” polarity

of the defect changes with each increment (indicated by blue/red emboldened circles in figure

2 (a-d)), and that the defect position rotates with the opposite sense to that of Ha. Once the

defect completes a full circuit of the system, the whole system has undergone a global spin

flip transformation from its initial configuration, as the order parameter “twist” is swept

around. A total rotation of (n − 2)nθn/2 = (n − 2)π = 3π is required to achieve this. We

find the same non-trivial behavior throughout the range of 0.43 ≤ Ha ≤ 0.675, the phase of

the spin flipping decreasing(increasing) as Ha increases(decreases) due to the profile of the

SW astroid. Below Ha = 0.43, no dynamics occur as the net field Ht
i is never large enough

to satisfy equation (3) for all i and αi. Above H
a = 0.675, the applied field is strong enough

to satisfy equation (3) even for non-defected spins, hence the net polarization of the system

tracks Ha; whilst multiple soliton defects form under such conditions (for n > 3), their

motion is trivial, dominated by the Zeeman energy. The non-trivial interval has a width

= ±H1st ≈ ±0.1 indicating how the operation of the system relies crucially on 1st nearest

neighbor coupling.

We have hence established that such a spin ring system may be used for the manipulation

of a well-defined soliton defect. Whilst the system possesses symmetry in its interactions, as

for a linear chain, the anticlockwise rotating applied field provides the required chirality for

unidirectional angular soliton propagation with a clockwise sense. It is of course possible to

set the initial applied field angle θ0 to any direction and, in particular, a direction that first

favors reversal of spin s1, rather than s5, from the initial spin configuration of Fig. 1(b). In

such a case, the soliton will initially take a single step with the same sense asHa from position

P5 to position P1, however, as Ha continues to rotate the behavior previously described

is resumed. Furthermore, reversing the sense of rotation of Ha to clockwise produces a

complementary reversal in the sense of propagation of the soliton, which can be understood

by symmetry. Hence, the soliton may be translated to any position in any angular direction.

The scheme also works for alternative switching models and has been tested using an

Ising switching astroid. Fundamentally, the scheme requires that spins possess switching

astroids which vary as a function of net field direction, that are also offset in angle from
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FIG. 2. (Color online) (a-d) Ideal soliton propagation for a spin ring with n = 5 and Ha = 0.55,

as the applied field Ha is swept anti-clockwise from its initial orientation. Ha is large enough

to sequentially flip defected spins, indicated by lightened gray arrows, but not large enough to

polarize the system. The soliton, represented by an emboldened circle, increments its position Pi

every (n − 2)θn/2 = 3π/5 rotation of Ha, as plotted in (e). The red/blue color scheme in (a-e)

represents the out/in polarity of a soliton at a given position, as do the square/circular data points

in (e). The angular position of the spin flips in (a), (c), and (d) are indicated in (e).
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each other such that switching can be accessed for individual spins in turn. Hence, the

scheme should work experimentally for any realisable bistable nanomagnet type. This is

particularly important when considering that the switching astroid of a SW nanomagnet

loses four-fold rotational symmetry at finite temperature, the switching threshold for applied

fields approaching the easy axis becoming reduced relative to that along the hard axis.35

The same qualitative behavior is hence expected.

V. RESULTS: DISORDERED SYSTEMS

Next we consider a more realistic situation in which quenched disorder QD is present

in the system. We follow similar model studies and implement this as a distribution in

the spins’ switching behavior.4,36 For a given realization, we generate the values Ci from a

psuedo-Gaussian distribution with mean = 1 and standard deviation σ. Studies show that

this provides a good approximation for the behavior of coupled nanomagnet vertex systems,

accounting for a combination of possible property distributions.37 We explore the behavior

of the system as a function of both Ha and σ. To further characterize the system, we define

the system as “working” if the single soliton is able to make a full circuit of the system,

as previously described. Over L realizations for each parameter set, we build a map of the

probability p that the system operates as designed.

This map is shown in Fig. 3 for n = 5 and L = 150. Cross-sectional profiles from Fig.

3 are shown in Fig. 4 for select values of (a) Ha, and (b) σ. A clear triangular region with

p ≈ 1 exists spanning the interval 0.43 ≤ Ha ≤ 0.675 at σ = 0 (as previously discussed),

converging linearly to a point at Ha ≈ 0.55 and σ ≈ 0.1. Ha ≈ 0.55 is an optimal field

magnitude, allowing for the greatest robustness against QD. On moving out of this region,

p falls abruptly. The size and shape of this triangular region of p ≈ 1 is defined by the size

of H1st ≈ 0.1.

For given values of Ha and σ, the behavior within the phase diagram can be understood

in terms of spins which are “pinned”, possessing sufficiently high values of Ci to prevent

their reversal even when defected, and spins which are “loose”, possessing sufficiently low

values of Ci such that they can flip even when not defected.4 For Ha = 0.45 and σ = 0.1,

there is a significant probability of failure due to at least one spin being unable to flip. Upon

meeting a pinned spin, the soliton enters a trapped “resonant” behavior mode, taking one
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FIG. 3. (Color online) Phase diagram of probability of successful operation of an n = 5 system,

p (see colour key), as a function of applied field magnitude Ha and switching astroid constant

standard deviation σ.

step back then one step forward within each rotation of Ha. Failure can also occur if both

s5 and s1 are pinned, preventing the soliton from ever moving. As σ increases, more erratic

behavior can occur, with an increased chance of finding loose spins in a given realization.

For Ha = 0.65 and σ = 0.1, failure is likely for a given realization due to the increased

probability of spins that are loose, which behave trivially under Ha. Typically, a loose

spin is allowed to flip when not defected by interactions, nucleating an additional pair of

solitons in the system. The evolution of the system then appears as the trivial high field

regime discussed in section 3.1. As σ increases the probability of such behavior increases.

For σ = 0.4, there often exists increasing numbers of pinned spins too: the combination of

loose and pinned spins can result in erratic behavior in which soliton pairs are periodically

nucleated and annihilated on the ring, with no meaningful evolution. For Ha = 0.55 and
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FIG. 4. (Color online) Cross-sectional profiles taken through the p-map of Fig. 3, taken along the

(a) Ha, and (b) σ axes at the labeled values of σ and Ha respectively. Note, due the symmetry of

the phase diagram, (b) shows data for Ha ≥ 0.55 only.

σ = 0.4, the most erratic behavior is found, due to an average balance of pinned and loose

spins, resulting in a balanced probability of various different failure modes. It should be

noted that for σ > 0.4, realizations become increasing unphysical, with negative values of

Ci becoming common, hence we do not explore this range.

Within the p ≈ 1 region in Fig. 3, finite QD acts to modify the number of field steps the

soliton spends at each position, which depends on the specific realization, however, given

the defect can make a full circuit in the desired sequence, this is still a “successful” soliton.

The results shown (n = 5) are representative of all n > 3 studied (up to 11), possessing

the same form of triangular phase diagram defined by H1st. For n = 3, no high-field failure

phase is present, as both the trivial high-field regime and non-trivial regime possess a full

polarization and a single soliton (Fig. 1(a)). The n = 3 system is incompatible with the

generation of multiple defects under a uniform applied magnetic field.

Regarding experimental realization, the simulations show that the limit imposed by QD

on the system’s successful operation is a value of σ ≈ H1st , for an optimal Ha. Keeping

within such a limit is in principle experimentally achievable and compares well with recently
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presented estimates in patterned artificial spin ice systems built from elongated highly-

anisotropic bistable NiFe nanomagnets of ∼ 100 nm dimensions spaced edge-to-edge by

∼ 40 nm.4 QD is however not a straight-forward phenomenon to quantify.38

In order to first generate the required single-defect ground state, it is possible to reset

an initial state in an experimental nanomagnet system via various methods currently being

developed by the nanomagnetism community. Patterns tailored to allow “on/off” switching

of thermal dynamics e.g. via volume32,39,40 or material33,41, allow for thermal equilibration

of the magnetic macrospins towards their GS, which would remove all but one soliton from

any given initial configuration as they undergo a random walk around the ring. It may also

be possible to field-anneal the system, using the correct field sequence.1,42

VI. MULTITURN COUNTER

As an example of a practical application, the macrospin ring is a multiturn counter. A

full 2π motion of the soliton requires (n − 2)/2 complete applied field rotations. As the

soliton must travel around the system twice to reset the system, the system can count up to

(n−2). Magnetic nano-systems have been shown to be highly applicable for such contactless

powerless operation.23–26 This spin ring can potentially be realized experimentally by pat-

terning of radially-aligned single-domain nanomagnets, as discussed, which experience the

field of a rotating permanent magnet. Each GS soliton state represents a unique macrospin

configuration, which could be directly read by incorporation of Giant Magnetoresistance-

based sensing. There is no need to inject soliton defects as for spiral domain wall conduit

counters,23,25 which also require a fixed rotational sense to operate and are limited to a

maximum number of turns, domain walls eventually “falling out” of the ends. The spin ring

will count up to n cyclically: each soliton step counts an angle (n − 2)/2n, which = 3/10

for n = 5, and converges to 1/2 as n increases.

The spin ring bares similarity to closed-loop conduit devices26 and perpendicular mag-

netic anisotropy shift register loops19 recently presented, always possessing at least one

local defect, which may be used to count field oscillations. A spin ring system built of

highly anisotropic single-domain nanomagnets may also present further benefits, minimising

switching time between states relative to extended nanowires.

Furthermore, combining u spin rings of different spin number nu allows for a total of

12



Πu(nu − 2) rotations to be counted in a coprime scheme.

VII. DISCUSSION

The odd-numbered macrospin ring demonstrates an unexplored means of imposing chiral-

ity in systems of coupled single-domain nanomagnet chains, as utilized in conventional mag-

netic logic and MQCA architectures.14,43 The scheme is simple to implement using nanopat-

terned thin films and more general systems of curved spin chains may be designed. It is

further an example of a user-designed artifical geometrically frustrated system, possessing

an intrinsic soliton defect, which can be manipulated in a well-defined way and potentially

employed for useful operations, exemplified here as a simple multiturn counter. It further

represents a building block for the study of more complex coupled systems.44 Whilst a small

handful of reports exists in the field of molecular magnetism on such “magnetic Möbius

loops”,22,45 built from odd-numbered spin-1/2 rings, our work highlights the possibility of

exploring such physics in nanopatterned systems via real-space real-time microscopy.1,40
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Landsiedel, and M. Becherer, J. Appl. Phys. 113, 17B902 (2013).

20 S. Breitkreutz, I. Eichwald, J. Kiermaier, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer,

J. Appl. Phys. 115, 17D104 (2014).

21 V. G. Bar’yakhtar, M. V. Chetkin, B. A. Ivanov, and S. N. Gadetskii,

Dynamics of Topological magnetic solitons , 1st ed., Springer Tracts in Modern Physics,

Vol. 129 (Springer Berlin Heidelberg, 1994).

14

http://dx.doi.org/10.1007/BFb0045993


22 O. Cador, D. Gatteschi, R. Sessoli, F. K. Larsen, J. Overgaard, A.-L. Barra, S. J. Teat, G. A.

Timco, and R. E. P. Winpenny, Angewandte Chemie, International Edition 43, 5196 (2004).
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