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Abstract
Investigation of new strategies for identifying causal mechanisms in

schizophrenia taking bioinformatics approaches beyond genome-wide
association studies

by John HUBERT

The goal of the research presented here is to provide support towards finding
true precision medicine for patients with schizophrenia. In ideal circum-
stances, and as hinted towards already within oncology (Le Tourneau et al.,
2015), this would be to obtain quantitative information from the patient, and
use this information to identify an effective treatment option. As the heri-
tability of the genetic liability towards schizophrenia is around 80%, genetic
studies are an ideal base to build individualised treatment options.

GWA studies have successfully discovered over 150 loci associated with
schizophrenia and have confirmed that the condition is polygenic, i.e. each
risk variant in an individual’s genome has a small effect size, but there are
a large number of these variants which contribute to the pathogenesis of
schizophrenia. The explanation of how these variants contribute to the biolog-
ical processes that cause schizophrenia is however, unknown.

PRSs provide a metric to measure the genetic liability to any individual disor-
der and capture a large component of the genetic risk towards schizophrenia.
In addition, studies using schizophrenia PRS have found genetic overlap with
other disorders. If the PRS was designed to focus on specific genes/path-
ways, it could give a clearer insight into the biological mechanisms that cause
schizophrenia.

However, there are many genetic, statistical and computation problems when
using multiple PRS across multiple traits. Therefore, I present SurPRSe, a
bioinformatics workflow to produce robust gene-set specific PRS that can be
compared across multiple traits. I use this method to investigate the relation-
ship between schizophrenia, subcortical brain volume sizes and cognition.
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1 Introduction

The underlying pathophysiology of schizophrenia is challenging to identify.
A large amount of progress has been made in identifying the genetic causes of
schizophrenia, but there is still a large gap in linking these causal mutations
to biological pathways.

A method already exists which can quantify the genetic risk of an individual
with schizophrenia (an individualised genetic score), and a number of biologi-
cal pathways associated with schizophrenia have already been found. Could
incorporating these biological pathways into the individuals’ genetic score
improve our understanding of the genetic architecture of schizophrenia?

The diagnosis of schizophrenia is dependent on psychiatric history and the
examination of the patients’ mental status (Keshavan et al., 2020). Imaging
procedures are currently used to exclude cases where there is secondary psy-
chosis from, for example, substance abuse or medical illnesses. However,
there is evidence that this method may not be cost effective as observed in
Lubman et al (2002) , where scans of half of chronic schizophrenia patients
and 77% of scans of first episode psychosis were classified as not clinically
significant. However, 4 out of 340 scans did observe previously unsuspecting
pathology, and 50% of scans observed abnormal pathology. An argument
can be made that any procedure which captures abnormal schizophrenia
pathology is cost-effective, but that does not argue against researching meth-
ods which may identify the schizophrenia patients which were classified as
clinically normal in Lubman et al. (Lubman et al., 2002).

A ’rule in’ approach where biological biomarkers are used to confirm a di-
agnosis of schizophrenia may be more reliable, as observed in many other
medical conditions (for example, bacterial infections in the lung diagnosed
with a combination of chest X-rays and sputum microscopy.). However,
schizophrenia does not have any biological biomarkers for use in diagnosis.
Neuroimaging is a strong candidate to develop biomarkers in schizophre-
nia. Imaging procedures can capture phenotypic variations in molecular and
cellular disease targets, and is versatile with respect to the measurement of
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multiple pathophysiological mechanisms, including brain structural integrity
deficits, functional dysconnectivity, and systems of altered neurotransmitters
(Kraguljac et al., 2021).

Attempting to use genetic variants another approach to identifying a biomarker.
For example, the use of a large database of individual’s brain volumes and
genotypes (ENIGMA) found that some genetic mutations were associated
with larger hippocampal volume (Stein et al., 2012). The same association
analyses can be attempted for brain volumes and common schizophrenia
mutations.

Another strong candidate for a biomarker in schizophrenia may be found in
researching the genetics of cognition within schizophrenia patients. Cognitive
deficits are central to schizophrenia and meet all the requirements of being
an endophenotype of the disorder, aka a trait that is a quantitative, heritable,
trait-related deficit assessed within a laboratory environment (Green and
Harvey, 2014; Braff, 1993).

1.1 Summary of Introduction

Within this chapter, I will describe:

- How the history of the genetics of schizophrenia began with confusing and
contrasting viewpoints, but then lead towards renewed optimism with the rise
of genetic technologies including Genome Wide Association (GWA) studies.

- The use of GWA studies to disentangle the common risk of schizophrenia
and how this has lead towards the formation of individualised genetic profiles
or "Polygenic Risk Scores (PRSs)".

- The ability to incorporate gene-set analysis within the PRS and how it will
be applied to subcortical brain volumes and cognition within schizophrenia
patients.
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1.2 The Genetics of Schizophrenia

1.2.1 Schizophrenia before human molecular genetics

Schizophrenia is an overarching term used to describe the collection of symp-
toms observed in psychiatric patients. This is evident by the change in classifi-
cation of "Schizophrenia" in Diagnostic (and) Statistical Manual (of Mental
Disorders) (DSM)-IV to "Schizophrenia spectrum" within DSM-V (Glasheen et
al., 2016). It is a deeply complex disorder which constitutes positive symptoms
including hallucinations and delusions, and negative symptoms including
diminished emotional or cognitive functions (Tandon et al., 2013). Due to the
intrinsic difficulty of the object of schizophrenia itself and problems with the
standard of technology, the history of the genetics of schizophrenia is complex
and confusing (Henriksen, Nordgaard, and Jansson, 2017).

In a paper with Jung, Bleuler described Dementia praecox (later differentiated
and first coined as ’schizophrenia’) as being monogenic following the mono-
genic transmission discoveries provided by Mendel (Bleuler and Jung, 1908;
Bleuler, 1911; Henriksen, Nordgaard, and Jansson, 2017). The monogenic
transmission was quickly disproved due to the inability for the theory to fit
empirical data observed at the time, but the concept of a singular gene being
at least dominantly causative for schizophrenia was postulated until at least
1989 (Holzman, 1989).

Before the advent of the Human Genome Project, genetic inferences into
schizophrenia were proposed using pedigree analysis (Henriksen, Nordgaard,
and Jansson, 2017). The first goal was to provide evidence for a genetic link
for schizophrenia, and to disprove the various psychoanalytical hypotheses
of schizophrenia causation. For example, from the 1950’s to the 1970’s it was
common to find the negative stereotype of a "schizophrenogenic mother" in
psychiatric literature, whereby the mother’s upbringing of the child induced
the development of schizophrenia in the child’s later life-course (Seeman,
2016).

Twin studies from the 1960’s showed empirical evidence that there was at
least a genetic component to schizophrenia, and a review of all twin studies
estimates the heritability to schizophrenia to be 81% (Fischer, 1973; Sullivan,
Kendler, and Neale, 2003).
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To add context the the phrase "heritability for the genetic liability to schizophre-
nia" mentioned in the previous paragraph, we can model the variance in any
phenotype (including schizophrenia) as the sum of it environmental variance
and the genetic variance (Lee et al., 2011). Heritability is described in (Sullivan,
Kendler, and Neale, 2003) to be narrow-sense heritability, in which only the
variance in the additive genetic components are estimated (Lee et al., 2011).
Broad-sense heritability includes all genetic effects including, for example,
epistatic and dominant genetic effects (Lee et al., 2011). However, an assump-
tion for heritability is that the trait is normally distributed, otherwise termed
the disease liability scale. This works well for continuous traits, but in terms
of binary traits including schizophrenia (at least a case-controlled design for
GWA studies), this assumption does not hold. We also observe ascertainment
bias as the number of cases within the study design is usually higher than the
trait prevalence within the general population. So the observed heritability is
converted to the liability scale and corrected for population prevalence and
the number of cases.

1.2.2 Advent of linkage and candidate gene studies

By the 1990’s the neuropsychiatric field placed a significant portion of their
focus onto the genetic mechanisms of schizophrenia. At a similar time, the
Human Genome Project provided the ability to begin to directly examine
DNA as a way to assess the genetic risk towards schizophrenia in individ-
uals (Lander et al., 2001). The initial forays into DNA-based methods was
’linkage analysis’, which looked at extended families and/or sibling pairs in
an attempt to associate regions of the genome (not individual variants) with
schizophrenia (Henriksen, Nordgaard, and Jansson, 2017). Despite the limita-
tion of only analysing at most, a small group of individuals, linkage analysis
takes advantage of the fact that genetic markers which are located very close
on the genome, tend to be inherited together as observed during meiosis.
Therefore, variants surrounding the schizophrenia risk loci will be ’linked’ to
the loci. While linkage analysis produced results which struggled to be repli-
cated, meta-analysis of linkage studies indicated that the risk of schizophrenia
was found in many different chromosomal regions (Ng et al., 2009) and the
effect sizes of the alleles within these regions towards schizophrenia appeared
to be very low. Linkage analysis hinted towards the polygenic nature of the
genetic liability towards schizophrenia and subsequently provided evidence
that linkage analysis lacked power when analysing schizophrenia.
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In an attempt to counteract the small effect sizes of susceptibility alleles
towards schizophrenia, the field examined explored the ’candidate gene’ ap-
proach, where specific genes were tested for their correlation to schizophrenia
within a case-control study design (Henriksen, Nordgaard, and Jansson, 2017).
Despite over a 1000 genes having been tested, very few have been shown to be
reliably associated to schizophrenia (e.g. DISC1, NRG1 and COMT) but even
these have been disputed due to a lack of replication and statistical power
(Gejman, Sanders, and Kendler, 2011).

For example, in one of the earliest genetic association studies, Single Nucleotide
Polymorphisms (SNPs) from 14 candidate genes (RGS4, DISC1, DTNBP1,
STX7, TAAR6, PPP3CC, NRG1, DRD2, HTR2A, DAOA, AKT1, CHRNA7,
COMT, and ARVCF) were tested for an association with schizophrenia but no
experiment-wide or gene-wide significance was found (Sanders et al., 2008).
This signified that these specific genes were unlikely to account for a substan-
tial portion of schizophrenia risk. However, these genes may still account
for a tiny portion of schizophrenia risk. For example, DISC1 mutant animal
models display behavioural, neurostructural and neurochemical phenotypes
related to schizophrenia, and is implicated in affecting dopamine signalling
pathways (Dahoun et al., 2017). However, with respect to animal models,
the relevance of the schizophrenia phenotypes observed in mice for human
pathology has been debated.

1.2.3 Rare genetic variation in schizophrenia

While the linkage and candidate gene studies were proving to be unconvinc-
ing, there was a growing interest in the potential association of a recurrent
deletion in chromosomal band 22q11.2 to schizophrenia (Avramopoulos, 2018).
The 22q deletion causes Velo-cardio-facial Syndrome (VCFS) and it was noted
that at least 10% of these patients were also reported to have some form of
psychiatric disorder (Chow, Bassett, and Weksberg, 1994). Further follow up
studies have found that carriers of this deletion increased the risk of obtaining
schizophrenia by a factor of approximately 68, and is today known as one of
the most common Copy Number Variants (CNVs) associated with schizophre-
nia (Rees et al., 2014b; Marshall et al., 2017). Chromosomal band 22q11.21 was
the first CNV to be discussed as being a risk factor for schizophrenia. Further,
the identification of smaller CNVs was made possible by genotyping through
microarray’s and the ongoing human genome project (Avramopoulos, 2018).
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As these schizophrenia factors could be robustly replicated, a segment of
schizophrenia genetics research diverged into the identification and study
of rare and de-novo risk variants (Kirov et al., 2009). These experiments are
carefully designed using, for example, parent-patient trios (the genome of
an affected patient and both of their parents) as the sample, and/or exome
sequencing to identify more CNVs associated to schizophrenia, while cutting
down on expenditure (Avramopoulos, 2018). In rare variation, schizophrenia
research examined de-novo mutation, rare CNV and rare Single Nucleotide
Variant (SNV) (defined as point mutations with a frequency less than 1%).

De novo variants

I have previously stated that schizophrenia was estimated to be around 81%
heritable. This suggests that much of the risk for schizophrenia is inherited.
However, there may be alleles that contribute to schizophrenia liability that
are not inherited, i.e. mutations which are newly arising. Initial evidence for
this came from the observation that increased paternal age at conception was
associated with schizophrenia risk (McGrath et al., 2014). Increased paternal
age is correlated with de novo mutations. Molecular evidence occurred at a
similar time to the discovery of CNVs associated with schizophrenia. First, the
rate of mutation for de novo CNVs was significantly elevated in schizophrenia
(5%) versus controls (2%) (Rees, O’Donovan, and Owen, 2015). Additionally,
the median size of de novo CNVs > 100kb was larger in schizophrenia cases
compared with controls (Rees, O’Donovan, and Owen, 2015). After calculation
of the selection rate, it is hypothesised that schizophrenia-associated de novo
CNVs are purged from the population in less than five generations.

One of the first investigations into the genes and pathways that are disrupted
by de novo mutations was by Kirov et al (2012). Proteomic and gene ontology
data were used to define the gene-sets to test for association with de novo
CNVs. First, a gene was considered to be a ’hit’ if the CNV overlapped with
the gene according to Base-Pair (BP). After controlling for biases related to
CNV gene-set analysis and partitioning overlapping gene-sets, the association
analysis was performed and significance was assessed by one-sided test of
an excess of genes hit in the gene set by case CNVs (Kirov et al., 2012). It was
found that genes disrupted by de novo CNVs are enriched for genes in the
post-synaptic-density proteome and that this association is driven by genes
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encoding N-Methyl-D-Aspartate (NMDA) receptor and neuronal Activity-
Regulated Cytoskeleton associated protein (ARC) complexes, both of which
are involved in synaptic plasticity (Kirov et al., 2012).

Further work by Fromer et. al. (Fromer et al., 2014) implicated disrupted
synaptic plasticity through an Fragile X Mental Retardation Protein (FMRP)
targets gene-set. Brain expressed genes repressed by FMRP were previously
shown to be enriched for de novo mutations in Autism Spectrum Disorder
(ASD) and contain multiple genes within the NMDA and ARC complexes.
Fromer et al (2014) showed that genes repressed by FMRP were also enriched
for de novo variants in schizophrenia.

It was also one of the first studies to show that nonsynonymous de novo
mutations were enriched for inherited risk alleles as well, implicating overlap
between de novo variant risk and rare inherited variant risk (Fromer et al.,
2014). This was further validated in Singh et. al. (Singh et al., 2022) who
identified ultra-rare variants (combines de novo, SNV’s and protein truncating
mutations) in 10 genes that conferred a substantial risk for schizophrenia. The
annotated functions of these genes are diverse and include ion transport
(CACNA1G, GRIN2A, and GRIA3), neuronal migration and growth (TRIO),
transcriptional regulation (SP4, RB1CC1, and SETD1A), nuclear transport
(XPO7), and ubiquitin ligation (CUL1, HERC1) (Singh et al., 2022).

CNVs and SNVs

The majority of CNVs increase the risk to schizophrenia substantially, with
Odds Ratios (ORs) between 2-60. It is howewver, difficult to ascertain biologi-
cal insights from these mutations as multiple genes and regulatory elements
are disrupted by a singluar CNV. However single gene disruptor CNVs at
NRXN1, VIPR2 and PAK7 have been associated with schizophrenia, but only
NRXN1 survives multiple testing against all genes in the genome. NRXN1
encodes an adhesion molecule involved in linking presynaptic and postsy-
naptic neurons. In 2015, a study by Pocklington et al. (Pocklington et al.,
2015), supported the previous associations to schizophrenia above, and also
reported first genomic evidence of CNVs disrupting genes associated with
GABAergic signalling in schizophrenia. Since 2015, an association of CNVs
have been implicated with Dystrophin and its binding partners (Marshall
et al., 2017), and genes expressed during the consolidation, retrieval or ex-
tinction of associative memories (Clifton et al., 2017). There is evidence to
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support overlap of CNVs and SNVs where in Purcell et al (2014), exome se-
quencing was used where an increased burden of SNVs were observed in a
set of 2546 genes, selected for having a higher probability for being associated
with schizophrenia. Enrichments were found in genes affiliated with NMDA
receptor and ARC complexes, and FMRP targets. Further support was found
in Singh et al (2022) where as well as de novo mutations, SNVs conferred a
substantial risk to genes involved in NMDA receptor complexes.

Summary

While progress is being made on the rare variants associated with schizophre-
nia, their contribution to the overall risk of the disorder is modest. The
problem still existed on how to identify the variants which are lowly pene-
trant and later estimated to confer over one third of the genetic risk towards
schizophrenia (Purcell et al., 2009).

In 1996, Risch and Merikangas (1996) proposed that genome wide association
studies, rather than genome wide linkage studies, would provide a much
more powerful statistical model to test the association of risk variants with
modest effects towards complex human diseases. The scientific community
started to use GWA studies on the trait of schizophrenia and have not looked
back since.

1.3 Schizophrenia GWAS

GWA studies test for associations between multiple common genetic risk
variants and/or loci and a trait of interest. The most common study design
(but by no means the only design) is a case/control approach, whereby a select
number of individuals who have the trait of interest, and a control group of
randomly selected individuals are both genotyped. If any individual allellic
variant is found more frequently in the cases over the controls, then these
variants may indicate a genetic association with the trait of interest. As the
design requires the simultaneous statistical testing for potentially millions of
variants, the risk of Type I errors is commonly minimised by using a stringent
threshold for statistical significance, usually p < 5 × 10−08. This essentially
means that there is at least a 5 in a 100,000,000 chance that SNPs found below
this threshold have been incorrectly associated with schizophrenia.
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Despite evidence of the practicality of GWA studies in 1996, the first schizophre-
nia GWA was not published until 2007 (Risch and Merikangas, 1996; Lencz
et al., 2007). Initially the delay was due to the cost of genotyping, which
was quickly overcome through the development of microarray and chip tech-
nology (which enabled the ability to scan between 200,000 ~ 2,000,000 SNPs
genome-wide), and the development of genetic sequencing projects includ-
ing Hapmap and the 1000 genomes project (Visscher et al., 2017; Henriksen,
Nordgaard, and Jansson, 2017; Frazer et al., 2007; Auton et al., 2015).

1.3.1 The first schizophrenia GWA studies

It was evident after the first GWA studies on schizophrenia that there that was
another issue: sample size. In the first schizophrenia GWA study by Lencz et
al. (2007), the primary case/control analysis only used 71 cases and 31 controls
and provided one significantly associated SNP with schizophrenia located
near the CSF2RA gene (rs4129148; see Figure 1.1). This was not replicated in
future schizophrenia GWA studies.

FIGURE 1.1: Manhattan plot from Lencz et al., 2007. The
genome-wide significant SNP is declared by the red arrow and

text.

In the following year, a GWA study of 479 cases and 2,937 controls yielded 12
loci, the most notable being loci surrounding the gene ZNF804A, but rs4129148
was not included and no SNP conferred an OR more than 1.5 (O’Donovan
et al., 2008). Not only was it evident that the effect conferred by each SNP
was less than expected, but the GWA studies were, at the time, unknowingly
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hampered by population stratification and an inability to detect Linkage
Disequilibrium (LD) structure. If the common genetic risk of schizophrenia
was hypothesised to confer at least half of the risk towards schizophrenia,
then it was clear that either schizophrenia GWA studies were not adequately
designed to capture this risk in the general population, or the power of the
studies needed to increase.

A defining paper in 2009 from the International Schizophrenia Consortium
(Purcell et al., 2009) validated the association found for ZNF804A, and pro-
vided multiple novel associations within the Major Histocompatibility Complex
(MHC) region on the human genome (See Figure 1.2). These associations were
found by combining samples with other consortia including the Molecular
Genetics of Schizophrenia (MGS) and SGENE consortia. This indicated that
GWA studies could capture schizophrenia risk, but the power of the stud-
ies needed to dramatically increase, potentially beyond any practical, cost-
effective approaches from individual groups.

FIGURE 1.2: Manhattan plot of the MHC region from Purcell
et al., 2009. Recombination rate is signified by the light blue bar

graph.

The objective for schizophrenia GWA studies became clear, large consortia
would have to be created in order to obtain the samples required to identify
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robust individual variants significantly associated to schizophrenia.

1.3.2 The creation of the Psychiatric Genomics Consortium

(PGC)

The PGC was created in 2007 to investigate the genetics of complex psychiatric
disorders, and its schizophrenia group currently has over 400 investigators
from 40 different countries. The first GWA study from the PGC was published
in 2011 (Ripke et al., 2011), and found seven loci associated to schizophrenia,
five of which were novel (See Figure 1.3). In total (including replication), 36
studies including 17,836 cases and 33,859 controls were collected together and
these samples have been used in all future PGC schizophrenia GWA studies
since. In addition, the GWA study identified loci (rs4765905, rs10994359,
rs2239547) that were susceptible to both schizophrenia and bipolar disorder,
a finding which initialised a research direction into the combined genetics
of various neuropsychiatric traits. The main finding of the GWA was that
further samples were still needed in order to provide more than a handful of
risk loci associated with schizophrenia, and indeed any significant findings
from biological pathway analysis. Further information on PGC1 can be found
in Chapter 2.

FIGURE 1.3: Manhattan plot from Ripke et al., 2011
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In 2014, the PGC published their second GWA, PGC2 which identified 108
loci, including 83 novel associations (Ripke et al., 2014; See Figure 1.4 and
for more information see Chapter 2). Of particular note within this GWA
study was the observation that while all 108 loci could be credible linked
to 108 SNPs, only 10 could be credibly associated to any non-synonymous
exonic polymorphism (Ripke et al., 2014). This has led to further examinations
of schizophrenia risk loci being associated to expression Quantitative Trait
Locis (eQTLs)s and epigenetic markers (O’Brien et al., 2018; Wockner et al.,
2015).

FIGURE 1.4: Manhattan plot from Ripke et al., 2014

The latest and largest schizophrenia GWA study at the time of writing, was
published in 2018, which took advantage of samples obtained from the PGC
and patient records of individuals within the UK who were prescribed clozap-
ine (for more information see Chapter 2; Pardiñas et al., 2018). They found
145 genome-wide significant loci associated with schizophrenia and identified
the first biological gene-sets associated to schizophrenia (Pardiñas et al., 2018;
See Figure 1.5).

GWA studies have discovered a considerable number of schizophrenia risk
loci with small individual effects. However, there were potentially large
numbers of risk variants which did not surpass genome-wide significance,
but may collectively contribute to schizophrenia risk. The PRS method was



Chapter 1. Introduction 13

developed in order to examine the polygenic component of a particular disease
or disorder.

FIGURE 1.5: Manhattan plot from Pardiñas et al., 2018

1.3.3 Does rare and common variation in schizophrenia over-

lap?

One of the first studies to examine rare and common liability for schizophrenia
was Purcell et al. (2014). They took 2,546 genes hypothesised to be enriched in
mutations associated with schizophrenia, genome-wide CNV studies, GWA
studies, and exome sequencing of de novo mutations and found that cases
had a higher rate of rare disruptive mutations versus controls (Purcell et al.,
2014). However, in a case only analysis of samples from PGC1, CNVs, SNVs
and GWA studies were uncorrelated.

Recent evidence suggests a negative correlation between schizophrenia-associated
CNV carrier status and the common risk variant burden. In Tansey et al. (2016)
they aimed to decipher between two models of schizophrenia with respect to
rare variant variation. One proposal was the extreme heterogeneity model,
where it was proposed that schizophrenia is a collection of disparate set of
distinct disorders among which a specific mutation would share a small,
homogeneous sub-group. As schizophrenia is polygenic, it can only apply
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to those cases with highly penetrant mutations like CNVs. If the extreme
heterogeneity hypothesis extends from alleles to pathophysiology, overlap
should not be observed for these additional risk factors between carriers of
different CNVs, or between carriers of CNVs and people with schizophrenia
who do not carry CNVs. The other model is schizophrenia being a polygenic
disorder where the disorder is the result of an accumulation of risk factors suf-
ficient to surpass a threshold of disease liability. To examine these hypotheses,
they evaluated whether individuals with a diagnosis of schizophrenia who
carry a schizophrenia-associated CNV also share a common risk allele burden
with those who have schizophrenia without a schizophrenia-associated CNV
(Tansey et al., 2016).

First, it was found that both the schizophrenia PRS with CNV cases and the
schizophrenia PRS without CNV cases could significantly differentiate from
controls (where a significantly higher p-value was found with the schizophre-
nia PRS with cases (P = 1.43 ∗ 10287 versus without CNV P = 2.25 ∗ 1017)
(Tansey et al., 2016). It was also found that within schizophrenia cases, com-
mon risk contributed to patients with a high OR CNV or a low OR CNV
and, at most P value threshold (Pt) schizophrenia cases with a high OR CNV
had a lower PRS for schizophrenia compared with a) cases without a known
schizophrenia-associated CNV, and b) with cases with a lower OR CNV.

Bergen et al (2019) expanded on this analysis by assessing the relationship be-
tween three classes of CNVs (samples with CNVs associated with schizophre-
nia; CNVs that span over 500kb; total CNV burden) and their PRS. Mean PRS
between study subjects with and without rare CNVs were compared. Logis-
tic regression modelled the joint effects of PRS and CNVs on schizophrenia
liability. Samples with schizophrenia-associated CNVs had a lower PRS in
proportion of the effect size of the CNV (Bergen et al., 2019). For example, the
strongest associated schizophrenia CNV, the 22q11.2 deletion, required little
added effect from the PRS to reach a diagnosis of schizophrenia observed in
the sample (Bergen et al., 2019). Large deletions and increased CNV burden
were also associated with lower polygenic risk in schizophrenia case (Bergen
et al., 2019).

with respect to de novo mutations in schizophrenia, Rees et al (2020) examined
the relationship between de novo variant mutations and common risk using
the polygenic transmission disequilibrium test (Weiner et al., 2017). Probands
(the first individual with a suspected diagnosis of schizophrenia) carrying
candidate schizophrenia-related de novo variants had a significantly lower
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mean polygenic transmission disequilibrium test than that of probands who
did not carry one of these de novo variants (Rees et al., 2020). The overtrans-
mission of common risk alleles from parents is about seven times as great
to non-carriers than to carriers of candidate schizophrenia-related de novo
variants (Rees et al., 2020).

1.3.4 Pathway analysis in schizophrenia GWAS

In 2015, Pocklington et al. (2015) derived 134 gene-sets relevant to the func-
tioning and development of the nervous system based on earlier case-control
CNV studies showing that case CNVs were enriched for synaptic and neu-
rodevelopmental genes (Glessner et al., 2010; Walsh et al., 2008). They found
that the gene-sets were enriched for CNVs in schizophrenia (Pocklington et al.,
2015).

Given the evidence above indicating an overlap of rare and common variant
variation in schizophrenia, Pardinas et al (2018) performed a gene-set analysis
of these 134 gene-sets in the CLOZUK meta-analysis case/control GWA study
using MAGMA (Leeuw et al., 2015). After multiple testing correction and
stepwise conditional analysis, six gene-sets were found to be significantly
associated with schizophrenia (Targets of FMRP, Abnormal behavior, 5-HT2C
receptor complex, Abnormal nervous system electrophysiology, Voltage-gated
calcium channel complexes, Abnormal long-term potentiation). In addition,
recent studies also identified that mutation intolerant genes were enriched for
schizophrenia CNVs, and a MAGMA gene-set analysis of a loss of function
gene-set (n = 3,230) found that this gene set was also enriched for common
variant variation as well (Pardiñas et al., 2018).

In Schijven et al (2018) further gene-set analysis was performed using MAGMA
(Leeuw et al., 2015) on the MsigDB gene ontology database which found en-
richment of common variants in synaptic plasticity and neuron differentiation
gene sets (Leeuw et al., 2015; Liberzon et al., 2011). In support of these find-
ings, they also performed gene set analysis using MAGMA, MAGENTA and
INRICH (Leeuw et al., 2015; Segrè et al., 2010; Lee et al., 2012) on synaptic
signalling pathways in KEGG (Kanehisa and Goto, 2000), and found further
enrichment in dopaminergic and cholinergic synapses (2018).

Protein-protein interaction analysis (analysing whether the top unique genes
in the gene sets show more direct/indirect interaction with each other and
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with other proteins than expected by chance) used on 22 unique genes from
the KEGG dopaminergic, cholinergic or long-term potentiation pathways
found more direct interactions with each other and more indirect interactions
to other proteins than expected by chance (2018). However, this was not the
case for direct interactions with other proteins.

Weighted Gene Co-expression Network Analysis (WGCNA) was performed
on PGC2 and found 12 gene co-expression modules with sizes ranging from
40 to 1813 genes (Radulescu et al., 2020). Briefly, WGCNA is a data-mining
method which uses gene expression data to define a biological network be-
tween the genes based on the pairwise correlation (or co-expression) of the
genes. Selected modules from the WGCNA network were tested for associ-
ation with schizophrenia PRS, diagnosis, and genes containing GWA study
significant loci within PGC2. One module was found to be associated to
all three variables and contained genes involved in synaptic signaling and
neuroplasticity (Radulescu et al., 2020).

1.4 Polygenic risk score definition

There are many aspects to a PRS, this section will be structured in the following
format:

• Broad definition of a PRS

• The units/values that make up a PRS (the risk variants or SNPs)

• Which genetic model it describes

• How it accounts for LD

• How it accounts for genetic phenomena within a population over time

• Limitations of the method

1.4.1 Broad Definition

A standard PRS combines the effect sizes of all SNPs across the genome into
one risk score for each individual (See Figure 1.6). The genetic burden of a
particular disorder can then be assessed, and the ability of the risk score to
predict the disease status of any one individual can be determined (Purcell
et al., 2009).
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FIGURE 1.6: Calculation of PRS per individual. Effect sizes for
each SNP k (βk) are extracted from the training data set, usually
limited by a p value threshold. The polygenic score for each
individual i (PRSi) is then calculated in the testing data set. For
any individual at any selected SNP, the number of risk alleles
the individual has is determined (0,1 or 2) and the dot product is
calculated between all SNPs and their corresponding effect size.
The polygenic score is the weighted sum of the individual’s risk
alleles. 1

m signifies the weighting of each score required to ac-
count for missing genotypes; in PLINK v1.90 the missing geno-
types are estimated using 2 × Minor Allele Frequency (MAF).
Each risk allele is represented by a different shape and the effect
sizes are represented by a colour corresponding to the training

set colour bar.

The PRS is in essence, the weighted sum of the individual’s risk alleles. The
terminology ’risk’ within the definition of ’polygenic risk score’ can be ad-
justed depending on which biological trait the PRS is defining. For example, it
is logical to refer to the weighted sum of schizophrenia alleles as a polygenic
risk score because the trait produces symptoms which impede normal bio-
logical functioning. However, if the PRS was describing the trait of height, it
makes more biological sense to label this as a ’polygenic predisposition score’,
because differences in height in a population do not impede normal biological
functioning in humans. To reduce confusion for the reader, all polygenic
scores will be referred to with the short-hand PRS.
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1.4.2 SNPs in a Polygenic Risk Score

At any locus on an individual’s genome (their SNP), the individual may carry
between 0, 1 or 2 risk alleles. The determination of whether the individual
carries a risk allele is inferred by using an independent cohort (the training
set as described in Figure 1.6). Briefly, at any singular locus, there will be a
major allele and a minor allele within the cohort. The major allele is the allele
which is found to be the most frequent in that cohort (for example: over 50%
for a bi-allelic locus). The declaration of a major allele is binary, the size of
the cohort and the magnitude of the percentage difference between the major
allele and other alleles has no bearing of the allele being declared as a major
allele within the cohort.

Conversely, the minor allele is the allele at that specific locus that is the second
most common within the cohort and is usually the frequency of this allele that
is used to calculate the Minor Allele Frequency (MAF) at each SNP within the
PRS. The frequency of the major allele can be inferred from the MAF if the
site is bi-allelic.

A ’risk allele’ is determined when, at that particular locus, a GWA study has
been performed on the cohort for a particular trait and it has been found that
the allele is statistically significantly associated with that trait. The calculation
to determine significance is usually the log of the OR (quantification of the
strength of association between group A (e.g. cases of schizophrenia) over
group B (e.g. control cohort)). In the case where the trait is continuous, the
calculation to determine significance is usually a beta coefficient extracted
from the fit of a predefined statistical model suiting the trait in question. The
log is applied to OR to temper the difference between the relative difference
in probability between the two groups and the resulting odds ratio produced.
For example, if looking at a range of schizophrenia risk alleles and comparing
across only their odds ratios, the magnitude in the difference of odds ratios
between each risk allele may be significantly larger than the magnitude of the
actual differences in effect sizes. This could encourage an over-emphasis of
schizophrenia risk alleles at the extreme ends of the distribution of effect sizes.
By taking the log OR, these magnitudes of the differences between odds ratios
are transformed to be symmetrical to the magnitudes of differences to their
respective effect sizes.

If the allele in question has a log OR more than one and is significant, the
allele is likely to be the minor allele because there will be selective pressure
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against that allele. The situation in which the major allele may be the risk
allele at the specified locus is when the odds ratio is less than one combined
with a statistically significant p-value and so the minor allele is protective
against that trait. However, it is usually preferably interpreted that the minor
allele is protective rather than the major allele is a risk allele.

The sum of the number of risk alleles weighted by the log OR or effect sizes of
these risk alleles is a singular score per individual that represents the genetic
loading for that particular trait or disease (Lewis and Vassos, 2020). This
statistical model of an individual’s genetic predisposition for a trait assumes
that the trait in question has an additive genetic architecture and that the
individuals risk alleles are independent from one another.

1.4.3 Genetic model of schizophrenia

Polderman et al (2015a) supports the theory that the genetic architecture of
schizophrenia is additive. They examined the heritability of thousands of traits
over 50 years of twin studies. Within the trait of schizophrenia, Polderman
et al. (2015a) collated the correlation metrics provided for both monozygotic
twins and dizygotic twins across 54 studies. All these studies had to provide a
correlation metric that was either intraclass, Pearson, polychoric or tetrachoric
correlations. If the twin correlations did not exist, then they estimated the
correlation based on least-squares or maximum-likelihood methods. In the
twin study design method, there are two extreme hypotheses that you can
draw based on the correlations for monozygotic and dizygotic twin pairs. If
the correlations within the monozygotic and dizygotic twin populations are
the same, in which case the phenotypes observed in each twin are entirely
caused by non-genetic factors. If the ratio of correlations in the monozygotic
twin population compared to the dizygotic twin population is 2:1, this indi-
cates that the phenotypes observed in each twin is solely caused by additive
genetic factors. If the ratio is in between these two metrics, it is inferred that
there are shared genetic and environmental factors influencing the trait.

For the majority of traits, it was found that in 84% of cases, the correlation of
the monozygotic twins was higher than the dizygotic twins correlation metric.
In the case of schizophrenia, there was not enough information to provide an
all encompassing metric, but for same sex pairs, the metric of 2rDZ - rMZ was
-0.17, and the correlations for both male and female monozygotic twins was
higher than that of the correlations for the dizygotic twins (See Figure 1.7).
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FIGURE 1.7: Summary of Twin study papers on the trait of Schizophrenia (A) Twin correlations estimates for schizophrenia.
Estimates were correlation coefficients derived from the DerSimonian-Laird random effect meta-analytical approach. (Shulze,
2004). mzall = mztc for males and females, mzm = mztc for males, mzf = mztc for females, dzall = dztc for males and females,
dzss = dztc for twin pairs of the same sex, dzm = dztc for males, dzf = dztc for females, dos = dztc for opposite sex twin
pairs. (B) Least squares estimate for the relationship between monozygotic and dizygotic twin pairs. 2(mz-dz) is equivalent to
subtracting the dztc from the mztc and multiplying by 2. 2dz-mz is equivalent to subtracting the mztc from the dztc multiplied
by two. These estimates provide an estimation of heritability (2(mz-dz)) and the shared environment (2dz-mz) directly from
the twin correlations. (C) ACE model (A = Additive genetic variance, C = environmental factors, E = measurement error)

estimates for schizophrenia. H2 = Heritability, C2 = estimate of the shared environment.
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1.4.4 Accounting for Linkage Disequilibrium

For the PRS to be accurate, there is an assumption that each SNP is inde-
pendent from one another, and must therefore take into account the genetic
phenomena known as LD. Briefly, LD is the correlation structure between
SNPs or the non-random association between SNPs at separate loci in a pop-
ulation (Visscher et al., 2012). It occurs due to the process of many genetic
phenomena including genetic drift, mutation rates, population structure and
genetic recombination which all occur over several generations within a pop-
ulation. The important information to note is that if two SNPs are found to be
in LD with each other, then they are no longer independent and the model of
a PRS is no longer accurate. The issue of accounting for LD is a contentious
one within PRS calculations, with some methods choosing to model the link-
age dis-equilibrium across all SNPs (LDpred method reference), while other
methods (PLINK v1.90 and PRSice2), choosing to remove the SNPs that show
LD signal within a specified range of values.

A large number of the SNPs will likely be removed from the input data sets,
and there may be small correlations between the remaining SNPs.

1.4.5 Population genetics of schizophrenia

A note that particularly within the trait of schizophrenia, the additive evo-
lutionary model is vastly overly-simplified and there is still some confusion
as to why schizophrenia alleles persist in the population, despite evidence
of high heritability and low fecundity within schizophrenia patients (Power
et al., 2013). In evolutionary theory, this presents a paradox as schizophre-
nia risk alleles should have been eliminated through the process of negative
selection. Alternative evolutionary theories indicate an influence of positive
selection (Fujito et al., 2018), balancing selection (Sato and Kawata, 2018), and
background selection (Pardiñas et al., 2018).

A few studies suggest the theory that schizophrenia alleles have, at some point
in the history of human evolution, provided some form of benefit for human
survival and are therefore maintained through positive selection. For example,
the gene sequence 1.3kb upstream of the ST8 alpha-N-acetyl-neuraminide
alpha-2,8-sialyltransferase 2 (ST8SIA2) gene contains three SNPs associated
with schizophrenia (Fujito et al., 2018). ST8SIA2 encodes a sialtransferase that
is responsible for the production of polysialic acid (PSA), which has many



Chapter 1. Introduction 22

important functions within the brain including cell-cell communication and
function of ion channels. Because the functional biological applications of
ST8SIA2 are currently evidenced to be pervasive throughout the brain and
important, schizophrenia risk alleles could be selected for, as biological func-
tion out-weights the risk of obtaining schizophrenia phenotypes. However,
in this particular study, the display of positive selection assumes a functional
link between these three schizophrenia associated SNPs and the biological
outcome, of which the only evidence supplied is decreased social motivation
and increased aggressive behavior in two mouse models (Kröcher et al., 2015;
Calandreau et al., 2010).

1.4.6 Limitations of the PRS method

As described in Figure 1.6, a PRS requires the use of two independent data
sets, the testing set which must contain genotype level data (See Chapter
2 for more information) and the training set which is usually a published
GWA study. A limitation of this approach is that genotype level data is
rarely publicly available due to patient confidentiality. Additionally, another
limitation surrounds shared samples between data sets. A PRS requires no
overlapping samples between testing and training data sets, but samples can
be hard to identify in the training set as the structure of the data set does not
include sample information. Sample identification is usually inferred by the
paper which was published alongside the data. As observed in Chapter 2,
the cohorts used to create each data set can become increasingly complicated,
especially if multiple data sets are resourced from the same consortium or
group.

1.5 Polygenic risk score Application

PRS can be applied over several different methodologies, traits and popula-
tions. Below I will describe the:

• Early PRS application

• Advantages of PRS application

• Uses within a clinical setting

– Prediction of a clinical outcome
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– Prediction across ethnic groups

– Prediction of schizophrenia

• Relationship of schizophrenia PRS with other traits

1.5.1 Early application of PRS

At the same time as realising that GWA studies required more power to cap-
ture the common genetic component of schizophrenia risk in the study from
the International Schizophrenia Consortium (Purcell et al., 2009), another line
of thought was whether there was a polygenic component for schizophrenia
as first described by Gottesman and Shields (1967). If this was the case, then
even variants which did not reach genome-wide significance could contribute
useful information on the common genetic disposition towards schizophre-
nia. In this instance, Purcell et al. (2009) first selected variants from within
the schizophrenia GWA at various predefined significance thresholds from
here-on referred to as a Pt. They then used these ’score alleles’ to generate
aggregate risk scores in an independent target data set. The alleles are referred
to as ’score alleles’ because of the inability to differentiate between the true risk
alleles from within the schizophrenia GWA study from variants unassociated
to schizophrenia (Purcell et al., 2009). The polygenic component was shown to
be highly associated with schizophrenia (p = 1.9 × 10−19) (Purcell et al., 2009).
In PGC2, another PRS was created and confirmed that the PRS was associated
to schizophrenia, was able to predict case/control status and was estimated
to explain around 7% of the liability variation in schizophrenia (Ripke et al.,
2014). Over time, the method behind the PRS became more solidified into the
procedure as described in Figure 1.6.

1.5.2 Advantages of PRS application

The main advantage of using PRSs is it’s ability to produce a single risk
score per individual. The score can be used as a variable to answer scientific
hypotheses relevant to the trait from which the PRS was derived. In addition,
a PRS uses two datasets in it’s creation, one dataset contains the list of SNPs
per individual (testing dataset) and the other dataset contains the effect sizes
for each SNP (training dataset). Individuals can therefore be stratified into
clinical groups using the effect sizes as a quantitative measurement for the
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boundary between groupings. In the case of schizophrenia, the PRS can be
assessed for its ability to differentiate between patients and controls within
the testing data set, using the effect sizes from the training set (Dudbridge,
2013). PRS indexes common variant liability to a given disorder and therefore,
cross-disorder analysis is viable. If, for example, an individual was interested
in investigating the genetic risk for schizophrenia in patients diagnosed with
bipolar disorder, a PRS would be a useful analysis method (Lee et al., 2013;
Ward et al., 2017).

1.5.3 PRS in a clinical setting

PRS also has potential in a clinical setting, as it is an early quantitative mea-
surement that can be recorded before disease onset has occurred. However,
a PRS measures the risk of developing a disease; A PRS does not display a
binary decision on whether the individual will obtain a disease (Sugrue and
Desikan, 2019). This has implications in it’s applicability within a clinical set-
ting. For example, information which informs the risk of disease is based on
GWA studies which measures the prevalence of the disease, aka the number
of cases of who have the disease over a specified point in time.

Prediction of a clinical outcome

However, in a clinical setting, a PRS would attempt to predict the incidence
of the disease, aka the number of new cases of the disease (Sugrue and De-
sikan, 2019; Noordzij et al., 2010). The PRS may therefore be inaccurate if
the incidence in the disease changes as this may indicate that the prevalence
data on which the PRS is derived, no longer represents the proportion of the
disease in the population. The evaluation on how well a PRS predicts the
clinical outcome of any disease is under debate. Many studies use diagnostic
predictive measures including area under the curve (Escott-Price et al., 2019),
and positive predictive value and negative predictive value (Li et al., 2021).
These measures evaluate the predictive performance of PRS to discriminate
between groups with disease vs groups without disease. Other methods are
in development including, for example, a method applied in Seibert et al.
(2018) which uses a modified form of a PRS to assess the risk of obtaining
aggressive Prostate Cancer (PCa). Diagnosis of PCa has a high false positive
rate and screening procedures often cannot separate aggressive PCa patients



Chapter 1. Introduction 25

from patients with indolent disease. Therefore, the aim would be to reduce
unnecessary screening of these false positives patients, while still identifying
patients who are at a high risk of obtaining PCa.

Seibert et al. (2018) used a method from Desikan et al. (2017), which identifies
the SNPs that are associated with a high risk of the disease, and then applies
Cox proportional hazard models (usually used in survival analysis) to reduce
the previous list of SNPs to a list of SNPs which is associated with a lower
survival rate for patients with the disease.

Briefly, survival analysis is an all-encompassing term for a range of statistical
tests where the outcome variable is the amount of time until an event occurs.
In respect to PCa, most likely the events would be the time of death.

While Seibert et al. (2018) displayed that a modified PRS does predict age at
onset of PCa but, one of the major limitations is statistical power, especially
due to the fact that the development dataset was a collation of several studies
of varied design.

The most promising uses of PRS with risk prediction of complex disorder are
similar to the example above, where the PRS has been used as an addition to
other clinical risk factors. Using PRS alone does not usually provide enough
predictive power over other clinical risk factors. For example, the combination
of lifestyle, biochemistry, clinical, and historical risk factors produced an Area
Under the Curve (AUC) of 82% when predicting the 10 year risk of cardiovas-
cular disease (Assmann, Cullen, and Schulte, 2002). In most instances, a PRS
alone does not provide more predictive power, but in some circumstances,
a PRS can provide more predictive power than previously used predictive
measurements. For example, in Ankylosing Spondylitis (AS), a PRS was
shown to have a higher AUC than genetic testing at a single locus (HLA-B27;
AUC = 0.869), measurements of acute phase reactants (AUC = 0.7) and MRI
imaging of sacroiliac joints (AUC = 0.885) (Li et al., 2021). However, one of the
limitations of (2021) was that the predictive power differed between different
ethnic populations.

Prediction across ethnic groups

The application of PRS across different ethnic groups is a challenge when
using it within a clinical setting. Unfortunately, most GWA studies which
provide the training set for the PRS, come from a European ancestry (Lewis
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and Vassos, 2020). Therefore, the predictive accuracy of the PRS outside of a
European population may be attenuated due to tagging SNPs (only genotype
a single SNP representing a region of SNPs located close to the genotyped
SNP), differences in patterns of LD, and potential differential genetic drift
between the ethnicities which may bias the PRS. However, in the case for
schizophrenia, a large-scale GWA study for East Asian populations has been
conducted and compared to a European cohort (Lam et al., 2019a).

Prediction of schizophrenia

A schizophrenia PRS has been shown to display moderate predictive abil-
ity (AUC = 0.61), but this signal is too low for clinical utility. However, a
schizophrenia PRS could provide extra information in stratifying patients
with schizophrenia. For example, in a study by Vassos et al. (2017) examining
first-episode psychosis patients, they found that patients who went on to
develop schizophrenia (n = 86) had a higher PRS than those who went on to
develop another form of psychosis (n = 65; Nagelkerke’s R2 of 9%). While
the predictive ability is still low, and there was quite a low sample size in
this experiment, the advantage of this experimental design is that it a) only
requires the genotyping of individuals presenting with psychosis, and b) the
clinical outcome is not a binary treat/not treat (Lewis and Vassos, 2020).

1.5.4 Prediction of PRS in complex traits

Prediction methods

Before analysing prediction across multiple traits, it is prudent to explain the
metrics which confers how well the PRS predicts any singular trait. Most
research-based PRS prediction uses population genetics over a singular indi-
vidual.

When assessing either case/control status or a continuous trait, sometimes
the variance (R2) is used (Lewis and Vassos, 2020). For a continuous variable,
the R2 from a linear regression is reported and it captures the proportion of
variance which is explained by the PRS. For case/control status, a logistic
regression is used as the outcome is binary. To get an estimate of how much
variance a PRS captures for a binary outcome, the Nagelkerke R2 is reported
as it is the most comparable to the R2 in a linear regression. In some cases
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(because the prevalence of cases and controls in the sample may not match
the prevalence of cases and controls in the population) the Nagelkerke R2 is
converted to the liability scale as defined in Lee et. al. (2012).

The predictive ability of a PRS can be defined in terms of AUC which takes
a value of 0.5 to 1 (Lewis and Vassos, 2020). This gives an overall summary
of the predictive ability of the model where the closer the value is to 1, the
better the predictive ability of the PRS (and other risk factors (eg age and sex)
if included in the model). For example, when predicting case/control status,
it is the probability that a randomly selected case will have a higher PRS than
a randomly selected control.

Odds ratios are frequently used if analysing how well PRS can predict differ-
ences in risk between sub-groups in the population (Lewis and Vassos, 2020).
The predictive ability can be defined as the proportion of the population
which has a k-fold increased odds (eg k = 2, 3, 4...) compared to the disease
risk in the population. The PRS can also be split into deciles, quartiles and/or
quantiles and the predictive ability of the PRS can be defined as the odds ratio
of disease for an individual in the top (eg) decile compared to individuals in
another section of the distribution e.g.(0-90%, 0-10% or 30-60%).

Traits outside the brain

Height has been an interest in genetic prediction as it can be used as a model
for complex trait prediction. Between 2014 and 2018, SNP heritability on it’s
own could explain between 17-19% of the variability in height, but in 2017,
Lippert et al (2017) displayed that selected SNPs could explain 53% of the
variability in height, as sex was included in the model and the population
sample was diverse in ancestry (You et al., 2021). The best prediction so far,
used a PRS which on it’s own provided an R2 value of 0.73. If including sex,
parental height and PRSs of both parents and proband, the R2 increased to
0.82 (You et al., 2021).

The best prediction of Type II diabetes was achieved by Liu et al. (2021),
with a top AUC of 0.901 [95% CI: (0.790, 0.800)]. When the prediction was
solely based on the PRS, the AUC was 0.749. Covariates including, but
not limited to, age, sex, the first 10 population principal components, Body
Mass Index (BMI), diastolic blood pressure, glucose level, and cholesterol
level accounted for the difference in these two AUC metrics showing that a
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combination of genetic and associated environmental factors could be used as
an accurate predictor of Type II diabetes.

Another study by Khera et al. (Khera et al., 2018) compared the AUCs across
the PRS of five different traits including Type II diabetes (AUC = 0.734),
Coronary artery disease (AUC = 0.813), Atrial fibrillation (AUC = 0.782), in-
flammatory bowel disease (AUC = 0.648) and Breast cancer (AUC = 0.695).
The idea was to test whether PRS conferred comparable or better power to
separate out individuals with a high risk of the trait in a population, over rare
monogenic mutations. For all five cases this was true as PRS identified 8.0,
6.1, 3.5, 3.2, and 1.5% of the population at greater than threefold increased risk
for coronary artery disease, atrial fibrillation, type 2 diabetes, inflammatory
bowel disease, and breast cancer, respectively. For coronary artery disease, the
prevalence shown by the PRS is 20-fold higher than carrier frequency of famil-
ial hypercholesterolemia (rare monogenic) mutations conferring comparable
risk in previous studies (Khera et al., 2018).

Neuropsychiatric traits

Using the largest GWA study at the time of writing, a PRS was created
to predict the prevalence of Major Depressive Disorder (MDD) in a Euro-
pean/North American population (Wray et al., 2018). The PRS explained 1.9%
of the variance in liability and the odds ratio of MDD liability for the tenth
decile versus the first was 2.4 (Wray et al., 2018).

In a similar pioneering study for ASD, the IPsych ASD GWA study (see Chap-
ter 2) was split into five separate sets of testing and training samples to test
the prediction of the ASD PRS (Grove et al., 2019). The observed Nagelk-
erke’s R2 explained by the PRS was 2.45%. Grove et al (2019) then improved
the predictive accuracy (Nakelkerke’s R2 = 3.77%) by including PRS from
other traits that were correlated with ASD. These included but were not lim-
ited to: schizophrenia, depressive symptoms, Attention Deficit Hyperactivity
Disorder (ADHD), MDD, extraversion, agreeableness and childhood intelli-
gence (Grove et al., 2019). The choice of traits was determined by selecting
the traits which containing the highest Nagelkerke’s R2 when the trait was
predicting ASD.

A study by Vassos et al. (Vassos et al., 2017) examined whether a PRS could
separate case/control status of first-degree psychosis patients, and whether it
could stratify which patients had a diagnosis of schizophrenia or a diagnosis
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of other psychoses. For the testing set, the Biomedical Research Centre (BRC)
for Mental Health Genetics and Psychosis (GAP) study was used whereby
participants were selected for patients with a diagnosis of first episode of
nonorganic psychosis and control participants. The training set for all PRS
was PGC2 (see Chapter 2) split between a cohort with European ancestry
and African ancestry. The PRS explained 3.6% of the variance in case/control
status for first degree psychosis using Nagelkerke’s R2 on the liability scale.
When stratified, the PRS explained 9.4% of the variance in European ancestry
but was only predictive in African ancestry (1.1%) when more samples were
added. When only looking at cases within the samples (aka all patients meet-
ing a diagnosis of non-organic psychosis), the prediction was split to discern
between cases with a diagnosis of schizophrenia versus cases who never met
the diagnostic critera for schizophrenia. It was found that schizophrenia
cases had a higher PRS than those cases with other psychoses (Nagelkerke’s
R2 = 9.2%).

In the latest GWA study of Bipolar disorder containing 41,917 bipolar disorder
cases and 371,549 controls of European ancestry, it was found that the PRS
explained 4% of phenotypic variance in these samples (Mullins et al., 2021).

1.5.5 PRS and the genetic architecture of schizophrenia

Schizophrenia PRS has been found to correlate with the length of hospitali-
sation for schizophrenia patients within inpatient admissions. Furthermore,
at supported housing facilities, and the schizophrenia PRS for chronically
ill resident schizophrenia patients was substantially higher than the PRS of
resident schizophrenia patients who were less severely ill.

There has been a lot of research into the association of schizophrenia PRS and
treatment resistance to antipsychotics, but the evidence has been conflicting.
There have been reports that patients with treatment resistant antipsychotic
treatment (Clozapine) had a positive association to a high schizophrenia PRS
(Frank et al., 2015) and first-episode psychosis patients with treatment resis-
tance tended to have a high schizophrenia PRS (Zhang et al., 2019). However,
further studies have found no association of schizophrenia PRS with treat-
ment response, but a possible association to premorbid IQ and earlier age of
onset within treatment response patients (Legge et al., 2020; Kowalec et al.,
2021).
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A schizophrenia PRS has also been associated with lower cognition in multiple
studies (Ripke et al., 2014; Pardiñas et al., 2018; Hubbard et al., 2016; Mistry
et al., 2018). However, both the direction of effect and the strength of the
association changes between different definitions of cognition (eg premorbid
IQ, educational attainment) (Richards et al., 2020; Dickinson et al., 2020).
Intermediate phenotypes of schizophrenia including neuroimaging measures
has been investigated, but there has not been many studies displaying strong
evidence of associations between schizophrenia PRS and structural changes
within the brain. Cao et al. (2021) did however show significant associations
between schizophrenia PRS and lower functional connectivity (aka visual
system, default-mode system, frontoparietal system) using network-based
statistic analysis.

Schizophrenia PRS has been found to be associated with negative and disor-
ganised symptoms of schizophrenia (e.g. withdrawal, loss of motivation, loss
of concentration), albeit with a small reported amount of variance explained,
but no association has been found of schizophrenia to its positive symptoms
(e.g. hallucinations, delusions) (Legge et al., 2021). Schizophrenia PRS has
been associated with psychotic symptoms in first-episode psychosis and bipo-
lar samples (Legge et al., 2021). There is a suggestion that individuals with
a high schizophrenia PRS may be suggestive of treatment non-response in
MDD. But the association of the PRS to non-response was only nominal (p
=0.003).

The genetic architectures between schizophrenia and other disorders has been
investigated using PRSs. Individuals with neuropsychiatric disorders includ-
ing bipolar disorder, schizoaffective disorder and depression have all been
found to have an elevated schizophrenia PRS (Mistry et al., 2018; Hamshere
et al., 2011; Tesli et al., 2014; Milaneschi et al., 2016). The schizophrenia PRS ex-
plained between 1% to 6% of the variation in psychiatric disorders including,
but not limited to: depression and bipolar disorder (Mistry et al., 2018).

Both schizophrenia and bipolar PRS were able to distinguish patients with
broadly defined psychosis and their unaffected relatives from controls, schizophre-
nia PRS and Bipolar PRS explained 9% and 2% of the variation in psychosis
risk respectively.However, the separation was modest for distinguishing be-
tween unaffected relatives (schizophrenia PRS P-value = 1.2 ∗ 10−4, Bipolar
PRS P-value = 2.1 ∗ 10−2).

The genetic overlap between schizophrenia and multiple other disorders
suggests that focusing the schizophrenia PRS on specific genes/pathways



Chapter 1. Introduction 31

may be a viable research approach when examining specific biological effects
associated with schizophrenia.

1.5.6 Advantages of PRS application in schizophrenia

Schizophrenia is highly heritable (current estimate is approximately 80%) and
the PRS of schizophrenia has repeatedly been shown to be associated with
schizophrenia in independent samples and individuals with other neuropsy-
chiatric traits and disorders. This provides a quantitative measurement of any
individual’s liability to schizophrenia in the form of a single number.

The power of schizophrenia PRSs is substantially higher compared to other
neuropsychiatric complex traits and disorders, with the latest schizophrenia
dataset at the time of writing containing approximately 40,000 cases and
64,000 controls (Pardiñas et al., 2018). In addition, the schizophrenia PRS is
one of the best performing PRSs in terms of phenotypic variance explained
(7%) as compared to other neuropsychiatric complex traits (Ripke et al., 2014).

1.5.7 Limitations of PRS application in schizophrenia

Schizophrenia is a broad description of multiple facets and traits which makes
it a difficult disorder to dissect whether genetic mutations are causal towards
it (Jablensky, 2010). This is evident in the clinical presentation and the illness
course of schizophrenia where there is substantial heterogeneity between
patients (Jonas et al., 2019).

PRS was found to be the most important predictor of case/control status out of
various traits (including educational attainment, sex, parental depression) us-
ing permutation feature importance. It was also shown that various machine
learning models including LASSO and ridge-penalised logistic regression,
support vector machines (SVM), random forests, boosting, neural networks
and stacked models did not add substantial value over a logistic regression of
case/control status (Bracher-Smith et al., 2022). In schizophrenia, it appears
difficult to improve on the PRS method or incorporate factors into the PRS
that could capture more variation in the liability to schizophrenia. This limits
the progress and identifying the endophenotypes of schizophrenia, and sub-
sequently, hinders the ability to stratify individuals with schizophrenia. For
example, some studies have suggested the schizophrenia PRS is sensitive to
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the positive symptoms of schizophrenia (Allardyce et al., 2017), is associated
to the negative symptoms of schizophrenia (Jones et al., 2016) or not associated
to either (Derks et al., 2012).

The conflict in associations may also be due to the fact that the schizophrenia
PRS only captures a median of 7% of the variance in liability to schizophrenia
when the SNP-based heritability is 24% and the estimated total genetic liability
is 80% (Fusar-Poli et al., 2022). In addition, the schizophrenia PRS does not
capture rare or structural changes which contibute towards the genetic liability
including CNVs.

1.6 Deriving Polygenic risk scores

Structure of this section:

• Issues with PRS derivation

– Sample Overlap (GWA studies)

– Sample Overlap (genotype and training set)

– Population genetics

– Set-based Analyses within PRS

• Types of PRSs

• Performing and comparing PRS across multiple data sets.

• Generating gene-set PRS

• Interpretation of gene-set PRS

1.6.1 Issues with PRS Derivation

There are many systematic problems that must be at least considered before
performing PRS analyses. These issues include sample overlap between GWA
studies (Lin and Sullivan, 2009; LeBlanc et al., 2018), sample overlap between
the genotype data and the training set (aka the GWA study) (Choi, Mak, and
O’Reilly, 2020; Wray et al., 2013), population structure (Sul, Martin, and Eskin,
2018; Márquez-Luna et al., 2017) and integration of set-based analyses (Baker
et al., 2018).
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Sample Overlap

LeBlanc et al. (2018) provided an example of when overlapping samples
could produce spurious correlation in a bi-variate analysis between two GWA
studies. 100,000 SNPs were simulated with a randomised MAF for two studies.
Within these simulated studies, 5,000 subjects were shared out of a total sample
size of 12,000 subjects. After performing a GWA analysis on the SNPs the
two studies independently, a uniform distribution of p-values were produced.
However, (LeBlanc et al., 2018) shows that if you select SNPs from one study
(Study 2) based on the observed SNPs in the other study that have significant
p-values, the distribution of SNPs in study two is no longer uniform and
shows inflated p-values.

Sample overlap within GWA studies therefore affects the genetic signal within
the training set of the PRS, if the training set was a meta-analysis of several
GWA studies. Whether this affects the accuracy of the PRS itself is debatable
and depends on how the GWA meta-analysis was derived. The overlap of
samples between GWA studies does not violate the assumption that there
must be no sample overlap between the testing and the training set within
the PRS, but it may violate the assumption that all SNPs are independent
of each other within the PRS. This is because within a GWA study, the as-
sociation of each SNP to the specified trait is performed one SNP at a time,
and therefore any correlation between SNPs is not accounted for (Choi, Mak,
and O’Reilly, 2020). However, most PRS analyses include a procedure that
accounts for correlated SNPs, which may remove any erroneous SNPs due to
sample overlap, but these procedures are designed to account for the genetic
phenomena of LD rather than sample overlap. More research within this area
would be required to gauge the full affects of GWA sample overlap on the
result of the PRS. Regardless, there are techniques which correct for sample
overlap between GWA studies and they are briefly described below.

One of the first attempts to address overlapping samples in multiple GWA
studies was by Lin and Sullivan (2009), who calculated the correlation between
all studies based on the number of overlapping samples in each study and
adjusted the resulting genetic effect for each SNP in the final meta-analysis
of all the studies combined. However, their solution only applies to multiple
case-control GWA studies which used the same methodology (to produce
the GWA in their analyses (Lin and Sullivan, 2009). A note that an extension
to the proposed approach by Lin and Sullivan (2009) was provided by (Han
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et al., 2016), which assumes heterogeneity between the effect sizes of the
genetic effects (aka a random effects model) within each GWA study. Within
this approach the studies are first ’decoupled’ before performing the meta-
analysis. The correlation between all the studies is reduced to zero, and the
variances of the genetic effects within each study is increased to adjust to the
manipulation of the data (Han et al., 2016).

Most publicly available data sets do not contain genotype information, which
limits the number of research groups able to perform these meta-analyses.
Performing meta-analysis with GWA summary statistics is a potential solu-
tion. Chen et al. (2017) use a similar equation first derived by Lin and Sullivan
(Lin and Sullivan, 2009) to produce a continuous test statistic labelled λmeta

that provides an estimate of the overlapping samples within two summary
level GWA studies. If λmeta is equivalent to one, the samples are presumed
to be drawn from a similar population. If λmeta is less than one, the genetic
effect sizes are too similar due to sample overlap, and if λmeta is more than one
the two cohorts are too dissimilar, potentially due to differing data analysis
protocols or explanations within the genetic architectures of the two cohorts.
λmeta therefore flags the studies which overlap, and Chen et al. (2017) have de-
rived another metric Pseudo Profile Score Regression (PPSR) which generates
a genetic similarity matrix for all samples within the two cohorts. However,
this approach is limited by the requirement of an ’analysis hub’ which is able
to produce multiple randomised PRS for each individual (Chen et al., 2017).

If the hypothesis of the research is to test the association between a PRS and a
specific trait, then sample overlap between the testing and training data sets
can result in the inflation in the magnitude of the association (Choi, Mak, and
O’Reilly, 2020).

For example, assume that a single SNP in the population is not associated with
a specific phenotype (the correlation (R) between the SNP and the phenotype
is zero).

If a sample of the population is selected for a training sample (a GWA study),
the expected R2 value (the variance between the SNP and the phenotype)
from a sample size of N is 1/(N − 1) or 1/N if N is large (Wray et al., 2013).
This is slightly inaccurate as the value in the population is 0, but the training
sample produces a value slightly above 0. For one SNP, this discrepancy is
negligible.
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However, most PRSs contain thousands, to hundreds of thousands of inde-
pendent SNPs (predictors) and therefore a set of these m uncorrelated SNPs
would result in explaining m/N of the variation between SNP and phenotype
(as in a PRS, the SNPs are summed).

For example, when fitted together in a regression analysis in a training sample
of Nt = 100, a set of 10 independent SNPs would, on average, explain 10%
(R2 = 0.10) of phenotypic variance in the training sample under the null
hypothesis of no true association.

If the sample size within the PRS is small but the number of SNPs used is
large, the R2 for the training set may be high by chance and therefore the
variation explained by the predictor may be grossly over-estimated.

If samples overlap between the training and the testing set, then based on the
equations described previously, the bias within the reported association being
proportional to the number of samples that overlap between the training and
the testing data set (Wray et al., 2013; Choi, Mak, and O’Reilly, 2020).

Population Genetics

Population structure affecting the association of a singular SNP to a specific
phenotype within GWA studies was modelled by Sul et al. (2018). Briefly, the
structure of a GWA study assumes that the SNP being tested is independent
from all other SNPs in the individual’s genome. However, if the SNP is found
to be associated with the trait, a proportion of this signal is likely to be caused
by a number of SNPs in the individual’s genome. This proportion of signal is
not modelled within a GWA study. If the population used within the GWA
contains a high proportion of related individuals, the proportion of signal
contributing to the association between a singular SNP and a phenotype
may be substantial and produce false positive results (Sul, Martin, and Eskin,
2018). The logic described above is relevant for any genetic association study,
including PRSs.

Population structure can also affect the PRS if the populations within the
training set (the GWA study) diverge. PRSs are substantially better at pre-
dicting genetic risk in European populations over other populations because
the samples used in most GWA studies which form the training set of the
PRS are European. The correlation between the phenotype predicted by the
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phenotype and the observed phenotype declines the more divergent the GWA
is from the population the PRS is being applied to (Martin et al., 2019).

There is a suggestion that the fine-scale population structure within sub-
populations may affect the predictive accuracy of PRS. In a study by Sakaue
et al. (2020), a combination of linear and non-linear dimension reduction meth-
ods (Principle Component Analysis (PCA) and Uniform Manifold Approximation
and Projection (UMAP); (McInnes, Healy, and Melville, 2020)) discovered sub-
tle genetic differences between the sub-populations of Japan. PRSs differed
substantially between the mainland population of Japan and the population
of the individuals on the islands surrounding the mainland for several traits
including height and BMI (Sakaue et al., 2020).

Set-based Analysis within PRS

Since a PRS is the weighted sum of the individual effects of a group of SNPs, it
can be defined as a set-based analysis. Therefore, the SNPs used in the set can
be controlled to represent, for example, the entire genome (all SNPs within
the dataset), a genic PRS (all SNPs are contained within coding regions on
the genome), or selected based on their location within functionally relevant
biological pathways (SNPs that are located within genes describing a single
biological function, for example, from Gene Ontology (Ashburner et al., 2000)).
However, for traits that contain a liability dispersed across the genome a SNP
set PRS defining a biological pathway will have a lower liability for the trait,
then a SNP set PRS encompassing the entire genome (Baker et al., 2018). The
power of the PRS describing a biological pathway will be lower than the
genome-wide PRS.

Within this chapter, systemic issues involved in PRS analyses will be tackled
from a bioinformatics/computational point of view and will be focused in
onto four major points:

• Types of PRSs

• Performing and comparing PRS across multiple data sets.

• Generating gene-set PRS

• Interpretation of gene-set PRS
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1.6.2 Types of PRSs

PRS can be calculated using several different methodologies and several pieces
of software. A common approach is to measure the correlation structure be-
tween all variants, and use this structure to assess the best genome-wide
prediction. Vilhjalmsson et al. (2015) created LDpred, which uses a Bayesian
approach to this method. The PRS is created by initially calculation the poste-
rior mean effects from the training data set. This is achieved by conditioning
on a genetic architecture prior and the LD structure from a reference panel
(2015). There are two parameters to the genetic architecture prior; the heri-
tability explained by the phenotypes and the proportion of causal variants
(2015).

Novel methodologies which extend the Baysian approach are currently in
development (Lloyd-Jones et al., 2019).

Alternatively, the correlation structure between variants can be calculated
using statistical or regularisation techniques including LASSO regression
(Tibshirani, 1996). Mak et al. (2017) created lassosum (https://github.com/t
shmak/lassosum) an R package that uses penalised regression to adjust the
effect sizes of the PRS.

Another common approach is to initially ’clump or prune’ the data to account
for the correlation structure between SNPs and then to sum all the SNPs
meeting a Pt to gauge the proportion of causal SNPs. This methodology is
currently implemented within PRSice (Choi, Mak, and O’Reilly, 2020) and
PLINK v1.90 (Chang et al., 2015) and will be used within this thesis. A detailed
description of this method is provided below in 1.6.3.

1.6.3 PRSs across multiple data sets

Chapter 1.4 explains that a PRS requires two data sets to produce genetic
profiles; A target data set with genotype information for each individual, and
a training data set which describes the effect of each mutation on the trait of
interest. For this study we have used a training set in the form of a large .txt

file as displayed in Table 1.1.

https://github.com/tshmak/lassosum
https://github.com/tshmak/lassosum
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TABLE 1.1: Raw training set input file describing the IQ3 GWA
study§

SNP† UNIQUE_ID† CHR∗ POS∗ A1∗ A2 EAF_HRC Zscore stdBeta∗ SE† P∗ N_analyzed minINFO† EffectDirection‡

rs12184267 1:715265 1 715265 t c 0.04 0.92 6.88e-03 0.01 0.35 225955 0.81 -???????????????++?
rs12184277 1:715367 1 715367 a g 0.96 -0.66 -4.91e-03 0.01 0.51 226215 0.81 +???????????????–?
rs12184279 1:717485 1 717485 a c 0.04 1.05 7.91e-03 0.01 0.29 226224 0.81 -???????????????++?
rs116801199 1:720381 1 720381 t g 0.04 0.30 2.22e-03 0.01 0.76 226626 0.81 -???????????????++?
rs12565286 1:721290 1 721290 c g 0.04 0.57 4.17e-03 0.01 0.57 226528 0.81 -???????????????++?

§Only first 5 rows included. The data set displayed here is identical to the raw data

set that can be downloaded from https://ctg.cncr.nl/software/summary_stati

stics. Full description of the data set is also found at the aforementioned hyperlink
∗Columns must be present for PRS analysis
†Columns useful for PRS analysis
‡Columns potentially problematic to read into various software

In this table, from left to right, the columns labelled SNP (reference snp
(cluster) ID (rsID) for each SNP), and UNIQUE_ID (Chromosome and base
pair for each SNP) do not need to be present in order to produce a PRS
but are supplemental to a PRS analysis. CHR (chromosome number), POS
(base-pair position) and A1 (allele from which the effect size is derived) are
required in order to produce a PRS. EAF_HRC (effect allele frequency in
the Haplotype Reference Consortium reference panel Haplotype Reference
Consortium reference panel (HRC)) and Zscore (metric from the meta-analysis
that produced the GWA study) do not need to be included in order to create a
PRS.

stdBeta (the standardised beta of A1) needs to be included, while Standard
Error (SE) does not need to be included but can be used as supplemental infor-
mation within a PRS analysis. For example, if within an experiment, several
gene-set PRS with varying numbers of SNPs within each set are created and
one gene set produces results disparate from the other PRS sets, Knowing the
effect sizes and SEs of these individual SNP may provide insight into why the
results are disparate. For example, a set might contain a single SNP with an
unusually high effect size that explains most of the signal within the PRS SNP
set.

P (the p-value of the SNP) is required to produce a PRS.

The minINFO (INFO score of each SNP) columns doe not need to be present in
order to produce a PRS but is supplemental to a PRS analysis. INFO scores are
created from a program called IMPUTE2 and present a metric for the quality
of the imputation for each SNP. Imputation itself allows for the genotyping

https://ctg.cncr.nl/software/summary_statistics
https://ctg.cncr.nl/software/summary_statistics
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of variants used for the GWA study that have not been directly genotyped by
analysing the LD structure of the SNPs that have been genotyped (Li et al.,
2009). This allows for more power within the GWA study without the extra
time and monetary cost of genotyping millions of SNPs.

The EffectDirection column may be problematic to read into various software
because each row is almost entirely made up of special characters instead of
a number or a character. The ’?’ symbol within the EffectDirection column
indicates a missing value.

The target data set is usually in either a dosage format or a Best Guess
Genotype (BGG) format. Briefly, dosage data is genotype data that has been
previously imputed by imputation software (for example IMPUTE2 (Howie,
Donnelly, and Marchini, 2009)). As mentioned previously, imputation allows
for SNP to be used which have not been directly genotyped. In the output file,
this results in a numerical values for each SNP called a dosage. A dosage is
the linear transformation of the posterior genotype probabilities. For example,
if a SNP is recorded as being ambiguous (A/B within the illumina and/or
DBsnp nomenclature (Nelson et al., 2012)), and the genotype probabilities are
A/A = 0.1; A/B: 0.4; B/B: 0.5, then the dosage calculation for this particular
SNP will be 0 ∗ A/A + 1 ∗ A/B + 2 ∗ B/B = 0.4 + 2 ∗ 0.5 = 1.4.

While dosage data is robust (as it takes into account all three probabilities per
SNP), it may not be suitable for an analysis which relies on a prior assumption
of knowing what the most frequent genotype is within a population. In
this circumstance, the BGG is calculated, whereby, per SNP, the genotype
with the highest probability past a certain threshold is used. However, if the
threshold was 0.8, then using the example above, since the highest probability
for a genotype is B/B: 0.5, the SNP would be returned as missing. If the
combinations were instead: A/A: 0.05; A/B: 0.05, B/B: 0.9, then the genotype
B/B would be returned.

Only BGG was used in this thesis and is referenced as the PLINK v1.90
.bed/.bim/.fam format. The ’human readable’ format is contained within
the .bed and .bim files. These two files explain the data contained within the
.bed file. The .bim files contains information about the BGG calculated SNPs
located within the samples; information about the samples used to calculated
the genotypes is contained within the .fam file. Further information about the
files is described in Figure 1.8.

The PLINK v1.90 file format requires a .bim file which supplies information
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about each SNP within the data set. It also required a .fam file which provides
information on the individuals within the data set. The final file, the .bed file,
is a binary file which is the only file that is read by the software PLINK and
contains all the information provided by the .fam and the .bim file.

To produce an accurate and reliable PRS, there are seven general analysis
steps that must be performed as outlined in Figure 1.9.
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FIGURE 1.8: PLINK v1.90 file format. PLINK v1.9 (Chang et al.,
2015) requires three files as an input; two human readable files
indicated here by ’.bim’ and ’.fam’ and a binary file indicated
by ’.bed’. CHR = Chromosome, GD = Genetic distance, PD =
Physical position, A1 = Allele 1, A2 = Allele 2. PID = Paternal
ID, MID = Maternal ID. Sex can take the values of: 1 = male,
2 = female; other = unknown. Affection can take the values of
either 1 = unaffected, 2 = affected; other = unknown. Further
information found here: https://www.cog-genomics.org/pli

nk2/formats.

https://www.cog-genomics.org/plink2/formats
https://www.cog-genomics.org/plink2/formats
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FIGURE 1.9: PRS analysis steps. Step 1: Identify a ’discovery’
(or alternatively named ’training’) data set from a GWA study.
Step 2: Identify a ’target’ (alternatively named ’testing’) data
set. The target data set must contain genotype information for
each individual. There must not be any sample overlap between
training and testing data sets. Step 3: Establish the number of
SNPs in common between testing and training data set. Step
4: Apply QC to the training data set. Remove low frequency
SNPs, indels (insertion-deletion mutations), low quality variants,
and the MHC region. Step 5: Construct a list of SNPs after
accounting for LD structure. Step 6: apply a Pt to all SNPs. Step
7: Generate a PRS in the testing data set. Diagram provided by

Katherine Tansey.

Steps 1 and 2: Identifying Testing and Training data sets

After identifying the input data sets for PRS analysis, coherence must be
achieved between both training set and testing set. Coherence is achieved
when, a) the SNP identifiers are identical between both training and testing
data set and b) Both data sets have undergone stringent quality control steps.

If a PRS analysis is only performed once, this task is fairly simple if the scripts
are manually performed. First, a PLINK v1.90 command is used to remove
any un-wanted and/or irregular SNPs. Then a few R commands are used to
performed quality control and merge the training and testing sets together
on the SNP ID column. Finally, LD is accounted in the combined training
and testing set by using another PLINK v1.90 command. By examining Table
1.1 and the ’.bim’ file in Figure 1.8 for example, there are multiple columns
of data that are almost entirely compatible between both training and target
set including ’CHR’ and ’SNP’. Additionally, some columns including ’PD’
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and ’POS’ contain similar information but have column headings which are
slightly different.

Issues arise when standardising multiple different training sets and testing
sets. Each PRS analysis should aim to be reproducible. Human error becomes
more and more likely to impact the reproducibility of the results as more data
sets are processed for each PRS. Examine the differences between Table 1.3
(which describes the raw training data set from PGC1), and Table 1.2 (which
is a copy of Table 1.1 displaying the raw IQ3 data set).

TABLE 1.2: Raw training set input file describing the IQ3 GWA
study§

SNP† UNIQUE_ID† CHR∗ POS∗ A1∗ A2 EAF_HRC Zscore stdBeta∗ SE† P∗ N_analyzed minINFO† EffectDirection‡

rs12184267 1:715265 1 715265 t c 0.04 0.92 6.88e-03 0.01 0.35 225955 0.81 -???????????????++?
rs12184277 1:715367 1 715367 a g 0.96 -0.66 -4.91e-03 0.01 0.51 226215 0.81 +???????????????–?
rs12184279 1:717485 1 717485 a c 0.04 1.05 7.91e-03 0.01 0.29 226224 0.81 -???????????????++?
rs116801199 1:720381 1 720381 t g 0.04 0.30 2.22e-03 0.01 0.76 226626 0.81 -???????????????++?
rs12565286 1:721290 1 721290 c g 0.04 0.57 4.17e-03 0.01 0.57 226528 0.81 -???????????????++?

§Only first 5 rows included. The data set displayed here is identical to the raw data

set that can be downloaded from https://ctg.cncr.nl/software/summary_stati

stics. Full description of the data set is also found at the aforementioned hyperlink
∗Columns must be present for PRS analysis
†Columns useful for PRS analysis
‡Columns potentially problematic to read into various software

TABLE 1.3: Raw training set input file describing the PGC1 GWA
study§

snpid† hg18chr∗ bp∗ a1∗ a2 or∗ se† pval∗ info† ngt CEUaf

rs3131972 1 742584 AA G 1.03 0.08 0.76 0.16 0 0.16
rs3131969 1 744045 A G 1.02 0.08 0.78 0.22 0 0.13
rs3131967 1 744197 T C 1.02 0.09 0.79 0.21 0 .
rs1048488 1 750775 T C 0.97 0.08 0.76 0.16 0 0.84
rs12562034 1 758311 A G 1.00 0.08 0.99 0.19 3 0.09

§Only first 5 rows included. Full description of data set at:
https://www.med.unc.edu/pgc/results-and-downloads
∗Columns must be present for PRS analysis
†Columns useful for PRS analysis

There are several differences between these two data sets. The heading for
the SNP identifier is different between Table 1.2 and Table 1.3, there are
two SNP identifier columns in Table 1.2 and one in Table 1.3, almost all
columns within Table 1.2 are upper case while almost all columns in 1.3 are
lower case, the genome build is included within the heading of stating the

https://ctg.cncr.nl/software/summary_statistics
https://ctg.cncr.nl/software/summary_statistics
https://www.med.unc.edu/pgc/results-and-downloads
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chromosomes in Table 1.3 but not included within Table 1.2, and the OR is
used as a measurement of effect size in Table 1.3 but the standardised beta
coefficient is used within Table 1.2.

If the above process was not automated, a single script per data set would
have to be created, because although the processing steps are the same for
each data set, the inconsistencies between each training set would need to be
accounted for. Every inconsistency would need to be recorded to enable that
the script per training set, is reproducible. Additionally, the steps to create a
PRS after this standardisation step would have to be repeated for each training
data set. These PRS steps are standardised using the PLINK v1.90 software so
these analysis steps would be repeated verbatim for each training set.

Automation would remove the requirement to record all the inconsistencies
between training sets and remove the requirement to create more than one set
of scripts for each PRS. Instead of a script per training set, a program would be
used that requires a standardised input for the training set. The inconsistencies
between each training set would either be accounted for before the training
set is standardised within the program, or if the variations between training
sets are limited, can be accounted for within the program itself. The PRS is
stringent and reproducible.

There are three options that are available. Either to use pre-existing software
that can perform the majority of the PRS analysis, account for all training data
sets that will be used within the project, or build a full PRS bioinformatics
workflow specific to a variation on a PRS analysis,

Using pre-existing software would save a large amount of time to create
all PRSs for the project and does not require a sufficient understanding of
computer science. However, the quality of these programs, especially the
programs created in academic environments, is an unknown.

In a typical software development project, the quality control of the program
is extremely rigorous. In an ideal environment, each software project requires
between five to ten individuals (Ahmed, Arshad, and Mahmood, 2018) and
contains an infrastructure that requires that the program is separated into
simplistic units where each individual unit is tested to ensure it matches
several criteria including the redundancy, the unit size, the complexity of the
unit and how the unit in question interacts with the other units in the program
(Baggen et al., 2011). In an academic environment, the quality of the software
aligns with the peer-review process, a piece of software is more likely to be
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frequently used and trusted by multiple individuals if the piece of software
is published. The units of the program are not examined, and the quality is
examined via the expected outputs that the software produces. For example,
for the PRS software PRSice (Choi and O’Reilly, 2019), less than 5% of the
units have been tested and the space between the last two releases was one
year and one month https://github.com/choishingwan/PRSice/releases/

tag/2.3.5.

Using a singular script per data set is acceptable for analyses involving one
or two data sets or an analysis that is unlikely to be repeated in the future.
However, if multiple data sets are used or if multiple PRSs are required, then
a script would have to be created for each PRS. These scripts would need
to be accurately documented in order to differentiate between each analyses.
Each script would contain analogous code, and the time taken to complete the
task would be directly correlated to the number of data sets and the number
of PRS required.

A bioinformatics workflow has an initially slower preparation time to produce
multiple PRSs, but the analysis is generalised across multiple input data sets
and multiple parameters to produce the PRS. The time taken to complete the
task is not correlated to the number of data sets or the number of PRS required
for the task. The creation of the workflow is not as stringent as software, but
because the goal is to speed up analyses rather than generalisation, there is
less of an obligation for the time-consuming task of separating the workflow
into testable units.

A more complex issue involves the SNP identifiers in both training and target
data sets.

Step 3: Determining SNPs in common between Target and Training data
sets

For most GWA studies released into the public domain, the identities of
each mutation are commonly assigned identifiers known as the rsID from
the Single Nucleotide Polymorphism database (dbSNP) (Sherry et al., 2001).
Within the Bioinformatics community, there is a common mis-conception that
these identifiers are unique descriptions for each SNP. Due to the way that
genome builds are created (The position of SNPs are defined by a reference
genome whereby a selection of individuals are sequenced and the resulting
genome fragments are aligned together to create a reference human genome)

https://github.com/choishingwan/PRSice/releases/tag/2.3.5
https://github.com/choishingwan/PRSice/releases/tag/2.3.5
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and the way that SNPs are assigned identifiers, duplications between rsIDs
are possible and are unfortunately, fairly common.

Before a SNP is given a rsID, it is a submitted snp ID (ssID) when it is initially
submitted to dbSNP. This submission includes the sequence of the SNP and
the sequence of the surrounding flanking regions either side of the SNP in
question. Through multiple computational algorithms, QC and using Basic
Local Alignment Search Tool (BLAST) (Altschul et al., 1990) or MEGABLAST
(Lobo, 2008), the flanking sequence is aligned to the appropriate contig on the
appropriate genome build (Camacho et al., 2009; Morgulis et al., 2008). BLAST
rapidly aligns and compares an input sequence to a database of known se-
quences (Lobo, 2008). MEGABLAST performs a similar function but compares
the input sequence to sequences with only minor variations and can handle a
larger input sequence (Lobo, 2008).

If there are multiple ssIDs at the same location, the identifiers are ’clustered’
together and given a rsID. If there are no other ssIDs or rsIDs at that location,
the ssID is converted into a rsID (McEntyre and Ostell, 2002).

The SNP FAQ archive (SNP FAQ Archive [Internet] 2005) states a number of
situations in which there can be the same rsIDs at multiple physical location on
the same chromosome. There are three possible reasons for this, the flanking
sequence for the ssID was too short when it was submitted, the SNP is in
a repetitive region of the chromosome, or there are variations in the SNPs
flanking sequence. The problem is not limited to each chromosome either, as
a rsID can map to multiple chromosomes if the flanking region of the SNP is
in a particularly repetitive region of the genome build.

Depending on the quality and age of the GWA study in question, it is also
entirely possible that multiple rsIDs will describe the same physical locations
on the genome. In short, SNP discovery took place before the human genome
was "built". If multiple rsIDs were accidentally assigned to the same physi-
cal location, the dbSNP team merged the identifiers into one rsID in a later
genome build (McEntyre and Ostell, 2002; Sherry et al., 2001).

All three data sets referred to in this section (Figure 1.8, Tables 1.1 and 1.3)
use rsIDs as the identifiers for each SNP. However, PGC1 uses the University
(of) California Santa Cruz (UCSC) hg18 / National Center (for) Biotechnology
Information (NCBI) b36 genome build, which means that not all BP positions
for each rsID in PGC1 will match the same rsIDs in the other two data sets.
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In order to keep to a standardised PRS procedure, I decided that all data
sets should be converted to the same genome build before processing. Then,
instead of using rsIDs as the unique identifier for each SNP, the chromosome
number and the BP position would be combined (eg for Table 1.1, rs12184267 =
1:715265) and any duplicated identifiers would be removed from the analysis.

Step 4: Quality Control

It is standard procedure in most PRS analysis to remove rare SNPs, to remove
SNPs of low genotyping quality, to filter variants which deviate from Hardy-
Weinberg equilibrium and remove SNPs with a high genotyping missingness.
As all of these steps can be achieved with PLINK v1.9 commands, automation
of these steps would save considerable time to produce PRS (Chang et al.,
2015).

In addition, a more complex but systematic step is the removal of variants
with complementary genotypes (for example the variant A:T or the variant
G:C). This issue is under-reported. For example, Allele frequencies for a
variant within DRD2, a gene linked to schizophrenia, was misrepresented
(Sand, 2007). DeoxyriboNucleic Acid (DNA) is composed of two anti-parallel
strands within the human genome. When the DNA is genotyped for each
data set, there is ambiguity on which strand was called for each variant. Since
most GWA studies do not state the strand in the publicly released data sets,
SNPs with alleles ’A:T’ or ’C:G’ must be removed from both data sets in a PRS
as they are complementary bases and it is therefore impossible to tell which
strand the variant was called from. To avoid substantial data loss, other alleles
(eg A:G or G:A) may be flipped to reach a consensus between the two data
sets.

Step 5: Clumping

Clumping removes the genetic signal of LD from the PRS. For multiple
genome-wide PRS this is one PLINK v1.9 command repeated for each PRS.
Clumping becomes computationally complex for gene-set PRS. See section
1.6.5 for further information.
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Step 6: P-value thresholding and Creating genomic profiles

A PRS for any one individual is the summation of their genotypes at a selection
of variants, weighted by the effect sizes of the variants on the trait of interest.
If the effect sizes are unadjusted, the effect size estimates could be poor with a
high standard error. One of the methods to address this issue is to use Pt to
filter the selection of SNPs to those with training set P-value below a certain
threshold. All excluded SNPs have an effect size estimate set to zero. At
a lower Pt, the quality of information for the trait (likelihood the variant is
causal) will be substantially higher but the amount of data available will be
low. The opposite will be true at a higher Pt.

The best Pt is selected through a process analogous to tuning parameter op-
timisation, multiple Pt are processed and the Pt which produces the most
accurate PRS for the trait of interest is selected. The definition of the ’most
accurate’ PRS is complex and trait-dependant. Currently, PRSs for many traits
are weak proxies for true genetic liability (phenotypic variance explained
for many traits is approximately R2 < 0.01). When testing for association,
any significant result with a low effect size may be caused by uncorrected
confounding effects. In addition, pleiotropy must also be considered when
comparing PRS from multiple traits as there is likely to be shared genetic
aetiology between the vast majority of phenotypes. For example, a higher
predisposition to cognitive performance will, on average, lead to greater
educational attainment and higher socio-economic position. A high socio-
economic position is associated with the vast majority of diseases, therefore, a
genetic component of most diseases will include the genetic aetiology of cog-
nition. With a large enough sample size, associations will be found between
the genetics of cognition and the disease (vertical pleiotropy) and between
different diseases (horizontal pleiotropy).

In these instances, it may be preferable to obtain and examine a selection of
pre-determined Pt as it may inform the strength of the association between
the trait(s) in the PRS and inform whether the association was caused by
uncorrected confounding genetic effects.

The process of summing genotypes for the creation PRS profiles are simple
PLINK v1.9 commands (Chang et al., 2015).

Step 7 (see Figure 1.9) is difficult to automate as in most circumstances, the
evaluation of a PRS is performed using logisitic or linear regression which
contains covariates and/or a sample reduction stage. Covariates are usually
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specific for the data set that they were derived from and it may be prudent
to select a subset from the available covariates, depending on the scientific
hypothesis that is asked. Concordantly, samples may be excluded or included
dependent on the scientific hypothesis and/or the inclusion criteria covering
an array of what may be tens to hundreds of available phenotypes.

1.6.4 Clumping + thresholding vs other methods

For a whole genome PRS, clumping and Pt selects variants that are only
weakly correlated with each other, for use within the PRS. In computational
terms, it selects the most significant SNP below the Pt iteratively, computes
the correlation between this SNP and all other nearby SNP within a genetic
distance of w (also below the Pt), and removes all SNPs that are correlated
with the index SNP beyond a pre-selected value r2

c . The aim of this procedure
is to balance between selecting the most predictive SNPs while simultane-
ously reducing statistical noise. The advantages of this procedure is that it is
computationally simple to perform and more computationally efficient past
the clumping stage (as less SNPs usually equates to less data to process) (Privé
et al., 2019). It also removes SNP that are in LD with each other ad therefore
prunes redundant correlated effects from the PRS.

The balance between power and noise is also controlled by the user with the
hyper-parameters of wc, r2

c and Pt. While defaults are in place for software in-
cluding PLINK and PRSice, these parameters will likely change depending on
which trait or disease is being analysed. Dependent on the hyper-parameters
selected, the clumping procedure may remove independently predictive vari-
ants that are correlated with other SNPs (Privé et al., 2019). The power of
the PRS is also reduced as the number of SNP is reduced significantly after
performing clumping and thresholding.

Other methods including LDpred, lassosum and PRS-CS have been derived
which aims to account for the LD while using all the SNPs for the PRS (Vil-
hjálmsson et al., 2015; Mak et al., 2017; Ge et al., 2019). The simplest method to
account for LD is to use linear regression to account for redundant correlated
effects, but this results in overfitting when used with a large amount of covari-
ates (aka each SNP) in the model. The data is spread too thinly and results in
unstable effect estimates and large standard errors. Another option is to use
a baysian approach as used in LDpred, a tool to calculate PRS (Vilhjálmsson
et al., 2015). in LDpred the posterior mean effects size (the effect size for
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each SNP when calculating the PRS) is calculated from the training set by
conditioning on a genetic architecture prior and an LD reference panel prior
(eg. the 1000 genomes project genotype data) (Vilhjálmsson et al., 2015). The
genetic architecture prior is calculated using a heritability estimate from the
the training set and the fraction of causal SNPs for the trait (aka the fraction of
SNPs with non-zero effect sizes). This allows for better power than clumping
and thresholding as all SNP are used. However, LDpred relies on a reference
panel for estimation of LD and if the reference panel population structure is
too dissimilar from the population structure within the training set, the power
of the prediction may decrease (Vilhjálmsson et al., 2015). The same reasoning
applies if the population structure is heterogenous across cohorts used within
the training set. LDpred also uses a point-normal mixture prior distribution
to simulate the genetic architecture prior and this may not be equivalent to a
true genetic architecture.

Mak et al (2017) improved on the performance and predictive ability of the
PRS using LASSO penalised regression. Penalised regression overcomes the
overfitting problem by incorporating a penalty term into the large number of
predictors (aka SNPs) (Newcombe et al., 2019). The likelihood of the regres-
sion coefficients is modified by the penalty term, with a large penalty leading
to the exclusion of many SNPs (Newcombe et al., 2019). The penalty term is
optimised depending on the predictive performance in the testing set. Mak
et al (2017) disputed the performance of LDpred and claimed that lassosum
provided a better predictive power of the PRS, but the main advantage of
lassosum is its computational speed. It was faster than LDpred and with 500
participants and 8,000,000 SNPs, lassosum took around 15 min without paral-
lel processing. This is comparable with the computational speed of clumping
and thresholding.

PRS-CS (a bayesian method) attempts to tackle the limitation of heterogeneity
between the reference set and the training set and/or heterogeneity within the
cohorts of the training set by using a different prior, the SNP effect sizes (Ge
et al., 2019). Shrinkage applied to each SNP is adaptive to the strength of its
association signal in GWA study (Ge et al., 2019). Despite the improvements
listed above, PRS is still limited in its prediction accuracy by the training set
sample size, heritability and genetic architecture of the trait being predicted,
of which most bayesian PRS methods currently require.
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1.6.5 Performing gene-set PRSs

PRSs are a standard methodology to assess the genetic liability to human
disorders or phenotypes with a large common genetic risk component. As-
sessment of liability with PRS can include risk prediction, sample stratification
or can be used to dissect the relationships between contrasting subphenotypes
(e.g. see Escott-Price et al., 2015; Allardyce et al., 2018; Foley et al., 2017,
respectively).

It is of significant interest to incorporate a biological pathway component into
the PRS. The aim would be to test whether a set of variants, weighted by the
effect of the genetic risk of the trait of interest, is associated at the genome-
wide or gene-set specific level (a gene-set PRS). A gene-set PRS would still
aim to assess the genetic liability to human disorders or phenotypes, but the
advantage is that the gene-set PRS would now confer an extra dimension of
describing potentially biological informative features of the trait of interest
(Baker et al., 2018). These PRS could then for example, be used to prioritise
genes or biological pathways for further functional studies (Baker et al., 2018).

One potential method to create a gene-set PRS is to partition the polygenic risk
into SNP sets describing genes or biological pathways which capture a large
percentage of the common variation for the trait of interest. A conceptual
visualisation of how this is performed in the training set of the PRS is described
in Figure 1.10.
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(A) GWA study of PGC2

(B) abnormal behavior gene-set PRS

FIGURE 1.10: Concept of a gene-set PRS.

Clumping

There are many computational consequences of attempting to perform a gene-
set PRS across multiple data sets. When identifying the SNPs in common
between testing and training sets, extra steps are required to ensure that
accurate and reliable PRSs are produced. The boundaries between gene sets
need to be correctly defined and mapped onto the ’consensus’ identifiers
between the testing and training data sets. Each gene-set must be tested to
ensure there is at least two SNPs within the gene-set PRS and supplementary
information including the number of SNPs within the gene-set must be logged.

However, most consequences to performing a gene-set PRS over a genome-
wide PRS do not occur until pruning or clumping (step 5 in Figure 1.9).
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Pruning is an algorithm in PLINK v1.90 that removes the confounding genetic
signal due to LD. Each SNP is ordered based on its position in the genome.
The first SNP is taken and the correlation between it and the following SNPs
is computed (for example the next 50 SNPs). When the correlation coefficient
between the first SNP and the other 50 SNPs is observed beyond a set thresh-
old provided by the user, PLINK v1.90 removes one SNP from the correlated
pair, keeping the one with the largest MAF. PLINK v1.90 continues on with
the next SNP which has not yet been removed.

Clumping is an alternative algorithm in PLINK v1.90 that removes the con-
founding genetic signal due to LD. The computational procedure of clumping
is also performed by the software PLINK v1.90 but the broad procedure is as
follows:

1. A ’window’ is first defined where variants are included in the clumping
procedure if they physically lie within a specified length of the genome.

2. A statistic demonstrating importance (usually a P-value) is used to sort
SNPs within the specified window.

3. The first SNP (e.g. the most important/significant SNP) is selected as
the index SNP and PLINK v1.90 removes all SNPs in this window that
are correlated past a specified threshold with the index SNP.

4. After all relevant SNPs are removed, the next most significant SNP is
selected as the index SNP. No index SNP is ever removed from the
analysis.

Both methodologies are equally proficient at removing confounding genetic
signal. However, in order to obtain a PRS with a higher predictive power,
clumping is preferred. In pruning, the SNPs are randomly removed but with
clumping, the SNPs with the strongest signal (lowest p-value) are preferen-
tially retained.

In the case of gene-set PRS if the clumping procedure was performed before
defining genic boundaries for each gene-set, the accuracy of the gene-set
PRS would be affected. Each gene-set only confers the genetic predisposition
to each trait with variants located within the physical location of the gene-
set and the regulatory regions of the gene-set. If clumping was performed
including all variants genome-wide, then the ’window’ defined by PLINK
v1.90’s clumping procedure would include SNPs that are not located with the
gene-set. Therefore, some SNPs might be unfairly removed from the analysis
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if an index SNP lies outside a genic region. The genic regions must be defined
before clumping is performed.

Missing SNPs

Figure 1.10 highlights a further computational issue when performing gene-
set PRS. Due to the large size of genotype data that now exists (for example
CLOZUK (Pardiñas et al., 2018) is 49 GigaBytes (GB) in size when com-
pressed), many analyses are split so that each chromosome of input data
sets use parallel processing methods (e.g. a supercomputer). Analysis of
Genome-wide PRS is simple with this method of processing as it is almost
guaranteed that at least one SNP will be on each chromosome. The data set is
initially split by chromosome, and each chromosome is processed in parallel.
In the case of Figure 1.10b, there are multiple chromosomes where no SNPs
are present. Depending on the gene-set, the chromosomes containing no
genetic information can change drastically.In addition, if the input gene-set is
relatively small (10-20 genes), then when the PRS is limited by the Pt, a low
threshold (e.g. p-value of 5e-08) might contain zero SNPs. As of 30/12/2021,
there are over 650,000 gene-sets stratified for homo-sapiens within the gene
ontology database (see http://geneontology.org/stats.html) and six
gene-sets significantly associated with schizophrenia. Correcting for missing
SNPs for each gene-set individually would be time-consuming. It would be
beneficial to optimise this area of gene-set PRS processing.

1.6.6 Interpretation of gene-set PRSs

Genome-wide PRSs are designed to confer information about the identity
of individuals with a high risk for a complex trait. Information is however,
lost on the individual’s genetic profile which may be informative for patient
stratification and evaluation of treatment response. A gene-set PRS aims to
account for genomic substructure by conferring the risk of a trait within a
biological pathway. In order to test whether the biological component of the
gene-set PRS has an important effect for the trait in question, the gene-set
PRS should confer information about the trait that would not otherwise be
visible within a genome-wide PRS. However, as there are up to hundreds
of thousands of gene-sets to test against, it would be optimal to compare
the gene-set PRS with the genome-wide PRS to ensure that the gene-set PRS

http://geneontology.org/stats.html
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confers signal for the trait. A direct comparison of the gene-set PRS and the
genome-wide PRS would be unfair as, the intronic regions of the genome
are excluded from a gene-set PRS, and due to the significant amount of
information conveyed by the genome-wide PRS over the gene-set PRS. A PRS
defining only genic regions of the genome (a genic PRS) would be an ideal
comparison for any gene-set PRS. This genic PRS would exclude the intronic
regions of the genome from the genome-wide PRS.

In addition, the optimal Pt for a gene-set PRS might be entirely different from
a genome-wide or a genic PRS. The ideal analysis pipeline for a feasible
interpretation of a gene-set PRS would therefore consist of the simultaneous
production of a:

• Genome-wide PRS

• Genic PRS

• Gene-set PRS

at a selection of Pt for all PRS.

Ideally, once the PRSs are produced, the input gene sets and Pt would be
selected and used to explore how the burden of the genetic risk for the trait
varies across the gene-sets.

1.7 Schizophrenia gene-set PRS in Imaging

Genetics

There is an increasing number of theories suggesting that abnormalities in
early brain development occurring at birth and late development abnormali-
ties around the onset of psychosis, appear in schizophrenia patients (Wein-
berger, 1987; Kelly et al., 2018). Neuroimaging studies have the potential
to examine whether these two models of brain development are causal for
schizophrenia.

1.7.1 History of imaging in schizophrenia

Imaging techniques are broadly described into three categories:

• Brain chemistry
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• Brain function

• Brain structure

Brain chemistry

Neurotransmitter receptors including 5HT-1/5HT-2, D2/D3, NMDA have
been examined using Positron Emission Tomography (PET), Single Photon
Emission Computed Tomography (SPECT), Magnetic Resonance Spectroscopy
(MRS) and Proton Magnetic Resonance Spectroscopy (PMRS) for their as-
sociation with schizophrenia (Keshavan et al., 2020). These analyses have
produced mixed results. For example, a number of PET studies have found a
reduced number of 5HT-1 receptors within the pons and the midbrain, and a
reduced number of 5HT-2 receptors in the neocortex (Nikolaus, Müller, and
Hautzel, 2016). However, there was no difference in the binding of serotonin
transporters of schizophrenia patients over controls. Similarly, for investi-
gations into the glutamate system, there is a suggestion of NMDA receptors
in schizophrenia patients from PMRS, but the levels of the neurotransmitter
GABA was not significantly different between schizophrenia patients and
controls (Schür et al., 2016). Replication was not observed when using PET
and SPECT.

The most replicable studies have been on receptors to the neurtransmitter
dopamine, where PET has shown direct evidence that D2/D3 receptors are
the primary site of action of most antipsychotic drugs (Stone et al., 2009).
However, neurotransmitters do not work in isolation and the system of neu-
rotransmitters within the brain will likely change with the progression of
schizophrenia.

Brain function

The first neuroimaging studies in schizophrenia used Xenon inhalation, SPECT
and PET to measure cerebral blood flow as it is coupled to brain metabolism
(Ingvar and Franzén, 1974; O’Connell et al., 1989). Metabolism itself was di-
rectly measured using PET. Improvements in neuroscientific methods allowed
for the analysis of neural activity and microvascular function in schizophrenia
using Blood Oxygenation Level Dependent functional Magnetic Resonance
Imaging (BOLD fMRI) and Arterial Spin Labeled (ASL) perfusion MRI (Ke-
shavan et al., 2020).



Chapter 1. Introduction 57

In summary, these techniques have suggested an altered metabolic/hemody-
namic activity in the frontal, cingulate, parietal and occipital brain regions of
schizophrenia patients, and hyperactivity in the putamen and sensorimotor
regions of schizophrenia patients.

Brain structure

There is previous evidence of smaller hippocampal, amygdala, thalamus,
nucleus accumbens, and intercranial volumes in schizophrenia patients as
compared with controls, as well as larger pallidum and lateral ventricles in
schizophrenia patients as compared with controls (Keshavan et al., 2020).
There are also reports of widespread cortical thinning and a smaller cortical
surface area in schizophrenia patients. There is growing traction that the
disconnectivity hypothesis (whereby the disorder involves abnormal or in-
sufficient communication between functional brain regions) first proposed
by Friston and Frith (1995), may be the core pathology of schizophrenia.
Techniques including DTI have allowed the examination of the white matter
microstructure of various cortical and subcortical regions (Keshavan et al.,
2020). Computing inter-regional correlations of regional gray matter morphol-
ogy and complex network analysis computations can aid in the examination
of the disconnectivity hypothesis (Wheeler and Voineskos, 2014).

However, the majority of these studies examine patients who have chronic
schizophrenia, or patients taking at least one anti-psychotic medication. It
would be useful to examine to what extent, genetics is causal to the pathogen-
esis of schizophrenia in the brain.

1.7.2 ENIGMA consortium

In 2009, A consortium named the Enhancing Neuroimaging Genetics through
Meta-Analsis (ENIGMA) was formed with the aim of discovering how the
common genetics of humans relate to brain measures derived from Neu-
roimaging methodology. This goal required large data-sets which could only
be achieved through the collaboration of multiple working research groups,
up to 50 by the time the first few papers by ENIGMA were published (Stein
et al., 2012; Hibar et al., 2015). These papers investigated which common vari-
ants affected mean-bilateral hippocampal, total, intercranial brain volumes
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(Stein et al., 2012) and subcortical brain volumes (Hibar et al., 2015) through
the use of GWA studies and Magnetic Resonance Imaging (MRI) scans.

With respect to schizophrenia, the first study was by Van Erp et al (2016) which
found that there were differences in subcortical brain volumes between 2028
schizophrenia cases and 2540 controls with smaller hippocampus, amygdala,
thalamus, nucleus accumbens and intracranial volumes, and larger pallidum
and lateral ventricle volumes. In a follow up study approximately doubling
the sample size (4474 cases, 5098 controls), the cortical brain region was anal-
ysed and found that schizophrenia patients had a widespread thinner cortex
and a smaller surface area of the cortex compared with controls (Erp et al.,
2018). ENIGMA developed a Diffusion Tensor Imaging (DTI) protocols to
analyse microstructure abnormalities, which are undetectable on traditional
MRI scans (Thompson et al., 2020; Kochunov et al., 2018). Kelly et al. (2018)
investigated the white matter microstructure in schizophrenia cases compared
with controls and found that in 20 of the 25 brain regions tested (including
but not limited to: anterior limb of internal capsule, corpus callosum, cingu-
lum, fornix and superior corona radiata), the Fractional Ansiotropy (FA) was
significantly lower in schizophrenia patients (1962 in total) as compared to
controls (2359 in total). The same was observed for the average FA across all
brain regions. Briefly, FA is the measurement of the ansiotropy (property of a
material which allows it to change or assume different properties in different
directions) of water molecules. Water diffuses freely in all directions in an
environment without obstacles. This can be disrupted by cellular bodies, cell
membranes and/or macromolecules (including but not limited to axons and
dendrites), if diffusion only occurs on the axis of the axon. The degree of
ansiotropy, between 0 and 1, can be detected and infer alterations in the axonal
diameter, fiber density or myelin structure, aka white matter microstructure.

One of the first ENIGMA studies investigating if common SNPs are associated
with brain volumes was by Franke et al (2016), which used a 33,636 cases,
43,008 controls schizophrenia GWA study, but found no association of a PRS
to with any brain volume metric for 11,840 subjects. The PRS which captured
the most variation was for hippocampal brain volume, but this association
was almost entirely driven by a single SNP, rs2268894 (Franke et al., 2016).
Following on from this study, Smeland et al. (Smeland and Andreassen, 2018)
created a novel approach (condFDR) to test the overlap between schizophre-
nia and subcortical brain volumes which uses a bayesian False Discovery
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Rate (FDR) approach. the condFDR method leverages overlapping associa-
tions in independent GWA study to re-rank test statistics and hypothetically
increase the power. However, only a further 5 loci were implicated across the
intercranial volume, hippocampus volume and putamin volume. Outside of
the subcortex, Lee et al (2016) used GCTA to perform partitioned heritability
analysis on 1,750 healthy individuals, and found that SNPs that are associated
with schizophrenia explained a significant proportion of heritability in eight
brain regions (right temporal pole, left superior frontal, superior temporal,
inferior parietal, lateral occipital, and entorhinal cortices, the cuneus and
intercranial volume) .

1.7.3 Application of schizophrenia gene-set PRS to subcorti-

cal brain imaging Volumes

The first study to examine how the genetics of schizophrenia affects brain
morphometry in schizophrenia was a candidate gene study performed on 11
relatives of a pedigree. A SNP located on chromosome 5p14.1–13.1 was found
to be associated with ventricular enlargement and frontoparietal atrophy
using computed topography (Shihabuddin et al., 1996). In a twin study, it was
shown that 4.7% of the genetic variance in schizophrenia was shared with
global white matter structure (white matter is found predominantly within
subcortical regions; Bohlken et al. (2016)).

Since polygenic risk scores were preferred over candidate gene studies for
schizophrenia, no consistent associations between a PRS and any brain region
size have been found. Since schizophrenia is complex, and it may be that
only certain biological pathways affect certain brain regions, if any consistent
association of a gene-set PRS with a subcortical brain region is found, it would
progress the field forward.

1.8 Application of Schizophrenia gene-set PRS to

Cognitive phenotypes

An alternative to imaging genetics to study brain function and structure is to
use cogntitive phenotypes. Numerous patient, family, twin, prospective, and
high-risk studies have shown that schizophrenia is associated with deviations
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in cognition. For example, Lencz et al. (2014) displayed that higher PRSs for
schizophrenia are associated with lower general cognitive ability, Ranlund et
al. (2018) found that higher PRSs for schizophrenia are associated with poorer
spatial visualization skills and Savage et al. (Savage et al., 2018) showed that
intelligence has a protective effect on schizophrenia risk.

Promisingly, these cognitive deviations have been observed in unaffected
relatives, suggesting a neurobiological risk over environmental effects.

However, while associations between the various cognitive phenotypes is
strong, these studies do not address the direction of causation between
schizophrenia liability and cognitive phenotypes. By separating out the PRS
into biological pathways, the extent to which a schizophrenia PRS is mediated
by cognition-related pathways and schizophrenia related pathways can be
examined.
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2 Datasets used for analyses

The design of a Genome Wide Association (GWA) study is expensive, where
a single sample can cost between approximately $40 to $200 depending on
the genotyping chip that was used (Quick et al., 2020). A full human genome
sequence is now approximately $1000 per sample. Therefore, it is common
practice to create a meta-analysis of multiple GWA studies and/or genotype
data in order to maximise statistical power. A consequence of this however,
is a decrease in distinctive identifiers for data sets and a higher chance of
overlapping samples between data sets. To avoid confusion, data sets will be
grouped into traits.

Each data set will be in one of two formats; either summary statistics or
genotype data. Summary statistics confers information of how each Single
Nucleotide Polymorphism (SNP) is associated to a defined trait in a popula-
tion. Genotype data contains an estimate of the genotype at each SNP for any
particular individual within the data set.

2.1 Schizophrenia data sets

A total of eight schizophrenia data sets were used within this thesis. Table 2.1
displays concise information about all data sets which is expanded upon in
the sections below.
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TABLE 2.1: Schizophrenia data sets.

Data set N† Samples N† Cases N† Controls N† SNPs Paper Data set URL

PGC1 20,899 8,832 12,067 849,241 (Ripke et al., 2011) https://www.med.unc.edu/pgc/results-and-downloads

PGC1+Sweden 32,143 13,833 18,310 4,819,154 (Ripke et al., 2013) https://www.med.unc.edu/pgc/results-and-downloads

PGC2* up to 150,064 up to 36,989 up to 113,075 9,444,231 (Ripke et al., 2014) https://www.med.unc.edu/pgc/results-and-downloads

CardiffCOGS 1,024 1,024 0 9,332,862 (Lynham et al., 2018b) N/A (in house)
CLOZUK 35,302 11,260 24,542 42,561,547 (Pardiñas et al., 2018) N/A (in house)
PGC2noCLOZUK 69,516 29,415 40,101 5,008,739 (Ripke et al., 2014) N/A (in house)
The CLOZUK meta-analysis 105,318 40,675 64,643 8,171,062 (Pardiñas et al., 2018) http://walters.psycm.cf.ac.uk/

SCZminusCOGS 104,294 39,651 64,643 5,550,204 N/A (unpublished) N/A (in house)

*Full data set not used in thesis
†N = ’Number of’

The ’Dataset’ column refers to the name of the data set, which will be referred to in this thesis hereafter. N Samples refers to the total
number of individuals within each data set. The N cases and N controls describes the number of individuals who were cases and
controls when the data set contained a binary trait of interest. N SNPs displays the total number of SNPs within each data set. Paper
is the reference to the paper in which the data set was derived. The data set URL is the hyperlink to the raw data set.

https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads
http://walters.psycm.cf.ac.uk/
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2.1.1 PGC1 (Summary Statistics)

• Number of Samples = 20,899

– Cases = 8,832

– Controls = 12,067

• Total Number of SNPs = 849,241

• Paper URL: https://www.ncbi.nlm.nih.gov/pubmed/21926974

• Data set URL: https://www.med.unc.edu/pgc/results-and-download
s

PGC1 (Ripke et al., 2011) was amongst the first schizophrenia GWA studies
(Purcell et al., 2009; O’Donovan et al., 2008) to define individual schizophrenia
loci associated to the trait of schizophrenia. All individuals were of European
ancestry and further sample information can be found in the supplementary
note of Ripke et. al. (2011).

A special note should be made on the fact that this GWA study was originally
built using the University (of) California Santa Cruz (UCSC) hg18 / National
Center (for) Biotechnology Information (NCBI) b36 genome build (https:
//www.ncbi.nlm.nih.gov/assembly/GCF_000001405.12/. The position of
SNPs are defined by a reference genome which had to be created whereby a
selection of individuals are sequenced and the resulting genome fragments
are aligned together to create a reference human genome. In the case of PGC1,
the reference genome used was not the reference genome used for all other
data sets(UCSC hg19 / Genome Reference Consortium (GRC) h37) but can
be converted if required.

2.1.2 PGC1+Sweden (Summary Statistics)

• Number of Samples = 32,143

– Cases = 13,833

– Controls = 18,310

• Total Number of SNPs = 4,819,154

• Paper URL: https://www.ncbi.nlm.nih.gov/pubmed/23974872

https://www.ncbi.nlm.nih.gov/pubmed/21926974
https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.12/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.12/
https://www.ncbi.nlm.nih.gov/pubmed/23974872
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• Data set URL: https://www.med.unc.edu/pgc/results-and-download
s

PGC1+Sweden (Ripke et al., 2013) expanded on the original PGC1 (Ripke et
al., 2011) GWA study by initially producing a GWA study using samples from
a Swedish cohort (5,001 cases, 6,243 controls) and then meta-analysed these
samples with PGC1. All individuals from PGC1 are within PGC1+Sweden.

2.1.3 PGC2* (Summary Statistics)

• Number of Samples = up to 150,064

– Cases = 36,989

– Controls = 113,075

• Total Number of SNPs = 9,444,231

• Paper URL: https://www.nature.com/articles/nature13595

• Data set URL: https://www.med.unc.edu/pgc/results-and-download
s

PGC2 (Ripke et al., 2014) is a large meta-analysis of 49 ancestry matched
case-control samples (34,241 cases and 45,604 controls; 46 European and 3 east
Asian ancestry), 3 family-based samples from Europe (1,235 parent affected-
offspring trios) and the deCODE cohort (1,513 cases and 66,236 controls;
European ancestry). While the summary statistics are available for the full
data set, it would not be useful in Polygenic Risk Score (PRS) analysis for this
thesis as many samples contained within this data set would overlap with
many different genotype data sets required for PRS analysis. Additionally,
samples would need to be reduced down due to population stratification
and relatedness between individuals in the GWA study (Pardiñas et al., 2018).
Population stratification is where non-random mating occurs (and usually
due to geographic isolation). If different populations are used within a GWA
study, associations between a SNP and schizophrenia may be due to the
genetic differences between populations and be unrelated to schizophrenia.
All samples from PGC1+Sweden are contained in this GWA study.

https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads
https://www.nature.com/articles/nature13595
https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads
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2.1.4 CardiffCOGS (Genotype data)

• Number of Samples = 1,024

– Cases = 1,024

– Controls = 0

• Total Number of SNPs = 9,332,862

• Paper URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC60193
54/

• Data set URL: N/A (in-house)

The CardiffCOGS cohort has been increasing in size consistently over a pe-
riod of approximately 10 years. Its first reported use (N = 571) was in a
study by Rees et al. (2014a) to examine the contribution of 15 Copy Number
Variants (CNVs) to schizophrenia-associated loci. All patients from Rees
et al. (2014a) CardiffCOGS were recruited from community, in-patient and
voluntary sector mental health services in the UK. For each individual, A
Diagnostic (and) Statistical Manual (of Mental Disorders) (DSM)-IV criterium
based, best-estimate lifetime diagnosis was arrived at using Schedules (for)
Clinical Assessment (in) Neuropsychiatry (SCAN) instrument interviews and
a review of case-notes on each individual. These DSM-IV criterium based
diagnoses and recruitment procedures continued as CardiffCOGS increased
in sample size (Rehman, 2011; American Psychiatric Association, 2000).

The next reported use of CardiffCOGS was in Pardiñas et al. which sepa-
rated CardiffCOGS into two waves, CardiffCOGS1 (N = 512) and Cardif-
fCOGS2 (N = 247). The main use of these individuals was to test for vali-
dation of treatment-resistant schizophrenia (symptoms persist despite two
or more trials of antipsychotic medications of adequate dose and duration
(Potkin et al., 2020)) in a much larger treatment-resistant schizophrenia sam-
ple, CLOZUK (Pardiñas et al., 2018). CardiffCOGS1 was genotyped by the
Broad institute (Massachusetts, USA) using Illumina HumanOmniExpress-12
and OmniExpressExome-8 chips while CardiffCOGS2 genotyping was per-
formed by deCODE in Iceland using Illumina HumanOmniExpress-12 chips
(Pardiñas et al., 2018; Rees et al., 2014a).

Lynham et al. (2018c) was the latest to use CardiffCOGS in a study which
compared the phenotypic differences of cognition across the schizophreni-
a/bipolar diagnostic spectrum. In this cohort, the data set is referred to as the

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019354/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019354/
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Cognition (in) Mood, Psychosis (and) Schizophrenia Study (CoMPaSS) but
includes all previous CardiffCOGS individuals. In total, 824 cases were used
within this study including a DSM-IV diagnosis of schizophrenia (n = 558),
schizoaffective depressive (n = 112), schizoaffective bipolar (n = 76) or bipolar
disorder (n = 78), as well as 103 control participants.

To ascertain a cognitive phenotype within the neuropsychiatric case group,
Lynham et al. (2018c) used the MATRICS Cognitive Consensus Battery (MCCB)
(Nuechterlein et al., 2008a). In essence, the MCCB measures seven domains of
cognition including, but not limited to, speed of processing, verbal learning
and social cognition by performing 10 tasks (Lynham et al., 2018c). At each
task, the mean and standard deviation of the control group (N = 103) was used
to derive a z score for each individual within the neuropsychiatric case group.
A composite cognitive score of all tasks was created for each individual in
accordance with MCCB procedures.

For simplicity, the data set used in this thesis will be referred to as ’Cardif-
fCOGS’. While 1024 individuals is stated as the size of CardiffCOGS, this
figure encompasses the entire cohort to date, without restrictions to any one
measurement (e.g. to DSM-IV diagnosis). When restrictions are applied, they
will be explicitly mentioned.

2.1.5 CLOZUK (Genotype data)

• Number of Samples = 35,302

– Cases = 11,260

– Controls = 24,542

• Total Number of SNPs = 42,561,547

• Paper URL: http://www.ncbi.nlm.nih.gov/pubmed/29483656

• Data set URL: N/A (in-house)

In the UK, there is a compulsory clozapine blood monitoring system for any
individual prescribed the antipsychotic medication clozapine. The medication
is licensed for treatment resistant schizophrenia. Pardiñas et al. (2018) acquired
anonymous aliquots of blood samples regularly collected as part of routine
checks for agranulocytosis, a rare adverse effect of taking clozapine. The

http://www.ncbi.nlm.nih.gov/pubmed/29483656
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ascertainment of samples was in line with the UK Human tissue act and
followed national research ethics approval.

These samples (defined as CLOZUK1 and CLOZUK2) were then genotyped
as described in Pardiñas et al. (2018) and made-up a substantial portion of the
cases within the CLOZUK data set Table 2.2

TABLE 2.2: CLOZUK Genotype Samples*.

Dataset Samples in GWAS Genotyping chip

CLOZUK1∗ 5,528 OmniExpress
CardiffCOGS1∗ 512 OmniExpress

CLOZUK2∗ 4,973 OmniExpress
CardiffCOGS2∗ 247 OmniExpress

WTCCC2† 4,641 Illumina 1.2M
Cardiff Controls† 1,078 OmniExpress

Generation Scotland† 6,480 OmniExpress
T1DGC† 2,532 HumanHap 550

POBI† 2,516 Illumina 1.2M
TWINSUK† 2,426 Illumina 317/610/660/1M

QIMR† 2,339 Illumina 317/610/660
TEDS† 1,752 OmniExpress

GERAD† 778 Illumina 660
*table adapted from Pardiñas et al. (2018). ∗ Schizophrenia cases.

† Control samples

The ’Dataset’ column indicates the identifier of a subset of samples within the
CLOZUK data set. The ’Samples in GWAS’ column indicates the number of
samples within that CLOZUK subset. The Genotyping chip column indicates
on each array of how each of the CLOZUK sub-samples were sequenced.

CardiffCOGS samples (as described previously) contained a portion of treatment-
resistant schizophrenia patients that were used to validate a treatment-resistant
schizophrenia diagnosis within the CLOZUK1 and CLOZUK2 samples. Alto-
gether, CardiffCOGS1+2 and CLOZUK 1+2 encompass the cases of CLOZUK.

Control samples were collected from publicly available sources or via collabo-
ration. A note must be made that for the cohorts CLOZUK1, CardiffCOGS1,
WTCCC2 and Cardiff Controls, there were a total of 6,040 cases and 5,719
controls overlapping with the data set referred to as PGC2 in this thesis.
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2.1.6 PGC2noCLOZUK (Summary Statistics)

• Number of Samples = 69,516

– Cases = 29,415

– Controls = 40,101

• Total Number of SNPs = 5,008,739

• Paper URL: https://www.nature.com/articles/nature13595

• Data set URL: N/A (in-house)

The overlapping samples referred to in CLOZUK were removed from PGC2
to create a new PGC2 summary statistics data set independent from the
CLOZUK samples. Duplicate samples were identified by identical ID’s and
were removed using PLINK.

2.1.7 The CLOZUK meta-analysis (Summary Statistics)

• Number of Samples = 105,318

– Cases = 40,675

– Controls = 64,643

• Total Number of SNPs = 8,171,062

• Paper URL: https://www.ncbi.nlm.nih.gov/pubmed/29483656

• Data set URL: http://walters.psycm.cf.ac.uk/

As CLOZUK and PGC2noCLOZUK were entirely independent from one
another, Pardiñas et al. (2018) performed a meta-analysis on both data sets
to create a new GWA study. METAL was used to perform the meta-analysis
using their fixed effect procedure, with weighting derived from standard
errors (Willer, Li, and Abecasis, 2010).

2.1.8 SCZminusCOGS (Summary Statistics)

• Number of Samples = 104,294

– Cases = 39,651

– Controls = 64,643

https://www.nature.com/articles/nature13595
https://www.ncbi.nlm.nih.gov/pubmed/29483656
http://walters.psycm.cf.ac.uk/
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• Total Number of SNPs = 5,550,204

• Paper URL: N/A (unpublished)

• Data set URL: N/A (in-house)

In order to create schizophrenia PRSs in CardiffCOGS with the largest sample
size available, the CardiffCOGS samples were removed from the CLOZUK
meta-analysis. METAL (Willer, Li, and Abecasis, 2010) was used to meta-
analyse two in-house data sets to create an equivalent of a SCZminusCOGS
data set. The fixed-effects model was used and all SNPs were limited to an
INFO > 0.9 (Willer, Li, and Abecasis, 2010).

2.2 General Intelligence data set

The complex traits genetics lab in Amsterdam have been releasing GWA stud-
ies after stages of steadily increasing their sample size for the trait of general
intelligence in the population or Intelligence Quotient (IQ), as observed with
the Psychiatric Genomics Consortium (PGC) data sets. The data set that will
be analysed here will be the latest IQ GWA study: IQ3 from Savage et. al
(2018) which explains 4% of the variation in IQ observed within samples.
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TABLE 2.3: General Intelligence data sets.

IQ3

Reference Savage, J. E. et al. 2018. Nature genetics
Sample Size 269,867
Number of associated SNPs 242 lead SNPs (205 loci)
Gene-sets identified 6*
Paper URL https://www.nature.com/articles/s41588-018-0152-6

Data set URL https://ctg.cncr.nl/software/summary_statistics
*(3 conditional MAGMA):,neurogenesis, central nervous system neuron differentiation, and regulation of synapse structure or
activity processes)

The first row contains the identifiers for each public general intelligence data set which will be referred to these identifiers for the
rest of the thesis. Information pertaining to the reference where each of the data sets is in the ’Reference’ row. The ’Sample size’
row indicates the total number of samples within each data set. The number of associated SNPs row contains the total number of
significantly associated loci to the trait of general intelligence within IQ3. The Paper and Data set URL gives a hyperlink to the paper
referencing the data set and the location of the raw data set.

https://www.nature.com/articles/s41588-018-0152-6
https://ctg.cncr.nl/software/summary_statistics
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2.2.1 IQ3 (Summary Statistics)

• Number of Samples = 269,867

– Cases = N/A

– Controls = N/A

• Total Number of SNPs = 9,295,119

• Number of associated SNPs = 242 lead SNPs (205 loci)

• Gene-sets identified: 6 (3 conditional MAGMA:,neurogenesis, central
nervous system neuron differentiation, and regulation of synapse struc-
ture or activity processes)

• Paper URL: https://www.nature.com/articles/s41588-018-0152-6

• Data set URL: https://ctg.cncr.nl/software/summary_statistics

*The number of associated SNPs row contains the total number of significantly

associated loci to the trait of general intelligence within IQ3.

Large sample sizes are required to obtain effective signals for the IQ. In IQ3, the

intelligence measurements of 14 independent cohorts were meta-analysed together

(Savage et al., 2018). The assessment of IQ across all 14 cohorts was calculated

using neurocognitive tests calculating the fluid domains of cognitive functioning

(reasoning/thinking, processing speeds, problem solving in novel situations). Despite

differences between cognitive tests performed on the different cohorts, a latent factor

described as The General factor of intelligence (g) was used to capture the variance in

common across the cognitive tasks. The association of each SNP to g was used for

the IQ3 GWA study. The effect sizes for each SNP were standardised based on the

method described in Zhu et al. (2016).

2.3 Autism Spectrum Disorder data set

2.3.1 iPsych ASD (Summary Statistics)

• Number of Samples = 46,350

– Cases = 18,381

– Controls = 27,969

• Total Number of SNPs = 9,112,387

• Paper URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454898/

https://www.nature.com/articles/s41588-018-0152-6
https://ctg.cncr.nl/software/summary_statistics
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454898/
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• Data set URL: https://www.med.unc.edu/pgc/results-and-downloads/

The iPsych GWA study found five loci associated to Autism Spectrum disorder

trait (Grove et al., 2019). In this thesis, the use of the iPSYCH Autism Spectrum

Disorder (ASD) dataset was confined to Chapter 3 whereby the objective was to

determine the two bioinformatics tools to produce gene-set PRS.

2.4 Early Growth Genetics dataset

2.4.1 Birth length (Summary Statistics)

• Number of Samples = 28 459

– Cases = N/A

– Controls = NA

• Total Number of SNPs = 2,201,971

• Paper URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447786/

• Data set URL: http://egg-consortium.org/birth-length.html

The Body length GWA was created to investigate the relationship between fetal and

infancy length growth and various complex diseases including cardiovascular disease

and type 2 diabetes. Seven independent SNPs were found to be associated with birth

length as measured using standardised procedures (Valk et al., 2015).

2.5 General population data sets

The creation of trait specific data sets is one method to tackle the research of life-

threatening and disabling conditions in humans. An alternative yet complementary

approach is to create a sizeable cohort with a compendium of phenotypes. As the

phenotype is not limited to any singular trait, the sample size can be substantially

higher than the trait specific data sets, allowing for higher power for the PRS analyses.

In addition, the data sets are commonly used within the neuropsychiatric field which

means that they are ideal when testing the efficacy of gene-set PRS.

2.5.1 European 1000 Genomes (Genotype data)

• Number of Samples = 503

https://www.med.unc.edu/pgc/results-and-downloads/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447786/
http://egg-consortium.org/birth-length.html
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– Cases = N/A

– Controls = N/A

• Total Number of SNPs = 11,915,643

• Paper URL: https://www.nature.com/articles/nature15393

• Data set URL: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502/

In phase 3 of the 1000 genomes project, various sequencing data are collected together

from 26 populations from around the world (Auton and Abecasis, 2015). For the

purposes of this thesis, the phase 3 raw data are converted into the plink file format

PLINK REFERENCE and limited to the 503 individuals with a European descent.

2.5.2 UK Biobank (Genotype data)

• Number of Samples = 443,031 (white UK and Irish)

– Cases = N/A

– Controls = N/A

• Total Number of SNPs = 35,884,914

• Paper URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380465/

• Data set URL: https://biobank.ctsu.ox.ac.uk/showcase/

The UK Biobank genotype data contains both genetic and phenotype information

for individuals from the UK (Sudlow et al., 2015). Phenotypes recorded include

schizophrenia (520 individuals as diagnosed by the International Statistical Classifica-

tion of Diseases and Related Health Problems or the ICD-10 and death records) and

demographic data (Body Mass Index (BMI)). 7,654,308 SNPs remain after standard-

ised Quality Control (QC) steps.

2.5.3 Summary

In this Chapter, I have outlined and described all data-sets that were used within this

thesis. In total there are eight data sets that are related to schizophrenia, one data set

that is related to general intelligence within the population, one data set related to

autism and two data sets that are population samples.

https://www.nature.com/articles/nature15393
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380465/
https://biobank.ctsu.ox.ac.uk/showcase/
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3 SurPRSe workflow and PRSAVE
shiny app

3.1 Introduction

In order for a Polygenic Risk Score (PRS) to convey the liability of a biological

pathway, only the Single Nucleotide Polymorphisms (SNPs) within that biological

pathway must be used for the respective PRS. There is no standardised software for

producing a Gene set PRS. The aim of this chapter is to describe the bioinformatics

workflow I created to perform gene-set PRS accurately, and to investigate existing

software which attempts to produce gene-set PRS. My bioinformatics workflow was

named Supercomputing (with) Polygenic Risk Score evaluation (SurPRSe) and is

run on Cardiff’s supercomputer, Hawk. PRSet is the component of PRSice2 (Choi,

Mak, and O’Reilly, 2020) which produces gene-set PRS.

As stated in Chapter 1.6, the production and analysis steps for a PRS is quite straight-

forward, but computational issues arise when attempting to make a gene-set PRS

across multiple input data sets and gene-sets. As stated previously, there are three

options to produce gene-set PRS, either to use pre-existing software, to use a set of

scripts per each Genome Wide Association (GWA) study or to create a bioinformatics

workflow. At the time of writing, PRSet is the only pre-existing software that is able

to produce gene-set PRS (Choi and O’Reilly, 2019). However, at the time at which

these PRS were being produced, the first version of PRSet was only recently made

available to the public. The program is written in C++, a programming language of

which the only available support was from the developer. As there was little support

available for PRSet, this option was discounted.

11 data sets were used within this thesis. Creating a set of scripts per data set would

be too time consuming and the lack of structure may affect the accuracy of the PRS,

especially when the PRS were compared to one another. Therefore, the creation of

SurPRSe was the most favourable option. The bioinformatics workflow was written

in R and BASH, two languages which are more accessible than C++. This allowed

more opportunity for support and a better understanding from other academics of

how SurPRSe works. SurPRSe will be compared to PRSet as an initial measurement of



Chapter 3. SurPRSe workflow and PRSAVE shiny app 75

quality. The quality and the application of the gene-set PRSs will be further assessed

using two case studies within the trait of schizophrenia. Both of these case studies

will involve both the comparison of multiple gene-set PRS to each other and the

comparison to the current standardised method of PRS, which is to use all SNPs

available within the sample.

SurPRSe will create the PRSs, while association testing will be visualised in a shiny

app named PRSAVE. As shiny apps are interactive, it will enable a quick and easy

visualisation of the PRS without the difficulty of parsing through a large output of

summary statistics.

In this chapter, my SurPRSe workflow will aim to produce gene-set PRS that targets

the 1000 genomes population sample and trains on the iPsych ASD GWAS. Gene-

sets will be taken directly from the Gene-ontology resource available on MsigDB

(Subramanian et al., 2005; Liberzon et al., 2011). SurPRSe will be evaluated on:

• Analysis set-up

• Speed of processing

• Production of PRS

3.2 Workflow Development - SurPRSe

I created a bioinformatics workflow named SurPRSe aimed at solving the issues

in section 1.6. Specifically, SurPRSe will enable the simultaneous production of

genome-wide, gene-wide and gene-set PRS profiles in one collated output file.

3.2.1 File inputs

The input to SurPRSe is the training data set, the testing data set, a gene set annotation

file as described in Figure 3.1 and a gene location file in an National Center (for)

Biotechnology Information (NCBI) format as displayed in Figure 3.2. The gene set

location file was downloaded from: https://ctg.cncr.nl/software/MAGMA/aux

_files/NCBI37.3.zip. The gene set annotation file was curated depending on the

trait used. For schizophrenia, the gene-sets were provided in-house in the same

format used for Pardinas et al. (2018). All identifiers were entrez-gene identifiers and

no identifiers were removed or added from their source files. The file format was

converted to the format described in Figure 3.1. The output to the workflow are PRS

profiles of gene-set PRSs, a gene-wide PRS and a genome-wide PRS.

https://ctg.cncr.nl/software/MAGMA/aux_files/NCBI37.3.zip
https://ctg.cncr.nl/software/MAGMA/aux_files/NCBI37.3.zip
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FIGURE 3.1: SurPRSe gene-set annotation file input. The first
row is the name of each gene-set repeated to match the number
of genes within each gene-set. The second column contain the
Entrez gene (NCBI) identifiers. For example, 5HT-2C contains
18 genes where the first gene in the list is the entrez gene ID 3358.
This gene is 5-hydroxytryptamine receptor 2C which encodes a
seven-transmembrane G-protein-coupled receptor and responds

to the neurotransmitter serotonin.
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FIGURE 3.2: NCBI gene location file input. ID = NCBI gene
identifier, Chromosome = chromosomal location of gene, BP_1 =
the start of the coding region of the gene, BP_2 = the end of the
coding region of the gene, strand = whether the gene is located
on the positive or the negative strand, Gene_symbol = the Gene

name identifier.

3.2.2 File outputs

The output of SurPRSe is a table within a text file where each column represents a

PRS and each row is an individual. The column names act as the identifier for each

PRS (see Table 3.1).

TABLE 3.1: Output file from SurPRSe.

FID IID PHENO extended_geneset_SCORE_GO_CARDIAC-
_CHAMBER_DEVELOPMENT_1e-04

extended_geneset_SCORE_GO_CARDIAC-
_CHAMBER_DEVELOPMENT_0.01

HG00096 HG00096 -9 0 2.98e-03
HG00097 HG00097 -9 -0.03 1.48e-03
HG00099 HG00099 -9 0 2.51e-03
HG00100 HG00100 -9 0 1.00e-04
HG00101 HG00101 -9 -0.03 -4.02e-03

FID = Family ID, IID = Individual ID, PHENO = Phenotype of individual, GO =

Gene Ontology.

The first two columns (FID and IID) represent the unique identifiers for each individ-

ual. The PHENO column represents the phenotype of the individual but this column

usually contains the value ’-9’ which indicates that the data are missing. biobanking

has enabled the release of thousands of phenotypes for each individual’s genotype.

This vast amount of information usually requires the phenotypes to be stored in a

different file.

Each PRS profile is stored as a column name which promotes text-mining procedures.

For example in the column: ’extended_geneset_SCORE_GO_CARDIAC_CHAM-

BER_DEVELOPMENT_1e-04’ from Table 3.1, each group of words between the
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underscores can be grouped as: “gene region length”_”common ID”_”Gene-set

name”_”significance threshold used”. The ’gene region length’ describes whether

the flanking regions outside the gene (e.g. the promotor) were included (extended)

or were not included (normal). The ’common ID’ was used to identify this type of

column name.

3.2.3 Architecture

In essense, SurPRSe follows the flow diagram depicted in Figure 3.3. At present,

SurPRSe is only able to work within a server or supercomputer environment. The

locations of both training set and testing set on the server are used as an input. The

data are copied across to the working environment (the locations on the server where

all input files and output files are).

The training data set is read into SurPRSe. Assuming that the training data set is a

suitable standard and passes quality control measures, SurPRSe loads in the testing

data set. If the testing data set passes Quality Control (QC) measures (see 1.6.3)

and if both training data set and testing data set are compatible with each other for

PRS analysis (see 1.6.3, SurPRSe is able to run a whole genome, gene-centric and a

gene-set PRS automatically.

The output is a table of the various PRS profiles which can be downloaded off of

the server when SurPRSe has finished processing. If the user wishes to select gene-

sets associated with the input training GWA study, SurPRSe has the functionality to

perform gene-set analysis on the training set GWA study using MAGMA (Leeuw

et al., 2015).
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FIGURE 3.3: SurPRSe Flow Diagram. A broad overview of
the functionality of SurPRSe. Each blue arrow indicates the
direction of processing throughout SurPRSe. The yellow and
black striped arrow indicates the process can only be performed
once MAGMA gene-set analysis takes place. The gene-sets that
are output by MAGMA are re-input into SurPRSe.The image of
the training set GWA study was taken from GWASATLAS (Tian

et al., 2020).

Logistically, SurPRSe is able to produce PRS via a workflow of Bourne Again SHell

(BASH) and R scripts. The function of each script is provided below.

Module 1: Preparation and configuration

Scripts used:

• run.sh

• config.sh

• run_config.sh

• plink_config.sh

This module defines the parameters for running the SurPRSe workflow.
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run.sh

run.sh controls the desired output of SurPRSe. If the user only wants to produce a

genome-wide PRS for example, run.sh will activate the relevant scripts required for

this to happen. This script is also able to trigger a MAGMA gene-set analysis on the

PRS training data set if required but this should be performed independently of any

analysis that produces a PRS.

config.sh and run_config.sh
run.sh should never be altered by the user and is in fact controlled by config.sh

and run_config.sh, which allows the user to define the parameters that SurPRSe

is capable of. These two scipts also ensures the analysis is performed in the correct

directories on the Hawk High Performance Computing (HPC) cluster.

config.sh is the only file that is edited by the user. Each variable name should not be

changed as it is stored and sourced throughout SurPRSe. The values of each variable

can be edited by the user. For example for Figure 3.4:

FIGURE 3.4: SurPRSe arguments for clumping. Taken from a
subsection of PRS_arguments_script.sh.

p1 controls the significance threshold for index SNPs. The index SNP is the SNP

that represents all other SNPs in its haplotype block. p2 controls the significance

threshold for clumped SNPs. r2 controls the Linkage Disequilibrium (LD) threshold

when applying the clumping procedure and the window variable controls the physical

distance threshold for clumping in SurPRSe. The window variable is measured in

Kilo-Base (KB). Further information on clumping can be found in Chapter 1.4.

plink_config.sh

This script contains three R scripts which create .txt files of some of the arguments

specified in PRS_arguments_script.sh. Two of the R scripts create a lower threshold



Chapter 3. SurPRSe workflow and PRSAVE shiny app 81

and an upper threshold file in a format that PLINK recognises if using their software

to define the P value threshold (Pt) of the PRS analysis. For example, if the Pt was

0.05 and the lower bound was 0, PLINK includes all SNPs with P-value from 0 to 0.05,

including any SNP with P-value equal to 0.05. The last R script performs a similar

action but for the chromosomes which are considered for the analysis.

Module 2: Quality Control

This module handles the pre-processing and QC of the training data set and the

testing data set. This includes clumping, INFO score and MAF thresholds for all

SNPs and data harmonisation between training set and testing set.

Scripts used:

• training_set_QC.sh

• training_set_QC.R

• testing_set_QC_and_clumping.sh

• MAF_INFO_score_QC.R

• testing_training_harmonisation.R

training_set_QC.sh and training_set_QC.R
training_set_QC.sh contains the R script: training_set_QC.R, which is a QC check

of the training set and also contains commands to split the genotype data into differ-

ent files dependant on which chromosome the SNPs are located within the data set if

required.

testing_set_QC_and_clumping.sh
This script predominantly handles the processing before, during and directly after the

clumping procedure (see Chapter 1.4). The training data set and the testing data set

are harmonised so that only SNPs within both data sets are considered for the PRS.

Clumping then may be performed dependant on whether the user wishes to produce

a gene-set PRS. All commands for clumping are handled by PLINK 1.9 (Chang et al.,

2015). Further clean-up steps are then performed to remove auxiliary files that are

created as a part of the clumping procedure.

MAF_INFO_score_QC.R
Called from within testing_set_QC_and_clumping.sh. The training data set is split

by the chromosome number and QC’d based on Minor Allele Frequency (MAF) and

the INFO score. The MAF is the frequency at which the second most common allele
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occurs across the individuals within the training set and the INFO score. The INFO

score quantifies the likelihood that the SNP was imputed correctly and takes a value

between 0 to 1 (where the closer the value is to 1, the higher certainty of imputation).

testing_training_harmonisation.R
Called from within testing_set_QC_and_clumping.sh. testing_training_harmonisation.R

checks for duplicated SNP identifiers and harmonises the SNP identifiers from the

training set with the SNP identifiers from the testing set. Each SNP is tested for

mis-information due to allele flipping (see Chapter 1.4) and checks are made to see if

the previous steps were processed correctly.

Module 3: Create Gene-set PRS

Gene-set PRS are created within this script. Includes all the steps listed above but is

performed individually for each gene-set that is provided as an input to SurPRSe.

Scripts used:

• geneset_PRS_analysis.sh

• Assign_SNPs_to_genes_from_geneset.R

• training_set_QC_geneset.R

• geneset_PRS_scoring.R

• geneset_PRS_scoring_plink.sh

• Collate_all_genesets.R

geneset_PRS_analysis.sh
Gene-set PRS are processed here. Initially commands are used to set up a directory

structure on the supercomputer hawk to keep the files processed for gene-set PRS

separate from that of the genome-wide PRS. The gene-set analysis software MAGMA

is used to annotate the SNPs to each gene-set with helper R scripts (Leeuw et al.,

2015). Finally, PLINK and further helper R scripts are used to produce gene-set PRS

(Chang et al., 2015).

Assign_SNPs_to_genes_from_geneset.R
An R script located within geneset_PRS_analysis.sh. This script predominantly

acts as a check to see if MAGMA has annotated the SNPs to each gene within each

gene-set correctly (Leeuw et al., 2015).

training_set_QC_geneset.sh
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An R script called from within geneset_PRS_analysis.sh. This script collates the

training set for PRS analysis together into one file after it was previously split by

chromosome to allow for parallel processing

geneset_PRS_scoring.R
An R script called from within geneset_PRS_analysis.sh. For each gene-set, the

script creates the .score file required for the sotware PLINK 1.9 to create polygenic

risk scores and records cases where no SNPs are recorded within the gene-set (eg. a

small gene-set at a Pt of 5e-08) (Chang et al., 2015).

geneset_PRS_scoring_plink.sh
A shell script run in parallel within geneset_PRS_analysis.sh. Polygenic risk scor-

ing is processed by PLINK 1.9 (Chang et al., 2015).

Collate_all_genesets.R
An R script located within geneset_PRS_analysis.sh which converts all gene-set

PRS profiles created with geneset_PRS_scoring_plink.sh into one tab delimited

text file. Each gene-set PRS is defined in its respective column from within the text

file.

Module 4: Create Whole Genome PRS

If the user selects the option to produce a genome-wide PRS, the following scripts

will be run and a genome-wide PRS produced:

• genomewide_PRS_analysis.sh

• extracting_useful_SNP_information.R

• training_set_QC_genomewide.R

• PRS_scoring_genomewide.R

• PRS_scoring_genomewide_plink.R

genomewide_PRS_analysis.sh
Similar in function as testing_set_QC_and_clumping.sh. Is only used if gene-set

analysis is not specified within the configuration config.sh

extracting_useful_SNP_information.R

A script that records the number of SNPs in both training and testing set during the

processing of SurPRSe. The number of SNPs is saved within a tab-delimited text file
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for the user to check to ensure that the analysis has been performed correctly and

provides useful supplemental information.

training_set_QC_genomewide.sh
Similar in function to training_set_QC_geneset.R but formats the training set to be

processed by PLINK 1.9 (Chang et al., 2015).

training_set_QC_genomewide.sh

Performs Polygenic risk scoring for a genome-wide PRS.

training_set_QC_genomewide_plink.sh

Performs a similar function as geneset_PRS_scoring.R but creates a PLINK score

file for a whole genome PRS.

Module 5: Auxiliary analyses

In addition to the output of either a gene-set or genome-wide PRS, SurPRSe is able to

produce a number of files that supplement a PRS analysis. It is able to run MAGMA

(Leeuw et al., 2015) in order to define gene-sets for the gene-set PRS, convert various

formats of gene-set annotation files, and provide a gene-wide PRS which encompasses

all genes from a background gene annotation file.

Scripts used:

• MAGMA_extract_SNP_list.R

• MAGMA_gene_set_analysis.sh

• SNP_loc_creator_and_gmt_formatter.R

• training_set_QC_genomewide_unclumped.R

• Collate_all_PRS_files_together.R

MAGMA_extract_SNP_list.R

Creates a table of SNPs identifiers between testing and training data set that can be

used as an input into MAGMA (Leeuw et al., 2015).

MAGMA_gene_set_analysis.sh

A helper script that performs a MAGMA gene-set analysis on the training data

set. Also performs a Family-Wise Error Rate (FWER) correction by running 100,000

permutations at an alpha of 0.05.

SNP_loc_creator_and_gmt_formatter.R
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A common file format for gene-set analysis is the Gene Matrix Transpose (GMT)

format (see Figure A.6a). This R script converts the gene-set input for MAGMA’s

gene-set analysis into the GMT format.

training_set_QC_genomewide_unclumped.R

Similar in function to training_set_QC_genomewide.R but SNPs prior to elimina-

tion via the clumping procedure are included.

Collate_all_PRS_files_together.R

Similar in function to Collate_all_genesets.R but collates the genome-wide, the

gene-centric and the gene-set PRS together into a singular output file.

3.3 App Development: Polygenic Risk Score Anal-

ysis Viewing Environment

(PRSAVE)

The output of SurPRSe is a multi-row table of PRS which may include gene-set PRS,

genome-wide PRS and gene-wide PRS. For use within this thesis, the majority of

these PRS were used to test for an association with a phenotype. A linear/logistic

regression was the most commonly used statistical test. If just using the table of

regression results per PRS, it may be hard to interpret without a visual aid. To aid in

this process, a shiny app called PRSAVE was developed. PRSAVE is able to plot the

regression results of the genome-wide, the gene-centric and the gene-set PRS in the

same set of plots within an internet browser located at: https://johnhubertjj.shi

nyapps.io/Viewing_PRS_two_files/.

3.3.1 File input

The output to SurPRSe is a table of PRS. Regression analysis must then be performed

manually.

https://johnhubertjj.shinyapps.io/Viewing_PRS_two_files/
https://johnhubertjj.shinyapps.io/Viewing_PRS_two_files/
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After statistical analysis with each of the PRS, the output is semi-standardised dependent on the phenotype, the research question and the type of

statistical modelling that was used. PRSAVE requires at least the estimate (aka effect size), the standard error of the estimate, the p-value and

the r squared value from the statistical model converted into summary statistics for each gene-set acPRS (labelled as ’score’ as ‘acPRS is not a

standardised abbreviation within the Neuropsychiatric field; see Table 3.2).

TABLE 3.2: input file for PRSAVE.

.id score estimate SE tvalue p r.squared lower upper

Cognition_all_samples extended_geneset_SCORE_5HT_2C_1e-06 -0.01 0.04 -0.28 0.77 8.82e-05 -0.10 0.08
Cognition_all_samples extended_geneset_SCORE_5HT_2C_1e-04 -0.04 0.04 -0.94 0.34 9.92e-04 -0.13 0.05
Cognition_all_samples extended_geneset_SCORE_5HT_2C_0.01 -0.03 0.04 -0.77 0.43 6.76e-04 -0.12 0.05
Cognition_all_samples extended_geneset_SCORE_5HT_2C_0.05 -0.02 0.04 -0.56 0.57 3.52e-04 -0.11 0.06
Cognition_all_samples extended_geneset_SCORE_5HT_2C_0.1 -0.02 0.04 -0.63 0.52 4.52e-04 -0.11 0.05

.id = grouping variable, score = PRS, estimate = standardised coefficient of regression, SE = Standard Error, p = p value, lower = lower confidence

interval, upper = upper confidence interval

The first column of the input file to PRSAVE is a grouping variable if required. If there is no grouping variable, the same string is repeated for

each row. The ’score’ column contains the PRS profile identifier. The remaining columns contain summary statistics for a regression. Of particular

note, the estimate is the beta coefficient for the regression. p contains the p-value of the regression. The r.squared contains information describing

the variation explained by the PRS within the regression. This is Nagelkerke’s r-squared when the regression is logistic. The ’lower’ and ’upper’

columns contain the 95% confidence intervals for the beta coefficient.

Polygenic Risk Score Analysis Viewing Environment (PRSAVE) was designed to visualise the output file after logistic or linear regression with a

PRS, using the ggplot2 package for R.
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3.3.2 Output

On entering the landing page, the user must first upload an input file to visualise (see

Figure 3.5.

FIGURE 3.5: Top half of the sidepanel of PRSAVE. The top
button is where the user uploads the input file required for
PRSAVE to populate the page. The second option asks whether
stepwise regression should be applied to a grouping variable (in
this case. DSM. The third option [provides a series of checkboxes
for the P-value thresholds the user wishes to include in the plots
to the right hand side of the landing page. The fourth option
contains a series of checkboxes of where to define the gene
regions for the gene-set PRS. The fifth option allows for the user
to select individuals based on a grouping variable (in this case,

the DSM)

There is an initial option to provide stepwise regression, but this option is depreciated

and will be removed on the next iteration of PRSAVE. The third option for the user

to select is the Pt under which the PRS scores were modelled. These selections will
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populate these PRS results on the right hand side of the page. The fourth option is

to select the physical length of the genes that were used within the gene set PRSs.

Extended gene regions indicate that as well as the inclusion of SNPs within the gene

boundary, the regulatory regions of the gene were included as well (35 kb upstream

and 10 kb downstream of the gene boundaries). ’Normal’ indicates that only the gene

boundaries were used and ’full’ includes the genome wide and the genic PRS into

the plots to the right of the page as well.

The remainder of the sidepanel (Figure 3.6) is a selection of check-boxes of which PRS

to include within the analysis. These are the column headings of the PRS within the

input file and are printed verbatim.

FIGURE 3.6: Selection of PRS to include within the output of
PRSAVE. This selection is directly below Figure 3.5

After all the sidepanel inputs are selected by the user, three plots will populate the

page to the right hand side of the sidebar. The topmost plot is the p-value plot (Figure

3.7).
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FIGURE 3.7: P value plot from PRSAVE. There are n number of faceted plots for each Pt m, where n is the number of
selected Pt check boxes in the sidebar and m are the values of these check boxes. The x-axis contains the PRS selected from
the sidebar. If the whole genome PRS is selected, the genome-wide PRS will show as the left-most point within each Pt
facet, and the genic PRS will show as the right-most point within each Pt facet. The y-axis is the -log10 P value of each PRS
which was calculated as the level of association of the PRS with the response variable (in this example above, cognition
within schizophrenia). If a point is above the red line, the PRS is considered to be significantly associated with the response

variable.
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Each plot (the p-value plot, the beta plot and the r-squared plot) on the landing page

is faceted by Pt selected by the user in the side panel. They are ordered from the

lowest selected value to the highest selected value (in the case of Figure 3.7; 5e-08 and

1). Each PRS that is selected by the user in the side panel is located on the x-axis of

every plot. If the ’Whole genome’ option within ’Geneset PRS to include’ and ’Full’ in

’Length of Gene regions’ options are selected on the side panel then the genome wide

and the genic plots are also included within every plot. The genome-wide will always

be the right-most point on the x-axis and the genic PRS will always be the left-most

option on the x-axis. The y-axis records the -log10 P value of each PRS to normalise

the data and therefore allow a better visualisation of the differences between each

PRS. A red line signifying the level of nominal significance is also included to allow

the user to clearly see which PRS were found to be associated to the response variable.

Directly below the P value plot is the beta plot as described in 3.8. If any of the error

bars for each PRS are non-overlapping with the red line (an effect size of zero), that

PRS is deemed to be significantly associated with the response variable.

The final plot on the landing page is the R-squared plot which reports the variance of

the response variable explained by the PRS in the form a percentage (Figure 3.9. The

direction of the effect size and the p-value of the PRS is also incorporated.

Supplementary information for the plots on the landing page is provided on the

’Table’ (Figure 3.10) and the ’Input variables’ (Figure 3.11) tabs. The aim of the ’Table’

tab is to provide the user with the raw data in order to supplement the plots on the

landing page. The ’Input variables’ tab contains a page of text that can be recognised

by the programming language R, so if the user wishes to alter the plots manually,

they are already given example code to do so.
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FIGURE 3.8: Beta plot from PRSAVE. The x-axis, facets and layout of the plots are equivalent to Figure 3.7. The y-axis is the
effect size for each PRS. The error bars for each point signify the 5% Confidence interval for each PRS. The red line signifies

an effect size of zero.
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FIGURE 3.9: r2 plot from PRSAVE. The x-axis and facets are equivalent to Figure 3.7. Instead of points, each PRS is
represented by a bar. The y-axis describes the r2 value of the PRS in the form of a percentage. The direction of effect size is
also incorporated into the plot (if the bar is below the x-axis it contained a negative effect size and vis-versa.) If an associated
of the PRS with the response variables was significant after multiple correction testing, the FDR corrected p-value will be

displayed at the top of the relevant bar
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FIGURE 3.10: Input file table. The input file used to as an input
for PRSAVE, displayed as a data table

FIGURE 3.11: Plotting code. The PRSAVE user inputs to the
produce the plots in the form of R code

The full layout of all the individual components of PRSAVE above, is provided in

Figure 3.12. Note that in Figure 3.12, a different input file was used and therefore

displays different results than displayed in the figure above.
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FIGURE 3.12: Screenshot of the output from Section 3.5.3 in PRSAVE. The bar on the left hand-side indicates options to view
the polygenic risk score. The user uploads the input file to PRSAVE (See Table 3.2) by clicking on the ’Browse’ icon. The user
then selects the options from ’PRS P Value Threshold’, ’Length of Gene regions’ and the ’Geneset PRS to include’ to inform
which PRS to view. The results are displayed on the right-hand side of the screen. The title of each plot is the Pt and the X-axis
for each plot are the PRS. The legend indicates that the red coloured points are gene-set PRS and the blue coloured points
are genome-wide or gene-centric PRS. In the top row of plots, the y-axis is the -log10 P value and the red line indicates a
nominal P-value of 0.05. The y-axis in the centre row of plots indicates the beta coefficient from the regression. The error bars
indicate the Standard error of the Beta coefficient. The bottom row of plots have a y-axis indicating the r-squared value with
the direction of the beta incorporated. If the value is below zero then the PRS contained a negative direction of effect on the

phenotype in question and vis-versa if the value is positive.
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There is no standardised method for creating a bioinformatics workflow (Leipzig,

2016). There is no requirement for a workflow to align to an architecture or to a

standardised practice in writing code, and each line of code is not required to be tested

for quality. They are therefore prone to human and systematic error. Unfortunately,

there are not many solutions and/or the resources available within an academic

environment to solve this problem as it requires an engineering solution, a resource

not available to most neuropsychiatric departments. However, the probability of

human error can be reduced, if the ability to interpret the data is improved, and the

complexity of the output from the data is reduced.

Within SurPRSe, the number of gene-sets that are used to create the gene-set PRS is

up to the user, and depending on the scope of the research project, can number in the

thousands. It would be impractical to check if each gene-set PRS has been processed

correctly by hand. PRSAVE aims to counter this issue by adding an interactive

component to the output of a gene-set PRS analysis. The user can quickly plot and

visualise the gene-set PRS without any coding knowledge, making the results more

accessible. Additionally, by selecting the parameters for the inclusion of the gene-set

PRS, and the ability to remove unwanted PRS, helps to interpret and visualise the

data, especially to external users.

3.4 Testing

3.4.1 SurPRSE

Analysis set-up

SurPRSe was set-up to run multiple gene-set PRS, a single gene-centric PRS and a

single genome-wide PRS at eight pre-defined Pt (5e-08, 1e-06, 1e-04, 0.01, 0.05, 0.1,

0.2, 0.5, 1). The input to SurPRSe was the 1000 genomes population sample (Auton

and Abecasis, 2015) which acted as the target set and the iPsych GWA study (Grove

et al., 2019) which acted as the training set. Both data sets were located in the working

directory where the analysis took place. For the gene-set PRS, the gene-sets were

defined as 20 GeneOntology (GO) ontology sets located within the MSigDB database

(located here: http://software.broadinstitute.org/gsea/msigdb/collection

s.jsp#C5 and described in Table 3.3). The annotations were downloaded directly

from MsigDB in the format of a MsigDB annotation file (see Figure A.6). SurPRSe

was tested with an input of 1, 5, 10 then 20 gene-sets in four separate runs. In order

to provide a benchmark for SurPRSe, the same analysis was set up using PRSet, a

http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C5
http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C5
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bioinformatics tool that is a component of the software PRSice (Choi and O’Reilly,

2019). PRSice is software designed to automate the majority of the steps required to

produce a PRS. This includes QC (clumping, data cleaning and strand flipping of

SNPs, Pt, and finally the calculation and evaluation of the PRS. The first version of

the software was released in 2015 (Euesden, Lewis, and O’Reilly, 2015), and a second

version was released in 2019 (Choi and O’Reilly, 2019) which improved the speed

and the efficiency of version one. PRSet is a new component of PRSice which allows

for the production of gene-set PRS.

TABLE 3.3: Gene sets used in comparison of SurPRSe to PRSet.

Gene set Membership* Number of Genes

Positive regulation of Viral Transcription A,B,C,D 39
Cardiac Chamber Development B,C,D 144
DNA dependent DNA replication maintenance of fidelity B,C,D 24
Circadian rhythm B,C,D 137
Phosphatidylserine acyl chain remodeling B,C,D 17
Spinal cord development C,D 106
Platelet derived growth factor receptor signaling pathway C,D 34
Cellular response to lipoprotein particle stimulus C,D 13
Regulation of NLRP3 inflammasome complex assembly C,D 11
Positive regulation of epithelial cell differentiation C,D 57
Positive regulation of kinase activity D 482
Negative regulation of transcription factor import into nucleus D 39
Potassium ion transport D 154
Regulation of T cell receptor signaling pathway D 29
Cardiac muscle adaptation D 11
Negative regulation of epithelial cell proliferation D 116
Movement in environment of other organism involved in symbiotic interaction D 87
Regulation of protein targeting to mitochondrion D 98
Apical protein localization D 12
Neurological system process D 1242

*The Gene-sets used in the four separate runs of PRSet and SurPRSe. Letters indicate

which gene-set was used when testing different numbers of gene-sets. A = 1, B = 5, C

= 10, D = 20.

In Table 3.3, the first column indicates the gene-set taken from MSigDB (Subramanian

et al., 2005; Liberzon et al., 2011). The ’Membership’ column indicates which gene-set

was used for each run in SurPRSe. The last column indicates the number of genes

that are contained within each gene-set.

3.4.2 Processing Speed

The speed of SurPRSe was measured using the command-line tool ‘time‘ wrapped

around the SurPRSe workflow within a hawk job submission script (Supplementary
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Figure A.1). As with the analysis set-up, PRSet will be used as a benchmark and

wrapped in its own submission script (See Supplementary Figure A.2).

The time command produces three output metrics: Real, User and Sys. The Real

metric describes the wall clock time from when the job is submitted to the Hawk

supercluster, to when the job finished processing on the Hawk supercluster.

The User metric measures the amount of Central Processing Unit (CPU) time spent

in user-mode code. Simply put, it is the time that code which can be accessed by the

user is being processed by the Hawk processors. This excludes any time where for

example, a file is being written into one of the directories on Hawk or anything inside

the kernel (code which automatically allocates memory depending on the needs of

the job and cannot be accessed by the user). The User metric may exceed the Real

metric in cases where more than one CPU is used as the User metric records the time

across all processes, across all CPUs.

The sys metric records the time spent in the kernel while the code is processing.

This is code that cannot be accessed by the user and can involve, for example, the

allocation of memory or accessing a network.

The analysis set-up is the same as described in section 3.4.1. The Real, User and sys

metrics were compared when the input to each bioinformatics tool was 1, 5, 10 and

then 20 gene-sets respectively.

3.4.3 Production of PRS

The number of SNPs before clumping, the number of mismatched SNPs and the

total number of SNPs used for polygenic risk scoring was recorded for each analysis

run. The genome-wide, the gene-centric and the 20 gene-set PRS produced by both

SurPRSe and PRSet were compared by calculating the pearson correlation coefficient

between each relevant PRS.

3.4.4 Data Visualisation

SurPRSe has no functionality to visualise data. Instead, the statistical analysis per-

formed with the PRS is processed using a semi-automated R script. The output of

this script is input into the shiny app PRSAVE (see section 3.3). PRSAVE accepts

standardised summary statistics as an input which can be created from the output of

both SurPRSe. The -log10 P-value, the beta coefficient of the statistical test and the
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r-squared value are all plotted on PRSAVE. Interactive decile and centile analysis of

the PRS is also possible.

A randomly generated set of normally distributed continuous values for the indi-

viduals of the 1000 genomes data set (using mean = 0 and sd = 1) was created using

the R command Rnorm. This provided a set of values to test for association with the

PRS produced by SurPRSe and enabled an in depth look at the data visualisation

capabilities of PRSAVE.

The 1000 genomes random phenotype was tested for association with the genome-

wide, the gene-centric and the 20 gene-set PRS produced by SurPRSe using a separate

R script. The results were saved as the input file to PRSAVE. A screen-shot of the

plots displaying the -log10 P-value, the beta coefficient of the linear regression and

the r-squared value in PRSAVE was produced.

3.5 Results

3.5.1 Analysis set up

SurPRSe contains a wiki page which allows an easy set-up on the Hawk supercom-

puter (https://github.com/johnhubertjj/SurPRSe/wiki). PRSet similarly contains

an in-depth guide on how to set up an analysis (http://www.prsice.info/prse

t_detail/) and is easily suited towards a supercomputer environment despite no

explicit instructions on set up.

3.5.2 Processing Speed

SurPRSe and PRSet both had comparative Sys times up to 10 gene sets (see Table

3.4). PRSet was more efficient than SurPRSe for any number of gene-sets for the User

times. PRSet was more efficient across all metrics with 20 gene-sets. The SurPRSe

processes were run with 22 CPUs simultaneously on Hawk, while PRSet used one

CPU.

https://github.com/johnhubertjj/SurPRSe/wiki
http://www.prsice.info/prset_detail/
http://www.prsice.info/prset_detail/


Chapter 3. SurPRSe workflow and PRSAVE shiny app 99

TABLE 3.4: Processing times for the runthrough of PRSet and
SurPRSe with an increasing number of gene-sets used as an

input.

Number of Gene-sets SurPRSe PRSet

1 Real 15m 24.14s 27m 18.12s
User 55m 9.60s 8m 30.234s
Sys 10m 9.56s 11m 41.10s

5 Real 20m 30.58s 27m 45.56s
User 57m 43.15s 8m 35.85s
Sys 11m 8.59s 11m 35.83s

10 Real 35m 1.18s 30m 55.79s
User 58m 16.26s 8m 34.88s
Sys 11m 25.44s 11m 49.50s

20 Real 41m 11.29s 28m 46.50s
User 66m 38.67s 8m 42.89s
Sys 13m 1.56s 11m 40.44s

The first column of Table 3.4 displays the number of gene-sets used for each run of

the bioinformatics tool. The second column displays the respective times for both

SurPRSe and PRSet to finish a run.

As more gene-sets were input into each tool the User metric steadily increased for

both SurPRSe and PRSet. The rate at which time increased appeared to be higher for

SurPRSe. The Real metric did not substantially change for PRSet across all gene-set

inputs. In comparison, SurPRSe appeared to show a linear increase in time for the

Real metric.

3.5.3 Production of PRS

There are approximately 40,000 extra SNPs included within the PRSet analysis (See

table 3.5). In order to explain the discrepancy between these results, the ’Apical

Protein Localisation’ gene-set PRS and the ‘Cardiac Chamber Development’ gene-set

PRS were produced again with PRSet, but the ’–print-snp’ argument was included
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to directly compare the SNPs included within each analysis with SurPRSe (See table

3.8).

TABLE 3.5: Number of SNPs at each stage of PRS production.

Stage of Analysis
Number of SNPs in

SurPRSe
Number of SNPs in

PRSet

iPSYCH total* 9,112,386 9,112,386

1000genomes total* 11,915,643 11,915,643

After merge and QC 3,615,347 7,320,806

After Clumping 71,572 114,179
*total refers to the number of SNPs that were available from the data set provided in

the original publications (Grove et al., 2019; Auton and Abecasis, 2015)

SurPRSe produced a PRS profile for each gene set PRS at each Pt. NA values were

produced if the gene set contained no SNPs at the specified Pt. PRSet produced an

output file, but the number of PRS profiles at each gene-set for each Pt did not match

the number of input PRSs profiles. No error was recorded in the log file. Therefore,

to ensure that the PRSet results are accurate, the PRSet was re-run at a Pt of 0.2, 0.5

and 1 as these thresholds produced a PRS profile across all gene set PRSs. Only gene

set PRS at these Pt were compared with SurPRSe.

The genome-wide PRS between SurPRSe and PRSet showed a perfect correlation at

Pt = 5e-08 (See Figure 3.13). As more SNPs were included into the PRS, the correlation

between the bioinformatics tools was reduced to ≈ 0.85. This correlation measure

was maintained until all the SNPs were included in the model (Pt = 1).

Using the methodology described in Section 3.4.1, there was almost no correlation

(≈ 0) between the gene-centric PRS (see Figure 3.14) and every gene-set PRS at each

Pt (See Figures A.3, A.4 and A.5).
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Comparison of genome-wide PRS
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FIGURE 3.13: Genome-wide comparison of PRS between Sur-
PRSe and PRSet. Titles of each plot declare the Pt at which the
PRS were produced. The pearson correlation coefficient is at the
top left of each plot. Each point signifies a PRS of an individual
from the 1000 genomes project. The reduction in data within
the 5e-08 and the 1e-06 plots is due to the fact that only select
individuals had any SNP below these Pt. The PRS were stan-
dardised by subtracting the mean from the individual score and
dividing by the standard deviation. PRSice version 2.2.6 was

used to produce the polygenic risk scores.
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Comparison of gene-centric PRS

FIGURE 3.14: Gene-centric comparison of PRS between Sur-
PRSe and PRSet. Titles of each plot declare the Pt at which
the PRS were produced. The Pearson correlation coefficient is
provided as the subtitle to each plot. Each point signifies a PRS
of an individual from the 1000 genomes project. The PRS were
standardised by subtracting the mean from the individual score
and dividing by the standard deviation. Each PRS was defined
within the genic regions described by the annotation file for each

bioinformatics tool.

Comparison of gene-set PRS

No PRSet gene-set PRS or SurPRSe gene-set PRS correlated with each other using the

methods described within each of the respective bioinformatics tools inputs. This

was the same whether the Pt = 0.2 (figure A.4), the Pt = 0.5 (Supplementary figure

A.5), or Pt = 1 (Supplementary figure A.3).
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FIGURE 3.15: Gene set wide comparison of PRS between Sur-
PRSe and PRSet at Pt = 0.2. Each box signifies the correlation
coefficient between the gene set PRS produced by SurPRSe and
PRSet at a Pt of 0.2. The y-axis labels signify the identifiers of
the gene set PRS from PRSet and the x-axis signifies PRS from
SurPRSe. The diagonal describes direct comparisons of gene-set
PRS. The legend and colour of the boxes indicates the correla-
tion coefficient where red is negative and blue is positive. The
numerical correlation coefficient is also displayed within each

box.
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In order to differentiate between an error in the definitions of the gene-sets provided to

both SurPRSe and PRSet and an error in the processing of the PRS scores themselves,

the gene-set analysis was re-performed using identical sources for gene-sets and

their chromosomal locations. In PRSet the definition of each gene-set was manually

curated as a separate file using the .bed file format (See Appendix; Figure A.7).

PRSet has two methods of inputting a gene-set input, the ’two files’ method where

one file is obtained from MsigDB (definitions of gene-sets and gene identifiers from

ensemble; see Figure 3.6) and a second file is an ensembl GTF file to define locations

(Figure 3.7), or a singular .bed file (See Appendix; Figure A.7) at the time of writing.

SurPRSe uses a similar method to the PRSet ’two files’ method, but at the time of

writing, the gene locations file and the gmt file is obtained from NCBI rather than

Ensembl.There may be inconsistencies between the two sources for the definitions

of the gene-set inputs. For example for the ENSA gene, in Ensembl, the gene is

located between Base-Pairs (BPs) 150,600,851 and 150,629,612 on the reverse strand

of chromosome one. However, in NCBI, the gene is stated to be located between BPs

50621246 and 150629612. Therefore, by defining the gene sets manually as a .bed

format using the NCBI gene-sets as a reference, there is parity between the gene-set

input into PRSet and the gene-set input into SurPRSe.

Two gene-sets at three Pt (0.2,0.5,1) were manually set up to have the exact same gene

locations for PRSet as the input annotation file used for SurPRSe. After running each

workflow to produce the two sets of gene-set PRS, the PRS were compared using the

Pearson correlation coefficient. For consistency, the gene sets are described as "Apical

Protein Localisation" and "Cardiac Chamber Development" but these gene-sets have

been altered from their original sources in order to maintain consistency between

the inputs to SurPRSe and PRSet (See Figure 3.16). This is because gene identifiers

are not 1:1 between different resources. In ensembl and NCBI for the same gene-set,

some genes may be excluded because an identifier was not allocated to that gene.

Therefore, only the genes in common between both ensembl and NCBI were used as

an input for SurPRSe and PRSet.

TABLE 3.6: MSigDB File Format

Set Gene1 Gene2

Apical Protein Localisation ENSG0000023612 ENSG00000237957
Cardiac Chamber Development ENSG00000288937 ENSG00000288824

Set describes the name of the gene set. Each Gene is ordered along the same row for

the same gene set. Each gene ID is an ensembl gene ID.
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TABLE 3.7: GTF File Format

Seqname feature start end strand

1 gene 11869 14409 +
1 transcript 11869 14409 +

Seqname = Name of chromosome or scaffold, source = data source, feature = feature

type id (e.g. gene, Variation, transcript), start = start position of feature with

numbering starting at 1, stop = end position of feature with numbering starting at 1,

score = float value, strand = either positive (+) or negative (-), frame = either 0, 1 or 2.

the number indicates at what position in the feature is the first base of a codon.

attribute = semi-colon separated list of information about the feature.
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FIGURE 3.16: Comparison of an altered ’Apical Protein Locali-
sation’ gene-set PRS and an altered ’Cardiac Chamber Devel-
opment’ gene-set PRS between SurPRSe and PRset. ’Apical
Protein Localisation’ contained 5 genes and ’Cardiac Chamber
Development’ contained 108 genes. The Pearson correlation
coefficient followed by the Pt is at the top left of each plot. Each
point signifies a PRS of an individual from the 1000 genomes
project. All 503 individuals are included within each plot. The
PRS were standardised by subtracting the mean from the indi-

vidual score and dividing by the standard deviation.
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When the gene-set annotations are directly comparable, SurPRSe and PRSet produce

PRS which are correlated between 40% and 60%. When the gene-set was small (5

genes) SurPRSe PRS appeared to cluster into three separate groups whereas the

spread of the PRSet PRS was larger. To test whether the correlations observed were

not due to random chance, the correlation analysis was performed again, but the

SurPRSe ’Apical Protein Localisation’ gene-set PRS was tested for correlation with

the PRSet ’Cardiac Chamber Development’ gene-set PRS. As these gene sets do not

contain the same genes, There should be zero correlation between these two PRS. This

would support the observation that the correlation was genuine between SurPRSe

and PRSet when the input gene set was the same.

−2

0

2

0 1 2
SurPRSe APL PRS

P
R

S
et

 C
C

D
 P

R
S

correlation = 0.02,    Pt = 0.2

−3

−2

−1

0

1

2

3

0 1 2
SurPRSe APL PRS

P
R

S
et

 C
C

D
 P

R
S

correlation = 0.019,    Pt = 0.5

−2

0

2

−1 0 1 2
SurPRSe APL PRS

P
R

S
et

 C
C

D
 P

R
S

correlation = 0.017,    Pt = 1

−2

0

2

−2 −1 0 1 2
SurPRSe CCD PRS

P
R

S
et

 A
P

L 
P

R
S

correlation = 0.0098,    Pt = 0.2

−2

0

2

−2 −1 0 1 2 3
SurPRSe CCD PRS

P
R

S
et

 A
P

L 
P

R
S

correlation = 0.019,    Pt = 0.5

−2

0

2

−2 −1 0 1 2 3
SurPRSe CCD PRS

P
R

S
et

 A
P

L 
P

R
S

correlation = 0.018,    Pt = 1

FIGURE 3.17: Comparison of an altered ’Apical Protein Lo-
calisation’ gene-set PRS from SurPRSe and PRSet vs. an
altered ’Cardiac Chamber Development’ gene-set PRS from
PRset and SurPRSe respectively. APL = ’Apical Protein Local-
isation’ which contained 5 genes. ’CCD’ = ’Cardiac Chamber
Development’ which contained 108 genes. The Pearson correla-
tion coefficient followed by the Pt is provided as the title to each
plot. Each point signifies a PRS of an individual from the 1000
genomes project. The PRS were standardised by subtracting the
mean from the individual score and dividing by the standard

deviation.

As displayed in Figures 3.17 and 3.18, there was no correlation between the ‘Cardiac
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Chamber Development’ PRS and the ’Apical Protein Localisation’ PRS at any Pt. This

includes when the PRS was generated solely by PRSet or SurPRSe or if the PRS was

compared across the different software tool platforms.
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FIGURE 3.18: Comparison of an altered ’Apical Protein Local-
isation’ gene-set PRS vs. an altered ’Cardiac Chamber Devel-
opment’ gene-set PRS from SurPRSe, then from PRSet respec-
tively. APL = ’Apical Protein Localisation’ which contained 5
genes. ’CCD’ = ’Cardiac Chamber Development’ which con-
tained 108 genes. The Pearson correlation coefficient followed
by the Pt is provided as the title to each plot. Each point signifies
a PRS of an individual from the 1000 genomes project. The PRS
were standardised by subtracting the mean from the individual

score and dividing by the standard deviation.
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TABLE 3.8: SNPs contributing to the Apical Protein Localisation gene-set PRS of SurPRSe and PRSet at Pt = 0.2

Combined SNP identifiers CHR_S_test GD BP_S_test A1_S_test A2_S_test CHR_P SNP_P BP_P Pvalue_P Geneset_P CHR_S_train BP_S_train A1_S_train A2_S_train INFO_S BETA_S SE_S P_S_train

22:25596029 22 0 25596029 G A 22 rs4239914 25596029 0.012210 Y 22 25596029 G A 0.974 -0.0379025 0.0151 0.012210
22:25602708 NA NA NA NA NA 22 rs2252878 25602708 0.212700 Y NA NA NA NA NA NA NA NA
2:209009916 2 0 209009916 T C 2 rs17538374 209009916 0.741800 Y 2 209009916 T C 0.991 -0.0053040 0.0162 0.741800
2:209010777 NA NA NA NA NA 2 rs3214759 209010777 0.122000 Y 2 209010777 G GC 0.971 -0.0310986 0.0201 0.122000
2:209025923 2 0 209025923 T G 2 rs2441351 209025923 0.004972 Y 2 209025923 T G 0.989 0.0473033 0.0169 0.004972
2:209027569 NA NA NA NA NA 2 rs200926418 209027569 0.496400 Y NA NA NA NA NA NA NA NA

Combined SNP identifiers = SNP IDs converted to chromosome:base-pair format within each software to allow easy comparison between

SurPRSe and PRSet. CHR_S_test = the chromosome number as it appears within the 1000 genomes data set taken from SurPRSe. GD = Gene

distance (the physical distance of the SNP from the nearest gene). BP_S_test = The base-pair location as described within the 1000 genomes data

set taken from SurPRSe. A1_S_test = A1 from the 1000 genomes data set as defined by SurPRSe. A2_S_test = A2 from the 1000 genomes data set

as defined by SurPRSe. CHR_P = chromosome number from the SNP-list output produced from PRSet. SNP_P = SNP rsID’s taken directly from

the SNP-list output produced from PRSet. BP_P = The base-pair location as described within SurPRSe. Pvalue_P = P-value of each SNP output

from PRSet. Geneset_P = A binary variable (Y = Yes, N = No) describing whether the SNP was included within the PRS of PRSet. CHR_S_train =

chromosome position recorded in the iPSYCH GWA study as output from SurPRSe. BP_S_train = Base-pair position recorded in the iPSYCH

GWA study as output from SurPRSe. A1_S_train = A1 from the iPSYCH GWA study as defined by SurPRSe. A2_S_train = A2 from the iPSYCH

GWA study as defined by SurPRSe. INFO_S = INFO score provided within the SurPRSe output. BETA_S = effect size of each SNP provided

within the SurPRSe output. SE_S = Standard error of each SNP provided within the SurPRSe output. P_S_train = P-value of each SNP provided

within the SurPRSe output. NA’s indicate where data was missing.
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While the polygenic risk scores are at least partly correlated between SurPRSe and

PRSet, further analysis was required to explain the stratification of the Apical Protein

Localisation PRS observed in SurPRSe (See figures 3.18 and 3.17) as compared to the

continuous data format of the PRSet PRS. A possible explanation is a different set of

variants selected for in SurPRSe as compared to PRSet.

While some discrepancies were explained with the analysis above, it is necessary to

check that SurPRSe is producing accurate PRS using predictive outcomes that are

known to be true. To examine the differences in correlation between genome-wide

and genic PRS for SurPRSe and PRSet, a schizophrenia PRS was created using each

tool and the accuracy of each PRS to predict case/control status in schizophrenia

patients was examined. CLOZUK was used as the testing data set (11,260 cases,

24,542 controls) and PGC2noCLOZUK was used as the training set (29,415 cases,

40,101 controls). To record the predictive accuracy, both AUC and the nagelkerke

R2 were used. With these sample sizes, we would expect the nagelkerke R2 to be

between 0.1 and 0.2 and the AUC to be above 0.6 (Ripke et al., 2014).

The SurPRSe schizophrenia genome-wide PRS had an AUC of 0.707 when predicting

case/control status in CLOZUK. The nagelkerke R2 from a logistic regression model

performed with this PRS, produced a value of 0.159. In comparison, the PRSet

schizophrenia genome-wide PRS had an AUC of 0.695 and and Nagelkerke R2 of

0.14. Both SurPRSe and PRSet had comparative prediction to previous schizophrenia

PRS with a similar sample size (Ripke et al., 2014). The genic PRS predictive accuracy

is shown in figure 3.19. There is a slight loss in predictive accuracy (SurPRSe AUC

= 0.678, R2 = 0.121, PRSet AUC = 0.679, R2 = 0.119) but is also still comparative to

previous schizophrenia PRS (Ripke et al., 2014).
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FIGURE 3.19: Area under the curve plots for the genic
schizophrenia PRS. The SurPRSe PRS is the top plot, the PRSet
PRS is the bottom plot. TPR = True Positive Rate, FPR = False
Positive Rate. The AUC and Nagelkerke r-squared values are

within the brackets of each plot title.

To ensure account for any bias, a negative control was produced where the PGC2noCLOZUK

training set was replaced with a bodylength GWA study; a trait with no association

with schizophrenia; to produce a body length PRS using both SurPRSe and PRSet.

The AUC and nagelkerke R2 was taken for each trait, where I would expect these two

PRS to have an AUC of 0.5 and an R2 value close to zero.
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Both the genic and genome-wide body length PRS produced by SurPRSe and PRSet

did not show any predictive ability for schizophrenia case/control status in CLOZUK.

The SurPRSe genome-wide PRS had an AUC of 0.503 and an R2 of 6.16e-05. The

PRSet genome-wide PRS had an AUC of 0.505 and an R2 of 1.34e-04. Figure 3.20

shows the predictive accuracy of the genic body length PRS for SurPRSe (AUC =

0.503, R2 = 1.41e-05) and PRSet (AUC = 0.504, R2 = 4.58e-05).
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FIGURE 3.20: Area under the curve plots for the genic body
length PRS. The SurPRSe PRS is the top plot, the PRSet PRS is
the bottom plot. TPR = True Positive Rate, FPR = False Positive
Rate. The AUC and Nagelkerke r-squared values are within the

brackets of each plot title.

Finally, to test whether clumping was the cause of the discrepencies between the

gene-set PRS of SurPRSe and PRSet, a PRS was created for the CCD gene-set where
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the only SNPs that were included were those that were within the CCD gene-set and

have already underwent the clumping procedure as defined within PLINK (p1 = 1,

p2 = 2, R2 = 0.1). The correlation between the SurPRSe PRS and the PRSet PRS was

recorded and can be observed in figure 3.21.

FIGURE 3.21: Comparison of the ckumped ’Cardiac Cham-
ber Development’ gene set PRS created by SurPRSe and PRSet.
’CCD’ = ’Cardiac Chamber Development’. Within the 108 genes
of the CCD, SNPs were excluded using PLINKs clumping proce-
dure. The PRS were standardised by subtracting the mean from

the individual score and dividing by the standard deviation.

The correlation between both the SurPRSe PRS and the PRSet PRS was almost 1.

This indicates that the discrepencies between the two tools is likely to lie within the

different clumping procedures and/or in their QC procedures. With respect to QC, it

may be that PRSet prefers power over noise in the production of their gene-set PRS

due to the increased number of SNP observed as compared to SurPRSe in all PRS

(the genic, genome-wide and gene-set), but very similar predictive ability in the genic

and genomewide PRS despite more available SNPs.

With respect to clumping, although theoretically there may not be a noticeable differ-

ence between PRSet and SurPRSe, there may be a computational difference. SurPRSe

selects the SNPs within the gene-set PRS specified, and then applies PLINKs clump-

ing procedure on these selection of SNPs. This is performed separately for each

gene-set. Since PLINK uses a sliding window to identify index SNPs, clumping is

not performed across genes or gene-sets. PRSet uses a "capture the flag" system,
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which, instead of removing SNPs that are not within genic regions, it assigns a binary

flag (either 1 or 0) to state whether any one SNP is located within each gene-set.

This speeds up the clumping procedure as each SNP is submitted only once for all

input gene-sets, while in SurPRSe, the processing time and computational resources

required is correlated to the number of gene-sets that are input. As no SNPs are

removed in the PRSet procedure, it may be that some SNP are erroneously flagged to

be clumped, but further investigation into the accuracy of PRSet is beyond the remit

of this thesis.

Reasons for SNP discrepancies:

22:25602708: INFO score of 0.883, PRSet did not remove despite declaring a threshold

of 0.9 when running PRSet.

2:209010777: Had an A2 recorded as ’GC’. As multiple bases were detected within

the A2 column, it was removed from SurPRSe.

2:209027569: INFO score of 0.893, PRSet did not remove despite despite declaring a

threshold of 0.9 when running PRSet.

All other SNPs were included within both SurPRSe and PRSet. In total, three SNPs

contributed to the SurPRSe PRS (22:25596029, 2:209009916,2:209025923) while six

contributed to the PRSet PRS.

The SNP discrepancies between SurPRSe and PRSet within the Cardiac Chamber

Development gene-set PRS was recorded. In total there were 674 SNPs. 223 SNPs

were found to be in common between SurPRSe and PRSet.

200 SNPs were excluded/included due to differences in the clumping procedure (for

the full list, see Supplementary Table A.1. For example, rs56261301 is in LD with

rs11250569. rs56261301 was included in both SurPRSe and PRSet until the clumping

procedure. rs56261301 was included post-clumping within SurPRSe but not in PRSet.

It has a p-value of 0.48 and is the head of a small clump containing three SNPs.

One SNP, rs28620303, contained an A1 (the effect allele of rs28620303) and an A2 (The

non-effect allele of rs28620303) of base C and base G respectively. This should have

been removed as it is an ambiguous SNP. It is not possible to pair-up the alleles with

complementary base-pairs (eg A/T or C/G SNPs) across both the target and testing

data sets because, if the genotyping chips and/or the chromosome strand of the SNP

is unknown, it is impossible to discern if the SNP is referring to the same allele or not.

Allele frequencies could be used to infer which alleles are on the same strand, but in

the circumstances where SNPs have an MAF close to 50% or when the testing and
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target data are from different populations, it may not be an accurate estimate. This

SNP was removed from SurPRSe but retained in PRSet.

PRSet does not have a P1 and a P2 clumping argument, PLINK (software which

makes up a component of SurPRSe does. P1 defines the p-value threshold for index

SNPs, of which the ’clumps’ of SNPs within a certain physical distance are tested for

LD with this index SNP. P2 indicates the p-value threshold for the clumped SNPs, so

that any SNP within the ’clump’ that is above a specified p-value, is removed. This

may explain the remaining 44 SNPs which were included within PRSet but excluded

within SurPRSe.

3.6 Discussion

I have shown that there are large differences between SurPRSe and PRSet with the

production of gene-set PRS. Whole genome PRS between both pieces of software

appears to produce similar results and on further investigation, it appears that the

reason for this discrepancy is SNP selection for both pieces of software. SurPRSe is

more stringent than PRSet.

Wiki pages for both pieces of software exist to enable to user to produce at least one

example gene-set PRS before performing their own analyses. PRSet was found to be

faster than SurPRSe. A novel shiny application was created called PRSAVE, which

was designed to visualise gene-set PRS.

It was expected that PRSet was more scalable and efficient than SurPRSe. PRSet

is written predominantly in C++, a language which uses memory and processors

much more efficiently than R and BASH, the languages of SurPRSe. However, one

advantage of SurPRSe is that R is a much simpler language to understand within the

neuropsychiatric field as the programming language is predominantly used. Issues

that arise in producing a gene-set PRS can therefore be understood and fixed faster.

There is a strong correlation between the genome-wide PRS of SurPRSe and PRSet.

This indicates that despite being written in different computational languages and

likely to have different architectures, both bioinformatics tools follows a similar

methodology. There was an absence of correlation between the gene-centric and the

20 GO gene-set PRS. The input gene ID’s for the ’Apical Protein Localisation’ and the

’Cardiac Chamber Development’ gene-set was then adjusted for SurPRSe and PRSet,

so that the input was identical. The correlation between SurPRSe and PRSet PRS

outputs then increased from approximately 0, to approximately 0.5. This indicates
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that there is an issue in the derivation of the SNPs within the gene-sets before the

PRS is produced.

PRSet uses Ensembl ID’s and SurPRSe uses NCBI ID’s. NCBI and Ensembl ids have

been shown to contain different definitions for the chromosomal locations of genes.

Therefore there is an increased likelihood for differing pools of SNPs used for the

gene-set PRS produced by SurPRSe and PRSet. Gene-set PRS are only found to be

correlated if the chromosomal locations are identical between SurPRSe and PRSet.

The absence of correlation between the ‘Cardiac Chamber Development’ PRS and

the ’Apical Protein Localisation’ PRS using an identical chromosomal location input

supports this finding.

The ’Apical Protein Localisation’ PRS between SurPRSe and PRSet also display that

SurPRSe appears to be more conservative when assigning a PRS to each individual.

The increased variation between PRS in the PRSet over SurPRSe indicates that PRSet

is using more SNPs than SurPRSe to calculate a PRS despite similar QC procedures

used for each bioinformatics tool. Further investigation into the source code for each

tool would be required in order to investigate the differences between the PRS but

there was no remit within this project to do it here.

PRSAVE is a shiny application which will allow scientists to visualise gene-set PRS

results without requiring knowledge of any programming language. With the use

of a conventional PRS analysis, the ratio of PRS per trait is 1:1, and most tests for

association and/or prediction of the PRS with the trait can be summarised within a

single plot. For gene-set PRS, the ratio of PRS per trait is n:1, where n is the number

of gene-sets tested. With the increase in data, the ability to interpret the results of

any association and/or prediction of every PRS with the trait, within the same plot

becomes increasingly difficult. Applications like PRSAVE, allows for the user to

instantly change the parameters for the plot to reduce/increase complexity, with the

aim of increasing the ability to interpret the results. If gene-set PRS analysis is to

be used within either a clinical or research environment, applications like PRSAVE

become increasingly beneficial to promote understanding across scientific disciplines

and save valuable time perfecting the usage of gene-set PRS.
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4 Application of SurPRSe to
subcortical brain volumes in
schizophrenia

Introduction

Schizophrenia is highly heritable and contains a common genetic component that

explains one third of the total risk to the devastating psychiatric disorder (Ripke et al.,

2014). Schizophrenia has been confirmed to have a polygenic nature. In the latest

Genome Wide Association (GWA) study by Pardiñas et al. (2018), 145 independent

risk loci were found to be associated to schizophrenia. Our understanding of the

genetic factors related to schizophrenia have increased exponentially in recent years,

but despite this, there has been little increase in our understanding of the neurobiology

of schizophrenia.

It has long been assumed that the impact of the genetic risk to schizophrenia affects

the individuals’ brain anatomy and function. The identification of common risk

alleles associated to schizophrenia should therefore open up new approaches to

explore the neuroanatomical basis of schizophrenia. Despite this, the results from

the neuroimaging genetics field attempting to connect the common allele risk for

schizophrenia to anatomical structures in the brain have been unconvincing.

Subcortical brain volumes have been shown to have a heritability estimate of 44% to

88% depending on the brain region analysed (Braber et al., 2013; Satizabal et al., 2017).

It has previously been shown that there are differences in subcortical brain volumes

between healthy controls and schizophrenia patients (Erp et al., 2016; Okada et al.,

2016). Recent large studies focusing on Polygenic Risk Scores (PRSs) have shown

no association of the PRS to the volume of subcortical brain regions (Franke et al.,

2016; Reus et al., 2017). The lack of association of common schizophrenia risk to

subcortical brain region volumes indicates that the differences in subcortical brain
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structure observed in clinical samples may be consequences, rather than interme-

diate phenotypes of the disorder (Caseras et al., 2015). However, recent work by

Warland et al. (2019) has suggested that there is an association between the rare

genetics of schizophrenia with subcortical volumes, by finding associations between

the schizophrenia Copy Number Variant (CNV) carriers and the sizes of the right

thalamus, right hippocampus and the right accumbens for Biobank participants with

no history of severe neuropsychiatric disorders (n = 9,112).

Due to the polygenic nature of the liability in schizophrenia, previous analyses

have increased the number of samples to identify more variants associated with

schizophrenia. Success has been seen between PGC1 (5,001 cases, 6,243 controls) and

PGC2 (36,989 cases and 113,075 controls) where the variation of common genetic risk

explained in case-control status increased from approximately 5-7% to around 15-20%

respectively.

In this study, I aim to apply the PRS bioinformatics workflow Supercomputing (with)

Polygenic Risk Score evaluation (SurPRSe) in order to test whether the absence of

genetic correlations between schizophrenia and subcortical brain volumes were due to

the lack of power using previous schizophrenia training samples. I increase the quality

of information for schizophrenia using three Psychiatric Genomics Consortium (PGC)

genome-wide association (GWA) studies (PGC1 (Ripke et al., 2011), PGC1+Sweden

(Ripke et al., 2013), PGC2 (Ripke et al., 2014)) and the largest schizophrenia GWA

study at the time of writing (CLOZUK meta analysis) (Pardiñas et al., 2018) as the

training data sets. Subcortical brain volume sizes were obtained from UK Biobank

(Collins, 2012), and it was also used as the testing set to maximise the power. I do

not expect there to be any significant associations of any genome-wide schizophrenia

PRS with any subcortical brain volume. However, if the sample size is the main

limiting factor in discovering a genetic relationship between schizophrenia PRS and

subcortical brain volumes, the variation explained by the genome-wide schizophrenia

PRS should increase as the sample size contained within each GWA increase as well.

There is evidence to suggest that schizophrenia patients display brain morpholog-

ical abnormalities, but there is heterogeneity in the sizes of the same brain regions

across different studies (Erp et al., 2016; Haijma et al., 2013). No genetic correlation

between schizophrenia and any subcortical brain region has been found (Erp et al.,

2016). In addition, any reports of an association of schizophrenia PRS to subcortical

brain regions have been contradicted by another study (Merwe et al., 2019). It is

possible, that the absence of association is caused by the heterogeneity in the effect of

schizophrenia alleles across the brain. It may be that only a subset of schizophrenia

risk alleles correspond to subcortical brain volume sizes and/or the brain volumes
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may not relate to the same subset of schizophrenia alleles (Grama et al., 2020). Recent

studies have attempted to identify ‘core gene-sets’ that make a larger contribution

to SZ risk as compared to the rest of the genome (Rammos et al., 2019), or to limit

the PRS to genes up/down regulated by MIR137 (Hill et al., 2014) in order to predict

brain anatomy (Cosgrove et al., 2018) and functional connectivity (Liu et al., 2020).

I aim to use SurPRSe to investigate whether there is an association of gene-set PRS

and a genomic PRS (A PRS where all Single Nucleotide Polymorphisms (SNPs) must

be within genomic regions) which are enriched for common schizophrenia variants,

with subcortical brain volumes within healthy controls (Pardiñas et al., 2018).

4.1 Materials and Methods

4.1.1 Samples

UK Biobank

Genotype data curation from UK Biobank has been previously described by Hage-

naars et al., 2016a and within Chapter 2. Genotyping was used using two differemnt

arrays. The Affymetrix UK BiLEVE Axiom array (807,411 probes) on an initial 50,000

participants, and the Affymetrix UK Biobank Axiom® array (820,967 probes) for the

remaining participants. The two arrays are extremely similar (with over 95% common

content), but there was a mixture of arrays used for the samples of which imaging

data was available.

Imaging data from the first release of UK Biobank consisted of an initial 4,446 subjects

(2,342 males/2,104 females; mean age ± s.d. = 55.52 ± 7.62 years; range = 40-70

years) (Reus et al., 2017). In 2015, UK Biobank extended the number of individuals

for brain scanning to 100,000 individuals by 2023. At the time of this analysis, the

imaging data for a further 13,706 individuals had been released to make a total of

18,152 individuals.

Images of the brain for each individual was taken using a Siemens Skyra 3T running

VD13A SP4 (as of October 2015), with a standard Siemens 32-channel RF receive head

coil (https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/bmri_V4_23092014.pd

f). The images were T1 weighted. T1 weighted imaging is a structural brain imaging

technique aimed to produce high-resolution depiction of brain anatomy. There is

a strong contrast between white and grey brain matter, reflecting the differences in

the interaction of water with the surrounding tissues. It is primarily related to the

calculation of brain structure volumes.

https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/bmri_V4_23092014.pdf
https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/bmri_V4_23092014.pdf
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T1-weighted subcortical brain region images were separated into the left and right

hemispheres (Thalamus, Caudate Nucleus, Putamen, Pallidum, Hippocampus, Amyg-

dala, the Nucleus Accumbens and the Lateral Ventricles). The volumes for these

hemisphere were calculated using FreeSurfer v5.3 (https://surfer.nmr.mgh.harva

rd.edu). Bilateral subcortical volumes were obtained by averaging the volume of left

and right subcortical structures. Participants were excluded if no genetic information

was provided alongside volumetric phenotypes and vice-versa.

Schizophrenia GWA Studies

PGC1 (Ripke et al., 2011) and PGC1+sweden (Ripke et al., 2013) GWA study summary

statistics were used as training sets in the polygenic risk score analysis and can be

downloaded from the PGC website ( http://www.med.unc.edu/pgc/downloads/).

PGC2noCLOZUK referred to here is the re-analysis of the latest PGC dataset sample

(Ripke et al., 2014) with the CLOZUK schizophrenia GWAS samples (6,040 cases

and 5,719 controls) removed as described previously (Pardiñas et al., 2018). The

final PGC2noCLOZUK GWAS summary statistics dataset (29,415 cases and 40,101

controls) was used as a training set in the polygenic risk score analysis. The CLOZUK

meta-analysis (40,675 cases, 64,643 controls) is the combined meta-analysis of the

CLOZUK dataset (11,260 cases, 24,542 controls) and PGC2noCLOZUK with duplicate

PGC2 and CLOZUK samples removed respectively (Pardiñas et al., 2018). Further

information about all the data sets described above can be found within Chapter 2.

4.1.2 Gene sets

Seven gene-sets were used for the gene-set PRS. The Mouse Genome Informat-

ics database (Blake et al., 2003) accounts for three gene-sets; abnormal behaviour

(MP:0004924; 717,522 SNPs spanning over 2037 genes included in the PRS), abnormal

long term potentiation (MP:0002207; 68,686 SNPs from 157 genes included in the

PRS) and abnormal nervous system electrophysiology (MP:0002272; 106,641 SNPs

included in 213 genes considered in the PRS). These three sets relate to behavioural

and neurophysiological correlates of learning. The other four sets composed of: tar-

gets of the fragile X mental retardation protein (FMRP targets; 403,723 SNPs from

839 genes considered for the PRS (Darnell et al., 2011)), the 5-HT2C receptor complex

(5HT-2C channels; 4435 SNPs included in 18 genes considered in the PRS (Bécamel

et al., 2002)), the voltage-gated calcium channel complexes (CaV2 channels;107,987

SNPs from 207 genes included in the PRS (Swantje et al., 2010)) and loss of function

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
http://www.med.unc.edu/pgc/downloads/
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intolerant genes as defined by the Exome Aggregation Consortium using their gene-

level constraint metric (pLI >= 0.9) (LoF intolerant; 1,152,144 SNPs from 3,191 genes

included in the PRS (Lek et al., 2016a)). Altogether, these gene-sets together account

for 39% of the SNP-based heritability, a substantial amount for the regions these sets

cover across the genome (Pardiñas et al., 2018). Further information about the sources

of these gene-sets can be found in (Pardiñas et al., 2018).

4.1.3 Polygenic risk scores

All polygenic risk scores were calculated using SurPRSe. For all analyses, single

nucleotide polymorphisms (SNPs) with a low minor allele frequency (MAF < 0.1),

low quality (INFO < 0.9 or SE > 5 if INFO score not available), ambiguous alleles or

residing in the extended MHC region (MHC = chromosome 6: 24MB – 34MB) were

removed.

Before calculating the PRS, SNPs were pruned to account for linkage disequilibrium,

removing SNPs within 500kb (–clump-kb) and r2 > 0.1 (–clump-r2) of another asso-

ciated SNP above a specified association/significance threshold. Different P value

threshold (Pt) for the calculation of each PRS were used dependent on which analysis

was performed. No PRS was calculated outside of the Pt values of Pt < 1e-06, 1e-04,

0.01, 0.05, 0.1, 0.2, 0.5 or 1.

A Pt of 0.05 was used to calculate the PRS for the analysis which examined the four

waves of schizophrenia GWA studies. From the latest schizophrenia GWA study, it

was found that a schizophrenia PRS at a Pt of 0.05 captures the most variation in case

control status (Ripke et al., 2014). Further PRS at a Pt of 1e-06 and 0.5 can be found in

Appendix B, section B.1.

Within the gene-set PRS analysis, all eight thresholds (Pt < 1e-06, 1e-04, 0.01, 0.05,

0.1, 0.2, 0.5, 1) were included when the PRS was tested for an association with the

left+right subcortical brain region size. This was because the optimal Pt for each

gene-set PRS is unknown a priori. The Pt of 0.05 was included as this threshold has

been shown to account for the majority of the variation explained for schizophrenia

(Ripke et al., 2014). For both left and right hemispheres of each region within the

gene-set PRS analysis, three Pt were used (Pt < 1e-06, 0.05, 1).

All polygenic risk scores in UK Biobank samples were corrected for eight population

covariates (PC1-8) and the genotyping array and subsequently standardised (mean

of zero and a standard deviation of 1) before testing against the relevant volumetric

phenotype (Smith et al., 2016).
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Whole genome polygenic risk scores

The subcortical brain volumes of the UK Biobank samples were tested for associa-

tion with schizophrenia PRS using four case/control training datasets. Four whole

genome polygenic risk scores were produced at Pt = 0.05, one for each iteration of the

schizophrenia GWA studies. Linear regressions were used to analyse whether the

PRS were associated with subcortical brain regions. In each regression, sex, age and

intercranial volume were included as covariates. No selection of SNPs in terms of

physical location was used when comparing each schizophrenia trained polygenic

risk score. The standardised regression coefficient from each linear regression and its

confidence interval was compared across all four schizophrenia trained PRS for each

subcortical brain region hemisphere for the selected p-value significance thresholds

for the SNPs in the training set as previously mentioned.

Gene-set polygenic risk scores

For each gene-set, SNPs were limited to the gene boundaries within the set and a

polygenic risk score was conducted in the same manner as for the aforementioned

polygenic risk score method training only on the CLOZUK meta-analysis. The

standardised score (mean of 0 and a standard deviation of 1) was then tested for

association with the subcortical brain region volumes. A genic-wide PRS was created

whereby the whole genome polygenic risk score was limited to the SNPs within genic

boundaries as described by NCBI build 37.2 obtained from the annotation software

MAGMA (https://ctg.cncr.nl/software/magma; Accessed 10/11/2017; (Leeuw

et al., 2015)). The r-squared for the whole genome polygenic risk scores and the

genic-wide polygenic risk scores were compared to the gene-set polygenic risk scores

(observed which r-squared value was higher) to assess whether the gene-set PRS

captured more variation than the genome-wide and the genic-wide PRS.

All PRS p-values were corrected for multiple comparisons (specified as FDR p in text)

using the Benjamini-Hochberg False Discovery Rate (FDR) procedure (Benjamini

and Hochberg, 1995) at an α of 0.05. FDR was applied separately twice; once to the

analysis which involved the waves of the different GWA studies and again to the

analysis involving the gene-set PRS. For the analysis involving the waves of the

different GWA studies, the FDR was applied to all p-values, across all four GWA

studies simultaneously.

https://ctg.cncr.nl/software/magma


Chapter 4. Application of SurPRSe to subcortical brain volumes in
schizophrenia

123

4.2 Results

4.2.1 Whole genome polygenic risk scores

I examined the relationship between schizophrenia genetic risk and subcortical brain

volumes in healthy individuals. We investigated the effect of increasing the training

data set sample size and the testing data set sample size, thereby increasing the power

of the analysis.

There was a nominally significant negative association found between the CLOZUK

meta-analysis genome-wide PRS and the caudate nucleus at a Pt of 0.5 (left+right

and left hemispheres) and 1 (left+right, left and right hemispheres).

A nominally significant negative association was also found between the CLOZUK

meta-analysis genome-wide PRS and the pallidum (left+right) at a Pt of 0.5 and 1.

No result passed multiple testing correction when all brain regions, training sets and

Pt thresholds were included.

There were no significant associations observed between schizophrenia genetic risk

and all other subcortical brain volumes. This observation was consistent irrespective

of the training set that was used to inform the PRS. All standardised coefficients were

within 0.1 units from the null and no observable trends in effect sizes were observed

within subcortical brain volumes, across hemispheres or across p value significance

thresholds (For Pt at 0.05: Figure 4.1, For Pt across all three thresholds (1e-06, 0.05,

0.5) see B.1 and B.2.
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FIGURE 4.1: Comparisons of associations of polygenic risk
scores to subcortical brain volumes in UK Biobank samples.
A-H Titles of each plot indicate the subcortical brain region. All
PRS have been calculated at a Pt of 0.05, as indicated at the top
of the figure. The top section of each plot is the left hemisphere
of the specified brain region (indicated by the prefix ’L’) and
the bottom section is the right hemisphere of the specified brain
region (indicated by the prefix ’R’). The x-axis indicates the
training data-set used for the PRS. The GWA studies increase in
power from left to right. The BETA title on the x-axis indicates
the standardised coefficient of the linear regression. The red line
indicates a null value across each plot. Error bars displayed here

are standard error bars.

There were nominally significant results within the left and right Caudate Nucleus

and the right Pallidum when the CLOZUK meta-analysis was used as the training

set, but these did not pass multiple testing correction when all brain regions, training

sets and Pt thresholds were included.

When the left and right structures were averaged, all standardised coefficients were

within 0.1 units from the null and no observable trends in association were observed

across p value significance thresholds for any brain region (Figure 4.2).
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FIGURE 4.2: Comparisons of associations of polygenic risk
scores to subcortical brain volumes in UK Biobank samples.
A-H Titles of each plot indicate the subcortical brain region. All
PRS have been calculated at a Pt of 0.05, as indicated at the top
of each plot. The ’LR’ notation on the right side of the y-axis
indicates that the brain region has been averaged between the
left and right hemisphere. The x-axis indicates the training data-
set used for the PRS. At each Pt the GWA studies increase in
power from left to right. The BETA title on the x-axis indicates
the standardised coefficient of the linear regression. The red line
indicates a Null value across each plot. Error bars displayed

here are standard error bars.

4.2.2 Gene-set polygenic risk scores

I investigated whether there were any significant associations of the genome-wide

and genic PRS with any subcortical brain region volume. Then, I investigated whether

using previous significantly associated schizophrenia gene-sets to create PRSs dis-

played an association between common schizophrenia genetic risk and subcortical

brain volumes.

As observed in the previous analysis, the genome-wide PRS was negatively signif-

icantly associated with the Left Caudate Nucleus, the right caudate nucleus, the
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combined left+right caudate nucleus and the combined left+right pallidum brain vol-

ume at a Pt of 1 (Figure 4.4 and Figure 4.5). A negative association for the Left+right

pallidum and the left caudate nucleus and the left+right caudate nucleus was also

found at a Pt of 0.5. At the same Pt, negative associations of the genic-wide PRS was

also found with the right caudate nucleus and the left+right caudate nucleus.

Secondly, I investigated whether any gene-set PRS captured more variation in the

subcortical brain region size over and above the genome-wide PRS.

There was a significant association found for the left hippocampus with the ’abnormal

ltp’ gene-set PRS at a Pt of 1e-06 and for the left caudate nucleus with the ’abnormal

nervous system electrophysiology’ gene-set PRS at a Pt of 1e-06. No significant asso-

ciations for either gene-set PRS was found in the combined or opposite hemisphere,

or across other Pt. No other gene-set PRS was significantly associated with any other

subcortical brain region at any Pt.

Thirdly, I investigated whether any gene-set PRS captured variation in the subcortical

brain volume above and beyond the genome-wide and/or the genic-wide PRS.

Within the hippocampus, the ’abnormal ltp’ gene-set captured more variation than

both the genic-wide and the genome-wide PRS. The same result was seen in both

right and left hemispheres of the hippocampus (Figure 4.3). ’Abnormal ltp’ passed

FDR correction at a Pt < 1e-06 within the left hemisphere of the hippocampus. The

signal for ’abnormal ltp’ was maintained across all Pt for the hippocampus.
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FIGURE 4.3: Comparisons of the variation explained by the
genome-wide, gene-centric and gene-set PRS on hippocam-
pal brain volume. The left hemisphere is the bottom left plot
and the right hemisphere is the bottom right plot. The top plot is
the averaged left and right hemisphere of the hippocampus. The
top of each plot displays the Pt of the PRS. The y-axis signifies
the value of the r-squared in the form of a percentage with the
direction of the standardised regression coefficient incorporated
in. All gene-set PRS appear in blue, the genome-wide PRS is
red and gene-wide PRS is orange. If the FDR p-value is noted
down, that gene-set PRS passed multiple testing correction for
the association with the hippocampus subcortical brain region

specified in the title of the plot.

Within the caudate nucleus, apart from ’abnormal nervous system electrophysiology’

at a Pt of 1e-06, no gene-set PRS captured more information over the genic-wide or

the genome-wide PRS.
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FIGURE 4.4: Comparisons of the variation explained by the
genome-wide, gene-centric and gene-set PRS on caudate nu-
cleus brain volume. The left hemisphere is the bottom left plot
and the right hemisphere is the bottom right plot. The top plot
is the averaged left and right hemisphere of the caudate nucleus.
The top of each plot displays the Pt of the PRS. The y-axis signi-
fies the value of the r-squared in the form of a percentage with
the direction of the standardised regression coefficient incorpo-
rated in. All gene-set PRS appear in blue, the genome-wide PRS
is red and gene-wide PRS is orange. If the FDR p-value is noted
down, that gene-set PRS passed multiple testing correction for
the association with the caudate nucleus subcortical brain region

specified in the title of the plot.

within the pallidum, ’Abnormal nervous system electrophysiology’ captured more

variation over the genome-wide and gene-centric PRS at a Pt of 1e-06. Depending on

the gene-set and on which Pt the PRS was derived from, the standardised coefficient

of the PRS was found to have instances of both positive and negative directions of

effect on the size of the pallidum. The signal for the genome-wide PRS appears at a

Pt of 0.01 and is maintained for the remaining Pt. The signal for ’Abnormal nervous

system electrophysiology’ only appears at a Pt of 1e-06.
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FIGURE 4.5: Comparisons of the variation explained by the
genome-wide, gene-centric and gene-set PRS on pallidum
brain volume. The left hemisphere is the bottom left plot and
the right hemisphere is the bottom right plot. The top plot is
the averaged left and right hemisphere of the pallidum. The
top of each plot displays the Pt of the PRS. The y-axis signifies
the value of the r-squared in the form of a percentage with the
direction of the standardised regression coefficient incorporated
in. All gene-set PRS appear in blue, the genome-wide PRS is red
and gene-wide PRS is orange. If the FDR p-value is noted down,
that gene-set PRS passed multiple testing correction for the as-
sociation with the palidum subcortical brain region specified in

the title of the plot.

The amygdala brain region contained the largest dichotomy between the effect sizes of

the PRS on the size of the amygdala (Figure 4.6). As the Pt increased, the standardised

coefficient of the genome-wide PRS on the size of the amygdala changed direction.

Additionally, unlike the majority of the subcortical brain regions, the largest amount

of variation explained by the gene-wide PRS on the full amgdala size was seen at a

Pt of 0.01. Additionally, the gene-wide PRS captured more variation over all gene-set

PRS at a Pt of 1e-04 within the full amygdala brain region and a Pt of 1e-06 within the

left hemisphere of the amygdala. No PRS displays a consistent signal across all Pt.

All other plots of each brain region can be found within Appendix B.
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FIGURE 4.6: Comparisons of the variation explained by the
genome-wide, gene-centric and gene-set PRS on amygdala
brain volume. The left hemisphere is the bottom left plot and
the right hemisphere is the bottom right plot. The top plot is
the averaged left and right hemisphere of the amygdala. The
top of each plot displays the Pt of the PRS. The y-axis signifies
the value of the r-squared in the form of a percentage with the
direction of the standardised regression coefficient incorporated
in. All gene-set PRS appear in blue, the genome-wide PRS is red
and gene-wide PRS is orange. If the FDR p-value is noted down,
that gene-set PRS passed multiple testing correction for the as-
sociation with the amygdala subcortical brain region specified

in the title of the plot.
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4.2.3 Discussion

There was no increase in the association of the schizophrenia PRS to any subcortical

brain region volume as the power of the schizophrenia PRS increased. This finding

is in-line with previous high-powered studies (similar sample size to schizophrenia

GWA studies which have found common genetic variants associated with schizophre-

nia (Pardiñas et al., 2018) which have used schizophrenia PRSs to test their association

to subcortical brain volumes (Merwe et al., 2019). The absence of association as the

quality of the schizophrenia information increases on the UK Biobank cohort of

around 18,000 individuals suggests that the approach of increasing the power of the

PRS will not provide a robust association of a schizophrenia PRS with a subcortical

brain volume.

The lack of association found within this study does not however, exclude the possibil-

ity that there is an association between the common genetic risk of schizophrenia and

subcortical brain region sizes. As brain volumes can be heterogeneous even within

that of schizophrenia patients, it is logical to hypothesise that different biological

mechanisms of schizophrenia may affect some brain regions more so than others

(Brugger and Howes, 2017). The analysis using the schizophrenia gene-set PRS and

SurPRSe made it possible to investigate this further.

Overall, the results of the gene-set PRS analysis were inconclusive. In the hippocam-

pus, the ’abnormal ltp’ gene-set captured more variation than any other genome-wide,

gene-centric or gene-set PRS. However, the only significant PRS was found at a low

Pt, where only a fraction of the SNPs located within the gene-set would have been

used for the association analysis. Other brain regions including the caudate nucleus

and the pallidum did not provide enough evidence to conclude that the genome-wide

PRS captured more variation over the gene-set PRS.

It is becoming apparent that a lot of work will be required to disentangle the contri-

bution of common genetic risk to brain anatomy. It may be prudent to continue the

investigation into whether there is a common genetic link between schizophrenia

and brain anatomy using more focused techniques and experiments. For example,

Stauffer et. al. (Stauffer et al., 2021) found an association of a genome-wide PRS to

grey and white microstructure (aka at the cellular level) instead of macrostructure

which was measured in this study.

It may also be beneficial to investigate the contribution of environmental factors

with respect to subcortical brain region sizes in individuals with schizophrenia. For

example, it has previously been shown that individiduals who were considered to

have a high risk of developing schizophrenia (based on positive schizophrenia cases
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in familial history) were found to differ significantly from a control population for

environmental risk factors including family conflict and stressful life events (Walder et

al., 2014). In combination with the observation that exposure to stress may contribute

to reductions in hippocampal volume via hypercortisolemia (Lawrie et al., 2008),

it is viable that a causal link between stress in schizophrenia patients and reduced

hippocampal brain volume in schizophrenia patients may exist.

The results displayed here do not disprove the idea that partitioning the genetic

risk schizophrenia will allow for a better understanding of the effect (if any) of the

genetics of schizophrenia on brain volume. Gene-set analysis is a complex field in

of itself and the inconclusive results here may simply be a reflection that the input

gene-sets may need refining. However, it can be argued that by using UK Biobank, a

resource of a healthy population, you are removing environmental factors associated

with schizophrenia including anti-psychotic treatment and increased cannabis use as

factors within this analysis.

SurPRSe appeared to produce gene-set PRSs which were accurate. As observed in

Figures 4.3, 4.4, and 4.5 when an FDR p-value is observed for a PRS in one Pt, the

direction of effect is the same across all other Pt for that same PRS. In addition,

the direction of effect for most gene-set PRS across all other Pt broadly was the

same direction of effect for the PRS with a p-value that passed FDR correction. One

difference between the gene-set PRS and the genome-wide PRS was the apparent

increase in signal at the lower Pt for some gene-sets. There are two occurrences which

could explain these results. The first is that the gene-set is particularly large and a

subset of SNPs within the gene-set is driving the signal. For future work, it would

be useful to identify which SNPs are within the gene-set at the lower thresholds and

perform a stringent gene-set enrichment test on these SNPs to examine whether a

known biological pathway exists that matches the signal observed. In the second

instance, it might be due to the properties of a small gene-set PRS. In these cases,

the number of SNPs contributing to the PRS might be extremely small at the lower

thresholds. The signal observed might be an anomaly of having insufficient data to

describe the PRS, but further work using for example, simulations would be required

to see if this was the case.

In conclusion, it appears that in most cases a gene-set PRS does not provide informa-

tion above and beyond what a genome-wide or a gene-centric PRS would provide.

However, with a larger sample size and further investigation, a gene-set PRS may

provide insight into the effect of schizophrenia genetics on the hippocampal brain

volume.
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Furthermore, A summary on the current state of brain imaging and schizophrenia

can be found based on the reaction to the paper by Alnaes et al. (2019). Essentially, the

authors attempted to show whether brain structure variability between individuals

with schizophrenia and a healthy cohort (UK Biobank) was caused by the schizophre-

nia PRS (Alnæs et al., 2019). They concluded that the PRS was not capturing the

genetic or environmental factors responsible for this difference. In response, De Peri

et al. (De Peri and Vita, 2019) stated that the study did not incorporate the reverse

causation hypothesis (e.g. inclusion of anti-psychotic medication as a covariate) into

their analysis. As a reply, Alnaes and Westlye (2019) stated that there is a lack of

harmonised protocols for clinical phenotypes across the samples available to them.

They further argued that many environmental factors and "indeed most constituents

of life itself" affect the structure of the brain, and so in order to understand the genetic

impact of neuropsychiatric traits on brain anatomy, a strategy to catalogue these

environmental variables must be created (Alnæs and Westlye, 2019).

NOTE OF WORK

Steluta Grama produced the PRS using SurPRSe. All other work including but

not limited to association analysis, plotting, interpretation and presentation was

performed by myself.
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5 Using polygenic risk score
approaches to investigate the
common-variant genetic
architecture of cognition in
schizophrenia

5.1 Introduction

Cognitive impairment is common in schizophrenia, and is a predictor of poor func-

tional outcome (Green, 2006). The cause of cognitive impairment in schizophrenia has

been hypothesised to have a genetic component due to observations that cognitive

performance is impaired in the relatives of patients with schizophrenia (Seidman et

al., 2015). Investigating the genetic component of cognitive impairment in schizophre-

nia patients has been challenging, as secondary factors including illness-related

behaviours (e.g. poor nutrition and substance abuse) and consequences of treatment

(e.g. anti-psychotics) have also been shown to affect cognition (Green, Llerena, and

Kern, 2015; Keefe et al., 2007a; Keefe et al., 2007b).

Multiple Measurements of cognitive performance (Deary, Johnson, and Houlihan,

2009; Kremen et al., 2013; Davis, Haworth, and Plomin, 2009; Polderman et al.,

2015b) and educational attainment (a proxy measurement for cognitive performance)

(Krapohl et al., 2014) are highly heritable. Additionally, almost all of these cognitive

measurements correlate substantially and positively (Plomin and Deary, 2015). Gen-

eral Intelligence (an index of the co-variance between multiple cognitive tests) was

one of the first traits to show that the genetic influence contributed to substantial

individual differences of the trait (Deary, Johnson, and Houlihan, 2009). Kremen

et. al. (2013) also found through the use of twin studies, that a combined metric of

measurements for cognitive impairment (including episodic memory, Executive func-

tion, and verbal/language) were found to have a heritability of approximately 40%
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to 48%. A recent Genome Wide Association (GWA) study has identified 206 genetic

loci associated with general intelligence within the general population (Intelligence

Quotient (IQ)) (Savage et al., 2018).

There is evidence that supports the hypothesis of genetic overlap between schizophre-

nia, IQ and cognitive performance in schizophrenia through twin studies (Lemvigh et

al., 2020), GWA studies (Ohi et al., 2018), and Polygenic Risk Scores (PRSs) (Hubbard

et al., 2016; Richards et al., 2019).

LD Score Regression (LDSC) has been used to measure the genetic variant correlation

(rg) between general cognitive function GWA studies and schizophrenia GWA studies

(Ohi et al., 2018). Several studies have reported an rg of approximately -0.2 between

these two traits (Trampush et al., 2017; Sniekers et al., 2017; Lam et al., 2017; Davies

et al., 2018; Savage et al., 2018).

PRS has shown an association of cognitive PRS with schizophrenia, and conversely,

a schizophrenia PRS has shown an association with various measurements of IQ

including IQ, attention, processing speed, working memory, problem solving and so-

cial cognition (Hubbard et al., 2016). So far, no study has examined the association of

schiophrenia PRS or cognition PRS with a cognition within schizophrenia phenotype.

Lemvigh et al. (2020) performed a twin study that showed cognitive deficits within

schizophrenia was heritable, and found that some components of cognitive functions

associated with schizophrenia liability were independent of IQ. This suggests both

a shared genetic etiology between schizophrenia and cognitive performance within

schizophrenia patients. It also shows that although IQ correlates strongly to cognitive

measurements( 40%), there is a suggestion that some aspects of cognition may be an

indication of specific risk factors for schizophrenia, separate from IQ measurements.

Discerning where these risk variants are located could provide an indication of which

cognitive and/or schizophrenia biological processes are involved, and potentially,

the direction of causality (i.e. does the risk for cognitive deficits contribute towards

schizophrenia liability or does schizophrenia liability contribute to cognitive deficits).

The largest schizophrenia GWA study to date at the time of writing, the CLOZUK

meta-analysis (Pardiñas et al., 2018; 40,675 cases, 64,643 controls; see chapter 2)

identified six gene-sets significantly associated to schizophrenia ( Targets of FMRP,

Abnormal behavior (MP:0004924), 5 − HT2C receptor complex, Abnormal nervous

system electrophysiology (MP:0002272), Voltage-gated calcium channel complexes,

Abnormal long-term potentiation (MP:0002207) and suggests that the risk for the

disorder converges onto physiological, molecular and behavioural pathways (Par-

diñas et al., 2018). These gene sets collectively captured 30% of the total Single
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Nucleotide Polymorphism (SNP) heritability of schizophrenia; a disproportionately

high amount for the proportion of all SNPs included in these gene-sets (Pardiñas

et al., 2018). Taking a similar approach, the latest IQ GWA study at the time of writing

(IQ3; 269,876 individuals; see 2) identified six gene-sets which were significantly

associated with general intelligence in the population(neurogenesis, neuron differen-

tiation, central nervous system neuron differentiation, regulation of nervous system

development, positive regulation of nervous system development, and regulation of

synapse structure or activity). After conditional analyses on these gene-sets, three

gene-sets were found to be independently associated to IQ(regulation of nervous

system development, central nervous system neuron differentiation, and regulation

of synapse structure or activity) and altogether accounted for the association found

in the other three gene-sets (Savage et al., 2018).

A significant gene-set from a gene-set analysis in the context of (for example) schizo-

phrenia, infers that SNPs located within a group of related genes have, on average,

more significant association test statistics for schizophrenia than expected either by

chance, or than all other SNPs within genes in the remainder of the genome. This

is advantageous if applied to PRS analyses because it allows the PRS to convey

more information about any one individual’s genetic profile. Within the classical

model of polygenic disease, the polygenic risk score for any individual conveys

the total liability of a trait (for example schizophrenia) to a single value estimate

that should lie on a spectrum from low to high genetic risk for schizophrenia. This

reduction of information to a single numerical figure loses potentially important

information about that individual’s genetic profile for schizophrenia. If PRSs are

defined across gene sets significantly associated to schizophrenia, it can describe how

the risk for schizophrenia (and the subphenotypes of schizophrenia) varies across

different biological processes and pathways (Choi et al., 2022).

For example, if one wanted to test the association between the genetic propensity for

IQ and a cognitive phenotype within schizophrenia, an IQ GWA study would be used

to inform the PRS, and the PRS would be tested for any association with a cognitive

phenotype recorded for individuals with schizophrenia. However, within this model,

every allele available would be included within the PRS, the majority of which (when

defined within the polygenic model) would have varying contributions to the genetic

risk of schizophrenia, of IQ and, of cognitive performance in schizophrenia patients.

However, some of these alleles may have a larger contribution to biological processes

of schizophrenia separate from the biological processes of cognitive performance

within schizophrenia and of IQ. These alleles are still included within the analysis and

therefore any signal for the potential association of IQ to cognitive performance within
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schizophrenia patients may be diluted. The interpretation of how schizophrenia

influences cognition is limited by the reduction of the genetic signal to a single

estimate per individual.

Instead, it may be beneficial to limit the alleles within the IQ PRS to a set of alleles

that have been shown to be associated with schizophrenia. The analysis is testing

whether alleles that contribute to schizophrenia may also contribute to the cognitive

performance within schizophrenia. Additionally, it may be possible to discern which

biological processes relevant to schizophrenia are also relevant for cognitive perfor-

mance within schizophrenia, and which processes have no relevance for cognitive

performance within schizophrenia.

5.1.1 Aims

Within this study, I aim to test whether gene-set PRS gives a better insight into the

pathogenesis of schizophrenia, specifically, it’s relationship to cognition. The direction

of causation between cognition and schizophrenia is unknown at the time of writing.

I will use gene-sets significantly associated with schizophrenia, gene-sets significantly

associated to IQ, a high-powered schizophrenia GWA study and a high-powered

IQ GWA study to inform the PRS. By using the genetic liability to one trait, and

gene-sets associated to the other, I aim to provide more insight about the relation-

ship between IQ liability, schizophrenia liability and the liability of the cognitive

phenotypes observed within schizophrenia patients. The null hypothesis is that both

schizophrenia PRS and IQ PRS will account for the same amount of variability within

cognition within schizophrenia patients, and show the same direction of effect.

5.2 Materials and Methods

5.2.1 Samples

CardiffCOGS

Exploration of the cognition within schizophrenia phenotype using PRS requires a

target data set of patients diagnosed with schizophrenia where a robust metric of

cognition within schizophrenia has been recorded.

CardiffCOGS is a sample of 1,024 UK-based participants diagnosed with schizophre-

nia, schizoaffective depressed, schizoaffective bipolar or other psychotic disorder
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(Pardiñas et al., 2018; Lynham et al., 2018a). These participants were recruited via

secondary care NHS mental health services in England and Wales. To determine the

reliability of a schizophrenia phenotype, all individuals were interviewed using the

Schedules for Clinical Assessment in Neuropsychiatry (SCAN) (Wing et al., 1990).

Both this interview and available clinical records were reviewed by trained raters

to give a consensus lifetime DSM-IV diagnosis (American Psychiatric Association,

2000).

Cognitive Assessment and Outcome

All individuals in CardiffCOGS had a cognitive assessment by trained psycholo-

gists using the MCCB Nuechterlein2008. A detailed explanation of the MATRICS

Cognitive Consensus Battery (MCCB) applied to CardiffCOGS is described in Lyn-

ham et al. (Lynham et al., 2018a). Briefly, seven domains of cognition are measured

from ten tasks including Speed of processing, verbal/visual learning and reasoning

and problem solving. Z scores for each task were derived using the mean and stan-

dard deviation of healthy controls matched for age and sex. Domain and composite

scores were calculated following the procedures in the MCCB manual, whereby com-

posite cognitive scores are derived from five or more domain cognitive measures if

they are present in each individual.

For this study I selected the MCCB composite score, a measure of generalized cogni-

tive functioning, as our primary outcome (Figure 5.1. This battery was specifically

designed to be the accepted diagnostic tool for assessing cognitive change in individ-

uals with schizophrenia (Nuechterlein et al., 2008b).
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FIGURE 5.1: Distribution of the MCCB composite score across
all schizophrenia patients used within this study

Further recruitment and genotype information for these individuals has been exten-

sively described elsewhere (Pardiñas et al., 2018; Lynham et al., 2018a).

5.2.2 Schizophrenia Genome Wide Association Study

To investigate the genetic effects of schizophrenia on the phenotype of cognition

within schizophrenia patients, a sufficiently powered training set (GWA study) is

required.

CardiffCOGS samples were removed from the CLOZUK meta-analysis (40,675 cases

and 64,643 controls; Pardinas2018) to create new GWA summary statistics referred

to as SCZminusCOGS (39,950 cases and 64,643 controls; see Chapter 2). The fixed-

effects procedure in METAL (Willer, Li, and Abecasis, 2010) was used to perform the

meta-analysis, with a filter on the INFO score > 0.9.

The CLOZUK meta-analysis was previously shown to confer over 90% of polygenic

contribution to the association signal observed within the GWA study (Using LD

Score v1.0) (Pardiñas et al., 2018; Bulik-Sullivan et al., 2015). As CLOZUK itself

conferred over 80% of the polygenic contribution, SCZminusCOGS should confer
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between 80-90% of the polygenic contribution to the association signal observed

within the SCZminusCOGS.

5.2.3 IQ Genome Wide Association Study

I obtained IQ GWA study results from Savage et al. (2018) in the form of summary

statistics from the Complex trait genetics lab (IQ3, n = 269,876; http://ctg.cncr.nl/

software/summary_statistics; see Chapter 2).

5.2.4 Gene-set Analysis

To expand the information available for schizophrenia, IQ and cognition within

schizophrenia from the PRS beyond a single estimate per individual, gene-sets signif-

icantly associated to schizophrenia and IQ need to be defined.

134 Central Nervous System (CNS) related gene-sets were taken directly from Par-

diñas et al. These gene-sets were analysed with the gene-set analysis tool MAGMA

(Leeuw et al., 2015) and the SNPs within these gene-sets were collectively found to

capture a disproportionate amount of the SNP heritability as compared with all other

annotated genes (30% of the total heritability, and 46% of the genic heritability). This

colection of genes was found to be enriched for common variation in schizophrenia

as compared with all other annotated genes (P=8.57×10–13) (Pardiñas et al., 2018).

A gene-set containing loss of function intolerant genes was included. This gene-

set was defined using a gene-level constraint measure (probability of being Loss of

Function Intolerant (pLI) ≤ 0.9) provided by the Exome Aggregation Consortium

(ExAC) (Lek et al., 2016b). pLI was calculated by analysing the proportion of the

observed number of SNPs that were to be rare (Minor Allele Frequency (MAF) <

10%) in ExAC with the expected number of SNPs (the expected number of SNPs

were quantified using a selection neutral, sequence-context based mutational model

(Samocha et al., 2014)). Using MAGMA, loss of function intolerant genes were found

to be enriched for common variation in schizophrenia as compared with all annotated

genes (P=4.1×10–16) (Pardiñas et al., 2018).

Our testing sample (CardiffCOGS) contained samples from the GWA study used in

Pardinas et al. (2018), so the gene-set analysis was performed de novo in SCZmi-

nusCOGS in order to ensure that the gene-sets which were enriched within the

() GWA were also enriched and/or contained the lowest p-values (for association

http://ctg.cncr.nl/software/summary_statistics
http://ctg.cncr.nl/software/summary_statistics
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with the common variation in schizophrenia) compared to all available annotated

gene-sets.

Enrichment of all 135 gene-sets in SCZminusCOGS was assessed using MAGMA

v1.06 (Leeuw et al., 2015). After accounting for Linkage Disequilibrium (LD), p-

values of all SNPs inside genes were combined to create gene-wide p-values. Genes

were defined allowing for a window 10kb downstream and 35kb upstream of the

gene to capture any signal found in regulatory regions (Pardiñas et al., 2018; Cox and

Lee, 2008). Competitive gene-set p-values were then derived from the gene p-values

after accounting for LD between genes, gene size and gene-set density. ’Competitive’

gene-set analysis hypothesises that the gene-set being analysed is enriched to the

same degree to the phenotype as a background gene-set (in this case, the combination

of all available annotated gene-sets). Multiple correction testing was performed using

the Westfall-Young Family-Wise Error Rate (FWER) procedure (100,000 re-samplings,

alpha threshold = 0.05; Benjamini and Hochberg, 1995)

Six Gene-sets for IQ were taken directly from Savage et al. (2018). They were derived

by using the gene-set association analysis tool MAGMA to test the association of pre-

defined gene-sets to IQ. The source of the gene-sets came from three different groups.

For the first group, 7,246 gene-sets representing biological and metabolic pathways

were derived from nine separate resources defined within MsigDB (Liberzon et al.,

2011). The second group were derived from gene expression values for 53 tissues

from GTEx (Ardlie, Deluca, and Segre, 2015) and the third group was derived from

cell-type specific gene expression within 24 types of brain cells (Skene et al., 2018).

5.2.5 Derivation of PRS

PRSs need to be created within the gene-sets defined previously. Background PRSs

should be defined to observe whether the gene-set PRS confer polygenic signal above

and beyond the polygenic signal they are expected to confer, and whether the gene-set

PRS confer more information (e.g. direction of effect of the PRS on the phenotype of

cognition within schizophrenia patients). As the pool of SNPs for the gene-set PRS

can only be within genic regions, a whole genome PRS limited to this pool of SNPs

within genic regions should be created as a fair comparison to gene-set PRS.

Another potential source of extra information which can be extracted from gene-set

PRS beyond whole genome PRS is to combine all SNPs within all schizophrenia and

IQ gene-sets together (for both traits individually and a collective schizophrenia and

IQ set). If all these gene-sets are observed to be have the same direction of effect on
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the phenotype of cognition within schizophrenia patients, it may increase the power

of the respective PRS.

All PRSs were performed using Supercomputing (with) Polygenic Risk Score eval-

uation (SurPRSe). The Quality Control (QC) stages used the CardiffCOGS geno-

types as a reference data set. SNPs with ambiguous alleles, a low minor allele

frequency (MAF < 0.1, low quality (INFOrmation score (INFO) < 0.9), or mapping to

the extended region of linkage disequilibrium surrounding Major Histocompatibility

Complex (MHC) region of chromosome 6 (24MB - 35MB) were removed. The MHC

region was removed because of the complex LD structure within this region. Sig-

nificantly associated SNPs within the MHC have not been consistently replicated

across different GWA studies, even within the same ethnic group (Mokhtari and

Lachman, 2016). SNPs were pruned to account for LD, removing SNPs within 500kb

and r2 > 0.1 of another associated SNP with a higher training set p-value. SNPs were

also removed if they had a Hardy-Weinberg equilibrium mid-p test p-value below

1e-06. PRS were assigned to CardiffCOGS individuals using the PLINK 1.9 –score

command within Supercomputing (with) Polygenic Risk Score evaluation (SurPRSe)

and three P value threshold s (Pts) were used (Pt < 5e-08, 0.05, 1; (2015)). The Pt of

0.05 has been shown to capture the most amount of variation of case-control status

for a schizophrenia PRS, while the Pt of 5e-08 and 1 are supplementary thresholds to

ensure that the SurPRSe is working correctly, and examine whether the gene-set PRS

have different statistical properties to the genome-wide PRS. PRSs were calculated

by summing the number of associated alleles for each index SNP, weighted by their

coefficient of effect size (beta).

PRSs in CardiffCOGS were corrected for the first five population principal compo-

nents. Tucker et al (2014) have shown that for GWA studies, the first five PCs are

sufficient to account for population stratification. Linear regressions were used to

test association between PRS and cognition, indexed by the MCCB. For each regres-

sion, covariates for age at the SCAN interview and sex were included in the model;

individuals were removed if a cognitive composite score was missing. PRS p-values

were corrected for multiple comparisons (False Discovery Rate (FDR) p) using the

Benjamini-Hochberg FDR procedure (Benjamini and Hochberg, 1995).

Genome-wide and Gene-centric PRS

Genome-wide and gene-centric PRSs were tested in CardiffCOGS; for the gene-centric

PRS, a window 35 Kilo-Base (KB) upstream and 10 KB downstream of each gene

was included, enabling some of the association signal from SNPs within regulatory



Chapter 5. Using polygenic risk score approaches to investigate the
common-variant genetic architecture of cognition in schizophrenia

143

regions adjacent to the gene to be captured (Banaschewski et al., 2015; Maston, Evans,

and Green, 2006). These regions were defined and SNPs outside of the genic regions

were removed before LD pruning procedures.

Gene-set polygenic risk scores

For each gene-set, SNPs were limited to the gene boundaries including the above

flanking sequences. PRSs were calculated as above.

I also defined schizophrenia and intelligence collated sets by, respectively, combining

all genes contained within the associated schizophrenia and the IQ gene-sets. These

collated sets were also tested for association with the MCCB composite cognitive

score.

5.2.6 Correlation between gene-set PRS

All the gene sets defined here are not mutually exclusive from each other. In order to

gauge the size of these overlaps, the Pearson correlation coefficient was calculated

between all gene-set PRS including the schizophrenia and IQ collated sets. This is not

a direct test of whether each gene set PRS is mutually exclusive from one another, but

it will give an indication if an overlap of genes is responsible for a similar R2 value

observed between a schizophrenia gene set PRS and an IQ gene-set PRS.

5.2.7 Power of gene-set PRS

At the time of writing, there is no published evidence that gene-set PRS confer

comparable power to that of the genome-wide and genic PRSs. The power of each

gene set PRS was calculated.

A two sample z test was performed using the power.z.test() function found in R. This

calculation requires an alpha, sigma, the N number and the effect size. Alpha was

set to 0.05, N was set to 725 (The number of samples with a definitive schizophrenia

diagnosis), sigma was set as the standard error of the linear regression between

cognition with schizophrenia patients and the PRS, multiplied by the square root of

N. The effect size was the Beta coefficient of the linear regression between cognition

with schizophrenia patients and the PRS.
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5.3 Results

5.3.1 Gene-set analysis

In the original schizophrenia GWA study, targets of the Fragile X Mental Retardation

Protein (FMRP), abnormal behavior, abnormal nervous system electrophysiology,

abnormal long-term potentiation, voltage-gated calcium channel complexes, 5-HT2C

receptor complex and loss of function intolerant genes were associated to schizophre-

nia. In SCZminusCOGS, three gene-sets were associated with schizophrenia after

adjusting for multiple testing correction. These were loss of function intolerant genes,

FMRP targets and abnormal behavior (see Table 5.1). These gene-sets were also the

most significantly associated to a large schizophrenia GWA study (Pardiñas et al.,

2018), which included the CardiffCOGS samples.

TABLE 5.1: Functional gene set analysis in SZ-COGS

Gene set Number of Genes P-value MT corrected P-value

LoF intolerant genes 2903 1.5e-16 <1.0e-06
FMRP targets 794 1.1e-09 <1.0e-06
Abnormal behavior 1925 2.3e-04 2.9e-02

P-value = gene-set p-value as derived in MAGMA [26], MT corrected P-value =
gene-set p-value corrected for multiple testing using Westfall-Young family wise
error rate as defined in MAGMA (Leeuw et al., 2015).

5.3.2 Polygenic Risk Scoring

Association of schizophrenia polygenic risk scores with cognitive ability.

In total, thirteen PRSs were tested for association with cognition at three significance

thresholds (See table 5.2 and Supplementary Table C.1). These were the three gene

sets associated with schizophrenia, six gene sets associated with IQ, the schizophrenia

collated gene set, the IQ collated gene set, the gene-centric gene set and the genome-

wide gene set.

A genome-wide PRS conferring the risk of schizophrenia alleles was tested for as-

sociation with the MCCB composite cognition score. Across all three Pt within

SCZminusCOGS, a schizophrenia genome-wide PRS was not significantly associated

with a lower cognitive measure (FDR < 0.05; Figure 5.2).

Three gene-set PRS containing gene-sets was associated to schizophrenia were also

tested for association with cognitive ability within CardiffCOGS (Figure 5.2). No
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TABLE 5.2: Number of SNPs within each PRS at different Pt

Significance thresholds
PRS 5e-08 0.05 1
CNS Neuron Differentiation 8 362 1184
Neurogenesis 39 2422 8269
Neuron differentiation 23 1639 5639
Positive regulation of NS development 13 892 2955
Regulation of NS development 26 1424 4792
Regulation of synapse structure or activity 7 566 1807
IQ collated set 41 2611 8912
Abnormal behavior 34 3167 10779
FMRP targets 36 1856 5896
LoF intolerant genes 67 4798 15637
SCZ collated set 80 6602 22298
Gene-centric 115 13206 47563
Genome-wide 153 21147 75696

The number under each significance threshold indicates the number of SNPs found
at each threshold for each respective PRS. The number of SNPs at a Pt of
1e-06,1e-04,0.01,0.1,0.2 and 0.5 can be found in the Appendix at Table C.1

association was found in any gene-set PRS. Similarly, no association was found in

the collated schizophrenia set.

In contrast to the generally negative findings with schizophrenia sets, schizophrenia

risk alleles in five sets identified from the GWA study of IQ (neurogenesis, positive

regulation of nervous system development, regulation of nervous system devel-

opment, regulation of synapse structure or activity and the collated IQ set), were

significant at Pt = 0.05. Moreover, these sets captured more variation in cognitive

ability than either the genome-wide or the gene-centric PRS at Pt = 0.05 (Figure 5.2)

and survived FDR multiple correction testing (all five FDR p = 0.043, see Supplemen-

tary table C.2). There are five PRS with the same FDR p-value because of method of

FDR multiple testing correction. Under this procedure, the p-values are first ordered

from the highest to the lowest p-value. The FDR value is calculated by following:

numbero f samples/positiono f thep − value ∗ p − value. However, it only outputs the

cumulative minimum of these values. For example, if 39/2 ∗ p − value is less than

39/1 ∗ p − value then the 39/2p − value is output instead)
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FIGURE 5.2: Proportion of variance explained for schizophre-
nia PRS. The subheadings at the top of each bar plot indicate
the Pt of which the PRS was created. The R2 direction (%) axis
indicates the amount of variation explained (in the form of a
percentage) by the respective PRS with the MCCB cognitive
score in the CardiffCOGS individuals with the direction of ef-
fect incorporated in. For example an R squared below zero
reflect the direction of effect is consistent with a higher burden
of schizophrenia risk alleles is associated with lower cognitive
ability. Associations surviving FDR correction are reflected by
notation of the FDR p-value. CNS = Central Nervous System.

reg = regulation. NS = Nervous System.

Association of IQ polygenic risk scores with MCCB composite cognitive
score

Twelve of the thirteen gene sets tested using the IQ PRS were associated with cognitive

score in people with schizophrenia (Figure 5.3), the exception being central nervous

system neuron differentiation. Association for the genome-wide PRS was seen across

all three p-value thresholds (Pnom = 2.84e-12,FDR p = 2.32e-10, R2 = 5.00%, Pt = 0.05),

but the genome wide PRS narrowly captured less variation in the MCCB composite
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cognitive score over the genic wide PRS (Pnom = 2.53e-12, FDR p = 9.88e-11, R2 =

5.64%, Pt = 0.05; Figure 5.3).

No gene-set PRS captured more variation in the MCCB composite cognitive score

than the genome-wide PRS or the gene-centric PRS. All results for figure 5.3 can be

found in the Appendix at table C.3.

FIGURE 5.3: Proportion of variance in cognition in people
with schizophrenia explained by IQ PRS. P-value threshold
for selecting risk alleles from the training GWA studies are des-
ignated as Pt. R2 values below zero reflect the direction of effect
is consistent with a higher propensity of IQ alleles is associ-
ated with lower cognitive ability. Associations surviving FDR

correction are reflected by notation of the FDR p-value.

Correlation of PRS

When IQ alleles were used to inform the PRSs, the Collated IQ PRS contained a

correlation coefficient of 0.52 with the Collated schizophrenia PRS when IQ alleles

were used to inform the PRS (Figure 5.4). The collated schizophrenia set was generally

more correlated with the schizophrenia gene-set PRSs, than the IQ gene-set PRSs.
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When schizophrenia alleles were used to inform the PRSs, a similar pattern of corre-

lation coefficients as described above was observed (Figure 5.5).

FIGURE 5.4: Correlation of gene-set PRS using IQ alleles. The
x-axis displays the heatmap scale of the Pearson’s correlation
coefficient for each comparison. Each numerical Pearson’s corre-
lation coefficient is also displayed for each comparison. IQ3 was
used as the training set for each PRS. In the diagram: Iq Superset
= Collated IQ PRS, Scz Superset = Collated schizophrenia PRS,
Super Superset = all alleles contained with the IQ and SCZ col-
lated sets combined into one PRS. Whole exome = Gene-centric

PRS.
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FIGURE 5.5: Correlation of gene-set PRS using SCZ alleles.
The x-axis displays the heatmap scale of the Pearson’s correla-
tion coefficient for each comparison. Each numerical Pearson’s
correlation coefficient is also displayed for each comparison.
SCZminusCOGS was used as the training set for each PRS. In
the diagram: Iq Superset = the collated IQ PRS, Scz Superset
= the collated schizophrenia PRS, Super Superset = all alleles
contained with the IQ and SCZ collated sets combined into one

PRS. Whole exome = Gene-centric PRS.

Power of gene-set PRS

All gene-set PRS that produced an FDR corrected P-value below 0.05, produced a

Power statistic above 0.77. The results observed was consistent when the training

data set was schizophrenia (Table 5.3) or IQ3 (Table 5.4).
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The Power statistic in this context is the probability of the regression between cog-

nition and the gene-set PRS to be able to detect a significant effect when one exists.

The Power of any hypothesis test (including the above regression) lies between 0

and 1. The closer the Power statistic is to 1, the more likely the regression will be

able to detect an existing significant effect. In general, the threshold where the power

for the hypothesis test is considered ’good’ is above 0.8. Two gene-set PRS with a

FDR corrected P-value below 0.05 (Regulation of Synapse Structure or Activity (IQ3)

Regulation of Nervous System Development (SCZ)) failed to meet this threshold.

TABLE 5.3: Power of Gene-set PRS when SCZ was the train-
ing set. Estimate, standard error, P-value and FDR-corrected
P value are the values output from the linear regression be-
tween the cognition phenotype and the respective Gene set PRS.
Power indicates the two sample z test as performed using the
power.z.test() function found in R. This calculation requires an
alpha, sigma, the N number and the effect size. Alpha was set
to 0.05, N was set to 725 (The number of samples with a defini-
tive schizophrenia diagnosis), sigma was set as the standard
error multiplied by the square root of N. The effect size was the

Estimate.
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TABLE 5.4: Power of Gene-set PRS when IQ3 was the train-
ing set. Estimate, standard error, P-value and FDR-corrected
P value are the values output from the linear regression be-
tween the cognition phenotype and the respective Gene set PRS.
Power indicates the two sample z test as performed using the
power.z.test() function found in R. This calculation requires an
alpha, sigma, the N number and the effect size. Alpha was set
to 0.05, N was set to 725 (The number of samples with a defini-
tive schizophrenia diagnosis), sigma was set as the standard
error multiplied by the square root of N. The effect size was the

Estimate.

5.4 Discussion

I have explored the relationship between the genetic risk of schizophrenia, the genetic

predisposition towards general IQ, and the variation in cognitive performance in

schizophrenia patients using PRS approaches. I started by discovering gene-sets

which were significantly associated to the novel GWA study, SCZminusCOGS (de-

scribed in Chapter 2). I then found that IQ gene-set PRS captured more variation for

the cognition within schizophrenia phenotype than the schizophrenia gene-set PRS

and the genome-wide PRS when schizophrenia alleles were used. Furthermore, when

IQ alleles were used, most gene-set PRS and all genome-wide PRS were positively

associated with the cognition within schizophrenia phenotype.

In a recent study by Richards et al. (2019), an IQ PRS was found to be significantly

positively associated with a derivation of the ‘general intelligence factor’, g in in-

dividuals with schizophrenia. However, no association was found with the same

phenotype when the risk of schizophrenia informed the PRS. The absence of any

association of the schizophrenia PRS is a result I replicate and expand upon with the

gene-set and the genome-wide PRSs here (with the addendum that all individuals
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within the testing data-set used here was a subset of the samples in Richards et al.

(2019)). If cognitive impairment is a functional outcome of schizophrenia and there is

evidence to show that the cause of this was genetic, it would seem counter-intuitive

that the genetic risk of schizophrenia has no part to play in the biological processes

that cause cognitive impairment in individuals with schizophrenia. This is counter-

intuitive because if the genetic risk of schizophrenia does not cause a sub-phenotype

of schizophrenia, from where does the genetic risk originate and how is it specific to

cognitive deficits observed within schizophrenia patients?

Previous studies have observed negative correlations and associations between

schizophrenia PRS and cognition or Educational Attainment (EA) (Hubbard et al.,

2016; Hagenaars et al., 2016b; Hill et al., 2016; Toulopoulou et al., 2010; Fowler et al.,

2012). The same observation is observed here, but I also observe that schizophre-

nia alleles appear to predict cognition within schizophrenia sets in IQ defined sets,

but not schizophrenia defined sets. In addition, IQ alleles predict cognition within

schizophrenia patients regardless of the gene-set they are located within. I propose a

theory that these observations may be explained via pleiotropy.

Within the schizophrenia defined gene sets, schizophrenia alleles are depleted for

pleiotropic effects on cognition (at the very least, within individuals with schizophre-

nia) compared with the schizophrenia alleles located within the IQ defined sets. Thus,

I begin to see evidence for specific phenotypic effects of subsets of schizophrenia risk

alleles defined by biological pathways.

The extensive evidence for genetic correlations across cognitive and psychiatric

phenotypes implies that widespread pleiotropy exists across these traits (Lee et al.,

2013). Additionally, a recent Phe-WAS on a schizophrenia PRS displayed pleiotropy

across several mental health disorders (Zheutlin et al., 2019). This does not imply that

any given individual allele has pleiotropic effects. The observation that schizophrenia

alleles in the biological pathways most highly enriched for schizophrenia liability do

not influence cognitive ability, whereas IQ associated alleles within the same gene-set

do, implies that the specific mechanisms underpinning these two phenotypes are

non-overlapping, and that for these most strongly enriched pathways, schizophrenia

liability is not broadly mediated by effects on cognition.

The observation that schizophrenia risk alleles in gene sets associated with IQ are also

associated with cognition in schizophrenia suggests that schizophrenia risk alleles in

IQ associated gene sets are likely to be pleiotropic.

This in turn suggests that the mechanisms underpinning schizophrenia and cognition

in processes most robustly implicated in cognition may be substantially overlapping,
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and that for this set of schizophrenia risk alleles, their effects are mediated by effects

on cognition.

The above observations contain the assumption that each gene set PRS is independent

from one another. Evidence of independent associations of the schizophrenia gene-

sets to schizophrenia and the IQ gene sets to IQ was shown within the MAGMA

gene-set conditional analysis performed in the original publications (Pardiñas et al.,

2018; Savage et al., 2018). However, there is no previous evidence showing that the

schizophrenia gene-sets are independent from the IQ gene-sets. No high correlations

were found between the collated schizophrenia gene-set PRSs and the collated IQ

gene-set PRSs, supporting the assumption of independence.

Further analysis is required to support the observations in the PRS analysis here. More

direct statistical tests exist for pleiotropy observed within a set of SNPs including, for

example Generalised Summary-data-based Mendelian Randomisation (GSMR) (Zhu

et al., 2018) and Phe-WAS (Zheutlin et al., 2019). The investigation into pleiotropy

between schizophrenia and cognitive phenotypes has already provided evidence

to further our understanding of these two traits. Lam et al. (2019b) examined the

correlations between groups of SNPs to identify which subsets of SNPs contained con-

cordant effect sizes for educational attainment, cognition and schizophrenia liability.

MAGMA pathway analysis was then performed to highlight early neurodevelopmen-

tal pathways that characterize concordant allelic variation, and adulthood synaptic

pruning pathways, which may be contribute to the positive genetic association ob-

served between educational attainment and schizophrenia (Lam et al., 2019b).

Legge et al. (Legge et al., 2021) used factor analysis to examine the relationship

between the phenotypic dimensions of schizophrenia (eg negative and positive symp-

toms) and the PRS for schizophrenia, intelligence and other neuropsychiatric disor-

ders. They found that while both schizophrenia and intelligence PRS was associated

to current cognitive ability, only the intelligence PRS was associated with premorbid

IQ. In addition, when adding premorbid IQ as a covariate with current cognitive

ability, the schizophrenia PRS remained significant, but the intelligence PRS did not.

This suggests that current cognitive ability in schizophrenia is partly a function of

premorbid IQ, influenced by both schizophrenia and intelligence SNPs. It may be

interesting to test the association of both intelligence and schizophrenia gene-set PRS

created here, on the phenotypes of current cognitive ability and premorbid IQ to

further dissect the relationship between cognition and intelligence and schiophrneia

variants, as well as to test whether similar results found here are replicated with a

different phenotype describing cognition within schizophrenia.
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In addition, it would be beneficial to replicate the results observed here within another

cohort (for example UK Biobank) to ensure that the associations observed here are

not simply statistical noise within the CardiffCOGS cohort.

The size of CardiffCOGS is also a limitation for this study. While the cognition

phenotype within schizophrenia patients is well defined, only approximately one

thousand individuals had their cognitive phenotype recorded and less actually had a

Diagnostic (and) Statistical Manual (of Mental Disorders) (DSM)-IV defined diagno-

sis of schizophrenia. However, I did perform power calculations and observed that

enough individuals were included within each linear regression to detect authentic

signal when significant associations were found.

In summary, gene-set PRSs appears to be a useful tool to investigate the relationship

between schizophrenia and one of it’s endophenotypes: cognition. I have provided

further evidence that the variance observed in IQ within the general population has

similar genetic causes to the variance observed within cognition in schizophrenia

patients. I theorise that the variation in schizophrenia risk may play a role in the

variation observed within cognition of schizophrenia patients through pleiotropic

alleles, but further work is required to support this.
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6 Discussion and Future work

6.1 Conclusions

The primary aim of this thesis was to investigate whether a gene-set PRS method

could help understand the role that the common genetic risk of schizophrenia plays in

the pathogenesis of schizophrenia and its associated phenotypes. This started with an

investigation into how to produce a gene-set PRS given that there is no standardised

method for producing a gene-set PRS. A gene-set PRS bioinformatics workflow

named SurPRSe was created and its ability to produce gene-set PRS was tested

against existing software. SurPRSe was then applied to two schizophrenia related

research questions: 1. Is the lack of association observed between the common genetic

risk of schizophrenia and subcortical brain region volumes due to too much noise

within the genome-wide PRS? 2. Does the common genetic risk for schizophrenia

have any role to play with cognitive impairment observed in schizophrenia patients?

With regards to the first question, the results were inconclusive. While it appeared

apparent that even a maximally powered genome-wide PRS would not be able to

capture the schizophrenia common genetic component affecting subcortical brain

region volumes (if indeed one exists), the ability of a gene set PRS to capture this

variation will require further replication and investigation due to the complexities of

gene-set analysis and the statistical rigour required to produce confident results.

With regards to the second question, the outlook for the use of gene-set PRS to

disentangle the cross-disorder common genetics between neuropsychiatric traits was

promising. The gene-set PRS were able to provide a hypothesis on how common

schizophrenia risk affects cognitive impairment in individuals with schizophrenia,

conclusions must be caveated by the knowledge that this is a novel technique and that

this technique reduces the amount of information available compared to a genome-

wide PRS. The the effect sizes for each SNP within the PRS are consistently very small,

so the power of each gene-set PRS should be investigated further than displayed

here.
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In the next section I will provide an overview on the reasons why the creation of

SurPRSe was required and the limitations involved in its use. I will then expand on

the explanations regarding the two research questions that SurPRSe was applied to.

Finally, I will ponder the future of using gene-set PRS in schizophrenia research.

6.2 Discussion

6.2.1 SurPRSe

Benchmarking bioinformatics tools is becoming ever more important in the era of

considerably larger and more complex genetic data sets (Aniba, Poch, and Thompson,

2010). The main issue within the system of the creation of bioinformatics workflows

and tools can be summarised by the term ’workflow’ or ’tool’. Outside of bioinformat-

ics and biology, the term ’workflow’ is not used to describe a set of coded software

instructions to perform a specific task. The term used is ’program’ in which there is

an expectation that the program is built robustly with a large amount of safeguards to

ensure the program does not fail when it is run by multiple users. Within the current

academic system, a bioinformatics tool or workflow only requires the tool to pass the

peer-review system without any analysis of the code-base itself. In addition, within

bionformatics, very little resources are allocated to ensure the workflow is running as

expected. In most cases the workflow is produced by one or two authors and contains

limited to no safeguards. In addition, in the field of neuropsychiatric genetics, many

bioinformatics tools are based on data that is either open access, owned by the group

which created the bioinformatics tools itself or on simulated data.

For example, in the case of the software PRSice-2 (Choi and O’Reilly, 2019), the only

data used to test the efficacy for general use was UK Biobank as the genotyped data

(Sudlow et al., 2015), a GWA study by the GIANT consortium (Locke et al., 2015) and

simulated training sets with a heritability of 0.2 and 0.6 (Choi and O’Reilly, 2019).

The simulated data compared PRSice-2 to other PRS software in lassosum (Mak et al.,

2017) and LDpred (Vilhjálmsson et al., 2015), but only displayed information on the

ability of PRSice-2 to computationally scale-up much better than existing alternatives,

a pattern we observed here when PRSet was compared to SurPRSe, and the predictive

power of each PRS. The tool is advertised as being able to perform "automation of

PRS analyses applied to large-scale genotype-phenotype data", but has only been

systematically tested on three data sets at the time of writing, and no mention has

been made of its gene-set PRS tool PRSet (Choi and O’Reilly, 2019). The difference

between designing a tool that works for one polygenic risk score analysis compared
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to a tool that is versatile is vast, and can contain many computational bugs which

may not be observed without sufficient testing of the tool against a baseline which

incorporates all known instances of "large-scale genotype-phenotype data" (Choi and

O’Reilly, 2019).

SurPRSe was built for two reasons. 1) The insufficient testing and constant devel-

opment of existing gene-set PRS tools was inappropriate for use within a three year

project and 2) the majority of the computational work involved the QC and standard-

isation of the input data sets into the PRS, a process which has limitations in existing

software. The computational work to produce the scoring within a PRS is simple

enough to be performed outside of existing software if required, but has been well

documented and used in the bioinformatics tool PLINK 1.9 (Chang et al., 2015). How-

ever, as described in chapter 2, fourteen data sets were used to produce the multiple

PRSs used within this thesis and performing individual QC steps across each data set

to set it up for a simple scoring algorithm would be an inefficient use of time. In addi-

tion, there is no system in place to remove computational artifacts from explaining the

results, all the QC steps would be performed using individual scripts suited towards

each data set. These artifacts can have profound effects on the interpretation of the

PRSs as evidenced in section (include unit testing example from appendix) due to the

low effect sizes and r-squared values generally seen when analysing post-GWAS data

on complex neuropsychiatric traits including schizophrenia and cognition. SurPRSe

does not guarantee the removal of computational artifacts from the results, but does

provide an automated, standardised procedure that is suited towards the data stored

within the databank at Cardiff university, and was applied to all fourteen data sets

within this thesis.

There are however, some limitations to using SurPRSe across the thesis as opposed

to alternative software or individualised PRS analyses. The most influential is the

loss of power that is associated with automating any procedure. For example, it is

indeed possible to included insertions and deletions within the PRS as described in

Chapter 3. However, in most analyses, these SNPs have low MAFs and/or INFO

scores and are removed as a part of the standardised QC procedures. These SNPs can

also be a part of the exclusion criteria in the creation of a PRS (Ripke et al., 2014; Hess

et al., 2019). There was no cost effective benefit to include the option to keep these

SNPs within SurPRSe, but it may have had a minor effect on the interpretation of

genome-wide PRS and especially gene-set PRS when the power of the data is reduced

significantly. In addition, as with other bioinformatics workflows, the resources and

time to turn SurPRSe into a robust program was not available, and so must come

under the nomenclature of a ’workflow’ instead.
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6.2.2 Gene-set PRS

The creation of gene-set PRS may have wide-ranging implications in the under-

standing of neuropsychiatric traits. The aggregation of variants into biologically

meaningful pathways on an individual level basis could not only dissect schizophre-

nia from its subphenotypes, but also stratify individuals based on their predisposition

towards schizophrenia. This could provide many clinical benefits including, for

example, the efficacy of a particular treatment or antipsychotic on a patient with

schizophrenia. While there has been some success in defining gene-sets associated

with schizophrenia from a population (Pardiñas et al., 2018), the next hurdle for clini-

cal application is the interpretation of the biological significance of these gene-sets on

an individual level basis.

In the context of this project, the main limitation of gene-set analysis that had to be

overcome was the absence of gold-standard standardisation across different gene-set

database resources, as this creates problems when defining hypotheses that require

comparisons across multiple traits. If you were to compare a genome-wide PRS be-

tween schizophrenia and cognition for example, the analysis could be defined within

one to two regression or genetic correlation analyses. As long as the population and

array effects are accounted for within both the schizophrenia and cognition data sets,

the analysis structure is robustly defined as the total risk of schizophrenia compared

to the total predisposition with cognition. However, as soon as you partition the

genetic components of each trait, the hypotheses may become less interpretative. For

example even in the direct comparison of a loss of function intolerance gene-set, the

analysis structure of the above becomes the genetic disposition towards schizophre-

nia within the loss of function intolerant genes compared to the genetic disposition

towards cognition within the loss of function intolerant genes. The robustness of this

comparison now relies upon the definition of the loss of function intolerant genes

gene-set and the association of the loss of function intolerant genes with schizophre-

nia and cognition. The latter is usually solved by performing a gene-set association

analysis on the trait of interest to define gene-sets which are associated with either

schizophrenia or cognition. In the case of the robustness of the definition of the loss

of function intolerant genes gene-set, there is a wider methodological problem which

is detailed below.

In the case of breast cancer, it was found that SNPs near the FGFR2 gene demonstrate

associations at p < 10-300 (Michailidou et al., 2017). It was also found that 86 of

the top 100 pathways associated to breast cancer all contain the FGFR2 gene, and so

gene-sets that are un-associated with breast cancer may be artificially driven to the
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top of the results if they contain the FGFR2 gene within the gene-set (Sun et al., 2019;

Michailidou et al., 2017). In the context of schizophrenia and cognition, the loss of

function intolerance gene-set is very large, and so may also may show association to

cognition simply due to the appearance of cognitive associated genes within the loss

of function intolerance genes gene-set. Because gene-sets are un-standardised across

the bioinformatics field, there is no systematic method to prove that this is not true,

and so the association of each gene-set to each trait is solely reliable on the robustness

of each individual gene-set analysis that was performed for each trait. If certain genes

or gene-sets are not included, this may have an effect on the interpretation of the

results.

A PRS is limited in its ability to confer causal genetic effects by design. It includes

variants that may have no true association with, for example, schizophrenia, in

order to increase the power of the common polygenic component observed with the

schizophrenia trait. The issue is that a PRS is, at the time of writing, the only method

which can reliably capture the common genetic component of schizophrenia at an

individual level and so it is currently one of the best methods available to discover

causal associations of schizophrenia SNPs with other traits. Briefly, a Mendelian

Randomisation (MR) experiment requires genetic instruments that are definitively

causal to the outcome trait in order to separate out confounding effects from the

genetic effects (Davies, Holmes, and Davey Smith, 2018). However, as the effect sizes

of even the most associated schizophrenia SNP are small, very few validated risk

alleles are available so a MR study would be unsuitable for defining the causal effects

of schizophrenia, especially when compared to another complex trait like cognition.

There has been some evidence using MR to link the genetic components of other

traits towards schizophrenia. A recent MR study showed that the genetic liability

towards cannabis use was causal to the genetic risk of schizophrenia, but only ten

cannabis-associated SNPs were used as genetic instruments and these SNPs did not

pass genome-wide significance (Vaucher et al., 2018). There is also evidence that

interleukin-6 effects and low C-reactive protein may increase the risk of schizophrenia

within a two-sample MR based experiment (Hartwig et al., 2017).

What is clear is that it is of vital importance to set out a clear hypothesis before the use

of any gene-set PRS when applied to a neuropsychiatric trait. While the interpretation

of gene-set PRS may be confused due to annotation problems, I have shown here that

gene-set PRSs are quite versatile in terms of the research questions that they can be

applied to. In the first instance whereby the common genetic risk of schizophrenia

was tested for association with subcortical brain volume size, the hypothesis was that

gene-set PRSs would explain more variation in subcortical brain region sizes over
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that of a genome-wide PRS. The scientific basis behind this hypothesis was that there

may be heterogeneity within the schizophrenia common alleles affecting different

brain structures. As a gene-set PRS incorporates a biological meaning within its risk

score, it is the ideal analysis method to test this hypothesis.

Gene-set PRSs can also be used to investigate the genetic architecture between three

or more traits. The aim within the second study of my thesis was to examine whether

only a part of the genetic predisposition towards schizophrenia and cognition influ-

ences the observed phenotype of cognitive impairment within schizophrenia patients.

As the gene-set PRS is able to dissect the genetic risk into meaningful biological

pathways, it is ideal for this type of cross trait analysis. The added benefit is that

you are able to isolate alleles that confer the genetic risk of one trait but are found to

be associated to another in order to investigate the combined genetic architecture of

both traits. A gene-set PRS may also provide insights into the pleiotropic effects of

any selected trait, but the method would need to be refined, which goes beyond the

remit of this thesis.

6.2.3 Future work

SurPRSe and PRSAVE

SurPRSe was built to suit the data sets used in this thesis (See Chapter 2) on the

computational architecture suited towards Cardiff university. It was however, also

built in a way so that other individuals would be able to use it. There is therefore

scope to make SurPRSe into software given the right resources and time. SurPRSe is

however, quite complex in terms of its computational architecture (aka the codebase),

and considering that there are other software options already out there in PRSice

(Choi and O’Reilly, 2019) and LDpred (Vilhjálmsson et al., 2015), what may be more

beneficial is to develop PRSAVE, the shiny app that visualises the results of PRS

association analyses (See chapter 3). As the main issue with using gene-set PRS is the

interpretation of the results, creating apps which allow an interactive visualisation

of the results can provide simultaneous analysis of the initial hypothesis, while

providing information on whether the analysis has worked correctly. When the

results are being discussed in a collaborative environment, more focus can be directed

on the biological implications of the results, especially if everyone within the room is

able to use and understand the app.
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Gene-set PRS applied to subcortical brain volumes

The absence of any association of the common genetic risk towards schizophrenia

with subcortical brain volumes is a tricky obstacle to overcome in psychiatric genetics.

There is an indication of gene-set PRS being a suitable analysis method to investiate

the relationship between these two traits but a better refinement of the PRS and a

replication is required before committing to this analysis structure. What can be

concluded is that genome-wide PRS should no longer be used when examining the

relationship between the common genetic risk of schizophrenia an subcortical brain

region volumes.

Gene-set PRS applied to cognition within schizophrenia patients

Replication will be required in order to support the findings from Chapter 5. One

potential route for replication is through the use of UK Biobank. It may be useful

to investigate the genetic architecture of schizophrenia with other traits given the

right samples are available, but even so, it may also been useful to compare the

gene-set PRS with a trait unrelated to either schizophrenia and cognition, to get a

better indication of the quality of the signal that was observed here.
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A Appendix for Chapter 3

A.1 PRSetvsSurPRSe

A.1.1 Components of SurPRSe

FIGURE A.1: Submission script to Hawk for the runthrough
testing of SurPRSe. SurPRSe is run directly after the "time"

command.
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FIGURE A.2: Submission script to Hawk for the runthrough
testing of PRSet. PRSet is run directly after the "time" command
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A.1.2 Comparison of gene-set PRS

FIGURE A.3: Gene set wide comparison of PRS between Sur-
PRSe and PRSet Pt = 1. Each box signifies the correlation coeffi-
cient between the gene set PRS produced by SurPRSe and PRSet
at a Pt of 1. The y-axis labels signify the identifiers of the gene
set PRS from PRSet and the x-axis signifies PRS from SurPRSe.
The diagonal describes direct comparisons of gene-set PRS. The
legend and colour of the boxes indicates the correlation coeffi-
cient where red is negative and blue is positive. The numerical

correlation coefficient is also displayed within each box.
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FIGURE A.4: Gene set wide comparison of PRS between Sur-
PRSe and PRSet at Pt = 0.2. Each box signifies the correlation
coefficient between the gene set PRS produced by SurPRSe and
PRSet at a Pt of 0.2. The y-axis labels signify the identifiers of
the gene set PRS from PRSet and the x-axis signifies PRS from
SurPRSe. The diagonal describes direct comparisons of gene-set
PRS. The legend and colour of the boxes indicates the correla-
tion coefficient where red is negative and blue is positive. The
numerical correlation coefficient is also displayed within each

box.
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FIGURE A.5: Gene set wide comparison of PRS between Sur-
PRSe and PRSet at Pt = 0.5. Each box signifies the correlation
coefficient between the gene set PRS produced by SurPRSe and
PRSet at a Pt of 0.5. The y-axis labels signify the identifiers of
the gene set PRS from PRSet and the x-axis signifies PRS from
SurPRSe. The diagonal describes direct comparisons of gene-set
PRS. The legend and colour of the boxes indicates the correla-
tion coefficient where red is negative and blue is positive. The
numerical correlation coefficient is also displayed within each

box.
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A.1.3 Direct comparison of SNPs within Gene-set PRS for

SurPRSe vs PRSet

Cardiac development gene-set PRS

TABLE A.1: SNPs not included in SurPRSe but incorrectly in-
cluded in PRSet with an INFO score <= 0.9 within the cardiac

development gene-set

SNP CHR BP INFO

rs1008673 22 25994013 0.737

rs10230746 7 31112592 0.780

rs1027604 10 1335849 0.836

rs10647195 21 46543189 0.837

rs10857892 1 112063002 0.864

rs111327786 12 52357808 0.887

rs112281202 10 1522853 0.751

rs11250503 10 1460041 0.750

rs11324447 17 73967822 0.721

rs113614592 15 89384191 0.807

rs11394383 9 19125920 0.757

rs114324639 10 1695763 0.834

rs11445913 17 31923135 0.806

rs11648854 16 50287079 0.739

rs11657396 17 31816537 0.762

rs11741244 5 7405952 0.873

rs11781115 8 26681450 0.730

rs11816776 10 1622660 0.896

rs12247154 10 1335557 0.749

rs12416363 10 1659473 0.711

rs12690837 7 45717943 0.846

rs12774968 10 1404073 0.900

rs12809597 12 52356323 0.759

rs1370155 15 35082141 0.803

rs1415796 1 112049586 0.871

rs143614067 20 10649319 0.803

rs147375828 11 935794 0.836

rs149648382 17 32479946 0.760

rs1553041 17 31609251 0.888

rs17027794 1 112026449 0.748

Continued on next page
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Table A.1 – continued from previous page

SNP CHR BP INFO

rs17192422 17 32019411 0.754

rs17293755 10 1353714 0.787

rs17783478 17 32160611 0.729

rs181140053 22 41905819 0.774

rs187540407 17 31477741 0.870

rs1889912 17 32141378 0.850

rs191604810 10 1582959 0.795

rs199808408 17 31950259 0.880

rs200159741 10 1413979 0.771

rs201163009 2 54380401 0.813

rs2026756 8 132032301 0.889

rs2173523 10 1735559 0.720

rs2228948 2 158593905 0.729

rs2241757 2 25064079 0.894

rs2267740 7 31137003 0.757

rs2283675 22 51179000 0.720

rs2461130 7 45695331 0.799

rs2645983 17 31674764 0.882

rs26738 5 7465056 0.835

rs2779205 17 15868203 0.800

rs28479305 22 26015973 0.773

rs317325 17 32162702 0.812

rs34205959 17 32156598 0.857

rs34271210 13 25079141 0.816

rs34476044 5 148236793 0.859

rs34787014 17 40077384 0.900

rs35038759 16 4130719 0.868

rs35460688 15 59010671 0.827

rs35863579 17 73956991 0.753

rs369844976 16 71770454 0.898

rs371927 20 43263036 0.734

rs3788157 21 46510708 0.855

rs3935891 17 31819214 0.717

rs4098461 1 236920370 0.850

rs4268746 16 50281671 0.855

rs4732853 8 26610651 0.890

rs4838712 10 135077626 0.734

rs4880914 10 1746219 0.733

Continued on next page
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Table A.1 – continued from previous page

SNP CHR BP INFO

rs56018738 5 7447646 0.716

rs56237504 9 32399970 0.827

rs56735090 14 69407394 0.828

rs5782582 10 1575483 0.842

rs5844848 22 29764745 0.710

rs5852699 3 132039496 0.741

rs59402890 16 50289434 0.824

rs60068179 1 236920415 0.764

rs60937573 19 39147786 0.801

rs61834370 10 1502242 0.710

rs61852569 10 90736014 0.823

rs62149818 2 70958693 0.835

rs62377693 5 159366329 0.713

rs6560762 10 1745254 0.803

rs67876598 17 31834588 0.738

rs7084465 10 1524224 0.705

rs71362891 17 31855186 0.850

rs7209082 17 32345908 0.771

rs7216322 17 31745046 0.842

rs72762997 10 1493513 0.808

rs72850167 11 970847 0.869

rs7333856 13 25021211 0.775

rs7483870 11 976019 0.874

rs74887187 17 32297751 0.721

rs75490400 17 33925919 0.723

rs76534753 7 31093003 0.745

rs77050686 16 71777203 0.891

rs7726571 5 7813630 0.893

rs7816340 8 26665587 0.815

rs78372398 2 25099494 0.899

rs8064532 17 79479469 0.820

rs8078040 17 31490595 0.825

rs9511299 13 25048780 0.844

rs9616824 22 51180934 0.805

rs9910792 17 79478916 0.868
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TABLE A.2: SNPs not included in SurPRSe but included in PRSet
with multiple reference or alternative alleles within the cardiac

development gene-set

SNP CHR BP INFO A1 A2

rs10652281 1 244577487 0.986 T TAATA

rs10714753 5 7829665 0.963 GA G

rs11087625 20 4222606 0.965 T TG

rs11317030 10 76426588 0.920 CT C

rs113310373 16 4139119 0.979 G GT

rs11352304 16 50340229 0.931 C CA

rs113762370 1 112079429 0.922 CCCTT C

rs11391543 3 132046637 0.822 CAA C

rs113983256 10 1472934 0.960 C CA

rs11408138 14 69411880 0.925 C CA

rs139062111 17 31570057 0.930 CAT C

rs139115987 3 123108341 0.978 C CAA

rs139151090 17 32240110 0.907 TC T

rs139412870 5 148249891 0.994 C CA

rs142469537 16 4053517 0.928 GA G

rs145164979 10 1541198 0.986 TACTC T

rs145164979 10 1541198 0.986 TATTC T

rs148961416 15 89353510 0.913 T TA

rs199822191 17 31780302 0.973 GAA G

rs200177703 5 7551123 0.952 T TTCCC

rs200448617 5 7699183 0.958 C CAACAGTAA

rs201684609 3 179297239 0.919 CAT C

rs34354539 11 10328747 0.973 TC T

rs34400308 8 26624863 0.969 A AT

rs34415845 9 19127037 0.955 C CA

rs34529627 1 244609971 1.000 CTAAT C

rs34687232 10 1427654 0.997 C CA

rs35124782 4 100259601 0.928 T TAC

rs35939984 10 1414519 0.973 A AG

rs36033430 2 70908243 0.974 AC A

rs36034937 11 125543369 0.999 T TAC

rs373296689 5 7538978 0.912 C CT

rs3831638 20 43279078 0.936 CT C

rs3834026 1 203114193 0.985 CCA C

rs55941346 15 89396984 0.960 GATAC G

Continued on next page
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Table A.2 – continued from previous page

SNP CHR BP INFO A1 A2

rs55975325 10 1470487 0.937 A AT

rs56278937 16 4108158 0.959 T TA

rs57924167 10 1503867 0.950 TC T

rs5845503 22 41891630 0.913 C CT

rs59228224 1 229567683 0.987 TC T

rs60661777 1 112054626 0.994 C CA

rs70955994 4 100209493 0.953 GGT G

rs72403882 20 4203821 0.904 T TTTTCA

rs76397255 2 54482703 0.981 GGGGCCC G

SNP’s that were not included due to the differing clumping procedures are as follows:

rs56261301, rs2676782, rs2676723, rs11599764, rs4880906, rs10762577, rs11202921,

rs7079111, rs11220182, rs79762772, rs1045476, rs2601777, rs2532019, rs2530897,

rs7222081, rs8065313, rs319780, rs1497360, rs62067935, rs7218455, rs34831989,

rs35246024, rs1434588, rs71379403, rs72811176, rs4795838, rs1414845, rs2214449,

rs381390, rs71324410, rs2838808, rs738140, rs12997, rs11691159, rs2357954,

rs72800779, rs10182300, rs2024452, rs4147544, rs7669660, rs1036174, rs1474190,

rs4444938, rs1035798, rs3131300, rs12668955, rs1521470, rs1041321, rs4442231,

rs72850137, rs10902256, rs61869001, rs1542874, rs884949, rs58007136, rs11250472,

rs10751798, rs17293817, rs7923036, rs11250533, rs10903462, rs2813407, rs62650669,

rs11250569, rs17221736, rs72764953, rs545174378, rs2813398, rs4497332, rs34547816,

rs4345891, rs7907759, rs7097804, rs12149798, rs2238443, rs60392977, rs10852639,

rs12444920, rs2108987, rs409963, rs11076807, rs709024, rs57361540, rs6052456,

rs1809715, rs6867567, rs6555474, rs554557988, rs326174, rs2779208, rs7867814,

rs3802335, rs750769, rs6753096, rs718163, rs11779546, rs741051, rs2302475,

rs67679919, rs11652197, rs1579185, rs9674863, rs319783, rs319761, rs73982485,

rs9890913, rs1497363, rs72821105, rs4795782, rs10853156, rs12451584, rs4795796,

rs11870839, rs8075499, rs9890512, rs4795800, rs56308205, rs12453488, rs8071379,

rs72827212, rs11650553, rs8069370, rs1490921, rs73986743, rs72818954, rs7212577,

rs11869615, rs56177227, rs9892726, rs111813043, rs7847742, rs2026740, rs10813814,

rs72828073, rs7166484, rs973009, rs893009, rs2008065, rs2076199, rs2007720,

rs2177013, rs391815, rs11701974, rs1084051, rs728962, rs4785211, rs72782139,

rs11675345, rs10186140, rs6545389, rs13410397, rs843645, rs17189820, rs761900,

rs8003964, rs2074814, rs3821257, rs12929547, rs7359455, rs7219716, rs12467259,

rs175510, rs7090732, rs16931332, rs11001115, rs7503278, rs4932426, rs12902384,

rs12904298, rs61852568, rs4934433, rs1926197, rs13832, rs10030920, rs72679847,

rs1693457, rs13118443, rs12035791, rs11102296, rs111453287, rs2800895, rs13443,
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rs66850653, rs479195, rs10097729, rs309997, rs1042713, rs3857420, rs13189358,

rs12516689, rs962242, rs13001245, rs1372115, rs11741191, rs6790272, rs6686206,

rs11803533, rs2282366, rs3127454, and rs3124056

A.2 PRSet

PRSet is a tool within the software PRSice (Euesden, Lewis, and O’Reilly, 2015) that

aims to calculate, apply, evaluate and plot the results of gene set PRS analyses. As

with SurPRSe, PRSet takes in a training data set and a testing data set as an input for

the software. To obtain the definitions of the gene sets for PRS analyses, PRSet uses

either an MSigDB file and a .gtf file (Figure A.6) or a .bed file (Figure A.7).

(A) MsigDB gene set annotation file (in a GMT file format)

(B) .gtf file format, include supplementary link to script and explanation that the
raw format is tricky to read into R.

FIGURE A.6: PRSet gene set input option one.
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FIGURE A.7: PRSice2 gene-set input option two. The input
must be defined as the .bed file format described according to
the Ensembl genome browser. The first column describes the
chromosome or scaffold identifier. The second column describes
the first feature in standard chromosomal co-ordinates. The third
column describes the second feature in standard chromosomal
co-ordinates. In respect to PRSice2, the name assigned to the
.bed file is interpreted as the gene-set for the analysis. Further
information on .bed files can be found at https://www.ensemb

l.org/info/website/upload/bed.html

PRSet is a complex and comprehensive command line tool, designed to encompass

all the necessary tools required to perform a PRS analysis from the QC of the input

data sets to the regression analysis of the PRS with the trait of interest. Separate from

SurPRSe, it is able to obtain the optimal Pt for each PRS and adjust the method for

which the PRS is calculated.

PRSet is written in the R statistical software and C++ programming languages. The R

script controls the higher level functions of PRSet while the C++ code controls the

lower level functions including memory allocation and computational processing to

create very efficient production of PRS. PRSet is designed to be run as an executable on

a personal desktop, but can easily be adapted to run in a supercomputer environment.

As stated in Figure A.8, PRSet is similar to SurPRSe in that a header script (this time

an R script) is used to run the program, while instead of a configuration script, the

control of the analysis is listed as arguments to the header R script.

https://www.ensembl.org/info/website/upload/bed.html
https://www.ensembl.org/info/website/upload/bed.html
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FIGURE A.8: PRSet example. Taken from https://choishingw
an.github.io/PRSice/quick_start_prset/

If the regression analyses is performed, PRSet is able to visualise the results using the

−−multi−plot <N> argument. Further details can be found in Section 3.4.4.

https://choishingwan.github.io/PRSice/quick_start_prset/
https://choishingwan.github.io/PRSice/quick_start_prset/
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B.1 Genome-wide PRS and subcortical brain region
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FIGURE B.1: Comparisons of associations of polygenic risk
scores to subcortical brain volumes in UK Biobank samples.
A-H Titles of each plot indicate the subcortical brain region. The
three subtitles of each plot indicate the Pt. The top section of each
plot is the left hemisphere of the specified brain region (indicated
by the prefix ’L’) and the bottom section is the right hemisphere
of the specified brain region (indicated by the prefix ’R’). The
x-axis indicates the training data-set used for the PRS. At each Pt
the GWA studies increase in power from left to right. The BETA
title on the x-axis indicated the standardised coefficient of the
linear regression. The red line indicates a null value across each
plot. Error bars displayed here are standard error bars. If the
error bar does not cross the null, it does NOT indicate that the
association within the linear regression model was significant.
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FIGURE B.2: Comparisons of associations of polygenic risk
scores to subcortical brain volumes in UK Biobank samples.
A-H Titles of each plot indicate the subcortical brain region. The
three subtitles of each plot indicate the Pt. The ’LR’ notation on
the right side of the y-axis indicates that the brain region has
been averaged between the left and right hemisphere. The x-axis
indicates the training data-set used for the PRS. At each Pt the
GWA studies increase in power from left to right. The BETA
title on the x-axis indicated the standardised coefficient of the
linear regression. The red line indicates a Null value across each
plot. Error bars displayed here are standard error bars. If the
error bar does not cross the null, it does NOT indicate that the
association within the linear regression model was significant.
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B.2 Gene-set PRS and subcortical brain region sizes
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FIGURE B.3: Comparisons of the variation explained by the
genome-wide, gene-centric and gene-set PRS on nucleus ac-
cumbens brain volume. The left hemisphere is the bottom left
plot and the right hemisphere is the bottom right plot. The top
plot is the averaged left and right hemisphere of the nucleus
accumbens. The subheadings to each plot are the Pt of the PRS.
The y-axis signifies the value of the r-squared in the form of
a percentage with the direction of the standardised regression
coefficient incorporated in. All gene-set PRS appear in blue, the
genome-wide PRS is red and gene-wide PRS is orange. If the
FDR p-value is noted down, that gene-set PRS passed multiple

testing correction.
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FIGURE B.4: Comparisons of the variation explained by the
genome-wide, gene-centric and gene-set PRS on lateral ven-
tricles brain volume. The left hemisphere is the bottom left
plot and the right hemisphere is the bottom right plot. The
top plot is the averaged left and right hemisphere of the lateral
ventricles. The subheadings to each plot are the Pt of the PRS.
The y-axis signifies the value of the r-squared in the form of
a percentage with the direction of the standardised regression
coefficient incorporated in. All gene-set PRS appear in blue, the
genome-wide PRS is red and gene-wide PRS is orange. If the
FDR p-value is noted down, that gene-set PRS passed multiple

testing correction.
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FIGURE B.5: Comparisons of the variation explained by the
genome-wide, gene-centric and gene-set PRS on putamen
brain volume. The left hemisphere is the bottom left plot and
the right hemisphere is the bottom right plot. The top plot is the
averaged left and right hemisphere of the putamen. The sub-
headings to each plot are the Pt of the PRS. The y-axis signifies
the value of the r-squared in the form of a percentage with the
direction of the standardised regression coefficient incorporated
in. All gene-set PRS appear in blue, the genome-wide PRS is red
and gene-wide PRS is orange. If the FDR p-value is noted down,

that gene-set PRS passed multiple testing correction.



Appendix B. Appendix for Chapter 4 182

1e−06 1e−04 0.01 0.05 0.1 0.2 0.5 1

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

−0.02

0.00

0.02

Polygenic risk score

R
2 

di
re

ct
io

n 
(%

)

Type
Gene−wide
Genome−wide
SCZ Gene−sets

LR_thal

1e−06 0.05 1

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

−0.01

0.00

0.01

0.02

0.03

0.04

Polygenic risk score

R
2 

di
re

ct
io

n 
(%

)

Type
Gene−wide
Genome−wide
SCZ Gene−sets

Lthal
1e−06 0.05 1

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

G
en

e 
w

id
e 

P
R

S
G

en
om

e 
w

id
e 

P
R

S
5h

t 2
c

ab
no

rm
al

 b
eh

av
io

r
ab

no
rm

al
 lt

p
ab

no
rm

al
 N

S
 e

le
ct

ro
ph

ys
io

lo
gy

ca
v2

 c
ha

nn
el

s
fm

rp
 ta

rg
et

s
lo

f i
nt

ol
er

an
ce

−0.02

−0.01

0.00

0.01

0.02

Polygenic risk score

R
2 

di
re

ct
io

n 
(%

)

Type
Gene−wide
Genome−wide
SCZ Gene−sets

Rthal

FIGURE B.6: Comparisons of the variation explained by the
genome-wide, gene-centric and gene-set PRS on Thalamus
brain volume. The left hemisphere is the bottom left plot and
the right hemisphere is the bottom right plot. The top plot is the
averaged left and right hemisphere of the thalamus. The sub-
headings to each plot are the Pt of the PRS. The y-axis signifies
the value of the r-squared in the form of a percentage with the
direction of the standardised regression coefficient incorporated
in. All gene-set PRS appear in blue, the genome-wide PRS is red
and gene-wide PRS is orange. If the FDR p-value is noted down,

that gene-set PRS passed multiple testing correction.
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C Appendix for Chapter 5

C.1 Gene-set analysis

TABLE C.1: Number of genes per gene-set

Significance thresholds
PRS 5e-08 1e-06 1e-04 0.01 0.05 0.1 0.2 0.5 1
Abnormal behavior 34 67 282 1523 3167 4341 5938 8760 10779
FMRP targets 36 65 193 948 1856 2544 3399 4876 5896
CNS Neuron Differentiation 8 13 49 190 362 498 679 1000 1184
Neurogenesis 39 61 245 1216 2422 3343 4643 6803 8269
Neuron differentiation 23 35 154 802 1639 2276 3164 4655 5639
Positive regulation of NS development 13 22 99 438 892 1218 1692 2411 2955
Regulation of NS development 26 40 153 724 1424 1932 2693 3896 4792
Regulation of synapse structure or activity 7 14 72 302 566 746 1035 1486 1807
IQ collated set 41 67 267 1304 2611 3605 4992 7316 8912
LoF intolerant genes 67 125 472 2375 4798 6513 8822 12851 15637
SCZ collated set 80 157 599 3195 6602 9075 12426 18257 22298
Gene-centric 115 238 957 6059 13206 18694 26158 38849 47563
Genome-wide 153 325 1347 9525 21147 29887 42025 62228 75696
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C.2 Polygenic Risk Scores

C.2.1 Schizophrenia

TABLE C.2: Regression results of IQ PRS with congnition in
schizophrenia

PRS BETA SE tvalue P value R squared lower CI upper CI Significance_thresholds Type FDR p

extended_geneset_SCORE_abnormal_behavior_5e-08 0.01 0.05 0.31 0.75 0.00 -0.08 0.11 5e-08 SCZ Gene-sets 0.77
extended_geneset_SCORE_abnormal_behavior_0.05 -0.05 0.05 -1.08 0.28 0.00 -0.14 0.04 0.05 SCZ Gene-sets 0.44
extended_geneset_SCORE_abnormal_behavior_1 -0.07 0.05 -1.57 0.12 0.00 -0.17 0.02 1 SCZ Gene-sets 0.25
extended_geneset_SCORE_GO_NEUROGENESIS_5e-08 -0.03 0.05 -0.62 0.53 0.00 -0.12 0.06 5e-08 IQ Gene-sets 0.63
extended_geneset_SCORE_GO_NEUROGENESIS_0.05 -0.13 0.05 -2.86 0.00 0.01 -0.22 -0.04 0.05 IQ Gene-sets 0.04
extended_geneset_SCORE_GO_NEUROGENESIS_1 -0.12 0.05 -2.46 0.01 0.01 -0.21 -0.02 1 IQ Gene-sets 0.07
extended_geneset_SCORE_FMRP_targets_5e-08 0.03 0.05 0.69 0.49 0.00 -0.06 0.13 5e-08 SCZ Gene-sets 0.62
extended_geneset_SCORE_FMRP_targets_0.05 0.06 0.05 1.35 0.18 0.00 -0.03 0.16 0.05 SCZ Gene-sets 0.35
extended_geneset_SCORE_FMRP_targets_1 0.05 0.05 1.09 0.28 0.00 -0.04 0.14 1 SCZ Gene-sets 0.44
extended_geneset_SCORE_GO_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_5e-08 -0.06 0.05 -1.28 0.20 0.00 -0.15 0.03 5e-08 IQ Gene-sets 0.36
extended_geneset_SCORE_GO_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_0.05 -0.13 0.05 -2.72 0.01 0.01 -0.22 -0.03 0.05 IQ Gene-sets 0.04
extended_geneset_SCORE_GO_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_1 -0.09 0.05 -1.88 0.06 0.00 -0.18 0.00 1 IQ Gene-sets 0.20
extended_geneset_SCORE_GO_NEURON_DIFFERENTIATION_5e-08 0.03 0.05 0.59 0.56 0.00 -0.07 0.12 5e-08 IQ Gene-sets 0.64
extended_geneset_SCORE_GO_NEURON_DIFFERENTIATION_0.05 -0.08 0.05 -1.62 0.11 0.00 -0.17 0.02 0.05 IQ Gene-sets 0.25
extended_geneset_SCORE_GO_NEURON_DIFFERENTIATION_1 -0.07 0.05 -1.58 0.11 0.00 -0.17 0.02 1 IQ Gene-sets 0.25
extended_geneset_SCORE_GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION_5e-08 0.05 0.05 1.12 0.26 0.00 -0.04 0.14 5e-08 IQ Gene-sets 0.44
extended_geneset_SCORE_GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION_0.05 -0.04 0.05 -0.79 0.43 0.00 -0.13 0.05 0.05 IQ Gene-sets 0.59
extended_geneset_SCORE_GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION_1 -0.02 0.05 -0.32 0.75 0.00 -0.11 0.08 1 IQ Gene-sets 0.77
extended_geneset_SCORE_Lek2015_LoFintolerant_90_5e-08 0.03 0.05 0.65 0.52 0.00 -0.06 0.12 5e-08 SCZ Gene-sets 0.63
extended_geneset_SCORE_Lek2015_LoFintolerant_90_0.05 -0.01 0.05 -0.19 0.85 0.00 -0.10 0.08 0.05 SCZ Gene-sets 0.85
extended_geneset_SCORE_Lek2015_LoFintolerant_90_1 0.02 0.05 0.46 0.64 0.00 -0.07 0.11 1 SCZ Gene-sets 0.72
extended_geneset_SCORE_GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_5e-08 -0.09 0.05 -1.98 0.05 0.00 -0.19 -0.00 5e-08 IQ Gene-sets 0.17
extended_geneset_SCORE_GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_0.05 -0.13 0.05 -2.83 0.00 0.01 -0.22 -0.04 0.05 IQ Gene-sets 0.04
extended_geneset_SCORE_GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_1 -0.11 0.05 -2.34 0.02 0.01 -0.20 -0.02 1 IQ Gene-sets 0.08
extended_geneset_SCORE_GO_REGULATION_OF_SYNAPSE_STRUCTURE_OR_ACTIVITY_5e-08 -0.08 0.05 -1.61 0.11 0.00 -0.17 0.02 5e-08 IQ Gene-sets 0.25
extended_geneset_SCORE_GO_REGULATION_OF_SYNAPSE_STRUCTURE_OR_ACTIVITY_0.05 -0.13 0.05 -2.85 0.00 0.01 -0.22 -0.04 0.05 IQ Gene-sets 0.04
extended_geneset_SCORE_GO_REGULATION_OF_SYNAPSE_STRUCTURE_OR_ACTIVITY_1 -0.11 0.05 -2.38 0.02 0.01 -0.20 -0.02 1 IQ Gene-sets 0.08
extended_geneset_SCORE_IQ_Superset_5e-08 -0.04 0.05 -0.87 0.38 0.00 -0.13 0.05 5e-08 Collated IQ set 0.55
extended_geneset_SCORE_IQ_Superset_0.05 -0.14 0.05 -3.04 0.00 0.01 -0.23 -0.05 0.05 Collated IQ set 0.04
extended_geneset_SCORE_SCZ_Superset_5e-08 0.03 0.05 0.73 0.47 0.00 -0.06 0.13 5e-08 Collated SCZ set 0.61
extended_geneset_SCORE_IQ_Superset_1 -0.13 0.05 -2.74 0.01 0.01 -0.22 -0.04 1 Collated IQ set 0.04
extended_geneset_SCORE_SCZ_Superset_0.05 -0.03 0.05 -0.72 0.47 0.00 -0.13 0.06 0.05 Collated SCZ set 0.61
extended_geneset_SCORE_SCZ_Superset_1 -0.02 0.05 -0.34 0.73 0.00 -0.11 0.08 1 Collated SCZ set 0.77
extended.genic.genome_SCORE_whole_genome_5e-08 -0.07 0.05 -1.41 0.16 0.00 -0.16 0.03 5e-08 Whole genome 0.32
extended.genic.genome_SCORE_whole_genome_0.05 -0.08 0.05 -1.73 0.08 0.00 -0.17 0.01 0.05 Whole genome 0.23
extended.genic.genome_SCORE_whole_genome_1 -0.05 0.05 -1.00 0.32 0.00 -0.14 0.04 1 Whole genome 0.48
All.genome_SCORE_whole_genome_5e-08 -0.08 0.05 -1.79 0.07 0.00 -0.17 0.01 5e-08 Whole genome 0.22
All.genome_SCORE_whole_genome_0.05 -0.11 0.05 -2.44 0.01 0.01 -0.21 -0.02 0.05 Whole genome 0.07
All.genome_SCORE_whole_genome_1 -0.06 0.05 -1.31 0.19 0.00 -0.15 0.03 1 Whole genome 0.36

C.2.2 IQ

TABLE C.3: Regression results of IQ PRS with congnition in
schizophrenia.

PRS BETA SE tvalue P value R squared lower CI upper CI Significance_thresholds Type FDR p

extended_geneset_SCORE_abnormal_behavior_5e-08 -0.02 0.05 -0.4 0.66 2e-04 -0.11 0.07 5e-08 SCZ Gene-sets 0.74
extended_geneset_SCORE_abnormal_behavior_0.05 0.17 0.05 3.85 1e-04 0.02 0.09 0.26 0.05 SCZ Gene-sets 1.72e-03
extended_geneset_SCORE_abnormal_behavior_1 0.14 0.05 3.01 2e-03 1e-04 0.05 0.2 1 SCZ Gene-sets 1.69e-02
extended_geneset_SCORE_GO_NEUROGENESIS_5e-08 0.04 0.05 0.96 0.33 1e-03 0.05 0.13 5e-08 IQ Gene-sets 0.48
extended_geneset_SCORE_GO_NEUROGENESIS_0.05 0.22 0.04 5.11 3.96e-07 0.03 0.14 0.32 0.05 IQ Gene-sets 1.51e-05
extended_geneset_SCORE_GO_NEUROGENESIS_1 0.17 0.04 4.01 6.64e-06 0.02 0.09 0.27 1 IQ Gene-sets 5.4e-04
extended_geneset_SCORE_FMRP_targets_5e-08 0.04 0.04 0.89 0.37 8.80e-04 -0.05 0.13 5e-08 SCZ Gene-sets 0.49
extended_geneset_SCORE_FMRP_targets_0.05 0.13 0.05 2.86 4.33e-04 9.03e-03 0.04 0.21 0.05 SCZ Gene-sets 1.77e-03
extended_geneset_SCORE_FMRP_targets_1 0.13 0.04 3.08 2.09e-03 0.01 0.05 0.22 1 SCZ Gene-sets 1.40e-03
extended_geneset_SCORE_GO_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_5e-08 -0.03 0.05 -0.61 0.54 4.19e-04 -0.12 0.06 5e-08 IQ Gene-sets 0.64
extended_geneset_SCORE_GO_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_0.05 0.16 0.04 3.55 4.12e-04 0.01 0.07 0.24 0.05 IQ Gene-sets 8.73e-03
extended_geneset_SCORE_GO_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_1 0.13 0.04 2.98 2.96e-03 9.79e-03 0.05 0.22 1 IQ Gene-sets 1.17e-02
extended_geneset_SCORE_GO_NEURON_DIFFERENTIATION_5e-08 0.02 0.05 0.52 0.60 3.25e-04 -0.07 0.12 5e-08 IQ Gene-sets 0.68
extended_geneset_SCORE_GO_NEURON_DIFFERENTIATION_0.05 0.20 0.05 4.28 2.16e-05 0.02 0.11 0.29 0.05 IQ Gene-sets 7.60-05
extended_geneset_SCORE_GO_NEURON_DIFFERENTIATION_1 0.17 0.05 3.68 2.49e-04 0.02 0.08 0.27 1 IQ Gene-sets 7.01e-04
extended_geneset_SCORE_GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION_5e-08 0.01 0.05 -0.25 0.80 7.67e-05 -0.11 0.08 5e-08 IQ Gene-sets 8.21e-01
extended_geneset_SCORE_GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION_0.05 0.03 0.05 0.72 0.47 6.01e-04 -0.06 0.13 0.05 IQ Gene-sets 5.72e-01
extended_geneset_SCORE_GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION_1 0.04 0.05 0.88 0.38 9.20e-04 -0.05 0.14 1 IQ Gene-sets 0.49
extended_geneset_SCORE_Lek2015_LoFintolerant_90_5e-08 0.02 0.05 0.40 0.69 1.92e-03 -0.07 0.11 5e-08 SCZ Gene-sets 0.74
extended_geneset_SCORE_Lek2015_LoFintolerant_90_0.05 0.20 0.05 4.38 1.36e-05 0.02 0.11 0.08 0.29 SCZ Gene-sets 3.02e-06
extended_geneset_SCORE_Lek2015_LoFintolerant_90_1 0.21 0.05 4.66 3.72e-06 0.03 0.12 0.30 1 SCZ Gene-sets 1.18e-06
extended_geneset_SCORE_GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_5e-08 0.07 0.05 1.35 0.18 2.7e-03 -0.03 0.17 5e-08 IQ Gene-sets 0.27
extended_geneset_SCORE_GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_0.05 0.21 0.05 4.12 4.27e-05 0.02 0.11 0.30 0.05 IQ Gene-sets 3.59e-04
extended_geneset_SCORE_GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT_1 0.16 0.05 3.11 1.98e-03 0.01 0.06 0.26 1 IQ Gene-sets 1.12e-02
extended_geneset_SCORE_GO_REGULATION_OF_SYNAPSE_STRUCTURE_OR_ACTIVITY_5e-08 -0.02 0.05 -0.39 0.70 1.70e-04 -0.11 0.07 5e-08 IQ Gene-sets 0.74
extended_geneset_SCORE_GO_REGULATION_OF_SYNAPSE_STRUCTURE_OR_ACTIVITY_0.05 0.13 0.04 2.93 3.52e-03 0.019.44e-03 0.04 0.22 0.05 IQ Gene-sets 1.13e-02
extended_geneset_SCORE_GO_REGULATION_OF_SYNAPSE_STRUCTURE_OR_ACTIVITY_1 -0.11 0.04 2.54 0.01 7.11e-03 0.026 0.20 1 IQ Gene-sets 2.25e-02
extended_geneset_SCORE_IQ_Superset_5e-08 0.04 0.05 0.83 0.41 7.70e-04 -0.05 1.30 5e-08 Collated IQ set 0.52
extended_geneset_SCORE_IQ_Superset_0.05 0.22 0.04 4.95 9.01e-07 0.03 0.13 0.31 0.05 Collated IQ set 2.79e-05
extended_geneset_SCORE_IQ_Superset_1 0.17 0.04 3.85 1.29e-04 0.02 0.08 0.26 1 Collated IQ set 8.79e-04
extended_geneset_SCORE_SCZ_Superset_5e-08 0.04 0.05 0.89 0.37 8.81e-04 -0.05 0.13 5e-08 Collated SCZ set 0.49
extended_geneset_SCORE_SCZ_Superset_0.05 0.26 0.04 5.86 6.82e-09 0.04 0.17 0.35 0.05 Collated SCZ set 5.78e-08
extended_geneset_SCORE_SCZ_Superset_1 0.26 0.04 -5.84 7.81e-09 0.04 0.17 0.35 1 Collated SCZ set 5.78e-08
extended.genic.genome_SCORE_whole_genome_5e-08 0.10 0.05 2.24 0.03 5.55e-03 0.01 0.19 5e-08 Whole genome 5.68e-02
extended.genic.genome_SCORE_whole_genome_0.05 0.31 0.04 7.03 4.54e-12 0.05 0.22 0.40 0.05 Whole genome 9.85e-11
extended.genic.genome_SCORE_whole_genome_1 0.30 0.04 6.70 3.93e-11 0.05 0.21 0.38 1 Whole genome 2.31e-10
All.genome_SCORE_whole_genome_5e-08 0.11 0.05 2.47 0.01 6.74e-03 0.02 0.20 5e-08 Whole genome 2.82e-02
All.genome_SCORE_whole_genome_0.05 0.32 0.05 7.10 2.84e-12 0.05 0.23 0.41 0.05 Whole genome 2.31e-10
All.genome_SCORE_whole_genome_1 0.29 0.04 6.54 1.13e-10 0.05 0.21 0.38 1 Whole genome 1.5e-09
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