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The survival and well-being of humans require solving the patch-switching problem: we must decide when to stop collecting rewards in
a current patch and travel somewhere else where gains may be higher. Previous studies suggested that frontal regions are underpinned
by several processes in the context of foraging decisions such as tracking task difficulty, and/or the value of exploring the environment.
To dissociate between these processes, participants completed an fMRI patch-switching learning task inspired by behavioral ecology.
By analyzing >11,000 trials collected across 21 participants, we found that the activation in the cingulate cortex was closely related
to several patch-switching-related variables including the decision to leave the current patch, the encounter of a new patch, the
harvest value, and the relative forage value. Learning-induced changes in the patch-switching threshold were tracked by activity within
frontoparietal regions including the superior frontal gyrus and angular gyrus. Our findings suggest that frontoparietal regions shape
patch-switching learning apart from encoding classical non-learning foraging processes. These findings provide a novel neurobiological
understanding of how learning emerges neurocomputationally shaping patch-switching behavior with implications in real-life choices
such as job selection and pave the way for future studies to probe the causal role of these neurobiological mechanisms.
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Introduction
In everyday life, we must frequently decide whether to stay at
the current location (henceforth; patch) or to move to a new one,
such as leaving our current job to move to a new one. Indeed,
humans engage in patch-switching decisions for a wide range
of purposes including survival/reproduction (e.g. food, potential
mates), education purposes (e.g. which books to read), human
social connection (e.g. which social groups to join), and entertain-
ment (e.g. music/movies/leisure activities). Furthermore, humans
are often faced with patch-switching problems not only for our-
selves but also for others such as family or community members
(Zacharopoulos et al. 2018). Given the ubiquitous nature and
impact of such decisions in shaping our survival and well-being,
it is not surprising that research across multiple disciplines has
recently turned to examine the neurocomputational mechanisms
underlying patch-switching (Kolling et al. 2012, 2016a, 2016b;
Shenhav et al. 2014, 2016a, 2016b; Constantino and Daw 2015).

There are several parameters encoded by the brain when decid-
ing whether to leave a current location or move to a new one
including the patch-switching decision threshold, the harvest
value, the travel value, and other parameters, which apply in a
changing environment such as the depletion rate and the travel
time (for details, see Materials and Methods). For example, activity
within the monkey dorsal anterior cingulate cortex (dACC) is
positively related to the decision to leave the patch, and this
activity increases with greater travel time to the next patch,
suggesting that dACC activity reflects a patch-switching decision

threshold (Hayden et al. 2011; Hall-McMaster and Luyckx 2019). In
the human brain, activity within the dACC was positively related
to the value of searching for alternative options (Kolling et al.
2012) although it has also been proposed that dACC encodes task
difficulty instead (Shenhav et al. 2014). Still, subsequent reports
showed that decision difficulty and search value in the original
foraging study (Kolling et al. 2012) shared only 2% of their variance
(Kolling et al. 2016a). A subsequent investigation identified a
negative correlation between search value and decision difficulty
and found that dACC activity still tracked search value (Kolling
et al. 2018) and in the macaque, it was shown that dACC activity
tracks search value (Stoll et al. 2016).

Moreover, some accounts emphasize that vmPFC activity is
positively related to the chosen option’s reward magnitude in
binary economic choices as well as encoding the value of the
default (non-switch) option during stay-switch foraging style deci-
sions (Kolling et al. 2012), and other accounts emphasize that
activity within the dACC and vmPFC correlates with the relative
value of searching for alternatives over engaging with current
options (Shenhav et al. 2016b).

Overall, it is currently an open question whether dACC activity
indicates closer proximity to a lower patch-switching threshold
(Hayden et al. 2011), a higher search value (Kolling et al. 2012,
2016a, 2016b), or task difficulty/cognitive control (Shenhav et al.
2014, 2016a), and whether vmPFC has a role only in classical
binary economic choices or whether its role extends to (personal
and/or social) patch-switching decisions. To interrogate these
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Fig. 1. Graphical depiction of the experimental task. On each trial, participants were presented with a cartoonish picture of an apple tree (patch) below
which was displayed the harvest value (e.g. 8.4 apples), and participants indicated (within 1.5 s) whether to harvest the tree for apples and incur a short
harvest delay (∼3 s), or move to a new tree and incur a longer travel delay (∼6 or ∼9 s). Harvests earned apples, albeit at an exponentially decelerating
rate. Choosing to harvest the tree entailed (i) receiving the harvest value (e.g. 8.4) and (ii) experiencing the harvest delay (∼3 s) until the tree was ready
to be harvested again but in the next trial, the harvest value of the tree was smaller (e.g. 7.5). Choosing to switch the tree entailed (i) not receiving any
reward and (ii) experiencing a travel delay (∼6 or ∼9 s depending on the environment, see Materials and Methods for details) to travel to a new tree with
potentially higher starting harvest value (e.g. 9.6) than the harvest value of the last tree at exit (e.g. 8.4) (modified from Constantino and Daw 2015).

possibilities, we asked participants to perform a novel fMRI patch-
switching learning task (Fig. 1), which allowed us to decouple
the neurocomputational basis of several patch-switching latent
variables including the patch-switching threshold, and thus dis-
cern the specific role of distinct brain networks in tracking these
variables shaping personal and social patch-switching behavior
(for details on the calculation of patch-switching latent variables,
see Materials and Methods).

During the fMRI patch-switching learning task (Fig. 1), partic-
ipants were shown an image of an apple tree (patch) and had
to decide whether to harvest it for apples and incur a short
harvest delay (and subsequent diminishing returns), or move to
a new tree (patch) and incur a longer delay because of travel
between the initial and new tree. In other words, participants were
faced with a patch-switching problem where they experienced an
option with diminishing returns and must decide when it was
best to leave that option. Importantly, the time they spent in
this virtual environment was fixed; therefore, participants had to
maximize reward in relation to time. Crucially, the properties of
the environment were not static but changed frequently (from run
to run), thus, in order to achieve optimal behavior and maximize
reward, participants were expected to constantly keep track of
the environment properties and update the corresponding patch-
switching latent variables. Moreover, and as alluded to earlier,
many patch-switching decisions are social decisions (e.g. partner
choice, joining/leaving a social group), and people often have to
solve the patch-switching problem not only for themselves but
also for others. How then do we solve the patch-switching problem
when it concerns others? Does the human brain perform patch-
switching computations similarly or distinctly when we forage for
others compared with when we merely forage for ourselves? To
answer these questions participants during the scanning session
performed personal patch-switching (the returns were given to
the participant) as well as social patch-switching (the returns
were given to a charity). This foraging task allowed the quan-
tification of variables that track learning-induced processes such

as patch-switching threshold, depletion rate learning, and travel
time learning, as well as the quantification of variables that
track non-learning foraging processes such as the binary decision
(i.e. stay/harvest vs switch/travel), task difficulty/reaction time,
harvest value, new patch, and relative forage value (for details,
see Materials and Methods).

We started addressing these questions in a previous study
where participants made foraging decisions for themselves
and a charity of their choice (Zacharopoulos et al. 2018). We
found that individuals who possessed a stronger self-focused
value orientation obtained more rewards when they foraged for
themselves rather than for charity, and this effect was associated
with activity in the dACC. The present study aimed to expand on
the previous one by examining the neurocomputational bases
of a task that involves a wide range of unique computations
and learning variables that we had been able to model in our
original study. For example, it is currently unknown how the
human brain computes and tracks changing environmental
properties that shape foraging behavior, such as travel time,
and the depletion rate when we forage for others compared
with when we merely forage for ourselves. Apart from our little
understanding of how these changing environmental properties
(which are explicitly set by the experimenter), our study also
examined the neurocomputational basis of latent psychological
parameters derived from the person’s behavior, such as the
patch-switching threshold, which vary considerably between
participants.

Therefore, our aims were: (i) to decouple the neurocomputa-
tional basis of several patch-switching latent variables, and thus
discern the specific role of certain brain networks in tracking
these variables, and (ii) to discern the extent to which these
computations are differentially modulated by personal vs social
patch-switching decisions. (iii) A secondary aim of the study was
to discern how individual differences in human value orientation,
assessed via a questionnaire outside the scanner (see Materials
and Methods for details), predicted patch-switching behavior.
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Materials and methods
Participants
We recruited 21 healthy participants (mean age: 26.86; the
standard deviation of age: 6.3; 5 males, 16 females) by advertising
the study online on Cardiff University notice boards. The
study was approved by the Ethics Committee of the School of
Psychology at Cardiff University. All participants gave written
informed consent according to the Declaration of Helsinki and
received £15 monetary compensation for taking part in the
study plus additional performance-based payment (see below for
details).

Procedure and experimental task
Prior to scanning, all participants underwent an MRI safety
screening, were familiarized with the scanning environment, and
performed a training session with stimuli similar to those used
in the fMRI session. The scanning session comprised 4 functional
runs (∼16 min each) and the acquisition of a structural image,
leading to a total scanning time of ∼1.5 h.

Participants were informed at the start of the experiment
that the reward (i.e. the number of points/apples) they collected
during the scanning session would be converted into real money
at the end of the experiment and that the reward obtained
during personal patch-switching would be paid to them (on top
of the fixed participation payment of £15), whereas the reward
obtained during social patch-switching would be given to a
charity of their choice. Participants were then asked to select
the charity of their choice from a list including the following
charities: British Red Cross, Save the Children Fund, Oxfam, The
Salvation Army, Cancer Research UK, and Macmillan Cancer
Support.

Participants completed a modified version of a virtual patch-
switching task used previously (Constantino and Daw 2015;
Zacharopoulos et al. 2018; Fig. 1) in a single scanning session. The
scanning session consisted of 4 functional runs and each run con-
sisted of 4 blocks (overall 16 blocks: 8 personal patch-switching
blocks and 8 social patch-switching blocks). The scanning session
consisted of 4 functional runs and each run consisted of 4 blocks
(overall 16 blocks: 8 personal patch-switching blocks and 8 social
patch-switching blocks). In every run, half of the blocks (i.e. 2
out of 4) were personal patch-switching blocks and the other
2 blocks were social patch-switching blocks. The environment
changed from run to run with the first run being short-
shallow (ShSh), the second short-steep (ShSt), the third long-
steep (LoSt), and the fourth long-shallow (LoSh). For additional
information depicting how several parameters changed per
participant, run, and block, see Supporting Information 6, which
shows that the order of personal/social conditions and the
combination of travel time and depletion rate conditions were
fixed across participants. For plots presenting how the patch-
switching threshold was modulated across the 4 environments
for each participant, see Supporting Information 8. At the onset
of each block, an introductory screen was briefly presented
indicating the reward recipient (e.g. “Self” or “Charity”). Stimuli
were presented via a 45◦ angled mirror positioned above the
head coil reflecting the projection of a computer screen. The
description of the trial events is explained in the legend of
Fig. 1. After the scanning procedure, participants were debriefed,
thanked, and paid both for participating (£15) as well as for
their performance (i.e. total reward obtained in response to
the personal patch-switching, which was ∼£10–£15 in most
cases).

Manipulation of environmental parameters
defining the quality of the patch-switching
environment
Similar to the previous behavioral investigations (Constantino and
Daw 2015; Zacharopoulos et al. 2018), we varied the quality of
the patch-switching environment by manipulating 2 parameters:
(i) depletion rate and (ii) travel time. The depletion rate determines
the rate at which earned apples decrease with subsequent harvest
decisions at a given tree. It is a multiplicative decay κ, such that if
a participant harvests 8 apples in the current trial, the number
of apples to be offered/harvested in the next trial will be the
depletion rate multiplied by 8. By manipulating the depletion rate,
we created one environment with fast depletion (steep, where
κ was ∼0.88) and one with a slower depletion (shallow, κ was
∼0.94). Additionally, we created 2 more types of environments—
long (∼9 s) and short (∼6 s)—by manipulating the travel time,
which is the time it takes to travel to a new tree. Based on this
procedure, the harvest time (which was jittered around 3 s) or
the travel time (which was jittered around 6 or 9 s) served as
the inter-trial interval. The manipulation of these 2 variables (i.e.
travel time and depletion rate) resulted in the 4 environments
that participants visited during the task: LoSh, LoSt , ShSh, and
ShSt. In previous studies using a similar paradigm, participants
exhibited higher exit thresholds in the short orchards than in
the long orchards and in the shallow orchards than in the steep
ones (Constantino and Daw 2015; Zacharopoulos et al. 2018). This
occurs because “a longer travel delay or a steeper depletion rate
reduces the rate at which apples can be earned,” which, in turn,
“reduces the opportunity cost of time spent harvesting, which
as a consequence leads an ideal forager to harvest a tree down
to a lower number of apples” (Constantino and Daw 2015). In
other words, participants switched earlier (higher patch-switching
threshold) for short (vs long) orchards and shallow (vs steep)
orchards (Constantino and Daw 2015; Zacharopoulos et al. 2018),
and we replicated this set of findings in the current investigation
(see Results section).

Apart from the depletion rate and travel time, all the other
environmental parameters remained the same across the 4
environments. Participants experienced one environment per
each run and were notified when the environment was about to
change (i) by an introductory message (e.g. “You are now entering
a new orchard”) and (ii) by a background color change, even
though participants were not aware which parameters of the
environment were changed (i.e. depletion rate or travel time) or
by how much, but had to empirically experience the changes.
New trees were drawn from a Gaussian distribution and the
environmental richness or opportunity cost of time was varied
across the runs, as mentioned, by changing the travel time and/or
the reward depletion rate. The initial value of a tree (see Fig. 1
for an example), depletion rate, and richness of the environment
were unknown to the participants. The participants aimed to
maximize reward (i.e. number of points/apples) for themselves
(personal patch-switching) and/or a charity of their choice (social
patch-switching), depending on the experimental condition. This
was a within-subject design.

Human values
Participants completed the Schwartz Value Survey (SVS; Schwartz
1992), a 56-item scale that is used to measure human value ori-
entation. Participants were asked to rate the importance of each
of the 56 values as a guiding principle in their lives, using a quasi-
bipolar 9-point scale ranging from −1 (opposed to my values),

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad088/7078814 by C

ardiff U
niversity user on 28 M

arch 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad088#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad088#supplementary-data


4 | Cerebral Cortex, 2023

0 (not important), 4 (important) to 7 (of supreme importance).
Examples of SVS items are as follows: “Equality: Equal opportunity
for all” (Universalism), “Pleasure: Gratification of desires” (Hedo-
nism), and “Obedient: Dutiful meeting obligations” (Conformity).
The average score across the 56 items was calculated and sub-
tracted from each of the 56 initial raw scores, before calculating
the average of the value scores within each of the 10 value types.
The initial raw scores were the original responses of the partic-
ipant in response to each item recorded using a quasi-bipolar
9-point scale ranging from −1 (opposed to my values), 0 (not
important), 4 (important) to 7 (of supreme importance). Schwartz
recommends this procedure to help control for superfluous indi-
vidual variations in rating styles (Schwartz 1992). Following his
model, we created the self-focus score, by calculating the aver-
age score on self-direction, stimulation, hedonism, achievement,
power, and security values. To calculate the social-focus score,
we calculated the average score of universalism, benevolence,
tradition, conformity, and security values.

MRI data acquisition
MRI images were acquired with a General Electric 3T scanner
equipped with an 8HR Brain parallel head coil for radio frequency
transmission/reception. Anatomical high-resolution T1-weighted
volume scans (1 mm3) were acquired using FSPGR sequence
(TR = 7.796 ms; TE = 2.984 ms; voxel size = 1 × 1 × 1 mm, 200
slices). Functional images were acquired with an EPI sequence
(TR = 2,000 ms, TE = 30 ms, flip angle = 85 degrees, slice thick-
ness = 3 mm). Each volume consisted of 39 slices obtained in an
ascending interleaved order.

fMRI data preprocessing and analyses
Imaging data were preprocessed in CONN (Whitfield-Gabrieli and
Nieto-Castanon 2012) (a toolbox in SPM12) using the default
MNI-space direct normalization preprocessing pipeline, which
performs several steps including realignment, slice-timing cor-
rection, structural segmentation and normalization, functional
normalization, and smoothing (smoothing kernel was 8 mm). At
the first-level analyses, we ran a single GLM (for an example of the
parametric modulators, see Supporting Information 4) that fea-
tured 2 main predictors: (i) the event onsets during the personal
patch-switching condition and (ii) the event onsets during the
social patch-switching condition (convolved with the canonical
HRF). For the correlations between the parametric modulators see
Supporting Information 11. Each main predictor featured 8 para-
metric modulators that are clustered into 2 general categories:
(i) parametric modulators that are associated with individual
behavior (i.e. decision (1), reaction time (2), patch-switching
threshold (3)) and (ii) parametric modulators that are associated
with the foraging environment (harvest value (4), new patch (5),
travel time learning (6), depletion rate learning (7), relative forage
value (8)):

(1) Decision: this was a binary variable denoting whether par-
ticipants have chosen to harvest (1) or switch (0) the tree on
every trial.

(2) Reaction time: this was defined as the time in seconds that
participants took to reach a decision in each trial. This was
added as a proxy for task difficulty.

(3) Patch-switching threshold: this was defined as the average
between the (i) harvest value of the tree at the exit and the
(ii) harvest value during the most recent harvest of the same
tree. Importantly, because the patch-switching threshold can
only be changed when participants exit a tree, for the trials

where the participant chose to harvest the tree, the value
of the patch-switching threshold was defined as the most
recently changed patch-switching threshold and stayed as
such until participants exited the tree. Put simply, if in trials
1, 2, 3 the harvest value was 9, 8, 10, and the participant chose
to harvest, exit, and harvest, then the parametric modulator
patch-switching threshold would have been (9 + 8)/2 = 8.5 for
trial 2 (changed because of exit decision), and stayed at 8.5
for trial 3 (not changed because of harvest decision).

(4) Harvest value: this was defined as the reward (i.e. the num-
ber of points/apples) offered on every trial.

(5) New patch: this was a binary variable denoting whether
participants encountered a new tree (1) or not (0) on every
trial. Although similar, this differs from the first parametric
modulator in that (i) it is shifted in time (i.e. if a participant
chooses to switch on trial i, the value of the first parametric
modulator on trial i will be 0 and the value of this parametric
modulator will be 0 but the value of this parametric modu-
lator will be 1 when the new patch emerges, that is on trial
i + 1), and (ii) there are instances where a novel patch appears
(and thus this parametric modulator is set to 1) not because
a participant had chosen to travel in the previous trial, but
because of a changing condition (i.e. because the orchard or
the recipient changed).

(6) Travel time learning: in trial ith, this was defined as the
average between (i) the average of all previous travel times
experienced from trial 1 to trial i − 1, and (ii) the travel
time on trial i. This is a learning variable because it tracks
the accumulated changes in travel time across orchards,
whereas participants learn the properties of each orchard.

(7) Depletion rate learning: in trial i, this was defined as the
average between (i) the average of all previous depletion rates
experienced from trial 1 to trial i − 1, and (ii) the depletion
rate in trial i. This is a learning variable because it tracks
the accumulated changes in depletion rate across orchards,
whereas participants learn the properties of each orchard.

(8) Relative forage value: this was defined as the ratio between
the patch-switching threshold on trial i and the harvest value
on trial i (i.e. patch-switching threshold/harvest value).

To identify the effects of interest while controlling for the other
predictors irrespective of their added order in all GLMs, we set
the orthogonalization to 0. To remove variations in signal because
of movement artifacts, we additionally included in our GLM the
movement parameters calculated during the realignment in the
model as parameters of no interest. Moreover, we excluded all
runs where there was beyond 2 mm movement in either of the
3 translations (x,y,z).

We created 16 contrasts during the first-level analyses as we
examined the effects of each of the 8 parametric modulators
(collapsing across personal and social conditions) as well as the
corresponding 8 interactions of these parametric modulators
with the reward recipient (i.e. personal vs social conditions).
We then entered the contrast of parameter estimate images
into a second-level group analysis. Examples of contrasts can
be seen in Supporting Information 12, where the reader can
also find a table featuring the order of the predictors in the
design matrix, the name of the predictors, and the predictor
type. Each parametric modulator was a separate regressor
in the GLM. The interactions were computed as contrasts
after the GLM were run. The parametric modulators were not
demeaned as can be seen in Supporting Information 4. For
control analyses featuring demeaned parametric modulators
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see Supporting Information 13. The imaging results, which were
significant at a cluster-wise PFWE < 0.05, were obtained using the
SPM toolbox Statistical Non-Parametric Mapping (SnPM, http://
warwick.ac.uk/snpm), which uses the GLM to construct statistic
images, which are then assessed for significance using a standard
nonparametric procedure based on randomization/permutation
testing. The cluster-wise PFWE that is reported for each significant
cluster in the main text and the Supporting Information does not
account for the correction across the different contrasts but it is
the value generated from SPM for a given contrast. We also provide
the FDR corrected P-value for each cluster after controlling
for all significant clusters. In addition, we created pseudo-t
maps that are computed by smoothing the variance before
creating a t-ratio, as this approach eliminates the roughness of
the activation cluster and effectively increases the degrees of
freedom, increasing statistical power (SnPM, http://warwick.ac.
uk/snpm). Our approach is consistent with current guidelines on
the reporting of whole-brain MRI data (Roiser et al. 2016).

Statistical analyses
For the behavioral analyses, the dependent variables were (i) the
total reward obtained (i.e. the sum of numbers/apples) and
(ii) the patch-switching threshold, which was calculated as the
mean patch-switching threshold (see above) only based on the
trials when participants chose to travel to a new tree. To assess
the behavioral effects of our manipulation, we employed a 2
(Travel time: Short vs Long) ∗2 (Depletion rate: Steep vs Shallow) ∗2
(Source: Personal vs Social) repeated measures ANOVA predicting
patch-switching threshold or total reward. To assess the extent
to which the human value orientation predicted total reward, we
employed bivariate correlations between the self-focus human
value orientation (see above for details) and total reward obtained
during the personal patch-switching condition. To assess the
extent to which the human value orientation predicted the
patch-switching threshold, we employed bivariate correlations
between the self-focus human value orientation (see above for
details) and the patch-switching threshold in the 4 orchards
separately and we corrected for the 12 comparisons (denoted by
PFDR). For completeness, we additionally present the analogous
results using the social-focus human value orientation. Of
note, we excluded the first 4 participants from the behavioral
analyses because they only experienced one travel time (e.g.
Long) across the experiment because of a technical error. The
first 4 participants were pilot participants, which were included
in the imaging analyses to increase the statistical power to detect
the effects as all the conditions and parametric modulators were
present in these cases.

Results
Behavioral results
As a first step, we assessed the effect of travel time and depletion
rate on the patch-switching threshold (for details of the full sta-
tistical model see Materials and Methods) and we fully replicated
the results of the previous studies by others and us (Constantino
and Daw 2015; Zacharopoulos et al. 2018). Specifically (see
also Fig. 2), travel time (F(1, 16) = 32.73, P < 0.001) and depletion
rate (F(1, 16) = 35.97, P < 0.001) were statistically significant in
predicting patch-switching threshold but neither source (F(1,
16) = 0.036, P = 0.852) nor any of the interactions were significant
(source∗travel time: F(1, 16) = 0.096, P = 0.761, source∗depletion
rate: F(1, 16) = 0.010, P = 0.921, travel time∗depletion rate: F(1,
16) = 0.017, P = 0.899, source∗travel time∗depletion rate: F(1,

16) = 1.598, P = 0.224). The same pattern of results emerged when
the dependent variable was the total reward, where the main
effects of travel time (F(1, 16) = 62.45, P < 0.001) and depletion
rate (F(1, 16) = 131.17, P < 0.001) were statistically significant
but neither source (F(1, 16) = 0.001, P = 0.973) nor any of the
interactions were significant (source∗travel time: F(1, 16) = 1.54,
P = 0.232, source∗depletion rate: F(1, 16) = 0.290, P = 0.598, travel
time∗depletion rate: F(1, 16) = 0.274, P = 0.608, source∗travel
time∗depletion rate: F(1, 16) = 0.278, P = 0.605). For additional
information from the ANOVA models including estimates and
post hoc comparisons, see Supporting Information 7. Moreover,
we found that self-focus was positively related (r(15) = 0.514,
P = 0.035), whereas social focus was negatively related, albeit
nonsignificantly (r(15) = −0.364, P = 0.151), to the number of points
obtained during personal patch-switching, consistent with our
previous findings (Zacharopoulos et al. 2018).

We additionally assessed the effect of human value orientation
in predicting the patch-switching threshold in the 4 environ-
ments. We found that this was the case only for one of the 4
environments: the ShSt. Specifically, self-focus was consistently
positively associated with the social (Fig. 3C, r(15) = 0.673,
P = 0.003, PFDR = 0.037), and average (Fig. 3E, r(15) = 0.646, P = 0.005,
PFDR = 0.031) mean patch-switching threshold, and showed a trend
with the personal (Fig. 3A, r(15) = 0.585, P = 0.014, PFDR = 0.05).
Consistent with this, social focus was consistently negatively
associated with the social (Fig. 3D, r(15) = −0.526, P = 0.030)
and average (Fig. 3F, r(15) = −0.516, P = 0.034) mean patch-
switching threshold and showed a trend with the personal
(Fig. 3B, r(15) = −0.479, P = 0.05). Regarding ShSh, self-focus was not
significantly associated to the personal (r(15) = 0.132, P = 0.613),
social (r(15) = −0.048, P = 0.855), and average (r(15) = 0.047,
P = 0.858) mean patch-switching threshold. Social focus was not
significantly associated to the personal (r(15) = −0.186, P = 0.475),
social (r(15) = 0.029, P = 0.911), and average (r(15) = −0.086,
P = 0.744) mean patch-switching threshold.

Regarding LoSt, self-focus was not significantly associated with
the personal (r(15) = 0.191, P = 0.463), social (r(15) = 0.355, P = 0.162),
and average (r(15) = 0.281, P = 0.274) mean patch-switching thresh-
old. Social focus was not significantly associated to the personal
(r(15) = −0.218, P = 0.401), social (r(15) = −0.282, P = 0.273), and
average (r(15) = −0.258, P = 0.318) mean patch-switching threshold.

Regarding LoSh, self-focus was not significantly associated
with the personal (r(15) = −0.159, P = 0.542), social (r(15) = −0.231,
P = 0.371), and average (r(15) = −0.207, P = 0.425) mean patch-
switching threshold. Social focus was not significantly associated
to the personal (r(15) = 0.065, P = 0.805), social (r(15) = 0.110,
P = 0.674), and average (r(15) = 0.094, P = 0.721) mean patch-
switching threshold.

Imaging results
After establishing that the experimental manipulation induced
robust behavioral effects, and discerning how the patch-switching
threshold and total reward were predicted by the human value
orientation, we assessed the neurobiological computations of the
8 parametric modulators (and for a full description of the sig-
nificant clusters, see Supporting Information 1), which are clus-
tered into 2 general categories: (i) parametric modulators that are
associated with individual behavior (i.e. decision (1), reaction time
(2), patch-switching threshold (3)) and (ii) parametric modulators
that are associated with the foraging environment (harvest value
(4), new patch (5), travel time learning (6), depletion rate learning
(7), relative forage value (8)). Here we present the results from 4
parametric modulators because 2 of the parametric modulators
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Fig. 2. The mean patch-switching threshold in each of the 8 experimental conditions (P: personal patch-switching condition and S: social patch-switching
condition). The error bars represent 95% confidence intervals. People switched earlier (higher patch-switching threshold) for short (vs long) environments
and shallow (vs steep) environments replicating previous work (Constantino and Daw 2015; Zacharopoulos et al. 2018).

Fig. 3. Scatterplots depicting positive (self-focus) or negative (social focus) associations between the human value orientation displayed on the x-axis
(self-focus or social focus) and path-switching threshold (y-axis) in the ShSt environment during all of the trials A, B), only the personal condition C, D)
or only the social condition E, F).
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Fig. 4. Imaging results depicting the effect of the parametric modulator
patch-switching threshold on bilateral (A): right: angular gyrus, superior
frontal gyrus, precentral gyrus; B): left: angular gyrus) frontoparietal
regions (negative association).

were essentially confounding variables we wanted to account for
(i.e. new patch and reaction time) and 2 parametric modulators of
interest (i.e. travel time learning and depletion rate learning) did
not yield significant results.

Parametric modulators that are associated with individual
behavior
Patch-switching threshold

The patch-switching threshold was tracked by activity within
frontoparietal regions (for a full description of the significant clus-
ters, see Supporting Information 1) including the bilateral angular
gyrus (right: PFWE = 0.003, k = 2,399, x = 36, y = −66, z = 46, and left:
PFWE = 0.008, k = 1,251, x = −34, y = −60, z = 40, Fig. 4A-B), the right
superior frontal gyrus (PFWE = 0.021, k = 546, x = 4, y = 28, z = 44,
Fig. 4A), and the right precentral gyrus (PFWE = 0.001, k = 3,813,
x = 52, y = 10, z = 18, Fig. 4A). Activity within all of these regions was
negatively associated with the patch-switching threshold.

Decision

The decision whether to harvest or to leave the current patch was
encoded mainly by frontoparietal regions (for additional details on
the significant clusters, see Supporting Information 1) where the
decision to harvest vs to leave engaged activity within the right
superior frontal gyrus (PFWE = 0.008, k = 1,221, x = 0, y = 58, z = 2,
Fig. 5), whereas the decision to leave vs harvest elicited activity
within the dACC/paracingulate gyrus (PFWE = 0.003, k = 1,823, x = 4,
y = 24, z = 42, Fig. 5), the right angular gyrus (PFWE = 0.002, k = 2,130,
x = 46, y = −56, z = 52, Fig. 5), and the left supramarginal gyrus
(PFWE = 0.004, k = 1,536, x = −46, y = −34, z = 38, Fig. 5).

Parametric modulators that are associated with the
foraging environment
Harvest value

The parametric modulator harvest value was positively associ-
ated with activity within frontoparietal regions (for additional
details on the significant clusters, see Supporting Information 1),
including the angular gyrus (right: PFWE = 0.003, k = 1,581, x = 36,
y = −68, z = 46, and left: PFWE = 0.004, k = 896, x = −52, y = −48, z = 48,
Fig. 6), the frontal gyrus (right inferior: PFWE = 0.036, k = 317, x = 54,
y = 12, z = 16, and right middle/frontal pole: PFWE = 0.033, k = 323,
x = 42, y = 50, z = 8, Fig. 6), and a region encompassing PCC/dACC
(PFWE = 0.017, k = 511, x = 0, y = −28, z = 26, Fig. 6).

Relative forage value

The parametric modulator foraging value was positively asso-
ciated with activity within frontoparietal regions (for additional
details on the significant clusters, see Supporting Information 1),
including the angular gyrus (right: PFWE = 0.001, k = 2,103, x = 36,
y = −68, z = 46, and left: PFWE = 0.003, k = 862, x = −52, y = −48, z = 48,

Fig. 7), the frontal gyrus (right inferior: PFWE = 0.001, k = 1,678,
x = 56, y = 14, z = 14, right middle/frontal pole: PFWE = 0.005, k = 699,
x = 42, y = 50, z = 8, right superior frontal: PFWE = 0.013, k = 492, x = 4,
y = 28, z = 42, and another right middle region: PFWE = 0.03, k = 264,
x = 24, y = 10, z = 50, Fig. 7), and a region encompassing PCC/dACC
(PFWE = 0.029, k = 253, x = 2, y = −28, z = 26, Fig. 7).

Discussion
The present fMRI study assessed the neurocomputational
basis of patch-switching by focusing on computational metrics
such as patch-switching threshold and relative forage value
elicited in response to a novel learning paradigm inspired by
behavioral ecology. Four main findings emerged from our study:
(i) the patch-switching threshold was tracked by activity within
frontoparietal regions including the angular and superior frontal
gyrus, which possibly inhibits switching propensity, (ii) several
frontoparietal regions (angular and frontal gyrus) tracked several
patch-switching properties, (iii) the absence of activity differences
in these computational metrics between the personal and
social conditions, and (iv) the identification that human value
orientation predicted patch-switching threshold in a specific
foraging environment.

The present investigation primarily focused on the examina-
tion of the patch-switching threshold, a computational metric
that determines when to leave collecting rewards in a current
patch and travel somewhere else. Behaviorally, we consistently
replicated the previously documented effects of the experimental
manipulation (Constantino and Daw 2015; Zacharopoulos et al.
2018). Namely, participants exhibited a higher patch-switching
threshold (they switch earlier) in shallow vs steep environments,
and in the short vs long environments, both across personal
and social conditions. Apart from replicating these findings, we
also revealed a psychological determinant that predicted individ-
ual variation in the total reward obtained and patch-switching
threshold: the human value orientations of self-focus and social
focus. We replicated our previous finding that the personal-focus
value score was positively related (r(15) = 0.514, P = 0.035) to the
number of points during personal patch-switching (Zacharopou-
los et al. 2018), and we also found that self-focus was posi-
tively, and social focus was negatively associated with the patch-
switching threshold both during the personal and the social con-
ditions. This identification of a novel determinant of the patch-
switching threshold is a clear demonstration of how social psy-
chology research (Schwartz 1992) can help inform behavioral
ecology.

Crucially, these consistent patterns of association were
obtained only for one of the 4 environments, the ShSt environ-
ment. This suggests that the relevance of human value orienta-
tion in shaping decision-making depends on the environmental
properties even though participants performed the same compu-
tations (i.e. deciding when to leave collecting rewards in a current
tree and travel somewhere else) across the 4 environments.

The present study was designed to assess the neurobiological
mechanisms that track patch-switching threshold learning.
This was done by identifying the extent to which single-trial
brain activity correlated with the trial-wise fluctuation in the
patch-switching threshold. Our analyses revealed such brain
activity within the frontoparietal system. We would infer that
frontoparietal activation possibly inhibits switching propensity as
brain activity within frontal and parietal regions was associated
with a lower patch-switching threshold. Specifically, the bilateral
angular gyrus and right frontal gyrus activities were negatively
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Fig. 5. Imaging results (A): positive association and B): negative association) in response to the parametric modulator of decision.

Fig. 6. Imaging results in response to the parametric modulator of harvest value.

associated with the patch-switching threshold. The angular gyrus
has been implicated in a constellation of functions that can be
related to the decision process involved in the tracking of the
patch-switching threshold such as the manipulation of different
numerical operations (Roland and Friberg 1985; Dehaene et al.
1998, 2003), memory retrieval (Ciaramelli et al. 2008; Vilberg and
Rugg 2008), and conflict resolution (Wager et al. 2005; Nee et al.
2007). Notably, diffusion tensor imaging and tractography analysis
showed that the angular gyrus is connected to the inferior, middle,
and superior frontal gyrus, and the frontal gyrus was the other
region that was found to track the patch-switching threshold in
the present work. Specifically, the angular gyrus is connected to
the inferior frontal gyrus via the third branch of the superior
longitudinal fascicle (Frey et al. 2008), to the middle frontal
gyrus via the second branch of the superior longitudinal fascicle

(Makris et al. 2005), and the superior frontal gyrus via the occip-
itofrontal fascicle (Makris et al. 2007). Both the angular gyrus and
the superior frontal gyrus tracked the patch-switching threshold
and future studies could examine whether functional coupling
between these regions is important for learning-induced changes
in this decision variable. This working model can be assessed in
future investigations that transiently experimentally disrupt this
documented frontoparietal connectivity, for example, with the
use of brain stimulation techniques such as transcranial direct
current or magnetic stimulation as was done previously for other
aspects of cognition such as working memory (Jones et al. 2017;
Zacharopoulos et al. 2020). Moreover, such future investigations
can examine whether the impact of this experimentally induced
disruption is also dependent on self and other values, particularly
in the ShSt environment. Another possibility for why brain activity
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Fig. 7. Imaging results in response to the parametric modulator of relative forage value.

within frontal and parietal regions was associated with a lower
patch-switching threshold could also be related to differences in
control demands between environments. Specifically, additional
analyses (Supporting Information 14) revealed that participants
take more harvest actions before exiting in environments with
lower patch-leaving thresholds. Thus, participants might need
increased attentional control to leave at the right time, as
compared with an environment with a high leaving threshold,
where fewer harvest actions are needed before exit.

This study was designed for discerning the extent to which the
activity of these frontoparietal regions was uniquely associated
with certain patch-switching computations. We found that the
contribution of frontoparietal regions went well beyond the com-
putation of the patch-switching threshold to include the relative
forage value, reaction time/task difficulty, and harvest value. Sim-
ilar to the prior work (Cohen Kadosh et al. 2005; Kolling et al. 2012),
we might assume that the engagement of these regions across
several patch-switching computations (e.g. harvest value, deci-
sion) depends on the entrenched property of the frontoparietal
network in encoding magnitude, which was both essential and
pervasive in guiding optimal behavior in the current behavioral
ecology task. For example, a classic effect in the literature that
applies in the context of the frontoparietal network is the distance
effect, which states that the closer 2 compared magnitudes (e.g.
2 numbers such as the harvest value vs the patch-switching
threshold in the present study), the more difficult the comparison,
and the greater the activity of this frontoparietal network, and this
finding was shown both for nonsocial and social processing (such
as beauty comparisons) (Cohen Kadosh et al. 2005; Nieder and
Dehaene 2009; Kedia et al. 2014). In our task, the computational
parameter that is most related to the distance effect is the relative
forage value as it encodes the numerical relationship between the
individual’s threshold (patch-switching threshold) and the reward
value (harvest value), which we found was negatively related
to reaction time (Supporting Information 5) indicating that the
higher the distance the faster the reaction time.

Another important conclusion from the present study is that
the behavioral and brain findings detailed above were similar in
the personal and social conditions. An explanation of this may be
that, across evolution, the need to protect loved ones equipped
the foraging brain with biologically entrenched patch-switching
mechanisms that operate for both direct and indirect rewards. In
the present study, the “other” reward recipient was chosen by the
participants and thus we could infer an underlying familiarity and
associated effort to do well also in the “other” conditions. Indeed,
the level of social focus on values within all of our participants
was overall higher than the mean level of self-focus, consistent
with cross-cultural research showing a relative dominance of
social-focus values (Schwartz and Bardi 2001; Hanel et al. 2019).
This dominance of social-focus values is consistent with the idea
that there may be a default integration of others’ needs as a part of
the basic motivational goal hierarchy within humans. Despite our
finding that the behavioral and brain findings detailed above were
similar in the personal and social conditions, we do acknowledge
that our study’s sample size may have prevented the detection
of potential smaller effect sizes that can be captured in future
studies employing larger samples.

Nonetheless, the associations between self- and social-focus
values and the task-switching thresholds in this research indi-
cate that the relative personal priority attached to these val-
ues matters in the prediction of foraging behavior. It would be
interesting to introduce measures of these values in paradigms
with a wider range of social meanings attached to the foraging
behavior. For example, future studies could test whether the
behavioral and neurobiological isomorphism across the personal
and social conditions is disrupted when participants are asked to
forage on behalf of an unfamiliar, and unrelated “other,” or even a
perceived adversary (e.g. a member of a different political party),
and whether this disruption is dependent on personal levels of
self- and social-focused values.

Of note, one potential limitation of the current study stems
from the fact that choice uncertainty typically increases up to
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the patch-switching threshold. As a result, variables that cor-
relate with a greater likelihood of exiting (or that code for the
exit decision itself) are typically conflated with increasing lev-
els of choice uncertainty. Therefore, some of the activations in
response to exit decisions and relative forage value could reflect
increases in choice uncertainty and associated monitoring/con-
trol functions encoded in regions such as the dACC (Shenhav
et al. 2014). However, this is not the case in designs where there
are many trials where participants substantially exceed their
current exit threshold (Fontanesi et al. 2022). To this end, our
paradigm was designed in a way that featured a great number
of trials where participants substantially exceeded their current
exit threshold. This is illustrated by the fact that the empirical
patch-switching threshold in the present study was not static
but changed robustly and predictably (Fig. 2) between orchards in
response to our manipulation.

Another potential limitation of this study is the presence
of a certain amount of collinearity between the parametric
modulator pair relative forage value and harvest value. However,
our choice for utilizing a single GLM that even included related
predictors was to allow us to identify the unique variance in
brain activity of certain predictors over and above that of other
predictors. This may also explain the seemingly contradictory
findings between parametric modulators that are negatively
related to each other. Specifically, similar frontoparietal regions
were positively associated with both the relative forage value
and the harvest value, which seems to track the unique (but not
shared) variance between these 2 negatively related regressors.
Moreover, to reduce the possibility that the imaging results
were conflated by choice uncertainty, we statistically controlled
for reaction time, which is typically strongly associated with
choice uncertainty/task difficulty. However, we acknowledge
that reaction time measures can be noisy and that sequential
choices can be complicated by the fact that participants may have
partly prepared responses based on the previous trials. Another
point of consideration is that there are different possible ways
to conceptualize and, in turn, quantify the concept of the patch-
switching threshold. For example, it can be quantified as the
mean (objective) experienced reward rate across the environment
or the mean (subjective) reward rate for the environment (e.g.
estimated using a delta learning rule). However, here we aimed
at using a more direct and intuitive measure that best captures
learning-related changes directly derived from the participants’
behavior (for details, see Materials and Methods), which is
also the standard way of measuring patch-switching threshold
in the prior behavioral work (Constantino and Daw 2015;
Zacharopoulos et al. 2018). Moreover, as can be seen behaviorally
(Fig. 2), the patch-switching threshold was empirically modulated
as expected in response to the experimental manipulation
(Supporting Information 8). Furthermore, additional analyses
(Supporting Information 15) showed that variability in the patch-
switching threshold significantly reduced with time (P < 0.01), and
these data provide additional evidence that our patch-switching
measure is an adequate measure to capture learning-induced
changes.

Future work could expand the current findings in a number of
ways. First, future studies can employ more detailed behavioral
modeling, inspired by well-established theoretical frameworks
such as the marginal value theorem and the temporal-difference
learning as was done previously (Constantino and Daw 2015), to
elucidate more explicitly how variables are learned, and provide
different computational fits for the personal and social patch-
switching behavior. Second, and relatedly, future work building

on the current findings could identify formal learning markers
such as decreasing variance in the patch-switching threshold
or reductions in the deviations from optimal switching behavior
and assess how these are modulated depending on the reward
recipient, the human value orientation, and the foraging orchard.
Third, such information provided from the above 2 points can be
used to generate novel regressors that are specific to the neurobi-
ological mechanisms of patch-switching learning and updating,
as opposed to merely tracking the patch-switching threshold
as was done here. Taken together, such expansions of the cur-
rent work have the potential to motivate greater specificity in
behavioral and neural analyses allowing a more detailed under-
standing of the neurobiological mechanisms that shape foraging
behavior.

In our complementary analyses, the harvest value predictor
(Supporting Information 16) yielded frontoparietal positive brain
activity even when the relative forage value was not featured
in the same GLM model, and the same predictor (harvest value)
yielded frontoparietal negative brain activity only when the rel-
ative forage value was not featured in the same GLM model.
The patch-switching threshold was associated with frontoparietal
negative brain activity even when the harvest value was not
featured (but the relative forage value was featured) in the same
GLM model, but the same predictor (patch-switching threshold)
did not yield suprathreshold brain activity when the harvest value
was featured (but the relative forage value was not featured)
in the same GLM model. Indeed, one of the main aims of the
present study was to bring together all the different parameters
that influence foraging decisions and tease apart their unique
contributions in modulating brain activity. Our additional GLM
analyses (Supporting Information 16) show the relevance of close
attention to specific designs and combinations of predictors in a
design because they may influence the effects associated with
the different predictors and consequently the interpretation of
results.

In sum, the present research yielded preliminary evidence
(i) that the patch-switching threshold is tracked by activity within
frontoparietal regions including the angular gyrus and frontal
areas whose activation possibly inhibits switching propensity,
(ii) that overlapping frontoparietal regions (angular and frontal
gyrus) track several patch-switching properties, (iii) for an isomor-
phism of behavioral and neural effects for personal and social
patch-switching, and (iv) that human value orientation can be
related to the patch-switching threshold in specific foraging envi-
ronments. These findings expand on the decision-making liter-
ature, by illuminating a novel neurobiological understanding of
how learning in switching tasks emerges neurocomputationally
with implications for diverse real-life tasks.
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