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ABSTRACT Complex systems such as Industrial Control Systems (ICS) are designed as a collection
of functionally dependent and highly connected units with multiple stakeholders. Identifying the
risk of such complex systems requires an overall view of the entire system. Dependency modelling
(DM) is a highly participative methodology that identifies the goals and objectives of a system
and the required dependants to satisfy these goals. Researchers have proved DM to be suitable
for identifying and quantifying impact and uncertainty in complex environments. However, there
exist limitations in the current expressions of DM that hinder its complete adaptation for risk
identification in a complex environment such as ICS. This research investigates how the capability
of DM could be extended to address the identified limitations and proposes additional variables to
address phenomena that are unique to ICS environments. The proposed extension is built into a
system-driven ICS dependency modeller, and we present an illustrative example using a scenario
of a generic ICS environment. We reflect that the proposed technique supports an improvement in
the initial user data input in the identification of areas of risk at the enterprise, business process,
and technology levels.

INDEX TERMS Dependency Modelling, Industrial Control System, Risk, Risk Identification
Methodologies

I. INTRODUCTION

BUSINESSES no longer operate in isolation, and
new business processes and operational models of

complex systems are continuously expanding. Recent
events such as the Colonial pipeline attack have proved
that the data exchange and dependencies of the higher-
level components within the enterprise systems mean
that a successful attack on the enterprise system could
impact the operability and function of the entire enter-
prise [1]. This has necessitated the desire to explore other
techniques to identify risk in complex systems.

Cyber risk identification in ICS is non-trivial due to
the multifaceted and ever-changing requirements and
dependencies within the domain. Secondly, the secu-
rity model of confidentiality, integrity, and availability
(CIA triad) approach in ICS is significantly limited in
identifying risks due to the characteristics of the ICS
environment, such as the ability to control and observe
the state of the environment, safety control measures,
and reliability of the system. These characteristics are

represented as the Safety, Reliability and Productivity
(SRP) and Controllability, Observation and Operability
(COO) triad, without which a comprehensive identifica-
tion of risks is challenging [2]. In addition, recent litera-
ture on the analysis of cyber incidents trends involving
ICS indicates that the adversary’s TTP is increasingly
expanding the attack surface beyond the traditional ICS
technical processes, necessitating a clamour for a new
approach to risk identification in the domain [3]–[5].
Other challenges are enumerated as follows:

• An attack in one business vertical can now propa-
gate across interconnected supply chain. The recent
attack on a third-party service provider in the ICS
domain indicates that the previous assumption that
malware can only enter the ICS via internet-facing
devices has been debunked [6].

• As businesses continue to undergo digital transfor-
mation, cyber risk has become an essential compo-
nent of the enterprise risk [7]. While enterprise risk
is the overarching risk that defines what service is to
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be protected, cyber risk examines all the associated
factors that may prevent service delivery, such as
threats, equipment vulnerabilities, and other exter-
nal factors. Current practices however suggest that
most cyber risk assessments are system component-
based [8].

To identify the risks and vulnerabilities of the ICS
(including safety and reliability) requires a thorough
understanding of the system under consideration (SuC),
including topology, components, behaviour, and opera-
tional objectives, and researchers have long used mod-
elling methods and languages to understand the system.
One such modelling methods is dependency modelling
(DM) - a top-down success-focus (positivist) approach
to expressing goals and objectives, and the preconditions
to satisfy these goals.

In this paper, we summarise our contributions as
follows.

• We proposed a novel technique that improves DM’s
capability to systematically treat the initial data in-
put and unsure a pragmatic outcome. We examined
DM as a viable modelling tool for risk identification
in ICS and proposed a probability input that is
based on prior knowledge and the likelihood of
evidence.

• We have shown that the proposed technique can
be applied in typical real ICS scenario to reflect its
practical impact. We introduced Security Posture as
a list of cybersecurity-related statements to enable
us to extract prior knowledge and likelihood from
the asset and process owners. This was another gap
in prior techniques. We compared the results of our
technique to the classical DM and highlight the
differences.

• To the best of our knowledge, this is the first
attempt at applying the Bayes Posterior computa-
tional technique to address the issue of the empirical
input data to DM.

II. RELATED WORK
Based on the perception of risk, various authors and
institutions have developed frameworks and techniques
for risk identification and analysis in the enterprise.
Over the years, stakeholders have used various methods
such as Fault-Tree Analysis (FTA), Attack-Defence Tree
(ADT), Dependency Modelling (DM), and Stochastic
Modelling to address risk identification [9], [10].

The work by the Open Group [11] and Cherdantseva
et al. [12], [13] are complimentary. While [12] demon-
strated how dependency modelling could be utilised
for risk assessment, [11] and [13] provided a depen-
dency modelling technique standard for building and
decomposing a system’s abstract model. Cherdantseva
et al. [12] also presented a comprehensive dependency
template for a SCADA system and the application of the
model to the SCADA system, highlighting the various

features and validation of the model. These two works of
literature provide the basis for our work as we examine
the model’s capabilities to address some of the issues
raised earlier.

In our previous work, Burnap et al. [14] proposed an
extension to dependency modelling to determine and
share risk data in distributed systems. The authors
postulated a zooming process where inter-dependent
entities can link to a repository of external dependency
data (risk model) to build a realistic “living” risk model.
While this work focuses on realistic risk modelling,
our work focuses on identifying such risk phenomena
not currently addressed by dependency modelling. It
is hoped that our work may in future incorporate the
postulations as contained in [14].

Alpcan and Bambos [15] developed a framework for
modelling and exploring how risk cascades between
business units, security vulnerabilities and people within
an enterprise. The authors used a risk-rank algorithm to
systematically prioritise risks based on the propensity to
transfer and cascade risk among the defined security risk
factors (business units, threats and vulnerabilities, and
people). Although this work presents a system-driven
approach dependency model based on the assumption
that all risks come through inter-dependencies, its aim
and methodology are distinctly different from conven-
tional dependency modelling. The entirety of the work
is a variant of dependency modelling methodology as
described by [11] and [12]. While their framework used
bipartite graph to identify failures, our proposal uses
directed acyclic graphs (DAG) to identify success factors
(causal effects) to achieve the enterprise goal.

Ani et al. [16] and Akbarzadeh & Katsikas [17] intro-
duced the concept of functional dependency modelling
analysis that evaluates the cascading effect of physical
connections of ICS components within a three-level
architecture and analyses the security features in each
level. Based on the identified assets, the authors used
the Attack tree method to define cyber events (what
would happen to the system), considering known threats
and vulnerabilities within the level. They also evaluated
the probability of each event and estimated the con-
sequences and the cascading impact (cascading impact
value metric). However, as opposed to our research, the
work by Ani et al. [16] and Akbarzadeh & Katsikas [17]
are component-driven, focusing on risk concerning data
exchange within components while excluding informa-
tion flow from the enterprise.

While focusing on constructing a dependency path,
Watters et al. [18] used a matrix table to analyse the
relative importance of mission/business objectives. With
this approach, user provides a numerical factor to repre-
sent the dependency of one objective (or sub-objectives)
over the other objectives within the business. The anal-
ysis results in a RiskMap model representing the busi-
ness’s dependency and priority (weight) information.
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Although the goal might be similar, the approach and
measure of dependency in [18] are significantly different
from the traditional DM and our work.

Innerhofer–Oberperfler and Breu [19] used enter-
prise architecture to define dependencies between rel-
evant business and technical objects. In proposing their
method, the authors sought to resolve dependency com-
plexity between the various business supporting infor-
mation processes and the responsibilities of the various
stakeholders. There are similarities in our approaches to
defining the dependencies, but the methodology for risk
identification is significantly different.

The Crown Jewel Analysis tool by MITRE [20] pro-
vided a failure-oriented attack modelling for identifying
assets that are critical to a mission (mission-based risk
identification). Unlike our approach, this model exam-
ines dependencies for criticality candidacy and predicts
failure impact for individual assets without considering a
combination of failures. Attack tree and fault tree anal-
ysis modelling adopt the failure-oriented approach to
address the need for a comprehensive analysis, using di-
rected acyclic graphs whose leaves represent component
failures and whose gates represent failure propagation
[21], [22]. Although these methods provide for analysis
of local dependencies, a fundamental limitation is its
inability to account for risk countermeasure. In addition,
it does not show impact across the broader system,
particularly where the nodes do not share a common
dependency path. Similar limitations were observed in
the work of Abdo et al. [23] even though the attack tree
technique was extended using the bowtie technique.

III. CYBER RISK IDENTIFICATION MODELLING IN ICS
ICS describes a highly sophisticated hierarchically-
structured and complex system where control actions
flow from the higher level (Controller) to the lower
level (Controlled Process), and feedback flow from the
lower level to the higher level. In such architectures,
the functionally dependent and highly connected pro-
cesses, services, components, and networks within the
environment mean that the state of one component or
function can unilaterally or in combination with other
components influence the state of other components
within the system. However, this functional dependency
is not transparent or obvious, resulting in the exposure
of the ICS to a myriad of non-linear and sometimes
intractable risks [2].

Cyber risk is an operational disruption or damage in-
troduced by digital technologies to an ecosystem’s infor-
mational and operational functions. The consequences
of disruption in the ICS environment could be severe
and catastrophic, leading to damage to the environment,
endangerment of life, heavy financial losses, and damage
to equipment [24].

Understanding the cyber risk to the ICS environment
is key to identifying risk and vulnerability in the environ-

ment. Traditional risk analysis of the ICS environment
is based on the likelihood that a threat would exploit
a vulnerability, and impact analysis results from the
inability to achieve the desired outcome. It is a process of
seeking answers to the three basic questions of (a) “what
could fail in the system operation?”, (b) “how likely is it
to fail?”, and (c) “what are the consequences of failure?”
[25]. The first question seeks to define a failure scenario
(Si), the second question explores the probability of the
failed scenario (Pi), and the third question dwells on the
likely outcome described by the scenario (Yi).

Ri = (Si,Pi,Yi)

These hypothetical questions define the traditional ap-
proach to risk management, and they are still relevant.
However, Hubbard and Seiersen [26] described (Cyber)
risk as a state of uncertainty, where uncertainty is the
existence of more than one possibility out of many
unknown outcomes. Here, risk is measured as a set of
uncertainties (possibilities), each with quantified proba-
bilities, providing a perfect alignment to DM.

The criticality of cybersecurity in ICS requires that
risk measurement be empirical and acceptable. DM has
provided a means to decompose a system into what
we want to observe and analyse, but the result of its
application to risk identification must be trusted. In view
of the limited availability of data regarding some critical
uncertainties in risk identification, this paper focused
on the DM’s capabilities to represent uncertainties in
terms of probability distributions in probabilistic risk
analysis (PRA). This allowed us to consider users’ input
information in terms of probability distributions.

A considerable amount of individual intuition is in-
volved in risk management, resulting in various methods
to score and scale a widely endorsed risk matrix for ag-
gregated risks based on a subjective scale of “likelihood”
and “impact”. Colour-coded in green and red ( and a
shade of yellow), this qualitative method provides less
intuitive information about how a certain event impacts
a system, and to what degree. Cox [27] and Hubbard [26]
argued that these methods only add noise to the risk as-
sessment process, but do not improve it. On the contrary,
DM enables us to ask factual questions such as “what
is within the system that makes it functional?” and
“what could have greater influence within the system?”
Christopher [28] suggested that cyber risk management
in ICS requires multiple stakeholders’ contributions to
aggregate the various views across verticals. This means
new approaches to provide greater visibility to the ICS
environment are required to capture some foundational
assumptions, such as resiliency, reliability, and inter-
dependencies among processes, and address the unique
characteristics and complexity of the whole ICS environ-
ment [29].

This new approach requires viewing the ecosystem of
the ICS domain (such as the people, technology, process
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and supply chain) as a collection of functional parts,
where the whole is greater than the sum of its parts and
the overarching system’s goal overrides the operational
objective of the individual functions that make up the
system. Here, the focus of cyber risk is no longer about
the technology alone but about how the enterprise
function. It is about understanding the behaviour, in-
teractions, dependencies, and associated vulnerabilities
inherent in the system, including seemingly-non-critical
cyber components that are capable to bypass security
controls and other defences [5], [30].

Recent rise in cyberattacks on ICS are evidenced
in the various academic research publications [1], [30]–
[34]. In particular, the rise in ransomware attacks and
recent concerns about supply-chain attack vectors have
proved that external events outside of the ICS environ-
ment could impact the ICS environment, if there is a
functional dependency on the external factor [1]. To
address this new approach, the UK’s National Cyber
Security Centre (NCSC) provided a guideline for cyber
risk management that covers a variety of approaches,
particularly from a business point of view [8].

The guideline provided the core concepts behind
the different risk analysis approaches and viewed risk
analysis from two broad concepts: (i) component-driven
and (ii) system-driven. The component-driven concept
(bottom-up) is a tactical, threat-based approach that
focuses on a specific risk to a technical component,
while the system-driven concept (top-down) analyses
a system as a whole. The comparative benefits of the
system-driven framework have inspired various models
and techniques to perform cyber risk identification and
analysis. Some of the existing adaptations of the system-
driven framework are as shown in Table 1.

IV. DEPENDENCY MODELLING
DM belongs to the family of Probabilistic Risk Assess-
ment (PRA) methods and focuses on the capability of
the System under Consideration (SuC) to identify their
controllable and uncontrollable phenomenon and pro-
vides a platform for multi-stakeholder participation and
holistic analysis of a complex system. Advocates of its
application argue that it enables a comprehensive iden-
tification of dependencies and improves understanding
among stakeholders by revealing other intrinsic values
that other techniques may otherwise miss [11], [12], [14].

DM views risk as the degree of uncertainty - uncer-
tainty that a system will be at a required (desired)
state. This is expressed as the probability of achieving
the desired state of a goal and how it is impacted by
things beyond the control, predictability or understand-
ing of the system/process owner [11]. This probability
is a measure of being in a state and not the severity
of impact. It is typically a quantitative measure that
presents a graphical description of a complex network
of systems, using statistical inferences to compute the

likelihood of the “state” (not the likelihood of an “event”)
of each node (sub-system goal) in the graph. The graph
reflects the impact of dependencies as it computes the
back-up propagation of the changes in the state of a
lower node (sub-system goal) on the upper nodes that
depend on it, up to the root node (system goal).

While other techniques and methods such as
Consequence-driven Cyber-informed Engineering [29],
Attack Tree modelling [45], and Bow-Tie modelling [46],
[47] uses a consequence-focused methodology to identify
the most critical processes or functions that must not
fail, or finding what factors could lead to failure (threats)
[29], DM focuses on the interactions and behaviours
within the system and the required dependencies for
desired outcomes. Similarly, while other methodologies
focus on the capability of the adversaries and how to
defend against their threats, DM reflects on what the
impact of a manifested threat might look like. Rather
than finding how the system could be compromised, DM
is about what a successful attack on the system could
mean. This is a paradigm shift in the risk identification
model, to which Young and Porada [48] subscribed as a
viable alternative to understanding vulnerabilities in the
system. Furthermore, the three-point Sensitivity (3PS)
plot included in DM analyses the root node’s exposure
(sensitivity) of the root node to each of the leaf nodes
(the uncontrollable dependencies) in the dependency
tree. The 3PS report helps the business owner determine
where to effectively focus resources to mitigate the
threats.

The goal-oriented approach of DM makes the tech-
nique well suited for identifying risks associated with
process interaction flows such as in ICS, allowing for
multiple optimisation and "what-if" analysis that aid
in the prioritisation of responses [49]. The technique
is widely accepted and has been adopted by the Open
Group as a standard tool (O-DM) to highlight areas of
highest risk sensitivity in a complex system [36].

A. RISK IN THE CONTEXT OF DEPENDENCY MODELLING
From ICS risk identification perspective, DM provides
an excellent way of describing the interaction and ex-
ploring the relationship between procedures, processes,
technology, and communication within and about the
ICS environment. Cherdantseva et al. [12] classified
DM as a probabilistic risk assessment (PRA) method
where DM views a system as a combination of processes
working together. Here, each process (“clients”) depends
either structurally or semantically on other processes
or entities (“suppliers”), and the degree of dependency
(“coupling”) is a function of how much a change in the
“supplier” impacts the “client”. That is, based on the
evidence available to the asset owner or the relevant
subject matter experts (SME), the user provides a
scoring (based on the scale of either 0-10 or 0-100) of
how close to the "desired state" the leaf nodes are. The
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TABLE 1. Existing Adaptations of the System-driven Framework

Organisation Tool Techniques Features
MIT [35] STPA-Sec. Systems-Theoretic Accident Model

and Processes (STAMP).
Focus is on causal loss scenarios,
based on unacceptable control ac-
tion

The Open Group
[36]

Open Dependency
Modelling (O-DM).

Dependency Modelling. Focuses on required factors to
achieve an objective (a goal).

Idaho National
Laboratory [29]

Consequence-driven
Cyber-informed
Engineering (CCE).

Consequence-driven Cyber-
informed Engineering (CCE).

Focus is how to quantify impact of
attack.

DRAGOS [28] Dragos BowTie
model for ICS.

Bow-Tie. Focus is on threat scenarios and
consequences (specific events)

McQueen et al.
[37]

Qualitative measurement
Directed/Compromise graph

To calculate risk-reduction esti-
mates for a specific ICS system

SABSA Institute
[38]

SABSA Matrix. Enterprise Architecture Standard. Focuses on the duality of op-
erational risk (opportunity and
threat).

MITRE [20] Crown Jewels Anal-
ysis (CJA).

Failure Mode and Effect Analysis
(FMEA) and Fault Tree Analysis

Focus is on attack scenarios and
attacker’s capabilities

Brændeland et
al. [40]

Risk graphs. Using the CORAS threat mod-
elling language to structure series
of scenarios and events leading up
to one or more incidents.

Focus is on modelling and analysis
of risk scenarios with mutual de-
pendencies

Hogganvik and
Stølen [41]

CORAS Based on CORAS threat modelling
language and UML, the research
proposed a formal semantic to cap-
ture how vulnerabilities enable se-
curity threats to harm the assets.

Provide a graphical approach for a
common representation of the risk
within a system

Guan et al. [42] Digraph Digraph Proposed a digraph model for
SCADA systems to identify areas
of system vulnerability for SCADA
systems.

Baiardi et al. [43] Hypergraph Proposed a formal risk manage-
ment strategy based on security-
related attributes of component at-
tributes and dependency.

Chittester and
Haimes [44]

Hierarchical
holographic
modelling (HHM)

Hierarchical holographic modelling
(HHM)

Proposed a quantification of the
probability of an attack to identify
sources of risk to SCADA.

leaf nodes are the last (terminal) nodes towards the right
of the graph.

As shown in Figure 1, the concept of dependency
conditional probability is represented in a probabilistic
graphical model (PGM), where the nodes in the graph
represent goals (and sub-goals) and the edges (acyclic)
that connect the nodes represent the probabilistic de-
pendency relationship. The conditional probability of a
successful parent node is derived based on the success
probabilities of child nodes. The leaf nodes are the
“uncontrollable” – nodes that cannot be controlled. The
colour coding indicates that the red segment is the
probability that the required state will not be attained,
and the green segment indicates the probability that the
desired state will be attained.

In effect, the quantitative probability estimates of
the leaf nodes (referred to as uncontrollable) produce
quantitative estimates of the states of all the parent
nodes that are dependent on a collection of child nodes.
That is; if the parent node is represented as A, and child
nodes are represented as B, then the probability estimate
that parent A will be in the required state is:

P(A) =
N∏
i=1

P(Bi) (1)

The above is true where the relationship between the

FIGURE 1. Dependency Modelling Graph

child nodes of one parent is an “and” relationship. Where
the relationship is an “or” relationship (which means
that one node is a countermeasure), then the probability
estimate of the parent node is:

P(A) =
N∏
i=1

P(1− Bi) (2)

B. LIMITATIONS OF DEPENDENCY MODELLING
The accuracy of the risk identification using DM de-
pends on the quality of the input data because DM is
subject to a domino effect of wrong probability assump-
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tions if the input is inaccurate. Cherdantseva et al. [50]
stated this as a major obstacle for probabilistic Risk
assessment methods. The authors could not find any
indication of where probabilistic data came from, even
after they had examined the work of other authors. In
a further work, Cherdantseva et al. [12] suggested that
the input data be objective and pragmatic. Where there
is historical data to support its assertion, the input data
will produce accurate results. However, in its current
state, there is no known or standardised form to subject
the input data to any acceptable objectivity and prac-
ticability. As briefly mentioned earlier, DM technique is
limited in its primary function to calculate the impact
of the failure of subsystems and components function.
While it can show impact to a smaller degree on the
local process (leaf of a dependency tree back up to its
root), it cannot show impact across the broader system
and across other branches of the tree. This limits the
ability to understand and accurately access any direct
or indirect impact of a change of state on other parts
of the tree. Thirdly, from the perspective of the ICS,
the binary probability equations 1 and 2 formalise the
likelihood of each node at the exclusion of other factors,
pieces of evidence (prior knowledge) and characteristics
of the system (such as the level of coupling, resiliency
and control measures) that may influence the outcome.
The consequence of this limitation is that the probability
values could be subjective without empirical evidence
[51], [52].

In addition, the typical composition of the ICS envi-
ronment meant that multiple independent failures could
occur simultaneously or sequentially within the system.
Here, the nature of dependencies and coupling within
the ICS (interaction failures), where the combination
of seemingly low-level impact could result in a higher
impact. Presently, DM is not able to analyse this phe-
nomenon. Lastly, DM requires all "what-if" analysis
to start from the leaf node. This practice limits the
stochastic scenarios that could be created.

V. PROPOSED TECHNIQUE
Complex systems such as ICS are known to have emer-
gent properties and can fail due to a combination of
unrelated stochastic events and phenomena. This makes
risk identification non-trivial. A business-oriented ap-
proach to security analysis of enterprise information sys-
tems requires recognising and understanding the depen-
dencies and interrelationships of the business supporting
information process and providing sufficient and relevant
security requirement information at the right level of
abstraction. As a result of the enumerated limitations
in Section I, we propose an extension to the capabilities
of DM to address one of the limitations in the context
of the unique ICS characteristics and phenomenon and
answer the question raised.

A. METHOD
Since DM is underpinned by probability theory, we
introduced posterior probability as a means to derive
empirical user’s input data from the initial subjective
data. We compared results from using the two input
and observed the differences in outcome. Leveraging
DM’s Directed Acyclic Graph (DAG) structure and the
independence properties of probability graphical model
(PGM), we proposed a capability extension that uses
Bayes’ Posterior probability [52] to draw inferences,
given the evidence. This is achieved by defining security
requirements (SR) for the enterprise and each business
objective, and we expand the determinant factors for the
state of each node to include other security-related coef-
ficients such as existing security controls and resiliency
factor, all within a time-frame.

B. POSTERIOR PROBABILITY (A POSTERIORI)
A Posteriori relates to information (data) that was
derived by reasoning from observed facts. Bayes’ rule is a
rigorous method for interpreting evidence in the context
of knowledge or previous experience. Posterior probabil-
ity or “weighted likelihood” is the conditional probability
of a given event. It is computed based on observing
the known conditional and unconditional probabilities
of a prior event [52]. This is the probability of effects,
based on causes where, causes are the things we know
about the node (sub-goal) based on observation, history,
records or data, and effects are the things we do not
know. The posterior distribution is interpreted as a
summary of information from two sources: information
we know about the system and the information we
observed or recorded about the system. This is expressed
as follows:

Posterior =
Likelihood× Prior

Evidence

P(A|B) = P(A)× P(B|A)
P(B)

(3)

Where:
• P(A|B) is the posterior probability - updated prob-

ability after the evidence is considered
• P(A) is the prior probability - the probability based

on prior knowledge
• P(B|A) is the likelihood of evidence, given the belief

is true
• P(B) is the marginal probability of the evidence
We chose Posterior probability because it enables us

to consider available knowledge of the system, such as its
level of dependency, functional success rate (over a time
period), and compliance with some SR as stipulated in
ISA/IEC 62443 [24]. For convenient sake, we represent
all these as "Security Posture" (SP). The result will
produce the probability of desired state of each node.
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The probability P(Sn|SP) can be read as: “what is the
probability that node Sn will be in the desired state,
given that SP is true.” The computation is derived as
shown in the example of "Technology OK" in Figure 2
below:

Here, the user’s input was 0.60 which represents the
prior probability. The posterior probability is derived
as 0.28 from the computation of both the conditional
probability and marginal probability.

C. SECURITY POSTURE (SP)
Hansson and Aven [53] used a model that incorporates
domain experts and decision makers in risk analysis.
Leveraging on some of the elements of the model
namely: evidence, knowledge base, and managerial re-
view and judgement, we proposed SP as a set of secu-
rity enterprise-specific statements that require responses
from domain experts and decision makers. It is assumed
that the response is based on evidence and knowledge,
offering different perspective on the cyber risk posture of
the enterprise that enables us to establish a baseline of
security posture for the ICS environment and provides
a formality by which we could use some of the responses
as empirical evidence to improve the initial data input.
To do this, we present a set of security-related and
cyber resilience statements to the asset owners using
the following sources as a guide: (1) IEC-62443 [24] - a
suite of standards that relates to clearly defined obliga-
tions and responsibilities for maintaining resilient cyber
security programs in industrial and automation control
systems (IACS), (2) Dragos Annual Industrial Cyberse-
curity “Year in Review” Reports [54], (3) MITRE cyber
resilience engineering framework (CERF) [55], and (4)
SANS Annual OT/ICS Cybersecurity Survey [56]. In
particular, we adopted some of the standardised cyber
resiliency objectives. Each statement measure confidence
and coverage of response. For example, where a user is
asked to respond to a statement such as "There are
security controls within the system,", there may be
effective controls, but they do not apply to all parts
of the system. In this case, the user will scale the
confidence higher than the coverage. User’s response is
a scale of weighted scale of “Strongly agree”, “Agree”,
“Neutral”, “Disagree” and “Strongly disagree”, where 5
means “Strongly agree” and 1 means "Strongly disagree"
as shown in the application snapshot in Figure 3. A full
list of all the statements is shown in Table 2.

Responses obtained are classed as “Evidence”. This
is applied to the user’s probability input for leaf nodes
to compute the posterior probability for each leaf node.
We restrict our focus to the role and responsibilities
of asset owners – the end users of the ICS devices.
The ISA/IEC 62443-2 standard provides guidance to
asset owners on how to create and maintain a secure
system, define their system-level requirements, and how
to measure these requirements. We assume two scenarios

for our SP; (a) that the asset owner has some level
of security program in their system, and (b) that the
asset owner rely on services provided by third-parties
suppliers such as system integrator. In this case, they
will be keen to ensure that those suppliers meet their
security requirements.

However, the sum of the scale values obtained from
the table is not a probability distribution, we, therefore,
applied normalisation to get a probability distribution
such that the total sum will always be less than or equal
to 1. This becomes the security posture coefficient for
the category and it is applied to the user input for each
leaf node. Initial probability value to each of the 73
leaf nodes is received and the dependency coefficient for
the 34 dependants (nodes) are computed. A high-level
algorithm for the application is shown below.

Algorithm 1 Security Posture
1: for statements = 1, 2, . . . do
2: Accept user’s response
3: Compute mean of each response
4: Apply normalisation to responses by category
5: end for
6: Normalise responses by category
7: Compute security coefficient by category
8: for node = 1, 2, . . . do
9: Accept user input values
10: Compute posterior probability
11: end for
12: Compute dependency without SP
13: Compute extended dependency with SP

D. DESCRIPTION OF ICS SCENARIO
The description of a typical ICS scenario is non-trivial
given that the enterprise management requirement ver-
ticals are not distinctly differentiated between an ICS
environment and a larger ICT environment, for example,
a large retail shop. The top-Level entities of a SCADA
System by Cherdantseva et al. [12] could otherwise
apply to a non—SCADA environment as well as to
a SCADA environment. To address this, we build an
abstract model of a typical ICS enterprise by simplifying
the top six key areas of a SCADA system [12] to
three broad areas of abstraction, namely People, Process
and Technology, and associated predetermined sub-goals
based on the IEC 62443 requirements for ICS asset
owners. Figure 4 provides a high-level description of a
generic ICS environment and Figure 5 enumerates the
security requirements of such environment.

Here, the enterprise model is adapted to represent the
three broad areas of abstraction, namely People, Process
and Technology, and associated predetermined sub-goals
based on the IEC 62443 [24] and SABSA Institute [38]
security enterprise architecture requirements for ICS
asset owners. The dependency relationships among the
various nodes (or paragons) are decomposed to the
fourth level as a minimum requirement as shown in
Figure 6 below. The user could provide further levels
of abstraction if so desired. In this paper therefore, we
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FIGURE 2. Example of Bayes Computation Table

FIGURE 3. ICS Security Posture

FIGURE 4. ICS Top-level Dependency

FIGURE 5. ICS Dependency Goals

have expanded to the fifth level to provide some ICS-
specific requirements, as shown in Figure 7. We postulate
that beyond this level of granularity, the modelling may
become component- driven.

FIGURE 6. Minimum levels of model abstraction

E. USER DATA INPUT
Based on the ICS scenario, we designed a user input
interface that accepts information from the users to
build the ICS model for the user. The interface includes
pre-populated information about the model to align
with the dependency model in Figure 6. Users provide
information for each node. If the value for dependants
is zero, it is a leaf node and a second screen comes up
to accept the probability value for the node as shown in
Figure 8. If, however, the value for dependants is greater
than zero, the node is not a leaf node and the probability
screen will not be displayed.

VI. RESULT ANALYSIS AND DISCUSSION
In this analysis, we explain the derivation of the pos-
terior values from users’ initial input to the leaf nodes
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TABLE 2. ICS Security Statements For Risk Identification

System
1 The system has been in the desired state for a sufficient

number of days within the last 90 days.
2 The current state of the system is the desirable state.
3 The organisation meets ICS regulatory compliance.
4 The organisation maintains budget allocation for ICS

cybersecurity efforts.
5 There are security controls within the system.
6 The organisation subscribes to relevant ICS Cyber secu-

rity risk management standards.
7 The organisation is prepared to forestall compromises of

business function from potential adverse conditions.
8 The business is capable of providing essential business

functions despite adverse conditions (withstand).
9 The business is capable of restoring essential business

functions after adverse conditions (recover).
10 The business is capable of change business functions

and/or supporting capabilities to minimise adverse im-
pacts from actual or predicted adverse conditions.

11 Management maintain useful representations of mission
dependencies and the status of resources with respect to
possible adversity (Understand)

12 Management maintain a set of realistic courses of action
that address predicted or anticipated adversity (Prepare)

13 There are resources to modify architectures to handle
adversity more effectively (Re-architect)

14 Damage from adversity can be controlled/constrained
(Constrain)

15 The system is equipped to maximise the duration and
viability of essential business functions during adversity
(Continue)

16 The system is capable to preclude the successful execution
of an attack or the realisation of adverse conditions
(Prevent/Avoid)

17 The system can restore as much business functionality as
possible subsequent to adversity (Reconstitute)

Process
18 The organisation has an (appropriate) established cyber

security management system (CSMS).
19 The organisation sufficiently maintains and communicates

Security program requirements (for assets) to IACS ser-
vice providers.

20 Service providers adhere to Service Level Agreements (3rd
Party).

21 Updates to System Processes are current, accurate and
accessible.

22 There is a named custodian for the Enterprise Control
System Integration documentation.

23 The organisation maintains a formal process of Asset
inventories.

Technology
24 The organisation has well-defined security requirements

for system components.
25 There are controls to ensure reliability and availability of

control systems.
26 There are external connections to the Industrial Control

System (ICS).
27 The Enterprise Network is segmented from ICS Network.
28 User privileges are well assigned and enforced.
29 The organisation maintains a Patch management program

for all required technology.
People
30 The organisation provides suitable Security Awareness

Training for all personnel.
31 The organisation provides suitable Specialist (Opera-

tional) Training for all personnel.
32 IT staff understand ICS operational requirements.
33 Management maintains capabilities to identify, measure

and analyse human-initiated behaviours that introduce
risk to the organisation.

34 Background checks for appropriate personnel are per-
formed.

35 Personnel understand their roles and responsibilities.
NOTE: User’s response to each statement scaled: Strongly
agree | Agree | Neutral | Disagree | Strongly disagree

FIGURE 7. ICS Dependency Model: Technology

FIGURE 8. User Data Input Screen

(uncontrollable) and analyse the results. To derive the
posterior probability from the users’ data input, there
are four steps as follows:

1) The user provides responses to a list of
cybersecurity-related statements. These responses
serve as a security indicator (we refer to it as the
security posture of the enterprise) and are analysed
to derive a security coefficient for each of the
four categories: System, People, Technology, and
Process. We compute the standard deviation of all
the responses based on categories. We divided each
response by five (the response scale is one to five [1-
5]) to standardise them. We then summed by cat-
egory for each of confidence and coverage. Sample
Standard Deviation is then applied to the sums.
An example of the computation for People and
Process SP categories is shown in Figure 9. Here,
the sum for confidence and coverage for People
category are 4.2 and 5, respectively, and the stan-
dard deviation of the two values is 0.565. Standard
deviation helps to determine how far apart the
two responses of “confidence” and “coverage” are
from each other. The farther apart, the higher the
standard deviation value. If the standard deviation
values are high, it indicates an inconsistency in the
responses with a category. Table 3 is the result (SP
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coefficient) of the responses by category.
2) The user is presented with a window (see Figure

8) to provide information to build the model and
probability for the leaf node. This probability
value is used as input to the Bayes computation.

3) The SP coefficient is applied to the leaf nodes
(nodes without dependants) using the Bayes com-
putation table [57] in Figure 2. In the Bayes
table, the user’s input is the prior probability,
representing what the user already knows. The SP
coefficient is the conditional probability, represent-
ing the evidence. From these two probabilities, we
compute the joint probability and marginal prob-
ability and finally derive the posterior probability.

4) DM is applied to compute the results for all nodes
across the tree and the root node as shown in
Figure 10 and Figure 11.
A 3-point sensitivity for the model is computed for
as shown in Figure 12 and Figure 13.

TABLE 3. Security Posture (SP) Coefficient

Category Coefficient
People 0.566
Process 0.424
Technology 0.141
System 0.424

The result of our computation is shown in Table
4. The Probability User (third column in the table)
showed the user’s input, and the Probability Posterior
(fourth column in the table) showed the computed
values. Obtaining empirical data input is not necessarily
a reduction in the value provided by the user, rather, it
is a combination of factors, the chief of which is the SP
responses. Specifically, in this table, the SP coefficient
for the “People” category was 0.566 (the highest value
among the categories). This value impacted the outcome
of the posterior probability for all the nodes in the
“People” category, i.e. The difference between the user
input and the computed posterior is an increase. On
the contrary, most of the posterior values in "Process"
category are a decrease. As mentioned earlier, when
the SP coefficient is high, it may be an indication that
the responses are not consistent. This could be because
Human Resources (HR) was not involved, or the risk
analyst does not have enough knowledge to respond to
the statements in this category accurately. For example,
responses to a statement such as “Personnel understand
their roles and responsibilities” can only be provided by
the HR team based on the performance of individual
personnel. On the other hand, the fact that the SP
coefficient for the “People” category is the highest in
this experiment may not necessarily indicate wrong
responses as the difference to other SP coefficients is
marginal (0.124), with the exception of the “Technology”
category. This indicates consistency in the responses

which may therefore represent the true security posture.
This research work has avoided defining a “high” SP
coefficient.

TABLE 4. Posterior Data Input Computation

Probability
Category Node User Posterior
People Alignment with business needs 0.990 0.992
People Background Check Performed 0.990 0.992
People Documented policy 0.990 0.992
People Enforced Policy 0.990 0.992
People Recruitment Policy Compliance 0.990 0.992
People Regular audit 0.990 0.992
People Regular update 0.990 0.992
People Relevant to roles 0.990 0.992
People Required capabilities 0.990 0.992
People Requisite skills 0.990 0.992
People Security Awareness Training OK 0.990 0.992
People Specialist Training OK 0.990 0.992
People Stakeholder analysis 0.990 0.992
People Visible Policy 0.990 0.992
Process 3rd Party Security Guidelines 0.990 0.989
Process Business obj is clear 0.990 0.989
Process Business planning OK 0.990 0.989
Process Compliance 0.990 0.989
Process Customer request is analysed 0.990 0.989
Process Documented compliance 0.990 0.989
Process International Regulations Compliance 0.990 0.989
Process Performance Measurement Metrics OK 0.990 0.989
Process Performance Monitoring OK 0.990 0.989
Process Physical Security Guidelines 0.990 0.989
Process Political landscape OK 0.990 0.989
Process Resource constraints noted 0.990 0.989
Process Standards certification 0.990 0.989
Process Standards compliance 0.990 0.989
Process Standards documentation 0.990 0.989
Process System Security Guidelines 0.990 0.989
Technology Configuration OK 0.990 0.937
Technology Design requirements OK 0.990 0.937
Technology Disposal OK 0.990 0.937
Technology Documented network OK 0.990 0.937
Technology DR Plan OK 0.990 0.937
Technology Enterprise mgt OK 0.990 0.937
Technology Hardware Design spec OK 0.990 0.937
Technology HMI App OK 0.990 0.937
Technology HMI Control secured 0.990 0.937
Technology Incident magt OK 0.990 0.937
Technology IT system secured 0.990 0.937
Technology Logical access to premises 0.990 0.937
Technology Maintenance schedule 0.990 0.937
Technology Network comms secured 0.990 0.937
Technology Onsite maintenance access 0.990 0.937
Technology OT system secured 0.990 0.937
Technology Patching policy OK 0.990 0.937
Technology Physical access to facilities 0.990 0.937
Technology PLC App OK 0.990 0.937
Technology Redundancy Policy OK 0.990 0.937
Technology Remote access to systems 0.990 0.937
Technology Remote maintenance access 0.990 0.937
Technology Requirement documentation 0.990 0.937
Technology Requirement implementation 0.990 0.937
Technology RTU secure 0.990 0.937
Technology SCADA App OK 0.990 0.937
Technology SCADA control & View 0.990 0.937
Technology Scheduled disaster simulation 0.990 0.937
Technology Scheduled patching and update 0.990 0.937
Technology Service provider backup 0.990 0.937
Technology Service provider OK 0.990 0.937
Technology Software Design spec OK 0.990 0.937
Technology Stakeholder analysis 0.990 0.937
Technology Sys Requirements agreed 0.990 0.937
Technology System Backup OK 0.990 0.937
Technology System Change Control Mgt OK 0.990 0.937
Technology System Reliability Monitoring OK 0.990 0.937
Technology Vendor Support OK 0.990 0.937
Technology Vendors’ access 0.990 0.937
Technology Vendors SLA OK 0.990 0.937
Technology Vendors vetted 0.990 0.937
Technology Yearly Requirements review 0.990 0.937
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FIGURE 9. Example of Security Posture Coefficients

Two dependency modelling outcomes are presented:
(1) dependency analysis based on users’ input data
- Figure 10, and (2) dependency analysis based on
posterior - Figure 11. The proportion of the two colours
(red and green) is equivalent to a probability value. For
example, the Secure ICS (goal/root node) in Figure 10
is 48.5% and the value for the equivalent node in Figure
11 is 4.9%. As previously discussed, the numbers are
not the severity of impact but the degree of uncertainty
that a system will be at a required (desired) state based
on the input provided by the user. Both charts indicate
that the success probability of the goal is low. Figure
11 shows a 4.9% probability that the system would be
in a secured state based on the posterior data. This
was because the factors/nodes (process, people, and
technology) that directly support the goal (Secure ICS)
are 83.8%, 89.4% and 6.5% respectively. Of particular
concern to the risk analyst and the business owner would
be the Technology OK node. This has raised a red
flag that requires investigation. However, our analysis is
focused on the comparison between the two outcomes.
There is a significant difference in the probability of the
root (goal) of the two results. The result of the modelling
using nominal values (Figure 10(a)) indicates that the
degree of certainty to achieve a desired “Secure ICS” is
48.5% when the DM is computed using the nominal data
provided by the user. However, this degree falls to 4.9%
when we apply posterior probability to the input data
based on the user’s response to the security statements.
This is due in part to the impact of the responses
and the depth of dependency level. Particularly, the
difference in users’ data input and derived posterior
for the “Technology” category is significant (up to 8%
reduction in some cases). Analysing the dependencies
in Figure 10 and 11 reveal that the People node in 11
has a higher probability of success when compared to its
equivalent in 10. However, the low probability of success

on the Technology node reduced the overall probability
due to the multiplication effect.

In addition to the above factors, the technology node
showed the lowest degree of certainty (highest degree of
uncertainty) among the child-nodes to the goal (root
node). This is due to the number of dependants in
the technology node. In Figure 10, the probability of
the technology node (65%) means that the nominal
probability (root node) is low due to the cascading
nature of the model. Figure 7 provides a clue as to the
low probability value; where the number of dependencies
in a branch is many, the dependency value is low. Both
charts indicate that the success probability of the goal
is low.

Further analysis of the results is the impact of poste-
rior probability on the input data. Here, we compare
the sensitivity to uncontrollable (leaf nodes). The 3-
point sensitivity graphs in Figures 12 and 13 represent
the degree to which the chances of achieving goals are
affected by the uncontrollable – where the bars indicate
the degree of sensitivity of each leaf node to the goal. The
red colour segment (to the left) indicates a decrease (how
much worse) in success probability for the goal, while the
green indicates an increase (how much better) in success
probability could be as the probability of each node
is increased. The intersection between the two colours
represents the nominal success probability for the goal
(i.e. Secure ICS). Using Figure 12 as an example, the
nominal success probability for the goal is 48.5% (0.45),
and the sensitivity of system reliability monitoring OK
to the Secured ICS is 49% (0.49). The red colour segment
shows the decrease in success probability for Secured
ICS if system reliability monitoring OK fails (or has
zero probability of success). The green colour segment
shows the increase in success probability for Secured ICS
if system reliability monitoring OK has 100% success
probability.
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FIGURE 10. Dependency Model Graph - User Input FIGURE 11. Dependency Model Graph - Adjusted
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Comparing the outcomes from the two results revealed
contrasting sensitivities of the uncontrollable. The nomi-
nal probability in Figure 12 is 48.5%, compared to 4.9%
(0.049) in Figure 13. This means the probability of a
successful Secured ICS is higher when we used the user
data input than when we used derived (posterior) data
input. Significantly different is the list of the top 10
nodes with the highest sensitivity values. The top-ten
nodes list in both Figures ( 12 and 13) are different. The
top-three on the list in Figure 12 are the bottom-three
in 13. That is; the three most-sensitive nodes in Figure
12 are the three least-sensitive nodes in Figure 13 list in
One node made the top 10 list of most sensitive nodes
on both graphs. So, Redundancy policy OK appeared
as the third most sensitive node in Figure 12 and the
10th most sensitive in Figure 13. It means the node
(Redundancy policy OK) is more sensitive to success
Secured ICS in Figure 12 than in Figure 13. That is, if
its value of Redundancy policy OK changes negatively
(tending to zero), it will have a greater impact on the
success of (Secured ICS) in Figure 12 than in Figure
13. Conversely, if the value changes positively (tending
towards one), the Redundancy policy OK in 13 has a
higher sensitivity to the success of the goal. One other
significant difference between the two graphs is the scale
of measurement which makes the nodes in Figure 12
100% more sensitive to changes that those in Figure 13.

FIGURE 12. 3-point Sensitivity Analysis - User Input

FIGURE 13. 3-point Sensitivity Analysis - Adjusted

It was also observed that the level of granularity
(the depth) in DM impacts the nominal probability.
Limiting the model to four levels resulted in a 0.75
and 0.32 nominal probability for DM and extended DM,
respectively. This was a significant improvement on the
five-level model analysed earlier.

VII. CONCLUSION
In this literature, we have explored the various ca-
pabilities of DM and proposed ways to extend these
capabilities. In particular, we proposed a technique to
support an improvement in the initial user data input.
We developed an application that accepted user input
and we analysed the results, comparing the existing
DM offering to the proposed extension. The comparison
showed that the proposed technique would improve the
accuracy, confidence and reliability of the risk identifi-
cation process using DM methodology.

DM offers a considerable advantage over other meth-
ods where the graph is capable to reveal areas of immedi-
ate intervention needs. As enumerated in Section IV-B,
however, there are yet a few issues that require further
work with the space. DM is incapable to provide an
analysis of impact across the broader system and lacks
formalism on how to measure the direct and indirect
impact of a change of state on other parts of the
tree. It also lacks the formalism to stochastically test
the multiple and independent failures in a system – a
common phenomenon in an ICS environment.

In the future, we seek to research exploring how to
observe the stochastic values of one or more of the nodes
using probabilistic reasoning principles and providing
a significant extension to the power of the dynamic
Bayesian network and graphical models and also to
explore ways by which DM could be extended to analyse
the combination of independent events within the de-
pendency graph and the propagation impact across sub-
system goals, as well as up to a root goal. We believe
this would further increase the understanding of the
behaviour, interactions, dependencies, and associated
vulnerabilities inherent in the system.
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