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Highlights
Passive acoustic monitoring (PAM) pro-
vides new opportunities to characterise
zoonotic and vector-borne disease dy-
namics in changing landscapes.

Acoustic data can inform our under-
standing of variables that drive transmis-
sion risk, including human and wildlife
occupancy over space and time and
changes in habitat quality.

With low-cost hardware, cloud-based
Emerging infectious diseases continue to pose a significant burden on global
public health, and there is a critical need to better understand transmission dy-
namics arising at the interface of human activity and wildlife habitats. Passive
acoustic monitoring (PAM), more typically applied to questions of biodiversity
and conservation, provides an opportunity to collect and analyse audio data in
relative real time and at low cost. Acoustic methods are increasingly accessible,
with the expansion of cloud-based computing, low-cost hardware, and machine
learning approaches. Paired with purposeful experimental design, acoustic data
can complement existing surveillance methods and provide a novel toolkit to in-
vestigate the key biological parameters and ecological interactions that underpin
infectious disease epidemiology.
computing, and open-source platforms,
acoustic data collection and analysis
methods are increasingly accessible to
nonspecialist users.

Key considerations for epidemiologists
include the availability of complementary
data sources and the technical require-
ments for acoustic data storage and
analysis.

Acoustic monitoring is a cost-effective,
noninvasive tool which could be effec-
tively combined with existing data to
strengthen early warning systems and in-
tegrated disease surveillance.
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Integrating acoustic monitoring into epidemiology
Bioacoustic (see Glossary) approaches are increasingly utilised by ecologists to characterise the
distributions and behaviours of wildlife species andmonitor environmental change. These ecolog-
ical patterns and processes also determine transmission of many infectious diseases; however,
acoustic monitoring is rarely incorporated into epidemiological studies. To conduct effective
surveillance and predict or control zoonotic and vector-borne diseases, epidemiological
studies must untangle the biotic relationships between host and vector species, humans, and
their environment. Here, we identify opportunities to integrate acoustic monitoring technology
and acoustic data into epidemiological studies and disease surveillance systems.

Understanding the transmission dynamics of complex multihost disease systems requires the
integration of information acrossmultiple spatial and temporal scales, and across distinct biolog-
ical processes [1]. With the exception of a few well-studied pathogens, we still know little about
themechanisms through which disease processesmanifest in risk to human health. Bioacoustics
has the potential to answer core epidemiological questions, including (i) which species are pres-
ent in an area, (ii) where and how key species move and behave across heterogeneous space,
(iii) when species are active in a space, and (iv) whether there is spatial/temporal overlap between
host species, vectors, and/or human movement. In answering these questions, classical field
methods (i.e., transects, trapping, questionnaires) can provide important insight into small-
scale social and ecological processes that underlie disease risk. However, being typically la-
bour-intensive and expensive, classical methods are not always suitable for understanding pat-
terns of risk at scale. Methods for surveying the environment, using sound recorders, including
PAM, have advanced rapidly in the fields of terrestrial and aquatic ecology and conservation,
and ecoacoustic data are used effectively in assessments of biodiversity and ecosystem health
over broad spatial scales [2–5]. To this effect, acoustic monitoring offers a complementary, scal-
able tool that can provide extensive data to give new insights in the parameterisation of risk
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models and potentially address some outstanding assumptions about the processes driving dis-
ease risk in changing landscapes.

There are currently limited examples of acoustic data being harnessed to understand infectious
disease. In conservation biology, acoustic surveys are typically used in the identification andmon-
itoring of soniferous species, particularly those that are visually cryptic or found in densely vege-
tated landscapes [6–9]. In relation to human disease, some research has been conducted into
using acoustic sensing in community-science-based mosquito surveillance [10]. Mobile phone
devices can be adapted as acoustic sensors to track human–mosquito encounters and, notwith-
standing some limitations in implementation, collect occurrence data without typical sampling
biases to inform vector-borne disease control programmes [11–13]. In a laboratory context
there are also examples of acoustic data used to understand mating behaviour of mosquito
vectors [14]. Otherwise, existing applications almost exclusively relate to the study of wildlife
disease ecology – primarily white-nose syndrome in bats, using ecoacoustic data to survey hiber-
nation sites [15,16], monitor seasonal disease-related behavioural change [17], and assess the
implications of climate change on disease progression [18]. There are also a few examples of
acoustic monitoring of amphibian disease, discussed in relation to chytridiomycosis [19] and in-
vestigating changes in call patterns of infected frogs [20].

A number of biological and ecological processes can be examined using PAM survey data, as de-
tailed by Gibb et al. [21]. Ostensibly, these answer many of the same questions that are critical for
epidemiology and the study of disease transmission, relating to the occupancy, abundance, and
detectability of species over space or time, or estimating spatiotemporal overlap of species. While
there is no existing literature on the application of acoustic data to understand processes under-
lying disease transmission, Figure 1 (Key figure) provides examples of epidemiological variables
that could be obtained from bioacoustics and their potential applications to the surveillance
and control of infectious diseases. By offering a new tool to inform relevant parameters, acoustic
surveys could be advantageous in studying a range of infectious disease systems, particularly
those with sylvatic pathogen reservoirs. For instance, acoustic data could be used to detect
changes in host location or behaviour that might enhance risk, such as wildlife ranging into live-
stock compounds [22] or human settlements [23], or host die-off indicative of an epizootic [24].
This includes, but is not limited to, diseases that have wildlife reservoirs in non-human primates
(zoonotic malaria, yellow fever) [25,26]; canids and small mammals (rabies, trypanosomiasis)
[27]; livestock and small ruminants (toxoplasmosis, Rift Valley fever) [28,29]; bats (Marburg
virus, Ebola virus, Nipah virus, lyssaviruses) [30,31]; and wild birds (West Nile virus, Japanese
encephalitis) [32,33].

In some fields, PAM is already routinely used; here, the advantage for infectious disease research
would be of applying existing workflows to epidemiological questions. One such target for ex-
tending existing acoustic methods to human epidemiology is bats. Certain species are known
to host a melange of viral pathogens with existing or emergent zoonotic potential [30,31,34]
and analysis of bioacoustic data is already amainstay methodology in this field to investigate pop-
ulation dynamics and behavioural trends [35–38]. As an example, existing acoustic methods
could be utilised to better understand the dispersion of nonhaematophagous bats and inform
urban rabies surveillance and control [39]. In a well-studied, vocal species, acoustic data could
also monitor behavioural signatures of disease risk: for example, there is evidence that peaks in
human risk of Marburg virus correspond to breeding season for the Egyptian fruit bat Rousettus
aegyptiacus [40]. Moreover, it has been shown that combining acoustic data with other high ef-
fort, high-quality data types (e.g., mark-recapture, point count surveys, GPS tagging) can pro-
duce superior models and better parameter estimation compared to using a single data
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Glossary
Acoustic indices: statistics that
summarise features of acoustic data
from audio recordings.
AudioMoth: a small recording device
that records audio data and stores
metadata.
Autonomous recording unit (ARU):
a self-contained audio recording device.
Bioacoustic: related to the field of
study concerning sounds produced by
living organisms.
Passive acoustic monitoring (PAM):
survey methods for monitoring species
or the environment using sounds
recorders.
Reservoir: refers to the animal species
(reservoir host), population of organisms
(disease reservoir) or environment in
which a pathogen reproduces and is
sustained.
Scale: describing the distance (spatial
scale) or time frame (temporal scale) over
which biological processes occur.
Soundscapes: a combination of
sounds that form a complete acoustic
environment.
Surveillance: monitoring of a disease,
or of risk factors that influence disease
spread, to establish patterns of
progression and predict or mitigate
adverse events.
Zoonotic: refers to diseases that are
transmitted between animals and
humans.
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source, reducing detection biases, and improving estimates of abundance and population size
[41,42].

In other instances, acoustic data may present a novel opportunity to fill technological gaps in cur-
rent infectious disease research. Remote sensing technologies such as satellite sensing, un-
manned aerial vehicles (UAVs) and LiDAR (Light Detection and Ranging) data have emerged as
key assets in collating spatial and environmental data and are increasingly being used to infer pat-
terns in disease risk andmodel transmission [43]. However, while UAVs have been used success-
fully in aerial population surveys of livestock reservoirs [44,45] and in mapping mosquito vector
breeding sites [46], this technology is best suited to large animals and features of open grassland
landscapes.i Here, PAM could offer a significant advantage for monitoring the distribution and
movement of species in forested or closed landscapes. Epidemiological studies unfamiliar with
using acoustic technology, particularly those collecting data in remote areas, can benefit from
the recent development of low-cost sensors or autonomous recording units (ARUs) that are
optimised to work in such contexts. Improvements in wireless sensor technology have facilitated
the use of PAM to collect continuous data on surrounding acoustic environments. Open-source
acoustic sensors are now readily available, with microcomputer-based devices such as AudioMoth
providing options that are cheap to manufacture and flexible for nonspecialist users. Depending on
the research question (i.e., target species, spatiotemporal scale), users can adjust sampling rate,
gain, sampling intervals (how frequently devices record audio), and sampling durations (length of re-
cordings and recording schedule), with AudioMoth devices supporting sampling rates up to 384 kHz
and sampling distances within radii of 50 m to 1500 m depending on the source [47]. Other more
specialised recording devices are also available from commercial suppliers (e.g., Wildlife Acousticsii

or wider monitoring initiatives, Cornell Swift recorders).iii

Acoustic monitoring can also be used to collect data to inform epidemiological processes related
to human movement and activity. We still know relatively little of the mechanisms through which
pathogens spread across a human–wildlife–ecosystem interface. By collecting noninvasive, real-
time data concerning human movement, PAM has the potential to bring new understanding of
spatiotemporal spillover risks associated with land use change or certain indicators of human ac-
tivity in complex systems [48]. For instance, being able to monitor interfaces between people and
fruit bats would provide valuable data with which to parameterise more mechanistic models that
integrate bat ecology and human behaviour. For mosquito-borne diseases such as malaria, de-
tection of human movement could be used to indicate heightened transmission risk and prioritise
vector control in regions nearing elimination [49]. An example of this application for malaria risk
monitoring is illustrated in Figure 2. Increased human activity during key mosquito biting times
contributes to the malaria receptivity of a given area [50]: by comparing detection frequency of
human chainsaw use against bite rate for the main malaria vector in Sabah, Anopheles
balabacensis, high-risk times for malaria transmission in this hypothetical population would be
early evenings, which might inform future interventions.

Acoustic methods can provide new opportunities to integrate data at scale into riskmodelling and
long-term infectious disease surveillance. Acoustic data have already been used to assess the
impact of human-modified landscapes on biodiversity [51–54] and to understanding the impact
of climate change on species distributions [55], particularly salient given the rapidity of habitat
loss and critical landscape change. Risks of disease emergence or transmission from wildlife to
humans are also understood to be affected by changing climates, urbanisation, and landscape
modification [56], and there has been considerable progress in incorporating meteorological
and environmental information to improve surveillance and early warning systems (EWSs) for
climate-sensitive infectious diseases [57–59]. In the same way, passive acoustic data can be
Trends in Parasitology, Month 2023, Vol. xx, No. xx 3
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Key figure

Potential use cases and applications of acoustic data to characterise epidemiological variables to
inform surveillance and control measures

Example variable Occupancy Spatial estimation Temporal estimation Behavioural traits Ecosystem health

Metric derived from 
acoustic data

Detection/non-detection of 
key species

Spatially explicit detection 
count data of key species, 
acoustic localisation 

Temporally explicit 
detection count data of 
key species

Spatial/temporal detection 
counts of behavioural risk 
signatures

Acoustic indices, 
soundscape analysis, 
community metrics, 
species richness 
/composition analyses

Example disease 
scenario

Non-human primate die-
off during Yellow Fever 
outbreaks in humans and 
primates [24]

Detection of fruit bats, 
reservoir for Nipah Virus, 
roosting near livestock 
[22]

Human movement 
patterns and land use 
during key biting times of 
zoonotic malaria vector 
mosquitos [53]

Seasonal peaks in 
Marburg Virus circulation 
and human infection risk 
coinciding with 
Rousettus aegyptiacus 
bat breeding season [40]

Habitat fragmentation and 
biodiversity loss 
increasing risk of novel 
infectious disease 
emergence [76]

Detection of macaques in 
human settlements [23]

Detection of humans in 
forest edges [51]

Example response 
or control measure

Vaccine campaign

Vector control

Livestock quarantine

PPE PPE

Diagnostic capacity Awareness Land management

Integrated surveillance

Risk modelling

TrendsTrends inin ParasitologyParasitology

Figure 1. Key epidemiological variables are listed (dark grey boxes), below which metrics are given which could be informative to the specific variable and that can be
derived from acoustic data. Examples provide disease scenarios where a particular epidemiological variable might be useful, listed within the table and illustrated above
(coloured graphic boxes). All variables could contribute to risk modelling or integrated surveillance systems (green boxes). For each epidemiological variable and
associated example disease scenario, example control measures are given (coloured arrows). Abbreviation: PPE, personal protective equipment.
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Mosquito biting rate and chainsaw detection frequency over 24 hours in Southeast Asia
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Figure 2. Hourly detection frequency of human activity against mosquito bite rate (per human per night). Hourly detection frequency of chainsaw activity in
Sumatra, Indonesia (black line), superimposed with hourly mosquito biting rate in Sabah, Malaysia (blue shading). Dark blue shading indicates possible temporal overlap
between human activity and mosquito biting.
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collected and used to parameterise rapidly changing risk for disease spillover.With improvements
in on-board analysis and cloud-based data processing, acoustic monitoring can now provide
long-termmonitoring and real-time alerts of human activity, including illegal logging and poaching
[60]. Solar-powered devices that are associated with continuous and real-time detection capabil-
ities can further facilitate long-term monitoring in remote ecosystems and tracking of ephemeral
sounds. This presents a novel opportunity to incorporate longitudinal acoustic monitoring into in-
fectious disease surveillance workflows.

Case study: acoustic survey design and practical considerations of ARUs
Optimal sampling design for epidemiological studies using PAM technology will depend on the
target species and research objectives. The SENSOR Project was recently established to char-
acterise transmission intensity of specific zoonotic and vector-borne diseases with a view to
modelling spillover and transmission rates relative to certain land-management practices.iv

Acoustic surveys will be used to parameterise the presence/absence of long-tailed macaques
(Macaca fascicularis), a potential reservoir for zoonotic malaria and arboviruses, across land-
scapes at different stages of forest restoration [61]. Figure 3B illustrates set-up and deployment
of AudioMoths during a pilot study to compare host species detection, positioned in a monitoring
grid in and around forest restoration plots across a land use gradient in Kinabatangan, Sabah
(Figure 3A). In a disease system that is undergoing rapid landscape change, spatially explicit sam-
pling protocols are particularly important to collect representative data to characterise disease
Trends in Parasitology, Month 2023, Vol. xx, No. xx 5
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Figure 3. Set-up and deployment of autonomous recording unit (ARU) in Sabah, Malaysia. (A) Map Kinabatangan
floodplain. Inset photo illustrates AudioMoths (red) deployed in and near forest restoration plots (green lines) at Kaboi Lake.
(B) Programming and setting up ARU. (C) Positioning ARU with battery pack in waterproof casing and protective wire cage.
(D) ARU waterproof case after 10 days submerged in floodwater.
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risk – for example, examining acoustic signatures from stratified land use types or habitat fragment
sizes [62].

When deploying ARUs as part of a study or for long-term surveillance, it is important to under-
stand the study area to ensure that potential biotic and abiotic disturbances that can hinder
6 Trends in Parasitology, Month 2023, Vol. xx, No. xx
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audio data collection are mitigated. For example, pilot studies have found that ARUsmight attract
animals such asmonkeys, squirrels, birds, or ants, and extrameasuresmay be needed to protect
the ARUs from being disturbed or damaged. This might look like setting the ARUs inside a sturdy
cage (Figure 3C) tightly secured to the chosen location, or, if using clear casing, covering light-
emitting diodes (LEDs) with waterproof tape. Field researchers should also be familiar with the
geography and meteorology of study sites; terrain and weather conditions should be carefully
considered while designing your study. The AudioMoth in Figure 3D was positioned within the
Lower Kinabatangan Wildlife Sanctuary (LKWS), which lies on a floodplain. Seasonal flooding in
the study area resulted in one ARU being submerged for over 10 days. While the ARU and
associated data were salvaged, deployment at a greater height would have mitigated against
flood damage.

Bioacoustic data analysis for epidemiological studies
In most scenarios, analysis of ecoacoustic is primarily concerned with the deconstruction and in-
terpretation of the audio collected to interpret the biological patterns and processes that occur;
for epidemiological studies, this will give discrete information regarding disease ecosystems or
host/human communities, populations, or individuals [63]. Typically, the first step in the workflow
is detecting and classifying acoustic signals from sound files for specific sonotypes. During pro-
cessing, waveforms are converted into spectrograms (time–frequency–amplitude visualisation),
demonstrated for a call signature of the R. aegyptiacus fruit bat in Figure 4. Signals must first
be detected, using thresholding or statistical methods, and then classified according to specific
acoustic features of the sound [21]. Methods are continually evolving and improving to automate
this [64], and there are a range of software that offer inbuilt template matching tools. An example
application of this would be for Plasmodium knowlesi, a vector-borne zoonotic disease with a
simian reservoir. Extensive deforestation and the proliferation of oil palm plantations in Malaysia
is potentiating transmission, with changes in land use likely to be increasing contact between
humans, mosquito vectors, and wildlife hosts [25]. To understand P. knowlesi epidemiology
and institute control measures, studies require fine-scale data to characterise macaque move-
ment across space and time. Using cloud-based computing and pattern-matching ap-
proaches implemented in a freely available web-based platform [65], acoustic data can be
analysed to detect M. fascicularis presence across different habitats within areas endemic
for P. knowlesi transmission (Figure 5). In addition to standalone sensors, the deployment of
multisensor networks, microphones, and linked arrays can facilitate acoustic localisation of ter-
restrial species, using position estimation algorithms at later analysis stages [66]. New efforts
are also being made to address potential sampling biases in existing study designs by
standardising sensor calibrations and metadata collection, as well as quantifying sensor sensitivity
in different environments [67].

Epidemiologists interested in analysing acoustic data at scale can take advantage of recent ad-
vances in machine learning for acoustic signal recognition, which are automating this process
and reducing the time and labour requirements. Supervised learning algorithms (trained on
prior manually labelled audio features) or unsupervised learning algorithms (only based on struc-
tural features within the data, i.e., clustering algorithms) then detect signals and generate scores
that represent the predicted probability of presence for different classes. However, there often are
deficits in species or geographic regions for which there is little/no training data, whichmight pose
a particular problem for novel hosts or regions required for infectious disease research. Subse-
quently, there is a need to generate labelled data and training algorithms applicable to the use
of acoustics in a disease context. More generally, issues of variable accuracy and sound quality
can occur and hinder both detection and classification stages of analysis, affected by factors
such as distance from sound, nontarget background noise, or signal masking. Deep-learning
Trends in Parasitology, Month 2023, Vol. xx, No. xx 7
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Figure 4. Example acoustic outputs. (A) Basic oscillogram waveform for Egyptian fruit bat (Rousettus aegyptiacus)
vocalisation [36]. (B) Spectrogram (time–amplitude–frequency) for Egyptian fruit bat vocalisation.
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models based on recurrent or convolutional neural networks (RNNs or CNNs) are evolving as a
valuable new tool to address these challenges, bypassing the feature extraction stage and
performing highly in classification tasks. Deep-learning algorithms can be applied to discerning
anthropogenic sounds [68] as well as biotic features [69,70] in noisy datasets; indeed, deep-
learning detection algorithms have been applied to identifying human vocal signatures [71],
which, in a disease context, could be used to better understand spatial or temporal patterns of
human activity in integrated surveillance systems.
8 Trends in Parasitology, Month 2023, Vol. xx, No. xx
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Figure 5. Arbimon Insights user-interface dashboard summarizing results from acoustic analyses. The dashboard of Arbimon Insights [65] includes a map of
detection points for the common long-tailed Macaque (Macaca fascicularis) in a study site in Sabah. Blue points indicate locations of acoustic sensors where long-tailed
macaques were detected (four of 27 sites). Black points indicate monitoring sites where the species was not detected.
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Another approach to extract useful ecological information from audio data is through sound-
scape analyses, where the focus moves away from individual species to characterising the entire
acoustic environment. Soundscape analyses can be used to assess and compare animal rich-
ness thought time and space, which could be valuable in understanding altered disease transmis-
sion potential linked to changes in biodiversity or overall declines in ecosystem health [72,73]. For
instance, species richness of insects, anurans, birds, and primates are strongly and positively
correlated with the proportion of acoustic space used (ASU) in the neotropics [74] (Figure 6).
Deep-learning approaches have also been successfully applied to soundscape analysis: by
creating a universal acoustic feature space, CNNs can identify soundscape ‘fingerprints’ of biotic
and anthropogenic sound that can be used to assess habitat quality and human activity across
multiple spatial and temporal scales [75]. Habitat disturbance has been widely linked with
increased disease outbreaks, suggesting that these metrics, identifying rapid changes in
soundscapes, may be good proxies for future outbreaks. In other cases, this may provide valu-
able information to characterise habitats associated with different levels of disease risk.

Alternatively, abstraction can also be useful in interpretating audio data, deriving community infor-
mation by means of acoustic indices. Acoustic indices reflect distinct attributes of a sound-
scape and calculate metrics with which to make inferences about overall ecosystem health,
biodiversity indicators, or habitat function that could have useful applications to parameterising
disease risk [76]. Indices such as acoustic complexity index (ACI) take features of the soundscape
(amplitude, pitch, saturation) and simplify audio data into single numerical values. Acoustic
Trends in Parasitology, Month 2023, Vol. xx, No. xx 9
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Figure 6. Visual representation of acoustic space use (ASU) from Barro Colorado Island (Panamá). The axes
represent hour (x), frequency (y), and the proportion of observations. The figure includes a total of 3072 frequency–time
bins (24 h × 128–172 Hz frequency bins). The black boxes indicate the main taxonomic groups contributing to the
acoustic patterns observed in certain time–frequency periods.
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indices have shown particular value in quantifying temporal changes in a soundscape, such as
tracking diel patterns or seasonal shifts [77], or in identifying marked differences between the
soundscapes of undisturbed and disturbed habitats [78] in areas undergoing substantial
landscape change. However, caution is needed when using acoustic indices as proxies for
biodiversity since recent meta-analyses have shown only a moderate positive relationship and
inconsistent performance [79]. Utility of current acoustic indices for disease applications needs
to be evaluated, and there is potential for the development of other indices or metrics to reflect
disease risk.

Benefits of PAM in epidemiology
Zoonotic and vector-borne diseases tend to be strongly impacted by changes in climate, land-
scape, or habitat composition acrossmultiple spatial scales. Acoustic monitoring provides a non-
invasive method to collect data that are both spatially and temporally explicit, locally and at scale,
without the logistical intensity that classical field ecology methods otherwise require. PAM has the
potential to complement existing remote sensing methods (UAVs, LiDAR) in disease settings with
dense vegetation, canopy cover, and challenging terrain, addressing conceptual gaps and pro-
viding detailed data on the spatiotemporal interactions between humans, vectors, and animal
host species. By combining broad acoustic survey data with data that are high quality but sparse,
expensive, or intensive to collect, acoustic monitoring can also strengthen existing datasets.
Acoustic surveys are adaptable to user requirement and simple to deploy, creating the opportu-
nity for epidemiological studies to collect data within specific frequencies with minimal input. Fur-
thermore, there is ample scope to integrate acoustic monitoring into existing disease surveillance
programmes to improve real-time estimation of disease risk [41,80]. With recent advances in open-
source hardware and software, acoustic technology is widely accessible – with commercial unit
costs for devices such as the AudioMoth as low asUS$70 andwithminimal training andmaintenance
requirements. These devices can use wireless communication, GSM (Global System for Mobile
Communications) signal and satellite connection to send raw recordings or detection alerts to online
platforms [81]. Satellite-connected devices can be equipped with processing power sufficient to con-
duct onboard computation and transmit real-time reporting via cloud-based platforms [60]. Potentially
prohibitive technical barriers have also been lowered or removed at analysis stages, with user-friendly
platform interfaces, inbuilt automated detection algorithms and acoustic call libraries in both
open-source or free software (Arbimon [81], PAMGUARD, LDFCS, iBatsID [82], Tadarida [83]) and
membership-based software (Kaleidoscope, Raven Pro, Avisoft).
10 Trends in Parasitology, Month 2023, Vol. xx, No. xx
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Outstanding questions
Which acoustic metrics and acoustic
monitoring survey designs are best able
to generate meaningful data across
wide spatial and temporal scales?

How can acoustic monitoring be
combined with environmental and
human or animal health data most
effectively to inform infectious disease
surveillance?

How does the cost–benefit trade-off of
acoustic monitoring compare to other
methods used to characterise disease
systems?

How can data and metrics derived
from acoustic monitoring be best
evaluated specifically for their utility to
health systems?

What are the barriers to implementation
and interpretation of acoustic data by
disease control practitioners?
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Limitations of acoustic monitoring approaches in epidemiology
While PAM presents new opportunities in epidemiological investigations, there are some limita-
tions. One key limitation in this context is that use is restricted to disease hosts/vectors that pro-
duce audible sound. This precludes reservoir species that are nonvocal. Practically, whilst field
placement of ARUs is reasonably straightforward, adequate resourcing and personnel are still re-
quired for the initial field deployment to set up the devices, which may create additional resource
demands depending on the scale of the epidemiological study. Likewise, the scale of the survey
will determine unit costs andmaintenance costs, though technical requirements such as batteries
may soon be superseded by solar-powered devices. For disease programmes looking to collect
continuous data, it should be noted that the files generated by continuous passive monitoring
comprise a notable data load; being computationally intensive to store and analyse, this necessi-
tates computers with sufficient processing specifications, network connectivity, and cloud infra-
structure that is not always available in remote field conditions.

While collection of PAM data is relatively intuitive, there may be initial barriers in the analysis and
interpretation of acoustic data by nonspecialist users. Manual processing of audio data remains
the most accurate but is time-intensive and subject to bias, while automation and machine learn-
ing is faster and scalable but requires the technical expertise to createmodels and large quantities
of reliable datasets. For novel geographic areas or species that are of epidemiological interest but
not typically the subject of acoustic surveys, a paucity of training data can limit the usability of su-
pervised learning algorithms for species detection andmonitoring. Despite recent advancements,
there are still challenges in generating accurate estimations of density and abundance from
acoustic recordings. Certain detection uncertainties are inherent to acoustic data, including im-
perfect detection due to call distances and local environmental factors (i.e., rain, anthropogenic
noise) [67] and statistical nonindependence of vocalisations that are close in space or time.
Given that species distribution parameters are likely to be some of the most useful for epidemio-
logical studies to infer wildlife/human presence in certain locations or time frames, robust statis-
tical methods should be applied to address these uncertainties. Examples include patch
occupancy models that incorporate detection probability parameters [84] or Bayesian inference
frameworks [85].

Concluding remarks
To design disease control strategies and implement effective surveillance, detailed understanding
of how key biological systems interact is required. PAM offers a valuable addition to existing ep-
idemiological tools used to monitor zoonotic and vector-borne disease but does not replace
existing field-based methods. PAM is likely best used in combination with existing methods
and data sources. Identifying optimal strategies for integrating these methods and evaluating
their utility is a key priority for future research (see Outstanding questions). For epidemiologists
looking to apply this technology, technical and logistical requirements will need to be considered
when implementing acoustic surveys into a study. While PAM data collection is automated, field
deployment in remote terrains necessitates a degree of time and financial cost to account for. To
obtain useful and usable acoustic data, field surveys should be designed cognisant of the data
requirements and appropriate sampling strategy. Purpose of data collection, target species
and the required spatial and temporal scale should inform the recording specifications
(i.e., sampling rate, recording schedule, duration of audio collection), the number and geometry
of sensors, and whether other sensors or methods are used in tandem (i.e., thermal sensors,
camera traps, entomological surveys). In regions of interest with fragmented ‘patchy’ landscapes,
Earth Observation (EO)-derived environmental data might inform strategic ARU placement or
stratified sampling that ensures environmentally representative acoustic data are collected [86].
Hardware (sensors and microphone specifications, microSD cards) and software are at user
Trends in Parasitology, Month 2023, Vol. xx, No. xx 11
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discretion, but must be sufficient to match detection requirements and computational load of the
analysis. As with any human epidemiological study, there are also ethical considerations around
the collection, analysis, and storage of human audio data so appropriate ethical clearance should
be sought from local stakeholders.

Acoustic monitoring provides novel opportunities for the field of human epidemiology, offering
a new tool to address practical and theoretical shortfalls in current assumptions of spatiotem-
poral risk for emerging infectious diseases. As an emerging application of this technology, there
are currently few examples of the use of acoustic data in epidemiology. Consequently, there re-
main knowledge gaps in how these technologies can be practically deployed, evaluated, and
how analysis pathways can be adapted for disease-specific applications. To overcome poten-
tial barriers for the adoption of these technologies by in-country stakeholders, workflows for in-
tegrating acoustic data into research studies or disease control programmes need to be
developed further. Guidelines and infrastructure need to be created for implementation of
this technology in low-resource settings, including trainings that are specific to epidemiologists
and applied disease management practitioners. Furthermore, improved evaluation of acoustic
metrics and data analysis pathways will also be required that is specific to the use of acoustic
data in the context of health management and disease surveillance. PAM can be cost-effective
and straightforward to implement in epidemiological studies, and with purposeful sampling de-
sign acoustic surveys can be scaled up to collect extensive data on meaningful metrics of dis-
ease risk over wide geographic areas. Overall, acoustic monitoring is an emerging field which
presents a valuable addition to epidemiological toolkits and an opportunity to improve the
study and surveillance of complex emerging infectious disease systems, with considerable po-
tential for important public health impact.
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