
 

 

The role of short tandem repeat genetic 

variation in myopia and other ocular 

traits 

 

October 2022 

 

A thesis submitted to Cardiff University for the degree of 

Master of Philosophy 

By 

Jiangtian Cui 

 

School of Optometry and Vision Sciences 

Cardiff University 

 

 

Supervised by 

Prof. Jeremy A. Guggenheim 

Dr. Louise Terry



i 

 

AKNOWLEDGEMENTS 

 

I would like to express my gratitude to Professor Jeremy A. Guggenheim for his 

supervision throughout this project. His huge support, patience and encouragement 

make this thesis possible. I would like to thank my co-supervisor Dr. Louise Terry and 

academic advisor Dr. Tony Redmond for their feedback on my work. 

 

It has been my great privilege and pleasure to be able to work with Dr. Rosie Clark. 

 

Thank you to all in the School of Optometry and Vision Science for your support 

throughout my MPhil. 

 

I owe a great gratitude for my family for their massive support during my MPhil.  



ii 

 

SUMMARY 

 

The purpose of the study was to identify new genetic risk factors for the ophthalmic 

traits, strabismus and myopia. Short tandem repeats (STRs) are regions of the 

genome that contain repetitive sequences of DNA, e.g. CACACACA or 

ATTGATTGATTG. Their repetitive nature makes STRs prone to mutation during 

meiosis. Two hypotheses were examined by performing genetic association studies 

for STR markers in large samples of participants from the UK Biobank project. 

 

An initial study was carried out examining the trait ‘self-reported strabismus’. 

Previous research identified a single nucleotide polymorphism (SNP) on chromosome 

17 that was strongly associated with strabismus. Therefore, tests for association of 

self-reported strabismus and STR markers on chromosome 17 were performed. The 

STR variant most strongly associated with the phenotype was Human_STR_613083. 

However, no marker retained evidence of association after accounting for multiple 

testing using the Bonferroni method.  

 

In a second study, a case-control GWAS was performed in which cases with high 

myopia were compared to controls with moderate-to-high hyperopia. This GWAS 

identified two STRs associated with case-control status: Human_STR_827099 and 

Human_STR_424816, nearby the genes PRSS56 and SIX6 on chromosomes 2 and 14, 

respectively. Conditional analyses revealed the two lead STRs were in linkage 

disequilibrium with previously identified myopia-associated SNPs. As part of the 

second study, an analysis of STR genotypes on the X chromosome of male 

participants revealed that the error rate of STR genotyping was related to the STR 

motif length. 
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1.1. Genetics 

 

1.1.1. Monogenic and polygenic inheritance 

 

Monogenic inheritance refers to the form of inheritance where the mutation of a 

single gene or allele could solely determine the trait. The inheritance pattern of 

single gene diseases is referred to as Mendelian, named after Gregor Mendel, the 

Augustinian monk and botanist who formulated the laws of heredity through careful 

breeding experiments in pea plants. Mendel first statistically summarized the 

different patterns for the selected traits in pea plants across generations, and 

recognized that gene segregation complies with the laws, presently known as 

‘Mendel’s law of inheritance’, determining the probability of recurrence of traits for 

subsequent generations. Monogenic inheritance of disease in a family can be 

established by observing the pattern of transmission, for which an accurate family 

history is important. 

 

Most gene sequences occur in different versions in different individuals due to the 

accumulation of mutations; these different versions are referred to as ‘alleles’ and 

the sites at which they occur are called polymorphisms. Individuals carry two 

chromosomes. At a specific location on a chromosome, individuals can carry either a 

‘reference’ (commonly occurring) allele or a ‘alternate’ (or ‘rare’) allele. The 

likelihood of carrying the alternate allele depends on the population frequency of the 

allele and its functional consequences. If the alternate allele greatly increases the risk 

of a phenotype or disease, the allele is sometimes called the disease-causing allele or 

disease-causing mutation. The expression of the mutated allele versus normal allele 

can be characterized as dominant, additive, or recessive. In total, there are five 

modes of inheritance for single-gene diseases: autosomal dominant, autosomal 

recessive, X-linked dominant, X-linked recessive and mitochondrial. Different modes 
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of single-gene diseases refer to diseases inherited in different patterns depending on 

the genomic location of the gene and whether one or two alleles of the gene need to 

be functional for the pathology to manifest. 

 

Polygenic inheritance, as opposed to monogenic inheritance, is characterized by 

traits that are controlled by two or more genes. The determinant genes are often 

very numerous in quantity but each with just a small effect on the phenotype. 

Polygenic gene polymorphisms typically have an additive effect on the phenotype. 

Mendelian inheritance patterns, the core notion of monogenic inheritance, are not 

applicable to analyze traits with polygenic determinism. Instead of just two options, 

polygenic traits generally have a continuous phenotypic spectrum. Examples of 

polygenic traits are skin colour, height and even intelligence. 

 

Myopia, usually high myopia, sometimes appears as one of the features of a variety 

of rare heritable disease syndromes (Curtin 1985). Many of these rare syndromes, 

such as Stickler syndrome and Marfan syndrome, are single-gene disorders, while 

Down syndrome is due to an extra copy of chromosome 21. Accordingly, simple 

Mendelian inheritance patterns (dominant, recessive or sex linked) have been 

reported in some rare families with high myopia (Goss et al. 1988). By definition, 

such cases provide evidence that monogenic forms of myopia exist, which are caused 

by single-gene mutations.  

 

More generally, evidence shows both heredity and environmental factors influence 

the development of myopia. Similar to many other ‘multifactorial’ diseases in nature, 

causes of myopia onset and development consist of both environmental and genetic 

factors. A ‘complex disease’ or ‘complex trait’ results from multiple genes, diverse 

environmental factors and potentially gene-gene or gene-environment interactions. 

Therefore, a single susceptibility gene is neither necessary not sufficient to cause a 

complex disease, and the underlying genetic effects involve probabilistic 
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predisposition (‘genetic susceptibility’) rather than predetermined programing (Tang 

et al. 2008). A complex disease or trait may segregate in families but will not show a 

typical Mendelian inheritance pattern. Type 2 diabetes shows characteristics typical 

of a complex disease, with rare monogenic forms showing typical Mendelian 

inheritance, while the more common cases are caused by a complex set of genetic 

and environmental risk factors. 

 

 

1.1.2. Heritability: twin studies, family studies and population studies  

 

It is often of interest to researchers to evaluate how much variation in a particular 

trait is the result of biological factors versus environmental factors. Heritability is the 

conception to quantify the genetic contribution to a trait – in other words, how much 

of the variation in a trait is controlled by genetic differences between individuals. The 

term heritability is often used to refer to the resemblance between parents and their 

offspring: a high heritability implies a robust resemblance between parents and 

offspring regarding a specific trait, while low heritability has the opposite implication.  

 

Heritability is formally defined as the proportion of phenotypic variation (VP) that 

results from variation in genetics (VG). The ‘broad-sense’ heritability is defined as H2 

= VG/ VP. On the other hand, a finer model divides the variation in genetics into two 

classes, the additive genetic effect (VA) and non-additive genetic effects (VD), 

depending on the different types of inheritance. By definition, a formulation for the 

‘narrow-sense’ heritability is h2 = VA/ VP, in which only the proportion of genetic 

variation due to additive genetic variation is captured. Thus, there is a distinction 

between the two values, H2 and h2. In practice, h2 can be a more useful measure for 

selection of animal or plant characteristics, because the additive genetic variation 

commonly responds to artificial selection. Moreover, the resemblance between 

relatives is largely driven by additive genetic variance.  
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Twins are a valuable resource for genetic studies in which the relative contribution of 

genetic background and environment is being investigated. Twins offer unique 

opportunities for studies beyond the analysis of phenotypic heritability (van Dongen 

et al. 2012). For example, comparison of discordant monozygotic (MZ) twins to 

search for disease-associated biological markers provides unique insight, since MZ 

twins are perfectly matched from a genetic perspective, apart from potential 

differences in DNA methylation patterns and accumulation of somatic mutations 

during a person’s lifetime. Research aimed at testing the role of environmental 

conditions on the risk of a disease are usually susceptible to confounding, which 

hinders causal inference (Galton 1883). Twin studies provide an opportunity to find 

potential risk factors, since genetic variation is so well controlled. Twin research has 

become one of the favourite tools for behavioral geneticists and psychologists to 

estimate the heritability of traits and to quantify the effects either from shared 

environment within a family or individually unique environment on a specific trait. 

 

Family-based genetic studies examining the inheritance patterns of discrete traits 

also have value (as applied in Mendel’s early studies on pea plants). The inheritance 

pattern within pedigrees can often reveal whether a disease is monogenic or 

polygenic. Furthermore, traits that co-segregate with a specific genetic marker allow 

researchers to map, locate, and finally identify the relevant causative mutation. 

Compared with studies of unrelated individuals, studies of extended pedigrees or 

even nuclear families are especially well-suited for investigating the role of rare 

genetic variants that have large effect sizes.  

 

Meanwhile, family studies are also valuable for analysis of polygenic traits. Family 

members share a predictable proportion of their genes ‘identical-by-descent’ 

(Borecki and Province 2008), which can be quantified as a function of the degree of 

their relationship (or ‘kinship coefficient’). In the special case of MZ twins, who have 
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almost zero genetic variation among each other (and therefore a kinship coefficient = 

1), trait variation is attributable to epigenetic phenomena and environmental factors. 

On the other hand, family members are likely to share more homogeneous 

environmental exposures, living closer together geographically, with similar 

socioeconomic status, and perhaps similar health-related living habits such as 

smoking, diet, alcohol intake, and habitual exercise. These similarities can reduce 

residual noise variance, thereby enhancing statistical power to detect relevant causal 

factors. 

 

Finally, genetic studies of families also offer the technical advantage of being able to 

check for genotyping errors. A high rate of Mendelian inconsistencies, or markers 

that show significant deviations from Hardy-Weinberg equilibrium, can be signs of 

genotype error, sample mix-up, or other quality control problems (Borecki and 

Province 2008). 

 

 

1.1.3. Overview of classes of genetic variation 

 

Genetic variation is the difference in DNA sequences between individuals within a 

population, appearing in both germ cells and somatic cells. However, only the 

variation within germ cells is heritable and affects population dynamics, and 

ultimately evolution. Mutation and recombination are the two main sources of 

genetic variation.  

 

Mutations are the original source of genetic variation, and the permanent alternation 

to DNA sequence. De novo (new) mutations occur when there is an error during DNA 

replication, which fails to get fixed by the cell’s DNA repair machinery. If such an error 

gets copied in replication, then it becomes a mutation. Recombination is another 

major source of genetic variation. The recombination process occurs when DNA from 
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both parents is interchanged via the cutting and pasting (‘restriction’ and ‘ligation’) 

of chromosomal segments, when homologous DNA strands align and cross-over. 

Recombination creates a new combination of polymorphisms derived from each 

parent in the germ-cells. 

 

Types of genetic variation are classified by the change in DNA sequence. These types 

include single base-pair substitutions, better known as ‘single nucleotide 

polymorphisms’ (SNPs), insertion or deletion polymorphisms (‘indels’), structural 

variation (SV), and short tandem repeats (STRs; also known as microsatellites). SNPs 

are variations in which a single DNA nucleotide base is substituted by another, e.g. an 

adenine (A) base may replace a cytosine (C). An indel refers to the insertion or 

deletion of a short stretch of DNA sequence that can range from 1 to hundreds of 

bases in length. SV describes the genetic variation that happens on a larger, 

consecutive fragment of DNA sequence. SVs include both copy number variation and 

chromosomal rearrangement events, such as insertion, deletion, inversion and 

duplication. An STR is a DNA motif unit 2-6 base pairs in length that is repeated 

multiple times. Often, the length of a specific STR in the genome is highly variable 

(polymorphic) within a population. Regions of the genome consisting of long 

stretches of repetitive DNA were once considered as “junk DNA”, as their role was 

difficult to define. Estimates suggest that approximate two thirds of the human 

genome is composed of DNA repeats (de Koning et al. 2011). Recent research has 

revealed the functional consequences of repeats include the (direct) generation of 

variability in gene expression, for example by altering transcription factor and 

enhancer binding (Meštrović et al. 2015) as well as the (indirect) regulation of gene 

expression via epigenetic modifications (Lannes et al. 2019). Common elements 

within repetitive segments include both transposable elements and short tandem 

repeats (STRs) (Biscotti et al. 2015), collectively representing a large portion of 

eukaryotic genomes (Charlesworth et al. 1994; López-Flores and Garrido-Ramos 

2012). STRs comprise about 3% of the human genome (Lander et al. 2001). Further 
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information about STRs is presented in section 1.1.3.1. 

 

 

1.1.3.1. Short tandem repeats: origin 

 

Unlike SNPs, STR mutations usually lead to the gain or loss of an entire repeat motif, 

and sometimes even two or more repeats change together. Although the exact 

mechanism underlying such mutations is unclear, one proposed cause is the slippage 

of DNA during replication. A mismatch of the reference DNA strand and the other 

strand replicated during meiosis could cause a different number of copies of the 

repeat unit to be transmitted to germ cells (Tautz and Schlötterer 1994). DNA 

polymerase, the enzyme that reads and replicates DNA, can slip while moving along 

the DNA template strand and then re-start at a new, incorrect position. This form of 

replication mismatch is more likely to occur when a repetitive sequence is read, 

which means a higher error rate for STR replication compared to the replication rate 

elsewhere in the genome. Several studies have assessed the occurrence rate of 

slippage-caused STR mutation; currently, it is estimated to occur about once per 

1,000 meioses (Klintschar et al. 2004; Forster et al. 2015). Thus, the STR mutation 

rate in repetitive DNA is three orders of magnitude more common than single-

nucleotide changes. 

 

 

1.1.3.2. Short tandem repeats: monogenic diseases associated with expansions 

 

Certain STRs appear to be highly unstable, in that the number of repeats can expand 

to remarkably high levels. Currently, 40 inherited human disorders have been found 

to be association with grossly expanded STRs (Paulson 2018a). These disorders 

mostly affect the nervous system; they include Huntingdon’s disease, fragile X 

syndrome, spinocerebellar ataxia, Friedreich’s ataxia, and amyotrophic lateral 
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sclerosis/frontotemporal dementia (Paulson 2018a). Recently, Fuchs endothelial 

corneal dystrophy was found to be causal by expansion of a CTG repeat in the TCF4 

gene (Fautsch et al. 2021). Disease-causing STRs can be located in the coding region 

of genes, the 5’ or 3’ untranslated regions, or in introns.  

 

The high degree of variability in the length of repeat expansions has a major impact 

on disease severity. It also influences whether the disorder follows conventional 

Mendelian rules of inheritance. Traditionally, Mendelian inheritance assumes that 

mutations are fixed, and therefore that there is a clear-cut autosomal dominant, 

autosomal recessive, or X-linked pattern of inheritance within families and across 

generations. STR expanded repeats exhibit dynamic mutation of their length across 

generations, such that these disorders only loosely follow Mendelian rules of 

transmission.  

 

Although STR expansion diseases manifest in a diversity of phenotypes, the 

underlying genetic patterns share general features. For instance, all disease-

associated repeat expansions arise from polymorphic repeats present in the normal 

population. The length of the STR in unaffected individuals varies across a relatively 

narrow scale, which differs from disease to disease. In general, repeats at the high 

end of the normal range are at an increased risk of further (abnormal) expansion 

during transmission to the next generation, with the chance that the expansion 

length moves into the pathogenic range. Therefore, a person can inherit a repeat 

expansion disease even if they have no family history of the disease (so-called 

“sporadic cases”).  

 

 

1.1.3.3. Short tandem repeats: contribution to polygenic traits 

 

As mentioned before, expansions at several dozen STRs have been found to cause 
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Mendelian disorders (Mirkin 2007) such as Huntingdon’s Disease and hereditary 

ataxias. Limited by the power of bioinformatics analysis of repetitive regions, many 

STRs are often precluded from genome wide studies (Li 2014a). Thus, many STRs in 

the human genome, alongside the pathogenic STRs that cause monogenic 

inheritance diseases, are lacking of investigation. However, recent studies are 

increasingly reporting the association of STR polymorphisms with complex traits such 

as gene expression levels (Nasrallah et al. 2012; Gymrek et al. 2016; Quilez et al. 

2016).  

 

 

1.1.3.4. Short tandem repeats: mechanisms of action 

 

STRs may influence gene expression levels through diverse mechanisms (Gemayel et 

al. 2010). STR expansions can be located in both open reading frames (ORFs) and 

promoter regions, through which the phenotypes could be mediated. Variations in 

STR repeat length in coding regions can directly affect protein function, e.g. via 

frameshifts that result in mistranslated, nonfunctional proteins. On the other hand, 

variations in STRs located within promoters can free or block RNA polymerase 

binding sites, resulting in either higher expression or reduced expression. For 

example, the CCG repeat linked with Fragile X Syndrome leads to the disruption of 

DNA methylation, which alters the expression of the FMR1 gene (Liu et al. 2018). 

Dinucleotide repeats may change the affinity of nearby enhancer or repressor 

binding sites (Afek et al. 2014). Furthermore, certain STR repeats may alter the DNA 

or RNA strands into non-canonical secondary structures such as G-quadruplexes 

(Conlon et al. 2016), R-loops (Lin et al. 2010), or Z-DNA (Rothenburg et al. 2001), 

which can also alter transcriptional activity.  

 

STR expansion diseases are often characterized by a genotype-phenotype correlation 

between the repeat length and the severity of signs and symptoms. Longer repeat 
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expansions are usually linked with a more severe disease phenotype and an earlier 

age-of-onset. For at least 10 diseases, including Huntingdon’s disease, spinal and 

bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and seven 

Spinocerebellar ataxias, there is a significant correlation between the CAG motif 

repeat length and disease severity, along with a reverse correlation between the 

repeat length and the age-of-onset of symptoms. Very long repeats usually act as a 

causal variant for earlier disease and more severe signs and symptoms (Doyu et al. 

1992; Igarashi et al. 1992; Andrew et al. 1993; Snell et al. 1993; Stine et al. 1993; 

Illarioshkin et al. 1994; Kawaguchi et al. 1994; Komure et al. 1995; Schöls et al. 1995; 

Penney et al. 1997; Johansson et al. 1998; Rosenblatt et al. 2012; Figueroa et al. 

2017), contributing to 40% to 75% of the effects. The remaining variation in the age-

of-onset is the result of other minor genetic modifiers and environmental factors; 

currently, these factors are poorly understood (Paulson 2018b). 

 

The pathogenic mechanisms underlying repeat expansion diseases can be highly 

diverse depending on the specific mutation. For simplicity, the primary influence is 

often classified as a toxic gain-of-function or deleterious loss-of-function (Table 1.1). 

Relatively few diseases are found with a loss of function mechanism: these disorders 

are inherited in an autosomal recessive manner or an X-linked recessive manner. As a 

contrast, disorders with a toxic gain-of-function mechanism (also known as a 

dominant negative effect) are inherited in an autosomal dominant manner or X-

linked dominant manner (Paulson 2018b). 
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Table 1.1 Primary mechanism of disease (reproduced by published study (Paulson, 

2018b)) 

 

Toxic gain of function 

CAG/polyQ diseases 

Spinocerebellar ataxia types 8, 10, 12, 31, 36 

C9ORF72 frontotemporal dementia/ amyotrophic lateral sclerosis 

Huntington disease-like 2 

Myotonic dystrophy types 1 and 2 

Oculopharyngeal muscular dystrophy 

Fragile X tremor ataxia syndrome 

Fuchs endothelia corneal dystrophy 
 
Loss of function 

Friedreich Ataxia 

Fragile X syndrome 

Myoclonic epilepsy (Unverricht-Lundborg) 
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Approximately six different molecular mechanisms by which STR expansions cause 

disease have been discovered. Certain STRs alter the folding and thus the 

intramolecular structures of DNA or RNA, which can, in turn, affect either 

transcription, translation, or the binding of various RNA binding proteins (Chen et al. 

2017). For example, the GAA repeat that causes Friedreich ataxia produces a DNA-

RNA triplex structure that impedes transcription; this results in a marked reduction in 

the expression of the encoded protein, frataxin. For repeats located within the 

coding sequence of the exome, a trinucleotide repeat expansion can lead to an 

unusually long run of a specific amino acid. Such an STR expansion will have a direct 

influence on the disease. For example, the so-called ‘polyglutamine diseases’ – 

including Huntington’s disease and several types of spinocerebellar ataxia – are 

caused by a repeated expansion of the CAG motif, which codes for the amino acid 

glutamine. Similarly, oculopharyngeal muscular dystrophy (OPMD) is caused by a 

pathogenic protein containing an expanded tract of alanine amino acids, encoded by 

a GCG repeat STR.   

 

The length of STR expansions has a strong correlation with the disease severity and 

age-of-onset. Due to the high probability of slippage events during DNA replication, 

STRs exhibit high variability in their numbers of motif repeats across the population. 

The length range varies widely, for instance lying within the range 8-18 repeats in 

OPMD to more than a thousand repeats in myotonic dystrophy and spinocerebellar 

ataxia. Expansions residing in protein-coding regions usually have shorter lengths, 

probably because of the necessity to encode a functional protein. Any change in the 

STR length would potentially have a direct functional impact on the encoded protein, 

sufficient to create strong pressure for natural selection. In contrast, the STR 

expansions with the largest length are commonly found in introns or untranslated 

regions. These regions are more tolerant of the size of expansions and exhibit a less 

clear-cut correlation between repeat length and disease severity. 
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1.1.4. DNA sequencing and genotyping 

 

1.1.4.1. Whole exome and whole genome sequencing 

 

Whole genome sequencing (WGS) is the process of determining the entire DNA 

sequence of an organism’s genome at a single time. For human beings, WGS is used 

to determine nearly all of the approximately 3 billion nucleotides of an individual’s 

complete DNA sequence, including non-coding sequence. As of 2017, between 4% to 

9% of the human genome had still not been sequenced, mostly due to technical 

difficulty of sequencing these highly repetitive, GC-rich regions. Recently, the 

Telomere-to-Telomere Consortium presented a complete 3.055 billion–base pair 

sequence of a human genome, T2T-CHM13, that included gapless assemblies for all 

chromosomes except chromosome Y (Nurk et al. 2022). Some of the largest 

reference gaps include human satellite, repeat arrays and the short arms of all five 

acrocentric chromosomes, which in GRCh38 are represented as multi-megabase 

stretches of unknown bases. Long-read resequencing studies are now needed to 

identify the polymorphic variation and reveal any potential phenotypic associations 

within these regions. 

 

DNA sequencing techniques have advanced greatly in recent years. These advances 

now make WGS a routine procedure. In the 1970s and 1980s, manual sequence 

tools, such as Maxam-Gilbert sequencing and Sanger sequencing were initially used 

to sequence the whole bacteriophage and animal viral genomes. One could use 

individual Sanger sequencing reactions to cover any desired region, but this testing 

approach can be costly, making it suitable for analysis of just a small subset of genes 

or a gene-specific test. 
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Shotgun sequencing, a later technology for DNA sequencing, firstly successfully 

sequenced almost the entire human genome in 2000. In shotgun sequencing, DNA is 

broken up randomly into many small fragments and read by Sanger sequencing. 

Multiple overlapping fragments are sequenced. Subsequently, a computer program 

joins the fragments into a continuous sequence. Although the technology realized 

the first human genome sequencing, it was still too costly and time-consuming to be 

applied widely. 

 

Since 2005, high-throughput sequencing (or next-generation sequencing, NGS) 

gradually replaced the former tools, due to its high speed and affordable price. These 

technologies use the concept of massively parallel processing, reading 1 million to 43 

billion short reads (50-400 bases each) per instrument run (Mukhopadhyay 2009). 

New high-throughput sequencing technologies have contributed to a significant 

reduction in the cost for sequencing - nearing the mark of $1000 per genome (von 

Bubnoff 2008). NGS with either whole genome (WGS) or whole exome (WES) 

sequencing, is now a standard clinical test for many individuals with suspected 

genetic disorders. 

 

The development of next-generation-sequencing has allowed WGS, WES and the 

analysis of specific candidate genes to be adopted by scientists and clinicians (Pottier 

et al. 2015; Williams et al. 2016; Bonvicini et al. 2019).  As WGS has become more 

affordable, the analysis of STRs has been revolutionized. WGS-based STR detection 

tools, such as tandem repeat finder, can detect novel STRs from assembled genome 

sequences, including the human genome (Gelfand et al. 2007).  New software tools 

and pipelines such as superSTR (Fearnley et al. 2022) can also be directly applied for 

STR profiling in WGS data, making these variants more accessible to study by 

researchers. 

 

Long-read sequencing techniques such as PacBio and Oxford Nanopore sequencing 
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can generate long reads with up to hundreds of thousands of basepairs. Long reads 

can provide better alignment for pathogenic STRs by using information from flanking 

sequences and ensuring that the full-length STR is accessible for analysis. Several 

computation tools have been developed to determine repeat counts based on long-

read sequence data, such as RepeatHMM (Liu et al. 2017), Tandem-genotypes 

(Mitsuhashi et al. 2019), RepLong (Guo et al. 2018), and TRiCoLOR (Bolognini et al. 

2020). Historically, one drawback that has limited the adoption of long-read 

sequencing is the relatively high base-calling error rate (3 to 15%). However, new 

developments have largely overcome this limitation, and long-read sequencing is 

likely to become increasingly popular for genotyping STRs. 

 

 

1.1.4.2. Array-based genotyping 

 

Genotyping arrays, often called SNP arrays, are another efficient high-throughput 

DNA reading technology that originated from the early 2000s. SNP arrays are a 

powerful platform for simultaneously analyzing hundreds of thousands of SNPs. The 

SNP arrays contain immobilized allele-specific oligonucleotide probes, which are 

hybridized with fragmented nucleic acid sequences of target DNA, labelled with 

fluorescent dyes. The hybridization signals will ultimately be detected by an imaging 

system, and decoded to infer the SNP genotype information. In research, SNP arrays 

are most widely used for GWA studies, in which SNP-based genetic analysis can be 

used for disease associated loci mapping to determine the susceptibility genes in 

individuals. 

 

 

1.1.4.3. Genotyping short tandem repeats 

 

Genotyping STRs is challenging. The classic method for genotyping STRs is capillary 
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electrophoresis (CE). In the CE method, DNA molecules migrate through an 

electrolyte solution within a glass capillary under the influence of an electric field. 

DNA molecules are separated according to their ionic mobility. Larger DNA molecules 

move more slowly through the capillary than the smaller DNA fragments. DNA 

samples from patients are mixed with a set of purified DNA fragments of known size 

that serve as size reference markers. The electric fields required for CE are strong 

(e.g. 300 V/cm), which produces much fasters runs for CE compared to gel 

electrophoresis  (Biscotti et al. 2015). The CE technique has very high accuracy but 

because of low throughput, it is limited to relatively small scale studies. 

 

STRs can also be genotyped using data obtaining from standard next-generation DNA 

sequencing - either whole genome sequencing or whole exome sequencing. Until 

recently, this method of STR genotyping has lacked adequate tools (Treangen and 

Salzberg 2011). One major problem is that not all NGS reads that align to an STR are 

informative. For example, only if a single or paired-end sequencing read entirely 

encompasses an STR locus can the read be used for exact STR genotyping. While 

reads partially encompassing an STR do provide information about the minimum 

repeat length, the true length is unknown. Another problem is the difficulty of 

analyzing STRs containing insertions/deletions, while being tolerant of computer 

processing time (Li and Homer 2010). Finally, technical artefacts from the PCR 

amplification process introduce noise into the final length measurements of STRs. 

Because of the repetitive nature of STRs, PCR amplification causes ‘stutter’ noise. 

This artefact is due to successive slippage events of Taq DNA polymerase during 

amplification; some DNA copies will contain a different number of repeats compared 

to the original DNA template.  

 

Five years ago, there was no efficient analysis method available for detecting and 

genotyping novel STRs. Since then, four new methods to detect repeat expansion 

have been introduced: ExpansionHunter (Dolzhenko et al. 2017), exSTRa (Tankard et 
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al. 2018), STRetch (Dashnow et al. 2018), and TREDPARSE (Tang et al. 2017). These 

repeat expansion detection methods all require paired-end sequencing data. 

Between the opposite read pairs, there is typically a stretch of DNA that is not 

sequenced. The key to repeat expansion detection is to assess the lengths of reads 

that partially or entirely encompass an STR.  

 

There are also several software packages designed for genotyping STRs already 

known to exist in specific regions of the genome. These software packages enable 

high-throughput genotyping even in large cohorts, which would not be practical for 

capillary electrophoresis. These packages include: lobSTR (Gymrek et al. 2012), 

HipSTR (Willems et al. 2017) and RepeatSeq (Highnam et al. 2013). The HipSTR 

program is designed to genotype STRs from Illumina sequencing data. It utilises a 

highly flexible realignment framework, effectively mitigating stutter noise from PCR. 

The HipSTR program is designed to genotype population-scale data, which enables 

further GWAS studies of STRs in cohorts. HipSTR displayed good performance in a 

published whole genome sequencing data study (Willems et al. 2017).  

 

The phasing procedure can help to identify alleles on maternal and paternal 

chromosomes. This information is often important for understanding gene 

expression patterns for genetic disease. As an example, for a patient with a recessive 

form of eye disease, if two mutations in the disease gene are identified, then the two 

mutations are likely to be the causal variants of the eye disease if they occur on the 

maternal and paternal chromosomes, respectively. However, the two mutations 

would be excluded as the sole causal variants if they are mapped to the same 

chromosome (i.e. the two mutations are in phase). Therefore, additional information 

about phasing can increase the accuracy of identification of causal variants. 

 

The process of statistically estimating haplotypes from genotype data can be 

performed in HipSTR with population-based genotype data. However, differences in 
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linkage disequilibrium patterns in populations of differing ancestry limits the degree 

of accuracy for phasing. Also, with genotype data, the current methodologies are not 

able to reliably phase small segments under 5cMs. For population-based phasing, a 

false positive rate of over 67% for 2-4 cM segments was reported (Durand et al. 

2014). In the future, datasets generated using long-read sequencing techniques, such 

as PacBio or Nanopore, could be a solution to the limitation of the phasing accuracy.  

 

 

1.1.5. Genetic analysis  

 

1.1.5.1. Identifying monogenic disease genes (linkage analysis and sequencing) 

 

Linkage analysis is the classic method for mapping the genes for heritable traits to 

their chromosomal locations. Linkage analyses are conducted in families, within 

which heritable traits are segregated in pedigrees. The traits can be binary, having 

only two values, such as absence or presence of a disease, or quantitative 

(continuous) such as body mass index. A genetic marker that is located nearby in the 

genome to a mutation or polymorphism that affects a trait or disease will exhibit ‘co-

segregation’ (co-inheritance of the phenotype and marker alleles amongst 

individuals in a pedigree). To carry out a linkage analysis experiment, numerous 

genetic markers located at intervals across the whole genome are genotyped in 

members of the families. These genetic markers can be either STRs or SNPs. Then, a 

statistical test is performed to examine if there is co-segregation of the disease 

phenotypes and marker alleles across generations.  

 

To find the disease locus, linkage analysis determines if affected relatives share a 

DNA segment more often than other segments. The shared segment is more likely to 

harbor the mutated gene. Genetic linkage refers to markers in a segment having a 

lower frequency of recombination (i.e. the two markers are rarely separated to 
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different chromosomes during chromosomal ‘crossing-over’) and thus being more 

likely to be inherited together than predicted by chance. The observed level of co-

segregation in the pedigree at a particular recombination distance is compared to the 

likelihood of random segregation, using a likelihood ratio test. The genetic marker 

locus with the lowest likelihood ratio of recombination is most likely to contain a 

segment segregating with the disease. Linkage analysis can be applied to pedigrees 

enriched with participants affected by a monogenic disease. However, for complex 

traits, linkage analysis has low statistical power to detect polygenic variants. 

 

Another, more comprehensive, tool to identify disease-causing genetic variants is 

DNA sequencing. If every base in a participant’s genome sequence is assessed, then 

every rare mutation they carry could be identified. Thus, genome sequencing is 

applicable to detect rare mutations, such as those causing monogenic disorders. The 

approach has become more popular recently due to technical advances in DNA 

sequencing and drastically reduced cost. Several mutations causing rare, monogenic 

forms of myopia have been identified by whole exome sequencing and whole 

genome sequencing in pedigrees showing monogenic transmission (Guo et al. 2014b; 

Sun et al. 2015; Jin et al. 2017). In WES, only the 1-2% of the human genome that 

codes for proteins is sequenced, which makes the technique more cost effective than 

WGS. However, some disease-causing mutations may be missed by WES if they occur 

outside of exons. 

 

 

1.1.5.2. Genome-wide association studies (GWAS) 

 

Genome-wide association studies involve a systematic search through the genome of 

a large sample of individuals to seek associations between genetic polymorphisms 

and a trait-of-interest. Typically, GWAS focus on associations between SNPs and 

phenotypic traits, but the same approach can also be applied to any other genetic 
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variant type, such as indels, SVs, or STRs. 

 

Human disease GWAS analyses usually adopt the approach known as ‘phenotype-

first’, as opposed to ‘genotype-first’ methodology, i.e. the participants are recruited 

by virtue of their clinical manifestations rather than because they are known to have 

a specific genotype. This method of recruitment is well-suited to a case-control study 

design, in which individuals with the disease (cases) and without the disease 

(controls) are analyzed together. Each participant provides a sample of DNA, and 

millions of genetic variants are read by genetic arrays from these DNA samples. If an 

allele of a specific genetic variant shows a higher frequency in the case group, the 

variant is considered to be associated with the disease or trait. The associated variant 

locations together implicate the gene regions that may influence the risk of disease. 

 

In contrast to methods that focus on a few locations in the genome, GWAS 

investigate the whole human genome. Compared with genetic linkage studies, GWAS 

have a higher statistical power to detect weak genetic effects (Risch and Merikangas 

1996). GWAS have become the dominant tool for genetic studies of polygenic 

diseases, to find a set of genetic variants that together confer susceptibility to the 

disorder (Altmüller et al. 2001). 

 

In a GWA study, a very large number of genetic variants are considered in a GWAS, 

which causes a multiple testing problem. The very high number of statistical tests 

increases the likelihood of erroneous inferences, leading to an inflation of the false 

positive rate, known as a “type 1 error”. Hence, a multiple comparison correction is 

implemented to adjust the level, “alpha” at which a p-value is considered as 

statistically significant. A Bonferroni correction is a popular method for setting the 

threshold p-value for statistical significance; this method sets alpha equal to 0.05/n, 

where n represents the number of genetic variants evaluated in the GWAS. As a 

consequence, if testing 1000 genetic variants, then only p-values below 5E-05 would 
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be considered significant. The family-wise type 1 error rate (FWER) after applying a 

Bonferroni correction will be 0.05, if all of the tests are independent. For a GWAS, 

however, many genetic variants are in linkage disequilibrium. This means that some 

statistical tests will not be independent and lead to a Bonferroni correction being too 

stringent (FWER < 0.05). As a result, Dudbridge and Gusnanto (2008) have 

recommended P < 5E-08 as an appropriate p-value threshold for GWAS analyses that 

test a few million genetic variants. In general, the false discovery rate (FDR) 

(Benjamini and Hochberg 1995) method is not considered sufficiently stringent to be 

applied in GWA studies.  

 

 

1.2. Strabismus 

 

Strabismus is a condition in which the two eyes are not properly aligned and they 

thus exhibit different directions of gaze. One eye typically fixates straight ahead while 

the other eye may be directed inwards or outwards, or more rarely, upwards or 

downwards. The two eyes send different visual images to the brain when one eye is 

out of alignment. For a young child, the brain learns to ignore the image from the 

misaligned eye and just attend to the image from the fixating eye. In consequence, 

the child loses depth perception and the misaligned eye may develop amblyopia 

(Robaei et al. 2006b).  

 

The commonly used classification for strabismus is based on the direction of the 

misaligned eye. The most prevalent type of strabismus is convergent strabismus or 

esotropia, when the deviated eye turns inwards; divergent strabismus or exotropia 

refers to an outward deviation of the strabismic eye. Also, depending on whether the 

degree of deviation varies in different directions of gaze, strabismus can be classified 

into concomitant and incomitant. Patients with concomitant strabismus show the 
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same degree of ocular misalignment in all directions of gaze; for patients with 

incomitant strabismus, the degree of misalignment varies depending on the direction 

of gaze. 

 

 

1.2.1. Epidemiology of strabismus: prevalence studies 

 

Strabismus is one of the most commonly occurring visual disorders in childhood and 

adolescence (Lang 1995). Children affected by strabismus may have reduced 

stereopsis, vision loss and even difficulties in daily life (Satterfield et al. 1993; Sim et 

al. 2014; Hatt et al. 2016). The prevalence rate of strabismus in children ranges 

between 2% to 6% (McKean-Cowdin et al. 2013; Hashemi et al. 2015; Griffith et al. 

2016; Schuster et al. 2017). Risk factors for strabismus vary depending on the type. 

Esotropia in childhood is associated with hyperopia and anisometropia; exotropia 

happens more often in patients with myopia, astigmatism and aniso-astigmatism 

(Cotter et al. 2011). Other risk factors like prematurity, low birth weight, and smoking 

during pregnancy are linked to strabismus in childhood, as well (Cotter et al. 2011; 

Fieß et al. 2017; Schuster et al. 2017).  

 

 

1.2.2. Epidemiology of strabismus: environmental risk factors 

 

Environmental risk factors also play a role in strabismus development. Comparison 

between dizygotic twin (DZ) and first-degree relatives revealed different concordance 

ratios, supporting a role for environmental factors (Wilmer and Backus 2009). (Both 

DZ twins and first-degree relatives share the same proportion of genetic inheritance, 

whereas DZ twins typically have a higher degree of shared environment, especially 

prenatally). Thus, environmental effects potentially explain the greater resemblance 

of strabismus among DZ twins than first-degree relatives. Although genetic liability is 
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fundamental to the development of strabismus, other studies have highlighted other 

environmental risk factors for strabismus, such as low birth weight, prematurity, 

maternal smoking, and paternal lead exposure (Hakim et al. 1991; Chew et al. 1994; 

Bremer et al. 1998; Matsuo et al. 2001; Robaei et al. 2006a; Ponsonby et al. 2007). It 

is also possible that gene-environment interaction contributes to the development of 

strabismus. 

 

Studies of children with strabismus and their mothers enrolled in the Collaborative 

Perinatal Project revealed that advanced maternal age, cigarette smoking during 

pregnancy, and low birth weight (<1500g) contribute to the risk of strabismus (Chew 

et al. 1994). However, even after accounting for these risk factors, the heritability of 

concomitant strabismus remained significant  (Chew et al. 1995). In a critical review 

and meta-analysis of strabismus twin studies, Wilmer and Backus (2009) found 

compelling evidence for a strong genetic influence, but no evidence that 

environmental factors cause strabismus independently. However, in studies of DZ and 

MZ twins, Sanfilippo et al. (2012) reported that genetic factors play a major role in 

eso-deviation strabismus but a lesser role in exo-deviations. Thus, current evidence 

suggests that the genetic and environmental contribution to strabismus may be 

specific to the type of deviation. 

 

1.2.3. Genetics of strabismus 

 

Evidence from twin studies support a role for genetics in the aetiology of 

concomitant strabismus. The concordance rate for strabismus among monozygotic 

twins is between 73% to 83%, while the rate among dizygotic twins is between 35% 

to 47% (Paul and Hardage 1994; Matsuo et al. 2002). Family studies have shown that 

strabismus is associated with a history of parental strabismus (Chen et al. 2020) and 

have reported a high recurrence risk (‘risk ratio’) among first-degree relatives of a 

proband with strabismus (Paul and Hardage 1994; Podgor et al. 1996; Parikh et al. 
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2003). 

 

In the study in a large twin population (1,462 pairs) with clinical data, the heritability 

of concomitant eso-deviation was estimated to be 64%, yet the heritability for exo-

deviation was not significantly different from zero (Sanfilippo et al. 2012). The study 

by Sanfilippo et al. also examined the genetic correlation between strabismus and 

refractive error. The addictive genetic correlation for eso-deviation and refractive 

error was 0.13 and the shared variance was less than 1%, suggesting negligible 

shared genetic effect  (Sanfilippo et al. 2012). 

 

 

1.2.3.1. Genes causing monogenic strabismus 

 

The first genetic locus associated with concomitant strabismus was identified in a 

linkage study in 2003 (Parikh et al. 2003). The locus was mapped to chromosome 

7p22.1. In 2006, a study examining pedigrees with strabismus syndromes led to the 

discovery of several candidate gene mutations. These mutated genes played a role in 

regulating brainstem ocular motoneurons (Engle 2006). Genome-wide screening of 

non-syndromic strabismus in pedigrees with many affected individuals revealed three 

susceptibility loci (7p22.1, 4q28.3 and 7q31.2) (Parikh et al. 2003; Shaaban et al. 

2009). 

 

 

1.2.3.2. Genetic variants associated with strabismus 

 

Large scale GWA studies have also found genetic variants associated with strabismus. 

A GWAS study with 1345 cases with self-reported strabismus and 65,349 controls, 

identified a locus on chromosome 17 harboring the genes NPLOC4, TSPAN10 and 

PDE6G. Approximately 20 genetic variants in strong linkage disequilibrium were 



26 

 

associated with the phenotype, including 2 candidate causative variants with 

predictive functional effects (rs6420484 and rs397693108) (Plotnikov et al. 2019). In 

a separate study, a SNP located within intron 1 of the WRB (tryptophan rich basic 

protein) gene was found to be strongly associated with esotropia (rs2244352) 

(Shaaban et al. 2018).  

 

 

1.3. Refractive error 

 

1.3.1. Myopia, hyperopia and astigmatism 

 

Myopia, hyperopia, and astigmatism are three prevalent conditions which affect 

visual acuity. There has been a rapid increase in the prevalence of myopia in recent 

decades, especially in East Asia, which has evoked worldwide attention. Researchers 

are trying to find the causes of myopia and to slow down the speed of its increasing 

prevalence.  

 

For many years, myopia was recognized as a highly heritable trait. Nevertheless, only 

recently has significant progress been made in identifying genetic variants associated 

with refractive error  (Tedja et al. 2019). The rapid increase in the prevalence of 

myopia over the last 30 years implies that the trait is determined not only by genetics 

effects, but also by environmental or lifestyle factors. Like many other complex traits, 

common myopia has a complex aetiology that is influenced by an interplay of genetic 

and environmental factors (Stambolian 2013). 

 

Myopia, or nearsightedness, is a common vision condition in which nearby objects 

can be seen clearly, but objects farther away are blurry. It occurs when the shape of 

the eyeball changes, usually due to an increase in the eye’s axial length. This causes 
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light rays entering the eye to be focused in front of the retina, rather than onto the 

retina. Myopia is commonly defined as a spherical equivalent (SE) refraction of -0.50 

diopter (D) or worse. High myopia is usually defined as an SE of less than -6.0 D or an 

axial length more than 26.0 mm. Myopia - and especially high myopia - is a risk factor 

for various ocular diseases, including retinal detachment, glaucoma, and cataract 

(Saw et al. 2005). On the contrary, hyperopia, or farsightedness, is another common 

vision condition, in which distant objects can be seen clearly, but objects nearby are 

blurry. In hyperopia, light rays focus behind the retina, typically because the axial 

length of the eye is too short in comparison to the eye’s focal length.  

 

Astigmatism is another type of refractive error in which refract light rays do not focus 

evenly on the retina, because of a variation of optical power of the eye for light 

orientated in different directions. Although astigmatism symptoms may be benign, 

higher degrees of astigmatism in infancy are a risk factor for the development of 

amblyopia (Brown et al. 2000; Abrahamsson and Sjöstrand 2003). Furthermore, 

some associations have also been noted between astigmatism and the development 

of myopia (Fulton et al. 1982; Gwiazda et al. 2000). 

 

Numerous reports have highlighted the link between astigmatism and the 

development of myopia in children. A connection was found between spherical 

equivalent and cylindrical refractive error from the association of juvenile-onset 

myopia with against-the-rule astigmatism (Gwiazda et al. 1993). In a longitudinal 

study, infants who had against-the-rule astigmatism had an earlier onset of myopia 

than infants with either with-the-rule or no astigmatism (Gwiazda et al. 1993). 

Against-the-rule astigmatism in 5- and 6-year-old children was also found to be 

predictive of later development of myopia by Hirsch (Hirsch 1964), and with faster 

progression of existing myopia (Grosvenor et al. 1987). In a study of 217 myopic 

individuals with spherical refractive error of at least -5D or greater in one eye, a 

moderate correlation was found between the degree of spherical equivalent and 
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cylinder power (r = -0.34, p < 0.0001) (Heidary et al. 2005) However, high myopia was 

identified as a risk factor for the presence of astigmatism, suggesting the direction of 

causality was unclear (Heidary et al. 2005). 

 

1.3.2. Epidemiology of myopia: prevalence studies 

 

Myopia has become a global public health concern, which affects over 20% of the 

world’s population (Fricke et al. 2018). Myopia increases the risk of serious disorders 

such as myopic macular degeneration, retinal detachment, glaucoma, and cataract, 

and is a leading cause of visual impairment and blindness across many countries 

(Holden et al. 2014). Furthermore, high myopia is emerging as the major cause of 

blindness in working age individuals of some Asian countries  (Iwase et al. 2006; Wu 

et al. 2011). Recent years have witnessed a surge in cases of myopia worldwide, 

especially in East Asia (Li et al. 2017), where about 80% of middle school and high 

school students have myopia (Li et al. 2017). If the current trend maintains its 

present rate, around 50% of the world will have myopia by the year 2050 (Holden et 

al. 2016). As announced by the World Health Organization (WHO) in 2012 (Fricke et 

al. 2012), uncorrected refractive error has a substantial economic impact estimated 

to be an annual loss of about 202 billion US dollars globally (Fricke et al. 2012). 

Nowadays, myopia has gained significant attention worldwide, whereas it was once 

considered as a benign refractive condition. 

 

The highest prevalence rates of myopia are in East and South East Asia, such as in 

schoolchildren in Singapore, mainland China, Taiwan and South Korea (Xiang et al. 

2013; Ding et al. 2017). The myopia prevalence was 65.5% in a group of third year 

junior high school students (aged 14-15 years, mean 15.25±0.46 years) in Beijing (Li 

et al. 2017). In South Korea, about 73.0% of children between 12-18 years old are 

estimated to be affected by myopia (Rim et al. 2016). In Europe, the prevalence rate 

is lower. One of the largest European studies conducted to date revealed the 
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prevalence rate was 42.7% in a French cohort aged 10 to 19 (Matamoros et al. 2015). 

In the United Kingdom, the prevalence rate is approximately 2% in 6-7-year-olds and 

15% in 12-13-year-olds. The lowest prevalence rate has been found in Africa, where 

in one study published in 2003, only 4% of 5-to-15-year-olds were myopic (Naidoo et 

al. 2003). 

 

Multi-ethnicity studies have found a different prevalence of myopia among various 

ethnic groups. Individuals of Chinese ethnicity typically have the highest prevalence 

rate for myopia. For instance, in Singapore, individuals of Chinese ethnicity had a 

higher odds ratio for myopia and high myopia versus individuals of Malay and Indian 

ethnicity (Pan et al. 2013). A study from Australia found 39.5% of East Asian children 

had myopia, which was much higher than that of European children (4.6%) and 

Middle Eastern children (6.1%) (Ip et al. 2008). Also, in United States, the highest 

myopia prevalence rate (18.5%) was found among Asians, followed by Hispanics 

(13.2%) and Africans (6.6%), while white Americans (4.4%) had the lowest myopia 

rate (Kleinstein et al. 2003). 

 

The primary reason cited for the increase in myopia prevalence in East and Southeast 

Asia over recent decades is increased educational pressure (Baird et al. 2020; Morgan 

et al. 2021). Genetic variants associated with refractive error are largely shared 

across European and East Asian individuals (Tedja et al. 2018a), however schooling is 

often more intensive and extra-curricular evening classes are more common in 

countries such as China, Singapore and Hong Kong compared to the West. Children in 

East and Southeast Asia also spend limited time outdoors, compared to children in 

Europe and the United States, with reduced exposure to high light intensities from 

sunlight and far-distance vision (Morgan et al. 2021).  

 

1.3.3. Epidemiology of myopia: environmental risk factors 
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The level of education attainment is an important environmental risk factor for 

myopia. An association between myopia and education attainment was first found in 

the early 1900’s (Harman 1913). Later, numerous studies investigated the association 

of educational and myopia development. Strong associations between educational 

exposure and myopia have been found in epidemiological studies, showing a higher 

prevalence rate of myopia among individuals holding a university degree compared 

to those only completing a secondary or primary school education(Au Eong et al. 

1993; Cumberland et al. 2015). Through the Mendelian randomization (MR) 

approach, studies suggested there is a causal relationship between years of schooling 

and myopia (Cuellar-Partida et al. 2016; Mountjoy et al. 2018).  

 

Near work is another environment factor investigated in myopia studies. The term 

near work refers to the activities performed at a short distance, such as reading, 

writing, watching TV, and playing video games (Mutti et al. 2002). More near work 

exposure was found to be associated with a higher prevalence of myopia in children 

(Guo et al. 2016). Another study in adults revealed that prolonged near work was 

associated with myopia development and axial elongation (Woodman et al. 2011). 

 

Time spent outdoors or outdoor activity has been regarded as an important factor for 

myopia control. In 12-year-old children, students with higher levels of outdoor 

activities (sport and leisure activities) had more hyperopic refractions and a lower 

myopia prevalence (Rose et al. 2008). A study in China recruited 1,903 primary 

school students for a cluster randomized ‘intervention-control’ study. Students in the 

intervention group were given an addition 40 minutes outdoor activity per school 

day. This intervention caused a significant reduction in the cumulative myopia 

incidence rate between the intervention group and the control group (30.4% vs. 

39.5%, respectively, p<0.001) over the next three years (He et al. 2015). There are 

several theories concerning the mechanism underlying the protective effects of 

outdoor activities on myopia development, but to date the true mechanism remains 
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unknown. 

 

The association of refractive errors with working distances was also investigated. 

Hartwig et al. (2011) hypothesized that head and eye movements were different 

between myopes and non-myopes while doing near work, and measured the 

horizontal and vertical amplitude of eye movements and head movements while 

subjects performed three near tasks. No significant difference in the eye movement 

or head movement was found in the same task between myopes and emmetropes 

(Hartwig et al. 2011).   

 

Few studies have addressed the association between myopia and near-working 

distance compared to its association with the duration of near work  (Saw et al. 2002; 

Lu et al. 2009; Huang et al. 2015; Philipp et al. 2022). Those studies that have been 

performed have mainly relied on self-reported working distance (Wu et al. 2015), 

which may have reduced the statistical power to detect any association. 

 

1.3.4. Genetics of myopia 

 

1.3.4.1. Genes causing monogenic high myopia 

 

To date, 26 myopia loci have been discovered via linkage analyses, and numerous 

candidate genes inside the linkage regions have been analyzed. Of these 26 loci, 23 

are found on autosomal chromosomes, and the other 3 on the X-chromosome (Table 

1.2) (Cai et al. 2019; Ouyang et al. 2019).  
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Locus OMIM Location Inheritance Related gene Myopia severity References Causality 

MYP1 310460 Xq28 X-linked OPN1LW 

−6 to −23 D 

(mean, −8.48 D) 

(Guo et al. 2010); 

(Ratnamala et al. 

2011); (Orosz et al. 

2017) 
 

Not confirmed.  

MYP2 160700 18p11.31 AD TGIF −6 to −21 D (Young et al. 1998b) Controversial. 

MYP3 603221 12q21-q23 AD 
DCN, LUM, 

DSPG3 
−6.25 to −15 D 

(Young et al. 1998a); 

(Wang et al. 2017); 

(Okui et al. 2016); 

(Park et al. 2013) 

 
 

Controversial. 

MYP6 608908 22q13 AD SCO2 

no less than  

−1.00 D 

(Stambolian et al. 

2004); (Tran-Viet et 

al. 2013) 
 

Controversial. 

MYP7 609256 11p13 Multifactorial PAX6 −12.12 to +7.25 D 
(Hammond et al. 

2004) 
Not confirmed. 
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MYP17, 

MYP4 
608367 7p15, 7q36 AD VIPR2 > -6 D 

(Naiglin et al. 2002); 

(Paget et al. 2008); 

(Klein et al. 2007);  

(Ciner et al. 2008) 
 

Not confirmed. 

MYP21 614167 1p22.2 AD ZNF644 
−6.27 to −20 D;  

> -6 D 

(Shi et al. 

2011a);(Tran-Viet et 

al. 2012) 

Replicated. 

MYP23 615431 4p16.3 AR LRPAP1 > -17 D 
(Aldahmesh et al. 

2013) 
Replicated. 

MYP5 608474 17q21-q22 AD COL1A1, CHAD 

−5.5 to −50 D 

(mean, −13.93 D) 
(Paluru et al. 2003a) Not confirmed.  

MYP8 609257 3q26 Multifactorial NR −12.12 to +7.26 D 
(Hammond et al. 

2004) 
Not confirmed. 

MYP9 609258 4q12 Multifactorial NR −12.12 to +7.27 D 
(Hammond et al. 

2004) 
Not confirmed. 

MYP10 609259 8p23 Multifactorial NR −12.12 to +7.28 D 
(Hammond et al. 

2004) 
Not confirmed. 
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MYP12 609995 2q37.1 AD SAG, DGKD −7.25 to −27 D (Paluru et al. 2005) Not confirmed. 

MYP14 610320 1q36 NR NR −3.46 D (mean) 
(Hammond et al. 

2004) 
Not confirmed. 

MYP15 612717 10q21.1 AD CDH15, ZWINT -7 D (mean) 
(Nallasamy et al. 

2007) 
Not confirmed. 

MYP11 609994 4q22-q27 AD RRH −5 to −20 D (Zhang et al. 2005) Not confirmed. 

MYP13 300613 Xq23-q27.2 X-linked NR 
−6 to −20 D;  

< -7 D 

(Zhang et al. 2006); 

(Zhang et al. 2007) 
Not confirmed. 

MYP16 612554 
5p15.33-

p15.2 
AD NR > -6 D 

(Lam et al. 2008a); 

(Lam et al. 2008b) 
Not confirmed. 

MYP18 255500 
14q22.1-

q24.2 
AR NR > -6 D (Yang et al. 2009) Not confirmed. 

MYP19 613969 
5p15.1-

p13.3 
AD 

CDH6, CDH10, 

CDH12, PDZD2, 

GOLPH3 

< -6 D (Ma et al. 2010) Not confirmed. 

MYP20 614166 13q12.12 AD 
MIPEP, 

C1QTNF9B-AS1, 

 

< -6 D 
(Shi et al. 2011b) Not confirmed. 
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C1QTNF9B 

MYP22 615420 4q35.1 AD CCDC111 < -6 D (Zhao et al. 2013) Controversial. 

MYP24 615946 12q13.3 AD SLC39A5 < -6 D (Guo et al. 2014a) Replicated. 

MYP25 617238 5q31.1 AD P4HA2 −6 to −20 D (Guo et al. 2015) Replicated. 

MYP26 301010 Xq13.1 X-linked ARR3 > -6 D (Xiao et al. 2016) Not confirmed.  

MYP27 606027 8q24.3 AD CPSF1 < -6 D (Ouyang et al. 2019) Not confirmed. 
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The first genetic locus linked with myopia was reported in 1990 from the study of a 

family affected with Bornholm Eye Disease, and the genetic locus was named 

“MYP1” (Schwartz et al. 1990). Other studies of pedigrees affected by the syndrome 

have confirmed linkage to the MYP1 locus (Guo et al. 2010). Ratnamala et al. (2011) 

demonstrated X-linked recessive inheritance at the MYP1 locus in a pedigree with 

non-syndromic high myopia. Recently, mutations in OPA1LW were reported to be 

responsible for Bornholm Eye Disease, as well as the form of non-syndromic high 

myopia that mapped to MYP1 (Orosz et al. 2017). In 1998, Young et al. (1998b) 

identified the MYP2 locus with an autosomal dominant pattern of high myopia via a 

pedigree study. MYP3 was found in a large family of Greek/Italian ancestry with 

autosomal dominant pattern (Young et al. 1998a). Decorin (DCN), Lumican (LUM) and 

Dermatan sulfate proteoglycan-3 (DSPG3) were identified as candidate genes; these 

genes code for proteoglycans that play a role in the extracellular matrix organization 

of the sclera. However, the LUM gene was demonstrated not to be associated with 

myopia in genetic analyses of the Korean, Japanese and Chinese population samples 

(Park et al. 2013; Okui et al. 2016; Wang et al. 2017). 

 

A study of American families of Ashkenazi Jewish descent identified the MYP6 locus 

on 22q12 (Stambolian et al. 2004). In 2013, Tran-Viet et al. (2013) found the SCO2 

gene to be the disease-causing gene at the MYP6 locus . A twin study in 506 DZ and 

MZ twin pairs was conducted to assess the heritability of refractive error, and a 

genome-wide linkage scan was performed in 221 DZ twin pairs (Hammond et al. 

2004). Four novel loci were reported in this study, MYP7-MYP10. A regression-based 

quantitative trait loci (QTL) linkage study in Ashkenazi Jewish families identified a 

novel locus, designated MYP14, on chromosome 1p36 (Wojciechowski et al. 2006). A 

genome-wide scan for high myopia in 23 families identified the MYP4 locus on 

chromosome 7q36 (Naiglin et al. 2002). Paget et al. (2008) found no linkage to 

chromosome 7p36 in a follow-up linkage analysis. However, a non-parametric model 
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suggested significant linkage to nearby 7p15. Later studies also found the loci re-

mapped to 7p15 (Klein et al. 2007; Ciner et al. 2008), so the MYP4 name was 

replaced by MYP17. 

 

Paluru et al. (2003a) identified the MYP5 locus on chromosome 17q21-q22 in a 

multigenerational large English/Canadian family with familial high myopia. 

Chondroadherin (CHAD) and the extracellular matrix protein COL1A1 were proposed 

as candidate genes: the latter gene regulates the process of collagen fibril assembly 

and affects numerous tissues, including the sclera. The MYP12 locus on chromosome 

2q37.1 was identified in an American family of European ancestry. Candidate genes 

were sequenced but no causative mutations were found (Paluru et al. 2005). Linkage 

analysis of high myopia in a large Hutterite family from South Dakota, identified the 

MYP15 on chromosome 10q21.1 (Nallasamy et al. 2007). 

 

The majority of the loci associated with monogenic forms of myopia listed in Table 

1.2 have an autosomal dominant inheritance pattern, except for MYP18, MYP23, and 

MYP26. Yang et al. identified an autosomal recessive locus for high myopia on 

chromosome 14q22.1-q24.1 (MYP18). The causal gene was not found (Yang et al. 

2009). The MYP23 locus, which was mapped to chromosome 4p16.3, was associated 

with non-syndromic high myopia. Exome sequencing revealed LRPAP1 as the 

causative gene (Aldahmesh et al. 2013). Xiao et al. (2016) reported the MYP26 locus 

on chromosome Xq13.1 after studying 3 Chinese families affected with female-

limited early-onset high myopia. A heterozygous mutation in ARR3 was identified as 

being responsible for this form of X-linked, female-limited high myopia.  

 

The most recent discovery of a locus for non-syndromic high myopia was in 2019, 

when a mutation in the CPSF1 gene was reported to cause early-onset high myopia 

(MYP27) (Ouyang et al. 2019). 
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1.3.4.2. Genetic variants associated with refractive error and myopia 

 

GWA studies have been conducted for myopia to identify genetic variants associated 

with the phenotype. A common design of GWAS for myopia is the case-control study 

design, i.e. a binary trait classification of cases with myopia vs. non-myopic controls. 

A GWAS using a two-stage case-control design was conducted for pathological 

myopia in Japanese participants (Nakanishi et al. 2009). In the first stage, 411,777 

SNPs were evaluated in a GWAS with 297 high myopia cases and 934 controls. In the 

second stage, 22 SNPs with a P-value smaller than 0.0001 in the first stage were 

tested for association in a replication sample of 533 cases and 977 controls. Finally, 

SNP rs577948 was found to be associated with high myopia (p = 2.22E-7, OR =1.37, 

95% CI 1.21-1.54). The SNP is located at chromosome 11q24.1, nearby two candidate 

genes, BLID and LOC399959. The two genes are situated within 200-kb of rs577948, 

and both were demonstrated to be expressed in human retinal tissue. 

 

In a study of 520 cases with high myopia and 520 controls in Japan, 39 SNPs located 

on 21q22.3, which were previously reported to be associated with high myopia, were 

tested using a chi-squared test and Fisher’s exact test (Nishizaki et al. 2009). One SNP 

(rs2839471) located within the UMOLD1 gene was significantly associated with the 

disease. 

 

In a meta-analysis of two GWA datasets in Singaporean Chinese participants and a 

follow-up replication cohort from Japan, two SNPs (rs12716080 and rs6885224) in 

the gene CTNND2 on chromosome 5p15 were found to be associated with high 

myopia (Li et al. 2011). Variant rs6885224 was found to be significantly associated 

with high myopia in an independent replication sample.  
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Another study design is to use refractive error as a continuous trait and to search for 

associated genetic variants. Two separate GWA studies conducted in Europe (Hysi et 

al. 2010; Solouki et al. 2010) found two associated loci for myopia on chromosome 

15q14 and 15q25, near the GJD2 gene and the RASGFR1 gene. In 2010, the 

Consortium for Refractive Error and Myopia (CREAM) was established. In 2013, the 

CREAM consortium conducted a genome-wide meta-analysis of 37,382 individuals 

from 27 studies of European ancestry, and 8,376 individuals from 5 Asian cohorts. A 

total of 16 novel associated loci for refractive error were identified, in addition to the 

GJD2 gene and RASGFR1 gene variants (Verhoeven et al. 2013b).  

 

A GWA study performed by the personal genomics company 23andMe Inc., analyzed 

data for 45,771 individuals of European ancestry (Kiefer et al. 2013). A survival 

analysis for age-of-onset of myopia identified 22 significant associations (p < 5E-08), 

including 20 novel discoveries. Ten of the 20 novel associations were replicated in a 

separate cohort of 8,323 participants that reported whether their age-of-onset of 

myopia was before 10 years or not. These 22 associations in total explained 2.9% of 

the variance in myopia age-of-onset. It should be noted that the ethics of direct-to-

consumer genetic testing, as offered by 23andMe, has been questioned (Hsu et al. 

2009). 

 

Recently, in a meta-analysis of GWAS involving 542,934 individuals of European 

ancestry, 904 independent SNPs were found significantly associated with refractive 

error. This work identified 336 novel genetic loci (Hysi et al. 2020). 

 

Other ocular phenotypes related to myopia have also been studied using the GWAS 

approach, including GWAS for corneal and refractive astigmatism (Shah et al. 2018), 

ocular axial length (Fan et al. 2012; Cheng et al. 2013), and macular thickness 
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(Hosoda et al. 2018; Gao et al. 2019). 

 

 

1.3.5. Pathological complications of myopia 

 

Myopia is associated with complications that can lead to irreversible visual 

impairment later in life. Complications including myopic macular degeneration 

(MMD), retinal detachment (RD), cataract, and glaucoma have been found to be 

association with myopia (Ohno-Matsui et al. 2016).  

 

For myopes, especially people suffering from high myopia, MMD is the most 

common detrimental complication. MMD includes pathological features such as 

lacquer cracks, Fuchs spot, choroidal neovascularization (CNV), and chorioretinal 

atrophy (Ohno-Matsui et al. 2015). RD is one of the most sight-threatening peripheral 

retinal lesions in high myopes (Lam et al. 2005; Verhoeven et al. 2015), alongside 

other features including pigmentary degeneration and paving stone degeneration 

(Lam et al. 2005; Verhoeven et al. 2015). 

 

High myopia (HM) (defined as a spherical equivalent less than -6.0 D or an axial 

length more than 26.0 mm). An earlier age-of-onset of myopia (Jensen 1995; Chua et 

al. 2016; Hu et al. 2020) and a higher baseline spherical equivalent (SE) refractive 

error in childhood (Gwiazda et al. 2007) are highlighted to be predictive of HM later 

in life. The Singapore Cohort Of the Risk factors for Myopia (SCORM) study has found, 

among 11 years old children, the age-of-onset of myopia and the duration of myopia 

are the most important predictive factors for HM in later childhood (Chua et al. 

2016). In the SCORM study, astigmatism was not identified as a risk factor for the 

severity of myopia later in life among myopic children. Another study in Denmark 

showed similar results, where those with a younger age-of-onset of myopia (9-12 
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years as baseline) were more likely to develop HM after 8 years of follow-up (17-20 

years old) (Jensen 1995). 
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Chapter 2. Methods 
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2.1. UK Biobank 

UK Biobank recruited over 500,000 participants aged 40-69 years during 2006-2010, 

with the aim of performing a detailed investigation of the genetic and nongenetic 

factors contributing to the diseases of middle-aged and elderly people (Sudlow et al., 

2015). Prospective participants were invited to attend an assessment, where they 

completed an automated questionnaire and were interviewed about lifestyle, dietary 

habits, and medical history; basic traits such as weight, height, and blood pressure 

were measured; and blood, urine, and saliva samples were collected. DNA and other 

metabolites were extracted from these samples. Genome-wide array-based 

genotyping and whole exome sequencing were carried out. An eye and vision 

component was introduced into the UK Biobank baseline assessment visit beginning 

in 2009; this was towards the end of the recruitment period of 2006-2010. In total, 

117,649 people took part in the eye and vision assessment. The eye and vision tests 

comprised of a modified logMAR visual acuity test on a computerized system, 

autorefraction and keratometry (Tomey RC-5000), as well as measurements of 

intraocular pressure, corneal hysteresis and corneal resistance factor (Reichert ORA 

Ocular Response Analyser). Colour retinal fundus photography, together with 

spectral domain optical coherence tomography (SD-OCT) in both eyes, were 

undertaken within a smaller group (Topcon 3D OCT-1000 Mark II) (68,151).  

 

The UK Biobank obtained ethics approval from the North West Multi-centre Research 

Ethics Committee (Reference No. 06/MRE08/65) and complied with the principles of 

the Declaration of Helsinki. All participants provided informed written (digital) 

consents.  

 

UK Biobank is one of the largest and most inclusive population cohort studies 

globally. As an easily accessible database of deep phenotypic, genomic, imaging, and 
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health outcomes, UK Biobank provides excellent opportunities for eye and vision 

studies (Chua et al., 2019). The large sample size and standardized measurements 

permit researchers to detect and quantify small effects. However, some features of 

the UK Biobank may serve as limitations. For instance, the fact that many disease 

statuses were self-reported by participants could introduce inaccurate classification 

error (Shweikh et al., 2015). Meanwhile, the participants in the UK Biobank study 

were more likely to live in socioeconomically advantaged regions, where people have 

better educational level, are less likely to experience tobacco or alcohol addictions, 

and have lower obesity rates (Fry et al., 2017). The studies are, therefore, not fully 

representative of the general UK population. Furthermore, the response rate of the 

UK Biobank was only 5.5%, which confirms its limited external validity. With respect 

to certain diseases, this could have resulted in under-ascertainment (Shweikh et al., 

2015). 

 

 

2.1.1. Phenotypes in UK Biobank: Eye and Vision-related Data 

 

Moorfields Eye Hospital and the UCL Institute of Ophthalmology in London 

developed the eye and vision module. The data collection procedure for the eye 

examinations received core funding from the Wellcome Trust, The Medical Research 

Council and The Department of Health. Valid eye data from 117,649 participants 

were available within UK Biobank. The longitudinal design of the study and the 

accessible link to other UK Biobank data make it one of the most valuable resources 

for ophthalmology research in the UK. 

 

Non-cycloplegic refractive error was carried out by using the Tomey RC 5000 

autorefractor (Tomey Corp., Nagoya, Japan). The autorefractor recorded up to ten 

refractive error measurements for each eye, along with a reliability score, ranging 
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from 0 to 9 (smaller scores mean more reliable measurements). Scores of ≤4 were 

considered reliable. The average of all available reliable scores was calculated as the 

final refractive error of that eye. 

 

Spherical equivalent refractive error was calculated as sphere power plus half the 

cylinder power. The refractive error of an individual was taken as the average 

spherical equivalent of the two eyes (Tedja et al. 2018b). The threshold for myopia 

was set as a spherical equivalent refractive error ≤ − 0.50 diopters (D). Refractive 

astigmatism was taken as the average cylinder power between the two eyes. The 

status of individuals with and without astigmatism ≥ 1.00 D was recorded as a binary 

variable (Shah et al. 2018). Anisometropia was calculated as the difference in 

spherical equivalent between the two eyes. The status of individuals with and 

without anisometropia ≥ 1.00 D was recorded as a binary variable (Qin et al. 2005). 

 

The type of strabismus, for instance esotropia and exotropia, was not ascertained 

through the data assessment procedure, so the ‘self-reported’ strabismus 

information for UK Biobank participants consisted of all plausible subtypes of 

strabismus. Similarly, information about strabismus surgery during childhood was not 

available due to the lack of collection for medical records on hospital in-patient 

operations until April 1997. In addition, patients who had strabismus, but did not 

require any prescription glasses or contact lenses because of the mildness of 

condition, would have been classified into ‘control’ group instead of ‘case’ group for 

the self-reported strabismus. 

 

A positive angle Kappa can lead to a misdiagnosis of convergent strabismus in clinical 

studies. However, in the UK Biobank study, strabismus status was based on 

participant self-report. Therefore, angle Kappa is a less likely to bias the diagnosis of 

strabismus in the current work. 
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2.1.2. Genetic Data in UK Biobank 

 

Whole-exome sequencing data facilitate the direct assessment of protein-altering 

variants. Such variants are more likely to have functional effects and therefore can be 

more readily interpreted than non-coding variants. Thus, analysis of WES data 

increases the likelihood of identifying pathways, disease mechanism, and has the 

potential to be used in therapeutic target discovery and validation (Cohen et al. 

2006; Scott et al. 2016; Dewey et al. 2017; Abul-Husn et al. 2018) and in precision 

medicine (Abul-Husn et al. 2016).  

 

The UK Biobank released WES data for 200,000 participants, which included 1,135 

parent-offspring pairs, 3,855 full-sibling pairs, including 101 trios, 27 monozygotic 

twin pair and 7,461 second degree genetically determined relationships. In March 

2019, the first release of WES data for 50,000 UK Biobank participants was made 

available. These participants were prioritized for the acquirement of whole body MRI 

imaging data, enhanced baseline measurements, hospital episode statistics (HES), 

and/or linked primary care records. Data for an additional 150,000 participants was 

made available in October 2020 (UK Biobank 2022a).   

 

To generate the WES data, DNA from the exome was captured by an IDT xGen Exome 

Research Panel v1.0 including supplemental probes. The basic design targeted 39 

Mbp of the human genome (19,396 genes). The variant callset included variants in 

both the target regions and 100 bp flanking regions upstream and downstream of 

each capture target (UK Biobank 2022b). The location of targeted regions is 

coordinated to Genome Reference Consortium Human Build 38 (GRCh38). Primary 

and secondary analysis for the UKB 200k release were performed with an updated 



47 

 

Functional Equivalence (FE) protocol that retained original quality scores in the 

CRAM files (referred to as the “OQFE protocol”) (UK Biobank 2022a). The OQFE 

protocol aligns and duplicate-marks all raw sequencing data (FASTQs) to the full 

GRCH38 reference, and further generates a single multi-sample VCF (pVCF) file for all 

200,000 samples. PLINK files were directly generated from this pVCF file. No variant- 

or sample-level filters were pre-applied to the pVCF or PLINK files, but the pVCF file 

contains allele-read depths and genotype qualities for all genotypes, onto which 

quality control metrics and analysis-specific filters can be applied. 

 

 

2.2. Statistical analyses 

 

This section describes the statistical methods and statistical software used in this 

thesis. 

 

 

2.2.1. Linear Regression 

 

Regression modeling is one of the most important statistical approaches applied into 

analytical epidemiology (Bender 2009), as well as for genome-wide association 

studies (Bush and Moore 2012). The most frequently asked question in analytical 

epidemiology is whether an exposure such as hours of reading has an impact on a 

response, such as myopia. Similarly, the most frequently asked question in a genome-

wide association study is whether a genetic variant such as a single nucleotide 

polymorphism has a significant association with a phenotypic trait such as refractive 

error. Exposure variables are usually measured as categorized or continuous 

indicators, while the genetic variants are usually coded based on the different alleles. 
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A common aim of cohort studies and case-control study designs in epidemiology is to 

investigate the relations between an exposure and an outcome (Bender 2009).  

 

Regression analysis can – potentially – control for confounding effects. The 

association between an exposure (such as a genotype) and an outcome response can 

be biased by confounding effects in non-randomized studies. (Generally, in 

epidemiology, it is impossible to randomly assign participants to different exposure 

groups). To statistically control for the effects of confounding factors, multivariate 

regression is used to model the relationship between a dependent variable and one 

or multiple explanatory variables, also called independent variables, predictor 

variables, covariates, or risk factors.  

 

For example, a linear regression can be applied to study the effects of time spent on 

near work activities on the refractive error averaged between the two eyes.  The 

fundamental regression equation is given by: 

 

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝑒 

 

Where 𝛽0 is called the intercept, 𝛽1 is the regression coefficient for the dependent 

variable 𝑥, and 𝑒 is called the residual (which describes the deviation of each 

individual i from the mean of 𝑌 given 𝑥 = 𝑥𝑖). A straight line is fitted through the 

model by ordinary least squares, where the intercept 𝛽0 represents the mean value 

of 𝑌 when 𝑥 = 0 and regression coefficient 𝛽1 represents the slope of the straight 

line, denoting the average increase of 𝑌 for a one-unit increase of the independent 

variable 𝑥. Two fundamental assumptions should be fulfilled to yield interpretable 

results: the first assumption is that the expected value of 𝑌 is a straight-line function 

of 𝑥. The second assumption is that the residual term is normally distributed with 

mean 0 and variance 𝜎2, which is the same for any value of 𝑥. 
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In a GWAS, the regression coefficient 𝛽1 is the average change in the trait of interest 

per copy of the ‘risk’ allele (the allele that confers a risk of developing the disease). 

 

 

2.2.2. Logistic Regression 

 

Logistic regression is used when the dependent variable is a binary variable (e.g., 

self-reported strabismus, yes/no). Logistic regression can be applied in both cohort 

studies and case-control studies (Anderson 1972; Mantel 1973; Huang et al. 2015), 

which makes logistic regression one of the most important statistical models in 

epidemiologic and genome-wide association studies.  

 

The basic question addressed by logistic regression is, “Is there an association 

between the independent variable 𝑥 and the dependent binary variable 𝑌. To 

overcome the inconvenient restriction of the binary value (0 or 1) and create a 

continuous variable that spans the whole number domain, a mathematically 

convenient term log (
𝜋

1−𝜋
) , called the logit, is derived, in which 𝜋 corresponds to the 

event probability 𝜋 = 𝑃(𝑌 = 1) and (
𝜋

1−𝜋
) is the “odds” of the event occurring. 

Thus, the logit is the natural logarithm of the odds. It can take a value from negative 

to positive infinity, as the dependent variable ranges from zero to one. The logistic 

regression is given by the linear relationship between the logit and the value of 

independent variables, 

 

 log (
𝜋

1 − 𝜋
) =  𝛽0 +  𝛽1𝑥1 + ⋯ +  𝛽𝑘𝑥𝑘 + 𝑒 
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The log (
𝜋

1−𝜋
) represents the natural logarithm of odds, 𝜋 is the probability of the 

binary outcome being 1, 𝛽0 is the intercept, and 𝛽1 is the natural logarithm of the 

odds ratio of a one unit increase in 𝑥, and 𝑒 is the residual term. 

 

The effect size of 𝑋𝑗 on the dependent variable in the logistic regression is best 

described by means of exp(𝛽𝑗), because in the logistic regression model, 

 

exp(𝛽𝑗) = 𝑂𝑅𝑗 

 

Where 𝑂𝑅𝑗 represents the odds ratio for 𝑋𝑗 adjusted for the other independent 

variables. In the case of a continuous explanatory variable 𝑋𝑗 (and a model without 

interactions), the 𝑂𝑅𝑗 describes the factor by which the odds of an event changes for 

each one-unit increase in 𝑋𝑗. 

 

In a highly unbalanced case-control association study (i.e. where the number of 

controls is much greater than the number cases) or in studies of rare genetic 

variants, the standard logistic regression estimate can be biased (Ma et al. 2013). 

Instead, a bias-corrected estimate can be performed by a Firth logistic regression 

(Firth 1993; Wang 2014). Firth logistic regression relies on a more effective score 

function to counteract the asymptotic expansion of the bias of the maximum 

likelihood estimation. For generalized linear models such as in logistic regression, 

Firth’s approach is equivalent to utilizing Jeffreys invariant prior to penalize the 

likelihood function (Firth 1993). Firth’s approach achieves bias-reduction for small-

scale samples, as well as providing finite and reliable estimates even in analysis of 

association with rare variants (Wang 2014). 
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2.2.3. Covariates 

 

The age of participants when they underwent their baseline tests at a UK Biobank 

assessment centre, refractive error averaged between the two eyes (avMSE), and the 

first 10 ancestry principal components (PC) were included as quantitative covariates. 

Sex was coded as binary variables. PC analysis is a dimension reduction technique. 

When applied to high-density genotype data, the major PCs (PCs 1-10) have been 

found to correspond to quantitative estimates of genetic ancestry. For example, the 

first 2 PCs can be used to distinguish individuals of African, Asian and European 

ancestry. Accordingly, the major PCs can be used to identify samples with similar 

ancestry or to control for population structure in association studies.  

 

 

 

 

2.2.4. Chi-squared and Fisher’s Exact Test 

 

The Chi-squared test can be applied to test the independence of two categorical 

variables. By comparing two variables in a contingency table, the Chi-squared test is 

applied to determine whether the distribution of the variables differ from each other. 

In the standard application of the Chi-squared test, the observations are classified 

into mutually exclusive classes. The null hypothesis is that there are no differences 

between the classes in the population. A Chi-squared statistic computed from the 

observations follows a Chi-squared distribution. The Chi-squared test evaluates the 

likelihood that the null hypothesis is true based on the observations. 

  

The formula for the Chi-squared statistic used in the Chi-squared test is: 
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𝜒𝑐
2 = ∑

(𝑂𝑖 − 𝐸𝑖)
2

𝐸𝑖
  

𝜒𝑐
2 is the Chi-squared statistic, and 𝑐 is the degree of freedom. 𝑂𝑖 is the observed 

value and 𝐸𝑖 is the expected value. The summation symbol is for the data in every 

single cell 𝑖 of the contingency table. The degrees of freedom for the contingency 

table has the formula shown as: 

 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 − 1)(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 1) 

 

According to the Chi-squared test value and degrees of freedom, the p-value for the 

Chi-squared test could be found in the Chi-squared table. In general, a p-value lower 

than 0.05 can be used to reject the null hypothesis. 

 

In the epidemiology and genetic studies, a Chi-squared test can be applied to 

investigate whether or not a genetic variant or exposure of interest is associated with 

the phenotype. For a case-control study, the Chi-squared test contingency table 

would classify data by case/control condition as one variable and the allele or 

exposure condition as the other variable. An example contingency table is shown in 

Table 2.1: 
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   Table 2.1 Example contingency table for case-control study 

 case control sum 

Exposure 𝑎 𝑏 𝑚1 

No exposure 𝑐 𝑑 𝑚2 

sum 𝑛1 𝑛2 𝑆 
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𝑎, 𝑏, 𝑐, 𝑑 are the numbers of observations for each single cell, and 𝑛1, 𝑛2, 𝑚1, 𝑚2 are 

the sum of each column and row, and 𝑆 is the total number of samples. The purpose 

of the test is to determine whether the null hypothesis of no association between 

the exposure and phenotype is true. For this 2x2 contingency table, the degree of 

freedom is 1, the expected number under the null hypothesis can be calculated from 

the table: for example, the expected number in the cell for case-exposure sample 

should be  
𝑛1𝑚1

𝑆
. By using the observed and expected data sets, the Chi-squared 

statistic with 1 for degree of freedom can be calculated. The corresponding 𝑝 value 

can be obtained by looking up the Chi-squared statistic in a probability table. A 

higher value of the Chi-squared statistic means a lower correlation between the 

observed data and the expected data set and a lower 𝑝 value, which indicates the 

violation of the null hypothesis that no association exists between the exposure and 

the phenotype.  

 

In genetics, the Chi-squared test can be applied to study the distribution of alleles. 

Alleleic disparities in a population could arise by chance, or from external factors. 

The external factors are mainly from environmental effects, which contribute to the 

statistically significant difference between the observed data set and the expected 

data set. If the 𝑝 value calculated from Chi-squared test is lower than the threshold 

set by the researcher, then the null hypothesis of no association would be rejected 

and it can be determined that the variance is due to more than chance, i.e. an 

external factor has contributed to that variance.  

 

In the genome-wide association study, the Chi-squared test can be applied to 

pinpoint the locus associated with a categorical phenotypic (e.g., case/control labels 

for individuals). To comply with the requirement of the Chi-squared test, both 

genotypes and phenotypes have to be categorical variables. Due to the ease of 
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genotyping and abundance across genomes, biallelic SNP genotypes are usually used 

as the genetic variants for association studies. For biallelic SNPs, minor 

allele homozygous, heterozygous, and major allele heterozygous sites are coded as 0,

 1, and 2. A contingency table for the Chi-squared test can be created by the different 

allele/phenotype combinations. 

 

In practice, Fisher’s exact test can be applied as an alternative to the Chi-squared test 

for testing the associations in small or unbalanced datasets. When the sample sizes 

are small, or the data are very unequally distributed among the cells of the 

contingency table, the sampling distribution of the test statistic is an inadequate 

approximation of the Chi-squared distribution. Such scenarios may lead to biased 

conclusions concerning the hypothesis of interest (Mehta et al. 1984). In contrast, as 

long as the experimental procedures keep the row and column totals fixed, Fisher’s 

exact test can be used regardless of the sample characteristics.  

 

In a GWAS, statistical hypothesis testing is based on rejecting the null hypothesis of 

no association if the observed p-value is ‘low’. Testing multiple hypotheses increases 

the likelihood of incorrectly rejecting the null hypothesis for some of the tests, i.e. 

making type 1 errors or reporting ‘false-positive’ findings. A Bonferroni correction is a 

commonly-applied method to control the type 1 error rate of the full analysis such 

that ‘experiment-wide’ type 1 error rate is below a specified threshold (usually p < 

0.05).  

 

In the weighted Bonferroni method, different weights are assigned to two or more 

different endpoints, with the sum of the weights equal to 1.0 (e.g., 0.4,0.4,0.2 for 

three endpoints). These weights are pre-set in the design of trials, taking into 

consideration the importance of the different endpoints, the likelihood of success, or 

other factors. One of the most popular ways to perform the weighted Bonferroni test 
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is by assigning a specific ‘amount’ of alpha (e.g. 0.05) to each endpoint. The weighted 

Bonferroni method is often applied by dividing the overall alpha into unequal 

portions. By multiplying the overall alpha by the assigned weighting factors, the sum 

of the endpoint-specific alphas will remain as the overall alpha, such that each 

calculated p-value is compared to the assigned endpoint-specific alpha. By 

introducing prior information to assign specific weights, the weighted Bonferroni 

correction not only controls the family-wise error rate, but can have higher power 

than the standard Bonferroni procedure (Rubin et al. 2006; Wasserman and Roeder 

2006).  

 

Rubin et al. (2006) and Wasserman and Roeder (2006) proposed a weighted 

Bonferroni procedure that used optimal weighting factors. Under the assumption 

that the mean of all test statistics are known, these optimal weights were calculated 

by maximizing the average power of the weighted Bonferroni correction. 
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Chapter 3. Chromosome 17 

Association Study for Strabismus 
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3.1. Introduction 

 

Strabismus is a common condition characterized by constant or intermittent 

abnormal alignment of the eyes that leads to loss of binocular vision (Chapter 1.2.).  

 

Strabismus is known to be affected by both the genetic and environmental effects. 

Several studies have been performed to identify the genetic risk factors associated 

with strabismus (Graeber et al. 2013; Kruger et al. 2013; Maconachie et al. 2013). 

There is evidence that the underlying causal variants have complex effects on the risk 

of developing strabismus (Sanfilippo et al. 2012; Ye et al. 2014). Meanwhile, other 

lines of evidence support the hypothesis that there are rare, monogenic forms of 

strabismus. For example, strabismus was found to co-segregate with genetic markers 

at 7p22.1 in a linkage analysis study of families with a pathological history of 

Mietens-Weber Syndrome and Lamb-Shaffer Syndrome (Parikh et al. 2003). Recent 

GWA studies identified a small number of common genetic variants that confer 

susceptibility to strabismus. Shaaban et al. (2018) performed a GWAS and identified 

a single variant (rs2244352; OR = 1.33, p = 9.58E-11) that was significantly 

associated with non-syndromic strabismus. Plotnikov et al. (2019) reported 

approximately 20 variants in almost perfect linkage disequilibrium (LD) across the 

NPLOC4–TSPAN10–PDE6G gene cluster (lead variant: rs75078292; OR = 1.26, 

p = 2.24E−08) strongly associated with self-reported strabismus. 

 

Here, the hypothesis was tested that a commonly occurring STR polymorphism 

located on chromosome 17 confers susceptibility to non-syndromic strabismus. An 

STR-based chromosome-wide association study for self-reported strabismus was 

carried out. The study focused attention on chromosome 17 because a previous 

GWAS in UK Biobank participants by Plotnikov et al. (2019) had identified a large-
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effect sized association on chromosome 17. In view of the strong association 

between strabismus and refractive error, the average mean spherical equivalent 

(avMSE) was included as a covariate in the analysis in order to avoid the cofounding 

effects of genetic variants associated with refractive error. 

 

 

3.2. Methods 

 

3.2.1. Selection of Participants 

 

The genetic analysis and subsequent analyses were restricted to unrelated UK 

Biobank participants of European ancestry who were part of the October 2020 (WES 

200k) data release. The genetic ancestry principal components (PCs) provided by 

Bycroft et al. (2018) were used to define a cluster of individuals with European 

ancestry. Participants whose genetic ancestry PCs did not cluster with Europeans 

were excluded. Only individuals who did not withdraw their consent were studied. 

Moreover, participants with a mismatch between their self-reported and genetically-

inferred sex, or whose imputed genotype data showed high heterogeneity 

(heterozygosity >4 standard deviations from the mean level), were also excluded. 

After applying these filters, there were n=181,170 individuals remaining. Next, 

participants who self-reported a history of eye trauma resulting in loss of vision, 

cataract surgery, laser eye surgery or corneal graft surgery were excluded, as were 

individuals whose hospital records (ICD10 codes) indicated a history of cataract 

surgery, eye surgery, retinal surgery, or retinal detachment surgery. Participants 

without a valid mean spherical equivalent autorefraction measurement or who were 

recruited from a UK Biobank Assessment Center at which the prevalence of 

strabismus was less than 1% were also excluded. From amongst the remaining 
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participants, there were n=1,022 who self-reported that the reason they wore 

glasses was because of strabismus. Of these 1,022 participants, the maximum sized 

set of unrelated participants was selected using the method of Bycroft et al. (2018). 

This resulted in a sample of n=1,020 unrelated participants with a self-reported 

history of strabismus (“cases”). There were n=53,052 participants who met all the 

inclusion criteria but who did not self-report a history of strabismus; these 

individuals were classified as potential “controls”. After excluding individuals from 

amongst the 53,052 potential controls who were related to one of the cases, and 

then finding the maximum sized set of unrelated participants, there were n=50,474 

potential controls who were unrelated to each other and unrelated to the cases.  
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Fig. 3.1 Flow diagram illustrating the selection of UK Biobank participants for the 

genetic analysis of strabismus sample. 
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An alternative method to control the type 1 error rate is to set a specific false 

discovery rate (FDR) for the association results. A disadvantage of the Bonferroni 

method is that it is a relatively conservative method, which may limit the power of 

the discovery of true positive results. The FDR method is less conservative. The aim 

of the FDR approach is to achieve the smallest possible fraction of false signals 

among all those that are declared to be true. The total number of rejections of the 

null hypothesis includes both the number of false positive (FP) and true positive (TP). 

The formula for FDR is FP/(FP+TP). In the controlling procedure, methods for 

rejecting the null hypothesis were established, such as the Benjamini–Hochberg 

procedure and Benjamini–Yekutieli procedure, to control the FDR at level alpha. 

There are precedents for using the FDR approach in GWAS research projects (Nelson 

et al. 2017; He et al. 2021).   

 

Four criteria were applied for the selection of control participants: 1) cases and 

controls attended the same Assessment Center; 2) cases and controls had the same 

sex; 3) cases and controls had the same year of birth; and, 4) cases and controls had 

the same age (measured in whole years). For each individual in the case group, if 

three or more individuals met all those four criteria, then 3 controls were chosen at 

random from the matched set; if fewer than 3 individuals met all 4 matching criteria, 

then 3 controls were chosen at random from the set matching the first 3 criteria. 

Finally, 1020 cases and 3060 matched control individuals were selected for the GWAS 

for self-reported strabismus (Fig. 3.1). 

 

The rationale for the choice of case-control ratio was the result of a trade-off 

between statistical power and computational efficiency. First, the maximum number 

of cases was chosen, i.e. the number of individuals who met the inclusion criteria 

and that passed the quality control filters. Then, the number of controls was chosen. 

A large number of control participants per case participant increases the statistical 
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power of an analysis. However, the increase in statistical power rapidly plateaus as 

the case-control ratio changes and, in fact, heavily unbalanced case-control ratios can 

generate statistical artefacts (Zhou et al. 2018). WES data requires a very large 

amount of computational storage space and genotyping STRs using WES data is 

computationally intensive. Therefore, from a consideration of computational 

resources versus statistical power, the sample size of the control group was chosen as 

3x the sample size of the case group, i.e. a case-control ratio to 1:3. Each person in 

the case group was matched with 3 individuals from the pool of 50,474 potential 

controls.  

 

 

3.2.2. Selection of STRs with valid genotype information 

 

The Genome Reference Consortium Human Build 38 reference panel includes 58,887 

STR loci on chromosome 17. A two-step process was developed to identify STRs 

located within the sequenced regions in the UK Biobank WES dataset. In the first 

step, a series of HipSTR analyses was used to evaluate all 58,887 candidate STRs in a 

subsample of n=200 randomly selected participants from the full sample of 4,080 

individuals. Candidate STRs were split into 589 groups, with each group containing 

100 STRs (except for only 87 STRs in the last group) to facilitate parallel computation.  

 

No pre-processing steps were performed on the UK Biobank WES data before 

running the HipSTR software. However, the first step of the two-step HipSTR 

genotyping process would have provided a basic level of quality control (QC). In this 

step, the minimum and maximum reads-per-sample were set at empirically-

determined optimum values to eliminate STRs that could not be reliably genotyped. 

From amongst the total of 58,887 STRs, the first step identified 1,220 (2.07%) STRs 

that could be successfully genotyped using WES data from UK Biobank participants. 
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In the second step, a HipSTR analysis was performed to genotype these 1,220 STRs in 

the full sample of 4,080 participants. Since a relatively low number of STRs were 

genotyped in the second step, this step was not parallelized.  

 

The HipSTR program (Willems et al. 2017)  was used for STR genotyping. This 

software implements an expectation–maximization (EM) algorithm to genotype STR 

loci in regions where they have previously been identified. The EM algorithm is used 

to find the maximum likelihood parameters of a statistical model when the equations 

cannot be solved directly. In general, these models are used in cases where latent 

variables exist with unknown parameters and known observations. With a likelihood 

function that involves all the variables, the maximum likelihood estimate of the 

unknown parameters is determined by maximizing the marginal likelihood of the 

observed data.  

 

To remove the PCR stutter artifacts of the incorrect copies of an STR’s motif, HipSTR 

constructs a stutter model θx for each STR locus x, which quantifies the probability 

that PCR stutter adds or removes repeats from the true allele in an observed read, 

and parameter ρs that evaluate the extent of stutter-induced changes (Willems et al. 

2017). The sizes of the STR observed in each read for all individuals in the population 

are used as the ‘observations’; the EM algorithm is then applied to estimate the 

parameters θx and ρs (Willems et al. 2017). After the parameter estimation step is 

completed, HipSTR iteratively computes the maximum-likelihood genotypes for each 

sample and realigns every read relative to the most probable allele. If the same 

sequence is observed in a sample in two or more alignment runs with stutter 

artifacts, HipSTR selects the sequence as a new candidate allele (Willems et al. 2017). 

 

Genetic data for the 4080 UK Biobank participants was input to HipSTR in CRAM 

format (--bam-files command in HipSTR), alongside a GRCh38 reference assembly (--
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fasta command in HipSTR). Specifically, I used the 

GRCh38_full_analysis_set_plus_decoy_hla.fa reference assembly, obtained from the 

DNAnexus website. In order to reduce the chance of genotyping errors, a minimum 

sequence read-coverage threshold was set for each STR. Since 200 participants were 

analysed in the first step of HipSTR analyses used to screen the STRs, STRs were 

required to have a minimum of 1,000 reads (equivalent to 5 reads per participant) 

and a maximum of 90,000 (equivalent to 450 reads per participant). In the second 

step used to genotype the full sample of 4,080 participants, since the number of 

samples was larger, the variation in STR coverage was expected to be larger, too. 

Therefore, in order to genotype the majority of participants, the minimum read 

threshold was retained at 1,000 reads (equivalent to 0.25 reads per participant) and 

the maximum of 4,000,000 (equivalent to 980 reads per participant).  

 

 

3.2.3. Chromosome 17 Association Study for Strabismus 

 

A genetic association study for self-reported strabismus was carried out in the 

discovery sample (1,020 cases and 3,060 controls). A total of 742 STRs on 

chromosome 17 were tested for association with strabismus using logistic regression 

(only 742 STRs out of the total of 1220 STRs were studied, since the remainder of the 

STRs exhibited no variation in allele length in this cohort, i.e. they were 

monomorphic). The average length of the two alleles of each STR genotype was used 

as a predictor variable. Age, sex, refractive error averaged between the two eyes, and 

the first 10 ancestry principal components were included as covariates. Logistic 

regression models were fitted using the glm function in R. This approach of using the 

average length of an STR in a regression analysis has previously been adopted by 

Fotsing et al. (2019). 
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As an alternative to logistic regression, a Chi-squared test was performed to test for 

association between each of the 742 STRs and strabismus. A 2 x 3 table was created 

for each STR (Table 3.1). The two rows of the table were used to record genotype 

counts in cases and controls, respectively. The three columns of the table were used 

to record the count of alleles of different length. As an example, consider an STR with 

motif ‘TC’ and alleles of length 10, 12, 14, 16 and 18. The middle column recorded 

the count of alleles with length=12 in cases and in controls. The upper column 

recorded the count of alleles shorter than 12 in cases and controls. The lower column 

recorded the count of alleles longer than 12 in cases and controls. The distribution of 

allele lengths in cases versus controls was tested with a Chi-squared test (except if 

one or more cell of the table had a count less than 5, when a Fisher’s exact test was 

implemented instead). The process of creating a 2 x 3 table and testing for 

association with strabismus was then repeated based on counts of alleles with length 

below, equal to, or above 14, and then again based on counts of alleles with length 

below, equal to, or above 16, etc. For each STR, the number of statistical tests was 

counted (e.g. 3 Chi-squared tests would have been required to test the STR with 

allele lengths 10, 12, 14, 16 and 18). The lowest p-value amongst these tests was 

chosen to represent the p-value of this STR. To avoid the increase of false positive 

rate through multiple comparisons, a Bonferroni correction was applied for each STR 

(e.g. requiring the p-value to be lower than 0.05/3=0.0167 for the STR with allele 

lengths 10, 12, 14, 16 and 18). This approach of testing STRs for association with a 

phenotype has previously been reported by (Pritchard and Rosenberg 1999).  

Statistical software used to perform GWASs in this study include Plink2.0 and R x64 

4.0.3 (R Core Team (2020) ; Chang et al. 2015). Logistic regression, Chi-squared test 

or Fisher’s exact test are the main statistical methods used by these software 

packages.  

 

A Manhattan plot is applied for the visualization of the GWAS results. Each data point 
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in a Manhattan plot corresponds to the statistical test result (negative log10 of the p-

value) of one genetic variant. The genomic coordinates are displayed on the x-axis, 

with the negative logarithm of the association p-value for each genetic variant 

displayed on the y-axis.  
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Table 3.1 Contingency table of the count of A alleles and non-A alleles in cases 

and controls samples  

 The Number of  

Alleles A- Aa A+ 
Total No. of 

Alleles 

Cases m1b mc - m1 - m2 m2 mc 

Controls n1 nc - n1 - n2 n2 nc 

Total No. of 

Alleles 
m1+n1 

mc+nc-

(m1+n1+m2+n2) 
m2+n2 mc+nc 

a  A- denotes non-A alleles that have a shorter average length than A alleles; A+ 

denotes non-A alleles that have a longer average length than A alleles. 

b  m1,m2 denote the number of A- and A+ alleles in the cases, respectively; and n1, 

n2 denote the number of A- and A+ alleles in the controls respectively. mc and nc 

denote the number of alleles in cases and controls. 
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3.2.4. Post-association Study Analyses 

 

A strong association with self-reported strabismus in UK Biobank participants was 

reported previously for SNP rs75078292 on chromosome 17 (Plotnikov et al. 2019). 

Therefore, a conditional association test was carried out to determine if the 

association between STR Human_STR_613083, which was the only STR with pairwise 

LD (𝑟2 > 0.1) with rs75078292, was independently associated with strabismus. For 

this test, a conditional logistic regression analysis was conducted, with strabismus as 

the outcome, Human_STR_613083 genotype as the primary independent variable, 

and with SNP rs75078292 genotype included as an additional covariate along with 

age, sex, refractive error averaged between the two eyes, and the first 10 ancestry 

principal components.  

 

 

3.3. Results 

 

3.3.1. Validation of Self-reported Strabismus in UK Biobank Cohort 

 

Among the 4,080 case and control participants, the cases with self-reported 

strabismus had an 11.1-fold higher prevalence of self-reported unilateral amblyopia, 

a 2.4-fold higher prevalence of 1.00 D or more anisometropia, and a more 

hypermetropic refractive error (median +2.36 vs. +0.24 D) compared to controls. 

Moreover, individuals in the case group had a much higher prevalence of early age-

of-onset of wearing glasses (age started wearing glasses ≤7 years): 73.0% vs. 4.6% in 

cases vs. controls). Furthermore, a 2.2-fold lower proportion of cases had a high level 

of visual acuity (visual acuity ≤ 0.0 logMAR in both eyes): 20.6% vs. 45.6% (Table 3.2; 

Fig. 3.2). The sex and age of cases and controls was well-matched (by design), and 
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their Townsend Deprivation Index, a measurement of socioeconomic status, did not 

show a significant difference between cases and controls (-1.91 vs. -2.09; p = 0.54).   
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Table 3.2 Demographic and ocular characteristics of the UK Biobank strabismus case-control sample 

Variable  Total 
(n=4,080) 

Cases 
(n=1,020) 

Controls (n=3,060) p value 

Female N (%) 2,528 (62.0%) 632 (62.0%) 1,896 (62.0%) 1 

Self-reported unilateral amblyopia N (%) 469 (11.5%) 374 (36.7%) 95 (3.1%) <1.0E-99 

Both eyes VA ≤0.0 logMAR N (%) 1,065 (39.33%) 210 (20.6%) 1,395 (45.6%) 7.9E-44 

VA difference ≥0.2 logMAR N (%) 1,034 (25.3%) 456 (44.7%) 578 (18.9%) 3.89E-65 

Better VA≤0.0; VA difference≥ 0.2 N (%) 727 (17.8%) 326 (32.0%) 401 (13.1%) 2.78E-45 

Anisometropia≥ 1.00 D N (%) 940 (23.0%) 421 (41.3%) 519 (17.0%) 2.06E-57 

Anisometropia≥ 2.00 D N (%) 374 (9.2%) 200 (19.6%) 174 (5.7%) 1.28E-40 

Age (years) Median (IQR) 59.75 (53.00 to 64.33) 59.75 (53.06 to 64.35) 59.75 (52.92 to 64.33) 9.25E-02 

Refractive error (D) average of 2 eyes Median (IQR) +0.48 (-0.74 to 1.82) +2.36 (0.44 to 4.45) +0.24 (-1.04 to 1.14) <2.2E-16 

Anisometropia (D) Median (IQR) 0.41 (0.17 to 0.92) 0.77 (0.29 to 1.67) 0.34 (0.15 to 0.73) <2.2E-16 

Age started wearing glasses (years) Median (IQR) 21.00 (8.00 to 45.00) 5.00 (3.00 to 8.00) 40.00 (16.00 to 48.00) <2.2E-16 

Townsend Deprivation Index Median (IQR) -2.06 (-3.55 to 0.50) -1.91 (-3.54 to 0.52) -2.09 (-3.56 to 0.50) 5.42E-01 

Abbreviation: IQR = interquartile range. 

 



72 

 

   

   

   

Fig. 3.2 Demography and clinical characteristics of cases and controls (n=1,020 cases 

and n=3,060 controls). (A) Bar chart for the percentage females. (B) Violin plot for the 

age of participants. (C) Violin plot for Townsend Deprivation Index of participants. (C) 

Violin plot for the age-of-onset wearing glasses. (D) Bar chart for the percentage of 

amblyopia. (E) Violin plot for age-of-onset of glasses. (F) Bar chart for the percentage of 

anisometropia above 1.0 D. (G) Violin plot for refractive error (H) Bar chart for the 

percentage of early age-of-onset of glasses. (I) Violin plot for anisometropia of 

participants. Early age-of-onset of glasses was defined as ≤7 years. Bar chart error 

bars denote 95% confidence interval. Box plots are superimposed over the violin plots 

(the thick horizontal line corresponds to the median, the white rectangular box 
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corresponds to the interquatile range, and the end of upper and lower whiskers to the 

largest and smallest sample within 1.5 times the interquatile range).   
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3.3.2. Call Rate Assessments 

 

To evaluate the reliability of the genotype information obtained from HiPSTR, the call 

rate of each sample and the call rate of each STR were examined. The call rate of a 

sample is defined as the percentage of called STRs for which the genotype value is 

not null, as a proportion of the total number of STRs in the dataset. Similarly, the call 

rate of an STR is defined as the percentage of called samples for that STR which are 

not null, as a proportion of the total number of samples in the dataset. The typical 

value to exclude the genetic variants with a low call rate is <95% (Anderson et al. 

2010). 
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Fig. 3.3 Histogram of call rates of STRs and samples. (A) Distribution of call rates of 

1220 STRs. (B) Distribution of call rates of 4080 samples after the exclusion of STRs 

with a call rate <95%. 
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A high STR call rate refers to the situation in which a high proportion of samples can 

be genotyped reliably. In general, a high call rate is indicative of high quality (i.e. 

accurate) genotype data. However, in practice, calling genotypes with high certainty 

does not necessarily imply high quality genotype data, because failure to call may be 

dependent on genotype. For example, rare homozygous genotypes may on average, 

have lower probabilities, thus introducing bias to allele frequencies based only on 

genotypes (Clayton et al. 2005). Furthermore, a high calling threshold could 

unnecessarily exclude missing genotypes, which may result in reduced genomic 

coverage. The call rate threshold has a large impact on the quality of the genotype 

data. If it is set too low, erroneous genotypes can be assigned. If it is set too high, 

then information from a large number of genetic markers may be wasted. Classically, 

markers with a call rate less than 95% are removed from further study  (Fisher et al. 

2008; Silverberg et al. 2009). 

 

Compared to the call rate of samples, the call rate of STRs displayed a relatively 

greater variation. Among the full set of 1220 genetic variants, 908 STRs had a call rate 

above 95%, while 100 STRs had a call rate lower than 90% (Fig. 3.3A). STRs with a call 

rate lower than 95% were excluded from further analysis, in order to avoid STRs that 

were challenging to genotype and thus potentially more susceptible to genotype call 

errors.  

 

After the exclusion of STRs with a call rate <95%, the call rates of 4080 participants 

were examined for the remaining set of 908 STRs. The call rate of samples exhibited 

lower variation (F = 39.91, p = 2.2E-16; Fig. 3.3B) but a similar average level to the call 

rates of STRs (t = 0.32, p = 0.75). 2282 samples had a call rate greater than 95%, and 

all 4080 samples had a call rate greater than 85%. To keep the number of cases and 

controls constant at the planned ratio of 1:3, all the samples were included in the 

further study.  
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Further analysis revealed that the 1220 STRs were located both inside and outside 

exon regions. 444 STRs were found within exons and 776 were situated outside exon 

regions. Read coverage was also considered, i.e. how many reads were obtained for 

each STR, on average. The average call rate of STRs in exon regions was lower than 

the call rate of STRs located outside exons: inside vs. outside mean call rate = 0.93 vs. 

0.95, respectively, p = 1.2E-03; Fig. 3.4A. The mean read count for STRs within exon 

regions was significantly higher than for those outside exon regions: inside vs. 

outside mean read count = 64.1 vs. 27.2, p = 2.2E-16 (Fig. 3.4B), suggesting the 

genotype results of STRs in the exon regions may be more reliable. Shapiro-Wilk’s 

test revealed the distribution of call rates was non-normal (p < 2.2E-16); therefore, 

the correlation between call rates and read counts was estimated with Spearman’s 

rank correlation coefficient. This revealed a negative correlation between ranks of 

call rates and ranks of read counts (𝜌 = -0.16, p = 3.67E-08; Fig. 3.4E), but the fact 

that the correlation coefficient was close to zero indicated that the correlation trend 

was not very strong.  

 

The relationship between the call rate and other STR features was also studied. Since 

the distribution of call rates was non-normal, the mean call rate of each group, which 

was classified by the length of motif, was compared using the Kruskal-Wallis rank 

sum test. A significant difference in the mean call rate was found (p = 9.51E-13; Fig. 

3.4C). The 6-bp motif group had a lowest call rate (92.7%), while the 2-bp motif 

group had the highest call rate (97.0%). The 6-bp motif group had a significantly 

different mean call rate compared to the 2-bp and 4-bp motif groups (Wilcoxon rank 

sum test p2,6 = 4.50E-04, p4,6 = 9.31E-03). Meanwhile, the mean read count per 

sample for each group, which was classified by the length of motif, was also 

compared using the Kruskal-Wallis rank sum test. A significant difference in the mean 

call rate was found (p < 2.2E-16; Fig. 3.4D). The 3-bp motif group had the highest 
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read count (76.7 reads), and the 1-bp motif group had the lowest read count (22.9 

reads).  

 

The correlation between call rate and motif length was estimated with Spearman’s 

rank correlation test. This revealed a negative correlation between ranks of call rate 

and motif length (𝜌 = -0.09, p = 1.27E-03; Fig. 3.4F). However, the coefficient was 

weak. Meanwhile, a stronger negative correlation was found between read count 

and motif length (𝜌 = -0.26, p < 2.2E-16).  
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Fig. 3.4 The quality of the genotype information for 1220 STRs on chromosome 17 

(A) The distribution of call rate versus functional region. (B) The distribution of read 

count versus functional region. (C) Graph of call rate versus motif length. Box plots 

are superimposed over the violin plots (the thick horizontal line corresponds to the 

median, the white rectangular box corresponds to the interquatile range, and the 

end of upper and lower whiskers to the largest and smallest sample within 1.5 times 

the interquatile range). (D) Graph of read count versus motif length. (E) The 

relationship between call rate versus read count. Different colors represent different 

functional regions. (F) The relationship between call rate versus motif length. The 

shading denotes the average read count. 

E 
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3.3.3. Mapping of STRs on Chromosome 17 

 

To study the association between a phenotype and STR genotypes, the STRs must be 

polymorphic. 908 of the 1220 genotyped STRs had a call rate above 95%. Surveying 

the number of alleles of each STR revealed that 742 out of the 908 STRs were 

polymorphic. The 166 monomorphic STRs were excluded from further analysis. 
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Fig. 3.5 Manhattan plot and quantile-quantile (Q-Q) plot for p-value of logistic 

regression analysis. (A) Manhattan plot for association study, the yellow diamond 

denotes the result of the lead SNP rs75078292, the green symbol denotes the single 

STR that had a squared-correlation >0.1 with the lead SNP. The light blue line 

corresponds to a p- value of 5.74E-05. (B) Q-Q plot for p-value of STRs, in which x-

coordinate denotes the theoretical quantile for a uniform distribution, and y-

coordinate denotes the observational sample quantile distribution (B). 
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A logistic regression analysis testing for association of self-reported strabismus 

case/control status and the average length of the 2 STR alleles carried by each 

participant was carried out for the 742 polymorphic STRs on chromosome 17. This 

analysis identified no variant that was significantly associated with the trait after 

correction for multiple testing. Applying the Bonferroni method, the threshold p-

value for declaring statistical significance was set as 0.05/742 = 5.74E-05. Of the 742 

variants, the most strongly associated STR was Human_STR_596782: OR=0.33, 95% 

CI 0.17-0.62, p = 6.88E-04, Fig. 3.5A. The 6 variants with the lowest p-values are listed 

in Table 3.2. None of the variants had a p-value below the threshold of p < 5.74E-05.  

 

In order to check for systematic bias due to population stratification, the genomic 

inflation factor (𝜆𝐺𝐶) was calculated. There was no evidence of population 

stratification (𝜆𝐺𝐶 = 0.65, Fig. 3.5B). In the Q-Q plot, the observed p-value 

distribution showed a distribution close to theoretical uniform distribution, 

suggesting no excess of STRs strongly associated with the strabismus phenotype. 
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Table 3.3 Lead variants for attaining relatively lower p-values in logistic regression for chromosome 17 

STR Start Position (bp) 
Reference Repeat 

Number 

Repeat 

Motif 
OR 95% C.I. p-value 

Human_STR_596782 59685042 11 T 0.33 0.17, 0.62 6.88E-04 

Human_STR_568152 16071266 12 A 0.66 0.49, 0.87 3.73E-03 

Human_STR_581897 39996121 15 A 1.24 1.06, 1.44 5.55E-03 

Human_STR_584893 43496098 35 A 0.33 0.13, 0.79 1.39E-02 

Human_STR_564072 9686927 7.5 GT 0.62 0.42, 0.90 1.46E-02 

Human_STR_613083 81719696 4.2 ACACCC 0.94 0.90, 0.99 1.55E-02 

Abbreviations: OR = odds ratio; 95% C.I. = 95% confidence interval of odds ratio. 
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A Chi-squared test was also used to test for an association between self-reported 

strabismus case/control status and STR genotype, for the 742 polymorphic STRs on 

chromosome 17. The Chi-squared test analysis identified 1 variant significantly 

associated with the trait. The threshold p-value for declaring statistical significance 

was again set at 0.05/742 = 5.74E-05. The most strongly associated STR variant was 

Human_STR_584893 (p = 3.50E-06; Fig. 3.6A). The lead variants with lowest p-value 

were listed in Table 3.3. No other variant was statistically significant (all p > 5.74E-05).  
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Fig. 3.6 Manhattan plot and Q-Q plot for the Chi-squared test analysis (A) 

Manhattan plot for association with self-reported strabimsus. The orange diamond 

denotes the result of the lead SNP, rs75078292. The the green symbol denotes the 

only STR with a squared correlation coefficient >0.1 with the lead SNP. The light 

blue line corresponds to the p -value threshold of 5.74E-05. (B) Q-Q plot for p-

value of STRs, in which x-coordinate denotes the theoretical quantile in uniform 

distribution, and y-coordinate denotes the observational sample quantile 

distribution. 
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Table 3.4 Lead variants attaining relatively low p-values in Chi-squared test for 

association with self-reported strabismus for STRs on chromosome 17 

STR 
Start Position 

(bp) 

Reference 

Repeat Number 

Repeat 

Motif 
p - value 

Human_STR_584893 43496098 35 A 3.50E-06 

Human_STR_573636 28632840 4.2 CCCCT 1.58E-03 

Human_STR_563295 8735291 19 GT 2.79E-03 

Human_STR_612241 80290809 17 T 3.23E-03 

Human_STR_579636 37270866 20 A 4.11E-03 

Human_STR_568152 16071266 12 A 4.67E-03 
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In the Q-Q plot, the result of genomic inflation factor was low (𝜆𝐺𝐶 = 0.40, Fig. 3.6B). 

The observed p-value distribution was slightly enriched for moderately low p-values, 

in the region of minus log(P) = 2 to 3, which may have indicated either true 

enrichment or spurious association. The trend in the Q-Q plot for the Chi-squared 

analysis was not consistent with the trend of the Q-Q plot for the logistic regression 

analysis (Fig. 3.5B).  

 

To explore whether the inclusion of covariates in the logistic regression analysis, but 

not in the Chi-squared analysis, explained the difference in results, the logistic 

regression analysis was repeated using the same genotype coding scheme adopted 

for the Chi-squared test. This revealed that the absence of covariates was responsible 

for the different results obtained with the two tests, and suggested the very low p-

value for Human_STR_584893 (p = 3.50E-06) was a spurious finding (Table 3.5). 
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Table 3.5 Logistic regression results for Human_STR_584893 and strabismus. 

Condition OR 95% C.I. p-value 

With no covariates 0.21 0.091,0.50 3.47E-04 

With covariates 0.33 0.13,0.79 1.39E-02 

Abbreviations: OR = odds ratio; 95% C.I. = 95% confidence interval of odds ratio. 
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3.3.4. Correlation Study with Single Nucleotide Polymorphism 

 

Human_STR_613083 was the only STR for which the average STR allele length 

showed a moderate level of linkage disequilibrium (𝑟2 > 0.1) with the genotype of 

lead SNP rs75078292. In order to identify if Human_STR_613083 had an independent 

association with strabismus, a conditional analysis was conducted in which the 

association of the STR was tested while the genotype of SNP rs75078292 was 

included as a covariate. The p value for Human_STR_613083 was increased in the 

conditional analysis compared to the original analysis (p = 7.40E-01 vs. 1.55E-02). 

Furthermore, the p value for rs75078292 remained low in both the conditional and 

unconditional analyses (p = 4.81E-04 vs. 1.71E-05). Thus, the conditional analysis 

suggested that the only STR in LD with rs75078292 did not have an independent 

association with self-reported strabismus. 

 

 

3.4. Discussion 

 

This study screened exonic STRs on chromosome 17, but did not identify any genetic 

variants showing significant association with self-reported strabismus. The 

participants in the case and control groups all had European ancestry and genomic 

inflation factors were computed to assess whether or not population stratification 

was present. Rigorous quality control metrics were applied to ensure the allele 

frequency differences reflected the genuine locus-specific associations rather than 

population stratification. 

 

The method used in this study was justified for the purpose of a case-control 

association study to identify genetic variants associated with a specific trait. First, the 

trait must be heritable. Previous studies provide support for the hypothesis that 
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there are genetic effects contributing to susceptibility for strabismus (Maconachie et 

al. 2013; Ye et al. 2014; Shaaban et al. 2018; Plotnikov et al. 2019). Second, the 

extent of misclassification bias should be less than 5% (The Wellcome Trust Case 

Control Consortium 2007). The statistic power could be affected if a substantial 

proportion of the controls meet the criteria for inclusion as a case. Since the known 

prevalence of strabismus in the white British population is about 2-4%, participants 

selected as controls who did not self-report strabismus are considered effective to 

meet the second criteria. Third, the proportion of true positives in the case group 

should be sufficient. We analyzed the level of comorbid factors such as 

anisometropia, self-reported amblyopia, and refractive error in self-reported 

strabismus case and control group. The groups featured significantly different 

characteristics, as expected for a set of strabismus cases and controls. 

 

The analysis involving average spherical equivalent and other covariates reduced the 

association of Human_STR_584893 compared to the univariate analysis. This 

suggested the originally observed association of Human_STR_584893 with 

strabismus occurred due to confounding.  

 

When examining the association of STR genotype and strabismus, it was noticed that 

three of the covariates included in the logistic regression analysis showed a 

significant association with strabismus. These were the average spherical equivalent 

(p < 2E-16), age (p = 3.88E-05), and principal component 1 (p = 4.61E-03).  

 

The association between refractive error and strabismus is consistent with previous 

publications. A cross-sectional study involving 4273 children aged 6-8 years old from 

Hong Kong revealed an association of strabismus with myopia and hyperopia (Zhang 

et al. 2021), while one Korean population-based study found an increased prevalence 

of exotropia among people with severe myopia, while esotropia was significantly 

associated with hyperopia (Lee and Mackey 2021). A meta-analysis involving 23,541 
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study subjects identified a dose-related effect for hyperopia as a risk factor for 

concomitant esotropia (Tang et al. 2016). In the Tang et al. study, a hyperopic 

refractive error showed an association with an increased likelihood for self-reported 

strabismus (OR = 3.00, 95% CI = 2.71-3.37, p < 2E-16). 

 

In the analysis model that included all of the covariates, age was negatively 

associated with self-reported strabismus in the current study (OR = 0.84, 95% CI = 

0.80-0.90). However, when the other covariates were removed, the association of 

age and strabismus was no longer significant (p = 0.981). Furthermore, the mean and 

variance of age were not significantly different between cases and controls (t-test p = 

0.981; F-test p = 0.978). Therefore, the association between age and strabismus in 

the model including all covariates could either have been due to a true association or 

due to confounding.  

 

The ancestry variable PC1 was found to be positively associated with self-reported 

strabismus (OR = 1.14, 95% CI = 1.07-1.22, p = 4.61E-03). This association was 

minimally affected if assessment center was included as an additional covariate in 

the analysis (OR = 1.14, 95% CI = 1.04-1.26; p = 5.29E-03), suggesting that differences 

relating to assessment centers were not the reason for the association of PC1 with 

strabismus. Furthermore, an analysis that included “northing” and “easting” 

coordinates, corresponding to each participant place of birth, did not appreciably 

attenuate the association of PC1 with strabismus (OR = 1.14; p = 9.77E-03). PC1 

differentiates the ethnic backgrounds of individuals, and natural selection pressure 

has a strong effect on genetically distinct subgroupings across the world. The lead 

genetic variant rs75078292 at the NPLOC4-TSPAN10-PDE6G locus of chromosome 17 

is associated with hair and skin pigmentation (Wollstein et al. 2017). Since 

pigmentation traits have been under strong selection pressure during human 

evolution, rs75078292 was also included as a covariate in the analysis; however, the 

association of PC1 still minimally affected (OR = 1.14, 95% CI = 1.04-1.26, p = 5.11E-
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03). The association of PC1 with strabismus was robust, but the reason for the 

association could not be identified. 

 

Lambda-GC quantifies the inflation in the test statistics from non-associated markers, 

relative to the expectation under the null hypothesis for either the median (Devlin 

and Roeder 1999), or mean (Reich and Goldstein 2001) of the chi-squared 

distribution. The factor ‘0.4549’ is the median and mean of the one-degree-of-

freedom chi-squared distribution. Therefore, the lambda-GC inflation factor is 

calculated as the median of the observed chi-squared statistics divided by 0.4549 

(Devlin and Roeder 1999). Previous studies revealed high variability of lambda-GC 

when few SNPs are genotyped, while its variability decreases substantially at higher 

numbers of SNPs (Dadd et al. 2009). The small sample property was found to 

increase the type 1 error of testing for association, while the anti-conservative and 

conservative behaviour depended on parameters such as sample size imbalance 

between groups and the presence of population stratification (Dadd et al. 2009). A 

more conservative pattern was frequently identified under conditions with lower 

case-control sample size mismatch and an absence of population stratification, 

especially when relatively few SNPs were included in the GWAS (Dadd et al. 2009). In 

my study, the low lambda-GC may have resulted from high variability of the test due 

to the low number of the STRs included in my analysis, along with linkage 

disequilibrium between variants. The sample selection criteria can impact the case-

control sample size mismatch and the level of population stratification. Therefore, 

the conservative lambda-GC value in my study for the association of self-reported 

strabismus with genotyped STRs is consistent with a low level of population 

stratification.  

 

A previous study in UK Biobank found the NPLOC4-TSPAN10-PDE6G gene cluster was 

associated with the risk of strabismus, and the finding was replicated in a sample of 

7-year-old children with clinician-diagnosed strabismus (Plotnikov et al. 2019); 20 
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SNPs within the gene cluster were found in nearly perfect linkage disequilibrium, and 

two SNPs in TSPAN10, a missense variant rs6420484 and a 4-bp deletion variant 

rs397693108, were predicted to have functional influence (Plotnikov et al. 2019). 

Another study involving a large adult population sample from Finland replicated the 

association of the NPLOC4-TSPAN10-PDE6G with both convergent and divergent 

strabismus (Plotnikov et al. 2022). In the current study, rs75078292, the lead variant 

in the NPLOC4-TSPAN10-PDE6G gene cluster (Plotnikov et al. 2019) was included as a 

covariate in conditional logistic regression analyses, to analyze the association of 

STRs with strabismus independently of the known association. The only STR in 

linkage disequilibrium with rs75078292 was not significantly associated with self-

reported strabismus, suggesting that an exonic STR is unlikely to drive the association 

with strabismus at this locus. 

 

Future studies of additional samples are needed to replicate and extend the existing 

results, especially samples for which strabismus has been clinically diagnosed during 

childhood. These future studies should evaluate if STRs on all human chromosomes, 

not just chromosome 17, are associated with strabismus. These studies should also 

examine the association in other ethnicities, and confirm their potential inheritance 

patterns. Studies with a larger sample size are necessary to determine if 

Human_STR_584893 is associated with strabismus case-control status.  
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Chapter 4. Genome-wide Association 
Study for High Myopia 
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4.1. Introduction 

 

High myopia is an extreme type of myopia, defined as a refractive error of less than -

6.00 diopters (D) or an axial length longer than 26mm (Young et al. 1998b). The axial 

length is the distance from the corneal surface to the retina  (Hitzenberger 1991; 

Schmid et al. 1996). The average axial length for a human emmetropic eye is about 

23.5mm (Gordon and Donzis 1985). Eyeballs with more myopic spherical equivalent 

have longer axial lengths (r = −0.90, p < 0.001), while the corneal curvature is flatter 

in eyes with longer axial lengths (r = -0.22, p=0.003) (Schmid et al. 1996). The average 

axial length for a human emmetropic eye is about 23.5mm (Gordon and Donzis 

1985). Eyeballs with more myopic spherical equivalent had longer axial length (r = 

−0.90, p < 0.001) and decreased endothelial density (r = 0.20, p = 0.037), while the 

corneal curvature was flatter in eyes with longer axial length (r = -0.22, 

p=0.003)(Schmid et al. 1996). The prevalence of myopia is showing an increasing 

trend all over the world, especially in East Asia, affecting as many as 90% of those of 

school-leaving age (Vitale et al. 2009; Morgan et al. 2012; Williams et al. 2015). The 

current trend predicts the number of people affected by myopia will increase from 

1.4 billion to 5 billion by 2050, affecting about half of the world’s population, and 

almost 10% of the affected people will get high myopia (Holden et al. 2016). The 

elongated axial length increases the risk of complications, such as retinal 

detachment, glaucoma, and myopic macular degeneration. These complications can 

further cause blindness due to high myopia (Saw et al. 2005; Fujimoto et al. 2010; 

Verhoeven et al. 2015). 

 

Population-based epidemiological studies have identified a significant influence of 

genetic factors on myopia onset and progression. The broad-sense heritability 

measures the proportion of variance in a trait that is attributed to genetic variance. 

The broad-sense heritability may also capture effects relating to gene-by-gene 
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interaction or gene-by-environment interaction. However, it is generally not the best 

predictor of the level of resemblance of offspring and their parents. Instead, the 

narrow-sense heritability is defined as the fraction of variance in a trait that can be 

attributed to ‘additive’ genetic variance. The narrow-sense heritability is used to 

measure how variation among individuals is influenced by genetic differences that 

are, on average, passed from parents to offspring. The broad-sense heritability is 

commonly estimated in twin studies, while narrow-sense heritability can be assessed 

in family-based samples. Both approaches require simplifying assumptions to be 

made, such as ignoring assortative mating.  

 

In large-scale twin studies, the heritability of myopia has been estimated to be up to 

90% (Hammond et al. 2001; Lyhne et al. 2001). This high heritability estimate in twin 

studies can be attributed to the limited environmental variation within twin pairs, 

combined with the method’s underlying assumptions, for example, the assumption 

that twins share a common environment. Studies have also investigated the 

heritability of high myopia, as a binary phenotype, and GWAS analyses for high 

myopia have also been reported, as discussed below. 

 

A GWAS for high myopia identified 6 associated loci in an East and Southeast Asian 

population (Meguro et al. 2020). This study also highlighted the role of the nervous 

system in its pathogenesis. A meta-analysis study that combined six case-control 

association studies found that SNP rs644242 in the PAX6 gene had a suggestive 

association with high myopia (Tang et al. 2014). However, the inheritance pattern of 

high myopia has a more complex pattern than expected for a monogenic trait. High 

penetrance autosomal dominant loci were reported to make a contribution to cases 

of high myopia (Farbrother et al. 2004). A strong association was found between high 

myopia in parents and the onset of myopia in children, while in siblings there was a 

weaker association with the level of myopia and no effect on the age-of-onset of 

myopia (Liang et al. 2004). It may be that high myopia clusters in families to a greater 
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extent than moderate myopia: the familial aggregation of high myopia can be 

explained by the autosomal dominant inheritance pattern in several chromosome 

loci identified in genetic linkage analysis(Young et al. 1998a; Naiglin et al. 2002; Lam 

et al. 2003; Paluru et al. 2003b). Guggenheim et al. (2000) calculated the recurrence-

risk ratio of high myopia in siblings to be s = 20, in a population-based sample of 

Danish teenagers. Farbrother et al. (2004) estimated s = 4.9 (95% CI: 2.8 – 7.6) 

based on the presence of high myopia among siblings through a questionnaire, which 

surveyed the age of onset of spectacle wear of 9.1 years or younger. The 

inconsistency of heritability among studies of makes it necessary to consider high 

myopia as a ‘complex trait’. In general, linear regression analysis is a more powerful 

tool for quantitative traits. However, a violation of the assumption of linear 

relationship between genetic variants and trait affects the accuracy of the 

estimation.  When the linear assumption is incorrect – for example a threshold-

related relationship – a case-control logistic regression could potentially offer higher 

power than a linear regression analysis. 

 

Gene-gene interactions and gene-environment interactions are also implicated in 

myopia pathogenesis. Although myopia usually exhibits familial aggregation (Lee et 

al. 2001; Wojciechowski et al. 2005; Fotouhi et al. 2007), genetic factors alone are 

unable to account for the rapid increase in the prevalence of myopia over the past 

few decades. Epidemiological studies have identified the environmental effects 

associated with myopia, such as insufficient outdoor activities, excessive near work, 

more time spent in education, and high socioeconomic status  (Wong et al. 2002; 

Rose et al. 2008; He et al. 2015; Mountjoy et al. 2018). Multiple lines of evidence for 

gene-gene or gene-environment interactions in myopia pathogenesis have been 

identified in the previous studies (Verhoeven et al. 2013a; Fan et al. 2014; 

Tkatchenko et al. 2015; Pozarickij et al. 2019). 

 

To date, 25 myopia loci have been identified via linkage analyses, and multiple 
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candidate genes inside the linkage interval have been analyzed (Table 1.2). In recent 

years, a large number of genome-wide association studies (GWASs) and a series of 

follow-up association studies have been conducted in different ethnic population (Cai 

et al. 2019). Single nucleotide polymorphisms are the dominant genetic variants in 

these studies. The association of numerous variants with myopia-related phenotypic 

traits, such as refractive error, axial length, and macular thickness, have been 

repeatedly found (Kiefer et al. 2013; Verhoeven et al. 2013a; Shah et al. 2018). 

 

In this study, an assumption of the high myopia case-control study was that the 

associated genetic variants have effects on the trait (refractive error) of the same 

magnitude, irrespective of other variants and other causal factors. This assumption 

implied, for example, that a specific genetic variant associated with a -2.00 D shift in 

refractive error in a person who would otherwise have been emmetropic, would also 

shift refractive error in the direction of myopia by -2.00 D in a person who would 

otherwise be a +3.00 D hyperope. Therefore, by selecting participants with hyperopia 

as controls, rather than participants with emmetropia, the difference in phenotype 

between the case and control group was more extreme. This provided greater 

statistical power than an analysis of high myopia cases versus emmetropic controls, if 

the assumption was correct. Since the nature of the trait was binary, logistic 

regression was chosen as the statistical model for the association study. 

 

STR expansions are difficult to detect and may explain part of the “missing 

heritability” of high myopia. STRs may vary in length at the level of the individual 

patient and be subject to distinct selective pressures (Wren et al. 2000; Hannan 

2018). The high variability of tandem repeats has been attributed to events including 

strand-slippage during replication (Pumpernik et al. 2008), retrotransposition 

(Sulovari et al. 2019), unequal crossing over in meiosis (Gwiazda et al. 2000), and 

issues in DNA repair (Usdin et al. 2015). STR length variation is identifiable but not 

commonly analyzed in short-read whole-genome sequencing or whole-exome 
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sequencing data. In this study, I used the same bioinformatic methods described in 

Chapter 3 to extract the STR length information from WES data for UK Biobank 

participants. The STR genotype information was analysed to investigate the 

association of STR length with high myopia. 

 

4.2. Methods 

 

4.2.1. Selection of Participants 

 

The GWAS and subsequent analyses were restricted to unrelated UK Biobank 

participants of European ancestry who were part of the October 2020 (WES 200k) 

data release. The genetic ancestry principal components provided by Bycroft et al. 

(2018) were used to define a cluster of individuals with European ancestry. 

Participants whose genetic ancestry PCs did not cluster with Europeans were 

excluded. Only individuals who did not withdraw their consent were studied. 

Moreover, participants with a mismatch between their self-reported and genetically-

inferred sex, or whose imputed genotype data showed high heterogeneity 

(heterozygosity >4 standard deviations from the mean level), were also excluded. 

Genetic markers were genotyped with either the UK BiLEVE and UK Biobank Axiom 

Array. Only variants that present on both arrays were retained (Bycroft et al. 2018). 

The markers that failed in more than one batch, had a greater than 5% overall 

missing rate, or had a MAF < 0.0001 were excluded (Bycroft et al. 2018). Samples 

that were identified as outliers for heterozygosity or missing rate were also excluded 

(Bycroft et al. 2018). Genotypes of the individuals were imputed into the dataset 

using the IMPUTE4 software, with a combined Haplotype Reference Consortium 

(HRC) and UK10K haplotype reference panel (Bycroft et al. 2018). The reference 

panel included approximately 96 million variants (in GRCh37 coordinates). The 

imputed genotypes were aligned to the positive strand of the reference strand, and 
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imputation was carried out in chunks of approximately 50,000 imputed markers, with 

a 250 kb buffer region and on 5,000 samples at a time (Bycroft et al. 2018). After 

applying these filters, there were n=163,340 individuals remaining. Next, participants 

who self-reported a history of eye trauma resulting in loss of vision, cataract surgery, 

laser eye surgery or corneal graft surgery were excluded, as were individuals whose 

hospital records (ICD10 codes) indicated a history of cataract surgery, eye surgery, 

retinal surgery, or retinal detachment surgery. Participants without a valid mean 

spherical equivalent autorefraction measurement or who were recruited from a UK 

Biobank Assessment Center at which the number of the valid samples was less than 

50 were also excluded. After applying these criteria, there were 54,204 individuals 

remaining.  

 

Then, individuals who had an average mean spherical equivalent refractive error for 

their two eyes of  -6.00 diopters or ≥ +2.00 diopters were classified as high myopia 

“cases” and moderate hyperopia “controls”, respectively. This resulted in a sample of 

n=2,005 high myopia “cases” and n=6,928 high hyperopia “controls”. From amongst 

these remaining participants, the maximum sized set of unrelated participants was 

selected using the method of Bycroft et al. (2018). This led to a final sample 

comprising of 2,002 cases and 6,806 controls (Fig. 4.1). 
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Fig. 4.1 Flow diagram illustrating the selection of UK Biobank participants for the 

GWAS sample. 
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4.2.2. Selection of STRs that could be genotyped reliably 

 

The Genome Reference Consortium Human Build 38 (GRCh38) reference panel 

includes 1,638,945 STRs across all 22 autosomal chromosomes and the X 

chromosome. As described in section 3.2.2., a two-step process was developed to 

identify and genotype STRs located within the sequenced regions in the UK Biobank 

WES data. In the first step, the HipSTR program was used to evaluate all 1,638,945 

candidate STRs in a subsample of n=200 randomly selected participants from the full 

sample of 8,808 individuals. To facilitate parallel computation, the 1,638,945 STRs 

were split into 16,240 groups, each containing 100 STRs (except for 23 groups 

containing the last set of STRs on each chromosome). The first step identified 22,711 

STRs that could be successfully genotyped using WES data from UK Biobank 

participants. In the second step, these 22,711 STRs were genotyped in the full 

sample of 8,808 participants. Since a large number of STRs were genotyped in the 

second step, this step was parallelized as well. Candidate STRs were split into 255 

groups, each containing 100 STRs except for 23 groups containing the last set of STRs 

on each chromosome. 

 

The HipSTR program (Willems et al., 2017) was used for STR genotyping. Genetic data 

for the 8,808 UK Biobank participants was input to HipSTR in CRAM format (--bam-

files command in HipSTR), alongside a reference assembly GRCh38 (--fasta command 

in HipSTR). In order to reduce the chance of any genotyping errors, a sufficient 

coverage of each STR was set. In the first step of the 2-step strategy, STRs genotyped 

by HipSTR in the sample of 200 participants were required to have a minimum of 

1,000 reads (equivalent to 5 reads per participant) and a maximum of 90,000 reads 

(equivalent to 450 reads per participant). Therefore, in the second step, since the 

number of samples was larger, the variation of STR coverage was larger as well. In 

order to successfully obtain genotype information in the larger sample, the above 

thresholds were loosened. Specifically, for step 2, genotyped STRs were required to 
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have a minimum of 4,200 reads (equivalent to 0.48 reads per participant) and a 

maximum of 4,200,000 (equivalent to 480 reads per participant). 

 

 

4.2.3. Genome-wide Association Study for High Myopia 

 

A genetic association study for high myopia was carried out in the sample of 2,002 

cases and 6,806 controls. A total of 15,568 STRs (from the total of 22,403 STRs on the 

22 autosomal chromosomes and X chromosome that could be successfully 

genotyped) were tested for association with high myopia by using logistic regression. 

The remainder of the STRs exhibited no variation in allele length in this cohort, i.e. 

they were monomorphic, or they were located outside of exons and therefore could 

not be genotyped. The average length of the two alleles of each STR genotype was 

used as the STR predictor variable. Sex, age, age-squared, and the first 10 ancestry 

principal components were included as covariates. Logistic regression models were 

fitted using the glm function in R. This approach of using the average length of an 

STR in a regression analysis was described in section 3.2.3. 

 

In order to increase the power of the genome-wide association study, I estimated the 

error rates of the STRs by examining the genotype calls of STRs located on 

chromosome X in males. Based on logic, if the STRs are genotyped accurately, all the 

alleles on chromosome X should be called as homozygous in males. Hence, the 

heterozygous allele calls can be directly attributed to the error generated during the 

genotyping procedure. (However, as discussed in section 4.4, this approach has 

limitations as a method for assessing the genotyping error rate).  

 

Weighted Bonferroni correction was applied to the p-values from the logistic 

regression. As with a conventional Bonferroni correction, a weighted Bonferroni 

correction will control the experiment-wise Type I error rate () due to multiple 
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testing. However, the weighted method offers greater statistical power compared to 

standard Bonferroni correction when tests can be grouped a priori as having a 

relatively higher or lower chance of success (Rubin et al. 2006; Wasserman and 

Roeder 2006). Because of the variable genotyping error rates identified for STRs with 

a motif length of 1 compared to STRs with longer motif lengths (see Results), STRs 

were separated into two groups: a single-basepair motif group and a multi-basepair 

motif group. The risk of a Type I error was expected to be higher among the single-

basepair motif group STRs due to their higher genotyping error rate compared to the 

multi-basepair motif group. Thus, the relative weights assigned during the multiple-

testing correction step were set as 0.75 and 0.25 (a 3:1 weighting) for the multi-base-

pair group and the single-base-pair group, respectively. (In other words, instead of 

following the convention of setting 𝛼 = 0.05 /𝑛 when testing all 𝑛 STRs, alpha was 

set as 𝛼 = 0.05 ×  𝑤𝑗/𝑛𝑗, where 𝑤𝑗 is the weighting factor for group j and 𝑛𝑗  is the 

number of STRs in group j, and ∑ 𝑤𝑗 = 1). For a conventional Bonferroni correction, 

the genome-wide significance threshold for testing 15,568 STRs would be p < 3.21e-

06 (=0.05/15,568). Here, the weighted Bonferroni correction approach set the 

genome-wide significance threshold as p < 1.53e-06 for the single-basepair motif 

group and p < 5.06e-06  for the multi-basepair motif group. The weighted Bonferroni 

correction is a robust procedure because the informative specification of the weights 

can increase power substantially, whereas the uninformative weighting results into 

little power loss for sparse weights (Roeder et al. 2006; Roeder and Wasserman 

2009). Note that the choice of a 3:1 weighting was chosen arbitrarily. 

 

 

4.2.4. Post-GWAS Analyses 

 

Two STRs associated with high myopia were identified in the current work: 

Human_STR_827099 on chromosome 2 and Human_STR_424816 on chromosome 

14. Conditional association tests were carried out to determine if these two STRs 
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were independently associated with high myopia after accounting for the association 

of nearby SNPs. For this test, a conditional logistic regression analysis was conducted. 

Imputed SNP genotypes for the 8,808 cases and controls were converted from BGEN 

format to “raw” (R-readable) dosage format using Plink2.0 (Chang et al. 2015) for 

20,854 SNPs around Human_STR_827099 (chr2: 232,943,615 – 233,543,615; GRCh37 

build coordinates) and 12,349 SNPs around Human_STR_424816 (chr14: 60,574,249 

– 61,174,249; GRCh37 build coordinates). The nearby SNPs were included with vs. 

without the lead STR in the conditional association test, with case-control status as 

the outcome. Age, age-squared, sex, and the first 10 principal components were 

included as additional covariates. 

 

 

4.3. Results 

 

4.3.1. Validation of High Myopia and Hyperopia in UK Biobank Cohort 

 

Among the 8.808 case and control participants, the cases with high myopia had a 

5.1-fold lower prevalence of self-reported unilateral amblyopia, a 1.6-fold higher 

prevalence of 1.00 D or more anisometropia, and an 8.2-fold lower prevalence of 

self-reported strabismus compared to controls (Table 4.1; Fig. 4.2). Moreover, 

individuals in the case group had a higher prevalence of early age-of-onset of 

wearing glasses (age started wearing glasses ≤7 years): 25.1% vs. 18.5% in cases vs. 

controls). Furthermore, a 1.5-fold lower proportion of cases had a large difference of 

visual acuity between both eyes (visual acuity difference ≥2/0 logMAR in both eyes): 

18.6% vs. 27.2%. The sex and age of cases and controls also differed subtly between 

cases and controls, while their Townsend Deprivation Index, a measurement of 

socioeconomic status, did not show a significant difference (-1.95 vs. -2.14; p= 0.41).     

The self-reported    strabismus showed a significant difference between case and 



107 

 

control group (1.0% vs. 8.2%; p<2.2E-16), which was identical to the strabismus 

study in section 3. This information was provided in order to provide consistency 

between the chapter on Strabismus and the chapter on Myopia case-control status. 
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Table 4.1 Demographic and ocular characteristics of the UK Biobank strabismus case-control sample 

Variable Statistic 
Total 

(n=8,808) 

Cases 

(n=2,002) 

Controls 

(n=6,806) 
p-value 

Female N (%) 4,945 (56.1%) 1,182 (59.0%) 3,763 (55.3%) 3.2E-03 

Self-reported unilateral amblyopia N (%) 1,008 (11.7%) 57 (2.8%) 971 (14.3%) 3.2E-44 

Both eyes VA ≤0.0 logMAR N (%) 3,299 (37.9%) 751 (38.0%) 2,548 (37.8%) 0.93 

VA difference ≥0.2 logMAR N (%) 2,178 (25.2%) 363 (18.6%) 1,815 (27.2%) 2.7E-14 

Better VA≤0.0; VA difference≥ 0.2 N (%) 1,481 (17.2%) 227 (11.6%) 1,254 (18.8%) 2.8E-13 

Anisometropia≥ 1.00 D N (%) 2,725 (31.0%) 879 (43.9%) 1,846 (27.1%) 4.3E-46 

Anisometropia≥ 2.00 D N (%) 1,176 (13.4%) 359 (18.0%) 817 (12.0%) 9.3E-12 

Self-reported strabismus N (%) 579 (6.6%) 21 (1.0%) 558 (8.2%) <2.2E-16 

Age (years) Median (IQR) 62.1 (55.8 to 60.2) 56.2 (49.3 to 55.6) 63.2 (58.4 to 61.6) <2.2E-16 

Refractive error (D) average of 2 eyes Median (IQR) +2.60 (2.04 to 3.62) -7.48 (-8.95 to 6.67) 2.95 (2.39 to 4.01) <2.2E-16 

Anisometropia (D) Median (IQR) 0.57 (0.24 to 1.22) 0.87 (0.39 to 1.63) 0.51 (0.21 to 1.07) <2.2E-16 

Age started wearing glasses (years) Median (IQR) 20.00 (9.00 to 43.00) 10.00 (7.00 to 13.00) 35.67 (11.00 to 45.00) <2.2E-16 

Townsend Deprivation Index Median (IQR) -2.09 (-3.56 to 0.39) -1.95 (-3.49 to 0.50) -2.14 (-3.58 to 0.33) 0.41 
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Fig. 4.2 Demography and clinical characteristics of cases and controls (n=2,002 

cases and n=6,806 controls). (A) Violin plot for the age of participants. (B) Bar chart 

for the percentage females. (C) Violin plot for the age-of-onset wearing glasses. (D) 

Bar chart for the percentage of anisometropia above 1.0 D. (E) Violin plot for 

anisometropia of participants. (F) Bar chart for the percentage of early age-of-onset 

of glasses. (G) Violin plot for Townsend Deprivation Index of participants. (H) Bar 

chart for the percentage of self-reported strabismus. (I) Bar chart for the percentage 

of amblyopia. Early age-of-onset of glasses was defined as ≤7 years. Bar chart error 

bars denote 95% confidence interval. Box plots are superimposed over the violin 

plots. 
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4.3.2. Calling Rate Assessments 

 

Only the successfully genotyped STR were included in the call rate assessment. After 

the two-step HipSTR genotyping process, 22,403 out of the total 1,638,945 STRs from 

the GRCh38 could be reliably genotyped. To study the association between a 

phenotype and STR genotypes, the STRs must be polymorphic. Surveying the number 

of alleles of each STR revealed that 19,850 out of the 22,403 STRs were polymorphic. 

The 2,553 monomorphic STRs were excluded from further analysis. 

 

Compared to the per-sample call rate, the per-STR call rate displayed relatively 

greater variation (Fig. 4.3A). Among the full set of 19,850 polymorphic genetic 

variants, 15,568 STRs had a per-STR call rate above 95%, while 2,229 STRs had a per-

STR call rate lower than 90%. The 15,568 STRs with per-STR call rate above 95% were 

taken forward for use in the GWAS analysis. 

 

After the exclusion of STRs with a per-STR call rate <95%, the per-sample call rate was 

examined in the set of 8,808 participants. The per-sample call rate exhibited lower 

variation (F = 2.2E-3, p < 2.2E-16; Fig. 4.3B) but a higher average level compared to 

the per-STR call rate (98.8% vs. 95.0%, t = 46.3, p < 2.2E-16). 8,807 samples had a call 

rate greater than 95%, and all 8,808 samples had a call rate greater than 93%. To 

keep the maximum power of the further statistical analysis, all 8,808 samples were 

included in the further study. 
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Fig. 4.3 Histogram of per-STR and per-sample call rates. (A) Distribution of per-STR 

call rate for 19,850 STRs located across 22 autosomes and chromosome X. (B) 

Distribution of per-sample call rate for 8,808 individuals (after the exclusion of STRs 

with a per-STR call rate <95%). 

A B 
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Further analysis revealed that the 19,850 STRs were located both inside and outside 

exon regions: 6,620 STRs were located within exons and 13,230 were situated 

outside exon regions. Read coverage was also considered, i.e. how many reads were 

obtained for each sample on average. Unexpectedly, the average per-STR call rate of 

STRs in exon regions was lower than the call rate of STRs located outside exons: 

inside vs. outside mean call rate = 0.94 vs. 0.96, respectively, p < 2.2E-16; Fig. 4.4 A. 

However, the mean read count for STRs within exon regions was significantly higher 

than for those outside exon regions: inside vs. outside mean read count = 56.3 vs. 

25.7, p < 2.2E-16 (Fig. 4.4 B), suggesting the genotype results of STRs in the exon 

regions may be more reliable. Shapiro-Wilk’s test revealed the distribution of call 

rates was non-normal (p < 2.2E-16); therefore, the correlation between call rates and 

read counts was estimated with Spearman’s rank correlation coefficient. This 

revealed a negative correlation between ranks of call rates and ranks of read counts 

(𝜌 = -0.10, p < 2.2E-16; Fig. 4.5 A), but the fact that the correlation coefficient was 

close to zero indicated that the correlated trend was not very strong.  

 

The relationship between the call rate and other STR features was also studied. Since 

the distribution of call rates was non-normal, the call rate for the groups by the 

length of the motif was compared using the Kruskal-Wallis rank sum test. A 

significant difference in the mean call rate was found (p < 2.2E-16; Fig. 4.4 C). The 5-

bp motif group had a lowest call rate (92.5%), while the 2-bp motif group had the 

highest call rate (96.5%). The 5-bp motif group had a significantly different mean call 

rate compared to the other motif groups (Wilcoxon rank sum test p1,5 = 5.5E-9, p2,5 

= 7.2E-3, p3,6 < 2.2E-16, p4,5 = 4.0E-11, p5,6 = 3.3E-09). Meanwhile, the mean read 

count per sample for groups by the length of motif was also compared using the 

Kruskal-Wallis rank sum test. A significant difference in the mean call rate was found 

(p < 2.2E-16; Fig. 4.4 D). The 3-bp motif group had the highest read count (70.0 

reads), and the 1-bp motif group had the lowest read count (24.6 reads).  
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Fig. 4.4 The quality of genotype information for 19,850 STRs. (A) The distribution of 

call rate versus functional region. (B) The distribution of read count versus functional 

region. (C) Graph of call rate versus motif length. Box plots are superimposed over 

the violin plots. (D) Graph of read count versus motif length. 
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Fig. 4.5 The quality of genotype information for 19,850 STRs (continued). (A) The 

relationship between call rate versus read count. (B) The relationship between call 

rate versus referenced number of repeats. (C) The relationship between read count 

A 

B 

C 
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A negative correlation was found between the call rate versus the observed number 

of repeats of STRs (𝜌 = -0.17, p < 2.2E-16; Fig. 4.5 B). A further negative correlation 

was found between the read count per sample versus the number of “referenced 

repeats”, which corresponds to the number of repeats in the GRCh38 reference 

genome (𝜌 = -0.15 p < 2.2E-16; Fig. 4.5 C). 

 

 

4.3.3. Estimation of the Genotyping Error Rate 

 

The genotyping error rate (the proportion of observed genotypes versus true 

genotypes) of genetic markers can be adversely affected by various causes (Bonin et 

al. 2004). Here, the genotyping error rate of the STRs was estimated by quantifying 

the rate of heterozygous genotype calls for alleles on chromosome X among male 

individuals. Because alleles on chromosome X should always be called as 

homozygous in males, every heterozygous call indicates a genotyping error. 

 

The average heterozygous genotype call rate was calculated for alleles grouped by 

motif length (Table 4.2; Fig. 4.6). The 1-bp motif group had the highest error rate, 

which was significantly higher than the other groups (t-test p1,2 < 2.2E-16, p1,3 < 

2.2E-16, p1,4 < 2.2E-16, p1,5 < 2.2 E-16, p1,6 =1E-14 ). Meanwhile, the error rate of 

the 2-bp motif group was significantly higher than the 3-bp and 4-bp motif groups (t-

test p2,3 < 7.3E-4, p2,4 < 9.1E-3). 

versus referenced number of repeats. Different colors represent different functional 

regions. 
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Table 4.2 Heterogeneous rate for STRs on chromosome X within male individuals 

Length of motif Number Heterozygous call rate (%) 95% C.I. 

1 234 26.5 24.6,28.5 

2 92 7.8 5.9,9.7 

3 92 2.1 1.5,2.6 

4 48 2.5 1.6,3.3 

5 23 4.6 1.2,8.0 

6 20 5.2 0.2,10.2 

Abbreviations: Number = number of STRs; 95% C.I. = 95% confidence interval. 

 

 

 

 

 

Fig. 4.6 Bar plots for the error rates versus length of motif on chromosome X. The 

error bars of the bar plots represent the 95% confidence interval. 
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4.3.4. STR-based GWAS for high myopia case-control status 

 

A logistic regression analysis testing for association of the high myopia case-control 

status and the average length of the 2 STR alleles carried by each participant was 

carried out. The GWAS included the 15,568 polymorphic STRs with a per-STR call 

rate >95% that were distributed across all 22 autosomal chromosomes and the X 

chromosome. A weighted Bonferroni correction method was applied; the overall 

alpha for Bonferroni correction is 𝛼 = 0.05 /𝑛 = 3.21E−06, where 𝑛  is the number of 

the STRs (𝑛 =15,568). The numbers of STRs with single-bp and multi-bp motifs was 

8,156 and 7,412, respectively. After applying a weighting scheme of 3:1 to the multi-

bp motif group and the 1-bp motif group, the p-value thresholds for declaring 

statistical significance were set as:  𝛼 =1.53E-06 for the 1-bp motif STRs, and 𝛼 = 

5.05E-06 for the multi-bp motif STRs.  

 

The GWAS identified two STRs that were significantly associated with high myopia 

case-control status: STRs Human_STR_827099, OR = 0.67 (95% CI = 0.57 to 0.79, p = 

6.5E-07) and Human_STR_424816, OR = 0.69 (95% CI = 0.59 to 0.80, p = 1.5E-06), 

located on chromosomes 2 and 14, respectively (Table 4.3; Fig. 4.7). Focusing on the 

covariates, a negative association with high myopia was identified for age: OR = 0.36 

(95% CI = 0.33 to 0.39, p < 2.2E-16) and age-squared: OR = 0.19 (95% CI = 0.74 to 

0.84, p = 1.0E-11).  

 

In order to check for systematic bias due to population stratification, the genomic 

inflation factor (𝜆𝐺𝐶) was calculated. There was no evidence of population 

stratification (𝜆𝐺𝐶 = 0.87). A Q-Q plot is presented in Fig. 4.8. 
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Fig. 4.7 Manhattan plot for STR-based GWAS for high myopia case-control status. 

 

 

 

 

 

Fig. 4.8 Quantile-quantile (Q-Q) plot for p-value of logistic regression analysis. The 

x-coordinate denotes the theoretical quantile for a uniform distribution, and y-

coordinate denotes the observational sample quantile distribution. The blue shaded 

region denotes the confidence interval of the theoretical distribution. 
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Table 4.3 Lead STR variants associated with high myopia case-control status 

STR CHR Start End Motif Repeats p-value 

Human_STR_827099 2 233,243,615 233,243,630 AC 8.0 1.5E-06 

Human_STR_424816 14 60,864,407 60,864,417 A 11.0 6.5E-07 

Abbreviations: CHR: chromosome; Start: the starting locations for the STRs in the 

GRCh37 build; End: the ending locations for the STRs in the GRCh37 build; Repeats: 

the number of repeats of the motif in the reference exome library. 
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4.3.5. Regional GWAS analysis on chromosomes 2 and 14  

 

The Human_STR_827099 variant is located in the first intron of the ALPP gene, and 

the repeat has a repetitive ‘AC’ motif (except the insertion of adenine in the fifth 

nucleotide position). Hence, the repeat would not be expected to change the amino 

acid sequence of the gene or block RNA polymerase binding sites. The product of the 

ALPP gene is alkaline phosphatase, which can hydrolyze various phosphate 

compounds. Alkaline phosphatase is the isozyme that exists in the placental of most 

mammals; also, it exists at high concentrations in the liver and bones. No publication 

to date has reported a link between ALPP and myopia or refractive error.  

 

The most common minor allele of Human_STR_827099 has one more repeated ‘AC’ 

motif than the GRCh38 reference allele. There is no accessible record of the minor 

allele frequency of this variant in genetic libraries. In the 6806 controls with 

European ancestry, the frequency of this 1-motif expanded allele is 0.087, which is 

within the class of 'common variant’. 

 

The Human_STR_424816 variant is located in the tenth intron of the RBM8B 

pseudogene. The GRCh38 reference allele has 11 repeats of an 'A' motif. RBM8B 

codes for the RNA binding motif protein 8B pseudogene. The highly conserved RNA-

binding motif protein produced by the RBM8B gene was found to interact with 

OVCA1, a candidate tumour suppressor (Salicioni et al. 2000). 

 

The most common minor allele of Human_STR_424816 has one less ‘A’ repeat than 

the GRCh38 reference allele. There is no accessible record of the minor allele 

frequency of this variant in genetic libraries. In the 6806 controls with European 

ancestry, the frequency of this 1-motif expanded allele is 0.21, which is also within 

the class of 'common variant’. 
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Linkage disequilibrium between the two STRs and nearby SNPs known to be 

associated with refractive error was examined. Guggenheim et al. (2022) identified 

SNPs in the PRSS56 gene, predicted to have functional consequences, that were 

associated with refractive error in GWAS studies. Human_STR_827099 is located 

approximately 1Mb downstream of the PRSS56 gene. Similarly, Guggenheim et al. 

(2022) also reported functional SNPs in the SIX6 gene associated with refractive 

error. The Human_STR_424816 variant is located 400kb downstream of SIX6. Given 

the proximity of the physical location of these two STRs to known refractive error 

candidate genes PRSS56 and SIX6, the extent of linkage equilibrium and further 

conditional association analysis were performed. 

 

The independent roles of the STRs and the nearby genes onto the refractive error 

was examined. Guggenheim et al. (2022) reported functional annotation SNPs in the 

PRSS56 gene, which was identified the link to the refractive error. The location of the 

Human_STR_827099 variant is within 1Mb downstream of PRSS56 gene. Similarly, 

functional annotation SNPs in SIX6 gene was identified the association with refractive 

error. The location of the Human_STR_424816 variant is within 400kb downstream of 

SIX6 gene. Given the proximity of the physical location on the chromosome 2, the 

extent of linkage equilibrium and further conditional association analysis were 

applied. 

 

The independence of the relationship with high myopia case-control status between 

each lead STR and nearby SNPs was tested by performing a conditional analysis. 

Regional conditional GWAS analyses were performed for regions spanning ±300 kb 

from the lead STRs. To provide a high SNP density for the regional GWAS analyses, 

the SNPs were imported from the UK Biobank imputed SNP dataset, which gave an 

increased number of SNPs for the regional conditional analysis. The same GWAS 

parameters for SNPs and covariates were adopted as in the original GWAS except 

that the genotype of the lead STR was included as an additional covariate. The 
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Liftover program was used to convert between GRCh37 genomic coordinates 

(imputed genotypes) and GRCh38 genomic coordinates (WES genotypes). 

 

A conditional analysis was performed for all SNPs located ±300 kb from the lead 

STR. 20,854 SNPs near the STR Human_STR_827099 and 12,349 SNPs near the STR 

Human_STR_424816 were included in the conditional analyses. The LD between 

each SNP and the lead STRs was calculated as the correlation of the alleles.  For both 

loci, the conditional analysis that included the lead STR produced a clear increase of 

the p-values for SNPs in LD with the lead STR, whereas the other SNPs retained their 

original p-values for association (Fig. 4.9). The change in p-value for the lead 

independent SNPs are listed in Table 4.4. 

 

Because of the different approaches of representing the genotype of alleles, the p-

values for SNPs and lead STRs are not directly comparable by the current method. 

Further study will be required to determine if the two lead STRs influence refractive 

development directly or if they tag the causal variant(s) in these regions. 
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Fig. 4.9 Regional association plot for SNPs in the region of strongest association, 

before and after conditioning on the lead STR. Panel (A) and (B) before and after 

conditioning on Human_STR_827099 (chromosome 2). Panel (C) and (D) before and 

after conditioning on the lead STR Human_STR_424816 (chromosome 14). The lead 

STR in the region is indicated by a purple diamond. In the conditional analysis, the 

average allele length of the lead STR was included as a covariate in the logistic 

regression model, along with the baseline covariates. If the inclusion of the STR 

genotype in the conditional analysis has minimal impact on the strength of 

association for the lead SNP (i.e. the p-value for the SNP remains similar in the 

baseline and conditional analyses), then this implies that the association of the SNP 

and the trait is independent of the STR genotype. By contrast, if the inclusion of the 

STR genotype in the conditional analysis has a major impact on the strength of 

association for the lead SNP (i.e. the p-value for the SNP is shifted towards the null), 

this implies that the SNP and the STR are surrogates for each other and thus that 

they are not independently associated with the trait. 

 

A B 

D C 
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Table 4.4 Conditional analysis results for the lead SNPs 

Nearest 

Gene 
Variant rsID MAF Puncond Pcond LD (r2) 

PRSS56 2:232520686:G:A rs1550094 0.334 2.5E-18 1.2E-16 0.078 

PRSS56 2:232378227:T:C rs3762525 0.10 7.6E-07 0.99 0.98 

SIX6 14:60509783:G:A rs146737847 0.007 2.3E-08 1.1E-08 0.001 

SIX6 14:60397688:TA:T rs111689247 0.10 6.9E-05 0.20 0.82 

Abbreviations: Variant = Chr:Pos:Ref:Alt Genomic position in GRCh38 coordinates; 

MAF=Minor allele frequency; Puncond = p-value of unconditional analysis; Pcond = p-

value of conditional analysis; LD = linkage disequilibrium. 
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4.4. Discussion 

 

This exome-wide STR-based association study revealed an association between high 

myopia case-control status and specific STR polymorphisms located near to the 

PRSS56 and SIX6 genes. In a SNP-based analysis of WES data from UK Biobank 

participants, Guggenheim et al. (2022) identified two independent signals in both 

PRSS56 and SIX6, which were inferred to be driven by different casual variants. The 

conditional analysis in my current study found the same signals as the Guggenheim 

et al. study, but using STRs as innovative genetic markers. As described above, a 

change of p-value for the SNP-trait association in the baseline vs. conditional analysis 

suggests there is a dependent relationship (LD) between the lead SNP and the lead 

STR. However, due to the complexity of performing a statistical test of association for 

a multi-alleleic STR – compared to the simplicity of testing for association with a 

biallelic SNP – the p-values quantifying the strength of association for STRs and SNPs 

are not directly comparable. In other words, these p-values are an imperfect guide to 

the relative importance of the strength of the STR-trait and SNP-trait associations. 

The presence of both SNPs and STRs in high LD nearby the PRSS56 and SIX6 genes 

made it difficult to pinpoint the most likely causal variants in these regions. Further 

studies will be required to find out if the STRs influence refractive development 

directly or if they tag the causal variants in these regions.  

 

The difference for the setting of the minimum reads in the two-step HipSTR was 

based on empirical optimisation. In these optimisation trials, the proportion of STRs 

that could be genotyped at scale in step 2 was compared to the number that were 

genotyped in step 1. Variability in the reads-per-sample across the large sample 

included in step 2 was reasoned to explain the inconsistency of this step. The 

numbers of STRs after the genotyping process was 1,197 on chromosome 17, which 

was consistent with the number of variants after the genotyping in the strabismus 
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study (section 3.3.2). These findings suggest that the more lenient threshold for the 

minimum reads-per-sample in step 2 did not adversely affect the accuracy of the 

genotyping process.  

 

In this study, genotyping accuracy was accessed by using the heterozygous call rate 

for STRs on chromosome X in males. However, this method could underestimate the 

true error rate of genotyping on the autosomal chromosomes, because it would not 

capture all sources of genotyping error (e.g. calling heterozygous genotypes is likely 

to be more challenging than calling homozygous genotypes when the read count is 

low). Interestingly, the current analysis revealed only a weak relationship between 

genotyping accuracy and read depth. Typically, for STRs with more reads, one would 

expect the genotyping accuracy to be higher and vice versa. For the male samples, 

the number of reads for each STR on chromosome X was approximately 0.5-fold 

lower than in females (26.4 vs. 46.1, p < 2.2E-16; Fig. 4.10 A). Thus, the genotyping 

accuracy is likely to be higher in females than males for STRs on chromosome X. On 

chromosome 1, by contrast, no significant difference in read count by sex was 

identified between male and female samples (41.8 vs. 40.4, p = 0.21; Fig. 4.10 B). 

Therefore, it is likely that the genotyping accuracy of chromosome X for the male 

samples is lower than the average level for the autosomal chromosomes. By 

manually checking the sequence reads on chromosome X, I found that many 

heterozygous genotype calls were derived from one single read error; with a larger 

read count, such isolated events are more likely to be interpretated as random noise.   
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Fig. 4.10 Histograms of read counts of STRs by sex. (A) The density of read counts   

of STRs on chromosome X. (B) The density of read counts of STRs on chromosome 1. 

A B 
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The choice of moderate-to-high hyperopes as controls in the current study was made 

based on the assumption that genetic susceptibility would be more easily identified 

in cases and controls with a more extreme difference in phenotype (compared to 

studying high myopia cases and emmetropic controls). Hyperopia and myopia 

represent the opposite arms of the refractive error distribution. Ocular structures 

such as the thickness of choroidal vascular bed and scleral coat (Sundin et al. 2005), 

also grow in the opposite way between myopes and hyperopes. Furthermore, 

previous genetic studies have yielded overlapping regions of association for 

hyperopia and myopia, providing justification for our method. For example, the 

15q14 locus (near GJD2) and the 8q12 were found to be associated with both myopia 

and hyperopia (Kiefer et al. 2013; Verhoeven et al. 2013b; Simpson et al. 2014). The 

direction of effect is exactly opposite in the myopia and hyperopia studies – 

suggesting the causal variants operating the mechanism on the whole spectrum of 

refractive error (Tideman et al. 2021). 

 

In each of the genes PRSS56 and SIX6, I identified two independent signals when 

studying both STRs and nearby SNPs. One signal was tagged by the lead STR 

associated with case-control status, while the second signal was tagged by variants 

not in LD with the lead STR. The same genetic architecture was identified by an 

independent SNP-based GWAS that included 51,624 unrelated adults of European 

ancestry from UK Biobank (Guggenheim et al. 2022). The lead variants overlapped 

between my regional analysis and the previous study (Tables 4.4 and 4.5). The similar 

findings have therefore confirmed the complex pattern of genetic association of 

PRSS56 and SIX6 and myopia, although as both studies examined data from UK 

Biobank, the similar results are not independent sources of evidence. 
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Table 4.5 Fine-mapping of GWAS regions identified using WES data, taken 

from the article by Guggenheim et al. (2022)  

Nearest Gene Variant rsID P MAF 

PRSS56 2:232520686:G:A rs1550094 1.21E-24 0.334 

PRSS56 2:232523470:G:T rs74703359 1.09E-07 0.002 

SIX6 14:60509783:G:A rs146737847 1.65E-16 0.007 

SIX6 14:60509819:C:A rs33912345 5.29E-11 0.387 

Abbreviations: Variant = Chr:Pos:Ref:Alt Genomic position in GRCh38 

coordinates; P = p-value of association with refractive error; MAF=Minor 

allele frequency 
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There is supporting evidence for a causal role for the secreted trypsin-like serine 

protease (encoded by the PRSS56 gene) in refractive error development. The gene 

was found to be highly expressed in ganglion cells of adult animals (Visscher et al. 

2017). Loss of function mutations in the gene are associated with microphthalmia in 

humans and reduced eye size in knockout mice (Gal et al. 2011; Orr et al. 2011). 

Specifically, mice carrying a mutation in PRSS56 exhibit reduced ocular size (Nair et 

al. 2011) and PRSS56 mutations lead to nanophthalmos (posterior microphthalmia) 

and extreme hyperopia characterized by a significant reduction in ocular axial length 

in humans (Orr et al. 2011). Many GWAS analyses have independently revealed an 

association between PRSS56 variants and myopia, which suggests the gene has 

pleiotropic effects on the development of refractive error (Kiefer et al. 2013; 

Verhoeven et al. 2013b). My study identified a novel association between an STR 

genetic marker within the PRSS56 gene and refractive error. Because the case-control 

samples were selected among highly myopic and moderately hyperopic participants, 

the lead STR is likely to have bidirectional effect on both the case and control groups. 

The negative regression coefficient found in the current study indicates that an 

increased number of Human_STR_827099 repeats is associated with susceptibility to 

hyperopia, whereas a reduced number of repeats is associated with susceptibility to 

myopia. 

 

SIX6 is also involved in ocular morphogenesis (Alfano et al. 2005). The SIX Homeobox 

6 (SIX6) gene is part of a group of evolutionarily conserved genes, which are known 

as eye transcription factors (Ledford et al. 2017). Linkage studies suggest the SIX6 

plays a part in the growth of retinal cells (Abu-Amero et al. 2015). As with the PRSS56 

STR, based on the negative regression coefficient of the SIX6-associated 

Human_STR_424816, additional repeats were associated with increased 

susceptibility to hyperopia, whereas fewer repeats were associated with 

susceptibility to myopia. 
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Past GWAS studies have found the majority of the significantly associated variants to 

be located in non-coding regions of the genome, which makes the identification of 

disease-susceptibility genes less straightforward. In contrast, the current study 

focused on whole exome sequencing data, which made it feasible to implicate 

specific genes as putative myopia susceptibility genes. The replicated discovery of 

PRSS56 and SIX6 by using innovative genetic markers provided additional evidence 

that these genes can make important contributions to the development of high 

myopia. By performing conditional analyses, in which the effects of the lead STRs in 

each region were accounted for, the contribution to the GWAS signal from nearby 

SNP variants was able to be evaluated (Orozco et al. 2010). One more insight for the 

selection of STRs as genetic variants was that the polymorphisms of the variants 

provide novel way to explain the bidirectional effects from the causal genes. As the 

increase and decrease of the expansion of alleles were both taken into account, the 

significantly associated STRs indicate the effect spanning the whole spectrum of the 

trait. Different mutations of the same STR may lead to opposite traits, such as myopia 

and hyperopia. Therefore, upon the hypothesis of the bidirectional effect of a causal 

STR, the case/control groups for GWAS can be locked with the opposite phenotypic 

traits, instead of a  typical pathologic/healthy paired group.  

 

This is the first large-scale study to screen for STRs variants associated with refractive 

error. Notably, the regions identified as being associated with refractive error were 

already reported in prior GWAS and family-based sequencing studies (Jiang et al. 

2015; Sun et al. 2015; Jin et al. 2017). This shows the limited effect any particular 

genetic region has on high myopia in a specific population. The pathway(s) through 

which the PRSS56 and SIX6 variant impacts refractive error may hold the potential of 

being a therapeutic target for slowing the progression of myopia. 
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Chapter 5. General Discussion and 

Future Work 
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5.1. Genetic Predisposition to Strabismus 

 

Novel genetic markers (STRs) in the exon regions of chromosome 17 were studied to 

test for an association with self-reported strabismus. However, no chromosome-wide 

significant association was identified. Strengths of this study included the careful 

matching of the case and control individuals during selection of the target 

population, which reduced the risk of classification bias. Per-sample and per-STR 

genotyping call rates were monitored in order to reduce the false-positive and false-

negative rate. Age and sex were included in the statistical model to eliminate the risk 

of a spurious association resulting from demographic differences between the case 

and control groups. Refractive error was included as an additional covariate to 

eliminate the cofounding bias from the comorbidity of strabismus and hyperopia. 

Bonferroni correction was performed to account for multiple-comparisons and thus 

control the experiment-wise Type I error. Finally, a conditional analysis was 

performed to investigate the independence of the association signals of the lead SNP 

and lead STR. 

 

In the past two to three decades, genetic studies of strabismus have not gained as 

much attention as those for other ocular traits such as refractive error and glaucoma, 

probably due to low prevalence of strabismus and the challenge for diagnosis and 

quantitative measurement. Population-based genetic association studies for 

strabismus have only been reported in recent years (Shaaban et al. 2018; Plotnikov et 

al. 2019). Moreover, family-based and twin studies have provided only limited 

evidence to support Mendelian Inheritance of strabismus. Beyond that, the genetic 

contribution to strabismus remains largely unexplained.  

 

My association study of self-reported strabismus in participants of British European 
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ancestry using STR markers provided an opportunity to better define its genetic 

architecture and understand its pathological pathways. However, the lack of any 

significantly associated signal meant that no new insight could be gained. The most 

likely reason for the lack of a significant association was insufficient statistical power. 

Plausible approaches in the future to increase the statistical power include: (1) 

increase the sample size, (2) improve the accuracy of phenotype ascertainment or 

measurement to reduce noise in classifying cases and controls, and (3) apply more 

sophisticated statistical models.  

 

Synthetic signal data has been used to improve STR detection and reduce genotyping 

bias, through recent improvements in base-calling accuracy. De Roeck et al. (2019) 

proposed a tandem repeat characterization tool called NanoSatellite to analyse data 

generated by the high-throughput PromethION sequencer. Repeat length accuracy 

was quantified for both alleles of the ABCA7 STR (De Roeck et al. 2019), which is a 

recently discovered STR associated with the risk of Alzheimer’s disease (De Roeck et 

al. 2018). The ABCA7 STR (chr19:1049437-1050028, hg19) is a 25-bp repeat that has 

a high GC content, with frequent nucleotide substitutions and insertions: the total 

repeat size can reach more than 10,000 bp (De Roeck et al. 2019). Meanwhile, 

Giebelmann et al. (2019) used a hidden Markov model to identify STR regions and 

upstream/downstream flanking sequences with the help of signal alignment to 

flanking regions. Their tool, STRique, has been evaluated on GGGGCC repeats such as 

FTD/ALS synthetic sequences (Giesselmann et al. 2019). Fang et al. (2022) recently 

published an article reporting the tool, DeepRepeat, which instead of using base-

called reads, detects STRs from nanopore sequencing data through direct analysis of 

electric signals. DeepRepeat allows the analysis of STR within or close to very low-

complexity genomic regions, such as telomeric regions (Fang et al. 2022). 

 

An alternative method to control the type 1 error rate is to set a specific false 
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discovery rate (FDR) for the association results. A disadvantage of the Bonferroni 

method is that it is a relatively conservative method, which may limit the power of 

the discovery of true positive results. The FDR method is less conservative. The aim 

of the FDR approach is to achieve the smallest possible fraction of false signals 

among all those that are declared to be true. The total number of rejections of the 

null hypothesis includes both the number of false positive (FP) and true positive (TP). 

The formula for FDR is FP/(FP+TP). In the controlling procedure, methods for 

rejecting the null hypothesis were established, such as the Benjamini–Hochberg 

procedure and Benjamini–Yekutieli procedure, to control the FDR at level alpha. 

There are precedents for using the FDR approach in GWAS research projects (Nelson 

et al. 2017; He et al. 2021).   

 

 

5.2. Genetic Predisposition to High Myopia 

 

The findings from the high myopia case-control study shed the light on the 

application of using STR markers to refine GWAS signals. By performing an exome-

wide association study, I identified two STRs associated with susceptibility to high 

myopia. The discovery of STR-based associations implicating the genes PRSS56 and 

SIX6 confirmed the associations with SNPs found in a closely-related previous study 

(Guggenheim et al. 2022).  

 

The current work has paved the way for further STR-based association studies for 

high myopia. The selection of the case and control group maximized the level of the 

difference in refractive error, which was expected to have enlarged the effect sizes of 

the potential causal variants. The sample size was set to be the largest possible, given 

the current available data from UK Biobank. Additional strengths of the study 
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included an examination of factors affecting the per-marker and per-sample 

genotyping call rate, which reduced the risk of spurious association signals. The 

weighted Bonferroni correction provided higher statistical power than would have 

been the case if the differential genotyping error rate of single-bp vs. multi-bp STRs 

had not been taken into account, while still controlling the overall Type I error rate. 

Finally, the conditional analysis examined the independence of association signals for 

STRs and nearby SNPs. 

 

An important role for STRs in human disease was established decades ago, with the 

discovery of pathogenic repeat expansions in Fragile X Syndrome (Kremer et al. 1991) 

and spinal and bulbar muscular atrophy (La Spada et al. 1991). Despite the clear 

implication of STRs in disease, they only rarely featured in medical sequencing 

studies. This is probably because, while next-generation sequencing has the potential 

to profile the more than one million STRs known to exist, calling STR genotypes from 

WGS and WES datasets has proven to be challenging (Li 2014b). Indeed, even known 

pathogenic STR mutations can be missing in most sequencing pipelines (Keogh and 

Chinnery 2013). 

 

Although STR-based GWAS analyses offer future promise for studying vision-

threatening eye diseases, the challenge remains to obtain reliable STR genotypes in 

samples of many thousands of participants. The HipSTR software was specially 

developed to deal with genotyping errors and obtain STR genotypes from WGS or 

WES datasets. Yet, long or complex repeats still fail to be detected or called correctly 

by HipSTR, which is probably due to the limited depth of sequencing reads available 

for genotype calling. Also, HipSTR applies a computationally intensive method to 

optimize the accuracy of genotyping. Therefore, implementing the method can be 

time-consuming. For example, genotyping whole-genome sequencing data for a 

sample of 100,000 individuals, which would involve genotyping approximately 50-
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times more STRs than the current WES dataset, would take about 3,000 days (using 

HipSTR without parallelization). To improve future STR-based association studies, 

more computationally efficient methods need to be developed, such as the approach 

recently reported by Fearnley et al. (2022). This study proposed a novel STR 

detection method in which de novo searches for repeat expansions are performed, 

without the requirement for alignment or specification of the location of putative 

repeats (Fearnley et al. 2022). Furthermore, repeats with longer motif size (>6 bp) 

are currently ignored by the NGS algorithms (Gelfand et al. 2014). The limited 

number of STRs in the human genome means the STR-based GWAS method will 

inevitably suffer from limited resolution, compared to SNP-based studies. Finally, in 

the current work, I used the average length of the two STR alleles carried by an 

individual to represent the STR genotype. Given the complex allele spectra of most 

STRs, more elegant approaches may offer benefits in the future. 

 

 

5.3. Future Work 

 

The two GWAS analyses performed using STR markers have validated the hypothesis 

that STRs in exons are able to detect regions of genetic association with ophthalmic 

traits. However, given the limitations of my study, such as the limited sample size and 

the restriction to analyzing STRs located within or adjacent to exons, I would 

recommend in future the analysis of whole-genome sequencing data in order to 

broaden the number of markers that can be included. In general, past SNP-based 

GWAS experiments have shown that signals are more often located in non-coding 

regions of the genome (Visscher et al. 2017) rather than within exons. Therefore, 

studying STRs in non-coding regions will increase the chance of identifying novel loci. 

I would also recommend testing both common STR variants and low-frequency STR 
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variants. Although, low-frequency STRs are more challenging to genotype, rare 

variants offer an advantage in more directly implicating disease genes (Guggenheim 

et al. 2022). Finally, performing STR-based GWAS analyses in non-European 

populations should be a priority. To date, the great majority of STR-based GWAS have 

been reported for European samples, which is far from ideal in view of the 

geographic differences in prevalence for many eye diseases.  
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Code Availability 

shell scripts programmes: https://github.com/J-one-two/GWAS4HM.git 
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