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Vacuum polarization in the Schwarzschild spacetime and dimensional reduction
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A massless scalar field minimally coupled to gravity and propagating in Schwarzschild spacetime is con-
sidered. After dimensional reduction under spherical symmetry the resulting 2D field theory is canonically
quantized and the renormalized expectation values^Tab& of the relevant energy-momentum tensor operator are
investigated. Asymptotic behaviors and analytical approximations are given for^Tab& in the Boulware, Unruh
and Hartle-Hawking states. Special attention is devoted to the black-hole horizon region where the WKB
approximation breaks down.
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I. INTRODUCTION

In quantum field theory the dimensional reduction of
system obeying some symmetries, such as spherical sym
try, is obtained by decomposing the field operators in h
monics in the symmetrical subspace. In the case of sphe
symmetry, decomposing in terms of spherical harmonics
fectively reduces a 4D theory to a set of 2D theories cha
terized by different values of the angular momentum.

Two-dimensional theories are often regarded as us
tools for inferring general features of systems whose beh
ior is sophisticated and difficult to analyze in the physical
spacetime. In some spherically symmetric systems the m
physical effects come from the ‘‘s-wave sector’’—thel 50
mode. Truncation of higher momentum modes is then
tained by integrating over the ‘‘irrelevant’’ angular variable
This is the spirit which pervades most of the vast literat
on 2D black holes, though thiss-wave approximation is no
always accurate enough. These models are believed to
scribe thes-wave sector of physical 4D black holes.

Within this perspective, a model of 2D conformally in
variant matter fields interacting with 2D dilaton gravity h
attracted considerable interest recently. The action for
theory is

S52
1

2E d2xA2ge22fgab]aw]bw, ~1.1!

wherew is the scalar field,f the dilaton,gab the 2D back-
ground metric anda,b51,2.

The reason for this interest lies in the following: the a
tion ~1.1! can be obtained by the dimensional reduction
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the 4D action for a massless scalar field minimally coup
to 4D gravity,

S(4)52
1

8pE d4xA2g(4)gmn]mw]nw, ~1.2!

under the assumption of spherical symmetry.1 Decomposing
the 4D spacetime as

ds25gmn
(4)dxmdxn5gabdxadxb1e22f(xa)dV2, ~1.3!

wheredV2 is the metric on the unit two-sphere, one obtai
the 2D action~1.1! by inserting the decomposition~1.3! into
the action~1.2!, imposingw5w(xa), and integrating over
the angular variables. Therefore the model based on the
tion ~1.1! seems more appropriate for discussing the quan
properties of black holes in thes-wave approximation than
other 2D models based on the Polyakov action~describing a
minimally coupled 2D massless scalar field!, whose link with
the real 4D world is missing. For this reason the efforts
many authors were devoted to finding the effective act
which describes at the quantum level the above 2D dila
gravity theory~@1#; see also@6# and @2#!. This effective ac-
tion, once derived, would allow one to go beyond the fix
background approximation usually assumed in studies of
quantum black-hole radiation discovered by Hawking@3#.
Such an effective action will give in fact^Tab& for an arbi-
trary 2D spacetime which could then be used to study s
consistently, within this 2D approach, the backreaction of
evaporating black hole, its evolution, and its final fate. U
fortunately the effective actions so far proposed for t
model of Eq.~1.1! have serious problems in correctly repr
ducing Hawking radiation even in a fixed Schwarzsch
spacetime~see the discussion in Ref.@5#; see also@6# for a
different point of view!. In any case before embarking o

1The coefficient in front of the action~1.2! has been chosen in
such a way that both normalization conditions and quantiza
rules for the 2D scalar fieldw of the action~1.1! are the standard
ones in two dimensions.
©2001 The American Physical Society29-1
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ambitious backreaction calculations and taking seriou
puzzling results~such as antievaporation@4#! one should
check for any candidate of the effective action that leads
least for the Schwarzschild black hole, to the correct resu
But what are the exact̂Tab& for a scalar field described b
the action~1.1! propagating in a 2D Schwarzschild spac
time that the relevant effective action should predict? T
aim of this paper is to partially answer this question.

By standard canonical quantization we will be able
give the asymptotic~at infinity and near the black hole hor
zon! values of^Tab& in the three quantum states relevant f
a field in the Schwarzschild spacetime, namely the Boulw
state~vacuum polarization around a static star!, the Unruh
state~black hole evaporation!, and the Hartle-Hawking stat
~black hole in thermal equilibrium!. We will also obtain ap-
proximate analytical expressions for^Tab& for every value of
the radial coordinate. Any effective action for the model
Eq. ~1.1! which is unable to predict at least the abo
asymptotic values of̂Tab& is incorrect~or better incomplete!
and any result based on it has no physical support.

II. ŠTab‹: ASYMPTOTIC BEHAVIOR

Our main goal is the evaluation of the renormalized e
pectation values of the stress tensor operator for the sc
field w whose dynamics is given by the action~1.1!. Here we
will be interested in the asymptotic values~at infinity and
near the horizon!. The following derivation is just a readap
tation to our model of Sec. VI of the seminal paper by Chr
tensen and Fulling@7# to which we refer the reader~see also
@8#!.

The classical stress tensor is defined as

Tab52
2

A2g

dS

dgab
, ~2.1!

and hence, from Eq.~1.1!,

Tab5e22fF]aw]bw2
1

2
gab~¹w!2G . ~2.2!

The scalar field obeys the field equation

¹a~e22f¹aw!50. ~2.3!

The quantum field operatorŵ is then expanded on a bas
$uj% for the solution of Eq.~2.3! in terms of annihilation and
creation operators,

ŵ5(
j

~ â juj1â j
†uj* !, ~2.4!

where @ âi ,â j
†#5d i j etc. Computing the mean valu

^0uTabu0& we have

^Tab&5(
j

Tab@uj ,uj* #, ~2.5!

where
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Tab@uj ,uj* #5e22f$Re@~¹auj !~¹buj* !#2~1/2!gabu¹uj u2%.
~2.6!

Taking as the background geometry the exterior Schwa
child solution

ds252~122M /r !dt21~122M /r !21dr2, f52 ln r ,
~2.7!

one finds that a set of normalized basis functions of the fi
equation~2.3! is given by

uW w~x!5
1

A4pw

RW ~r ;w!

r
e2 iwt, ~2.8!

uQ w~x!5
1

A4pw

RQ ~r ;w!

r
e2 iwt, ~2.9!

where the radial functionsR(r ;w) satisfy the differential
equation

2
d2R

dr* 2
1~122M /r !F2M

r 3 GR2w2R50, ~2.10!

and r * is the Regge-Wheeler coordinate:

r * 5r 12M ln~r /2M21!. ~2.11!

Exact solutions of Eq.~2.10! are not known; however, one
can find their asymptotic behavior near the horizon,

RW ;eiwr* 1AW ~w!e2 iwr* ,

RQ ;BQ ~w!e2 iwr* , ~2.12!

and at infinity,

RW ;BW ~w!eiwr* ,

RQ ;e2 iwr* 1AQ ~w!eiwr* .
~2.13!

A andB are the reflection and transmission coefficients~see
Ref. @9#!.

The ^Tab& calculated for these modes corresponds to
so-called Boulware vacuum:

^BuTa
buB&unren5E

0

`

dw$Ta
b@uQ w ,uQ w* #1Ta

b@uW w ,uW w* #%.

~2.14!

For the Unruh vacuum we have

^UuTa
buU&unren5E

0

`

dw$Ta
b@uQ w ,uQ w* #

1coth~4pMw!Ta
b@uW w ,uW w* #%,

~2.15!

whereas for the Hartle-Hawking state,
9-2
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VACUUM POLARIZATION IN THE SCHWARZSCHILD . . . PHYSICAL REVIEW D63 084029
^HuTa
buH&unren5E

0

`

dw coth~4pMw!$Ta
b@uQ w ,uQ w* #

1Ta
b@uW w ,uW w* #%. ~2.16!

As they stand these expressions are ill defined and need
regularized. However, taking into account the regularity
the renormalized expectation values^HuTabuH& on the hori-
zon and the vanishing of̂ BuTabuB& as r→`, some
asymptotic expressions can be obtained without recursio
any regularization procedure. For example forr→` we can
write

lim
r→`

^HuTa
buH&5 lim

r→`

~^HuTa
buH&2^BuTa

buB&!

5 lim
r→`

~^HuTa
buH&2^BuTa

buB&!unren

5 lim
r→`

2E
0

` dw

e8pMw21
$Ta

b@uW w ,uW w* #

1Ta
b@uQ w ,uQ w* #%. ~2.17!

Similarly for the leading term atr→2M we have

lim
r→2M

^BuTa
buB&; lim

r→2M
~^BuTa

buB&2^HuTa
buH&!

5 lim
r→2M

~^BuTa
buB&2^HuTa

buH&!unren.

~2.18!

For the Unruh vacuum we have

lim
r→2M

^UuTa
buU&; lim

r→2M
~^UuTa

buU&2^HuTa
buH&!

5 lim
r→2M

~^UuTa
buU&2^HuTa

buH&!unren

5 lim
r→2M

H 22E
0

` dw

e8pMw21
Ta

b@uQ w ,uQ w* #J
~2.19!

and

lim
r→`

^UuTa
buU&5 lim

r→`

~^UuTa
buU&2^BuTa

buB&!

5 lim
r→`

~^UuTa
buU&2^BuTa

buB&!unren

5 lim
r→`

2E
0

` dw

e8pMw21
Ta

b@uW w ,uW w* #.

~2.20!

In deriving the above expressions we used the fact that
differences between unrenormalized and renormalized q
tities are the same. This because the divergences, bein
traviolet, are state independent; hence the counterterms
08402
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the same for every state. One sees that the basic qua
entering all the expressions isTab@uw ,uw* # which using the
decomposition, Eqs.~2.8!,~2.9!, can be written in (t,r * ) co-
ordinates as

Ta
b@uw ,uw* #5ES 21 0

0 1D 1FS 0 21

1 0 D , ~2.21!

where

E5
1

8pw f H Fw2uRu21
dR

dr*

dR*

dr*
G2

f

r S R
dR*

dr*
1R*

dR

dr*
D

1uRu2
f 2

r 2J ~2.22!

and

F52
i

8p f S R*
dR

dr*
2R

dR*

dr*
D ~2.23!

with f [(122M /r ). Using the asymptotic expansions, Eq
~2.12!,~2.13!, for the radial function the limiting behaviors o
^Tab& can be evaluated.

Let us start by discussing what is perhaps the most in
esting quantity, namely the Hawking flux for this theor
whose value has been the object of a lively debate. Only
the Unruh state is there a nonvanishing component of
flux Tr*

t. Note also that the Wronskian contained inF is
constant, so it can be calculated for allr from the asymptotic
expansion. We find, therefore,

^UuTr*
t uU&5^UuTr*

t uU&2^BuT r*
t uB&

5~^UuTr*
t uU&2^BuTr*

t uB&!unren5 f 21ĖU ,

~2.24!

where

ĖU5
1

2pE0

` wdw

e8pMw21
uB~w!u2 ~2.25!

is the energy flux at infinity. Not surprisingly, this flux i
positive; i.e., there is no antievaporation of the black hole
this theory. We can calculate the total flux using Page’s
sult @10# for the w→0 asymptotics of the greybody facto
uB(w)u2 for the l 50 mode:

uB~w!u2516M2w2. ~2.26!

Integration over the frequencies leads to the approxim
Hawking flux in this 2D theory:

ĖU
Page5

1

7680pM2
. ~2.27!

This low-frequency approximation for the transmission a
plitude should work quite well since high frequencies w
9-3
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not contribute to the flux because of the Planckian expon
Note that the value of the Hawking fluxĖU

Pageis exactly 1/10
of the corresponding value coming from the Polyakov the
~massless minimally coupled 2D scalar field!. This damping
is due to the potential barrier present in the radial equa
~2.10! which reflects the coupling of the scalar field with th
dilaton. In the Polyakov theory there is no potential barri
and henceuB(w)u2[1 andĖU

Polyakov510ĖU
Page.

Accurate numerical calculations of the greybody fac
for l 50 mode and the corresponding Hawking flux give

ĖU
numerical5CĖU

Page, ~2.28!

where the coefficient

C'1.62. ~2.29!

It is interesting to compare the 2D (s-mode! Hawking flux
with that of the 4D black hole. DeWitt@9# provides an ap-
proximate formula for the transmission coefficient,uB(w)u2
527M2w2, which takes into account the contribution to th
4D Hawking flux of all momenta~this gives C51.69),
whereas numerical calculations@11# of the 4D Hawking flux
at infinity give ĖU

4D-numerical'1.79ĖU
Page.

Using the asymptotic expansion we can extract the le
ing behavior of^UuTa

buU& near the horizon and at infinity
@see Eqs.~2.19!,~2.20!#:

^UuTa
buU& r→2M;

1

7680pM2 S 1/f 21

1/f 2 21/f D ~2.30!

and

^UuTa
buU& r→`;

1

7680pM2 S 21 21

1 1 D , ~2.31!

where nowa,b5r ,t. From Eq.~2.30! one sees the negativ
energy flux entering the black hole horizon which compe
sates the Hawking radiation at infinity.

Using similar methods one obtains@see Eqs.~2.17!,
~2.18!#

^BuTa
buB& r→2M;

1

384pM2f
S 1 0

0 21D ~2.32!

and

^HuTa
buH& r→`;

1

384pM2 S 21 0

0 1D . ~2.33!

This last equation shows clearly that the Hartle-Hawk
state asymptotically describes a thermal bath of 2D radia
at the Hawking temperatureTH5(8pM )21. The prefactor is
the expected (p/6)TH

2 . This is indeed the leading contribu
tion ~in a 1/r expansion! for thes mode in flat space~see the
Appendix!.
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III. ŠTab‹: ANALYTICAL APPROXIMATIONS FOR THE
BOULWARE AND HARTLE-HAWKING STATES

To obtain an analytical expression for^Tab& valid for ev-
ery r (2M,r ,`) we use point-splitting regularization fol
lowed by a WKB approximation for the modes. The reno
malized expression̂Tab& is then obtained by subtraction o
renormalization countertermŝTab&DS coming from the
DeWitt-Schwinger expansion of the Feynman Green fu
tion and removal of the regulator~point separation!. This
method is nicely explained in the seminal work of Anders
et al. @12# on ^Tmn& in spherically symmetric static space
times, to which we refer the reader for all details. This s
tion is just an application of their general method to o
~much simpler! s-wave case. Here we just outline the ma
points of the derivation.

One first analytically continues the spacetime metric in
an Euclidean form by lettingt5 i t :

ds25 f dt21 f 21dr2. ~3.1!

By the point-splitting method̂Tab&unren is calculated by tak-
ing derivatives of the quantitŷw(x)w(x8)& and then letting
x8→x. When the points are separated one can show tha

^Tab&unren5e2[f(x)1f(x8)]F1

2
~ga

c8GE;c8b1gb
c8GE;ac8!

2
1

2
gabg

cd8GE;cd8G , ~3.2!

where GE is the Euclidean Green function satisfying th
equation

¹a@e22f¹aGE~x,x8!#52g21/2~x!d2~x,x8!, ~3.3!

and the quantitiesga
c8 are the bivectors of parallel transpor

The integral representation forGE(x,x8) used by Anderson
et al. @12# is the following:

GE~x,x8!5E dm cos@v~t2t8!#pv~r ,!qv~r .!,

~3.4!

where, for an arbitrary functionF,

E dmF~v![
1

4pE0

`

dv F~v!

if T50 ~Boulware state!, whereas, forT.0,

E dmF~v![2T(
n51

`

F~vn!1TF~0!

andvn52pnT.
The modespv and qv are analogous to the radial func

tionsRQ /r , RW /r used in the previous section. They satisfy t
Euclidean version of Eq.~2.10!, which we write as
9-4
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f
d2S

dr2
1

2

r S 12
M

r D dS

dr
2

v2

f
S50, ~3.5!

and the Wronskian condition

CvFpv

dqv

dr
2qv

dpv

dr G52
1

f r 2
. ~3.6!

To express these modes we use the WKB approximation

pv[
1

rA2W~r !
expF E r W~r !

f
drG ,

qv[
1

rA2W~r !
expF2E r W~r !

f
drG .

~3.7!

By this change of variables one sees that the Wronskian
dition is satisfied byCv51. Substituting Eqs.~3.7! into the
mode equation~3.5! one finds that the functionW(r ) has to
satisfy

W25v21V1
f

2WF f
d2W

dr2
1

d f

dr

dW

dr
2

3 f

2W S dW

dr D 2G
~3.8!

where V5( f /r )d f /dr. This is solved iteratively starting
from the zeroth-order solution

W5v. ~3.9!

By this method one obtains an explicit form for the mod
pw ,qw to be inserted in the general expression ofGE @Eq.
~3.4!#. Taking derivatives of the latter quantity as indicat
in Eq. ~3.2! one eventually arrives at the following expre
sion for ^Ta

b&unren:

^Tt
t&unren52^Tr

r&unren

5e22fE dm cos~vet!F2
1

2
gtt8v2A12

1

2
grr 8A2G

1e22fi E dmv sin~vet!F2
1

2
grt 8A3

2
1

2
gtr 8A4G , ~3.10!

where

A15pvqv , A25
dpv

dr

dqv

dr
, A35qv

dpv

dr
,

A45pv

dqv

dr
,

and et[t2t8. For the sake of convenience the points a
split in time only so thatr 85r .
08402
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The expansion for the bivectors is

gtt852
1

f
2

f 82

8 f
e21O~e4!, ~3.11!

gtr 852gr 8t52
f 8

2
e1O~e3!, ~3.12!

grr 85 f 1
f 82f

8
e21O~e4!, ~3.13!

where f 8[d f /dr.
Eventually one arrives at the following expression f

^Tt
t&unren in the zero temperature case:

^BuTt
tuB&52^BuTr

r uB&

5
1

2p f F 1

e2
1

M2

2r 4
1

f 2

4r 2
@2g1 ln~4l2e2!#G ,

~3.14!

which shows 1/e2 and lne divergences ase→0 (l is a lower
limit cutoff in the integral overv and g is the Euler con-
stant!. To obtain the renormalized expressions one need
subtract from the above expressions the renormaliza
counterterm^Ta

b&DS obtained using the following Gree
function ~see@15# for the details!:

G(1)~x,x8!5
ef(x)1f(x8)

2p H 2Fg1
1

2
lnS m2s

2 D G
3F11S R

12
2

a1

2 DsG1
a1

2m2
1•••J ,

~3.15!

where m2 is an infrared cutoff anda1 is the DeWitt-
Schwinger coefficient for the action~1.1!,

a15
1

6
@R26~¹f!216hf#. ~3.16!

HereR is the Ricci scalar for the 2D metric ands is one-half
of the square of the distance between the pointsx and x8
along the shortest geodesic connecting them. For our s
ting,

s t5s ;t5e1
f 82

24
e31O~e5!,

s r5s ;r52
f 8 f

4
e21O~e4!, ~3.17!

ands5sasa/2. This allows the counterterm to be evaluat
in an e expansion:
9-5
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^Tt
t&DS5

1

2p f F 1

e2
1

5

12

M2

r 4
1

1

6

f M

r 3
1

f 2

4r 2

3@2g1 ln~m2e2f !#G ,

^Tr
r&DS5

1

2p f F2
1

e2
2

5

12

M2

r 4
1

f M

2r 3
2

f 2

4r 2

3@2g1 ln~m2e2f !#G . ~3.18!

The renormalized expectation value is then defined as

^Tab&5Re@ lim
e→0

~^Tab&unren2^Tab&DS!#. ~3.19!

In the Boulware state this yields

^BuTt
tuB&WKB5

1

2p f F 1

12

M2

r 4
2

1

6

f M

r 3
2

f 2

4r 2
lnS m2f

4l2D G ,

~3.20!

^BuTr
r uB&WKB5

1

2p f F2
1

12

M2

r 4
2

1

2

f M

r 3
1

f 2

4r 2
lnS m2f

4l2D G .

~3.21!

Note that^BuTabuB& has the correct trace anomaly:

^BuTa
auB&WKB5

a1

4p
5

1

24p
@R26~¹f!216hf#

52
1

24p S d2f

dr2 1
6

r

d f

dr D52
M

3pr 3 .

~3.22!

It is easy to show that̂BuTabuB& is not conserved. Reparam
etrization invariance of the action~1.1! gives the following
nonconservation equation@5,6#:

¹a^Tb
a&52

1

A2g
K dS

df
¹bf L . ~3.23!

A ‘‘source term’’ is present because of the coupling with t
dilaton. Equations~3.23! are nothing but the 4D conservatio
equations¹m^Tn

(4)m&50 for the minimally coupled massles
scalar field of the action~1.2!. This allows us to define a
‘‘pressure’’ for our 2D model by rewriting Eqs.~3.23! as

8prTu
u5] rT

r
r1

M

r 2f
~Tr

r2Tt
t!,

] rTt
r50. ~3.24!

Then from Eqs.~3.20!, ~3.21! and ~3.24! one has
08402
^BuTu
uuB&5

1

64p2 F8M

r 5
2

2

r 4 S 12
4M

r D lnS m2f

4l2D G .

~3.25!

It is rather interesting to note that provided we setm52l the
above expressions for̂BuTa

buB& and the pressure coincid
exactly with the ones derived from the ‘‘anomaly induced
effective action for the theory~1.1! @5#.

The thermal case is treated similarly. Evaluating the s
overn using the Plana sum formula, one finds that the str
tensor at finite temperature is obtained from the ze
temperature one by making the substitution

lnS m2f

4l2D→H 2g1 lnS m2b2f

16p2 D J ~3.26!

and adding the traceless pure radiation term

~Tt
t!rad52~Tr

r !rad52
p

6b2f
, ~3.27!

whereb5T21 .
Summarizing, we find that in the WKB approximation fo

the Hartle-Hawking state,

^HuTt
tuH&WKB52

p

6b2f
1

1

2p f H 1

12

M2

r 4
2

1

6

f M

r 3

2
f 2

4r 2 F2g1 lnS m2b2f

16p2 D G J , ~3.28!

^HuTr
r uH&WKB5

p

6b2f
1

1

2p f H 2
1

12

M2

r 4
2

1

2

f M

r 3

1
f 2

4r 2 F2g1 lnS m2b2f

16p2 D G J , ~3.29!

^HuTa
auH&WKB5^BuTa

auB&WKB52
M

3pr 3 ,

~3.30!

^HuPuH&WKB5
1

64p2 H 8M

r 5
2

2

r 4 S 12
4M

r D
3F2g1 lnS m2b2f

16p2 D G J , ~3.31!

where in this caseb5TH
21 .

The analytic expressions we have obtained
^BuTabuB&WKB and ^HuTabuH&WKB have the correct
asymptotic behaviors atr→` as inferred in the previous
section.^BuTa

buB&WKB does indeed have the limiting form
Eq. ~2.32!, as the horizon is approached, where
^HuTa

buH&WKB for large r describes thermal radiation at th
Hawking temperature in agreement with Eq.~2.33!.
9-6
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In the Hartle-Hawking state the stress tensor should
regular on the horizon. This means that on the horizon
leading term of̂ HuTa

buH& should be proportional to the 2D
metric, since the manifold of the Euclidean instanton is re
lar and the Hartle-Hawking state respects all its symmetr
But the trace of the stress tensor is known exactly beca
we know the conformal anomaly~3.30! in 2D. So on the
horizon we should obtain

^HuTa
buH&ur 52M5

1

2
da

b ^HuTc
cuH&ur 52M52

1

48pM2
da

b .

~3.32!

In the vicinity of the horizon this provides only the leadin
term. Our results, Eqs.~3.28!,~3.29! satisfy this condition.
However, to ensure finiteness of the stress tensor nea
horizon in a regular frame one should satisfy the stron
condition

^HuTt
tuH&2^HuTr

r uH&
f

5finite. ~3.33!

This leads to serious concerns regarding the expression
found for the Hartle-Hawking state using the WKB appro
mation. The logarithmic term present in Eqs.~3.28!,~3.29!
causeŝ HuTa

buH&WKB to be logarithmically divergent at th
horizon when calculated in a free-falling frame. This kind
logarithmic divergence is also present in the 4D calculat
of Anderson et al. for non-vacuum spacetimes such
Reissner-Nordstro¨m spacetime@12#. However, numerical
computations performed by the same authors give no ind
tion that this divergence actually exists. Similarly, we su
pect that the logarithmic term we have in Eqs.~3.28!,~3.29!
is an artifact of the WKB approximation which, as we sh
see in the next section, breaks down near the horizon.

IV. ŠH zTa
bzH ‹ NEAR THE HORIZON

From the discussion of the previous section one can
the disappointing fact that in the Hartle-Hawking state
energy density as measured by a free-falling observer in
WKB approximation diverges logarithmically as one a
proaches the horizonr 52M . On physical grounds we do no
expect this to happen, since the Hartle-Hawking state is
fined in terms of modes which are regular at the horizon. T
origin of the logarithmic term in̂ HuTa

buH&WKB is in the
countertermŝ Ta

b&DS @see Eq.~3.18!#. The WKB approxi-
mation for the modes produces in^Ta

b&unren, besides terms
of the form lne and and 1/e2 which are canceled by th
counterterms, only a monomial involvingf and powers ofr.
The natural question which arises is whether one can t
the WKB approximation near the horizon.

The Euclidean modesY5(rpv ,rqv) @see Eq.~3.7!# sat-
isfy a Schro¨dinger-like equation
08402
e
e

-
s.
se

he
r

we

f
n

a-
-

l

ee
e
e

e-
e

st

d2Y

dr* 2
2U~r * !Y50, U„r * ~r !…5v21V,

V5
2M

r 3 f ,

f 5S 12
2M

r D . ~4.1!

Solving iteratively the equation forW2 @see Eq.~3.8!#,

W25v21V1
1

4W2

d2~W2!

dr* 2
2

5

16 W4 S d~W2!

dr* D 2

,

~4.2!

we get

W25~W2!01~W2!11~W2!21•••, ~4.3!

~W2!05v2, ~4.4!

~W2!15V, ~4.5!

~W2!25
1

4~v21V!

d2V

dr* 2
2

5

16 ~v21V!2 S dV

dr* D 2

.

~4.6!

Note thatV; f , as do all its derivatives] r*
k V. For v50 the

first terms (W2)0 and (W2)1 vanish at the horizon while the
next ‘‘correction’’ (W2)2 is already finite. This indicates tha
the WKB approximation cannot work near the horizon f
the zero-frequency mode. For the modes with non-zerov
5vn5(4M )21n we have

W25
1

~2M !2 F1

4
n21 f S 11

1

n2D1O~n24!G1O~ f 2!.

~4.7!

One can see that the convergence of the WKB series imp
thatn is at least greater than 1. Evaluation of the correspo
ing series for̂ ŵ2& and the stress tensor^HuTa

buH& near the
horizon leads to exactly the same conclusion:

n@1. ~4.8!

Clearly, the standard WKB approximation cannot be appl
for the calculation of the contribution of then50 and n
51 modes to quantum averages near the horizon. To ob
a more reliable analytical expression for^HuTa

buH& near the
horizon we need a better approximation for the Green fu
tion for these modes.

In Ref. @13# it was demonstrated that a more accura
calculation of the contribution of then50 mode cures the
analogous logarithmic divergence in the total^ŵ2&WKB . Here
we follow a similar approach to analyze the stress tensor~see
also @14#!.

One can decompose the thermal Euclidean Green func
for the Y modes as
9-7
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GE~t,r ;t8,r 8!5
1

b (
n52`

1`
coswn~t2t8!

@ f ~r ! f ~r 8!#1/4
Gn~r ,r 8!,

~4.9!

where we writewn for the frequency instead of justw as
before to make the dependence onn more clear (wn
52pn/b).

Near the horizon the functionGn(r ,r 8) satisfies the fol-
lowing differential equation~with rÞr 8):

]L
2Gn2S a2

M2
1

4n221

4L2
1O~ f !D Gn50, ~4.10!

whereL is defined by

dL5
dr

f 1/2
~4.11!

and

a25
1

6
1

n2

12
. ~4.12!

The differential equation~4.10! admits solutions in terms o
Bessel functions of imaginary argument:

Gn~r ,r 8!5~LL8!1/2I nS aL,

M DKnS aL.

M D . ~4.13!

One can show that this solution obeys the derivative con
tion resulting from integrating the differential equation~3.3!
for GE across the delta function singularity att5t8,r 5r 8.
Using the above Green function one can calculate the co
sponding contribution to the stress tensor for eachn near the
horizon.

For a contribution to the Green function of the form

e2 iwn(t2t8)Fn~r ,r 8! ~4.14!

the corresponding contribution to the unrenormalized str
tensor in the Hartle-Hawking state is

^Ta
b&n5 lim

r→r 8
H 2

f

2r 2
@12r ~] r1] r 8!1r 2] r] r 8#

1
wn

2

2 f J Fn~r ,r 8!S 1 0

0 21D . ~4.15!

For then50,1,2 modes one obtains

^Ta
b&05F 7 f

240pM2
1O~ f 2!G S 1 0

0 21D , ~4.16!

^Ta
b&15

1

64pM2 F1

f
1 f ~2g1 ln f !2

f

3
1O~ f 2!G S 1 0

0 21D ,

~4.17!
08402
i-

e-

ss

^Ta
b&25F 1

32pM2f
2

f

48pM2
1O~ f 2!G S 1 0

0 21D .

~4.18!

Note that eachn.0 contribution should be double counte
to account for then,0 modes as well.

These results should be compared to those coming f
the WKB approximation. Then50 mode does not make an
contribution to^Ta

b&WKB whereas the contribution of an in
dividual mode withnÞ0 is

^Ta
b&WKBn5F unu

64pM2f
2

f

32punuM2
1O~ f 2!G S 1 0

0 21D .

~4.19!

Taking the difference we find the correction
^HuTabuH&WKB due to the first three modes to be

d^Ta
b&n50,61,625F f

32pM2
~2g1 ln f !1

17f

240pM2G
3S 1 0

0 21D 1O~ f 2!. ~4.20!

Comparing this with Eqs.~3.28!,~3.29! we find that the cor-
rections above exactly cancel the logarithmic term at
event horizon to orderf ln f. Only the n561 modes con-
tribute such terms. Forunu.1 only higher-order logarithmic
terms~i.e. f 2ln f etc.! are produced which will cause no d
vergence. Proceeding in a similar way we find the correct
to the pressure:

dPn50,61,625
1

16pM2 F2
83

960pM2
2

1

32pM2
~2g1 ln f !

1O~ f !G . ~4.21!

Again this cancels exactly the logarithmic term
^HuPuH&WKB . We can therefore conclude that for our 2
theory, Eq.~1.1!, the ^HuTa

buH& and ^HuPuH& are regular
~in a free-falling frame! on the horizon as expected. Th
logarithmic term appearing in̂HuTa

buH&WKB is an artifact of
the WKB approximation which breaks down for the low-n
modes near the horizon. Furthermore, the nonlogarith
terms in Eq.~4.20! are of orderf, so we can obtain from Eqs
~3.28!,~3.29! the following limiting values for̂ HuTa

buH& on
the horizon:

^HuTt
tuH& r 52M5^HuTr

r uH& r 52M52
1

48pM2
.

~4.22!

On the other hand, the value of the pressure changes bec
of the first term in Eq.~4.21!:
9-8
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^HuPuH& r 52M5
1

64p2 F2
23

240M4
1

1

8M4
ln

m2b2

16p2G .

~4.23!

V. CONCLUSIONS

The main purpose of this paper was to shed some ligh
the rather controversial literature existing on the Hawk
effect for the dilaton gravity theory described by the acti
~1.1!. We found that the Hawking flux is manifestly positiv
reduced by a greybody factor with respect to the correspo
ing value one gets from the Polyakov theory~no dilaton
coupling!. We also showed that the Hartle-Hawking sta
corresponds to thermal equilibrium at the Hawking tempe
ture and that asymptotically (r→`) the stress tensor de
scribes a gas of 2D photons. The regularity of this str
tensor on the horizon has been proved by a careful expan
of the Green function in that region eliminating the unphy
cal logarithmic divergence predicted by the WKB appro
mation. One can hope that the analogous logarithmic W
divergence appearing in nonvacuum 4D spacetime can
handled in a similar way.

The analytic expression for^Ta
b& we found in Sec. III can

be exactly reproduced by the high-frequency approxima
for the effective action in static spacetimes developed
Frolov et al. @16#. This point and the generalization of ou
work to arbitrary curvature coupling and mass for the sca
field will be discussed elsewhere.

The feature which makes the theory~1.1! so attractive is
its connection with the 4D action~1.2!. What can be inferred
of the physical 4D theory from the quantization of the d
mensionally reduced theory we have performed? It is of
said that the spherically symmetric reduced theory sho
describe thes-wave sector of the higher-dimensional on
Unfortunately in quantum field theory things are not so ea
Let us compare the value we found for the energy densit
the Hartle-Hawking state on the horizon with the cor
sponding value coming from the quantization of the 4
theory of Eq.~1.2!. Our result~which should be divided by
4pr 2 to restore four dimensionality! yields the following
prediction for thes-wave contribution to the 4D theory:

^HuTt
(s) tuH& r 52M52

1

768p2M4
. ~5.1!

The value found by Andersonet al. @12# quantizing the 4D
theory is

^HuTt
tuH& r 52M5

1

3840p2M4
. ~5.2!

The discrepancy is striking. Our 2D derived result is sign
cantly larger than and opposite in sign to the expected
value. One can argue that the value of Eq.~5.2! includes the
contribution of alll modes and not just thes one. This might
be true. However, it seems unlikely that thel .0 modes
should cancel thisl 50 result, Eq.~5.1!, to a sufficiently high
degree to restore agreement with the 4D stress tensor.
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difference indicates a dismal failure of the dimensional
duction. But this is not all of the story. As was shown
@16,17#, the s-mode contribution to the renormalized stres
energy tensor of the 4D theory does not coincide with
renormalized stress-energy tensor of the 2D reduced the
The difference is called the dimensional-reduction anoma
There is a suspicion that the actual mismatch between the
derived value, Eq.~5.1!, and the 4D value, Eq.~5.2!, is
caused essentially by this anomaly. A preliminary analy
@18# seems to confirm this idea.

ACKNOWLEDGMENTS

This work was partly supported by the Natural Scienc
and Engineering Research Council of Canada. V.F. and A
are grateful to the Killam Trust for its financial support.

APPENDIX A: s-MODE CONTRIBUTION TO THE 4D
STRESS TENSOR IN FLAT SPACE AT FINITE

TEMPERATURE

In this appendix we determine thel 50 mode contribution
to ^Ta

b&b in flat space for a minimally coupled and massle
4D scalar field in a thermal state at the temperatureT
5b21. For this case we know exactly the mode-functi
solutionsww of the Klein-Gordon equation

hw50. ~A1!

Insertion of the spherical decomposition

w5 (
w,l ,m

ww~ t,r !Ylm~u,f! ~A2!

reduces Eq.~A1! to

S 2] t
21

2

r
] r1] r

22
l ~ l 11!

r 2 D ww50. ~A3!

For the case of interest (l 50) the solutions forww are just
the ordinary Fourier modes. Taking into account that 0<r
,` we must impose Dirichlet boundary conditions atr
50. The correctly normalizeds modes are then

ww5
2 i

2prAw
e2 iwtsin~wr !, ~A4!

wherew.0. Decomposition of the field operatorŵ in terms
of the modesww ,

f̂~ t,r !5E
0

`

dw@ âwww~ t,r !1âw
† ww* ~ t,r !#, ~A5!

gives the stress tensor expectation values

^Tm
n&b5E

0

`

dw
2

ebw21
Tm

n@ww ,ww* #, ~A6!

where
9-9
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Tmn@ww ,ww* #5
1

2
~]mww]nww* 1]nww]mww* !2

1

2
gmn~grs]rww]sww* !. ~A7!

Inserting Eq.~A4! into Eq. ~A7! and performing the integral in Eq.~A6! we get

^Tm
n&b5

1

4pr 2

pT2

6 S 21 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D 1S 1

32p2r 4
2

T2

8r 2 sinh2~2pTr !
D S 0 0 0 0

0 0 0 0

0 0 21 0

0 0 0 21

D
1S T

8pr 3
coth~2pTr !2

1

16p2r 4D S 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 1
D 2

1

16p2r 4
lnH sinh~2pTr !

2pTr J S 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 1
D . ~A8!

Multiplying by 4pr 2 and taking the limitr→` we obtain the result~2.33!, which describes 2D thermal radiation at th
equilibrium temperatureT5TH5(8pM )21.
ev.
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