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Summary Paragraph 32 

The globally important carbon sink of intact, old-growth tropical humid forests is declining because 33 

of climate change, deforestation and degradation from fire and logging1–3. Recovering tropical 34 

secondary and degraded forests now cover about 10% of the tropical forest area4, but how much 35 

carbon they accumulate remains uncertain. Here we quantify the aboveground carbon sink of 36 

recovering forests across three major continuous tropical humid regions: the Amazon, Borneo and 37 

Central Africa5,6. Based on satellite data products4,7, our analysis encompasses the heterogenous 38 

spatial and temporal patterns of growth in degraded and secondary forests, influenced by key 39 

environmental and anthropogenic drivers. In the first twenty years of recovery, regrowth rates in 40 

Borneo were up to 45% and 58% higher than in Central Africa and the Amazon, respectively. This is 41 

due to variables such as temperature, water deficit and disturbance regimes. We find that regrowing 42 

degraded and secondary forests accumulated 107 Tg C yr-1 (90 to 130) between 1984-2018, 43 
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counterbalancing 26% (21% to 34%) of carbon emissions from humid tropical forest loss during the 44 

same period. Protecting old-growth forests is therefore a priority. Additionally, we estimate that, 45 

conserving recovering degraded and secondary forests can have a feasible future carbon sink 46 

potential of 53 Tg C yr-1 (44 to 62), across the major tropical regions studied.  47 

 48 

Main  49 

The Forest and Land use Declaration negotiated at the 26th climate change Conference of the Parties 50 

(COP26)8 confirmed that Tropical Moist Forests (TMF) are a vital nature-based solution to addressing 51 

the climate and ecological emergencies9. However, across the world’s three largest continuous TMF 52 

regions – the Amazon, Borneo and Central Africa – disturbances due to different anthropogenic 53 

drivers result in ongoing forest cover losses (Supplementary Table 1)10. Between 2001 and 2019, 54 

emissions from forest loss in the Amazon (370±170 Tg C yr-1), Borneo (150±70 Tg C yr-1), and Central 55 

Africa (110±50 Tg C yr-1) collectively made up 29% of global gross forest emissions11. The result is a 56 

patchwork of forest types at different stages of recovery from disturbance, with limited current 57 

understanding of their contribution to forest carbon dynamics. 58 

Here we consider two forest types which we term “Recovering Forests”: (i) secondary forests, which 59 

grow on deforested, now abandoned, land and (ii) degraded forests, which are forested lands that 60 

have suffered partial loss of their tree canopy, structure and function due to selective logging, fire or 61 

climate extremes4. Forests recovering from (human-induced) disturbances are important for results-62 

based payments frameworks such as Reducing Emissions from Deforestation and Degradation 63 

(REDD+). The Global Stocktakes12, which evaluate the collective progress to reaching the Paris 64 

Agreement goals, require credible Monitoring, Reporting and Verification (MRV) of all carbon 65 

sources and sinks. This should include accurately quantifying the carbon accumulation rates in all 66 

recovering forests, which are expanding across the tropics4. 67 

Such quantitative information is currently only available for secondary forests, based on field-plot 68 

data scaled up to large ecozones6,13,14 or spatially explicit satellite-based data available only for 69 

specific regions15. Small-scale studies of carbon recovery in degraded forests have been conducted in 70 

some regions with sufficient in-situ data16,17. However, field data alone cannot capture the complex 71 

forest dynamics across these vast areas. Critically, there has been no large-scale, pan-tropical, 72 

assessment of the Aboveground Carbon (AGC) sink in both secondary and degraded forests, 73 

resulting in uncertainties in their role in carbon removal. The increasing availability of satellite-74 

derived products offers a viable solution, providing pan-tropical, continuous spatial and temporal 75 

coverage, to monitor forest dynamics. 76 

The primary aim of this study was to capture the regrowth variability of all recovering forests in the 77 

Amazon, Borneo, and Central Africa, considering each region’s unique spatial and temporal patterns 78 

of climate, geography, and socio-ecology. We provide the first satellite-based pan-tropical estimates 79 

of degraded and secondary forest AGC growth rates for these three regions4. We (i) quantify the 80 

spatial patterns of growth, showing how these are influenced by environmental drivers; (ii) calculate 81 

the current and future carbon accumulation potential; (iii) evaluate the timing of deforestation in 82 

degraded forests; and (iv) quantify the impact of deforestation on the degraded forests carbon stock 83 

potential. We combined a unique satellite dataset, tracking disturbances to the TMF cover (optical, 84 

30m resolution)4, with a global AGC product (active radar, 100m resolution)7 in a space-for-time 85 

substitution approach to model AGC accumulation as a function of Years Since the Last (forest) 86 

Disturbance (YSLD).  87 

Growth of recovering tropical forests 88 
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Our analysis of the annual AGC sinks in recovering forests reveals distinct trajectories across the 89 

three continents and between forest types (Figure 1). Degraded forests are most severely disturbed 90 

in Borneo: after one YSLD, AGC was only 13% of the median AGC of old-growth forests, decreasing 91 

from 121 Mg C ha-1 (95% confidence interval from Monte Carlo simulations [CIMC]: 119.3 to 122.8) to 92 

16 Mg C ha-1 (CIMC: 2.5 to 34.9) (Figure 1a; Supplementary Table 2). In Amazonian and Central African 93 

forests, the AGC in newly degraded forests (1 YSLD) was 60.0 (CIMC: 41.6 to 79.1) and 57.3 Mg C ha-1 94 

(CIMC: 40.5 to 76.0), respectively. This is approximately 50% the AGC of old-growth forests in the 95 

Amazon (121 Mg C ha-1 [CIMC: 120.3 to 122.7]) and Central Africa (115 Mg C ha-1 [CIMC: 114 to 116]) 96 

(Supplementary Table 2; Supplementary Figures 14 to 16).  97 

In the first 20 years of recovery, the average annual growth rate and associated average CIMC of 98 

degraded forests in Borneo was 3.60 Mg C ha-1 yr-1 (CIMC: 2.7 to 4.5). This is 45% and 58% higher than 99 

in Central Africa (1.98 Mg C ha-1 yr-1 [CIMC: 1.8 to 2.2]) and the Amazon (1.49 Mg C ha-1 yr-1 [CIMC: 1.3 100 

to 1.7]), respectively. In secondary forests, the average growth rate in the first 20 years was similar 101 

in Borneo (2.52 Mg C ha-1 yr-1 [CIMC: 1.3 to 3.7]) and Central Africa (2.51 Mg C ha-1 yr-1 [CIMC: 1.3 to 102 

3.7]). In the Amazon, the average regrowth rate was 20% lower, but within the CIMC of the other two 103 

regions (2.07 Mg C ha-1 yr-1 [CIMC: 1.2 to 2.9]) (Supplementary Table 4), suggesting there may be 104 

higher spatial variability in regrowth across the Amazon. 105 

The observed differences in AGC loss and subsequent regrowth can be linked to the distinct 106 

degradation drivers which are dominant in each region (Supplementary Table 1), as well as 107 

environmental differences. Notably, the absolute reduction in AGC was highest in Borneo since Indo-108 

Malayan forests are dominated by the ecologically and economically important, high-biomass 109 

Dipterocarpaceae trees, which grow in high abundance and thus are subject to intense selective 110 

logging18. The Amazon and Central Africa are dominated by their own ecologically and economically 111 

important tree genera, such as the Entandrophragma in Central Africa, but at lower abundance, 112 

hence forests in these two regions are subject to lower intensity selective logging19.  113 

Amazonian forests are often degraded by fire, especially in the Brazilian Amazon17. Within a fire-114 

degraded forest, there is a complex combination of forest recovery from the initial disturbance, and 115 

long-term reductions in AGC due to post-fire mortality17,20, limiting the overall growth rates.  116 

In degraded forests of Central Africa, the canopy disturbance caused by the dominant, small-scale, 117 

manual clearing of individual trees may go undetected by optical remote sensing products 118 

estimating land cover change4. The active satellite sensors estimating AGC will inherently detect the 119 

impact of these small disturbances leading to (i) a potential underestimation in old-growth forest 120 

AGC, and (ii) a lower growth rate estimate in recovering degraded forests due to undetected 121 

ongoing disturbances (Supplementary Figure 12; Supplementary Note 1; Supplementary Discussion 122 

1).  123 

In contrast, the few secondary forests mapped in Central Africa were regrowing at similar rates to 124 

those in the Amazon (Figure 1; Supplementary Table 4) and 1.3 times faster than degraded forests 125 

(Supplementary Table 15). The faster annual recovery rate of secondary forests compared to 126 

degraded forests may be an artifact of not directly accounting for wood density in our study, which 127 

is unique in different recovering forests. Early successional, secondary forests in the humid tropics 128 

tend to be fast-growing, low wood-density species, which are gradually replaced by higher wood-129 

density species21. Remote sensing datasets do not capture wood density, but rather include wood 130 

density intrinsically, thus emphasizing the importance of field validation as we have done here 131 

(Supplementary Note 2). Secondary forests, growing in open canopy areas, may also grow faster 132 

than degraded forests, where species may still compete for resources such as light and water. 133 
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We used the latest, wall-to-wall AGC products that represent the best available data to inform our 134 

understanding at large scale. Our regional aggregation approach enabled us to reduce the random 135 

errors, which were between 25% to 72% at the pixel level (Supplementary Table 3). However, 136 

systematic, or regional biases in the AGC product may still exist (Supplementary Note 1 and 2, 137 

Supplementary Discussion 1). For example, our median AGC estimate for old-growth forests was 138 

lower than field-study estimates in the three regions (Supplementary Note 1, Supplementary 139 

Discussion 1).  Exploring these biases is a priority for the AGC field-work and remote sensing 140 

communities, with scientific and policy implications.  141 

Across the three regions, we found the AGC of old-growth forests was not statistically different than 142 

estimates from a higher resolution (~25m) but spatially limited AGC footprint product (GEDI - Global 143 

Ecosystem Dynamics Investigation)22 (Supplementary Note 1; Supplementary Figure 19), giving 144 

confidence that our wall-to-wall estimate is representative of old-growth forest dynamics despite its 145 

lower spatial resolution. 146 

A network of pan-tropical ground measurements found Asian secondary forests to have the highest 147 

carbon-gains followed by African and then South American forests23. Across the three regions, our 148 

growth rate estimates, and the AGC after 20 years of recovery in both degraded and secondary 149 

forests, are similar to previous studies (Extended Data Figure 1). For example, we calculated that 150 

Amazonian secondary forests recovered 37% (CIMC: 36% to 49%) of their AGC relative to old-growth 151 

forest AGC after 20 years, similar to 33% found by Poorter et al.24. By comparison, we calculated a 152 

relative recovery of 62% from a modelling, meta-analysis of field data (Cook-Patton et al.)14 and 153 

using refined regional default values of old-growth forests25 (Supplementary Note 2; Supplementary 154 

Table 18). In the Amazon the Cook-Patton et al. regrowth rates may be at the upper-end of regrowth 155 

potential. Despite the high propagated uncertainty in the space-for-time substitution modelling 156 

(Supplementary Table 3, Supplementary Discussion 1), the overlaps between different data 157 

approaches (satellites and field data) increases our confidence in the likely boundaries of carbon 158 

accumulation, and the applicability of satellite products to help refine estimates.  159 

In Borneo, our results for degraded forests are comparable with field-derived estimates of carbon 160 

accumulation (2.8 [CI: 2.0 to 3.6] to 4.3 [CI: 3.5 to 5.2] Mg C ha-1 yr-1) and recovery times (40 to 60 161 

years) in recovering degraded forests in Malaysian Borneo16 (Supplementary Note 2). After 40 and 162 

60 years of recovery, we estimated 91% (CIMC: 82% to 99%) and 97% (CIMC: 90% to 102%) of AGC to 163 

have recovered, respectively in Bornean degraded forests. Our estimated carbon remaining after 164 

degradation (16 Mg C ha-1 [CIMC: 2.5 to 34.9] Mg C ha-1) (13%) is low compared to field studies in 165 

Borneo (80% AGC remaining after 1 YSLD)26,27, however the field studies only considered degradation 166 

due to logging and no other disturbances such as burning, which we include (Supplementary Note 2; 167 

Supplementary Figure  21a to c). We also considered the whole Island, including the southern parts, 168 

which have lower AGC density estimates28 (Supplementary Note 2).  169 

Climate-driven regrowth sensitivity 170 

To understand why the growth of recovering forests varies across the regions, we built AGC growth 171 

models stratified by distinct climate conditions (Figure 2 and Extended Data Figure 3) and analysed 172 

the response of AGC to different driving variables (Extended Data Figure 2). Across the three regions, 173 

YSLD was the most important predictor of AGC accumulation, especially in secondary forests 174 

(Extended Data Figure 2), emphasising the importance of long-term conservation for effective 175 

climate mitigation.   176 

To investigate the influence of environmental variables, we used the AGC after 20 years of recovery 177 

(AGC20) as the primary comparison because growth rates are influenced by both the Y-intercept and 178 
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asymptotes of the non-linear model. We show that regions with the highest average annual 179 

maximum temperatures (Tmax) had significantly slower growth rates compared to regions with the 180 

lowest Tmax (10 to 40% slower across all three regions; Figure 2; Supplementary Table 7; Extended 181 

Data Figure 2).   182 

In Bornean degraded forests the AGC20 was 43% higher in the lowest quartile temperature range (14 183 

to 30.6°C) than in the highest quartile temperature range (31.4 to 32.2°C). This is consistent with 184 

previous studies2,23 and our understanding of tree physiology. Higher temperatures lead to higher 185 

Vapour Pressure Deficit, causing leaf stomata closure to avoid water loss29, and result in lower 186 

carbon accumulation.  187 

In Central Africa, the AGC20 varied less across the temperature ranges in both degraded and 188 

secondary forests. The AGC20 was only 15% lower in the warmest region than in the cooler regions 189 

(Supplementary Table 7). Growth rates were statistically similar, with overlapping confidence 190 

intervals, especially in secondary forests (Supplementary Table 7; Figure 2), potentially owing to the 191 

low areal extent of secondary forests mapped in this region (Supplementary Table 15; Figure 1c; 192 

Supplementary Discussion 1). African forests may also be more adapted to high temperatures30 so 193 

that other, especially anthropogenic, processes dominate31.  194 

Across the three regions, recovering degraded and secondary forests in drier areas exhibited 30% 195 

lower growth rates than in wetter areas, defined on the basis of the Maximum Cumulative Water 196 

Deficit (MCWD) index (Extended Figure 3; Supplementary Table 9). In the Amazon, MCWD 197 

significantly influenced AGC recovery (Extended Data Figure 2). The AGC20 in Amazonian degraded 198 

and secondary forests was 25% and 33% lower in the most water deficient regions (down to –199 

611mm MCWD), respectively than in the least water deficient regions (up to 0mm) (Extended Data 200 

Figure 3). The results are consistent with a previous field-based study in the Neotropics, which found 201 

secondary forests to have between 20% to 40% lower AGC20 in water deficient regions (-300mm to -202 

600mm), than in non-water deficient regions (0mm)6.  203 

In Borneo, despite being the wettest of three regions in terms of MCWD, the AGC20 was 38% lower 204 

in the southern, most water deficient parts of the island than in the wetter, northern regions 205 

(Extended Data Figure 3c; Supplementary Table 9). The larger drop in growth rates in Borneo is likely 206 

because forests are more exposed to extreme drought events caused by El Niño on the southern 207 

parts of the island32. Bornean forests generally have a narrower water deficit tolerance than other 208 

forest regions, thus the rates of carbon accumulation across the whole island may be more 209 

vulnerable to extreme drought events1. 210 

In Central Africa, MCWD had the lowest overall effect in reducing growth rates and associated AGC20 211 

(Extended Data Figure 2 and 3) compared to the other two regions. There was only a 13% difference 212 

in the growth rates between the lowest and highest MCWD regions in secondary forests. This result, 213 

combined with the low response to Tmax, is in line with previous research suggesting (i) that, unlike 214 

high temperatures, drought does reduce net carbon uptake in Central African forests2,30 (Figure 2, 215 

Extended Data Figure 2 and 3) but that (ii) overall, forests in Central Africa are more resistant to 216 

climate extremes than in the Amazon and Borneo30, driven in part by more drought-adapted tree 217 

species in Central Africa33.  218 

Based on the consistent differences in AGC accumulation under different climate conditions 219 

demonstrated here, we expect a potential reduction in the carbon sink of these forests as a response 220 

to future changes in hot and dry climate extremes. Historically, this pattern has been more evident 221 

in the Amazon than in Central Africa even though both regions have experienced similar drying 222 
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patterns and temperature increases over the past decades34. Despite recent increased water 223 

availability in Asia, forests in this region are more impacted by human-induced disturbances than the 224 

other two regions (Figure 1)34. We show that generally AGC was less influenced by MCWD and Tmax 225 

in secondary forests compared to degraded forests (Extended Data Figure 2). Recovering degraded 226 

forests are largely composed of late succession species, which tend to be more sensitive to 227 

temperature extremes and drought as the initial disturbance may exacerbate the impact of 228 

subsequent extreme events and recurrent, drought-induced, fires35.  229 

Environment-driven regrowth sensitivity 230 

Our analysis also captured the influence of topography and distance from nearest old-growth forest 231 

on secondary and degraded forest regrowth (Extended Data Figure 2). Across the three regions, we 232 

found a complicated picture emerging of AGC stock and growth rates with changes in Height Above 233 

the Nearest Drainage System (HAND) (Extended Data Figure 2 and 4). Pan-tropically, we found 234 

degraded forests had higher growth rates with increased HAND (Extended Data Figure 4; 235 

Supplementary Table 11). This relationship was clearest in Borneo, where the AGC20 was 34% lower 236 

in both degraded and secondary forests growing on floodplains proximal to the river network. This is 237 

consistent with some36, but not all, studies37 exploring the relationship between topography and 238 

AGC. Across all three regions, floodplains include low-lying carbon-rich peatlands that are 239 

experiencing extensive deforestation and degradation. In Borneo, lower growth rates in these areas 240 

may be due to the difficulties of restoring degraded peatlands due to poor seedbanks, their 241 

distinctive hydrology, and species composition38. The permanence of the remaining forests, and 242 

associated AGC in peatlands, is also at increased risk to further degradation from fire and drought 243 

following the initial disturbance as a result of forest fragmentation39.  244 

 245 

Soil and belowground carbon can also be reduced during disturbance. A study of secondary forests 246 

in the Neotropics found that soil properties, including soil carbon, recover about 90% of their 247 

properties in less than a decade, much faster than AGC24. But recovery varies with soil and 248 

disturbance type - a study in logged degraded forests in Malaysian Borneo, found soil carbon 249 

continued to be lost after AGC recovered40. Such studies emphasize the importance of preservation 250 

in areas where natural above and below ground regeneration may be slower and the carbon 251 

therefore irrecoverable within the 2100 Paris Agreement timesframe41.  252 

Forest fragmentation across the three regions, represented here by the “distance from the nearest 253 

old-growth forest” (see methods) affected the AGC of degraded forests (Extended Data Figure 5; 254 

Supplementary Table 13). After one YSLD, degraded forests located closer to old-growth forests had 255 

up to 50% higher AGC than more distant degraded forests, presumably related to a lower degree of 256 

disturbance in forests proximal to old-growth forests. The AGC20 was also up to 50% higher in forests 257 

recovering within <120m of an old-growth forest area than in forests growing more than 1km away, 258 

despite technical limitations to the approach (Supplementary Discussion 1). Higher growth rates of 259 

degraded forests near old-growth forest areas can be attributed to a number of ecological 260 

processes, such as increased seed availability, lower fragmentation, and less influence of 261 

anthropogenic and climate disturbances such as fires42 and altered microclimates1. We found that 262 

the proportion of degraded forests impacted by burning increases with forest fragmentation 263 

(Supplementary Figure 21d to f). This was most noticeable in the Amazon region; within 120m of a 264 

large old-growth forest cluster, the proportion of degraded forests impacted by burning was 8.4%, 265 

this increased to 45% in forests more than 1km away. 266 

Current and future carbon sink potential 267 
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Based on our models of carbon accumulation (Figure 1), the total aboveground carbon stored in all 268 

recovering forests across the three regions in 2018 equated to 3,559 Tg C (CIMC: 2,994 to 4,290). 269 

Most (> 90%) of the 2018 carbon stock of recovering forests was in degraded forests, with two thirds 270 

in the three largest countries (Figure 3): Brazil (37%), the Democratic Republic of Congo (DRC; 16%) 271 

and Indonesia (14.3%) (Extended Data Figure 6 and 7; Supplementary Figure 18). The area of 272 

secondary forests in our study is a conservative estimate in the Brazilian Amazon compared to 273 

previous studies (Supplementary Note 1; Supplementary Table 16). Similarly, the area of degraded 274 

forests in Borneo and Central Africa is lower than in other datasets (Supplementary Note 1). The 275 

characteristics of the data do not impact the analysis of growth rates (per unit area) but the 276 

estimated total carbon contribution from all recovering forests is likely underestimated. 277 

The spatial pattern of carbon stock followed the areas which have experienced severe human-278 

disturbances, such as the “Arc of deforestation” in the Brazilian Amazon and along logging roads in 279 

Central Africa and Borneo. These could be indicative areas of focus for the UN 2021-2030 decade of 280 

ecosystem restoration (Figure 3). Our results show that secondary and degraded forests across the 281 

Amazon collectively store 2,124 Tg C (CIMC: 1808 to 2541) (annual sink of 62 Tg C yr-1 [CIMC: 53 to 75]). 282 

Owing largely to the Amazon’s vast spatial extent (Figure 3), the carbon stored is approximately 65% 283 

higher there than in Borneo (729 Tg C [CIMC: 589 to 913], where we estimate an annual sink of 24 Tg 284 

C yr-1 [CIMC: 19 to 30]). 285 

Central Africa has the lowest total carbon storage in recovering forests (707 Tg C [CIMC: 597 to 836]), 286 

(Figure 3c), despite being the second largest of the three regions. The low carbon sink (21 Tg C yr-1 287 

[CIMC: 18 to 25]) is likely linked to the fact that human impact on forest cover often occurs below the 288 

spatial scale detectable by the remote sensing products (Supplementary Figure 12). Monitoring and 289 

protecting the remaining old-growth forest in Central Africa may therefore be more important for 290 

project-scale carbon policies and frameworks such as REDD+43. Central Africa has the fastest growing 291 

population of the three regions, anthropogenic pressures such as continued population growth are, 292 

therefore, likely to have the largest impact on forest carbon loss by the end of the 21st century, 293 

which will be exacerbated by climate change31.  294 

Our results emphasise that the type of REDD+ activities should not be uniform across the tropics. 295 

Such results can be used to inform international funders and empower local, community-led efforts 296 

to sustainably manage and protect recovering forests in a targeted manner, addressing the local 297 

drivers of unsustainable forests loss, whilst allowing people and biodiversity to thrive44. 298 

So far we have only accounted for the carbon gains in recovering forests, however, rates of 299 

deforestation and degradation in the tropics remain high (Supplementary Figure 13), with a recent 300 

increasing trend in some regions4. We estimated that across the tropics, the AGC accumulated in 301 

recovering forests (3,560 Tg C [CIMC: 2994 to 4290]) counterbalanced 26% (CIMC: 21% to 34%) of the 302 

gross AGC emissions from deforestation (10,521 Tg C [CIMC: 10,441 to 10,655]) and degradation 303 

(2,916 Tg C [CIMC: 2,157 to 3,602]) between 1984 to 2018 (Extended Data Table 1). The emissions 304 

estimated from degradation are about 28% of deforestation-based emissions. This is similar to a 305 

previous study focusing on selective logging45. Furthermore, we found about 35% of degraded 306 

forests were deforested by 2018 (Extended Data Table 2). If these degraded forests had been 307 

preserved, the potential contribution from all recovering forests (5,892 Tg C [CIMC: 5,114 to 6,842]) 308 

to counterbalance gross forest loss emissions (12,349 Tg C [CIMC: 11,714 to 13,787]) could have 309 

reached 48% (37% to 58%) (Extended Data Table 2).  310 

Based on the existing 2018 carbon stocks of recovering forests and our estimated rates of carbon 311 

accumulation (Figure 1), we modelled the potential carbon gain by 2030 for the three regions 312 
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assuming all recovering forests were protected and regrow (Figure 4). We calculate a potential 313 

future carbon sink of 1,149 Tg C (CIMC: 1010 to 1,288), a 32% increase from the 2018 carbon stock 314 

(Figure 4). Thus, protecting the remaining recovering forests not only maintains carbon stock, but 315 

also maximizes the carbon sink potential. However, this maximum potential value is likely 316 

unfeasible. Many secondary forests are part of long-standing shifting cultivation practices, and 317 

degraded forests in logging concession areas are typically cut in 15 to 40 year cycles or converted to 318 

other land uses46. Of the degraded forests that were later deforested (35%), we found that almost 319 

half (44% to 47%) were deforested within the first 5 years after their last disturbance event 320 

(Supplementary Figure 17), suggesting that recently degraded forests are most at risk from further 321 

deforestation, making their carbon stock potentially more “vulnerable”. Recently disturbed forests 322 

covered a larger area than older recovering forests (Supplementary Figure 13) and contained 29% 323 

(Borneo) to 60% (Central Africa) of the modelled recovering forest carbon stock potential in 2030 324 

(Figure 4; Supplementary Figure 18). Deciding which recovering forests to protect is therefore not 325 

straight forward. 326 

A more feasible scenario for calculating potential of conservation may be to ensure that at least 327 

recently (<6 YSLD) degraded forests and older (>20 YSLD+) secondary forests are allowed to recover 328 

to 2030. The combined carbon gain in such a scenario would be 639 Tg C (CIMC: 533 to 744) across 329 

the three regions, equivalent to ~56% of the maximum technical future carbon sink potential (1,149 330 

Tg C). Limiting subsequent deforestation of recently degraded forests, increasing the interval 331 

between anthropogenic disturbances, such as logging, and reducing the intensity of the disturbance 332 

would ensure these forests can continue to be used sustainably by the people that depend on 333 

them27.  334 

Our calculations demonstrate that the large-scale, maximum technical carbon sink potential may not 335 

be realised at the local scale as not all forests recover from disturbance. Studies have shown that 336 

degraded forests disturbed by fire, continue to be a net source of carbon for many years following 337 

the initial disturbance due to legacy fluxes, post-fire disease and mortality20. Future remote sensing 338 

studies could identify where large-scale carbon losses continue following the initial disturbance. 339 

Such an approach, combined with identification of forests according to the YSLD, as we have done 340 

here, may help to prioritise areas for conservation and restoration.   341 

Recovering forests can continue to provide ecosystem services. Degraded forests in Malaysian 342 

Borneo were found to  provide access to clean water, clean air and regulate temperature47. Older 343 

secondary forests can increase biodiversity in both species’ richness and diversity48. In some places, 344 

older secondary forests even gain protected status after a certain number of years49. However, the 345 

efforts to protect secondary and degraded forests cannot be at the expense of the conservation of 346 

old-growth forests, which remains the most cost-effective climate mitigation strategy in the land-use 347 

sector50. Old-growth forests continue to be subject to unsustainable rates of deforestation and 348 

degradation, and emissions from old-growth forest deforestation (10,521 Tg C) and degradation 349 

(2,916 Tg C) still greatly outweigh the removals from recovery (3,560 Tg C) (Extended Data Table 1).  350 

The priority for meeting the declaration on forest conservation (COP26)8 therefore remains 351 

protecting old-growth forests. Nevertheless, our study provides the first pan-tropical quantitative 352 

evidence that recovering degraded forests are a sizeable carbon sink, despite the slow, decade to 353 

centennial-timescale of the recovery process. It is therefore important to invest in sustainably 354 

conserving recovering forests, to safeguard their current and future carbon sink potential. 355 
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 467 

Methods 468 

Recovering forest carbon accumulation  469 

The primary dataset used in this analysis was the pantropical dataset that monitors the extent and 470 

changes in Tropical Moist Forests (TMF) over the last three decades4. TMF includes all closed forests 471 

(>90% crown cover) in humid forests only. This TMF dataset is based on observations of the Landsat 472 

collection from 1982 to 2019, where available, with a spatial scale of 30m and an annual temporal 473 

frequency over 38 years. Importantly, this dataset characterises the duration of the observations of 474 

tree cover disturbances, enabling disturbances to be classified as either forest degradation events 475 

(disturbances that are visible for less than 2.5 years) or deforestation events (disturbances that last 476 

for more than 2.5 years). A disturbance observation was defined as the absence of tree cover in a 477 

pixel that had previously been characterised as TMF cover. From this approach it was possible to 478 
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map degraded forests and secondary forests, amongst other forest cover types. Degraded forests 479 

were defined here as tree covered pixels where disturbances were visible for a short time period 480 

(between 3 months and 2.5 years maximum) whereas secondary forests were defined as pixels with 481 

natural regrowing vegetation after an absence of tree cover for more than 2.5 years. 482 

The TMF dataset can be used to estimate the time (in years) since the last disturbance event for any 483 

recovering forests, which was considered as a good proxy of the age of secondary forests in this 484 

study (Supplementary Figure 10). We used the extent of the different forest types and the metric 485 

“Years Since Last Disturbance” (YSLD) as the first input data in this research. The second key input 486 

data used in this study was the ESA-CCI Aboveground Biomass (AGB) dataset, available for the year 487 

20187. We converted the AGB into Aboveground Carbon (AGC) by applying a conversion factor of 488 

0.45651. The TMF and AGC dataset were combined to determine the AGC with increasing YSLD in a 489 

space-for-time substitution approach, a method that was applied by Heinrich et al (2021)15. As the 490 

AGC dataset extends only to 2018, the TMF dataset was pre-processed to extract a map of YSLD in 491 

2018 for degraded and secondary forests, respectively within the three main continuous tropical 492 

humid forests regions, the Amazon, Island of Borneo, and Central Africa. We opted not to expand 493 

the analysis to include broader regions such as the Neotropics, Western Africa and Southeast Asia 494 

more generally as this would encompass many smaller, and often insular, landscapes, adding further 495 

complexity to the already heterogenous environmental and anthropogenic drivers.   496 

 The possible range of YSLD was from 1 to 36 years, however due to limited availability in the early 497 

collection of satellite imagery (i.e. in the 1980s and 1990s) this range was lower, in the three regions, 498 

the oldest degraded/secondary forests were 34 years old (i.e. growing since 1984)4. Using ArcGIS Pro 499 

(Python 3.6.10; arcpy)52 we grouped connected forest pixels into forest type clusters, based on the 500 

YSLD and extracted the forest clusters with more than nine pixels (i.e., clusters with an area greater 501 

than 0.81 ha). This is an area approximately equal to one pixel of the ESA-CCI product (100m spatial 502 

scale). Following the removal, over 8.7 million clusters were available for analysis (Supplementary 503 

Table 15) for which the modal AGC was determined for each forest cluster.  504 

In addition we used a pan-tropical dataset of commercial and small holder oil palm cover available 505 

for the year 201953 to remove oil palm plantations from the TMF secondary or degraded forests. This 506 

was particularly important for Borneo, where there are large areas of small holder oil palm 507 

plantations that are partly misclassified as forest regrowth in the TMF dataset. We removed all areas 508 

that are classified as any type of oil palm in this ancillary dataset.  509 

Following this correction we carried out our post-processing analysis in the statistical software 510 

programme R (v4.0.2)54 (Supplementary Table 17). We calculated the median AGC value per forest 511 

YSLD. When applying this analysis for the secondary forest type we applied a bias correction to the 512 

AGC values for each YSLD by subtracting the smallest AGC value from all values such that the data 513 

began at or near 0 Mg C ha-1 for a 1 year-old secondary forest15. We did not apply this kind of bias 514 

correction to the degraded forest as we assumed that even after 1 YSLD the degraded forests would 515 

retain some level of AGC post-disturbance.  516 

Following a similar approach to Heinrich et al15 that used a space-for-time substitution approach to 517 

model AGC accumulation with increasing forest age across the Brazilian Amazon15, we modelled the 518 

AGC accumulation with increasing YSLD using the Chapman-Richard model for growth55 within each 519 

of the three rainforest regions:  520 

Yt = A(1-e-kt)c ± ɛ; A, k, and c > 0     (1) 521 
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Where Yt refers to the AGC at YSLD (t); A is the AGC asymptote or the AGC of the old-growth forest; k 522 

is a growth rate coefficient of Y as a function of age; c is a coefficient that determines the shape of 523 

the growth curve; and ɛ is an error term. We assumed that after a given number of years, the AGC 524 

could return to levels equivalent to old-growth forests and reach a precalculated asymptote. We 525 

therefore extracted the AGC values corresponding to undisturbed forest pixels in the TMF map of 526 

year 2018 that are here considered as a proxy for old-growth forests. The median AGC value of 527 

undisturbed forest pixels were then used as the A term in equation (1). We then compared our 528 

estimates of growth rates with estimates from previous studies14,16 and did a detailed comparison 529 

with estimates of secondary forest growth in the Brazilian Amazon (Supplementary Note 1)15,56–58. 530 

The Brazilian Amazon was chosen to carry out the in-depth analysis as this is a region with extensive 531 

previous research, with in-country remote sensing datasets for comparison.  Where studies 532 

indicated the conversion factor used to convert AGB to AGC we adjusted these to reflect the 533 

conversion factor used in this study (0.456)51. 534 

Modelling carbon accumulation by drivers 535 

Over the period 1985 to 2018, we calculated the average of two climate variables that are known to 536 

have an impact on forest dynamics to model the AGC under varying conditions of the variables: the 537 

average maximum annual temperature (Tmax)59 and the Maximum Cumulative Water Deficit 538 

(MCWD), which is often used as an indicator of drought60–62. Additionally, we investigated the impact 539 

that a normalised terrain model (Height Above Nearest Drainage; HAND) had on the growth rates63. 540 

A further variable we investigated was the distance from nearest region of old-growth forest as a 541 

proxy for forest fragmentation, which we developed in this study using the TMF dataset4. The two 542 

climate variables were chosen to enable the most direct comparison with previous studies that have 543 

also used these variables 15,23,30, enabling us to benchmark and validate our approach. The two 544 

environmental variables, HAND and distance from undisturbed forest, were chosen as the impact of 545 

these variables has only been explored in a few region-specific studies but never across the pan-546 

tropics, thus providing new scientific insights. 547 

To determine the distance between degraded or secondary forest areas and old-growth (i.e., 548 

undisturbed) forests we first identified and extracted clusters of connected pixels of old-growth 549 

forest with an area of more than 6.25ha. We did this as to exclude small patches of old-growth 550 

forest. The threshold of 6.25ha, equal to ca. 70 pixels of the TMF dataset, was chosen as this is the 551 

minimum area detected by the PRODES deforestation mask developed by the National Institute for 552 

Space Research (INPE) in Brazil, which produces annual maps of deforestation in the Brazilian Legal 553 

Amazon64. We then expanded the perimeter of old-growth forest clusters by 4 (~120m), 17 (~500m), 554 

33 (~1000m) and 67 (~2000m) pixels and aggregated the layers together to produce a map of 555 

distance from large old-growth forests. 556 

We determined the modal value of the respective variables overlying either the degraded or 557 

secondary forest pixel within a region of the same YSLD. In R we calculated the corresponding 558 

percentile of each variable value weighted by the number of connected pixels within a forest region. 559 

We  split the dataset into the forest regions that experienced the lowest 25%, middle 50% and upper 560 

75% of the respective variables. The only variable for which we manually created the groups was the 561 

“distance from old-growth forest” as the forest regions were generally heavily skewed to being close 562 

to the old-growth forests. We therefore manually created three groups: (i) “< 120m”; (ii) “120m to 563 

1000m”; and (iii) “1000m +” to represent distance (in metres) from nearest large patch of old-564 

growth forest. In each of these groups we again calculated the median AGC value per forest YSLD, 565 

weighted by the number of connected pixels within a forest region. Finally, we applied equation 1 566 
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within the nls function again to model the growth in the different forest types, this time split up by 567 

the variable quartiles.  568 

Modelling the importance of each driver 569 

We used a multi-linear model approach to relate AGC to the independent variables as well as the 570 

YSLD within the three regions. The relative importance of each independent variable in influencing 571 

AGC was assessed using a bootstrapping approach. Prior to this we assessed whether the variables 572 

had (i) a linear-relationship with AGC and (ii) if any of the variables had a colinear relationship with 573 

another driver using various correlation coefficients such as Pearson’s R and Spearman’s rho as well 574 

as the linear model’s Variance Inflation Factor (VIF) analysis. Where the correlation coefficients were 575 

below ±0.5 and VIF values were < 2, we assumed the relationship between the independent 576 

variables was not very strongly correlated and therefore could be used in the modelling analysis 577 

(Supplementary Figure 3 and 4). Based on the assessment of linearity, we also concluded that there 578 

were no relationships with AGC that were clearly non-linear (Supplementary Figure 5, 6 and 7), and 579 

so we assumed a linear relationship of all the variables with AGC and scaled the variables to 580 

between 0 – 1 to enable comparison between the regions. Although we assumed a non-linear 581 

relationship of AGC with time (YSLD) in Equation 1, many of our comparisons to previous studies 582 

used the average growth rate in the first 20 years since the last disturbance event, a linear 583 

interpretation of growth that we also applied in this analysis. 584 

In order to minimize spatial autocorrelation when building the linear model65 we built an 585 

exponential semi-variogram model, to test at what distance (in degrees) the linear model residuals 586 

were no longer spatially autocorrelated. We estimated that a distance of 0.5 degrees (~55 km) for 587 

the Amazon and Central Africa and 0.3 degrees (~33 km) for Borneo minimized spatial 588 

autocorrelation and that this information could be used in a stratified spatial sampling approach66. 589 

We rounded the latitude and longitude coordinates of each forest cluster to the nearest 0.5 (0.3) 590 

degrees and then sampled the data such that only 1 forest cluster of each 0.5 (0.3) grid square was 591 

selected for further analysis.  592 

We then applied the linear model to determine the standardised coefficients of each of the 593 

environmental variables as well as YSLD in each forest type within each region. We ran the linear 594 

model analysis 100,000 times, randomly sampling a forest cluster per grid square at each iteration. 595 

Next, we calculated the average coefficient, standard error, and p-value at the 95% confidence 596 

interval for each variable across all the iterations.  597 

Mapping regional carbon stock potential 598 

To map the carbon stock potential, we applied the region-specific growth models to all secondary 599 

and degraded forest pixels respectively. We calculated the accumulated carbon stock of the standing 600 

area of recovering forest in 2018 and produced a map, aggregated to 0.1-degree grid square of the 601 

2018 carbon stock. Here we also show the regions identified as peatland67,68, to highlight where 602 

there may be additional soil carbon benefits. We also applied a similar approach to Chazdon et al.5 603 

and modelled the potential carbon stock at the end of 2030 if all the 2018 standing forest remained 604 

standing and were protected until the year 2030.  We disaggregated the information by forest type 605 

and by country within the regions to demonstrate the carbon stock that can be lost if the forests 606 

were not left to stand, but also the carbon that could be gained if the forests are protected.  607 

Estimating forest carbon losses 608 

We estimated the gross carbon losses from deforestation and degradation in the following manner: 609 



  

 

 
UOB Confidential 

(i) For the carbon losses from deforestation, we used the TMF dataset to identify the year a forest 610 

pixel was deforested. The total area that was deforested between 1984 and 2018 across the three 611 

regions was multiplied by the median AGC value of old-growth forest, assuming that all AGC would 612 

be lost. This provided the total amount of AGC lost due to deforestation over the study period. Old-613 

growth forests that were first degraded and then subsequently deforested are included in this 614 

estimate. 615 

(ii) For the carbon losses from degradation we used the difference between AGC in old-growth 616 

forests and the modelled AGC in areas after the first year since the last disturbance event (i.e., 1 617 

YSLD). We took these differences as the emission factor for degraded forests across the respective 618 

regions and multiplied it by the area of degraded forests in 2018 to estimate the total AGC loss due 619 

to degradation. 620 

Model variability and uncertainty 621 

We used more than 8.7 million secondary and degraded forest connected pixel clusters across the 622 

three study regions, using their median to estimate the changes in AGC with YSLD. The use of 623 

remote sensing data has the potential to capture the spatial variability in regrowth across these 624 

dynamic regions, which is in part masked when taking the median value across the whole region.  625 

We aimed to disaggregate this variability by environmental variables, but also wanted to 626 

demonstrate the range of recovery aggregated across the three regions by running 50 Monte Carlo 627 

simulations. Each simulation randomly sampled the data such that a total of ~10% of the dataset 628 

was sampled at the end of the simulations. This was equivalent to sub-sampling 100 and 25 clusters 629 

for each YSLD group for degraded and secondary forests, respectively. In each simulation we applied 630 

the methodology described above, calculating the median AGC per YSLD group, applying Equation 1 631 

and determining the 95% confidence interval. We also estimated a new old-growth forest AGC value 632 

to represent the asymptote based on randomly sampled pixels of old-growth forest AGC. We then 633 

estimated the 95% confidence interval from the Monte Carlo simulations to represent the model 634 

variability (Supplementary Figure 14 to 16; Supplementary Table 2).  635 

We estimated the uncertainty caused by the ESA-CCI dataset of AGB, a parameter which is provided 636 

on a pixel-scale in the dataset as the standard error. We followed a similar methodology when 637 

extracting the mean AGB values for each cluster, by determining the modal standard error for each 638 

cluster of a specific YSLD. We calculated the median standard error value for each YSLD grouping in 639 

each region. We then propagated the error of the dataset (DataSE) with the error of the fitted 640 

regional models. The non-linear growth model provided an estimate of the uncertainty expressed as 641 

both the 95% confidence interval and the residual standard error. We propagated the residual 642 

standard error of the model (ModelSE) with DataSE using the root square of sum method to obtain an 643 

overall standard error of the regional growth models (Supplementary Table 3). 644 

 645 

Supplementary information 646 

Supplementary Information is available for this paper. 647 

Data Availability  648 

All the original datasets used in this research are publicly available from their sources: JRC-TMF 649 

dataset4 (https://forobs.jrc.ec.europa.eu/TMF/download/); ESA-CCI AGB/AGC map7 650 

(https://catalogue.ceda.ac.uk/uuid/84403d09cef3485883158f4df2989b0c); Descal et al. (2021) oil 651 

https://forobs.jrc.ec.europa.eu/TMF/download/
https://catalogue.ceda.ac.uk/uuid/84403d09cef3485883158f4df2989b0c
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palm map53 (https://developers.google.com/earth-652 

engine/datasets/catalog/BIOPAMA_GlobalOilPalm_v1#description); TerraClimate Maximum 653 

Temperature59 (https://developers.google.com/earth-654 

engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE); MCWD data can be produced by 655 

combining monthly rainfall dataset from Funk et al.61 ( 656 

https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/fews/web/global/monthly/chirps/final/dow657 
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(https://code.earthengine.google.com/ed75ecef7fcf94897b74ac56bfbb3f43); Xu et al. Peatland 659 
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(https://amazonia.mapbiomas.org/)  and the code to extract secondary forest area and age58; 661 

Logging concession areas71 (https://data.globalforestwatch.org/datasets/managed-forest-662 

concessions/explore). Both the Tmax and HAND indices were pre-processed in GEE. Country 663 

boundaries shown in map-based figures 664 

(http://thematicmapping.org/downloads/world_borders.php)72  665 

All final data produced in this study are available in a public repository: 666 

https://zenodo.org/record/7330549#.Y3vCo0nP1PY 73 667 

Code Availability 668 

All code used to produce the main figures of the are available in a public repository: 669 

https://zenodo.org/record/7330549#.Y3vCo0nP1PY 73 670 
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Display Material Legends 750 

 751 

Figure 1 | Modelled Aboveground Carbon (AGC) accumulation with Years since last forest 752 

disturbance (YSLD) in different tropical regions. AGC is shown in (a) Degraded Forests and (b) 753 

Secondary Forests in the Amazon, Island of Borneo, and Central Africa tropical humid forest regions. 754 

Points denote the median AGC value calculated for each YSLD, fitted lines are based on a non-linear 755 

model (see methods). Shading denotes the 95% confidence interval of the non-linear model 756 

(Supplementary Discussion 1 for further exploration of variability and uncertainty). Crosses denote 757 

the median AGC of old growth (OG) forests in the respective regions and associated 95% confidence 758 

interval from the Monte Carlo simulation. (c) Map delineating the spatial extent used in this study 759 

representing each region as well as highlighting the percentage area occupied by different forest 760 

types used in this study as well as Other Lands. Map created using ESRI’s ArcGIS Pro (2.6.0). 761 

762 
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 763 

Figure 2 | Modelled Aboveground Carbon (AGC) accumulation in different maximum Temperature 764 

(Tmax) zones within different tropical regions. AGC as a function of Year since last disturbance 765 

event (YSLD) is shown for (a – b) the Amazon; (c – d) Borneo; and (e – f) Central Africa for Degraded 766 

Forests (left column) and Secondary Forests (right column). Points denote the median AGC value 767 

calculated for each YSLD, fitted lines are based on a non-linear model (see methods). Values in the 768 

legend denote the absolute lower 25% (yellow), middle 50% (red) and upper 25% (dark red) limits of 769 

the Tmax range in each location, which has units °C. Shading denotes the 95% confidence interval of 770 

the non-linear model. Crosses denote the median AGC of old-growth (OG) forests in the respective 771 

regions within the respective ranges of the variable. Each subplot contains a not-to-scale map of the 772 

region showing where the ranges for the Tmax bins can be found geographically. Maps were created 773 

using ESRI’s ArcGIS Pro (2.6.0). 774 
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 775 

Figure 3 | The modelled 2018 carbon stock in recovering forests (degraded and secondary forests) 776 

within the three major tropical forest regions. The carbon stock shows the total carbon that has 777 

accumulated since the last disturbance event using the region-wide regrowth models developed in 778 

this study for (a) the Amazon, (b) Island of Borneo, (c) Central Africa Values of the carbon stock (Tg 779 

C) are aggregated to 0.1-degree grid squares and show the sum of degraded forest (Extended Data 780 

Figure 6) and secondary forest (Extended Data Figure 7), together representing recovering forest. 781 

Regions of peatland have been highlighted (see methods) and are denoted by the hatching. 782 

Annotated values denote the AGC stock and associated 95% confidence interval as estimated in this 783 

study using the Monte Carlo simulations per country expressed using ISO3 code for each country. 784 

Map created using ESRI’s ArcGIS Pro (2.6.0). 785 

786 
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 787 

Figure 4 | The 2018 carbon stock and maximum technical 2030 carbon (C) sink potential across 788 

recovering forests within the three major tropical forest regions. Panels are split up according to 789 

the years since the forest was last disturbed and then further separated by region (columns) and 790 

forest type (rows). Solid bars denote the total carbon accumulated from the beginning of the growth 791 

period (since 1984 in Amazon and Central Africa, and since 1987 in Borneo) to 2018. Lighter bars 792 

denote the maximum potential carbon gain from 2018 to 2030 if the 2018 recovering forest area 793 

would remain until 2030. Black values refer to the 2018 carbon stock, grey values to the 2018 – 2030 794 

maximum technical C gain. The range (±) shows the 95% confidence interval from the Monte Carlo 795 

simulations.  796 

797 
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Extended Data Legends 798 

 799 

Extended Data Figure 1 | The Aboveground Carbon (AGC) after 20 years in recovering forests 800 

relative to old-growth forest values across different studies compared to this study. Values are 801 

expressed as the percentage (%) AGC recovered relative to old-growth forest values across the three 802 

study regions: Amazon, Borneo, and Central Africa in recovering degraded and secondary forests. 803 

Where previous studies capture a different region to those used in this study, the specific region has 804 

been indicated alongside the study name in brackets. E.g., W. Africa refers to West Africa in Poorter 805 

et al. and N’Guessan et al., this region is not in Central Africa but represents the closest region that 806 

could be found containing such information.  Uncertainty types are either the 95% confidence 807 

interval (CI 95%) or the minimum and maximum values presented by the studies for the respective 808 

regions.  More information on the previous studies and the associated values is given in the source 809 

data for this figure and the supplementary material. 810 

811 
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 812 

Extended Data Figure 2 | Correlation coefficients of different variables driving tropical 813 

Aboveground Carbon (AGC) (Mg C ha-1). Values shown are the average standardised (to be within -1 814 

and 1) coefficients from multiple general linear model runs based on spatial data that was sampled 815 

via stratified random sample accounting for spatial autocorrelation of the variables. The number of 816 

model runs to determine the average was based on the number of samples in each run such that the 817 

total sample size was 100,000. Bars denote the average standard deviation. Each coloured 818 

circle/triangle represents the respective standardised coefficient in degraded/secondary forests 819 

within the 3 regions (colours). Smaller shapes within the large, coloured shapes represent whether 820 

the result was statistically significant, where black denotes p < 0.05, white denotes p <0.1 and no 821 

colour denotes p>=0.1.  The variables are Years since last Disturbance (YSLD) equivalent to age for 822 

secondary forests; Average Annual Maximum Temperature; Maximum Cumulative Water Deficit 823 

(MCWD); Height Above Nearest Drainage (HAND) and Distance from nearest undisturbed (old-824 

growth) Tropical Moist Forest (TMF). The effects of MCWD are positive because the MCWD values 825 

are negative and so have an opposite effect: less negative values indicate less water deficit, which is 826 

associated with generally higher AGC and thus a positive coefficient.  827 

828 
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 829 

Extended Data Figure 3 | Modelled Aboveground Carbon (AGC) accumulation with Maximum 830 

Cumulative Water Deficit (MCWD) within different tropical regions. AGC as a function of Year since 831 

last disturbance event (YSLD) is shown in (a – b) Amazon; (c – d) Borneo; and (e – f) Central Africa for 832 

Degraded Forests (left column) and Secondary Forests (right column). Points denote the median AGC 833 

value calculated for each YSLD, fitted lines are based on a non-linear model (see methods). Values in 834 

the legend denote the absolute lower 25% (yellow), middle 50% (light green) and upper 25% (dark 835 

green) of the MCWD range, which has units -mm yr-1. Shading denotes the 95% confidence interval 836 

of the non-linear model. Crosses denote the median AGC of old-growth (OG) forests in the 837 

respective regions within the respective ranges of the variable. Each subplot contains a not-to-scale 838 

map of the region showing where the ranges for the MCWD bins can be found geographically.   839 

840 
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 841 

Extended Data Figure 4 | Modelled Aboveground Carbon (AGC) accumulation with Height Above 842 

Nearest Drainage (HAND) within different tropical regions. AGC as a function of Year since last 843 

disturbance event (YSLD)  is shown in (a – b) Amazon; (c – d) Borneo; and (e – f) Central Africa for 844 

Degraded Forests (left column) and Secondary Forests (right column). Points denote the median AGC 845 

value calculated for each YSLD, fitted lines are based on a non-linear model (see methods). Values in 846 

the legend denote the absolute lower 25% (green), middle 50% (yellow) and upper 25% (grey) of the 847 

HAND range, which has units metres (m). Shading denotes the 95% confidence interval of the non-848 

linear model. Crosses denote the median AGC of old-growth (OG) forests in the respective regions 849 

within the respective ranges of the variable. Each subplot contains a not-to-scale map of the region 850 

showing where the ranges for the HAND bins can be found geographically.   851 

852 
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 853 

Extended Data Figure 5 | Modelled Aboveground Carbon (AGC) accumulation with distance from 854 

nearest old-growth forest within different tropical regions. AGC as a function of Year since last 855 

disturbance event (YSLD) is shown in (a – b) Amazon; (c – d) Borneo; and (e – f) Central Africa for 856 

Degraded Forests (left column) and Secondary Forests (right column). Points denote the median AGC 857 

value calculated for each YSLD, fitted lines are based on a non-linear model (see methods). Values in 858 

the legend denote the distances <120 m (lime green), 120m to 1000m (green) and 1000m + (dark 859 

green), representing the distance from the nearest old-growth forest. Shading denotes the 95% 860 

confidence interval of the non-linear model. Crosses denote the median AGC of old-growth (OG) 861 

forests in the respective regions within the respective ranges of the variable. In this case, only a 862 

single value of old-growth forest AGC is shown. Each subplot contains a not-to-scale map of the 863 

region showing where the ranges for the distance bins can be found geographically.   864 

865 
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 866 

Extended Data Figure 6 | The modelled 2018 carbon stock in degraded forests within the three 867 

major tropical forest regions. The carbon stock shows the total carbon that has accumulated since 868 

the last disturbance event using the region-wide regrowth models developed in this study for (a) 869 

Amazon, (b) Island of Borneo, (c) Central Africa. Values of the carbon stock (Tg C) are aggregated to 870 

0.1-degree grid squares and show the sum of degraded forest . Regions of peatland have been 871 

highlighted (see methods) and are denoted by the hatching. Annotated values denote the AGC stock 872 

and associated 95% confidence interval as estimated in this study using the Monte Carlo simulations 873 

per country expressed using ISO3 code for each country. Map created using ESRI’s ArcGIS Pro (2.6.0). 874 

875 
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 876 

Extended Data Figure 7 | The modelled 2018 carbon stock in secondary forests within the three 877 

major tropical forest regions. The carbon stock shows the total carbon that has accumulated since 878 

the last disturbance event using the region-wide regrowth models developed in this study for(a) 879 

Amazon, (b) Island of Borneo, (c) Central Africa. Values of the carbon stock (Tg C) are aggregated to 880 

0.1-degree grid squares and show the sum of secondary forest. Regions of peatland have been 881 

highlighted (see methods) and are denoted by the hatching. Annotated values denote the AGC stock 882 

and associated 95% confidence interval as estimated in this study using the Monte Carlo simulations 883 

per country expressed using ISO3 code for each country. Map created using ESRI’s ArcGIS Pro (2.6.0). 884 

885 
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886 
Extended Data Table 1 | Carbon emissions from forest loss and removals from recovering forest 887 

and their contribution to counterbalancing forest loss emissions accumulated up to 2018 across 888 

the three regions. Values refer to the sum of emissions/removals of Aboveground Carbon (AGC) in 889 

units Terragrams of carbon (Tg C) accumulated throughout the growth period (1984 to 2018). The 890 

emissions from deforestation were estimated based on the median value of old-growth forest AGC 891 

for each region, with the assumption that all AGC value was lost. Emissions from degradation were 892 

estimated by calculating the difference in AGC between old-growth forests and the first year since 893 

the last disturbance event. The emissions from deforestation included old-growth and degraded 894 

forest that were later deforested. Emissions from degradation only considered the AGC that was lost 895 

in degraded forests but later recovered. Values in brackets are the lower and upper estimates 896 

representing the 95% confidence interval from the Monte Carlo simulations. 897 

898 
Extended Data Table 2 | Percentage area of degraded forest that were deforested by 2018 and 899 

their potential carbon contribution to counterbalancing gross emissions from forest loss. The 900 

percentage area was calculated based on the total number of forest areas that had at one point 901 

(between 1984 and 2018) been classed as a degraded forest and the number of these areas that 902 

were deforested by 2018. The carbon removal potential was calculated based on the growth models 903 

for degraded forests in each of the three regions (Figure 1). Values in brackets are the lower and 904 

upper estimates representing the 95% confidence interval (CI) from the Monte Carlo simulations. 905 
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