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Abstract: The use of coal as a source of energy is crucial for the growth of the national economy,
but mining poses numerous risks and a potential for significant disasters. Coal mine safety is
the prerequisite and guarantee for coal industry to achieve new industrialization and sustainable
development. Therefore, it is crucial to predict a safety accident in the coal mine in advance. In
order to facilitate the early warning of coal mine safety accidents, this study seeks to present a
prediction model based on emergency management of safety accidents, which is a fusion model of
principal component analysis (PCA) and long short-term memory neural network. According to the
results, the correlation coefficients of risk identification and monitoring (a11), safety inspection and
warning (a12), emergency planning and training (a13), material and technical support (a15), and
macroenvironmental management (a21) were 0.718, 0.653, 0.628, 0.444, and 0.553, respectively, after
the PCA dimensionality reduction process, demonstrating that the previous principal component
analysis had a better effect. The absolute relative errors of each evaluation index of safety accident
emergency management did not exceed the limit of 5%, including a15 and a21, whose values were
4.5% and −3.8%, while the relative errors of the remaining indicators were kept at a relatively low
level. In conclusion, it is clear that the algorithm model suggested in this research improved the
warning capabilities of safety accident emergency risk.

Keywords: coal mine emergency management capability; evaluation index system; evaluation model;
principal component analysis; long short-term memory neural network

1. Introduction

An important topic [1–3] that coal mining enterprises are currently dealing with is
how to establish a scientific and practical emergency management capability assessment
model. This is a significant challenge for coal mining enterprises. Governments are
paying increasing attention to the management of emergency plans for coal mine accidents.
Moreover, this issue has attracted great attention from public management science and
practice. Good management related to emergency planning can reduce accidents and
guarantee timely and efficient rescue work. Additionally, there is growing interest in
the significance of emergency management as a hot topic in emergency situations. Due
to the use of a single evaluation method, it is challenging to guarantee the accuracy of
both domestic and international studies, and subjective authorization affects both the
transparency of the evaluation process and the validity of the evaluation model [4,5]. In
order to create a suitable emergency response system for the occurrence of disaster hazards
in mines, it is crucial to reduce the number of evaluation index dimensions. As a result,
this study proposes a multidimensional structural equation model based on PCA-LSTM.
The PCA-LSTM algorithm is a machine learning algorithm that uses principal component
analysis (PCA) and recurrent neural networks (LSTM) to predict sequential data. PCA
is a technique used to reduce the dimensionality of data by analyzing the relationships
between features and mapping the data onto a lower dimensional space. The temporal
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dependencies of data are learned and stored by special recurrent neural networks called
LSTM models. By combining PCA methods with LSTM models, PCA-LSTM algorithms
can produce better results in a variety of applications, including time series prediction, text
analysis, and natural language processing. PCA-LSTM can handle noisy, time-delayed, and
multivariate data and accurately learns patterns in data.

Coal mine safety is related to the stable development of the national economy and
energy security, and the accident and disaster emergency plan system is a necessary
link in the safety production system of coal mines. The establishment of an emergency
response system is necessary due to the severity of coal mine safety accidents. The current
research can be mainly divided into four modules. Firstly, the research status of coal
mine emergency management ability at home and abroad is introduced; secondly, the
safety accident emergency management index and principal component analysis of data
are determined; thirdly, the safety accident emergency management model is established;
finally, the application effect of the multidimensional structural equation in safety accident
emergency management is studied and analyzed.

2. Related Work

In order to assess accidents and related risk factors in the work of research laboratories
at Lebanese national universities as well as the effects of training and services on security
measures, Nasrallah and colleagues conducted a study among laboratory staff at public
universities. Based on their analysis of the process of integrating the forces of society to deal
with emergencies based on the mechanism of emergencies, they came to the conclusion
that regular incidence training is crucial for maintaining the safety and health of scientific
laboratories [6]. The hypothesis that circadian rhythm disturbances and sleep deprivation
may be the cause of the increased risk of MVA was developed by Fritz J et al. based on
data from a large US registry and it was found that spring DST significantly increased
the risk of fatal MVA by 6%, with the effect being more pronounced in the morning and
further west within the time zone [7]. Yang et al. [8] produced a thorough analysis of the
safety and environmental issues in the coal industry, as well as the company’s contribution
to those issues. Enough consideration should be given to mine pollution in order to
better understand the influences of human behavior and develop an efficient safety control
system. Using the method of fault tree (FTA) to build a model for identifying the key
risk factors and the inspection in the sales force automation, Wang et al. [9] presented the
main issue of marine traffic safety, pointing out the fires of the marine environment are
a kind of instantaneous and continuous development process; a small mistake can cause
big loss (SFA). It was found that adequate ventilation and passenger emergency reaction
are crucial factors in ensuring aircraft safety. Khajevandi et al. used the method of safety
audit to investigate the safety violations of Kashgar Medical College, and found that safety
requirements, emergency plans, safety system, and other areas all contained some hidden
dangers. Universities must establish a security system in order to better the situation
because there are no established roles or organizations for security [10].

According to Sun K et al., the use of hydrogen in vehicles has caused public authorities
and private organizations such as fire departments and insurance firms to express safety
concerns. Their research examined how hydrogen fuel cell vehicles typically progress
during accidents on the road. The findings indicate that the danger brought on by a
hydrogen release typically lasts no longer than 1.5 min. If no hissing is heard, a buffer
zone with a perimeter of 100 m around the accident scene is advised for the public’s safety,
indicating that insurance premiums for death and injury should be higher than those for
property damage [11]. Skalozubov et al. recommended using the reliability and availability
grade division of the emergency water supply system to improve the emergency treatment
efficiency of the power plant with long-term complete power failure. This would allow
the unit to completely lose the power supply for a long time in the early stage before
entering the stable state of work. Alternative technologies are designated for efficient
emergency handling [12]. To address the uncertain aspects of crises, Lin et al. developed
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an engineering emergency management model based on interval value intuitionistic fuzzy
information [13]. According to Ying Liu and colleagues, by assessing the emergency
management capabilities of coal mine companies, any issues or flaws can be identified, and
the emergency management standard is raised. The safety and emergency of coal mine
enterprises are calculated and assessed using the neural network technique. Neurons can
be used to build neural networks of any form, which results in calculations that are precise
and well-fitting [14]. In order to monitor coal mines and ensure worker safety, Sameer M.
et al. explored an Internet of Things (IoT)-based emergency alert system. The researchers
proposed an IoT-based safety alert system that can track the location of coal mine workers
and send out prompt alerts in an emergency. To achieve this, their research work used
a LoRa-based network to implement real-time safety alerting capabilities. The outcomes
of their experiment demonstrate that the system is capable of quickly sending out safety
alerts and accurately tracking the location of coal miners and issue safety alerts in a timely
manner. Thus, an IoT-based coal mine tracking and worker safety emergency alert system
can improve the safety of coal miners [15].

A deep learning algorithm called the graph long short-term memory (GLSTM) neural
network was highlighted by Bacanin Nebojsa et al. for predicting the characteristics of
air quality. Secondly, the predicted nodes are located using the Dragonfly optimizer. The
algorithm based on deep evolution will increase the cost of air pollutant prediction and
node location sensor [16]. A computerized method for deep learning of skin disease
classification based on MobileNet V2 and long short-term memory has been proposed by
Srinivasu Parvathaneni Naga et al. (LSTM). Studies have shown that the proposed system
can assist general practitioners in effectively diagnosing skin diseases. Thus, complications
and morbidity can be reduced [17]. To create the best deep learning model and improve
the stock market’s capacity for daytime prediction, Krishna Kumar et al. merged RNN-
LSTM with the flower pollination algorithm RNN-LSTM and particle swarm optimization
technique. Recurrent neural network (RNN) is a type of neural network that is used to
process sequential data. RNNs contain a loop that enables them to take their previous
output into account when computing their current output. This enables them to learn
patterns in data that are dependent on the order of the data. RNNs have been used for
tasks, such as natural language processing, time series analysis, speech recognition, and
image captioning [18].

A coal mine safety accident emergency management model is proposed in this study
in order to establish a safety management system and achieve the goal of preventing safety
accidents. Based on the findings of domestic and foreign scholars’ research, more efforts
should be made to explore the incidence of safety accidents and related risk factors, injury
prevention, and management strategy in China and abroad.

3. Establishing an Emergency Management Approach to Security Incidents
3.1. Analysis of Safety Incident Emergency Management Indicators

To ensure the accuracy and efficacy of coal mine safety production, it is necessary to es-
tablish a scientific and reasonable evaluation index system of mine emergency management
capability. The selection of indicators for evaluating the performance of coal mine safety
production and operation must fully and impartially reflect the basic characteristics of coal
mine production and operation. Based on the previous literature, this paper discusses the
capabilities of prevention, environmental management, and command and rescue, and
conducts a thorough and methodical evaluation of the four levels of post-accident handling
capabilities [19], as shown in Table 1.
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Table 1. Evaluation index system for coal mine emergency management capacity.

First-Level Indicators Secondary Indicators Metric Meaning

Preventive preparedness (A1)

Hazard identification and
monitoring (a11)

Accurately identify hazards and monitor
them in real time

Security checks and early warnings (a12)
Regularly check for hidden dangers; The

early warning system is sensitive
and efficient

Contingency plans and training (a13) Science of emergency plans; Professional
training before the post

Emergency response agencies and
equipment (a14)

Emergency sites, facilities and equipment
are well prepared

Material and technical support (a15) Sufficient emergency supplies;
Communication technology support

Rescue teams and drills (a16) Emergency rescue teams regularly
conduct simulated exercises

Environmental management
capabilities (A2)

Macroenvironmental management (a21) Formulate and implement enterprise
safety rules and regulations

Microenvironmental management (a22) Real-time monitoring of working
system status

Command rescue capabilities (A3)

Emergency response and initiation (a31) Respond quickly and activate
emergency plans

Information delivery and decision
making (a32)

Unimpeded information transmission;
Scientific analysis of decision making

Emergency command and control (a33)
Command and dispatch and disaster
mitigation control are comprehensive

and reasonable

Restore perfect capabilities (A4)
Loss assessment and settlement (a41) Scientific assessment of losses; Apply for

an insurance claim

Resumption of production and
reconstruction (a42)

Restoration of production order and
post-disaster reconstruction

As shown in Table 1, this study collated a few index systems for evaluating the
emergency management capability of coal mines. Numerous risk factors, such as safety
risks and natural fires in mines, pose a significant threat because of the more complicated
operating environment of mines and the frequent changes in working conditions and
workplaces. Businesses should create emergency response plans to handle emergencies,
enhance their capacity to respond to emergencies and disasters, and implement effective
prevention and disposal to reduce harm to life, property, and the environment caused by
disasters. Coal mines should create emergency plans that are appropriate for the unit’s
risk factors and potential hazards, and they should organize the three components of
comprehensive emergency plans, special emergency plans, and on-site disposal plans so
that they can be easily referenced when forming enterprise emergency plans.

Since there are various types of safety accidents in mines and the degree of hazard is
uncertain, each plan is composed of emergency plans according to different types of risk
and degree of hazard in a horizontal parallel and vertical hierarchical way. The horizontal
parallel relationship of each plan is divided by class, and the vertical relationship is divided
by genus, and the individual plans in each emergency plan system have class relation-
ship. There are two kinds of relationships between individual programs: one is caused
by the spread of production emergencies, which requires simultaneous use of multiple
individual programs; the other is caused by the intensification of production emergencies,
which requires the simultaneous use of multiple individual programs. Based on both
domestic and international experience, the general factors for the construction of China’s
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emergency planning system include the country’s current political and administrative
structure, its laws and regulations, the history and current state of major emergencies, its
reserve emergency plan, and the various parties’ revisions to the emergency plan. These
aspects should be taken into account as a crucial starting point for creating an emergency
preparation system. It has a significant guiding role for the basic work of establishing an
emergency response plan system. The following three essential principles must also be
the foundation for the creation and growth of our emergency response system. The first is
the rule, which serves as a standard for conduct and a safety net for the continuity of the
system and the group. The second is the steady development of the national emergency
management system, an organizational structure that functions as both a command and
response platform for emergencies and for daily emergency preparedness, especially for
directing, supervising, checking, evaluating, and revising the daily revision of emergency
plans. Finally, an emergency management operation mechanism is based on three mutually
supportive emergency management operation mechanisms: the emergency preparedness
guidance document (outline or guide), the national emergency handling system, and the
emergency plan. The legal system, the system, and the operational process of emergency
management are all part of the emergency management system and must therefore be fully
considered when building the emergency planning system [20]. The emergency planning
system and the emergency management operational mechanism are essential components
of the total emergency management system and must be taken into account when building
the system, as was previously demonstrated. In order to prepare the groundwork for later
importation of the organized data into the model and improving the model’s accuracy, this
study screens out several indicators with strong correlation from a large set of indicators
used to evaluate the emergency management capacity of coal mines.

Principal component analysis (PCA) is a method to recombine the original variables
into a new set of linearly independent indicators and select the smallest composite index
to reflect the data of the original variables according to the actual needs [21]. PCA can be
used in applications for coal mine safety disaster early warning management to reduce
redundant data in coal mines, reduce data dimensionality, and enhance the effectiveness
and visibility of coal mine data management. Firstly, a thorough analysis of the feature
variables in coal mine data can be performed using PCA to pinpoint the most important and
highly emotive features. These key features can be used to build a model of the mine data to
better understand and grasp the mine data. Secondly, by using PCA coal mine data can be
made less dimensional and more concise while also having fewer repeated feature variables.
This increases the effectiveness of coal mine data management. Finally, PCA can be used
to check for potential anomalies in the mine dataset to effectively manage the mine data
and better understand its patterns. When this approach is used to assess a real-world issue,
it can successfully reduce the computational workload and enhance analysis efficiency
by removing correlation between the original variables and index selection workload.
Principal component analysis can be applied in various aspects, including biomedical
engineering, control engineering, data analysis, robotics, intelligent agriculture, etc. In
order to preserve as much of the original data’s validity as possible, PCA projects the
original data points to the direction of maximum variance in the new space after projection,
and then project the direction of maximum variance to the direction of the next largest
variance, and so on. Finally, a set of principal components arranged from the largest to
the smallest and uncorrelated is produced, and these principal components can be used
to describe the original data. In this study, the principal component analysis method is
used to reduce the dimensionality of the coal mine emergency management evaluation
indexes to obtain the principal component components, and all the evaluation index data
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are organized to obtain the sample matrix with the matrix size of m × k dimension, as
shown in Equation (1), and its centralized sample matrix is shown in Equation (2). x11 · · · x1k

...
xm1 · · · xmk

 (1)

m

∑
i=1

xi = 0 (2)

In Equation (1), xmk(m = 1, 2, 3 . . . p, k = 1, 2, 3, . . . , q) is the k characteristic param-
eter of the m secondary index of coal mine emergency management evaluation, and the
characteristic value of M is found and arranged in order of alphabetical size, which is
λ1 > λ2 > · · · > λl , λl+1 = λl+2 = · · · = λn = 0; the covariance of the characteristic data
set is calculated as shown in Equation (3).

P =
1
m

XTX (3)

On this basis, the coordinate system is assumed to be the eigenvector corresponding to
the largest eigenvalue in that coordinate system, and then this projection matrix is output,
whose transformed coordinate system is {w1, w2, · · · , wd}; w is the standard orthogonal
basis vector. If the data are downscaled, the projection of the eigenvalue xi in the low-
dimensional coordinate system is zi = (zi1, zi1, · · · , zid)

′. The result of constructing xi from
zi is shown in Equation (4).

x̂i =
d

∑
i=1,j=1

zijwj (4)

The distance of the reconstituted x̂i from the previous xi is shown in Equation (5).

m

∑
i=1

∥∥∥∥∥ d

∑
j=1

zijwj − xi

∥∥∥2
2 =

m

∑
i=1

zi
Tzi − 2

m

∑
i=1

zi
TwTxi + constµ− tr[wT(

m

∑
i=1

xixi
T)w] (5)

This study’s dimensionality reduction goal requires that Equation (5) must be min-

imized and that
m
∑

i=1
xixi

T is used to represent the covariance matrix and determine the

smallest eigenweight dimension, as shown in Equation (6).{
min

w
− tr(wTxxTw)

s.t. wTw = I
(6)

Equation (6) was used as a constraint function in this study to determine the principal
component components following the dimensionality reduction of PCA. In general, a
cumulative contribution value between 85% and 95% captures most of the data information
and effectively reduces the dimensionality of the raw data.

3.2. Establishment of Emergency Management Model for Safety Accidents

The remaining indicators are used as the input data for the model after the PCA screen-
ing and dimensionality reduction procedure of safety accident emergency management
indicators. The research employs long short-term memory (LSTM), a recurrent neural net-
work (RNN), in light of the interdependent relationships in the safety accident emergency
management indicators data matrix. Input layer, hidden layer, and output layer are the
three layers that make up the deep feed-forward neural network known as LSTM. Each
layer also serves as a weighted information storage layer. This neural network has seen
significant use recently in machine translation, speech recognition, and natural language
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processing, especially in the prediction of time series. However, in practice, if the sequence
is too long, it will generate problems such as gradient burst and gradient disappearance,
making it challenging to keep the memory for a long time. Additionally, the LSTM network
uses RNN-based thresholding, which can solve this problem very well [22]. There are three
gates in this network structure that control the information: the input gate, the forgetting
gate, and the output gate, whose specific structure is depicted in Figure 1. In the process, the
input gate determines which information should be saved, the forgetting gate determines
which information should be forgotten, and the output gate determines the final output
information, and the element values of the three gates are between [–1, 1] as shown in
Figure 1.
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Figure 1. LSTM network internal structure diagram.

The forgetting matrix is calculated based on Equation (7), the joint matrix consists of
the input ht−1 at the previous time and the input xt at this time. The output forgetting
matrix ft reflects the selection of the cell condition matrix at the previous time.

ft = σ
(

W f ∗ [ht−1, xt] + b f

)
(7)

In Equation (7), w f denotes the weighting matrix, b f denotes the bias, and the
input gate is used to determine the information added to the cell state, as shown in
Equations (8) and (9) with the same input form as the forgetting gate. The sigmoid layer
determines the information needed to update the original cell state it, and the tanh layer
generates the updated content C̃t, multiplied by the two corresponding positions to form
the cell state update matrix.

it = σ(Wi ∗ [ht−1, xt] + bi) (8)

C̃t = tanh(Wc ∗ [ht−1, xt] + bc) (9)

The output signal ht depends on the state of the cell, and in Equation (10), the sigmoid
layer describes how the sigmoid layer selects the information to be output, and the final
output is obtained by combining Equation (11) with the desired output cell state Ct.

ot = σ(W0 ∗ [ht−1, xt] + b0) (10)

ht = ot ∗ tanh(Ct) (11)

In Equations (10) and (11), ht represents the output of LSTM units at time t,ot refers
to the calculation of the output gate at time point t in the LSTM network, tanh represents
the hyperbolic tangent activation function. Figure 2 shows the topology of the LSTM
network model of this study. The implicit layer in this study is set to three layers, LSTM
layer, unregulated deactivation (dropout layer), and regression layer, and finally outputs
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the anticipated degradation trend. This is conducted after extracting the safety incident
emergency management index parameter matrix for the principal component analysis
method of dimensionality reduction.
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The role of each factor must be taken into account simultaneously in the neural
network because various magnitudes and different ranges are generated during the actual
data entry procedure. Therefore, the final data are categorized as normalized. The formula
for normalization is shown in Equation (12).

X∗ =
X− X
S(X)

(12)

In Equation (12), X is the sample data series; X is the mean of the sampled data
and S(X) is the standard deviation of the sampled data. These issues can be resolved
and the continuity of the time series connection between the data can be preserved by
normalizing the data. The data must be denormalized after the prediction is finished, and
the denormalization formula is shown in Equation (13).

X = X∗ · S(X) + X (13)

The LSTM superparameter settings described in this study are shown in Table 2 and
must be chosen before the actual modelling can begin.

Table 2. LSTM network training parameters.

Network Parameters LSTM Network Network Parameters LSTM Network

Enter the vector dimension 1 The number of network layers 5

The output vector dimension 1 Learning rate 0.005

The number of hidden neuron nodes 200 The maximum number of iterations 200

This study adjusts the stochastic deactivation rate to 0.2 and adds a stochastic deacti-
vation layer to the implicit layer of the LSTM, which can successfully prevent its overfitting
in the test set. In the solution procedure, the Adam adaptive moment estimation solution
procedure is used, and the initial learning rate is set to 0.005, then the learning rate is
multiplied by 0.2, and the gradient threshold is set to 1, thus avoiding the gradient burst.
The activation function is tanh. Figure 3 depicts the precise flow of the PCA-LSTM model
that was proposed in this study.
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which are then saved in the event record database. The reduced-dimensional vectors are 
found using the LSTM method under the LSTM test approach. The output results are ob-
tained, and they are then saved in the database so that their safety incident emergency 
management levels can be determined based on the information from the prediction. The 
mean square error (MSE) and the root mean square error (RMSE), which are two indica-
tors used in this paper to assess the stability and accuracy of the model proposed in the 
study [23], are shown in Equations (6) to (7). 
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The specific process is shown in Figure 3, and the process is as follows: First, the
network connection information is captured using the Sniffer in the network acquisition
module, and the relevant safety accident emergency management index data are collected
from the network. Secondly, after converting the character data on the network link
into integer data, the data pre-processing unit is used to pre-process the safety accident
emergency management index data, and the original input vector is then obtained through
data normalization processing. Thirdly, the initial input vector is extracted by using
principal element analysis, and the redundant data are eliminated to obtain the reduced
dimensional input vector. The reduced-dimensional input vector is learned using the LSTM
method under the LSTM model in order to obtain the best set of parameters (σ, tanh, W),
which are then saved in the event record database. The reduced-dimensional vectors are
found using the LSTM method under the LSTM test approach. The output results are
obtained, and they are then saved in the database so that their safety incident emergency
management levels can be determined based on the information from the prediction.
The mean square error (MSE) and the root mean square error (RMSE), which are two
indicators used in this paper to assess the stability and accuracy of the model proposed in
the study [23], are shown in Equations (6) to (7).

MSE =
1
n

n

∑
i=1

[Ỹ(i)−Y(i)]
2

(14)

RMSE =

√
1
n

n

∑
i=1

[Ỹ(i)−Y(i)]
2

(15)

In Equations (14) to (15), n is the total number of samples, Ỹ is the model predicted
value of the ith series, and Y(i) means the actual value of the ith series.

4. Research and Analysis on the Effectiveness of PCA-LSTM Model in Emergency
Management

The method for normalizing the characteristic parameters used in this study involves
iteratively calculating 15,980 data points from 13 evaluation indicators of safety accident
emergency management. It includes hazard identification and monitoring (a11), safety
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inspection and early warning (a12), emergency planning and training (a13), emergency re-
sponse institutions and equipment (a14), material and technical support (a15), rescue team
and exercise (a16), and other data. In this research work, a questionnaire survey was con-
ducted on the raw coal production mines under the Longmei Group of Heilongjiang. The
respondents mainly included coal mine safety management personnel, technical personnel,
front-line miners, and logistics personnel. A total of 1000 questionnaires were distributed,
834 were recovered, and 812 questionnaires were valid excluding those with incomplete
answers. The questionnaire recovery rate was 83.4%, and the effective questionnaire rate
was 97.3%. The main component contribution rate and cumulative contribution rate were
obtained, as shown in Figure 4.
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As can be seen in Figure 4, the first three principal components accumulated 86.06%,
which surpassed 85%, indicating that they have covered the majority of the impact factors.
Principal components 1, 2, and 3 each contributed 48.54%, 23.769%, and 13.757% of the
total, respectively, so only the first three principal components, or the risk indicators of
prevention preparedness (A1), were retained. Specifically, three safety incident emergency
management risk assessment evaluations, specifically divided into hazard identification
and monitoring (a11), safety inspection and warning (a12), and emergency planning and
training (a13), were then added to the pre-built model for additional prediction as well
as safety incident emergency management evaluation. To ascertain whether the estab-
lished model input indicators were connected to safety incident emergency management,
additional correlation tests were run on them.

According to the Spearman rank correlation test color temperature plot in Figure 5, for
the 13 coal mine safety accident emergency management evaluation indexes, the correlation
coefficients with the enterprise’s presence of safety accident crisis factors in that year are
generally around 0.5, including hazard identification and monitoring (a11), safety inspec-
tion and warning (a12), and emergency planning and training (a13) and the correlation
coefficients were 0.718, 0.653, and 0.628, respectively. High correlation values of 0.653 and
0.628 showed that the previous principal component analysis was successful in eliminating
factors with low correlations, and the factors with high correlations were used as the input
data matrix of the model, laying the groundwork for the next step of incorporating the
LSTM network model.
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Figure 6 shows the change of the loss function with epoch value in the training and 
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Figure 6 shows the change of the loss function with epoch value in the training and
experiment of the LSTM model. The loss value declines with increasing training times on
both the training and validation sets, as shown by the loss change curve in the figure, and
its training value peaked at a loss value of 0.01 before levelling off. Although the value of
loss slightly fluctuated, the network generally stabilized. The model must be determined
after 30 iterations for the original determination.
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The LSTM network model’s training performance plot is shown in Figure 7. The MSE
values for the test group are displayed in the figure. For the LSTM network, it can be
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seen that the MSE value was high at the start of the training phase and then declined as
the number of training steps rose. The MSE value’s decline suggests that the error value
was steadily going down. The training of the LSTM network model was stopped when
the model achieved the best training performance after 112 training steps, and the MSE
error was subsequently maintained at 10−5. After 180 iterations, the BPNN model’s MSE
value was still outside this study’s established range, and its feasibility was very low. This
indicated that the LSTM network model used in the research was very feasible and that the
expected error value had been reached. Table 3 displays the RMSE and R2 of the model’s
expected outcomes.

Processes 2023, 11, x FOR PEER REVIEW 12 of 15 
 

 

  Train Loss
Val Loss

 

 
Figure 6. The loss function change curve of the LSTM model. 

The LSTM network model’s training performance plot is shown in Figure 7. The MSE 
values for the test group are displayed in the figure. For the LSTM network, it can be seen 
that the MSE value was high at the start of the training phase and then declined as the 
number of training steps rose. The MSE value’s decline suggests that the error value was 
steadily going down. The training of the LSTM network model was stopped when the 
model achieved the best training performance after 112 training steps, and the MSE error 
was subsequently maintained at 10−5. After 180 iterations, the BPNN model’s MSE value 
was still outside this study’s established range, and its feasibility was very low. This indi-
cated that the LSTM network model used in the research was very feasible and that the 
expected error value had been reached. Table 3 displays the RMSE and R2 of the model’s 
expected outcomes. 

0 20 40 60 80 100 120 140 160 18010 6

10 4

10 2

100

102

Epochs

M
se

LSTM
BPNN

−

−

−

 
Figure 7. Training performance curve of LSTM network. 

Table 3. RMSE and R2 for model on datasets. 

Datasets Algorithm 
Training Testing 

RMSE R2 RMSE R2 

a11 CNN-LSTM 17.85 0.8545 17.11 0.8351 
PCA-LSTM 13.56 0.9982 13.18 0.9915 

a12 
CNN-LSTM 18.49 0.8214 19.98 0.8211 
PCA-LSTM 13.18 0.9451 13.09 0.9569 

a13 
CNN-LSTM 20.65 0.7534 18.89 0.7896 
PCA-LSTM 13.45 0.9932 13.09 0.9973 

Figure 7. Training performance curve of LSTM network.

Table 3. RMSE and R2 for model on datasets.

Datasets Algorithm
Training Testing

RMSE R2 RMSE R2

a11
CNN-LSTM 17.85 0.8545 17.11 0.8351
PCA-LSTM 13.56 0.9982 13.18 0.9915

a12
CNN-LSTM 18.49 0.8214 19.98 0.8211
PCA-LSTM 13.18 0.9451 13.09 0.9569

a13
CNN-LSTM 20.65 0.7534 18.89 0.7896
PCA-LSTM 13.45 0.9932 13.09 0.9973

For the hazard identification and monitoring index (a11), Table 3 shows that the
improved model PCA-LSTM proposed in this study had RMSE and R2 values of 13.56 and
0.9982, respectively, for the training set. The same was true for the test set, where the RMSE
and R2 values were 13.18 and 0.9915, respectively, which showed a significant model effect,
indicating that the proposed PCA-LSTM has a good prediction effect.

The absolute value of the relative errors of the PCA-LSTM model proposed in this
study did not exceed the limit of 5% for each evaluation indicator of safety accident emer-
gency management, as can be seen clearly from the relative error histogram in Figure 8b.
Only the relative errors of the individual safety accident emergency management eval-
uation indexes, such as a15 and a21, had moderately significant issues. Its values were
4.5% and−3.8%, while the relative error of the remaining indicators was kept at a relatively
low level, and its error was far smaller than that of the CNN-LSTM model. In summary,
we can see that the algorithm model proposed in this study has better early-warning ability
of safety accident emergency risk and can be applied to the real scenarios.
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5. Conclusions

The emergency response plan for coal mine safety accidents is an essential road map for
coal mine safety production, and its execution directly influences the emergency response
time and processing effectiveness of the mine. From the viewpoint of coal mine safety
accidents, this study examined the key variables influencing the effectiveness of mine safety
production emergency plan development and created a corresponding conceptual model.
The evaluation indexes of coal mine emergency management capability were first subjected
to principal component analysis (PCA) to reduce their dimensionality. Next, correlation
tests were run on the results, and finally, the filtered and reduced data were imported into
the established long short-term memory (LSTM) model. This study’s findings indicated that
after 30 trainings, the model’s loss value was 0.01, and the training value leveled off. When
the number of training steps reached 112, the model achieved the best training performance
and the LSTM network model was terminated. The MSE error was finally maintained at
10−5, which reached the expected error value, indicating that the feasibility of the set LSTM
network model was extremely high. RMSE and R2 values reached 13.56 and 0.9982, and
the absolute values of the relative errors of each safety accident emergency management
evaluation index did not exceed the 5% threshold, indicating that the prediction effect of
the model was satisfactory.

Although the final performance evaluation model in this paper that affects the creation
of emergency plans for coal mine safety production accidents has a high goodness of fit,
it should be noted that the function of the fit index is to examine the degree of the fit
between the theoretical model and the data rather than become the only basis for judging
whether the model is valid. The model with high goodness of fit can only be used as a
reference, and the rationality of the model should be discussed in light of the issue under
the investigation’s context. A model that can be explained by pertinent theories is more
significant for research, even if the fitting index is not optimal.
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