
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/158483/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Kopal, Jakub, Kumar, Kuldeep, Saltoun, Karin, Modenato, Claudia, Moreau, Clara A., Martin-Brevet,
Sandra, Huguet, Guillaume, Jean-Louis, Martineau, Martin, Charles-Olivier, Saci, Zohra, Younis, Nadine,

Tamer, Petra, Douard, Elise, Maillard, Anne M., Rodriguez-Herreros, Borja, Pain, Aurèlie, Richetin, Sonia,
Kushan, Leila, Silva, Ana I. , van den Bree, Marianne B. M. , Linden, David E. J. , Owen, Michael J. , Hall,

Jeremy , Lippé, Sarah, Draganski, Bogdan, Sønderby, Ida E., Andreassen, Ole A., Glahn, David C.,
Thompson, Paul M., Bearden, Carrie E., Jacquemont, Sébastien and Bzdok, Danilo 2023. Rare CNVs and

phenome-wide profiling highlight brain structural divergence and phenotypical convergence. Nature Human
Behaviour 7 , pp. 1001-1007. 10.1038/s41562-023-01541-9 

Publishers page: http://dx.doi.org/10.1038/s41562-023-01541-9 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



 1 

Rare CNVs and phenome-wide profiling highlight brain-structural 1 
divergence and phenotypical convergence 2 

 3 

Jakub Kopal1,2, Kuldeep Kumar3, Karin Saltoun1,2, Claudia Modenato5, Clara A. Moreau4, Sandra 4 
Martin-Brevet5, Guillaume Huguet3, Martineau Jean-Louis3, Charles-Olivier Martin3, Zohra 5 

Saci3, Nadine Younis3, Petra Tamer3, Elise Douard3, Anne M. Maillard6, Borja Rodriguez-6 
Herreros6, Aurèlie Pain6, Sonia Richetin6, Leila Kushan7, Ana I. Silva8,9, Marianne B. M. van den 7 

Bree9,10,11, David E. J. Linden8,9,11, Michael J. Owen9,10, Jeremy Hall9,10, Sarah Lippé3, Bogdan 8 
Draganski5,12, Ida E. Sønderby13,14,15, Ole A. Andreassen13,15, David C. Glahn16, Paul M. 9 

Thompson17, Carrie E. Bearden7, Sébastien Jacquemont3, *Danilo Bzdok1,2,18 10 

 11 
1Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada 12 

2Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada 13 
3Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada 14 

4Human Genetics and Cognitive Functions, CNRS UMR 3571: Genes, Synapses and Cognition, 15 
Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France 16 

5LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and 17 
University of Lausanne, Lausanne, Switzerland 18 

6Service des Troubles du Spectre de l’Autisme et apparentés, Centre Hospitalier Universitaire 19 
Vaudois and University of Lausanne, Lausanne, Switzerland 20 

7Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and 21 
Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA 22 

8School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands 23 
9MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK 24 

10Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff 25 
University, Cardiff, UK 26 

11Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK 27 
12Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, 28 

Germany 29 
13NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of 30 

Oslo, Oslo, Norway 31 
14Department of Medical Genetics, Oslo University Hospital, Oslo, Norway 32 

15KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway. 33 
16Department of Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, 34 

Massachusetts, USA 35 
17Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of 36 

Medicine of USC, Marina del Rey, California, USA 37 
18TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of 38 

Medicine, McGill University, Montreal, QC, Canada 39 
 40 



 2 

Corresponding author 41 
Danilo Bzdok, danilobzdok@gmail.com 42 

 43 

Abstract 44 
Copy number variations (CNVs) are rare genomic deletions and duplications that can 45 

affect brain and behavior. Previous reports of CNV pleiotropy imply that they converge on 46 
shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits 47 
to the phenome. However, existing studies have primarily examined single CNV loci in small 48 
clinical cohorts. It remains unknown how distinct CNVs escalate vulnerability for the same 49 
developmental and psychiatric disorders. Here, we quantitatively dissect the associations 50 
between brain organization and behavioral differentiation across eight key CNVs. In 534 CNV 51 
carriers, we explored CNV-specific brain morphology patterns. CNVs were characteristic of 52 
disparate morphological changes involving multiple large-scale networks. We extensively 53 
annotated these CNV-associated patterns with ~1000 lifestyle indicators through the UK 54 
Biobank resource. The resulting phenotypic profiles largely overlap and have body-wide 55 
implications, including the cardiovascular, endocrine, skeletal, and nervous systems. Our 56 
population-level investigation established brain structural divergences and phenotypical 57 
convergences of CNVs, with direct relevance to major brain disorders.  58 
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Introduction 59 
A chief goal of modern neuroscience is understanding how genetic variation impacts brain 60 

organization and inter-individual differences in behavior. Advances in genomic microarray 61 
technology streamlined the detection of copy number variations (CNVs) – deletions or 62 
duplications of chromosomal segments of >1000 base pairs1,2. This class of genetic mutations 63 
opens a unique window into the investigation of how neurogenetic determinants shape human 64 
behavior, cognition, and development3,4. Pathogenic CNVs that reoccur across individuals 65 
provide opportunities to study groups of individuals who carry the same deletion or duplication 66 
of a well-defined set of genes5. Moreover, CNVs have larger effects on phenotype than the low 67 
effect-size single-nucleotide polymorphisms often identified by genome-wide association 68 
studies6. Concretely, CNVs overall have been shown to detrimentally affect cognition and raise 69 
the risk for psychiatric conditions4,7. Nevertheless, it remains unexplained why many different 70 
CNVs escalate vulnerability for the same developmental and psychiatric disorders4,8,9. 71 
 72 

The vast majority of large recurrent CNVs have been linked to more than one clinical 73 
diagnosis, including intellectual disability, autism spectrum disorders, and schizophrenia10–12. 74 
These findings make a case that circumscribed genetic changes are rarely exclusively associated 75 
with a single clinical diagnosis13. Further, CNVs have demonstrable consequences even in 76 
seemingly unaffected middle and old age carriers, who show no overt signs of early-onset 77 
neuropsychiatric disorders. Recent evidence points to a broader spectrum of impacts from CNV 78 
status, ranging from physical traits to diabetes to hypertension to obesity to renal 79 
dysfunction3,14,15, as well as psychopathology16. Understudied body-wide CNV effects may 80 
contribute to the links of schizophrenia-associated CNVs with diminished academic 81 
qualifications, occupation, or household income17. In summary, this class of genetic variants 82 
affecting distant parts of the genome can be associated with various behavioral and clinical 83 
phenotypes18,19. 84 

 85 
Despite many advances in genomic profiling, investigations into the corresponding brain 86 

signatures have only been performed for a few CNVs and mostly focused on a single variant at 87 
a time20,21. These parallel approaches to catalog CNVs highlighted a wide spectrum of robust 88 
effects on brain structure22,23. Although distinct rare CNVs are associated with a range of brain 89 
alterations, they have been suggested to lead to a degree of similarity in associated behavioral 90 
phenotypes9,24. However, it remains unknown how similar CNVs are in terms of their effects on 91 
the brain and the phenome. Since deleterious CNVs are rare, such as 1 in 3,000 for 22q11.2 92 
deletion25, previous investigations suffered from small samples of subjects and a lack of 93 
phenotypic depth. Therefore, previous studies were chronically underpowered to paint a 94 
complete picture of CNVs in medicine. There is a need for a systematic investigation of 95 
intermediate brain measures and their phenotypic associations across several CNVs by means 96 
of a large well-phenotyped patient pool. The recent advent of population cohorts with rich 97 
phenotypic assessment batteries represents an untapped opportunity to conjointly examine a 98 
set of CNVs and characterize them at an unprecedented scale. 99 
 100 

In the present study, we interrogated the largest existing biomedical data resource, the 101 
UK Biobank26, which allowed a head-to-head comparison of an envelope of CNVs. As a first step, 102 
we leveraged tools from machine learning, including linear discriminant analysis (LDA), to isolate 103 
CNV-specific brain morphology signatures from a multisite clinical cohort. These individuals 104 
carried one of eight recurrent CNVs that are among the most widely studied CNV loci to 105 
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date11,23,27. Deletions and duplications at the loci 1q21.1, 15q11.2, 16p11.2, and 22q11.2 strike 106 
a balance between being frequent and having a significant impact on brain and behavior23. 107 
Subsequently, the advantageous properties of LDA allowed us to carry over the CNV-specific 108 
whole-brain signatures from the clinical cohort to the large-scale UK Biobank cohort. The UK 109 
Biobank is ideally suited to tease apart the commonalities in phenotypic indicators across CNV 110 
alterations due to the breadth of available phenotypic annotations. We directly linked a rich 111 
portfolio of phenotypes to eight CNV brain signatures in ~40,000 UK Biobank participants. 112 
Specifically, we performed separate phenome-wide association studies (PheWAS) for the eight 113 
CNV-brain-imaging signatures across 977 phenotypes from eleven categories. In this way, we 114 
provide a population-level characterization of what unites and divides the eight CNVs by 115 
detailing convergences and divergences from genomic variants to brain morphology to 116 
phenome. In an attempt to establish cornerstone evidence for the community, such a study can 117 
illuminate fundamental links between genetic variation and brain organization, with their 118 
consequences to bodily systems. 119 

Results 120 

Dissecting different CNV effects on whole-brain morphology  121 
We systematically analyzed volumetric measures derived from brain-imaging scans in the 122 

clinical cohort comprising 846 total subjects: 534 carried one of eight recurrent CNVs (deletion 123 
and duplications of 1q21.1 distal, 15q11.2 BP1-BP2, 16p11.2 proximal, or 22q11.2 proximal), 124 
while 312 controls did not carry a CNV (Table 1). We parsed volume measures from these 125 
structural brain scans using a 400-region anatomical definition (Schaefer-Yeo reference atlas; 126 
see Online methods). To account for variation outside of our current primary scientific interest, 127 
each brain region volume was adjusted for intracranial volume, age, age2, sex, and acquisition 128 
site for all downstream analysis steps. A schematic flow of all analysis steps is depicted in 129 
Supplementary Figure 1. 130 

As a first step, we compared the effects on brain region volume measures for the eight 131 
CNVs. Specifically, after normalizing (z-scoring) brain volumes across groups, that is, across the 132 
respective CNV carriers and controls, we examined the extent of volumetric divergence between 133 
carriers of each single CNV and controls by computing Cohen’s d (giving an effect size for the 134 
group difference) for each individual brain region (Fig. 1a). In doing so, for each examined CNV, 135 
we obtained a brain map of Cohen’s d effect sizes that summarize magnitudes of CNV-induced 136 
structural abnormalities across the brain’s gray matter. We noted widespread smaller volumes 137 
in the majority of the examined atlas regions for the 1q21.1 deletion, 15q11.2 duplication, 138 
16p11.2 duplication, and 22q11.2 deletion. Conversely, a preferential increase in most regional 139 
volumes became apparent for the 1q21.1 duplication, 15q11.2 deletion, 16p11.2 deletion, and 140 
22q11.2 duplication. These findings align with well-known regional alterations identified in 141 
cohorts with patients carrying neurodevelopmental disorders22. 142 

Each target CNV locus was characterized by an overall constellation of gray matter 143 
changes – a brain-wide CNV map of how particular CNV carriership results in systematic brain 144 
deviations from controls. To delineate the similarity among effect-size brain maps, we computed 145 
Pearson’s correlation between all 400 regional Cohen’s d values corresponding to each pair of 146 
CNVs (Fig. 1b). Statistical significance was assessed using a spin-permutation test across the 147 
whole brain surface. We found a large disparity between Cohen’s d maps evidenced by the wide 148 
spectrum of Pearson’s correlations ranging from -0.51 to 0.63. We noted certain similarities, 149 
such as for deletions of 22q11.2 and 15q11.2 (r = 0.66, pFDR-adj = 0.03). Further, we observed a 150 
strong mirroring effect with significant anti-correlations between deletions and duplication of 151 
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the same locus. Mirroring effects were strongest for 22q11.2 (r = -0.51, pFDR-adj = 0.03), followed 152 
by 16p11.2 (r = -0.39, pFDR-adj = 0.03). The average volumetric similarity measured by the average 153 
absolute Pearson’s correlations was r = 0.23. Taken together, this cursory analysis indicated that 154 
spatial distributions of mutation-induced changes in brain morphology differed considerably 155 
across CNVs. 156 

 157 
Visualizing CNV differences in low-dimensional signatures 158 

A drawback of the approach based on Cohen’s d lies in its univariate character, which 159 
considers each region separately, ignoring the respective remaining atlas regions. Hence, next, 160 
we used dimensionality reduction techniques to obtain holistic summaries of the CNV carriers’ 161 
morphological profiles. We set out from the possibility that CNVs cause coordinated volume 162 
changes distributed across the entire brain. Therefore, we expected an intrinsically brain-163 
spanning pattern could be extracted that faithfully captures the induced morphological 164 
differences. Principal component analysis (PCA) is the most commonly used multivariate tool 165 
that is demonstrably most effective at representing linear latent factors. PCA can be interpreted 166 
as computing a new coordinate system such that the axes are oriented in the directions of the 167 
largest variation across the 400 region volume measures. We thus used PCA to project all CNV 168 
carriers’ regional volumes onto the two dominant directions of coherent whole-cortex variation 169 
(Fig. 1c). In the ensuing two-dimensional subject embedding, CNV carriers were scattered 170 
randomly without an apparent systematic relationship with each other. In other words, the 171 
results suggested that CNVs were not the primary source of the interindividual variation in 172 
whole-cortex morphology in our cohort. Hence, a method without access to CNV-carriership 173 
status, such as PCA, could not provide a satisfying overall description of what drives structural 174 
brain deviations induced by specific CNVs. 175 

Therefore, we turned to linear discriminant analysis (LDA) as a pattern classification 176 
algorithm that is naturally capable of recovering a low-dimensional representation explicitly 177 
aimed at maximizing the separation between the eight CNVs based on the individuals’ brain 178 
morphometry measures. We then re-expressed the brain-wide regional volumes as the two 179 
primary dimensions of structural variation under the LDA model (Fig. 1d). In particular, the 180 
leading dimension of the LDA-derived subject embedding captured the differences between 181 
16p11.2 deletion and duplications. The second most explanatory dimension of the LDA-derived 182 
embedding mainly captured the differences between 22q11.2 deletion and duplications. This 183 
distribution of a single CNV locus along a single dimension points again at similar structural 184 
effects with opposite directions. In summary, LDA formed a new low-dimensional space in which 185 
the brain morphology of CNV carriers could be effectively identified, quantified, and, 186 
subsequently, examined in further detail. 187 

 188 
Deriving CNV-specific intermediate phenotypes 189 

To supplement the multi-CNV classification model, which explored differences between 190 
CNVs (described above), our next analysis step was to extract robust whole-brain signatures 191 
specific for each CNV that we could then use to study unseen participants in any number of 192 
external cohorts. Therefore, we constructed eight LDA models of order one dedicated to the 193 
eight CNVs. Notably, there was a considerable imbalance between the number of controls and 194 
CNV carriers (from 2-fold for 15q11.2 duplication to 22-fold for 1q21.1 duplication). Moreover, 195 
the number of model parameters to be estimated (at least 400 parameters associated with the 196 
400 atlas regions) was larger than the number of subjects. To remedy the challenges of this data 197 
scenario, our analysis pipeline combined bagging and regularization to prevent overfitting the 198 
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model hyperparameters (see details in Online methods). We evaluated the model performance 199 
indexed by out-of-sample prediction in brain scans unseen by the model using the Matthews 200 
correlation coefficient. All CNVs were successfully classified with a consistent above-chance 201 
accuracy (Fig. 2a). Chance level accuracy was defined as the performance of an empirical null 202 
model obtained by label shuffling. High classification performance provides empirical evidence 203 
that these CNVs are characteristic of robust volumetric signatures. 204 

After extracting predictive principles of structural brain deviations by means of LDA, 205 
each model included a collection of 400 coefficients associated with the atlas regions (Fig. 2b). 206 
These coefficients encapsulated a multivariate prediction rule which maximized the difference 207 
between controls and CNV carriers. In other words, each CNV’s LDA model encapsulated an 208 
intermediate phenotype – a brain-wide volumetric signature that characterizes each CNV. To 209 
quantify the similarity between the derived intermediate phenotype representations, we 210 
compared them using Pearson’s correlation coefficient. Again, we observed certain similarities 211 
across the eight CNVs, as well as mirroring effects between reciprocal CNVs (Fig. 2c). However, 212 
the wide range and low strength (average similarity r = 0.2) of obtained CNV-CNV similarities 213 
indicated that LDA models reflected the sizable diverging effects of CNVs on brain morphometry. 214 
The identified intermediate phenotypes bore a degree of similarity to the Cohen’s d brain maps 215 
(Fig. 2d). The strong positive Pearson’s correlation between the intermediate phenotypes and 216 
Cohen’s d brain maps was significant for all CNVs. In other words, LDA-derived (brain-global) 217 
patterns capture certain volumetric effects highlighted by previous (region-local) Cohen’s d 218 
analysis. Along with the high prediction accuracy, a degree of similarity with estimated region-219 
wise Cohen’s d maps is an important step on the path toward characterizing derived signatures 220 
in another dataset. 221 

We further inspected the 400 region coefficients of each LDA model that captured the 222 
influence of each CNV on each brain region. By carrying out a one-sample bootstrap hypothesis 223 
test independently for each CNV, we assessed which region-specific model coefficients are 224 
robustly different from zero and, thus, robustly affected by CNVs. Specifically, during the 225 
learning of the coefficients of one of the 8 CNV-specific LDA models, in 100 resampling iterations; 226 
we drew a different set of subjects based on drawing subjects with replacement from the control 227 
subjects and corresponding CNV carriers. Statistically relevant coefficients were robustly 228 
different from zero if their two-sided confidence interval - according to the 2.5/97.5% intervals 229 
of the bootstrap-derived distribution - did not include zero. Different CNVs affected (displayed 230 
statistically relevant coefficients) different cortical parcels that correspond to the seven large-231 
scale brain networks populating the cortex, as defined by our atlas (Fig. 3a). For example, while 232 
16p11.2 proximal duplication primarily affects 20% of all regions in the limbic network, 22q11.2 233 
deletion affects 20% of regions in the salience ventral attentional network as well as more than 234 
10% of regions in the limbic, dorsal attentional, and default-mode networks. Across all examined 235 
CNVs and target brain networks, the 16p11.2 deletion affected the largest number of brain 236 
regions, while 15q11.2 duplication affected the lowest number of regions. Higher-order network 237 
circuits showed, on average, the relatively highest number of significant coefficients. Concretely, 238 
the limbic network had the highest relative number of affected regions, followed by the salience 239 
and default-mode networks (Fig. 3b). Together, the wide range of effects on the large-scale 240 
networks again highlights the diverging consequences of CNVs on brain morphometry.  241 

To further explore characteristic relationships between the eight CNVs, we probed for 242 
a linear relationship of the number of salient LDA coefficients with LDA classifier performance 243 
and average brain-wide Cohen’s d. We found a significant positive Pearson’s correlation with 244 
classifier performance (r = 0.74, p = 0.04) (Fig. 3c) and mean absolute effect size (r = 0.75, p = 245 
0.03). Furthermore, when we included sample size in the testing scheme, we found only a 246 
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negative linear association with average Cohen’s d (r = -0.80, p = 0.02), calling for careful 247 
interpretation of effect sizes, owing to the estimation of population mean in small samples. In 248 
sum, our collective findings highlighted how LDA models reflect CNV-specific changes in large-249 
scale brain networks to form distinctive intermediate phenotypes. 250 

 251 
Lifting over phenotypes patterns from the clinical cohort 252 

We built eight separate LDA models that encapsulated CNV-specific intermediate 253 
phenotypes. By doing so, we could quantify the presence of each intermediate CNV phenotype 254 
for each subject. Hence, as an illustrative example, we compared the expression level of 16p11.2 255 
proximal duplication intermediate phenotype between the carriers of that CNV and controls. 256 
Based on a two-sample bootstrap hypothesis test for the difference of means with 10,000 257 
bootstrap iterations (Online methods), the ensuing means of the intermediate phenotype 258 
expressions differed significantly between CNV carriers in the clinical sample and controls (p-259 
value < 10-4) (Fig. 4a). As a critical step in our analysis, the CNV-specific volumetric signatures 260 
derived from our clinical population using LDA could be used in a phenotypically richer 261 
population data repository. 262 

To carry over the intermediate phenotypes from the clinical cohort to the UK Biobank, 263 
we quantified the expression of each intermediate CNV phenotype for all 39,085 UK Biobank 264 
participants (Table 2). We first extracted brain volume measures from the 400 atlas regions, 265 
adjusting for several confound variables (see Online methods). We then calculated the subject-266 
specific expression for all intermediate CNV phenotypes in the UK Biobank. It is important to 267 
stress that the intermediate phenotypes were derived in the clinical cohort. However, UK 268 
Biobank also contains several carriers of the analyzed mutations. The generalizability of the 269 
derived intermediate phenotypes was indicated by the difference between the intermediate 270 
phenotype expression level of non-carriers and CNV carriers in the UK Biobank (for 16p11.2 271 
duplication p-value < 10-4 using an identical test to that above, Fig. 4a). Notably, we obtained 272 
similar results for all other seven intermediate phenotypes (Supp. Fig. 2). Carrying over CNV-273 
associated MRI profiles computed in the clinical cohort to the UK Biobank was a critical step that 274 
allowed us to identify phenotype correlates of the CNV-associated MRI profiles in a population 275 
>500 times larger than our median CNV cohort. 276 

 277 
Charting phenome-wide associations of CNV signatures 278 

The UK Biobank is the largest existing uniform brain-imaging dataset in terms of 279 
subject sample size and the breadth of available phenotypic annotations. It provides 977 unique 280 
phenotypes spanning eleven different categories (Supp. Fig. 3). We performed an exploratory 281 
phenome-wide association study (PheWAS) for the purpose of generating new candidate 282 
hypotheses. PheWAS allows investigation of the overall patterns of connections by charting 283 
associations between hundreds of non-imaging phenotypes and imaging-derived phenotypes. 284 
Specifically, we calculated Pearson’s correlation between the derived subject-specific 285 
expressions of the eight intermediate CNV phenotypes and each of the 977 phenotypes provided 286 
by the UK Biobank resource (Fig. 4b). In our recurring example of the 16p11.2 duplication 287 
intermediate phenotype, 55 associations surpassed Bonferroni correction for multiple testing 288 
(including comparative body size at age 10, education score, hemoglobin concentration, or 289 
physically abused by family as a child), while 145 associations surpassed FDR correction. In other 290 
words, individuals with greater similarity to the 16p11.2 duplication MRI profiles showed a 291 
stronger association with levels of education or blood assays biomarkers. 292 
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To gain additional insight, we summarized the phenotypic association profiles by 293 
domain. To this end, we calculated the relative number of association hits for each of the eleven 294 
phenotypic domains (using the more stringent Bonferroni correction) as a ratio between the 295 
number of significant associations and the number of phenotypes in each category. The highest 296 
relative number of associations were in categories detailing physical measures, blood assays, 297 
and early life factors categories (Fig. 4c). Among all examined CNVs, the 22q11.2 deletion 298 
intermediate phenotype displayed the highest number of phenome-wide hits, with 90 robust 299 
associations after Bonferroni’s correction for multiple comparisons (Fig. 4c; for further details, 300 
see Supp. Fig. 4-11). The collective results showed that CNVs are associated with numerous rich 301 
and diverse phenotypes across all eleven categories. 302 

Analogous to comparing volumetric signatures (cf. above), we examined the similarity of 303 
phenotypic profiles across CNVs. To this end, we calculated a correlation between the 304 
association strengths (Pearson’s correlations) from each PheWAS analysis (Fig. 5a). The 305 
definitive collection of brain signature-phenotype links reflected the linear association strength 306 
between CNV phenotypical profiles across 977 indicators (Fig. 5b). We found a strong 307 
resemblance (average similarity r = 0.62) between the eight phenotypical profiles with positive 308 
as well as negative correlations (Pearson’s correlations from r = -0.84 to 0.82). We subsequently 309 
zoomed in on the strong convergence across the phenotypic profiles characterizing each CNV by 310 
computing the correlation between CNV-phenotypic associations within each of the eleven 311 
considered categories (Fig. 5c). In particular, we found the bone density and sizes along with 312 
blood assays categories showed strong associations across CNV intermediate phenotypes, 313 
suggesting similar behavior within these categories. Altogether, the strong correspondences 314 
among CNV pairs suggest that CNV brain profiles are linked to similar phenotypes across a rich 315 
portfolio of ~1000 curated lifestyle indicators. 316 

 317 
Detailing shared and distinct phenotypic associations 318 

To shed light on which particular phenotypes are most strongly associated with CNV-319 
specific brain signatures, we calculated the mean absolute Pearson’s correlations across the 320 
eight PheWAS analyses. Across all CNVs, diastolic blood pressure, alkaline phosphatase, and red 321 
blood cell count showed the strongest associations (Fig. 6a). Moreover, we examined which 322 
phenotypes are most consistently associated with CNV brain profiles. We found eight 323 
phenotypes associated with six CNV intermediate phenotypes and eleven phenotypes shared by 324 
five CNV intermediate phenotypes (Supp. Fig. 3b, c). The most consistently overlapping 325 
phenotype hits were from the blood assays category (e.g., mean corpuscular volume, SHBG, IGF-326 
1), along with weight or home population density. In total, these robust and shared phenotypic 327 
associations point to the fact that CNV brain profiles are associated with similar systemic 328 
phenotypes. 329 

Comparisons of the phenotypical profiles associated with each CNV intermediate 330 
phenotype revealed that there remains unexplained residual variance, as suggested by a 331 
maximum absolute association strength of r = 0.81. To access this remaining part of the variance, 332 
we computed new brain profiles adjusting for the other CNVs. Specifically, for each CNV-specific 333 
intermediate phenotype, we singled out the variation explained by the remaining seven. Thus, 334 
we obtained a set of eight unique intermediate phenotypes, each with the variation shared with 335 
other intermediate phenotypes removed. Subsequently, we used this new set to perform the 336 
PheWAS analysis and counted the relative number of associations surpassing the Bonferroni 337 
correction in each category. We still observed significant associations across CNVs and 338 
categories even after conditioning out on the shared associations. In particular, 22q11.2 deletion 339 
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showed a high relative number of associations in the physical measures category (Fig. 6c). As 340 
such, next to the substantial phenotypic similarity, CNVs also displayed some unique 341 
characteristic phenotypic associations relative to other CNVs. 342 

 343 
Quantifying the path toward converging phenotypical profile 344 

The observed magnitude of similarity between the phenotypic profiles of the CNV 345 
intermediate phenotypes reaching Pearson’s r = 0.84 demonstrated a strong relationship 346 
between phenotypic profiles across the 977 indicators. In general, the phenotypic similarity 347 
(absolute Pearson’s correlation of PheWAS outcomes) between CNVs exceeded their 348 
morphological similarity (absolute Pearson’s correlation between Cohen’s d maps) (Fig. 6d). The 349 
dissonance between the two similarity measures was highlighted by Lin’s concordance 350 
correlation coefficient equal to -0.23, suggesting poor concordance. More specifically, 22 of 28 351 
CNV pairs showed stronger phenotypical similarity compared to volumetric similarity. Thus, 352 
CNVs were characteristic of stronger phenotypic signature associations compared to 353 
associations among volumetric signatures or intermediate phenotypes (Fig. 6e). 354 

Our collective analyses demonstrated that although each CNV displays largely distinct 355 
whole-brain morphometric signatures, they converged on similar phenotypic profiles. In proving 356 
this, we transferred the intermediate phenotypes derived in the clinical cohort to the UK 357 
Biobank population cohort with 39,085 subjects. Using the subject-specific expression levels of 358 
eight intermediate phenotypes from eight rare CNVs allowed us to characterize complex 359 
phenotypical profiles of each CNV, providing a detailed portrait of their commonalities and 360 
idiosyncrasies. 361 

Discussion 362 
CNVs offer a unique window of opportunity into the consequences of localized genetic 363 

variation on human traits. This is especially the case, given their known genetic architecture and 364 
typically high penetrance. In the present study, we built computational bridges between eight 365 
key CNVs in a multisite clinical dataset, on the one hand, and their deep phenotypic profiling in 366 
39,085 subjects from the wider population, on the other hand. To this end, we designed an 367 
analytic framework that can quantitatively dissect the impact of distinct genetic mutations on 368 
brain organization and behavioral differentiation. Bringing over derived CNV-specific 369 
intermediate phenotypes to the population cohort revealed that the CNVs are tied to pleiotropic 370 
associations beyond physical and cognitive domains. This phenome-wide analysis across ~1000 371 
phenotypes revealed many ramifications for several body systems. Our collective analyses also 372 
reveal wide-ranging similarities between the PheWAS profiles of the eight CNVs. Therefore, the 373 
phenotypic level appears to be the point of alignment for distinct long-segment genetic variants 374 
that we show to cause diverging morphological changes in brain morphology. Such late 375 
convergence in phenotypic consequences speaks to profound basic science questions regarding 376 
the organization of genetic influences on human brain and behavior. 377 
 378 

For a long time, inquiries targeting genetic influences have been limited by the lack of 379 
longitudinal and deep multimodal measures of brain and behavior in large subject samples24. 380 
Studies aimed at elucidating genotype-phenotype links were challenged by several obstacles, 381 
including ascertainment bias, limited statistical power, and patchy phenotypic coverage22. We 382 
are unlikely to have access to large enough clinical datasets soon – a condition sine qua non for 383 
definitive tests of phenotypic overlaps and differences between genetic variants. As a concrete 384 
example, Marek and colleagues (2022) highlighted the need for thousands of participants to 385 



 10 

obtain reproducible and reliable brain-wide associations. Therefore, to overcome several of 386 
these hurdles, we here put forward solutions that take advantage of intermediate CNV 387 
phenotypes, a term coined in research on psychiatric disorders29. These refer to biological traits 388 
that lie in between an individual’s external phenotype and innate genetic blueprint30,31. We 389 
captured CNV-specific intermediate phenotype representations as “genetics-first” whole-brain 390 
signatures derived from our clinical boutique dataset. These signatures recapitulated previous 391 
findings on morphology alterations, such as the predominant decrease in regional volumes for 392 
deletions of 1q21.2 or 22q11.2, as well as the increase for 16p11.2 deletion23,32,33. We also 393 
observed reported mirror dose responses, especially strong in 22q11.2 locus22. Therefore, the 394 
validity of LDA-derived intermediate phenotypes is corroborated by recapitulating key findings 395 
from clinical studies.  396 

The eight analyzed CNVs are known to differ in the ensuing effects on brain 397 
architecture11,12. The magnitude of their effects has previously been associated with the number 398 
of affected genes and clinical outcomes. In concordance, we found 16p11.2 deletion to affect 399 
the largest number of regions. This CNV contains 29 genes and is associated with an almost 40-400 
fold increase in the odds of autism spectrum disorder27. Conversely, we found 15q11.2 401 
duplication, which contains only four genes and is not formally associated with any disease, to 402 
affect the fewest number of regions. In addition, we provide a fresh look into the diverging CNV 403 
effects on brain morphology by summarizing the effects with respect to seven large-scale 404 
Schaefer-Yeo networks. The network effects revealed a degree of similarity to functional 405 
connectivity alterations in CNV carriers21. We also observed effects in the default mode and 406 
limbic network for 22q11.2 deletion, as well as for ventral attention and motor network for 407 
16p11.2 deletion. Together, the structural and functional alterations showed significant overlap 408 
with alterations of idiopathic autism spectrum disorder and schizophrenia34. The resemblance 409 
suggests that the risk conferred by genetic variants, structural alterations, and the associated 410 
functional connectivity patterns represent important dimensions that are coupled with diseases. 411 

 412 
In the present work, we demonstrate the added value of how intermediate phenotypes 413 

can be transferred for direct usage in other cohorts, including large-scale populational datasets. 414 
By transferring these brain-wide representations over to the UK Biobank and carrying out 415 
PheWAS, we obtained systemic phenotypic associations across eleven rich phenotypic 416 
categories that go beyond mere cognitive domains. The reported PheWAS associations of the 417 
intermediate CNV phenotypes were concordant with previous studies investigating more 418 
circumscribed links between CNV status and indicators of cognitive performance, including fluid 419 
intelligence score17, physical measurements like weight or height3,15, common medical 420 
conditions like hypertension or obesity, and blood biomarkers like indicators of cholesterol fat 421 
metabolism pathways35. As one of many examples, we demonstrated how intermediate 422 
phenotypes tied to 22q11.2 deletion relate to an array of phenotypes in blood assays as well as 423 
cardiac and blood vessels categories. It is important to stress that PheWAS only charts 424 
associations between imaging and non-imaging measures to generate testable hypotheses 425 
without providing causal links36. Even though there may not be a causative link between a brain 426 
phenotype and cardiac biomarkers, the thus revealed association suggests a hidden causal effect 427 
of the CNV on both traits (e.g., brain morphology and artery wall thickening37). 428 

Similar to Auwerx and colleagues (2022), six of our eight examined CNVs were 429 
associated with body weight, insulin-like growth factor 1, alkaline phosphatase, or mean red 430 
blood cell volume. Therefore, these bodily alterations may not be mere secondary effects38. 431 
Instead, systemic manifestations could be a fundamental aspect of the primary biology of CNVs 432 
and brain disorders in general. Critically, they might also lead to a reduced life span, as suggested 433 
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by the 63% probability of survival to age 50 in adult carriers of 22q11.2 deletion14,39. Similar to 434 
22q11.2 deletion, psychotic disorders have been linked with 15–20 years shorter life 435 
expectancy40. Most of this premature mortality is predominantly due to elevated cardiovascular 436 
risk factors41,42 – causes that belong to the phenotype category among the most consistent 437 
associations in our phenome-wide assays. Detected associations speak in favor of CNVs as a 438 
complex disorder with several manifestations outside the brain that have considerable 439 
deleterious impacts on various parts of everyday lives. 440 
 441 

By combining hand-crafted analytic solutions with recently emerged data resources, our 442 
computational assays lay out pleiotropic associations in CNV carriers. These consequences 443 
include systemic associations outside the central nervous system. This underappreciated insight 444 
is reflected in our results, including strong brain-behavior associations of the CNV profile in the 445 
UK Biobank population with blood pressure, cholesterol, and weight. Since CNVs do not show 446 
complete penetrance in all cases44, such associations portray a necessary picture of a broad 447 
spectrum of outcomes later in life. Hence, the constellation of results advocates rebalancing the 448 
medical care of CNV carriers towards more comprehensive medical monitoring in a broader 449 
patient pool45. 450 

In a similar way, previous clinical research has provided evidence that schizophrenia and 451 
related psychotic disorders often affect multiple body systems (e.g., nervous, immune, or 452 
endocrine), even from illness onset46,47. Pillinger and colleagues (2019) reported robust 453 
alterations in immune and cardiometabolic systems of a comparable magnitude to alterations 454 
in the central nervous system. Further examples of major brain disorders accompanied by 455 
problems outside the brain include gastrointestinal disorders in autism48, loss of bone density in 456 
depression49, or cardiovascular symptoms in bipolar disorder50. Finally, a recent study showed 457 
that genetic liabilities for five major psychiatric disorders are associated with long-term 458 
outcomes in adult life, including sociodemographic factors and physical health51. Our findings 459 
thus add pieces of knowledge that illuminate how the nervous system is interlocked with the 460 
rest of the body in a way that affects general well-being. 461 
 462 

More broadly, understanding pathophysiological disease mechanisms will be propelled 463 
by further disentangling the perplexing link between genes, brain, and behavior52. There is an 464 
active debate on the extent to which distinct gene dosage disorders can lead to different non-465 
overlapping phenotypical profiles24. This discourse was sparked from the observations that 466 
many SNPs and CNVs increase the risk for schizophrenia or autism11,53. Polygenicity and 467 
pleiotropy, key features of the genetics underpinning psychiatric disorders13,54, imply that 468 
genetic mutations can converge on shared mechanisms at some level of pathway cascades, from 469 
genes to large-scale brain networks to the phenome. Here, we report a low similarity of 470 
intermediate phenotypes representing morphological CNV-specific brain signatures, in line with 471 
a documented broad diversity of regional morphometry patterns across genomic loci22,55,56. 472 
Conversely, the ramifications of carrying distinct CNV variants for cognition and behavior have 473 
previously been hypothesized to be more similar than those on brain anatomy9,24. We here find 474 
evidence for substantial convergence of phenotypic measures across CNVs quantified by 475 
increased phenotypical similarity. Specifically, we observed a high degree of similarity between 476 
the phenotypical profiles (mean similarity r = 0.46 as measured by Pearson’s correlation across 477 
the CNV’s corresponding PheWAS profiles), which largely exceeded the similarity of brain 478 
morphometry profiles (mean similarity r = 0.2 as measured by the correlation of volumetric 479 
Cohen’s d maps). Based on the presented strong resemblance of phenotypic profiles of the 480 
examined eight CNVs, we speculate that the polygenic architecture of human phenotypic traits 481 
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may be related to genotype-phenotype convergence that occurs later than on molecular 482 
pathways or macroscopic brain networks. 483 
 484 

This study has several limitations. One is that we did not investigate the effects of 485 
medication on derived CNV-specific brain signatures since medication information was not 486 
available for the whole clinical dataset. Nevertheless, previous studies have reported no 487 
significant effects of psychiatric comorbidities (e.g. psychosis, ASD, ADHD, anxiety and mood 488 
disorder) and psychotropic medication on neuroimaging patterns34,57. We also did not study 489 
causal relationships between brain patterns and non-imaging indicators. Making causal 490 
inference requires proposing and defending a plausible causal structure by spelling out the 491 
assumed (directional) dependencies among the outcome, input variables, and relevant 492 
confounding variables58. Future studies can start off from hypotheses generated by our catalog 493 
of PheWAS links to find causal links between variables, for example, using structural equation 494 
modeling. Finally, given our data scenario, we resorted to linear models in combination with 495 
bagging and shrinkage to safeguard from overfitting. 496 

In conclusion, we have triangulated i) a purpose-designed analytical strategy, ii) a 497 
roadmap for investigating rare brain pathologies employing intermediate phenotypes derived 498 
from smaller clinical datasets, and iii) a framework for application in population-scale cohorts. 499 
Our results highlight the potential of using intermediate phenotypes as a device to study a wide 500 
variety of rare conditions and thus accelerate the pace of neurogenetic innovation. By building 501 
bridges between the broad population of the UK Biobank and carefully collected clinical 502 
datasets, we derived prediction models for CNV-specific brain phenotype expressions that can 503 
be used in other hospitals and healthcare institutions. Deep phenotypic profiling of these models 504 
clearly demonstrates that CNVs may have whole-body manifestations. Therefore, our study 505 
shows that CNV effects go beyond relevance for childcare and psychiatry by potentially 506 
extending to other areas of medical care and treatment, which are blind spotted today. In 507 
addition, detected overlapping system-wide phenotype associations across multiple CNVs 508 
advance our understanding of genotype-phenotype correspondences. Specifically, the observed 509 
phenotypic convergence sheds light on why so many CNVs increase the risk for the same 510 
developmental, psychiatric disorders. 511 
  512 



 13 

Methods 513 

Multisite clinical cohort 514 
Signed consents were obtained from all clinical participants or legal representatives prior 515 

to the investigation. The current study, which is purely analytical, was approved by the IRB 516 
(Project 4165) of the Sainte Justine Hospital. UK Biobank participants gave written, informed 517 
consent for the study, which was approved by the Research Ethics Committee. The present 518 
analyses were conducted under UK Biobank application number 25163. Further information on 519 
the consent procedure can be found online (biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). 520 

Our clinical dataset consisted of volumetric measurements derived from magnetic 521 
resonance imaging (MRI) brain scans of 860 subjects: 548 CNV carriers and 312 controls not 522 
carrying any CNV (Table 1). The here examined CNVs are among the most commonly studied 523 
CNVs59. Deletions and duplications of 1q21.1, 15q11.2, 16p11.2, and 22q11.2 represent some of 524 
the most frequent risk factors for neuropsychiatric disorders identified in pediatric clinics19,20. 525 
That is why the target CNV loci were also selected by The Enhancing NeuroImaging Genetics 526 
through Meta-Analysis copy number variant (ENIGMA-CNV) in a study on their cognitive, 527 
psychiatric, and behavioral manifestations23. These deletions and duplications strike a balance 528 
between occurrence in the population and their effect size. In other words, the selected CNVs 529 
are frequent enough so that we can start studying large enough sample sizes that allow for 530 
across-CNV comparison in the first place. At the same time, this class of CNVs has been shown 531 
to detrimentally affect cognition and raise the risk for psychiatric conditions23,25,33. Our CNV 532 
carriers did not carry any other large CNV. 533 

An extensive description of methods and analyses is available in an already published 534 
study with an identical dataset60. In short, PennCNV and QuantiSNP were used, with standard 535 
quality control metrics, to identify CNVs. CNV carriers were selected based on the following 536 
breakpoints according to the reference genome GRCh37/hg19: 16p11.2 proximal (BP4-5, 29.6-537 
30.2MB), 1q21.1 distal (Class I, 146.4-147.5MB & II, 145.3-147.5MB), 22q11.2 proximal (BPA-D, 538 
18.8-21.7MB) and 15q11.2 (BP1-2, 22.8–23.0MB). Control individuals did not carry any CNV at 539 
these loci. The CNV carriers were either probands referred to the genetic clinic for the 540 
investigation of neurodevelopmental and psychiatric disorders or their relatives (parents, 541 
siblings, and other relatives). 542 

UK Biobank might represent the largest dataset of carriers affected by 15q11.2 deletions 543 
and duplications. Therefore, after identifying 15q11.2 deletions and duplications in the UK 544 
Biobank, we added the respective carriers to our clinical cohort. In other words, we excluded 545 
these subjects from the UK Biobank and treated them as part of our clinical dataset. Sensitivity 546 
analysis concluded that including this CNV locus does not change our main findings (Supp. Fig. 547 
12). Controls were either non-carriers within the same families or individuals from the general 548 
population. Furthermore, controls were carefully matched for sex and age to CNV carriers. 549 
 550 
Clinical MRI data recording and processing 551 

We analyzed a data sample of T1-weighted (T1w) images at 0.8–1 mm isotropic 552 
resolution. All T1w included in the analysis were quality checked by a domain expert60. Data for 553 
Voxel-Based Morphometry were preprocessed and analyzed with SPM12 554 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/)61–63 running under MATLAB R2018b 555 
(https://www.mathworks.com/products/new_products/release2018b.html). Further quality 556 
control was performed using standardized ENIGMA quality control procedures 557 
(http://enigma.ini.usc.edu/protocols/imaging-protocols/). Finally, neurobiologically 558 
interpretable measures of gray matter volume were extracted in all participants by summarizing 559 
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whole-brain MRI maps in the MNI reference space. This feature-generation step was guided by 560 
the topographical brain region definitions of the commonly used Schaefer-Yeo atlas with 400 561 
parcels64. The derived quantities of local gray matter volumetry resulted in 400 volume measures 562 
for each participant. As a data-cleaning step, derived regional brain volumes were adjusted for 563 
intracranial volume, age, age2, and sex as fixed effects and scanning site as a random factor, 564 
following previous research on this dataset60. In particular, we have previously demonstrated 565 
that CNVs show independent effects on regional and total brain volumes33. Our current 566 
investigation is focused on how CNVs induce regional brain effects. Note that ancillary analyses 567 
revealed additional adjustments for total gray matter volume not to have any appreciable effect 568 
on subsequent analyses. 569 

 570 
Population data source 571 

The UK Biobank is the largest biomedical resource that offers extensive behavioral and 572 
demographic assessments, medical and cognitive measures, as well as biological samples in a 573 
cohort of ∼500,000 participants recruited from across Great Britain 574 
(https://www.ukbiobank.ac.uk/). The present study was based on the recent brain-imaging data 575 
release from February/March 2020. Our data sample included measurements from 39,085 576 
participants with brain-imaging measures and expert-curated image-derived phenotypes of gray 577 
matter morphology (T1-weighted MRI) (Table 2). Among the participants, 48% were men and 578 
were 52% women with age between 40 and 69 y.o. when recruited [mean age 55 y.o., standard 579 
deviation (SD) 7.5 y.]). We benefited from the uniform data preprocessing pipelines designed 580 
and implemented by the FMRIB, Oxford University, Oxford, UK65, to improve comparability and 581 
reproducibility. 582 

MRI scanners (3T Siemens Skyra) at several dedicated data collection sites used matching 583 
acquisition protocols and standard Siemens 32-channel radiofrequency receiver head coils. 584 
Brain-imaging measures were defaced to protect the study participants’ anonymity, and any 585 
sensitive meta-information was removed. Automated processing and quality control pipelines 586 
were deployed36,65. To improve the homogeneity of the brain-imaging scans, the noise was 587 
removed using 190 sensitivity features. This approach allowed for the reliable identification and 588 
exclusion of problematic brain scans, such as due to excessive head motion. 589 

The structural MRI data were acquired as high-resolution T1-weighted images of brain 590 
anatomy using a 3D MPRAGE sequence at 1mm isotropic resolution. It was preprocessing 591 
included gradient distortion correction, the field of view reduction using the Brain Extraction 592 
Tool66 and FLIRT67, as well as non-linear registration to MNI152 standard space at 1 mm 593 
resolution using FNIRT68. To avoid unnecessary interpolation, all image transformations were 594 
estimated, combined, and applied by a single interpolation step. Tissue-type segmentation into 595 
the cerebrospinal fluid, gray matter and white matter to generate full bias-field-corrected 596 
images was achieved using FAST (FMRIB’s Automated Segmentation Tool69). Finally, gray matter 597 
images were used to extract gray matter volumes in parcels according to the Schaefer-Yeo atlas 598 
with 400 regions64. Following previous work on the UKBB70,71, inter-individual variations in brain 599 
region volumes that could be explained by nuisance variables of no interest were adjusted for 600 
by regressing out: body mass index, head size, head motion during task-related brain scans, head 601 
motion during resting-state fMRI scanning, head position and receiver coil in the scanner (x, y, 602 
and z), position of scanner table, as well as the data acquisition site. 603 

 604 
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Statistical analysis for volumetric brain measures 605 
All subsequent analyses were performed in Python v3.8 as a scientific computing engine 606 

(https://www.python.org/downloads/release/python-380/). We used Cohen’s d to quantify the 607 
effect size of the CNVs on individual regional volumes. For a given region, Cohen’s d is defined 608 
as:  609 

𝑑 = !!""""#!"""""

$#!
"$#"
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, 610 

where 𝑥%%%% corresponds to the mean region volume across CNV carriers, 𝑥&%%% corresponds to the 611 
mean region volume across controls. Similarly, 𝑠% and 𝑠& correspond to standard deviations of 612 
CNV carriers and controls. 613 
Results from Cohen’s d analyses were confirmed by a non-parametric effect size measure (Supp. 614 
Fig. 13). 615 

We compared Cohen’s d volumetric brain maps (and intermediate phenotypes brain 616 
maps) between different CNVs using Pearson’s correlation. Furthermore, we used spin 617 
permutation testing to calculate empirical p-values for the ensuing correlation coefficient 72. 618 

Finally, we calculated Lin’s concordance correlation coefficient to quantify the agreement 619 
of similarities between volumetric Cohen’s d maps, intermediate phenotypes, and PheWAS 620 
profiles. The degree of concordance between the two measures is thus calculated as: 621 

𝜌' =
2𝑠%,&

𝑠%& + 𝑠&& + (𝑥%%%% − 𝑥&%%%)&
, 622 

where 𝑠%,& corresponds to the covariance between 𝑥% and 𝑥&. 623 
 624 
Charting complex association using phenom-wide association study 625 

We performed a rich annotation of the derived intermediate phenotypes by means of a 626 
phenome-wide association analysis benefitting from a wide variety of almost 1,000 lifestyle 627 
factors. For a detailed description of phenotype extraction and analysis, refer to our previously 628 
published studies73. Feature extraction was carried out using two utilities designed to obtain, 629 
clean, and normalize UKBB phenotype data according to predefined rules. In short, we collected 630 
a raw set of ~15,000 phenotypes that we further processed by the FMRIB UKB Normalisation, 631 
Parsing And Cleaning Kit (FUNPACK version 2.5.0; 632 
https://zenodo.org/record/4762700#.YQrpui2caJ8). FUNPACK is designed to perform automatic 633 
refinement on the UKB data, which includes removing ‘do not know’ responses and filling the 634 
blank left by unanswered sub-questions. The FUNPACK-derived phenotype information covered 635 
11 major categories, including cognitive and physiological assessments, physical and mental 636 
health records, blood assays, as well as sociodemographic and lifestyle factors. The output 637 
consisted of a collection of 3,330 curated phenotypes which were then fed into PHEnome Scan 638 
ANalysis Tool (PHESANT74, https://github.com/MRCIEU/PHESANT) for further refinement in an 639 
automated fashion. PHESANT performs further data cleaning and normalization along with 640 
labeling data as one of four data types: categorical ordered, categorical unordered, binary, and 641 
numerical. Categorical unordered variables were one-hot encoded, such that each possible 642 
response was represented by a binary column (true or false). The final curated inventory 643 
comprised 977 phenotypes spanning 11 FUNPACK-defined categories. Furthermore, we used 644 
Pearson’s correlation to quantify the association strength between these 977 phenotypes with 645 
subject-specific expressions of our eight intermediate phenotypes (cf. below). To ensure that 646 
the correlations are not driven by a few outlying intermediate phenotype expressions, we first 647 
discarded 551 subjects based on Tukey’s interquartile range rule for outlier detection. 648 
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Multi-class prediction model and intermediate phenotype extraction 649 
Technically, our core aim was to derive robust CNV-specific representations of 650 

intermediate phenotypes from a clinical sample that could be transferred to a large population 651 
resource for deep profiling. We derived the intermediate phenotypes as systematic brain 652 
morphometric co-deviations attributable to each of our eight target CNVs. To this end, we 653 
capitalized on linear discriminant analysis to extract separating rules between CNV carriers and 654 
controls based on whole-brain volume measurements. LDA can be viewed as a generative 655 
approach to classifying CNV carriers, which requires fitting multivariate Gaussian distribution to 656 
regional brain volumes and producing a linear decision boundary75. In particular, LDA-derived 657 
discriminant vectors/functions represented CNV-specific intermediate phenotypes. Using a 658 
linear model represents a data-efficient and directly biologically interpretable approach to our 659 
analysis, especially in our boutique datasets with limited subject samples76. These datasets are 660 
characteristic of the low sample size regularly encountered in biology and medicine, which 661 
typically impedes the application of more complex non-linear models that require high numbers 662 
of parameters to be estimated.  663 

As another key model property of direct relevance to our present analysis goals, LDA can 664 
also be viewed as a dimensionality technique because this modeling framework enables the 665 
extraction of underlying coherent principles among our anatomical target regions that are most 666 
informative in telling apart CNV carriers from controls. To do so, LDA has access to class labels 667 
(CNV status in our case) and thus belongs to supervised techniques75. Specifically, LDA projects 668 
the input subjects’ set of brain morphology measurements into a linear subspace, consisting of 669 
the directions which maximally separate our classes77. This dimensionality reduction quality of 670 
LDA was a necessary prerequisite for extracting intermediate phenotypes from one dataset and 671 
transferring them to other datasets. 672 

In our study, we used LDA models to classify between CNV carriers and controls. 673 
Specifically, we derived a single LDA prototype for each CNV status, which yielded eight CNV-674 
specific models. The dimensionality reduction capability of the LDA framework provides 675 
biologically interpretable compact views on distinguishing the CNV carriers and controls based 676 
on a linear combination of brain region volumes. As a general rule, the maximum number of 677 
dimensions equals the number of classes -1. Since each LDA model instance discriminated 678 
between two classes at hand (e.g., controls and 22q11.2 deletion), we obtained a one-679 
dimensional vector encapsulating the 22q11.2 deletion intermediate phenotype. This vector of 680 
coefficients revealed the concomitant contribution of each brain region volume towards the 681 
separability of the CNV carriers based on whole-brain morphology measurements. Therefore, 682 
the coefficients provided quantitative information on the relative importance of the collective 683 
brain regions for CNV-health separation. Moreover, the LDA coefficients were estimated hand-684 
in-hand with the other brain region volume effects, in contrast to the estimation of marginal or 685 
partial variable effects as in linear regression. Furthermore, to embed each subject’s brain 686 
morphology in a low-rank subspace that maximally separates 22q11.2 deletion carriers and 687 
controls, we used the LDA coefficient vector to re-express (i.e., more formally, project) the set 688 
of 400 regional volumes of a given subject onto a single dimension representing 22q11.2 689 
deletion intermediate expression level signature. Finally, as a step from dimensionality 690 
reduction to classification, these expressions of predictive subject brain morphology indicators 691 
were then used to construct a discriminant function. 692 
 693 
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Building and validating robust prediction models 694 
To recapitulate, our goal was to derive eight CNV-specific intermediate phenotypes using 695 

LDA. Therefore, we built separate CNV-specific LDA models designated to learn predictive 696 
principles to tell apart between CNV carriers and controls. However, we faced the challenge of 697 
the low number of CNV carriers. This challenge is inherent to various boutique datasets of rare 698 
medical conditions. Consequently, our number of measured features (regional brain volumes) 699 
was higher than the number of observation samples (subjects). Concretely, we disposed on 700 
average of 67 subjects per CNV class (cf. Table 1), while each subject was described by 400 701 
regional volumes. Such a high-dimensional data scenario can lead to overfitting78, where the 702 
model learns the detail and noise in the training samples and performs poorly in group 703 
classification on unseen test samples75. Hence, we used bootstrap aggregation (bagging), an 704 
ensemble learning method that can be used to reduce overfitting79. Bagging gains its value by 705 
profiting from a wisdom-of-crowds strategy. Concretely, we used a set of trained LDA models to 706 
obtain a more robust and better predictive performance than could be obtained from a single 707 
trained LDA model in isolation79. Such a model-averaging design improves classification 708 
performance by reducing variance75. 709 

We performed bagging during the derivation of LDA models separately for all eight CNV 710 
classes. Specifically, we used the following analytical strategy for a set of subjects consisting of 711 
a single CNV type and controls. In the first phase, a randomly perturbed version of the dataset 712 
is created by sampling the subject cohort with replacement. This bootstrap resampling served 713 
as the “in-the-bag” set of samples (i.e., subjects). The number of “in-the-bag” CNV carriers and 714 
controls equals their number in the dataset. Furthermore, the LDA model was trained on this 715 
training “in-the-bag” dataset. Model performance was then evaluated on all subjects from the 716 
dataset that were not selected for the “in-the-bag” dataset. These subject samples formed a 717 
testing “out-of-bag” dataset. The performance (i.e., classification accuracy) was based on the 718 
Mathews correlation coefficient, which has been reported to produce a more informative and 719 
truthful score than accuracy and F1 score80. The coefficient ranges between −1 and +1, where a 720 
coefficient of +1 represents a perfect prediction, 0 random prediction, and −1 indicates total 721 
disagreement between prediction and observation. 722 

We repeated the bootstrap resampling procedure with 100 iterations. In so doing, we 723 
obtained different realizations of the entire analysis process and ensuing LDA model estimate. 724 
Concretely, the bagging algorithm resulted in 100 trained LDA models used to obtain 100 out-725 
of-bag predictions in unseen subjects. We calculated the final prediction accuracy as a mean 726 
across the 100 performance estimates. Critically, the average over the collection of separately 727 
estimated LDA discriminant functions served as our CNV-specific intermediate phenotype that 728 
provided the basis for downstream analysis steps. Finally, we characterized each subject by the 729 
intermediate phenotype expression level, which we calculated as the average one-dimensional 730 
LDA projection of regional volume sets across the 100 replications. In summary, the variance of 731 
local information in the 100 redraws of our original clinical subject cohort promoted diversity 732 
among the obtained candidate predictive rules, thus strengthening the fidelity of our ultimate 733 
predictions. 734 

To further safeguard against the risk of overfitting, we optimized the shrinkage parameter 735 
of each LDA model. Shrinkage corresponds to regularization used to stabilize the estimation of 736 
model parameters, such as in covariance matrices during model training. The empirical sample 737 
covariance is a poor estimator when the number of samples is small compared to the number 738 
of features. The covariance matrix estimation involved an interpolation between the sample 739 
covariance matrix based on the maximum likelihood estimator and a weighted identity matrix, 740 
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which amounted to the l2-penalization of the covariance matrix that then provided the basis for 741 
deriving a robust LDA solution. 742 

Indeed, our sample covariance matrix held 80,200 unique entries, almost 1200 times 743 
more than the average number of CNV carriers available. Therefore, the vanilla estimation of 744 
the covariance matrix is singular and thus degenerate for downstream analysis steps, such as 745 
matrix inversion. To avoid such an inversion problem, we applied a dedicated shrinkage 746 
approach for the covariance matrix estimation step within LDA (ShrunkCovariance function from 747 
sklearn). Using a nested cross-validation architecture, we performed a rigorous search over 11 748 
shrinkage hyper-parameter choices between 0 and 1, in steps of 0.1, in each “in-the-bag” 749 
bootstrap iteration (GridSearchCV function from sklearn). The optimal hyperparameter choice 750 
was based on a leave-one-out strategy. In this cross-validation technique, each sample of the 751 
“in-the-bag” dataset was used once as a test set of unseen subjects, while the remaining subject 752 
samples formed the training set. 753 

Finally, we evaluated the significance of a cross-validated score and thus assessed 754 
whether our ensemble LDA model displayed above-chance classification performance. 755 
Specifically, we carried out a label permutation test to quantify whether our LDA model 756 
outperforms the empirical null model. The null distribution was generated by calculating the 757 
prediction accuracy of our LDA classifier on 100 different permutations of the dataset. In these, 758 
features remained unchanged, but class labels (i.e., CNV carriers or controls) were randomly 759 
shuffled. Such a shuffling corresponded to the null hypothesis, which states no dependency 760 
between the features and labels. LDA model displayed above-chance classification performance 761 
if its prediction accuracy was higher than the 97.5th percentile of prediction accuracy coefficient 762 
distribution derived from 100 permuted models. 763 
 764 
Performing model inspection using feature importance 765 

After deriving robust LDA classifiers, we inspected which brain regions were the most 766 
informative in telling apart CNV carriers and controls. In other words, we aimed to contextualize 767 
and unpack the prediction rules of our ensemble LDA model. The bagging algorithm led to 768 
obtaining a collection of LDA models, resulting in a collection of estimates for each LDA 769 
coefficient and subject-specific intermediate phenotype expressions. Since each LDA model is 770 
trained on a different bootstrap population, it might happen that two distinct LDA models’ 771 
coefficients would carry opposite signs due to the sign invariance of LDA dimensionality 772 
reduction. Therefore, we aligned all LDA models by multiplying them with -1 or 1 to produce a 773 
positive correlation between LDA coefficients and a corresponding Cohen’s d map. 774 

Furthermore, we designed a criterion to test which LDA coefficients are significant, 775 
meaning which features significantly contribute to the classification. Significant coefficients had 776 
the distribution of 100 LDA coefficients significantly different from 0. Specifically, they were 777 
robustly different from zero if their two-sided confidence interval according to the 2.5/97.5% 778 
bootstrap-derived distribution did not include zero. 779 

 780 

Carrying intermediate phenotype expressions over for deep characterization in 781 
other data resources 782 

One of the aims of this study is to use a population dataset to investigate derived 783 
intermediate phenotypes. To do so, we transferred the CNV-specific intermediate phenotypes 784 
carefully derived in our boutique dataset and quantified their expression in the general 785 
population (i.e., UK Biobank). It is important to note that the derived intermediate phenotypes 786 
were not influenced by ASD or schizophrenia diagnosis (Supp. Fig. 14). 787 
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UK Biobank itself contains CNV carriers. Therefore, we aimed to validate the 788 
transferability of intermediate phenotypes by testing the difference in intermediate phenotype 789 
expression between CNV carriers and controls in both the clinical dataset and UK Biobank. 790 
Specifically, we tested the null hypothesis of no difference in the mean expression of 791 
intermediate phenotype in CNV carriers and controls. We adopted a two-sample bootstrap 792 
hypothesis test for means difference with 1,000 bootstrap replicates 81. 793 

Data availability 794 
The majority of 16p11.2 data are publicly available (https://www.sfari.org/). For the 795 

22q11.2 sample, raw data are available upon request from the PI (CB). All derived measures 796 
used in this study are available upon request (SJ). The rest of the CNV carriers’ data cannot be 797 
shared as participants did not provide consent. All data from UK Biobank are available to other 798 
investigators online (ukbiobank.ac.uk). The Schaefer-Yeo atlas is accessible online 799 
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Sch800 
aefer2018_LocalGlobal). 801 

Code availability 802 
The processing scripts and custom analysis software used in this work are available in a 803 

publicly accessible GitHub repository along with examples of key visualizations in the paper: 804 
https://github.com/dblabs-mcgill-mila/CNV-convergence. 805 
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Tables 847 
Table 1. 848 
Clinical dataset demographics. 849 
CNV loci chromosome coordinates are provided with the number of genes encompassed in each 850 
CNV and with a well-known gene for each locus to help recognize the CNV. Other diagnoses 851 
included: language disorder, major depressive disorder, posttraumatic stress disorder, 852 
unspecified disruptive and impulse-control and conduct disorder, social anxiety disorder, social 853 
phobia disorder, speech sound disorder, moderate intellectual disability, specific learning 854 
disorder, gambling disorder, bipolar disorder, conduct disorder, attention-deficit/hyperactivity 855 
disorder, substance abuse disorder, global developmental delay, motor disorder, obsessive-856 
compulsive disorder, sleep disorder, Tourette’s disorder, mood disorder, eating disorders, 857 
transient tic disorder, trichotillomania, pervasive developmental disorder, specific phobia, body 858 
dysmorphic disorder, mathematics disorder, and dysthymic disorder. Abbreviations, Del: 859 
deletion; Dup: duplication; ASD: autism spectrum disorder; SZ: schizophrenia; chr: chromosome; 860 
Age: mean age; SD: standard deviation; nGenes: number of genes.  861 

Loci Chr (hg19) 
start-stop 

nGenes 
(Gene) Type Subjects Age 

(SD) 
Sex 

(M/ F) 
ASD | SZ 
diagnosis 

Other 
diagnoses 

1q21.1 
chr1 7 Del 24 31 (18) 9 / 15 0 | 0 4 

146.53-147.39 CHDIL Dup 15 33 (17) 7 / 8 3 | 0 2 

15q11.2 
chr15 4 Del 112 55 (7) 51 / 61 0 | 0 2 

22.81-23.09 CYFIP1 Dup 146 54 (7) 69 / 77 0 | 0 6 

16p11.2 
chr16 27 Del 80 17 (12) 46 / 34 10 | 0 10 

29.65-30.20 KCTD13 Dup 69 31 (14) 37 / 32 7 | 1 10 
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22q11.2 
chr22 49 Del 69 17 (9) 33 / 36 8 | 2 29 

19.04-21.47 AIFM3 Dup 19 19 (14) 12 / 7 2 | 0 5 

Controls 312 26 (14) 179 / 
133 1 | 0 12 

  862 
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Table 2. 863 
UK Biobank Imaging demographics. 864 
Our data sample included measurements from 39,085 participants with brain-imaging measures 865 
and expert-curated image-derived phenotype. Based on the cohort’s sociodemographic, 866 
physical, lifestyle, and health-related characteristics, UK Biobank participants are known to be 867 
close to the general population43 (Fry et al., 2017). CNVs were identified using PennCNV and 868 
QuantiSNP. UK Biobank might represent the largest dataset of carriers affected by 15q11.2 869 
deletions and duplications. Therefore, we excluded these subjects from the UK Biobank and 870 
treated them as part of our clinical dataset. The remaining CNV carriers served for validation of 871 
derived LDA prediction patterns. 1ICD10 code, including diagnoses of schizophrenia, schizotypal 872 
and delusional disorders (F20-F29). 2ICD10 code, including diagnoses of childhood autism 873 
(F84.0), atypical autism (F84.1), Asperger’s syndrome (F84.5), other pervasive developmental 874 
disorders (F84.8), and pervasive developmental disorder, unspecified (F84.9). Mean age is 875 
depicted along with standard deviation (SD). 876 

 

Non-
carriers 

1q21.1 15p11.2 16p11.2 22q11.2 
del dup del dup del dup del dup 

Subjects 38731  12 14 117 155 4 7 5 47 

Percent  
female  52 42 64 54 53 25 43 60 43 

Age 
(SD) 55 (8) 51 

(6) 
54 
(7) 55 (7) 54 (7) 58 (3) 55 (6) 53 (8) 54(8) 

ASD1 | SCZ2 
diagnosis 68 | 18 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 

 877 

Figure legends 878 
Figure 1 879 
Eight CNVs lead to largely distinct spatial patterns of abnormalities in brain morphology. 880 
We analyzed gray matter region volumes in 534 subjects carrying one of eight CNVs and 312 controls. Regional 881 
volumes were adjusted for intracranial volume, age, age2, sex, and acquisition site. a) Cohen’s d brain map quantifies 882 
the magnitude of structural change for each CNV. We have computed Cohen’s d between CNV carriers and controls 883 
separately for each of the 400 brain regions (Schaefer-Yeo reference atlas). Our analysis reveals increased (red) and 884 
decreased (blue) brain volumes depending on the variation type. The uncovered patterns of volumetric changes 885 
confirm established knowledge on the regional increase and decrease across CNV loci22,23. b) Examining associations 886 
between Cohen’s d brain maps rendered on brain surface from each pair of CNVs. The wide range and low magnitude 887 
of Pearson’s correlations show that CNVs have distinct effects on brain volumes (more red=more similar, more 888 
blue=more dissimilar). Average similarity stands for the mean absolute Pearson’s correlations across all CNVs. 22q11.2 889 
and 16p11.2 deletions and duplications show strong mirroring (opposing) effects. Asterisk denotes FDR-corrected 890 
spin permutation p-values. c) Projecting brain volumes onto two dominant dimensions of variation using principal 891 
component analysis (PCA). Although the first two dominant PCA components explain 18 % of the variance, they are 892 
unrelated to differences between CNVs. The light and dark symbols represent deletions and duplication, respectively. 893 
The gray hexagonal bin plot represents the frequency of controls. Controls were not used to calculate the PCA and 894 
were projected post hoc. d) Projections of brain volumes to two dimensions using linear discriminant analysis (LDA). 895 
The first LDA dimension (LD1) mainly captures differences between 16p11.2 proximal deletion and duplication, while 896 
the second LDA dimension (LD2) mainly captures differences between 22q11.2 deletions and duplications. Symbols 897 
and hexagonal binning plots were constructed in the same way as for the PCA approach. CNVs lead to distinct changes 898 
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often represented by a predominant increase or decrease in the gray matter cortex that could effectively be described 899 
using low dimensional representations derived by LDA models. 900 
 901 
Figure 2 902 
Pattern-learning models extract distinct intermediate brain phenotypes from CNV status. 903 
We estimated eight LDA models to classify between controls and each of the eight different CNVs. a) Classification 904 
performance of eight distinct LDA models when telling apart controls and CNV carriers, given as Matthews correlation 905 
coefficient. All eight CNVs are successfully classified based on brain structure at above-chance accuracy as their 906 
performance exceeds that of an empirical null model (black line depicts upper 2.5 percentile threshold of the null 907 
distribution obtained by label shuffling). b) Prediction rule derived for each of the eight CNV-specific LDA models 908 
projected on the brain (red/blue = positive/negative weight). The prediction rule is a CNV-specific brain signature and 909 
can be treated as an intermediate phenotype. C) Similarity between CNV-specific intermediate phenotypes. The wide 910 
range and low magnitudes of ensuing Pearson’s correlations reflect the disparity in the captured intermediate 911 
phenotypes. Average similarity represents the mean absolute correlation across all CNVs. Asterisk denotes FDR-912 
corrected spin permutation p-values. d) Relationship between Cohen’s d brain maps and intermediate phenotypes. 913 
Based on FDR-corrected Pearson’s correlations, all eight intermediate phenotypes appear to largely follow the 914 
respective Cohen’s d brain maps. LDA models identified and quantified CNV-specific intermediate phenotypes that 915 
effectively captured distinct morphometric differences between CNV carriers and the general population. 916 
 917 
Figure 3 918 
Intermediate brain phenotypes track structural changes with distinct impacts in large-scale networks. 919 
We identified which aspects of the LDA-derived prediction rule robustly contributed to classification success by 920 
calculating 100 bootstrapped LDA models for each CNV while sampling CNV carriers randomly. A) Percentage of 921 
statistically relevant LDA coefficients in a CNV carrier group among all the regions that belong to each brain network 922 
(one-sample bootstrap hypothesis test for non-zero mean with 10,000 replicates). For example, 16p11.2 proximal 923 
deletion strongly affects most large-scale networks except the frontoparietal network. Altogether, the estimated LDA 924 
coefficients represent the backbone of each intermediate phenotype. Large-scale networks correspond to seven 925 
SchaeferYeo networks; Vis: Visual, FrontPar: Frontoparietal, SomMot: Somatomotor, DorsAttn: Dorsal attention, 926 
SalVenAttn: Salience ventral attention, Limbic, Frontoparietal, Default: Default mode. b) Significant LDA coefficients 927 
grouped by the large-scale networks. The highest relative number of affected regions is in the limbic network. 928 
Conversely, regions in the frontoparietal network are targeted less frequently. c) Relationship between CNV effects 929 
and LDA performance. There is a significant positive correlation between the number of significant LDA coefficients 930 
and classifier performance, unlike for the sample size of the cohort (marker size). According to the eight specific LDA 931 
models, CNVs affected predominantly high-level networks such as the limbic, salience, and default-mode networks. 932 
 933 
Figure 4 934 
Using intermediate CNV phenotypes as a basis for phenome-wide association analysis. 935 
We performed a phenome-wide association study (PheWAS) by computing Pearson’s correlation between the 936 
expression of each of the eight intermediate CNV phenotypes and 977 phenotypes spanning 11 categories in 39,085 937 
UK Biobank subjects. a) Letter-value (boxen) plot for the expression of 16p11.2 proximal duplication intermediate 938 
phenotype is shown for the sake of illustration. The boxen plot depicts the distribution of quantiles for the expression 939 
scores computed by quantifying the presence of derived 16p11.2 proximal duplication intermediate phenotype in 940 
both the clinical cohort (left) and the UK Biobank (right). Based on a two-sample bootstrap hypothesis test for 941 
difference of means with 10,000 bootstrap replicates, the 16p11.2 proximal duplication carriers significantly differed 942 
in the expression level from controls both in the clinical cohort (p <10-4) and UK Biobank dataset (p <10-4). b) PheWAS 943 
study using the CNV-specific intermediate phenotype. We calculated the Pearson’s correlation between the 944 
expression of 16p11.2 proximal duplication intermediate phenotype and each of 977 phenotypes. After the 945 
Bonferroni correction for multiple comparisons (BON), there were 55 significant associations, such as education score, 946 
hemoglobin concentration, or physically abused by family as a child. There were 145 significant associations exceeding 947 
false discovery rate correction (FDR) c) The relative number of significant correlations summarized for each of the 948 
eleven categories for each CNV in the UK Biobank. Most CNVs are strongly associated with multiple categories and 949 
their respective phenotypes. For example, up to 35% of phenotypes in general physical measures show a significant 950 
correlation with four CNV brain signatures. The light and dark symbols represent deletions and duplication, 951 
respectively. As an insight from the performed phenome-wide association analysis, CNV brain signatures are linked 952 
with multiple phenotypes across most categories but mainly in the general physical measures, blood assays, and early 953 
life factors categories. 954 
 955 
Figure 5 956 
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Eight different CNVs converge on similar phenome-wide association profiles. 957 
We carried out the PheWAS analysis for each intermediate phenotype to quantify the differences and commonalities 958 
in phenotypical consequences due to the eight CNVs. a) Pearson’s correlations from PheWAS analysis for each CNV 959 
status. Among those, 22q11.2 deletion shows the strongest associations with numerous phenotypes across 960 
categories. Colors indicate the eleven categories. b) Linear association strength between PheWAS outcomes across 961 
all CNVs. Strong Pearson’s correlations suggest that CNVs are linked with similar phenotypes. Average similarity 962 
exceeds those of volumetric Cohen’s d maps and intermediate phenotypes. Asterisk denotes FDR-corrected 963 
significant correlations. c) Linear association strength between category-specific Pearson’s correlations from the 964 
PheWAS analysis across all CNVs. Detailed visualization depicts the similarity of the impact of CNVs on all phenotype 965 
categories. The direction of the linear relationship tends to be identical across categories for a given CNV pair (strong 966 
negative or strong positive), unlike across CNV pairs for a given category. The eight CNVs exhibited similar PheWAS 967 
profiles, especially in bone density, blood assays, and general physical measures categories. 968 
 969 
Figure 6 970 
Detailing aspects convergence in phenome-wide portfolios across different CNVs. 971 
For all eight CNVs, we delineate the most prominent as well as distinctive associations among their PheWAS profiles 972 
in 39,085 UK biobank participants. We also compare CNVs based on their brain and behavior similarities. a) 973 
Phenotypes from the PheWAS analysis most strongly associated with the eight CNVs. We show ten phenotypes with 974 
the strongest average Pearson’s correlations across all CNVs. The most prominent association across CNVs is with 975 
diastolic blood pressure. The box plot displays the first quartile, median, third quartile, and whiskers corresponding 976 
to the appropriate quartile plus 1.5 times the interquartile range. b) Phenotypes most consistently associated with 977 
the eight CNVs. We find eight phenotypes associated with most (six) of the CNVs. Phenotypes are ordered according 978 
to the mean strength of the association. Most of the phenotypes are from the blood assays category. c) Number of 979 
significant hits per category for each intermediate phenotype conditioned on the shared phenotypical profile. For 980 
each of the eight intermediate phenotype expressions, we regressed out the remaining seven. Even after conditioning 981 
on the shared phenotypical associations, each particular CNV still shows a specific set of distinct phenome-wide 982 
associations across various categories. For example, 22q11.2 deletion still displays a high number of associations in 983 
physical measures - general category. d) Concordance between brain volume effects and PheWAS effects. The 984 
absolute value of correlation between Cohen’s d brain maps (Fig. 1a) is plotted against the absolute value of 985 
correlation between PheWAS profiles. Negative Lin’s concordance correlation hints at the disparity between 986 
volumetric and phenotypical similarity. Moreover, the majority of points lie above the 45°-degree line suggesting that 987 
PheWAS similarities are more substantial than volumetric similarities. e) From diverging brain patterns to converging 988 
portfolios. Each line represents a similarity of Cohen’s d map, intermediate phenotype, and PheWAS profile for a given 989 
CNV pair. Convergence on PheWAS profiles is demonstrated by the increase in similarity in 22 of 28 CNV pairs. Hence, 990 
the similarity of CNV portfolios exceeded that of volumetric intermediate phenotypes. 991 
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