BNl ORCA - Online Research @ Cardiff

PRIFYSGOL

CARDYB

This is an Open Access document downloaded from ORCA, Cardiff University's
institutional repository:https://orca.cardiff.ac.uk/id/eprint/158486/

This is the author’s version of a work that was submitted to / accepted for
publication.

Citation for final published version:

Xu, Yibin, Shao, Jianhua , Slaats, Tijs and Diidder, Boris 2023. MWPoW +: a strong
consensus protocol for intra-shard consensus in blockchain sharding. ACM
Transactions on Internet Technology 23 (2),34.10.1145/3584020

Publishers page: http://dx.doi.org/10.1145/3584020

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting
and page numbers may not be reflected in this version. For the definitive version of
this publication, please refer to the published source. You are advised to consult the
publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for
publications made available in ORCA are retained by the copyright holders.

MWPoW-+: a strong consensus protocol for intra-shard
consensus in blockchain sharding

YIBIN XU, University of Copenhagen, Denmark
JIJANHUA SHAO, Cardiff University, UK
TIJS SLAATS and BORIS DUDDER, University of Copenhagen, Denmark

Blockchain sharding splits a blockchain into several shards where consensus is reached at the shard level
rather than over the entire blockchain. It improves transaction throughput and reduces the computational
resources required of individual nodes. But a derivation of trustworthy consensus within a shard becomes
an issue as the longest-chain based mechanisms used in conventional blockchains can no longer be used.
Instead, a vote-based consensus mechanism must be employed. However, existing vote-based Byzantine false
tolerance consensus protocols do not offer sufficient security guarantees for sharded blockchains. First, when
used to support consensus where only one block is allowed at a time (binary consensus), these protocols are
susceptible to progress-hindering attacks, i.e., unable to reach a consensus. Second, when used to support a
stronger type of consensus where multiple concurrent blocks are allowed (strong consensus), their tolerance
of adversary nodes is low. This paper proposes a new consensus protocol to address all these issues. We
call the new protocol MWPoW+ as its basic framework is based on the existing Multiple Winner Proof of
Work (MWPoW) protocol but includes new mechanisms to address the issues mentioned above. MWPoW+
is a vote-based protocol for strong consensus, asynchronous in consensus derivation but synchronous in
communication. We prove that it can tolerate up to f < n/2 adversary nodes in a n-node system as if using a
binary consensus protocol, and does not suffer from progress-hindering attacks.

Additional Key Words and Phrases: Strong consensus, Blockchain Sharding, Byzantine Fault Protocol, BFT,
MWPoW, PBFT, Asynchronous consensus protocol, Blockchain, Distributed Ledger

ACM Reference Format:
Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder. 2023. MWPoW+: a strong consensus protocol for
intra-shard consensus in blockchain sharding. ACM Trans. Internet Technol. 37, 4, Article 1 (August 2023),
28 pages. https://doi.org/0

1 INTRODUCTION

Blockchain sharding, which improves transaction throughput of a blockchain system by hosting
parallel shards and reduces workload for individual nodes by requiring them only to work for a
single shard, has attracted much recent attention from the blockchain research community. Over
the years, blockchain sharding solutions have progressed from early prototypes [6, 17] with weak
security features to models of different security levels [12, 28-31].

One of the key issues for blockchain sharding is consensus derivation inside a shard. Unlike a
conventional blockchain, sharded blockchains cannot use the longest-chain based mechanisms

Authors’ addresses: Yibin Xu, work@xuyibin.top,yx@di.ku.dk, University of Copenhagen, Copenhagen, Denmark, Keben-
havn N. 2200; Jianhua Shao, Cardiff University, Cardiff, UK; Tijs Slaats; Boris Diidder, University of Copenhagen, Copenhagen,
Denmark, Kebenhavn N. 2200.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1533-5399/2023/8-ART1 $15.00

https://doi.org/0

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:2 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

that use Proof of Work (PoW) [3, 7] or Proof of Stake (PoS) [23] to propose blocks. This is because
when nodes are divided into shards, their calculation power is also divided. Thus, an adversary
may only have a relatively small amount of calculation power in the overall system, but this power
may be enough for it to become a dominating power in a single shard to manipulate the longest
chain of blocks. To the best of our knowledge, there is no method that can upper bound the amount
of calculation power one can put into PoW or PoS.

Therefore, most blockchain sharding approaches use vote-based mechanisms for consensus
derivation, where a leader node is elected periodically to propose a block and other nodes verify
and vote on the block. These approaches consider every node having equal weight in voting and
many employ the well-known asynchronous Byzantine consensus protocol PBFT [4] or its edited
versions as their intra-shard consensus protocol. However, PBFT can only tolerate a third of the
nodes in a shard and so allowing a total of n/4 nodes in an n-node sharded system to be adversaries.
Rapidchain [31] and the approaches proposed by Xu et al. [28, 29] improve these approaches by
using a synchronous intra-shard consensus protocol which allows half of the nodes in a shard
acting adversarial.

However, we observe that the vote-based protocols, when used in a blockchain, may be hindered
from progressing when an adversarial leader generates a faulty block or remain in silence. These
represent a new type of anti-liveliness attack on consensus protocols that has not been considered
before. We refer to this type of attack as progress hindering attack in this paper. This occurs
because consensus is binary on a single input value (block): if at some point in time nodes cannot
reach consensus on the current block, yet there is no alternative to vote on, then the nodes must
wait for the leader node to be replaced and a new block to be proposed. In sharded blockchain,
the problem does not only exist at the system level, but also exists at the shard level. This means
that the probability for the attack to occur in a system as a whole is s times more likely than in a
non-sharded vote-based system where s is the number of shards. It may destabilize operations like
cross-shard communications and node membership adjustments.

Alternatively, we can employ a stronger type of consensus protocol, or simply strong consensus,
where multiple blocks are allowed to enter into consensus resolution concurrently. It has been
proven, however, that asynchronous and synchronous protocols for this type of consensus have
security lower bounds of n > (iv+1)f and n > max(3, iv) f, respectively, where f is the number of
adversary nodes and iv is the number of different initial values in the system, iv > 2 [8, 19]. This is
lower than binary consensus, because when multiple initial values are allowed, the most supported
value does not necessarily imply the majority support anymore. For example, if a synchronous
communication system uses a number of sensors to determine the temperature around a machine,
any temperature reported by the sensors is acceptable, and the most supported one among the
sensors will be accepted. As such, in an extreme case, an adversary only needs to take control
of m + 1 sensors in an n > max(3, iv) f system to make it most supported. In blockchains,
however, whether a block is acceptable (e,g. whether containing invalid transactions) is checked
before a vote is cast, and any honest node would not support or accept a faulty block even if it has
gained m + 1 support in a synchronous communication system. We propose the validated
strong consensus for the blockchain using this feature. We show in this paper that combing this
feature with pre-defined rules for voting (the honest nodes always support the most supported
block to their knowledge), it allows the honest nodes to gradually shifting to one block, a majority
consensus reached and the block accepted. In this way, the validated strong consensus protocol
can achieve the same security bound as a binary consensus protocol in blockchains.

Furthermore, vote-based blockchains are still less secure than conventional blockchains. In a
longest-chain blockchain, nodes can have different weights (calculation power or stake) to create

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:3

a consensus, and as such, an adversary needs to control half of the overall weights in order to
manipulate the system (p/2 security level where p is the overall weight). In vote-based blockchin,
each vote requires only a threshold weight. Thus, it is only under the assumption that honest
participants create as many nodes as they should then a n/2 security level system reaches the p/2
security level.

In this paper, we address the three issues identified above: (1) progress-hindering attack for
vote-based blockchain. We solve it by employing the consensus protocol that allows multiple
initial values. (2) inability to reach an n/2 security level in an n-node system (or m/2 for a sharded
environment where m is the number of nodes inside a shard) for vote-based consensus protocols
when allowing multiple initial values. We solve it by designing a protocol that uses the validated
strong consensus. (3) inability to reach an p/2 security level in a p calculation power system for
vote-based consensus protocol. We solve it by weighting the vote of the nodes using their declared
calculation power. We call the new protocol MWPoW+ as its basic framework is based on the
existing Multiple Winner Proof of Work (MWPoW) protocol [27], but includes new mechanisms to
address the issues identified above. MWPoW+ is a vote-based protocol for strong consensus. It is
asynchronous in consensus derivation but retains all the merits of a binary synchronous consensus
protocol by maintaining synchronous communication. More specifically, we show that:

o MWPoW+ allows participants to vote on one block out of multiple concurrent ones (validated
strong consensus), while other vote-based consensus protocols used for blockchains only
allow one block at a time (binary consensus).

e MWPoW+ can work in an open-membership setting (permission-less). To achieve this, a
membership list is maintained for nodes, and the nodes must declare (register) an amount of
calculation power when they join the system, i.e. when they are added to the list.

e MWPoW+ is asynchronous in consensus derivation, but synchronous in communication.
That is, the block interval is controlled by adjusting PoW difficulty for blocks, but a specific
amount of calculation power registered must be used to vote for a block in order for it to
be accepted eventually. Each node should vote in every block height, and every vote carries
at least the amount of calculation power it has registered and the vote is weighted by that
amount.

o MWPoW+ can achieve an n/2 or p/2 security level in a non-sharded environment and can
provide an m/2 security level in a sharded blockchain where the size of a shard is m.

¢ By employing MWPoW+ as an intra-shard consensus protocol, blockchain sharding ap-
proaches can enjoy the benefit of the longest-chain based mechanisms in consensus deriva-
tion, thereby addressing the progress-hindering problem, yet not jeopardising the security of
sharded blockchains.

It is worth noting that while MWPoW and MWPoW+ share a basic framework as a protocol,
there are significant differences between them. MWPoW was initially designed to strengthen
blockchain decentralization by increasing reward probability for resource-constrained nodes in
strength competition games (mining). MWPoW+, on the other hand, is designed primarily to be
used for intra-shard consensus in blockchain sharding. More specifically, we have incorporated
two key elements into MWPoW+. We have introduced a vote chain into the system, which links a
node’s vote in one round to its vote in the preceding round. This allows the exact vote history of a
node to be determined and synchronized by other nodes in the system. We have also introduced
a vote array into the system, which helps nodes to derive other nodes’ vote chains. These new
mechanisms enable nodes to reason if a node suggesting a different view has sufficient ground to
support that view, thereby filtering out adversary nodes supporting a faulty view. As we will discuss
in detail in Section 4 and prove in Section 5, it is these new mechanisms that have allowed our

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:4 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

new protocol to take advantage of the best features from both synchronous and strong consensus
protocols.

The rest of the paper is organised as follows. In Section 2, we describe how some classical
synchronous binary and strong consensus protocols work and compare their differences. In Section
3, we introduce the progress-hindering attack and formulate the likelihood of its happening. In
Section 4, we first give a short description of MWPoW+ and how nodes reach a consensus, and
then describe its working procedure in detail. In Section 5, we explain and prove why MWPoW+,
as an asynchronous consensus protocol, can achieve an n/2 security level in an n-node system, and
we formally analyse its security. In Section 6, we calculate time complexity for MWPoW+ and in
Section 7, we discuss how MWPoW+ can be used to vastly improve the stability and security of
blockchain sharding. In Section 8, we report experimental results for MWPoW+ used in a sharded
system and compare it with other sharding systems. We conclude the paper in Section 9.

2 BACKGROUND AND RELATED WORK

In this section, we first give some background necessary for our discussion in this paper and then
analyse two existing binary consensus protocols and one strong consensus protocol that are closely
related to our work.

2.1 Synchronous vs Asynchronous Protocols

The difference between asynchronous [1, 4, 5, 13, 22] and synchronous consensus protocols [11, 21]
has been discussed in [16], and the key observations are:

(1) Synchronous protocols require synchronization with a global clock shared among the nodes.
They are round-based and rely critically on a network that guarantees the delivery of messages
within a pre-set time-bound. This type of protocol can tolerate up to f < n/2 adversary
nodes in an n-node system, but is less reliable when maintaining the time-bound.

(2) Asynchronous protocols are more reliable, and they do not assume the same as a synchronous
one does. In particular, this type of protocol can achieve Byzantine agreement despite arbi-
trary (but finite) message delays. But asynchronous protocols can tolerate at most f < n/3
adversary nodes in an n-node system.

While asynchronous Byzantine consensus protocols, such as the well-known PBFT protocol, are
often used for blockchain sharding, we argue that this is not necessary and a synchronous protocol
should be considered instead for the following reasons:

(1) Blockchain, by nature, is a synchronous arrangement. In a traditional mining mechanism, the
longest chain (mainchain) of valid blocks is considered to be the consensus, and the length
difference between the mainchain and the longest fork chain is required to be greater than a
predefined number (time-bound). This is to ensure that the mainchain is unlikely to change
after time-bound, and the consensus reached at the time-bound is final. Since this effectively
requires nodes to synchronise with the mainchain within time-bound, a synchronous protocol
should be considered as a natural candidate.

(2) Asynchronous protocols are implemented in a vote-based blockchain system where nodes
can vote for (support) or against (reject) a block at every block height. The block height
moves forward if the support votes reach a threshold number. Alternatively, the block is
replaced with a new block when the reject votes reach the threshold. There is no time-bound
for either consensus to be reached. However, lacking a time-bound for consensus agreement
does no good to blockchain sharding, because blockchain sharding requires every shard to
progress within a similar time period in order for the system to deal with operations like
cross-shard transactions [2, 25, 26]. Moreover, it is unrealistic to assume that no time-bound

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:5

would be needed in the progress of block height. So, even if it is asynchronous at the shard
level, it is still synchronous at the system level and the non-deterministic problem can still
exist at the system level with an asynchronous protocol.

(3) Despite the fact that synchronous consensus protocols can suffer the non-deterministic and
fail-stop problem when an update happens at the time-bound, a synchronous consensus
protocol can achieve a f < [n/2] security level in comparison to f < [n/3] for an asynchro-
nous one. A sharded blockchain system would benefit from the f < [n/2] security level as it
would allow the system to split more shards, thereby allowing better performance [28].

2.2 Binary vs Strong Consensus Protocol

In consensus derivation, n participants attempt to reach an agreement on one value from a set D of
candidate values. Note that f of these participants can be adversaries. Each participant p; starts
with an initial value v; € D, and a binary consensus protocol will ensure

o Termination: All honest participants decide on one value from D.

o Agreement: If two honest participants decide on two values v and w, then v = w.

e Binary Validity: If all honest participants have the same initial value v, then they all decide
ono.

When using a strong consensus protocol, the Validity requirement needs to be strengthened to

o Strong Validity: If an honest participant decides on v, then v is the initial value of some honest
participants.

For blockchains, we further adjust the Validity requirement to

e Validated Strong Validity: If an honest participant decides on a value v, then v is a valid one
and is an initial value of some participants.

The security lower bound for asynchronous and synchronous strong consensus protocols is
n> (iv+1)f and n > max(3, iv) f, respectively, where iv > 2 is the maximum number of initial
values allowed [8, 19]. This is lower than a binary consensus protocol. However, we will show in
this paper that this security can be increased to the same level as a binary consensus protocol by
enforcing the Validated Strong Validity to filter out faulty blocks. This is in contrast to existing
strong consensus protocols that cannot filter out adversary inputs in consensus derivation.

Strong consensus protocols are preferable to binary ones for blockchains because a correct block
for each epoch is the collection of updates observed by the node that proposed it. We can have
different correct blocks and they are all acceptable.

2.3 Archetypal consensus protocols

We now briefly describe two classical binary consensus protocols, one synchronous [4] and one
asynchronous [21], to illustrate how each type works and its main properties. We also briefly
describe a strong consensus protocol [8]. Their security proofs are reproduced here from [4], [21]
and [8] for ease of reference.

2.3.1 Practical Byzantine Fault Tolerance (PBFT) Protocol. PBFT [4] is designed to provide a Byzan-
tine state machine replication [14, 24] based on an asynchronous or partially-synchronous assump-
tion that is practical in real-life. Nodes in a PBFT system are ordered sequentially with one node
acting as the leader node (primary), and other nodes are referred to as the backup nodes (secondary)
that synchronize with the leader node. Nodes take turns to be the primary. All nodes participating
in the system synchronize with the primary before a request from a client is processed. They
then process the request and a consensus is reached or deemed to be reached when [2n/3 + 1]

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:6 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

nodes generate the same verdict, where n is the number of nodes in the system. A PBFT consensus
derivation round is split into five phases:

(1) Request phase: The client sends a request for consensus to the leader node.

(2) Pre-prepare stage: The leader node broadcasts a notice to all nodes that there is a request
to process and the leader node’s current state.

(3) Prepare stage: If a node agrees with the state sent by the leader node, it will notify all other
nodes that it will process the request based on that state.

(4) Commit stage: If a node receives at least [2n/3 + 1] notification from other nodes agreeing
to start working on the request, it will process the request and broadcast its verdict to other
nodes.

(5) Reply stage: When a node receives at least | 2n/3 + 1] results from other nodes that give
the same verdict, it will send that verdict to the client. The client accepts the result if it is
confirmed by at least |2n/3 + 1] nodes.

Note that the sender of every piece of information must use a digital signature.

LEMMA 2.1. Let Rp and Rq be two consensuses for the same request from a client in a PBFT system
and f be the number of adversary nodes in the system. When f < n/3, we have Rp = Rq (the content
of Rp and Rq is the same).

ProOF. In the worst case, we have a maximum of f adversary nodes and remaining f + f + 1
honest nodes in an n-node PBFT system. Suppose that we have two honest nodes h; and hs, both
having accepted Rp and Rq in the commit stage of PBFT procedure. Since at least | 2n/3 + 1] votes
are required for a consensus to be accepted and n = f + f + f + 1, Rp and Rq must each have at
least 2f + 1 votes. So there must exist f + 1 nodes who have voted for both Rp and Rq. This is
not possible as the adversary only has f nodes and honest nodes will not send different votes to
different nodes. Therefore, we must have Rp = Rq. That is, even in the worse case, there can only
be one consensus when f < n/3. O

2.3.2 Practical Synchronous Byzantine (PSB) Consensus. PSB [21] is designed to provide a Byzantine
state machine replication based on a synchronous assumption that is practical in real-life. Nodes in
a PSB system are organised as primary and secondary nodes like in a PBFT system, but the voting
process is different. Before processing a request, all nodes vote and reach a consensus on their
current state. The primary updates its state to the consensus state, processes the request based
on the consensus state and broadcasts the result to all nodes. All nodes then vote on the result
generated by the primary, and the result is accepted when | n/2 + 1| nodes have voted for it. A PSB
consensus derivation round is split into six phases:

(1) Request phase: The client sends a request for consensus to the leader node.

(2) Status stage: The leader node broadcasts a notice to all nodes that there is a request to
process, and all nodes send their current states to the leader node.

(3) Prepare stage: The leader node generates a result for the request based on the consensus
state, i.e. the state that has at least | n/2 + 1] nodes in it. The leader node then broadcasts
this result to all nodes.

(4) Commit stage: If a node agrees with the result sent by the leader node, it will broadcast a
commit request for the result to the system. Note that if the leader node had sent different
results to different nodes, it would be detected at this stage. Note also that the nodes are able
to determine if a commit request is based on the result sent by the leader. If an adversary
generates an invalid commit request which is not based on the result sent by the leader, the
leader node will not be considered as an adversary.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:7

(5) Notification stage: A node notifies others (including the client) when it has received at least
n/2 + 1] commit requests for the result, if it has received no other results from the leader
node.

(6) Reply stage: If the client receives at least |n/2 + 1] notifications within the time-bound, it
knows that the consensus has been reached.

Note that the sender of every piece of information is required to use a digital signature.

LEMMA 2.2. Let Rp and Rq be two consensuses for the same request from a client during a single
time-bound in a PSB system and f be the number of adversary nodes in the system. When f < n/2,
we have Rp = Rq.

Proor. In the worst case, we have a maximum of f adversary nodes and remaining f + 1 honest
nodes in an n-node PSB system. Suppose that we have two honest nodes h; and hs, both having
accepted Rp and Rgq, respectively, after the notification stage of a single time-bound. Since at least
n/2 + 1] votes are required for a consensus to be accepted and n = f + f + 1, Rp and Rq must each
have at least f + 1 notifications after the notification stage. However, since an honest node will
only send the notification if it knows only one result that has at least f + 1 commit requests, there
must be one honest node that has sent the notifications for both Rp and Rq. This is not possible as
if an honest node has two results at the commit stage, it will not send any notification at all. On the
other hand, if the honest node does not know one of the two results, it cannot send the notification
for a result that it does not know. Therefore, we must have Rp = Rq, even in the worse case, as
long as f < n/2. O

2.3.3 Strong Consensus (SC) protocol for synchronous networks. SC runs n Byzantine broadcast
protocols [9] concurrently, one instance for each node acting as the creator and sender of its input
value to the protocol. When the execution of the protocol is completed, the most frequent input
value from all the received input values will be decided. If there is a tie, then the lowest of all values

will be decided.

LEMMA 2.3. In a synchronous network, if n > max(3,iv) f, where f is the number of adversary
nodes, then a Strong Consensus protocol achieves unconditional strong consensus in f + 1 rounds.

Proor. First, observe that since n > 3f all the broadcast protocols invoked will work correctly,
and all the honest participants will decide on the same value for each invocation. Therefore, the
protocol satisfies the Agreement condition. Furthermore, since n > iv X f, there must be a value
v € D that has been received more than f times by each honest participant. Hence, the decision
value must be tallied more than f times and is an input value from an honest participant. This
gives Strong Validity. Termination in f + 1 rounds follows directly from the round optimality of
the protocol given in [9]. O

In this article, we explore how to increase the security lower bound for a strong consensus
protocol using the validated strong validity. We consider the following: (1) in the blockchain
consensus, blocks are interconnected and are of inheritance relationship. Therefore, to vote on a
block implies recognition of all blocks beforehand of it. A consensus resolution in a new epoch can
be considered as a re-vote on all the previous epochs. (2) a blockchain runs non-stop, therefore
we can separate the termination of a consensus derivation process from the termination of the
execution of a consensus protocol. That is, a block does not need to be accepted before new blocks
can build on top of it. A block is accepted when the majority of nodes have shifted to the branch of
blocks steamed from it, provided there are mechanisms ensuring that no other branches can be the
majority supported in the future.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:8 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

We use a vote chain and a vote array (to be discussed in Sections 4 and 5) to force an adversary
to either stay silent or vote correctly (follow the most supported branch to their knowledge), and
we establish acceptance criteria for blocks that ensures once a block is accepted, it is final and
unchangeable. We show that while strong consensus protocols need to use rounds of votings for
the nodes to reach a consensus on the input value in general, a blockchain is able to improve this
process by combining the consensus derivation of multiple epochs at the same time by exploiting
the above mentioned properties. Note that it is distinctively different from repeating a binary
consensus protocol, where the process of blockchain is halted until an honest leader proposed a
correct block. In our approach, the new round of voting is also the voting for the preceding block
heights. Thus, the process of the blockchain is not interrupted when a faulty block is proposed.

Our design of MWPoW+ follows from the above observations. The new protocol optimizes the
time complexity of a blockchain system implementing a strong consensus protocol overall, while
achieving the same security level as a synchronous binary consensus protocol.

3 THE PROGRESS-HINDERING ATTACK

In this section, we discuss a new type of attack on consensus protocols that has not been considered
before. We call this type of attack progress hindering attack. We will first briefly outline a consensus
protocol that we proposed specifically for blockchain sharding [29], and then analyse how progress
hindering attack will happen when such a protocol is used.

3.1 Consensus using a committee shard

In our previous work [29], we proposed a blockchain sharding solution that, by using a synchronous
protocol for intra-shard consensus, allows up to | (m — 1)/2] adversary nodes in a shard of size m
and | (n — 1)/2] adversary nodes in an n-node system overall. In the proposed solution, there is
a committee shard that records information such as the public identity key of every node in the
system, the shard ID of the shard in which they reside, and the hash of the block header of the
latest block that has been confirmed through the consensus protocol in every shard. Note that the
number of shards is dynamically adjusted in this design to overcome a halting situation that can
be caused by the distribution of adversary population across the shards, hence the information
recorded in the committee shard is updated dynamically too.
The consensus procedure inside a shard in that solution is divided into the following steps:

(1) Leader node election: Let Blockhash[i][BH] be the block header hash of shard i in block
height BH. L; is the index number of the leader node of shard i in BH + 1
L; = hash(Blockhash[i — 5][BH], ..., Blockhash[i + 5][BH]) mod m
Specially,
Blockhash[j][BH] =Blockhash[abs(s — j)][BH], j € [-4,0]U [s+1,s+4]
If shard i did not reach a consensus on block height BH then
Blockhash|i][BH] = Blockhash[i][BH — 1]

(2) Intra-shard consensus: The leader proposes a block and other nodes do two rounds of
voting following the same process given in Section 2.3.2. The nodes need to generate an
amount of PoW above a threshold when voting in order to prevent a Sybil Attack.

(3) Global synchronous: A detect-then-verify mechanism is used for global synchronisation.
The nodes of a shard will inform the committee shard when more than a certain number
of nodes have approved a block of this shard. Then the nodes of the committee shard will
download the block header of this block. If a node in this shard is opposing this block, it will

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:9

inform the committee shard. When a conflict is detected, the honest nodes in this shard will
send the data associated with the consensus resolution process to other shards for verification.
Other shards will accept the correct block after verification. If there is no conflict reported
within a given time frame, then the committee shard will accept this block as the new accepted
block for the corresponding shard.

Note that in so doing, a node is required to synchronise with the block generated by the committee
shard and the blocks of the shard in which it resides. It is also worth noting that because the
sharding protocol and the intra-shard consensus protocol are run synchronously in this setting,
honest nodes will always make contact with each other within a time-bound, and thus there will
be no consistency issues in terms of which block is finally accepted after the communication
time-bound. As a result, forking attacks [15], in which an untrusted node can provide various views
to multiple non-communicating nodes, will be dealt with in a timely manner in this case and will
not compromise security.

3.2 Adversary and threat model

We now consider one specific vulnerability associated with the consensus protocol outlined in
Section 3.1.

As can be seen, in this type of consensus protocol, a shard must select a leader periodically to
propose a block for other members of the shard to verify. Since we may have adversaries in a
shard, we must consider what happens when an adversary is elected as the leader. By definition,
an adversarial will not propose a correct block for other nodes to verify. Instead, it can generate a
faulty block, provide different blocks to different nodes or stay silent. Clearly, when this happens,
no useful work could be done during the current round, and the nodes in the shard will simply
abandon it and elect a new leader for the next round. We call this progress-hindering attack, as
the system is prevented from making progress when this happens. Note that in a longest-chain
blockchain, every node can propose a block for an epoch. Thus, there is no need to wait for the
next round for a new leader node to propose a new block.

How serious is this a threat to the operation of a sharded blockchain? In the following, we
calculate the chance for an adversary node to be elected as a leader, hence the chance of a progress-
hindering attack happening. Let there be f (0 < f < [m/2]) adversary nodes in a shard of m nodes.
The probability of having an honest leader for ¢ rounds and an adversarial leader for the remaining
rounds in A continuous number of epochs is

h—t t
] (5
m m
Figure 1 shows an example of this probability with different numbers of adversary nodes.

As can be seen, when there are close to 50% adversary nodes in a shard, a progress hindering
attack would almost certainly occur. Even with only 10% of the nodes being adversaries, there is
still close to 50% chance that there will be an attack every 6 epochs. This could seriously affect the
smooth or even normal operation of a sharded blockchain. Therefore, in order to make a vote-base
blockchain practical, especially in open-membership settings, there needs to be a way to deal with
the progress hindering attack.

4 THE MWPOW+ PROTOCOL

Based on the arguments so far, we propose a new asynchronous consensus protocol MWPoW+.
The basic framework of this new protocol is similar to that of the existing Multiple Winner Proof
of Work (MWPoW) protocol [27] (hence the name MWPoW+), but the two differ significantly in
terms of functionality. The new protocol can offer the same level of security as PSB and can avoid

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:10 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

—— 50% adversary
40% adversary
30% adversary
20% adversary
10% adversary

N w N v
o o o o
L L L L

The probability (%)

=
o
L

——

o
L

0 1 2 3 4 5 6
The number of success attacks in 6 iterations

Fig. 1. The probability for the success attacks

progress-hindering attacks. In this section, we first give an overview of MWPoW+ in Section 4.2
and then focus on the operational details in Section 4.3.

4.1 Calculation Power

The calculation power is defined as, in a given interval, the amount of PoW difficulty that a machine
can achieve. PoW difficulty is a measure of how difficult to generate a PoW:

Difficulty = difficulty_target @
current_target
where difficulty_target is a pre-defined 256-bit constant and current_target is any 256-bit number.
The PoW process runs by the machine generating a random Nonce to a given String to change its
hash value. The PoW difficulty of this string is calculated by using its hash value as current_target.
A PoW is generated when a String is generated with a PoW difficulty fulfilling a given value.

4.2 Summary description

The proposed MWPoW+ protocol allows up to f < [(n — 1)/2] adversary nodes in a n node
blockchain system and the block height moves within a time-bound. The key features of the
proposed protocol are:

e MWPoW-+ is a vote-based consensus protocol but no leader node is elected. Nodes use a
Proof-of-Work mechanism to propose a block. The property that blocks are inherited and
interconnected in a blockchain is used to prevent progress-hindering attacks.

e Just like in the Nakamoto blockchain, it assumes that the majority of participating calculation
power is honest.

o It assumes honest nodes would only vote for one block candidate at a block height while
there can be multiple block candidates.

e The block height can move on regardless if a consensus has been reached or not. Therefore,
when MWPoW+ is implemented in a sharded system, the progress of block height can be

synchronous for every shard, despite the progress for consensus is asynchronous among the
shards.

The working procedure of MWPoW+ is divided into the following steps:

(1) Power registration: When joining the system, nodes are required to declare an amount of
calculation power (in PoW difficulty form) that they will put into competition in every block
interval, with an attached PoW to prove that.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:11

(2) Progress of block height: There are two PoW difficulties for a block of every block height:

Entrance Difficulty and Acceptance Difficulty. The Entrance Difficulty is for proposing a
block and the Acceptance difficulty is for the system to move on to the next block height.
The two PoW difficulties are adjusted after every block interval. Every node is in charge of a
different interval in [0, 2256] for the Nonce of the block. By adjusting the Nonce, the hash of
the block can be adjusted, then the PoW difficulty of the block is adjusted.

At the beginning of every block interval, nodes create their own blocks. When a node finds a
Nonce in its Nonce interval for its block that makes the hash of the block fulfil the Entrance
difficulty, it broadcasts the block and the Nonce. Every node then tries to find a Nonce of the
Acceptance difficulty in their Nonce interval for the block that reaches the Entrance difficulty
first. When such a Nonce is found and broadcast, the system moves to the next block height.

(3) Voting: A node should vote four times at each block height by broadcasting its Nonces for a

block. Each Nonce for the block should make the PoW difficulty of this block fulfill 25% of
the node’s registered power. The Nonce is embedded in a data structure called Share. Note
that a Nonce is only valid for one Share. Table 1 shows the structure of a Share. Because
every Share embeds the hash of the preceding Share, every node is linked to the preceding
Share and therefore there is a vote chain for every voter. There are four vote chain heights
within every block height.

Table 1. The structure of a Share at the vote chain height i

Name Description

Block candidate hash | The hash of the block candidate which a voter votes for.

Last vote hash The hash of the last vote that the voter sent.

Vote Array An array of the Share hashes at the vote chain height i — 1 from the nodes which together

registered at least | n/2] + 1 of the calculation power.

Not support

A Boolean flag that is always FALSE if not changed. See section 4.3.4 for details.

Nonce

A 256-bit integer for adjusting the PoW difficulty of the block.

(4) Vote counting: Instead of counting the number of Shares for a block in h block height, we

calculate the accumulated PoW difficulty for this block as well as the whole branch of blocks
stemming from it (from h block height to the latest block height H). Note that if the PoW
difficulty is larger than 25% of the voter’s registered power, only 25% of the voter’s registered
power will be counted. Let Rp be a block candidate of the block height h. Let W;(Rp) be the
number of PoW difficulties at the block height i > h which voted for the descendent block
candidates of Rp at the block height i (if i = h then for the Rp itself). The accumulation of
PoW difficulties for Rp is

H
P(Rq) =)" Wi(Rq) 3)
i=h

where H is the latest block height.

(5) Vote discounting: According to the vote chain of a node, if this node voted for multiple

block candidates at i block height, the Shares in this vote chain for the block candidates from
i to H block heights are discounted in Equation 3. If a node has multiple vote chains (due to
sending multiple Shares with the same Last vote hash), we only count the PoW difficulties
of the longest vote chain. If the vote chains are of equal length, we only count the PoW
difficulties before the forking. According to a node’s vote chain, if this node has not voted
four times in the block height i, its Shares for the block height i + 1 will not be counted.
Figure 2 shows an example of the vote chain and the vote counting and discounting.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:12 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

El Ablock candidate

O Avote (O) A vote being count into P(B1) <-:-- A link to the block the vote supports +— A link to the last vote

Fig. 2. An example of a vote chain for a node V. As can be seen from the figure, there are two links for a
vote: a link to the block candidate that it supports and a link to the preceding vote. V9 in white is discounted
because it is not in the mainchain of V’s vote chain. V20 and V20 are discounted for P(B1) because of the
rule that if there are two vote chains of the same length, we only count the votes before forking. V20 is
discounted too because it supports a different block candidate from V19, which contradicts the rule that a
node can only vote for one block candidate per consensus chain height.

(6) Consensus reaching: A block Alice at the block height h is accepted when the following
two conditions are met simultaneously.

(a)

H
P(Alice) > P(Gary) + Z P(U;) ()
i=h
where P(Alice) is the accumulation of the PoW difficulties for Alice and its descendant
block candidates. H is the latest block height. Gary is the second most supported block
candidate at the block height h. P(U;) = CP[i] — VP;, where VP; is the accumulation of the
PoW difficulties of the votes in the block height i and CP[i] is the overall registered power
at the block height i. P(U;) stands for the PoW difficulties of the nodes which have not yet
voted in the block height i.

(b)

H H
P(Alice) — P(Gary) — Z P(U;) > i x Z cPli] (5)
i=h i=h

(7) Adversary eliminating: A graph can be built over the Vote Array in a share sent from
any node g. The vote chains of all the nodes can be derived from this graph, and these vote
chains are the vote chains from the perspective of the sender node g of this share. Suppose
that we have two block candidates Alice and Gary at the h block height, and they are both
correct (acceptable), and P(Alice) and P(Gary) from the perspective of node g have been
determined, and we refer to them as P4(Alice) and P4(Gary) respectively. Then node g in
the branch of Gary is an adversary if

CP[H]

H
P,(Alice) — P,(Gary) - Z P, (Up) > (6)
i=h
The future votes from the node g should not be counted in Equation 3 after it has been
considered as an adversary.
(8) Membership adjustment: Every block records the Shares of the blocks at the last block
height. The membership of a node is cancelled from the branch of this block onwards provided

that the block does not embed at least two of the node’s Shares.

Note that the sender of every information must use a digital signature. We now give an example of
consensus derivation using this protocol. Figure 3 shows how a block is accepted, where D stands

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:13

for the PoW difficulty and SR stands for the Support Rate (the percentage of PoWs for a block and
its descendant blocks). In (a), when blocks A, B and C are announced, none of them get a support
rate over 50%, so we cannot determine which block to accept. In (b), there are successive blocks of

A, B and C, and the support rates of blocks A, B, C have changed. Blocks C and D are eventually
accepted because they have a support rate over 50%. Meanwhile, this support rate is greater than

that of either block of the same block height plus 25% of the registered power.

(@)

(b)

[1018D 5% SR

Registered e 18D 1% Registered
Flnally 1000 D 10% power: ° SR Ia):c“:li:lulated
accepted SR :
1 i [4731D 23% SR _ | 20000
Power 2000 D
2000 D showed in B 20% SR Power
20% SR Votes: ' e - showed in
. e 731 D 8.3% | Votes:
2000 D 5000 e
20% SR [12400D 62% SR | SR
6000 D
60% SR
Finally accepted

Fig. 3. Accepting a block

Observe, that condition 6b given above seems to suggest that it is difficult to achieve sometimes
in the process of deriving consensus, if we only count the PoWs in one block height. However, as
we count the PoWs for the whole branch stemming from the block (the block and all its descendant
blocks), it is actually quite easy to do. In other words, if a consensus is not reached in a block
height, it may be reached in the next block height, in the third, the fourth and so on. This is unlike a
synchronous protocol: the state will not stop from progressing if a consensus is not reached within
the current block interval.

4.3 Details of the MWPoW:-+ protocol

We now describe in detail how the proposed MWPoW+ protocol works, including nodes joining
process, competition rounds, rewarding and adjustment mechanisms and consensus resolution.

4.3.1 Nodes joining. Suppose that a new node, Bob, is to join the system. The steps that Bob takes
to join are given below:

(1) Bob creates and sends an entrance ticket which contains its public identity key, its calculation
power CPg,;, to be used in competition, the hash of the latest block at the time when the
entrance ticket is created, and a Nonce that makes the hash of this entrance ticket fulfil CPgy.

(2) A block at the block height X + 2 will collect entrance tickets that contain the hash of a
block at the block height X. When a block is published with Bob’s entrance ticket in it, a TR
(Try Range) which is a number interval within [0, 225%] is assigned to Bob, and Bob is then
considered having joined the system after this block. Note that TRs for nodes never overlap
and TR; is calculated by

TR; =

i-1 i CP
U o
Z TtkyZTtk)stheN =P x 2 ()
k=0 k=0

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:14 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

where CP = CPy+CP; +- - -+CPy_1, the overall calculation power claimed by all the registered
nodes in the system, N the number of registered nodes in the network, and CP;,0 < i < N-1
is the calculation power claimed by registered participant i.

Figure 4 shows an example of a node joining the system.

I —
t t

Start creating an Sending the The Entrance ticket being
Entrance ticket Entrance ticket included to a block, a TR
is assigned afterwards.

@ block created. block reached Entrance difficulty.
m block reached Acceptance difficulty.

Fig. 4. An example of joining the system

4.3.2 Competition. There are two difficulties: ED (Entrance difficulty) and AD (Acceptance diffi-
culty) for every round of competition. The following explains how Bob participates in one round of
competition.

(1) Bob first constructs a block and tries to find a Nonce that makes the block reach ED.

(2) A block is broadcast to all the nodes when it reaches ED. ED of a new epoch is adjusted based
on how many valid blocks reach ED in the previous round of competition.

Moot wpp,, 20%) ®
where ED, and AD, are the entrance difficulty and the acceptance difficulty respectively
at block height X, NE,_; the number of blocks reaching entrance difficulty at block height
X — 1, and DN the ideal number of NE which is set to 1.

(3) Share is a container of Nonce for a block. The Nonce inside a Share, sent by a node, must
make the hash of the block fulfil at least 25% of this node’s calculation power. Alternatively,
if the node is proposing a block then the Nonce should fulfil ED. When Bob receives a block,
and a Share which fulfils ED, it verifies the block. Then, it should stop creating its own block
if it is not already working on the blocks of other nodes. Bob tries to create Shares for the
first block, to its knowledge, reaching ED.

(4) When a valid share is created, Bob should broadcast it immediately. During the attempt
to create Share, if a Nonce of AD is found, Bob then broadcasts the Share containing the
Nonce. This block is then considered announced, and all nodes who have sent four Shares
for it should move to its descending block height. Nodes that have not sent four Shares for it
should only move to its descending block height when the remaining Shares are sent. The
first block which reaches AD in an epoch should be placed in the mainchain. AD is adjusted
based on how much time has been consumed for the preceding block to achieve the AD.

3 BI X ADy_4
* " Timestamp,_, — Timestamp,_,

ED, = min(

AD)

where AD, is the AD at block height X; BI is a pre-defined block interval, and Timestamp,.
is the time at which block X is created.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:15

(5) An announced block will only be accepted according to the acceptance criteria stated in
Section 4.2.

(6) After Bob has sent four shares, and there is at least one announced block at the current block
height, Bob moves to work on the next block height of the announced block that has the most
support.

Figure 5 shows the flowchart of the competition procedure.

Starts working on a Create a block Try to find a Nonce of Place the Nonce to a Broadcast the block
block height i ”| Entrance Difficulty Found Share 7| and the Share
Move (o the /

ne:t»blr?(ck Try to find a Nonce of | Foung | Place the Nonce to a
g 25% of its Power for »| Share and broadcast
a given block the Share

There is a block reached the

Mova to the branch Acceptance Difficulty?

of most Support
A

No

Sent 4 Shares?

Fig. 5. The procedure followed by a node in a competition

4.3.3 Block structure, Rewarding, and Membership adjustment. A block is divided into four sections:
The block header, the entrance tickets section, the shares section and the transaction section. The
entrance tickets section records the latest valid entrance tickets and the entrance tickets embedded in
the preceding blocks are not inherited. The shares section records, to the block creator’s knowledge,
all the shares sent for the blocks at the previous block heights that have not yet been written into a
block of the preceding block height. The transaction section records the latest transactions.

Because nodes are overseeing different TRs and shares are signed by their identity keys, MWPoW+
can split the mining reward among the registered nodes.

D:
Rienr = SLZ—{;(} X Rix} (10)
NR represents the registered nodes whose share has been embedded in the block. Ry is the overall
reward assigned from the system to the block in block height X; Shares of block X are embedded in
block X +1. SD (xy is the total difficulty of the shares embedded in block X +1; SD; is the difficulty
of the shares which the node i sent, and R;cyr is the amount of remuneration given to the node i
as a Coinbase transaction in block X + 1.

If a node has not contributed at least two Shares for any block at a block height according to the
record shown in a descending block, say Alice, of that block height, its membership is cancelled
from Alice and the branch stems from Alice. Otherwise, a node does not need to send the entrance
ticket again to rejoin the system.

It is important to simplify MWPoW+ blocks so that an increase in the number of participants
will not significantly affect block size. We use the block simplification algorithm Graphene [20] to
simplify a block when its size increases due to embedding entrance tickets and Shares. Graphene

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:16

Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

combines Bloom filter [18] and IBLT [10] and has detailed mechanisms to deal with the failure of
decoding. Note that while a block is simplified, nodes still need to synchronise all entrance tickets
and Shares in the system to decode simplified blocks. Figure 6 shows the structure of the block.

Entrance| Trans- | Block |
actions | header

Shares Ticket

Bloom

Filter

Bloom || [Bloom ‘
Filter Filter

’IBLT HIBLT HIBLT ‘ X

Fig 6. Block Structure

434 Shares. When sending Shares, a node should ask for a signed acknowledgment from several
nodes which together have at least 50% of the overall calculation power. A node should not start
creating Share for a block in a block height H if the following two conditions are met at the same
time: (1) This node is not a new participant beginning at block height H and (2) It hasn't finished
sending its shares at block height H — 1. When these two conditions are met at the same time for a
node, say Bob, an honest node should not reply to a request for acknowledgment of Bob’s share, if
the share is for the block height H.

If an honest node receives an unknown share, it should re-transmit it to all the nodes in the
network. Therefore, under the security assumption that more than half of the participated power
is honest, when a node sends its shares to several nodes which represent more than half of the
overall calculation power, its shares will reach all the nodes.

We allow weak synchronisation for the content of the blocks, which means that provided a
block does not contain faulty information, regardless of whether the information has been received
previously, the block will be accepted. However, when the following three conditions are met at
the same time, a node should broadcast an opposing request to reject the block: (1) the node has
sent at least two shares for a block at the preceding block height; (2) the node’s shares are not
all included in the block and (3) the result in its membership has been cancelled. The opposing
request should contain all the signed acknowledgment the node has received for the shares it sent.
To fulfill the security, we add a flag into the Share structure which states if the node currently
supports the block or not. Having received a valid opposing request and the block has yet to reach
the acceptance criteria for it to be finally accepted, all honest nodes who have sent shares for this

ACM Trans. Internet Technol, Vol. 37, No. 4, Article 1. Publication date: August 2023

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:17

opposed block continue to generate shares for this block, but they turn the flag in their shares to
“Not support”. The PoW in a “Not support” share should not be counted when doing vote counting.
The honest nodes can switch to a new block in the next block height.

There can be two possible scenarios for a block at the time when it has been opposed.

e Reached the criteria for final acceptance: In this case, a consensus has been reached and
this block is accepted. The membership is cancelled for the opposing node from this block
onwards (from this block and the branch it stems).

e Not yet reach the criteria for final acceptance: In this case, all honest nodes turn the flag
in their shares to “Not support”, the opposed block will not receive further support from the
honest nodes.

The security assumption assumes that the honest node will not vote for more than one block at
the same block height. The opposing request would not create ambiguity because the security
assumption remains.

5 SECURITY ANALYSIS AND CORRECTNESS ENFORCEMENT
5.1 Power constrain

Because nodes cannot begin voting for block height i + 1 if they have not finished their vote for
block height i, adversary nodes cannot avoid consuming calculation power by skipping voting. By
Lemma 5.1, in order to catch up with the majority, adversary nodes must bind the given amount of
calculation power to every round of consensus resolution. The chain of consensus is progressed
periodically. In order to catch up with the majority and the progress of the block height, the nodes
must work on the PoW constantly. This design bounds the calculation power of all the nodes to
every block height.

LEMMA 5.1. A node p posts four votes of w difficulty per vote per block height until the i-th block
height requires the same calculation power as a node q¢ who posts 4 X i votes of w difficulties per vote
at the i-th block height for all block candidates in the chain from the first block height to the i-th block
height.

Proor. The calculation power is defined by the PoW difficulty that one can achieve within the
given time interval. This time interval is the consensus interval, which is maintained by adjusting
the acceptance difficulty. Assume that node p has

4xW
CP, = 11
' B (11)
and node g has
cp. - 4xXWXi (12)
17 BIxi
where BI is a predefined block interval. Therefore,
CP, = CP, (13)
O

LEMMA 5.2. If two honest node p and q accept Rp and Rq then, at all times Rp = Rq.

Proor. For this section only, let n be the overall registered power, f be the adversary power,
f < n/2.Let there be two different block candidates Rp and Rq. Assuming that there is no descendent
block candidate, P is the calculation power derived from valid votes at a given time. P(U) is the

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:18 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

amount of calculation power which has not yet voted. Assume that every node has voted, P(U) = 0.
The support rate for Rp is

_ P(Rp)
SRRD) = B Rp) + P(Rq) + P(D) 9
and the support rate for Rq is
B P(Rq)
SKED = 5y + p(Rg) + PO) 1)

For both Rp and Rq to be accepted, we require SR(Rp) > 50%, SR(Rq) > 50%. So Rp and Rq
cannot be accepted at the same time.
For Rp to be accepted at time 1, then the consensus is withdrawn because SR(Rq) > 50% at time
2: At time 1, SR(Rp) > 50% and
n

P(Rp) - P(Rg) >= & (16
To make SR(Rq) > 50% at time 2, more than
f" > P(Rp) - P(Rq) (17)

amount of calculation power from the adversary must have voted for Rp before time 1, they then
create a fork vote chain that votes for Rq after time 1, again consumes f’ amount of calculation
power (as the Nonce in every vote must fulfil 50% of the registered power of the voter). By this
operation, they temporarily invalidate (cancel) their votes in Rp (as discussed in the working
procedure, when there are two vote chains of equal length, only the votes before forking are
counted).

Therefore, for SR(Rp) > 50% first, then SR(Rq) > 50%, more than

f>2xﬁ=g (18)

of calculation power is required. Note that the nodes can vote for the descendent block candidates
of either Rp or Rq, their votes will not be invalidated in that case because it does not violate the
rule that a node should only vote for one block candidate at one block height. However, given the
honest node will not vote for more than one block candidate per block height, and the honest node
always follows the most supported block candidate, and an honest node has more than § power,
Rp = Rq at all times. O

LEMMA 5.3. If an adversary attempts to invalidate/change its votes in the block height k, it must
first invalidate its vote in the block height k + 1.

Proor. As discussed in the working procedure, a node should only vote for one block candidate
per block height, and every node should vote four times at each block height. The votes of a node
at the vote chain height i, {i|i = 4k,k € N}, i+ 1, i+ 2 and i + 3 are the votes for a block candidate
at the block height k. According to the vote chain, if a node vote for multiple block candidates at
the same block height k, its votes in its vote chain after the vote chain height i will not be counted.

To invalidate/change a vote for a block candidate of the k block height, which has been counted,
the adversary must generate a fork vote chain at the k block height, and this chain must be of
the same length/longer than the current vote chain. Therefore, to invalidate/change a vote i, the
adversary must invalidate/change the votes in the vote chain height (i + 1) ... (4 X H) by creating
a fork vote chain, where H is the latest block height. O

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:19

5.2 Unable to reach a consensus?

Let honest nodes altogether have x calculation power and adversary nodes have x — 1 calculation
power, x > 2,x € N, then Equation 5 is equal to

ix(x—(x—l))>l(i><(x+x—1))
4 . (19)
—1>-x—-=

2 4

So Equation 19 does not hold for x > 2, x € N. Note that in Lemma 5.2, we only show that an
adversary with | (n — 1)/2] calculation power will not be able to reverse a consensus. However, if
an adversary does not attempt to reverse a consensus, but instead supports consensus Rq while
honest nodes support consensus Rp, then Rp cannot reach the acceptance criteria given in Equation
5 as suggested by Equation 19.

In this case, if a node believes Rq is faulty, it can simply ignore Rq and commit to Rp because
the x nodes voted for Rp are honest nodes, as the honest nodes will not vote for Rq. However, if
Rq and Rp are both correct (acceptable), we cannot assume that all nodes voted for Rp are honest,
therefore the relationship between P(Rp) and P(Rq) can be reversed and we cannot commit to Rp.
To solve this problem, we must be able to determine if a node which votes for a minority branch is
an adversary or just an honest node which has not yet synchronized with previous votes. To enable
this, we change the structure of vote by adding a Vote Array which records the previous votes at
the i — 1 vote chain height from the nodes which have together registered at least |n/2] + 1 of the
total calculation power, supported the current vote height is the i vote chain height.

When receiving a vote, we can then generate a graph based on the vote array of all the linked
votes. We can derive the vote chains for every node from the voter’s perspective. Then, we can
know if the node has downloaded all the necessary votes to make the correct judgment, and if it has
a reasonable ground to stay in the minority branch. Figure 7 shows an example of the connected
graph. Assume that an honest node is in a different branch from node N3. Through this graph, an
honest node knows that N3 has not yet received the vote N1’ at the vote chain height 4, therefore
it counts the votes of N1 at vote chain heights 3 and 4. If the voter receives the vote N1’ at the
vote chain height 4, it would not count the votes of N1 at the vote chain heights 3 and 4, because if
there are two vote chains of equal length, only the votes before forking are counted. The honest
node can then determine if N3 is out of synchronisation or is an adversary.

LEMMA 5.4. Let there be two block candidates Rp and Rq at the same block height and P(Rp) >

P(Rq). Node q in the branch of Rq is an adversary if P;(Rp) — Pq(Rq) — P4(U) > CpéH]

Proor. As discussed in Section 5.2, a vote at vote chain height i has links to votes at vote chain
height i — 1 which has been voted by the nodes who have together registered at least |[n/2] + 1
of the total calculation power. The vote chains of every node can be derived from the connected
graph of the votes.

Because an adversary only has |n/2] calculation power, there must be one honest vote in the
vote array of every vote. Assuming a vote V who votes for Rp at vote chain height i broadcast the
vote, the honest nodes in Rq are able to use this vote to synchronise the view from the nodes in Rp
at vote chain height i — 2. Because there must be one link to the vote for Rp in vote chain height
i — 1 which indicates in the Vote Array of V (due to P(Rp) > P(Rq)), and that link provides the
view from the nodes in Rp for the vote chain height i — 2.

Assuming that a vote V; at vote chain height i supports Rq and the voter of V; has different views
for the most votes in vote chain heights i and i — 1 with the nodes which support Rp: the calculation
power for Rp in vote chain heights i and i + 1 are therefore counted in either P(U) of P(Rq) from

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:20 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

Vote chain
height

O Avote <=+ Alink in Vote Array
<+— Alink to the last vote

Fig. 7. The graph created using the Share of a node N3 at the vote chain height 5.

the voter’s perspective. Each vote chain height globally corresponds to % of calculation power,
therefore the maximum amount of calculation power that the voter fails to synchronise with the
nodes which support Rp is lower than %[H]. CP[H] is the overall registered power at the block

height H. In this case, if P4(Rp) — Pq(Rq) — Py (U) > %, this voter is considered an adversary.
P, (U) is the accumulation of unused calculation power. Because even assuming all the calculation
power has voted for Rq at vote chain heights i and i — 1, we still have P(Rp) > P(Rq) at vote
chain height i. Therefore, the honest nodes have no reason to still support Rq, then this voter is an
adversary. O

When a node is deemed to be an adversary, its votes are discounted in the blockchain from that
point onwards. Therefore, eventually Equation 5 can be achieved if an adversary chooses to support
Rgq instead of the most supported Rp.

5.3 Correctness

THEOREM 5.5. The proposed MWPoW+ protocol is an | (n—1)/2]-resilient strong consensus protocol.

Proor. As Lemma 5.1 shows, the calculation power is constrained in every block height. There-
fore, all nodes (including adversaries) must actively participate in voting in order to catch up with
the block height, and they cannot skip any votes. As shown in Lemma 5.3, to cancel/change a
vote, an adversary must cancel/change all the votes after this vote, so that to cancel/change a
consensus, the adversary must cancel/change all the consensus after this consensus. As shown
in Lemma 5.2, there cannot be a different consensus at the same time, so it is strong consensus
protocol, and for a consensus to be cancelled/changed, an adversary must have more than half of
the calculation power. As shown in Lemma 5.4, the system will ultimately commit on the correct
consensus, when honest nodes have at least | (n — 1)/2] + 1 calculation power, and an adversary
has up to | (n — 1) /2] calculation power in a n calculation power system. When assuming every
node has the same calculation power, our protocol achieves | (n — 1)/2]-resilience in a n-node
system. O

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding

The design of MWPoW+ is similar to MWPoW in that (1) a determined node membership and
each node’s PoW difficulty is recorded; (2) a consensus is reached by voting instead of using the
longest-chain mechanism. (3) fair compensation for nodes that contribute to consensus derivation.
However, MWPoW is insecure and lacks formal security proofs and verification. MWPoW+, on the
other hand, offers the necessary and desirable security features for a strong consensus protocol, as
our proofs in this paper show. Table 2 shows the key vulnerabilities of MWPoW and improvement

offered by MWPoW+.
Table 2. Key differences between MWPoW and MWPoW+
Limitation of MWPoW | Support in MWPoW+ Technical enabler
design

shares are not signed.

The creator of share needs to sign
them using the identity key.

In MWPoW, an adversary may work on other nodes’ TR
and change the consensus by cancelling their votes. In
MWPoW+, shares are signed and an adversary cannot
work on other nodes’ TR.

Nodes move into cre-
ating the descending
block immediately af-
ter a block reaches AD
regardless of whether
the nodes have fin-
ished their shares or
not.

We ask the nodes to continue
working on a block if it has not
finished sending the shares for the
block (see Section 4.3.4).

As a node only needs to send two shares per iteration
to keep itself in the system, an adversary may double its
power by only using half of the declared power per node
per round. In MWPoW+, we ask the nodes to continue
working on a block if it has not finished sending the
shares for the block. A block may contain the shares for
its preceding block as well as ancestor blocks. However,
if the block has not caught up the mainchain on time, it
is expelled (see Section 4.3.4).

A block only records
the shares for its pre-
ceding block.

We ask a block to record the
shares for all the blocks at its pre-
ceding block height.

This allows nodes to change branches at the new block
height but does not jeopardise security, because the new
block height is, in the end, another round of voting, and
the proof in Section 5.2 still holds. This improvement
avoids nodes being expelled from one branch when it has
voted for another. However, such a case is rare, as ED is
adjusted to control the number of block candidates.

There is no “Last vote
hash" or “Vote Array”
in the Share structure.
Therefore there is no
vote chain.

We added “Last vote hash" and
“Vote Array” in the Share struc-
ture to support vote chain and vote
array.

Without a vote chain and a vote array, the system cannot
determine if a node is a delayed node or an adversary
when reaching the consensus. The system may encounter
the problem discussed in Section 5.2 that a consensus
may never be reached.

No chance to oppose a
block.

Nodes require acknowledgements
for their shares, and the “Not sup-
port” option is added to the share
structure.

These prevent an adversary from removing an honest
node by publishing a block which does not include the
honest node’s shares, and also avoid the ambiguity as
stated in Section 4.3.4.

We end this section by noting the significance of the new mechanisms that have been designed
into MWPoW+. Although as a protocol, they are simply some modified steps and additional record
keeping structures for consensus derivation, their importance can be seen from the discussion and
proofs we gave in the previous sections. These mechanisms collectively have made MWPoW+ both
more secure and more robust than its predecessors. For example, a vote-based blockchain suffers
from progress hindering attack due to its design that counts only the votes for a block instead for
the branch of blocks stemmed from it. With the new mechanisms, MWPoW+ is now able to support
validated strong consensus that allows nodes to unite on the same branch of the blockchain without
slowing down its progress. Equally, lacking designs like “vote array” to form a “vote graph” in
MWPoW means that one cannot ensure that support from one node for a block branch is finalized

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:22 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

and that a consensus reached cannot be reversed later on. These new mechanisms, therefore, serve
as the key components in a more secure and efficient consensus protocol that we propose in this
paper. Without these, our protocol cannot achieve | (n — 1)/2]-resilience in an n-node system.

6 COMPARISON AND ANALYSIS
6.1 Time complexity

In the proposed MWPoW+, as well as blockchains using PBFT and PSB, we ask weak synchronisation
for the content in a block. This design means that it is the sender’s responsibility to guarantee that
information such as transactions or entrance tickets reach as many nodes as possible. Therefore
the time difficulty for sending information like transactions and entrance tickets to the network
is O(n) in an n-node system. In this section, we will consider time complexity of completing one
epoch of communication among nodes using different consensus protocols.

MWPoW+. We require an all-to-all re-transmit for the shares, so a node should re-transmit any
unknown share it receives. A node needs to generate four shares for one epoch. It first broadcasts its
shares to n nodes, then each receiver re-transmits the share to n nodes. Therefore the time needed
for a share to be received by all the nodes is O(n?). Because there are 4n shares, the overall time
needed for the nodes to synchronise all the shares is O(4n?). There can be many block candidates,
but as we adjust ED to ensure there will be only one block candidate most of the time. We also
require an all-to-all re-transmit of the block candidates because the nodes need to respond to and
send the “oppose request” for the faulty blocks rapidly (see Section 4.3.4). Therefore, the overall
time complexity is

TDywpow+ = O(n® + 4n®) (20)

PBFT. The primary sends a new block to all the nodes O(n) (pre-prepare stage). Every secondary
then broadcasts if it agrees with the block to the n nodes in pre-prepare stage, and there are n
nodes. Therefore the time needed is O(n?). Every node broadcasts a vote for commit in the commit
stage, and the time needed is also O(n?). Therefore the overall time complexity is

TDpprr = O(n + 2n2) (21)

PSB. At the start of an epoch, every node sends a notice informing the primary what the latest
state is, and this requires O(n) time (the security assumptions ensure that there can be a consensus
there). The primary uses the consensus state to generate a block and sends it to all the nodes, so the
time needed is O(n). The nodes decide on this block and broadcast their decision (commit stage),
and this takes O(n?) time. Then, the nodes take O(n?) time to broadcast to every node based on
the decisions they have received in the commit stage. Therefore the overall time difficulty is

TDpsg = O(2n + 2n?) (22)

SC. As stated in [8], the overall round complexity for the byzantine broadcast protocol run in
parallel is
n

TDsc = O(an2 X f

log iv) = O(n® log iv) (23)

6.2 Analysis

If viewed purely as a consensus protocol and do not consider the progress hindering attack,
MWPoW+ appears to be rather complicated when compared to other approaches. However, when
used to support blockchain sharding, it has some distinctive advantages. First, the process of
reaching consensus in MWPoW+ does not affect the progress of block height. Nodes can mine on
blocks which have not been accepted yet. This is not the case with PBFT or PSB based blockchains,

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:23

where they must reach a consensus before moving on to the next block height. Second, as the
block interval is originally designed for nodes to discover the transactions being sent to the
network, both PBFT and PSB based blockchains need to wait for a predefined interval before a
new block of the next block height can be proposed. In the traditional strength-competition-based
blockchains, as there is no need for voting, they have to wait for the given time-bound to accept
the longest chain as the mainchain. However, MWPoW+, as a new type of strength-competition
blockchain that mix strength-competition with voting, does not need to wait for this time-bound
before the mainchain can be determined. As there is voting process in every epoch in MWPoW+, a
consensus is usually achievable within every epoch or a short series of continuous epochs in extreme.
Therefore, MWPoW+ can be considered as a fast-confirming solution for strength-competition
based blockchains. Third, MWPoW+ also frees a blockchain system from the concern of selfish-
mining attack for a strength-competition blockchain: no block can be hidden after one interval
as the computation power per round has been pre-registered. The process of reaching consensus
for a block height is linked to the process for reaching consensus for other block heights. So the
votes are shared. Therefore, to compare with existing strong consensus protocols that separate one
epoch from others, the time complexity is improved. Table 3 shows a comparison between different
consensus protocols.

MWPoW+ | PBFT PSB Nakamoto Blockchain | ETH SC
Time complexity level o(n3) o(n?) | o(n?) O(n) O(n) o(n3)
Final confirm ~B B B 3B 36B B
Byzantine tolerance p/2 n/3 n/2 p/2 p/2 m
Selfish-mining free Yes Yes Yes No No Yes

Table 3. Comparison between different blockchain consensus protocols, where B stands for one pre-defined
block interval, p the overall calculation power, n the total number of nodes in the system. There is no
compulsory all-to-all broadcast for a traditional strength competition blockchain, therefore, their time
complexity is O(n) where the block creator broadcasts its block to all the nodes. MWPoW+ uses roughly one
block interval, it is possible that it took several block intervals.

7 MWPOW-+ FOR BLOCKCHAIN SHARDING

While MWPoW+ has a greater time complexity when compared to other proposals, it can increase
overall security as well as the number of shards allowed when used as an intra-shard communication
protocol for blockchain sharding. We have shown in Section 2.1 that synchronous consensus
protocols can be used for blockchain sharding and a security proof given in Section 2.2 shows that
an n/2 security security level can be achieved. We have also shown that MWPoW+ can handle
progress hindering attacks which have an even worse impact on a blockchain sharding environment.
This is because as blockchain sharding requires a weak global synchronisation for cross-shard
transactions, progress hindering attacks inside a shard can destablise the system. In short, MWPoW+
as an intra-shard consensus protocol, has the following merits:

(1) MWPoW+ is strong consensus protocol, therefore, no progress hindering attack can happen.

(2) MWPoW+ is for strong consensus but achieves the same security level as a synchronous
binary consensus protocol.

(3) MWPoW+ separates the process of block height progressing from the consensus reaching. As
such, it allows synchronous block height among shards although the consensus resolution
process is asynchronous.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:24 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

(4) The reward system of MWPoW+ allows power-constrained nodes to receive compensation
for competition, and therefore encourages node participation. This helps blockchain sharding
which requires a large number of nodes to participate in order to maintain security and split
more shards [28].

(5) With only a small number of nodes to be expected inside a shard, the time complexity for
MWPoW-+ is practically acceptable.

We have stated in the Introduction that common blockchain sharding protocols require every
node to be equal in voting in order to maintain security. When applying MWPoW+ to ordinary
blockchain sharding systems like Rapidchain [31] and the two sharding protocols proposed in
[28, 29], we only need to ask the nodes to write down the same calculation power in their entrance
tickets. By calculation power registration, we can upper bound the calculation power of nodes, so
that they are all equal in votes.

Table 4 shows a comparison of MWPoW+ used in both sharded and non-sharded settings, and
other consensus protocols. When a n = 2000 system runs at a 10~ failure probability and it splits
s = 16 shards with each sized m = 125. This suggests a time complexity of O(125%) for this setting,
which is largely smaller than O(2000?), therefore making it acceptable in practice. On the other
hand, when MWPoW+ is used in a sharded setting, it can allow s times more transactions per
iteration compared to non-sharded settings.

MWPoW+ | PBFT PSB Sharded MWPoW+
Time complexity o(n?) o(n?) | o(n?) 0O(m3)
Progress-hindering-free Yes No No Yes
Transaction per iteration 14 \4 \4 Vs

Table 4. A comparison between MWPoW+ and other consensus protocols when used for blockchains, where
V is a pre-defined number of transactions per block, s the number of shards and m = n/s.

One may argue that improvement in performance is due to the sharding model itself, rather
than from MWPoW+ as an intra-shard consensus protocol, and when PBFT or PSB are applied to
sharding, even better performance can be achieved. However,

(1) Rapidchain [31] and the models proposed in [28, 29] use binary synchronous consensus
protocols face the progress-hindering problems.

(2) When a progress-hindering attack happens, the performance is degraded, if the time needed
for the system to recover from the attack is taken into account.

Also, as we require a large number of nodes for blockchain sharding, the sharded blockchains
are often run in open-membership settings. There is no constraint to prevent an attacker from
making a progress-hindering attack. The problem does not only exist at the system level, but also
exists at the shard level. This means that the probability for the problem to occur in a system as a
whole is s times more likely than in non-sharded approaches. We, therefore, consider MWPoW+ to
be a more robust and practical protocol for blockchain sharding.

Note that we have not offered an analysis of what the preferred size limit of a shard should be
here, because this would depend on network conditions, participants’ bandwidth and network
quality. The shard size affects the security of the sharding model and the network and the hardware
requirement for participants. A preferred shard size could be considered in practice on a case-by-case
basis.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:25

8 EXPERIMENT

To our best knowledge, there is no work that has so far discussed the progress-hindering attack in
a sharded system and there are no blockchain sharding approaches that use a strong consensus
protocol. In this experiment, we evaluate (1) how the performance of some recent blockchain
sharding approaches [12, 28, 29, 31] is affected by the progress-hindering attack; (2) how does the
result compare to an approach that implements MWPoW+ as an intra-shard consensus protocol.
Our experiments show that MWPoW?+ is resilient when facing such attacks and is useful for sharded
blockchain systems.

The experimental setup for each network was a cluster of 8 compute nodes, each offering
dual AMD EPYC 32-core CPUs and 256GB of memory. Computer nodes are connected with a
25Gbit network providing RoCE for efficient communication. We implemented four networks,
each having 2000 nodes. The communication layer of the experiment is simulated by configuring
these computer nodes as a graph, and we map each node of our protocol to a node in the graph.
Networks 1 (sharded MWPoW+) implement our previous sharding model[29] but use MWPoW+ as
the intra-shard consensus protocol. Network 2 (Flexible) uses the same sharding model but with a
simple synchronous binary consensus protocol. Network 3 runs the RapidChain [31] model and
Network 4 runs Omniledger [12].

The experiment lasted 2000 block heights, and every block contained 2000 transactions. The
experiment began with zero adversary nodes in every network, and we randomly selected one
node per block height in every network and turned it into an adversary. The adversary nodes in the
previous block height would remain as adversary nodes. This process of adding adversary nodes
ended when the overall adversary population in the respective network reached the pre-defined
security level. Then the adversary population would remain for the remaining block heights. In
every block height, a leader node was randomly selected. If an adversary was selected as the leader
node, it would make a progress-hindering attack, and the nodes could not reach a consensus before
the leader node was replaced.

8.0 251 @ sharded MWPoW+
® RapidChain
® Flexible

® Omniledger

—— shardedMWPoW+

—— RapidChain
£451 —— Flexible

—— Omniledger

number of transactions (log10)

The number of shards being attacked

0 250 500 750 1000 1250 1500 1750 2000

T T T T T T T T T
Block height 0 250 500 750 1000 1250 1500 1750 2000
Block height

Fig. 8. The overall number of transactions (log10) .
committed into the blockchain with the block Fig. 9. The number of shards attacked per block
height progress height

Figure 8 shows the overall number of transactions being committed into the blockchain with the
progress of block height. Because the sharded MWPoW+ is not affected by the progress hindering
attack, it outperforms Network 2 which used the same sharding model, and the differences become
larger with the increase in block height. Again, MWPoW+ is free from progress hindering attacks,
it commits transactions in a stable rate, while others are very unstable due to some shards cannot
reach a consensus. Figure 9 shows the number of shards attacked in every block height. Note that

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:26 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

-
N

-
N}

=

o
=
o

@

0
IS o

The longest continuous attackes

~

The longest continuous attackes

o

04 [2 4 6 8 10 12 14 16
0 5 10 15 20 25 30 Shard ID
Shard ID

Fig. 11. RapidChain, the maximum number of
continuous succeeded attacks during the experi-
ment

Fig. 10. Flexible, the maximum number of contin-
uous succeeded attacks during the experiment

o
s

N w IS o
n L L L

The longest continuous attackes

-
L

o
'

3 4

Shard ID

Fig. 12. Omniledger, the maximum number of contin-
uous succeeded attacks during the experiment

the number for MWPoW+ is zero. The cross-shard transactions require the record inside a shard
being locked first, then they are sent to another shard and written in a block. This requires some
additional procedures to be performed in order to complete the process [2, 25]. In Figure 10, 11 and
12, we show the maximum number of continuous succeeded progress-hindering attacks observed
during the experiment: the shards have been hindered for a long period and all the cross-shard
consensus is not able to reach a conclusion during periods like these.

9 CONCLUSION

In this paper, we proposed the MWPoW+ consensus protocol for blockchain sharding. We have
shown and proved that although it is an asynchronous protocol, it can allow n/2 adversary nodes
in an n-node system, just like a synchronous consensus protocol does. It can also allow p/2
adversary power in a p-calcualtion power system. As a strong consensus protocol for blockchain,
it can provide synchronous block height among shards by separating the process of consensus
resolution from the progress of block height. It is a solution for fast confirmation compared to the
longest-chain based blockchains. While the protocol has a higher time complexity when used for
non-sharding blockchains, its time complexity is practically acceptable in a sharding environment.
Our experiments have shown that MWPoW+ eliminates the progress-hindering attack in a sharded
blockchain and stabilise the system overall. It can make cross-shard operations smoother and allows
for better and steadier performance. All these make MWPoW+ a desirable protocol for intra-shard
consensus in blockchain sharding.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

MWPoW-+: a strong consensus protocol for intra-shard consensus in blockchain sharding 1:27

REFERENCES

(1]

(9]
[10]
(1]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]
[24]

[25]

[26]

Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R Douceur, Jon Howell, Jacob R
Lorch, Marvin Theimer, and Roger P Wattenhofer. 2002. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. ACM SIGOPS Operating Systems Review 36, SI (2002), 1-14.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. On sharding permissioned blockchains. In
2019 IEEE International Conference on Blockchain (Blockchain). IEEE, 282-285.

Adam Back et al. 2002. Hashcash-a denial of service counter-measure. (2002).

Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation (New Orleans, Louisiana, USA) (OSDI ’99). USENIX Association, USA,
173-186.

Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and proactive recovery. ACM Transactions
on Computer Systems (TOCS) 20, 4 (2002), 398-461.

George Danezis and Sarah Meiklejohn. 2015. Centrally banked cryptocurrencies. arXiv preprint arXiv:1505.06895
(2015).

Cynthia Dwork, Andrew Goldberg, and Moni Naor. 2003. On memory-bound functions for fighting spam. In Annual
International Cryptology Conference. Springer, 426-444.

Matthias Fitzi and Juan A. Garay. 2003. Efficient Player-Optimal Protocols for Strong and Differential Consensus. In
Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing (Boston, Massachusetts)
(PODC ’03). Association for Computing Machinery, New York, NY, USA, 211-220. https://doi.org/10.1145/872035.872066
Juan A Garay and Yoram Moses. 1993. Fully polynomial Byzantine agreement in t+ 1 rounds. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing. 31-41.

Michael T Goodrich and Michael Mitzenmacher. 2011. Invertible bloom lookup tables. In 2011 49th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, 792-799.

Jonathan Katz and Chiu-Yuen Koo. 2006. On expected constant-round protocols for Byzantine agreement. In Annual
International Cryptology Conference. Springer, 445-462.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. 2018. Omniledger:
A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
583-598.

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishan Gummadi,
Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao. 2000. OceanStore: An Architecture for
Global-Scale Persistent Storage. SIGPLAN Not. 35, 11 (Nov. 2000), 190-201. https://doi.org/10.1145/356989.357007
Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2 (May 1998), 133-169. https:
//doi.org/10.1145/279227.279229

Jinyuan Li, Maxwell N Krohn, David Mazieres, and Dennis E Shasha. 2004. Secure Untrusted Data Repository (SUNDR)..
In Osdi, Vol. 4. 9-9.

Julian Loss and Tal Moran. 2018. Combining Asynchronous and Synchronous Byzantine Agreement: The Best of Both
Worlds. (2018).

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena. 2016. A secure sharding
protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 17-30.

James K Mullin. 1983. A second look at Bloom filters. Commun. ACM 26, 8 (1983), 570-571.

Gil Neiger. 1994. Distributed consensus revisited. Information processing letters 49, 4 (1994), 195-201.

A Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr, and Brian Levine. 2017. Graphene: A new
protocol for block propagation using set reconciliation. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer, 420-428.

Ling Ren, Kartik Nayak, Ittai Abraham, and Srinivas Devadas. 2017. Practical synchronous byzantine consensus. arXiv
preprint arXiv:1704.02397 (2017).

Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. 2001. BASE: Using abstraction to improve fault tolerance. ACM
SIGOPS Operating Systems Review 35, 5 (2001), 15-28.

Fahad Saleh. 2020. Blockchain without waste: Proof-of-stake. Available at SSRN 3183935 (2020).

Fred B Schneider. 1990. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR) 22, 4 (1990), 299-319.

Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and George Danezis. 2019. Replay attacks and defenses against
cross-shard consensus in sharded distributed ledgers. arXiv preprint arXiv:1901.11218 (2019).

SJ Wels. 2019. Guaranteed-TX: The exploration of a guaranteed cross-shard transaction execution protocol for Ethereum
2.0. Master’s thesis. University of Twente.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

1:28 Yibin Xu, Jianhua Shao, Tijs Slaats, and Boris Diidder

[27] Yibin Xu and Yangyu Huang. [n.d.]. Mwpow: Multiple winners proof of work protocol, a decentralisation strengthened
fast-confirm blockchain protocol. Security and Communication Networks 2019 ([n. d.]).

[28] Yibin Xu and Yangyu Huang. 2020. An n/2 Byzantine Node Tolerate Blockchain Sharding Approach. In Proceedings of
the 35th Annual ACM Symposium on Applied Computing (Brno, Czech Republic) (SAC "20). Association for Computing
Machinery, New York, NY, USA, 349-352. https://doi.org/10.1145/3341105.3374069

[29] Yibin Xu, Yangyu Huang, Jianhua Shao, and George Theodorakopoulos. 2020. A Flexible n/2 Adversary Node Resistant
and Halting Recoverable Blockchain Sharding Protocol. arXiv preprint arXiv:2003.06990, Concurrency and Computation:
Practice and Experience, Dol:10.1002/CPE.5773 (2020). arXiv:2003.06990 [cs.DC]

[30] Yibin Xu, Tijs Slaats, and Boris Diidder. 2022. Poster: Unanimous-Majority - Pushing Blockchain Sharding Throughput
to Its Limit. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (Los Angeles,
CA, USA) (CCS °22). Association for Computing Machinery, New York, NY, USA, 3495-3497. https://doi.org/10.1145/
3548606.3563506

[31] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain: Scaling blockchain via full sharding. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. ACM, 931-948.

ACM Trans. Internet Technol., Vol. 37, No. 4, Article 1. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Synchronous vs Asynchronous Protocols
	2.2 Binary vs Strong Consensus Protocol
	2.3 Archetypal consensus protocols

	3 The progress-hindering attack
	3.1 Consensus using a committee shard
	3.2 Adversary and threat model

	4 The MWPoW+ Protocol
	4.1 Calculation Power
	4.2 Summary description
	4.3 Details of the MWPoW+ protocol

	5 Security analysis and Correctness enforcement
	5.1 Power constrain
	5.2 Unable to reach a consensus?
	5.3 Correctness

	6 Comparison and Analysis
	6.1 Time complexity
	6.2 Analysis

	7 MWPoW+ for blockchain sharding
	8 Experiment
	9 Conclusion
	References

