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Bounding the mass of the graviton using binary pulsar observations
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The close agreement between the predictions of dynamical general relativity for the radiated power of a
compact binary system and the observed orbital decay of the binary pulsars PSR B1913116 and PSR
B1534112 allows us to bound the graviton mass to be less than 7.6310220 eV/c2 with 90% confidence. This
bound is the first to be obtained from dynamic as opposed to static field relativity. The resulting limit on the
graviton mass is within two orders of magnitude of that from solar system measurements, and can be expected
to improve with further observations.
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I. INTRODUCTION
General relativity assumes that gravitational forces

propagated by a massless graviton. Current experime
limits on the graviton mass are based on the behavio
static gravitational fields. In particular, a nonzero gravit
massm would cause the gravitational potential to tend to t
Yukawa form r 21e2mr, effectively cutting off gravitational
interactions at distances greater than the Compton w
lengthm21 of the graviton. The absence of these effects
the solar system@1# and in galaxy and cluster dynamics@2,3#
thus provides an upper limit onm.

In the dynamical regime, a nonzero graviton mass wo
produce several interesting effects. These include extra
grees of freedom for gravitational waves~e.g., longitudinal
modes!, and propagation at the frequency-dependent spe

v5A12m2/v2. ~1.1!

Recently, Will@4# and Larson and Hiscock@5# have proposed
techniques for examining the latter effect with futu
gravitational-wave interferometer observations to place
limit on m. Here we present a new method of bounding
graviton mass, which makes use of existing binary pul
observations. Our technique is based on the agreemen
tween the observed orbital decay of the binary pulsars P
B1913116 and PSR B1534112 and the predictions of gen
eral relativity @6–8#. This is the first bound onm from
dynamic-field relativity to be accessible with existing obs
vational data, and it provides a limit that is independent
the Yukawa bounds.

The idea is quite simple. Consider the Hulse-Taylor
nary pulsar, PSR B1913116, of which the observed deca
rate coincides with that expected from relativity to appro
mately 0.3%. A nonzero graviton mass would upset this
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markable agreement by altering the predicted orbital dec1

This implies an upper limit on the graviton mass. A cru
estimate of this bound is quickly obtained from dimension
analysis. For a system with characteristic frequencyv one
expects the effects of a graviton mass to appear at sec
order in m/v, as in Eq.~1.1!. For gravitational waves a
twice the orbital frequency of PSR B1913116, requiring
(m/v)2,0.003 implies an upper limit of orde
10220 eV/c2. This is comparable to the best limit from sola
system observations,m,0.44310221 eV/c2 @1#. The pur-
pose of this paper is to refine and make rigorous this e
mate.

In Sec. II we discuss linearized general relativity with
massive graviton. The field equation and the effective str
tensor for the metric perturbations~gravitational waves! are
found. In Sec. III we solve the field equations using Four
techniques, and derive the gravitational-wave luminosity o
general slowly moving periodic source when the graviton
massive. We apply this result to the observed orbital deca
the binary pulsars PSR B1913116 and PSR B1534112 to
obtain an upper limit on the mass of the graviton in Sec.
and conclude with some brief comments in Sec. V.

II. LINEARIZED GENERAL RELATIVITY WITH A
MASSIVE GRAVITON

In linearized general relativity one writes the metric as
perturbation of the Minkowski metric:

gmn5hmn1hmn , uhmnu!1. ~2.1!

We adopt the convention that indices ofhmn are raised and
lowered using the Minkowski metric; e.g.,

hm
n[hmlhln . ~2.2!t-

s.

:

1Corrections to the orbital radius and other parameters of the bin
are negligible by comparison: (mr)25(m/v)2(v/c)2, (mM)2

5(m/v)2(v/c)6, wherev/c5O(1023) for these systems.
©2002 The American Physical Society22-1
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The linearized theory is defined by substituting Eq.~2.1! into
the Einstein action, expanding in powers ofhmn , and keep-
ing only terms up to second order inhmn ~giving field equa-
tions linear inhmn).

We wish to examine an extension of linearized gene
relativity that includes a mass term for the graviton. W
choose the unique mass term for which the wave equatio
the linearized theory takes the standard form with
h-independent source, and for which the predictions of ma
less general relativity are recovered by settingm→0 at the
end of the calculations~see@9,10# and the Appendix!. Fol-
lowing the procedure described above, we arrive at the ac

I 5
1

64pE d4xFhmn,lhmn,l22hmn
,nhml

,l12hmn
,nh,m

2h,mh,m232phmnTmn1m2S hmnhmn2
1

2
h2D G ,

~2.3a!

where

h[hn
n . ~2.3b!

The first five terms are the linearized Einstein action and
stress tensor source for the metric perturbations, while
last term is our~phenomenological! choice of mass term@9#.
Linearized general relativity is regained by settingm50. At
linear order the stress tensor is assumed to be independe
hmn and conserved:

Tmn
,n50. ~2.4!

The field equations arise from requiring the action to
invariant under variations of the metric perturbation; o
finds

hhmn2hm
l

,ln2hn
l

,lm1h,mn1hmnhrs
,rs2hmnhh

2m2~hmn2 1
2 hmnh!5216pTmn . ~2.5!

This rather cumbersome equation simplifies considera
when expressed in terms of the trace-reversed metric pe
bationsh̄mn , defined by

h̄mn5hmn2
1

2
hmnh. ~2.6!

The conservation of the stress tensor requires the diverg
of both sides of Eq.~2.5! to vanish. This implies that the
mass term itself must have vanishing divergence:

h̄mn
,n50. ~2.7!

This is equivalent to the Lorentz condition of the massl
theory. Here, however, it is not a gauge choice; rather
represents the constraints provided by the equations of
tion and thus eliminates four of the ten independenthmn .
The remaining six components represent true degrees of
04402
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dom in the massive theory, which consist of the five helic
states of the spin-2 field, plus an additional spin-0 com
nent @10#.

Imposing Eq.~2.7!, the field equation may be simplifie
to

~h2m2!h̄mn5216pTmn , ~2.8!

which is the familiar form of the wave equation for a ma
sive field. This will be very convenient for calculations o
gravitational radiation in the massive-graviton theory. As d
scribed above, our mass term is the unique choice for wh
the wave equation takes this standard form with
h-independent source, and for which the predictions of ma
less general relativity are recovered by settingm→0 at the
end of the calculations~see@9,10# and the Appendix!.

To analyze the energy content of gravitational waves
need an effective stress tensor for metric perturbations.
plying Noether’s theorem@11# to the Lagrangian of Eq.
~2.3a! we find

Tmn
GW5K dL

d~hab,m!
hab,n2hmnLL

5
1

32p
^h̄ab,mh̄ab

,n2 1
2 h̄,mh̄,n&. ~2.9!

Here the angular brackets denote an averaging over at
one period of the gravitational wave. Equation~2.9! is iden-
tical in form to the usual effective stress tensor for gravi
tional waves withm50 @12#.

III. SOLUTIONS

In linearized general relativity the field equation~2.8!
with m50 has the general solution@12#

h̄mn~ t,xW !54E d3x8
Tmn~ t2uxW2xW8u,xW8!

uxW2xW8u
. ~3.1!

For a massive graviton Eq.~3.1! is no longer applicable,
since the speed of propagation of the gravitational wa
is frequency dependent and so the retarded timet2uxW

2xW8u/v(v) is different for each frequency component of th
wave. We evade this difficulty by solving Eq.~2.8! in fre-
quency space, dealing with each frequency separately
similar analysis encompassing the radiation of general sc
and vector fields can be found in@13#.

In the frequency domain, the field equation~2.8! becomes

~¹21@v22m2# ! h̃̄mn~vuxW !5216pT̃mn~vuxW !, ~3.2!

where the tilde denotes the Fourier transform and¹2 is the
3-space Laplacian. Equation~3.2! is the inhomogeneous
Helmholtz equation; the retarded Green functionG̃R for this
equation is
2-2
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G̃R~vuxW ;xW8!5
eikuxW2xW8u

4puxW2xW8u
, ~3.3!

where

k[sgn~v!Av22m2 ~3.4!

for uvu.m. ~The wave numberk should not be confused
with a spatial index.! The retarded solution of Eq.~3.2! for
fixed v is then

h̃̄mn~vuxW !516pE d3x8G̃R~vuxW ;xW8!T̃mn~vuxW8!. ~3.5!

In order to evaluate Eq.~3.5! we make use of the slow
motion approximation,va!1, with a the characteristic size
of the source. With this assumption, and taking the obse
tion point far from the source region (r[uxW u@uxW8u), the
Green functionG̃R may be expanded for larger. One finds

h̃̄mn~vuxW !5
4eikr

r E d3x8T̃mn~vuxW8!F11~2 ik !
xW•xW8

r

1
1

2
~2 ik !2S xW•xW8

r
D 2G F11OS a

r
,~va!3D G .

~3.6!

In the m50 case one can write the metric perturbations d
to a slowly moving source in terms of the massM, dipole
moment D j , and quadrupole momentI jk of the source,
where

M5E d3xT00, ~3.7a!

D j5E d3xT00xj , ~3.7b!

I jk5E d3xT00xjxk. ~3.7c!

We can obtain an analogous result in the frequency dom
using the conservation of the stress tensor to write the i
gral overT̃mn in Eq. ~3.6! in terms of the multipole moment
of the source. In the frequency domain the conserva
equation~2.4! for the stress tensor becomes

2 ivT̃005] j T̃0 j , 2 ivT̃0i5] j T̃i j . ~3.8!

Using these relations and the slow-motion approximati
one can show that
04402
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h̃̄00~vuxW !5
4eikr

r F M̃1
xj

r
~2 ik !D̃ j1

xjxk

2r 2
~2 ik !2 Ĩ jkG ,

h̃̄0 j~vuxW !5
4eikr

r F2~2 iv!D̃ j2
xk

2r
~2 ik !~2 iw ! Ĩ jkG ,

~3.9!

h̃̄ jk~vuxW !5
4eikr

r F1

2
~2 iv!2 Ĩ jkG ,

whereM̃ , D̃ j , Ĩ jk , are respectively the Fourier transform
or Fourier coefficients of the mass, dipole moment, a
quadrupole moment of the source. Only the quadrup
terms are relevant to us; the mass and dipole moments
constant to linear order inh @the energy and momentum ca
ried away by the radiation field areO(h2)#; henceM̃ andD̃ j
contain only zero-frequency components and will not co
tribute to the radiation.

The rate of energy loss by the source can be found
integrating the outward gravitational-wave flux over a sph
centered on the source:

L[2
dE

dt
5E dVr 2TGW

0i xi

r
. ~3.10!

Let us assume the source is periodic with periodP. Then the
metric perturbationsh̄mn(t,xW ) in the time domain are relate

to their Fourier componentsh̃̄mn(v,xW ) via

h̄mn~ t,xW !5 (
n52`

`

h̃̄mn~vn ,xW !e2 ivnt, ~3.11!

h̃̄mn~vn ,xW !5
1

PE0

P

dth̄mn~ t,xW !eivnt, ~3.12!

where

vn5n
2p

P
, ~3.13!

and the tilde now represents a Fouriercoefficient. Substitut-
ing Eqs. ~3.9! and ~3.11! into the expression~2.9! for the
stress tensor of the gravitational waves the luminosity
found to be

L5LGR1 (
n51

` m2vn
4

3
@ Ĩ jk~vn! Ĩ jk* ~vn!2utr Ĩ ~vn!u2#

1O~m4!, ~3.14a!

where

LGR[ (
n51

`

vn
6F2

5
Ĩ jk~vn! Ĩ jk* ~vn!2

2

15
utr Ĩ ~vn!u2G

~3.14b!
2-3
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TABLE I. Orbital parameters and corresponding graviton mass bound from the two binary pulsar sy
whose gravitational wave induced orbital decay has been measured. Pulsar parameters are taken fr@6,8#;
see also@30#. One-sigma uncertainties are quoted forD.

PSR B1913116 PSR B1534112

Period 27907 s 36352 s
Eccentricity 0.61713 0.27368
D 0.32%60.35% 212.0%67.8%
Graviton mass 90% upper bound 9.5310220 eV/c2 6.4310220 eV/c2
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is the usual general-relativistic expression for the radia
power, trĨ is the trace ofĨ jk , and we sum over repeate
indices. The quantity in the summation of Eq.~3.14a! is the
first correction to the general-relativistic expression for
radiated power due to a small nonzero graviton mass. C
parison of this correction to the observed orbital decay
binary pulsars PSR B1913116 and PSR B1534112 will
provide us with a bound onm.

IV. BINARY PULSARS

The formula ~3.14! for the energy-loss rate of
gravitational-wave source when the graviton is massive
easily applied to the orbital decay of binary systems. C
sider two bodies of massesM1 and M2, orbiting in thexy
plane with coordinates„d1 cos(u ),d1 sin(u )…, „2d2 cos(u ),
2d2 sin(u )…. Choosing the origin to be at the center of ma
one has

d15
md

M1
, ~4.1a!

d25
md

M2
, ~4.1b!

whered is the orbital separation of the binary componentsm
is the system’s reduced mass, andM is its total mass,

d[d11d2 , ~4.1c!

m[
M1M2

M
, ~4.1d!

M[M11M2 . ~4.1e!

Assuming a Keplerian orbit, the motion is described by

d5
a~12e2!

11e cos~u!
, ~4.2!

du

dt
5

@Ma~12e2!#1/2

d2
, ~4.3!

wherea is the semimajor axis ande is the eccentricity of the
orbit. The nonzero quadrupole moments of this system a
04402
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I xx5md2 cos2~u!,

I xy5I yx5md2 cos~u!sin~u!,
~4.4!

I yy5md2 sin2~u!.

The Fourier transform of the quadrupole moment of Kep
rian orbits is known@14#. For n.0

Ĩ xx~vn!5
ma2

2n
@Jn22~ne!22eJn21~ne!12eJn11~ne!

2Jn12~ne!#,

Ĩ xy~vn!5 i
ma2

2n
~12e2!1/2@Jn22~ne!22Jn~ne!

1Jn12~ne!#, ~4.5!

Ĩ yy~vn!52
ma2

2n FJn22~ne!22eJn21~ne!1
4

n
Jn~ne!

12eJn11~ne!2Jn12~ne!G ,
where theJn(x) are Bessel functions of the first kind. Th
moments forn,0 follow from

Ĩ jk~v2n!5 Ĩ jk* ~vn!. ~4.6!

Combining these quadrupole moments with Eq.~3.14!
provides us with an easy means to put a limit on the gravi
mass. For example, the orbital decay rate of the binary pu
PSR B1913116 has been measured and found to be sligh
in excess of the predictions of general relativity@6#. Denote
by Pb the measured orbital period of the binary system,Ṗb
the measured orbital period derivative ascribed to grav
tional radiation, andṖGR the instantaneous period derivativ
expected owing to general-relativistic~i.e., zero graviton rest
mass! orbital decay. Identify the fractional discrepancy b
tween the observed and predicted decay rates:

D[
Ṗb2 ṖGR

ṖGR

. ~4.7!

For a slowly decaying Keplerian binary, the instantaneo
period derivative is proportional to the energy-loss ra
hence,
2-4
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BOUNDING THE MASS OF THE GRAVITON USING . . . PHYSICAL REVIEW D65 044022
Ṗb2 ṖGR

ṖGR

5
L2LGR

LGR
, ~4.8!

whereL is the gravitational-wave luminosity inferred from
Ṗb , and LGR is the energy-loss rate expected from gene
relativity. This quantity has been measured for P
B1913116 and PSR B1534112 ~see@6,8# and Table I!.

Now suppose thatD is due at least in part to a nonvan
ishing graviton mass~rather than simply experimental unce
tainties!. Combining Eqs.~3.14! and ~4.8!, this implies an
upper limit to the squared graviton mass of

m2<
24

5
F~e!S 2p\

c2Pb
D 2

Ṗb2 ṖGR

ṖGR

, ~4.9!

whereF(e) is a function of the eccentricity,

F~e!5
1

12

(
n51

`

n6@3 Ĩ jk~vn! Ĩ jk* ~vn!2utr Ĩ ~vn!u2#

(
n51

`

n4@ Ĩ jk~vn! Ĩ jk* ~vn!2utr Ĩ ~vn!u2#

.

~4.10!

These sums can be performed using the techniques of@14#,
giving

F~e!5

11
73

24
e21

37

96
e4

~12e2!3
. ~4.11!

The functionF(e) is plotted in Fig. 1. Note thatF(e) is
greater than or equal to unity; a nonzero graviton mass
creases the energy emission of Keplerian binaries, as
would expect from adding extra degrees of freedom to
gravitational field. Figure 1 contains another lesson, as w
Note that, for binaries of fixed period, stronger bounds a
from binaries with smaller eccentricity. This dependence
easily understood. Binaries with large eccentricities ha
strong speed variations, as they move from periastron to
astron. These speed variations lead high-eccentricity bina
to produce the bulk of their radiation in ever higher harmo
ics of the orbital frequency@14#. The effects of a nonzero

FIG. 1. Eccentricity factorF(e) @cf. Eq. ~4.11!# versuse.
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graviton mass are more pronounced for lower-freque
gravitational waves, as in Eq.~1.1!. As a result, the idea
system for bounding the graviton mass is a binary with
large orbital period and small eccentricity~a weak emitter of
gravitational waves!, but which still has a measurable in
spiral rate.

Equation~4.9!, relating the squared graviton mass to t
fractional discrepancyD in the period derivative@or equiva-
lently by Eq.~4.8! the fractional discrepancy in the luminos
ity#, assumes that this discrepancy is known exactly. In fa
the period-derivative discrepancy is known only up to t
errors associated with the measured changes in the bi
period and the acceleration of the binary relative to Earth
practice, the one-sigma uncertainty inD ~which is listed in
Table I! is of the same order as the measured discrepa
and must be accounted for, as the actualD could reasonably
be expected to differ from the value derived from the me
surements by one or more standard deviations. Conseque
we must describe the actual upper limit on the mass stat
cally. In the absence of detailed information we assume
measured discrepancyD to be normally distributed about it
unknown actual value@given by the equality in~4.9! with
unknownm2#, and with standard deviation as given in Tab
I. In our model we relate the discrepancy to the squa
graviton mass, which must be non-negative. Referring
@15#, Table X, which lists the 90% unified upper limi
confidence intervals for the non-negative mean of a univ
ate normal distribution based on a measured sample from
distribution, we calculate the 90% upper limit on the~non-
negative! graviton mass, which is given in the final row o
Table I.

The best single limit on the graviton mass,m,6.4
310220 eV/c2, comes from the observations of PSR B15
112. This is despite the larger uncertainty in the measu
luminosity discrepancy, compared to PSR B1913116, be-
cause the luminosity discrepancy for PSR B1534112 is
negative. A negative discrepancy, taken as exact, would
respond to a negative graviton mass, which is unphysi
Correspondingly, a negative measured discrepancy is
ticularly unlikely to arise from a positivem2 compared to a
vanishingm2, which leads to a tighter upper limit.

We may combine the two observed discrepancies to fin
single upper bound on the graviton mass. Each observatik
results in a discrepancyDk and an associated one-sigma u
certainty in the estimated discrepancysD,k . These in turn
are related, through Eq.~4.9!, with measurements ofmk

2 ,
together with associated one-sigma uncertaintiessk . The
quantity

m2[
m1

21bm2
2

11b
~4.12a!

is then a normally distributed random variable whose me
is the squared graviton mass and whose variance is

s25
s1

21b2s2
2

~11b!2
. ~4.12b!
2-5
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Choosing

b5S s1

s2
D 2

~4.12c!

minimizes the variance ofm2:

s25
s1

2s2
2

s1
21s2

2
. ~4.12d!

Referring to Table I and@ @15#, Table X#, the corresponding
limit on the graviton mass from the combined observatio
of PSR B1913116 and PSR B1534112 is thus

m90%,7.6310220 eV/c2. ~4.13!

V. DISCUSSION

Table I gives the relevant parameters and the corresp
ing graviton mass bounds for the two binary pulsars wh
gravitational-wave induced orbital decay has been measu
PSR B1913116 and PSR B1534112 @6,8#. The graviton
mass bounds from the timing observations of each sys
are very similar, and about two orders of magnitude wea
than the Yukawa limit obtained from solar-system obser
tions, m,4.4310222 eV/c2 @1#. Both of these bounds are
in turn, several orders of magnitude weaker than t
provided by observations of galactic clusters,m,2
310229 eV/c2 @2,3#, although we regard these galactic clu
ter bounds as less robust, owing to their reliance on assu
tions about the dark matter content of the clusters, for
ample. In contrast, the bound obtained here is v
straightforward and involves few assumptions, making it l
prone to error: the chief assumption that we have made is
form of the effective mass term for the graviton, which
while not unique—is natural. Furthermore, any other m
term would be expected from dimensional arguments to y
similar results.

We have assumed that only measurement errors enter
the determination of the intrinsic binary period decay r
Ṗb . In fact, the determination of this rate requires an e
mate of the acceleration of the binary system, which is p
cipally toward the galactic center@8#. This, in turn, depends
on an accurate distance measurement to the binary sys
which can be difficult to make. A systematic error in th
distance estimate leads directly to an error in the estima
acceleration of the binary and, in turn, to an error in theṖb
ascribed to gravitational radiation induced decay of the
nary system. The large uncertainty in the discrepancyD as-
sociated with PSR B1534112 may well be due to an unde
estimate of the distance to this binary system@8#, in which
case the bound onm2 would be even tighter.

The bound described here arises from the propertie
dynamical relativity, making it conceptually independent
either the solar system or galactic cluster bounds on
graviton mass, which are based on the Yukawa form of
static field in a massive theory. Furthermore, we expect
provement in the bounds from any given pulsar system
observations improve the accuracy of the measured f
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tional discrepancy in the period derivative. For examp
when the observations of PSR B1534112 improve limits on
D to the same level as is observed today for PSR B1913116,
the corresponding single-system bound on the graviton m
should improve to approximately 2310220 eV/c2.

The field of gravitational-wave detection is new. We a
only just now learning to exploit the opportunities it is cr
ating for us. Within the next year, several large ground-ba
interferometric detectors will begin full operation@16–18#,
and existing cryogenic acoustic detectors@19–22# will see
significant improvements in sensitivity. Within the next d
cade we should see further enhancements in the capabili
all these instruments@23–25#, and the deployment of the
space-based interferometric detector LISA~Laser Interfer-
ometer Space Antenna! @26,27#. As gravitational-wave obser
vations mature, we can expect more and greater recogn
of their utility as probes of the character of relativistic gra
ity. The opening of the new frontier of gravitational-wav
phenomenology promises to be an exciting and revealing
for the physics of gravity.
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APPENDIX: CHOICE OF MASS TERM

The most general mass term possible for the lineari
action ~2.3a! is proportional to@hmnhmn2k(hn

n)2#, with k
an arbitrary constant. Here we demonstrate thatk5 1

2 is the
unique choice possessing both of the following properti
~1! the field equations for the metric perturbations can
written in the standard form

~h2m2!hmn5216pTmn
eff , ~A1!

where the sourceTmn
eff is a local function of the stress tenso

and is independent ofhmn ; and~2! taking the limitm→0 in
the massive theory recovers the predictions of general r
tivity. The first property is practical, while the second is ne
essary for agreement with experiment.

The field equation forhmn for generalk is

hhmn2hm
l

,ln2hn
l

,lm1h,mn1hmnhrs
,rs2hmnhh

2m2~hmn2khmnh!5216pTmn . ~A2!

The divergence of both sides of Eq.~A2! must be equal,
implying

hmn
,n5kh,m. ~A3!

Taking the trace of the field equation and using this div
gence condition gives the trace condition
2-6
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2~12k!hh1~124k!m2h516pTn
n . ~A4!

We see thath can be written as a local function of the stre
tensor only ifk51.

Substituting the trace and divergence conditions into
field equation gives

~h2m2!hmn5216pS Tmn2
1

2
hmnTl

lD
1~2k21!Fh,mn1

1

2
hmnm2hG , ~A5!

which is of the desired form~A1! except for the term in
square brackets. The latter can be removed only for two s
cial values ofk. For k5 1

2 the coefficient vanishes, leaving
ish

or

,

04402
e

e-

~h2m2!hmn5216pS Tmn2
1

2
hmnTl

lD , ~A6!

which is equivalent to Eq.~2.8!. For k51 ~the Pauli-Fierz
mass term used by Boulware and Deser@10#! we can use the
trace condition~A4! to rewrite the term in square brackets
a local function of the stress tensor, yielding

~h2m2!hmn5216pS Tmn2
1

3
hmnTl

l1
1

3m2
Tl

l,mnD ,

~A7!

which is also of the desired form~A1!. It is well known,
however, that the predictions of thek51 theory do not re-
duce to those of general relativity form→0: this is the van
Dam–Veltman–Zakharov discontinuity@28,29#. We are thus
led to the choicek5 1

2 and the massive graviton theory d
scribed by Eq.~2.3a!.
,

o.
-
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