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Abstract
Background Few studies exist investigating lung function trajectories of those born preterm; however
growing evidence suggests some individuals experience increasing airway obstruction throughout life. Here
we use the studies identified in a recent systematic review to provide the first meta-analysis investigating
the impact of preterm birth on airway obstruction measured by the forced expiratory volume in 1 s (FEV1)
to forced vital capacity (FVC) ratio.
Methods Cohorts were included for analysis if they reported FEV1/FVC in survivors of preterm birth
(<37 weeks’ gestation) and control populations born at term. Meta-analysis was performed using a random
effect model, expressed as standardised mean difference (SMD). Meta-regression was conducted using age
and birth year as moderators.
Results 55 cohorts were eligible, 35 of which defined groups with bronchopulmonary dysplasia (BPD).
Compared to control populations born at term, lower values of FEV1/FVC were seen in all individuals
born preterm (SMD −0.56), with greater differences seen in those with BPD (SMD −0.87) than those
without BPD (SMD −0.45). Meta-regression identified age as a significant predictor of FEV1/FVC in
those with BPD with the FEV1/FVC ratio moving −0.04 SDs away from the term control population for
every year of increased age.
Conclusions Survivors of preterm birth have significantly increased airway obstruction compared to those
born at term with larger differences in those with BPD. Increased age is associated with a decline in
FEV1/FVC values suggesting increased airway obstruction over the life course.

Introduction
Lung disease remains a significant complication of preterm birth despite temporal changes in the
underlying pathology of bronchopulmonary dysplasia (BPD) [1]. Advances in neonatal care during the
1990s, particularly the routine use of antenatal corticosteroids and exogenous surfactant [2], have increased
survival of infants born very and extremely preterm (<32 weeks’ gestation), and resulted in the emergence
of “new” BPD. As such, there are more survivors of preterm birth than ever before, and those born in the
contemporary era with new-BPD are born at an earlier stage of lung development with large and simplified
alveoli [2] compared to the thick-walled alveoli initially described by NORTHWAY et al. [3]. Despite this,
our understanding of the long-term implications of preterm lung disease remains limited.

We recently published an updated and extended systematic review and meta-analysis demonstrating that
survivors of preterm birth have persistent deficits in spirometry measured forced expiratory volume in 1 s
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(FEV1) [4]. The greatest deficits were seen in those with BPD having a percentage predicted FEV1 16%
lower than those born at term. It has also been recognised, however, that increased airway obstruction
as measured by the FEV1/forced vital capacity (FVC) ratio is also reported in survivors of preterm birth
[5]. Furthermore a progressive decline in FEV1/FVC values suggestive of increased airway obstruction has
been noted throughout childhood and adolescence in longitudinal studies by SIMPSON et al. [6] and DOYLE

et al. [7] in preterm survivors of the post-surfactant era, and extending into the sixth decade of life in those
born in the pre-surfactant era [8]. As such, there is a growing recognition that very preterm birth may
represent a significant risk factor for early-onset COPD [9, 10], with COPD characterised by progressive
airway obstruction and commonly defined as post-bronchodilator FEV1/FVC <0.70 [11].

To test the hypothesis that survivors of preterm birth have increased airway obstruction compared to those
born at term, and that preterm birth and BPD are risk factors for developing COPD, here we will perform a
post hoc analysis to expand on the findings from our recent systematic review on FEV1 to provide what is
to the best of our knowledge the first meta-analysis on FEV1/FVC in all survivors of preterm birth born
<37 weeks’ gestation.

Methods
Research questions
This post hoc meta-analysis was designed to answer the following questions:
1) Do those born preterm (with and without a diagnosis of BPD) have increased airway obstruction, as

measured by FEV1/FVC, compared to individuals born at term?
2) Does airway obstruction, as measured by FEV1/FVC, increase with age in those born preterm (with

and without BPD) compared with those born at term?

The forced mid-expiratory flow (FEF25–75) has previously been used as a marker of small airway
obstruction; however due to concerns about highly variable and poorly reproducible measurements cited in
the latest European Respiratory Society and American Thoracic Society technical standard [12], it has not
been used as an outcome in this review. FEF25–75 values have, however, been provided for reference from
extracted studies.

Study identification and selection
Studies were identified using the systematic review methods described previously by KOTECHA et al. [4, 13]
which followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA)
guidelines [14]. Briefly, 86 studies in total met inclusion criteria for analysis of FEV1. Although this
systematic review was designed to capture studies to answer questions specifically related to FEV1, the search
criteria were subsequently deemed acceptable to capture appropriately other spirometry measures including
FVC, FEV1/FVC ratio and FEF25–75. Studies were included for this analysis if they fulfilled the following
criteria: 1) FEV1/FVC reported in survivors of preterm birth (with or without BPD) and those born healthy at
term; or if 2) FEV1/FVC were reported separately in survivors of preterm birth with and without BPD.

Publication bias and study quality
The effects of publication bias were measured subjectively using funnel plots and objectively using
Egger’s test. Study quality was assessed using a modified version of the Newcastle–Ottawa scale as
previously described [4].

Data collection
Data were extracted from published manuscripts into the electronic data capture database REDCap
(Research Electronic Data Capture) [15]. If data were not presented in an appropriate format, the
manuscript’s authors were contacted to see if they could provide the additional required data. Where
available, data were collected as mean±SD. Where variances were presented as standard error, 95%
confidence intervals (95% CI), interquartile range (IQR) or range (minimum and maximum values), values
were converted to standard deviations using the methods outlined in The Cochrane Handbook [16].
Where data were presented as medians, it was first checked for skewness using the methods outlined by
SHI et al. [17] and if found to be significantly skewed, not included in the analysis. For included data, the
mean was estimated using the methods of LUO et al. [18], and IQR and range were estimated using the
methods of WAN et al. [19]. Spirometry values were preferably collected as standard (Z) scores and
percentage predicted, respectively, to adjust for variations in height and sex of individuals over raw ratios.
Each group extracted from a study was assigned one of the following statuses: 1) preterm with BPD;
2) preterm without BPD; 3) preterm with mix of participants (both with and without BPD) or BPD status
not specified; or 4) term. BPD diagnostic criteria were recorded, and it was considered acceptable to have
BPD status classified on diagnostic criteria appropriate for the time of study publication. Groups were also
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banded by gestational age (extremely preterm: <28 weeks’ gestation, very preterm: 28–32 weeks’ gestation
and moderate–late preterm: >32 weeks’ gestation) to allow for subgroup analysis.

Data analysis
Statistical analysis was performed in R (version 4.1.2) using the meta (version 5.1-1), metafor (version
3.0-2) and dmetar. (version 0.0.9) packages using previously documented techniques [20]. Data were
extracted directly from REDCap to minimise the possibility for transcription errors during analysis. If
necessary, study groups were pooled using the methods described in The Cochrane Handbook [16] into
Preterm (All), Preterm (BPD), Preterm (no BPD) or Term groups for analysis. If a summary group of all
preterm participants was not reported by the study, all individual preterm groups were combined to provide
the value for Preterm (All).

As studies presented results using varying continuous measures (Z-scores, % predicted, or raw values),
standardised mean difference (SMD) was calculated between groups in each study to allow for cross-study
comparison as per Cochrane recommendations [16]. Heterogeneity was calculated using the
restricted-maximum likelihood method, appropriate for continuous outcomes, with Knapp–Hartung
adjustments used to control for uncertainty in between-study heterogeneity. Use of fixed versus random
effects models for meta-analysis was determined by between-study heterogeneity (I2). The Hedges’
g method was used in calculating the SMD to correct for overestimation with small sample sizes.

Meta-regression analysis was conducted to investigate the effect of age and birth year on the SMD calculated
for each group comparison. While age was the primary variable of interest, birth year was investigated to
account for changes in lung function which may have occurred due to changes in medical care over time. A
variance inflation factor (VIF) was calculated using the vif.rma function of the metafor package to measure
any effects of collinearity between age and birth year. Mean participant age was rounded to the nearest whole
number for each study due to studies presenting varying degrees of detail for the age of each group. F-tests
were used to calculate the significance of age and birth year as moderators in reducing heterogeneity and thus
having a significant effect on regression models against SMD.

Results
Study selection and study quality
Of the 86 preterm cohorts identified with spirometry data from the systematic review, 55 were identified
with FEV1/FVC data meeting inclusion criteria with 35 defined groups born preterm diagnosed with BPD
and 31 defined groups born preterm without BPD [5, 8, 21–115]. Mean quality score for studies with
FEV1/FVC data was 14.4 of a total score of 20, ranging from 7 to 19 (supplementary table S1).
Summarised lung function data extracted and converted to pooled mean±SD values are available in
supplementary table S2.

Publication bias
Publication bias was observed when comparing Preterm (All) with Term groups subjectively with an
asymmetrical distribution noted on funnel plots, and objectively with Egger’s test reaching significance
(p<0.01). When preterm groups were separated into those with and without BPD, however, a symmetrical
distribution was noted on all funnel plots and Egger’s test did not reach significance (supplementary
figure S1). This could imply that asymmetry seen in the combined preterm group may be due to the
heterogeneity of having two different disease populations defined by the presence or absence of BPD.

Meta-analysis
All spirometry outcomes were reduced in those born preterm compared with term controls (table 1).
Moderate to high levels of heterogeneity were noted in all groups necessitating the use of random effects
meta-analysis. However, heterogeneity was reduced when BPD status was considered.

Those born preterm had an FEV1/FVC ratio 0.56 SDs lower than term-born controls (95% CI −0.68 to −0.45).
BPD status had a significant impact on airflow obstruction (figure 1), such that those with BPD had reductions
in FEV1/FVC ratio of −0.87 SDs (−1.02 to −0.71) below term, while survivors of preterm birth without BPD
had less severe but still significant airflow obstruction at −0.45 SDs (−0.62 to −0.27) below term.

Lower gestational age was associated with a greater lung function deficit. Subgroup analysis conducted by
mean gestational age identified that those born at <28 weeks’ gestation had the most substantial airflow
obstruction with FEV1/FVC values 0.72 SDs (−0.86 to −0.59) below term controls, with less obstruction
seen in those born at 28 to 32 weeks’ (−0.58 SDs, −0.79 to −0.37) and moderate-to-late preterm at
>32 weeks’ gestation (−0.21 SDs, −0.35 to −0.07).
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Identification and removal of outliers to data was not found to have a significant effect on the overall
outcomes of the meta-analysis.

Meta-regression
Meta-regression analyses comparing spirometry values in preterm children to term controls, accounting
separately for age and birth year, are presented in table 2. In those with BPD increased airflow obstruction
was associated with increasing age, with the FEV1/FVC ratio moving −0.04 SDs away from the term
control population for every year of increased age (R2=48.8, p<0.001) (figure 2). Over a 25-year period
this amounts to the FEV1/FVC ratio being 1 SD below those born healthy at term. The FEV1/FVC ratio was
also noted to increase by 0.02 SDs for every annual increase in birth year (R2=11.7, p=0.04) relative to the
term control group.

Cohorts with lung function data collected at older ages were noted to have come from those born in earlier
birth years, and a significant correlation was noted between age and birth year (p<0.001); however in
regression models accounting for both age and birth year the VIF for age was low (1.42). Additionally,
ANOVA of two mixed effects models, one accounting for age alone and the other accounting for both age
and birth year, was performed with results showing that after accounting for age, birth year did not
significantly improve the model (p=0.91) where conversely after accounting for birth year, age was found
to remain a significant predictor (p=0.001). This suggests despite the noted collinearity, age primarily
accounted for the changes seen in FEV1/FVC ratios.

No significant associations were noted in meta-regression analysis between FEV1/FVC and age or birth
year in the combined preterm group or in those born preterm without BPD. The FEV1/FVC ratio in those
with BPD was however also noted to decline by −0.03 SDs annually with age relative to those born
preterm without BPD (R2=62.6, p=0.01). The relationship between FEV1 and birth year has been
discussed in our prior manuscript.

Discussion
This meta-analysis consolidates the current literature on airway obstruction in individuals born preterm. We
show that survivors of preterm birth, both with and without a diagnosis of BPD, have increased airway
obstruction (FEV1/FVC) compared with those born healthy at term. Additionally, those diagnosed with
BPD have more profound airway obstruction. Meta-regression analysis show that airway obstruction

TABLE 1 Meta-analysis of all spirometry variables

nCohort n1 n2 SMD (95% CI) I2 % (95% CI) 95% prediction interval

FEV1
Preterm (All) versus Term 90 7235 17 436 −0.67 (−0.75 to −0.58)*** 80 (76–84) *** (−1.33 to −0.00)
Preterm (BPD) versus Term 55 1745 2856 −1.24 (−1.38 to −1.10)*** 66 (54–74)*** (−1.97 to −0.51)
Preterm (No BPD) versus Term 50 2342 2742 −0.46 (−0.55 to −0.38)*** 46 (25–61)*** (−0.85 to −0.07)
Preterm (BPD) versus Preterm (No BPD) 57 1963 2743 −0.67 (−0.78 to −0.57)*** 51 (34–64)*** (−1.21 to −0.14)

FVC
Preterm (All) versus Term 77 6635 15 401 −0.36 (−0.43 to −0.29)*** 65 (56–73)*** (−0.81 to 0.08)
Preterm (BPD) versus Term 50 1683 2769 −0.69 (−0.80 to −0.58)*** 54 (37–67)*** (−1.23 to −0.14)
Preterm (No BPD) versus Term 46 2219 2663 −0.21 (−0.29 to −0.13)*** 35 (7–55)* (−0.53 to 0.12)
Preterm (BPD) versus Preterm (No BPD) 52 1907 2605 −0.42 (−0.51 to −0.33)*** 35 (8–54)** (−0.79 to −0.05)

FEV1/FVC
Preterm (All) versus Term 55 5501 12 648 −0.56 (−0.68 to −0.45)*** 83 (78–86)*** (−1.29 to 0.16)
Preterm (BPD) versus Term 35 1326 1851 −0.87 (−1.02 to −0.71)*** 72 (61–80)*** (−1.64 to −0.09)
Preterm (No BPD) versus Term 31 1606 1727 −0.45 (−0.62 to −0.27)*** 79 (70–85)*** (−1.28 to 0.39)
Preterm (BPD) versus Preterm (No BPD) 36 1359 1902 −0.38 (−0.50 to −0.25)*** 52 (29–67)*** (−0.87 to 0.12)

FEF25–75
Preterm (All) versus Term 50 4625 9540 −0.82 (−0.96 to −0.68)*** 85 (80–88)*** (−1.65 to 0.00)
Preterm (BPD) versus Term 35 1224 1758 −1.33 (−1.50 to −1.15)*** 61 (44–73)*** (−1.94 to −0.71)
Preterm (No BPD) versus Term 30 1458 1610 −0.60 (−0.72 to −0.47)*** 47 (20–66)** (−0.97 to −0.23)
Preterm (BPD) versus Preterm (No BPD) 38 1394 1972 −0.66 (−0.81 to −0.51)*** 60 (43–72)*** (−1.28 to −0.04)

ncohort: number of cohorts; n1: number of individuals in group 1; n2: number of individuals in group 2; SMD: standardised mean difference as
measured by Hedges’ g; I2: heterogeneity; FEV1: forced expiratory volume in 1 s; BPD: bronchopulmonary dysplasia; FVC: forced vital capacity;
FEF25–75: forced mid-expiratory flow. *: p<0.05; **: p<0.01; ***: p<0.001.
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increases more rapidly with ageing in those with BPD. Therefore, a diagnosis of BPD during infancy
represents a significant risk factor for lifelong preterm lung disease.

To our knowledge no previous meta-analysis has been published investigating FEV1/FVC in those born
preterm across all gestational ages <37 weeks’ gestation. A recent systematic review and meta-analysis by
DU BERRY et al. [116] investigated people born at moderate–late gestational ages (32 to <37 weeks’
gestation) reporting modest but significant overall decreases in FEV1/FVC in this group compared to those
born at term. Our analysis extends these findings, to show that individuals born very (28–32 weeks’
gestation) and extremely (<28 weeks’ gestation) preterm have progressively more profound degrees of
airway obstruction reported later in life, with those diagnosed with BPD as infants at the highest risk.

Results of the meta-regression analysis reported here correlate with longitudinal data demonstrating an
accelerated decline in FEV1/FVC suggestive of increased airway obstruction following preterm birth
previously reported in pre-surfactant era cohorts reported by BÅRDSEN et al. [117], and post-surfactant era
cohorts by SIMPSON et al. [6] and DOYLE et al. [7]. Additionally, a recently published study by BUI et al.
[8] on a pre-surfactant era cohort of middle-aged survivors of preterm birth reported declining FEV1/FVC
trajectories across middle age in those born at 28 to <32 weeks’ gestation compared to those born late
preterm or at term, and a significant association with COPD diagnosis. Preterm birth and BPD have been
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gaining growing recognition as risk factors for later developing a COPD-like phenotype, identified in both
the recent Lancet commission on COPD [118] and Global Initiative for Chronic Obstructive Lung Disease
(GOLD) report [119]. With findings of increasing airway obstruction associated with age, the results of
this study support the suggestion that those diagnosed with BPD as infants are at significant risk of
lifelong preterm lung disease and are more likely to follow a trajectory to an early-onset COPD-like
disease later in life.
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FIGURE 2 Meta-regression of forced expiratory volume in 1 s/forced vital capacity moderating for age:
bronchopulmonary dysplasia (BPD) versus Term.

TABLE 2 Meta-regression analysis moderating for age and birth year

Age Birth year

R2 (I2) β (95% CI) p-value R2 (I2) β (95% CI) p-value

FEV1
Preterm (All) versus Term 1.6 (78.5) 0.01 (−0.01 to 0.02) 0.39 0.0 (79.3) 0.00 (0.00 to 0.01) 0.39
Preterm (BPD) versus Term 0.0 (66.0) −0.01 (−0.04 to 0.02) 0.50 20.3 (60.7) 0.02 (0.00 to 0.03) 0.02
Preterm (No BPD) versus Term 0.0 (43.4) 0.00 (−0.01 to 0.02) 0.61 0.0 (44.2) 0.00 (0.00 to 0.01) 0.27
Preterm (BPD) versus Preterm (No BPD) 7.4 (50.7) −0.01 (−0.04 to 0.01) 0.18 22.9 (49.3) 0.02 (0.00 to 0.03) 0.01

FVC
Preterm (All) versus Term 2.2 (63.5) 0.01 (−0.01 to 0.02) 0.32 0.0 (64.3) 0.00 (−0.01 to 0.01) 0.83
Preterm (BPD) versus Term 0.0 (56.6) 0.00 (−0.02 to 0.02) 0.99 0.0 (52.9) 0.00 (−0.01 to 0.02) 0.57
Preterm (No BPD) versus Term 0.0 (35.8) 0.00 (−0.01 to 0.02) 0.67 0.0 (36.9) 0.00 (−0.00 to 0.01) 0.34
Preterm (BPD) versus Preterm (No BPD) 0.0 (36.6) −0.00 (−0.02 to 0.01) 0.58 0.0 (39.5) 0.00 (−0.01 to 0.02) 0.37

FEV1/FVC
Preterm (All) versus Term 1.6 (82.7) −0.01 (−0.03 to 0.01) 0.36 0.0 (83.0) 0.00 (−0.01 to 0.01) 0.99
Preterm (BPD) versus Term 48.8 (56.6) −0.04 (−0.07 to −0.02) 0.001 11.7 (67.7) 0.02 (0.00 to 0.04) 0.04
Preterm (No BPD) versus Term 2.1 (77.0) −0.01 (−0.04 to 0.02) 0.41 0.0 (78.2) 0.01 (−0.01 to 0.03) 0.57
Preterm (BPD) versus Preterm (No BPD) 62.6 (27.8) −0.03 (−0.05 to −0.01) 0.01 9.0 (48.5) 0.01 (−0.01 to 0.03) 0.19

FEF25–75
Preterm (All) versus Term 0.0 (84.8) 0.01 (−0.02 to 0.03) 0.61 1.2 (83.5) 0.01 (−0.01 to 0.02) 0.22
Preterm (BPD) versus Term 0.0 (59.2) 0.00 (−0.03 to 0.04) 0.79 5.2 (44.8) 0.01 (−0.01 to 0.03) 0.29
Preterm (No BPD) versus Term 0.0 (37.8) 0.01 (−0.01 to 0.03) 0.49 0.0 (45.2) −0.00 (−0.02 to 0.01) 0.96
Preterm (BPD) versus Preterm (No BPD) 0.0 (62.3) −0.00 (−0.03 to 0.02) 0.75 17.7 (58.1) 0.02 (0.00 to 0.04) 0.03

p-values in bold are statistically significant. R2: heterogeneity accounted for by moderator (as percentage); I2: residual heterogeneity remaining after
accounting for moderator; β: regression coefficient; p-value: p-value for influence of moderator on effect size of study, calculated using F-test;
FEV1: forced expiratory volume in 1 s; BPD: bronchopulmonary dysplasia; FVC: forced vital capacity; FEF25–75: forced mid-expiratory flow.
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The mechanisms underpinning increasing airway obstruction following preterm birth are incompletely
understood though likely multifactorial. Structural abnormalities of the airways are a well-recognised feature
of BPD at birth, noted to persist into adolescence and adulthood on computed tomography imaging and on
histopathology [5, 120]. Persistent inflammation is also likely to play a role in ongoing airway remodelling
with evidence of CD8 T-lymphocyte predominant chronic inflammation seen in adults previously diagnosed
with BPD, resembling patterns observed in COPD [121]. In addition, genetic factors may also play a role,
with a significant association noted between COPD-associated genes and FEV1 and FEV1/FVC in
preterm-born children at 5 years [122]. As our understanding of the mechanisms underlying the disease
improves, it may provide opportunities to target treatments to slow, arrest or reverse any associated decline
in lung function, and as such should be targeted as a priority in research moving forward.

With substantial changes in neonatal practice over the last several decades it may be anticipated that long-term
respiratory outcomes may have changed, as evident by improvements in FEV1 noted in our previous paper [4];
however after adjusting for the effects of age, birth year was not significantly associated with airway
obstruction in this analysis. Interpretation of this finding is complicated, however, by the changing nature of
BPD over the same few decades, as while neonatal care has improved in the “post-surfactant era”, those
diagnosed with BPD are now born at significantly lower gestational ages and have a different airway pathology
at birth to those born in the “pre-surfactant era” [2]. It is feasible to consider that when considering the
long-term respiratory consequences of preterm birth, improvements in neonatal care may have been somewhat
offset by increased numbers of children surviving extreme preterm birth. Conversely, not all longitudinal
cohorts in the post-surfactant era demonstrate the increase in airway obstruction described by SIMPSON et al. [6]
and DOYLE et al. [7]. In addition to their pre-surfactant era cohorts, BÅRDSEN et al. [117] also report on a
post-surfactant era cohort where airway obstruction appears to improve between mid-childhood and early
adulthood. Notably the pre-surfactant era cohorts in the same region show increased airway obstruction through
adolescence. Ongoing follow-up of other longitudinal cohorts in the post-surfactant era will be critical to
improve our understanding of any effects changes in neonatal practice have had on long-term lung health.

Limitations must be noted too in the data available for this analysis, as it reflects cross-sectional data from
a highly heterogeneous group of studies across multiple decades using different laboratory equipment and
populations. Additionally, as has been previously noted, there have been significant changes in neonatal
care over time which have gradually changed the characteristics of preterm lung disease, most notably with
“classic-” and “new-BPD”, while the diagnosis of BPD has also changed significantly over the last several
decades, likely contributing to the high levels of heterogeneity noted in our data. The strengths of this
study parallel those described by KOTECHA et al. [4] in that we have provided the largest analysis to date of
FEV1/FVC in those born preterm with 5511 preterm-born and 12 648 term-born individuals included in
this analysis. While limiting this analysis to only include studies with term-born reference populations
resulted in several studies being excluded, it also provides confidence in the accuracy of differences noted
between preterm and term populations, which may not be possible if reference equations were used as a
standard to measure against.

This study identifies an urgent need to understand better the lifelong lung health trajectories of those born
preterm due to the implications associated with an ever-growing population of survivors of preterm birth
and the potential lifelong impacts of preterm lung disease. Identification of individuals at risk for early
decline in lung health trajectories will facilitate appropriate follow-up and intervention at an earlier time
point, something which has been demonstrated to be essential in other forms of COPD. Additionally, there
is a need to better understand the underlying mechanisms behind preterm lung disease such that we can
better identify treatments to halt or reverse this trajectory towards COPD.

In conclusion, this meta-analysis provides the first comprehensive review of airway obstruction measured
using spirometry in survivors of preterm birth. It raises significant concerns of progressive airway
obstruction in a growing population of individuals, which is only now starting to be reflected in the adult
healthcare system. It is a necessity that ongoing longitudinal follow-up of cohorts of survivors of preterm
birth continue as they enter adulthood so that we can better understand the long-term respiratory
consequences of prematurity, and ultimately so that we can identify treatments to halt or reverse
prematurity-associated lung disease.
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