Semi-Analytical Scheme for Solving Intuitionistic Fuzzy System of Differential Equations

MUDASSIR SHAMS, NASREEN KAUSAR, KHULUD ALAYYASH, MOHAMMED M. AL-SHAMIRI, NAYYAB ARIF, AND RASHAD ISMAIL

1Department of Mathematics and Statistics, Riphah International University, Islamabad 44000, Pakistan
2Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
3Department of Mathematics, Cardiff University, CF10 3AT Cardiff, U.K.
4Department of Mathematics, Faculty of Science and Arts, Mahayl Assir, King Khalid University, Abha 62529, Saudi Arabia
5Department of Mathematics and Computers, Faculty of Sciences, Ibb University, Ibb, Yemen

Corresponding author: Rashad Ismail (rashadif@gmail.com)

This work was supported by the Deanship of Scientific Research at King Khalid University through Small Groups Project under Grant R.G.P.1/277/43.

ABSTRACT The aim of this article is to implement the Generalized Modified Adomian Decomposition Method to compute the semi-numerical solution of the linear system of intuitionistic fuzzy initial value problems. Here, we consider the initial values as generalized trapezoidal intuitionistic fuzzy numbers. The technique is applied to brine tanks problem and coupled mass spring systems. Theoretically, different approaches to solving a system of generalized trapezoidal intuitionistic fuzzy differential equations are discussed in this study under the presumption that the coefficients of the system of the differential equations are associated to generalized trapezoidal intuitionistic fuzzy numbers. The approximate results are compared with exact solutions which shows good efficiency. The corresponding graphs at different levels of uncertainty show the example’s numerical outcomes. The graphical representations further demonstrate the effectiveness and accuracy of the proposed method in comparison to existing semi-numerical methods in the literature.

INDEX TERMS Fuzzy set, fuzzy number, generalized trapezoidal intuitionistic fuzzy number, system of fuzzy differential equation, analytical technique, engineering applications.

I. INTRODUCTION

System of differential equation plays a significant role in modeling and studying many naturally occurring phenomena such as population models, economic models, friction model, bacteria culture model, predator-prey model, weight loss and oil production model, bank account and drug concentration problem, human immunodeficiency virus (HIV) model. In classical set theory, the variables or parameters are taken as crisp numbers. But in actual case, these variables or parameters are usually uncertain or vague. So, these variables may be considered as a fuzzy numbers. In other words, to overcome uncertainty we use fuzzy numbers. So the system of differential equations are converted to system of fuzzy differential equations (SFDE).

The concept of fuzzy set theory was firstly introduced by Zadeh in 1965, as the extension of classical set theory [1]. The concept of fuzzy set theory has been applied to various fields of science and engineering to handle vagueness and uncertainty. In 1987, Kandel and Byatt [2] introduced the fuzzy differential equations. The fuzzy differential equations have been applied in numerous daily life problems [3], [4], [5]. Vasavi et al. [6] discussed fuzzy differential for cooling problems. Devi and Ganesan used fuzzy differential equations in modelling electric circuit problem [7]. Ahmad et al. [8] studied a mathematical method to find the solution of fuzzy integro differential equations. Sadeghi et al. [9] studied the system of fuzzy differential equation. Buckley et al find the solution of system of first
order linear fuzzy differential equations by extension principle [10]. Hashemi et al. find the series solution of SFDE [11]. In 1986, Atanassov [12] introduced an extension of fuzzy set theory known as intuitionistic fuzzy set. The intuitionistic fuzzy set [13] not only provides the information about membership values but also the non-membership values respectively, and so that the sum of both values is less than one. Intuitionistic fuzzy differential equations are being studied widely and being used in various fields of Physics, Chemistry, Biology as well as among other fields of science and engineering. Melliani and Chadli obtained the approximate and numerical solutions of intuitionistic fuzzy differential equations with linear differential operators [14], [15]. Gulzar et al. worked on fuzzy algebra [16], [17], [18]. Akin and Bayeg [19], [20] studied a method to find general solution of second order intuitionistic fuzzy differential equation and to solve the system of intuitionistic fuzzy differential equations with intuitionistic fuzzy initial values. Mondal and Roy [21], [22], [23] studied the generalized intuitionistic fuzzy Laplace transform method and to solve the system of differential equations with initial value as triangular intuitionistic fuzzy number. Saw et al introduced a method for solving system of linear intuitionistic fuzzy equations [24].

The Adomian Decomposition Method (ADM) which is a semi analytical method was first presented by Adomian in 1980’s [25], [26]. This method is very efficient in finding the solutions of differential equations, algebraic equations as well as integral equations. In this article, we will propose the Generalized Modified Adomian Decomposition Method (GMADM) to find the solutions of the system of linear intuitionistic fuzzy differential equations with initial values as generalized trapezoidal intuitionistic fuzzy number. This modification was proposed by Wazwaz [27]. He presented a reliable modification to the ADM. In this modification Wazwaz divides the original function into two parts, one part assigned to the initial term of the series and the other to the second term. This modification results in a different series being generated. The efficiency of this method depends only on the choice of the parts into which the original function is to be divided.

First order system of fuzzy differential equations is important among all the fuzzy differential equations. There are many approaches to solve the SFDEs. Buckley and Feuring [28] solving the linear system of first order ordinary differential equations with fuzzy initial conditions by extension principle using triangular fuzzy number. The geometric approach is developed by Gasilova et al. [29] and series solution is developed by Hashemi et al. [30]. Mondal and Roy [31] studied strong and weak solution of first order homogeneous intuitionistic fuzzy differential equation, subsequently and studied system of differential equation in literature. Melliani, et al. [32] discussed the existence and uniqueness of the solution of the intuitionistic fuzzy differential equation and its system using the analytical technique. Therefore, finding an efficient and accurate algorithm for investigating FIE has been one the hot areas of research in recent time. To achieve these goals, various methods and procedures were used to handle differentiation equations, using triangular fuzzy number, for details, see [9], [33].

In this study, motivated by the aforementioned work, we solve the system of differential equations using a GMADM and a more generalized fuzzy system of differential equations, namely a trapezoidal intuitionistic fuzzy system of intuitionistic differential equations.

The main contributions of this research work are summarized below.

- GMADM is used to solve a system of differential equations using initial conditions as a Generalized trapezoidal intuitionistic fuzzy number.
- In order to solve a system of fuzzy intuitionistic differential equations that have not before been explored, the computational complexity of the suggested GMADM is discussed.
- Applications of system of Generalized trapezoidal intuitionistic fuzzy differential equations in mechanical engineering are taken into consideration in a Generalized trapezoidal intuitionistic fuzzy environment.
- Computational tools are used to evaluate the effectiveness and applicability of the suggested analytical scheme.

This paper is organized as follows: In section II, we recall some basic definitions which we will use in further sections. In sections III, we introduced our proposed method. In section IV, the efficiency of this method has been illustrated by applications. In the last section, we give conclusions.

II. PRELIMINARIES

In this section, the fundamental definitions of fuzzy set and intuitionistic fuzzy set are presented.

Definition 1 [34]: Let \(U \) be the largest set under consideration then \(\hat{F} \) be a subset of \(\hat{U} \) is said to be a fuzzy set if it is defined as:

\[
\mu_{\hat{F}}(\hat{u}) = \hat{U} \longrightarrow [0, 1],
\]

defines the degree of membership of an element \(\hat{u} \in \hat{U} \) to the set \(\hat{F} \) which is a subset of \(\hat{U} \).

Definition 2 [34]: \(\alpha \)-cut of a fuzzy set \(\hat{F} \) is a crisp set \(\hat{F}_\alpha \) which is defined as:

\[
\hat{F}_\alpha = \{ \hat{u} \in \hat{U} : \mu_{\hat{F}}(\hat{u}) \geq \alpha \}.
\]

Definition 3 [23]: If \(\hat{F} \) is a fuzzy set then height of a fuzzy set is denoted by \(h(\hat{F}) \) and is defined as the largest membership function obtained by any element in that set i.e.,

\[
h(\hat{F}) = \sup \mu_{\hat{F}}(\hat{u}).
\]
Definition 4 [19]: Let \tilde{U} be a nonempty finite set of real numbers, then an intuitionistic fuzzy set \tilde{I} on \tilde{U} is:

$$\tilde{I} = \{(\hat{u}, \mu_{I}(\hat{u}), \nu_{I}(\hat{u}) : \hat{u} \in \tilde{U}\},$$

where the functions,

$$\mu_{I}(\hat{u}) = \tilde{U} \longrightarrow [0, 1],$$

$$\nu_{I}(\hat{u}) = \tilde{U} \longrightarrow [0, 1],$$

define the degree of membership and degree of non-membership respectively, of an element $\hat{u} \in \tilde{U}$ to the set \tilde{I} which is a subset of \tilde{U}, and for every $\hat{u} \in \tilde{U}$, the condition must be satisfied.

Definition 5 [23]: An intuitionistic fuzzy set \tilde{I} is said to be normal if there exists an $\hat{u}_{0} \in \tilde{U}$, such that $\mu_{I}(\hat{u}_{0}) = 1$ so $\nu_{I}(\hat{u}_{0}) = 0$.

Definition 6 [23]: An intuitionistic fuzzy set \tilde{I} is said to be convex set for the membership function if it satisfy the following condition:

$$\mu_{I}(\hat{u})(\eta \hat{u} + (1 - \eta)\hat{s}) \geq \min(\mu_{I}(\hat{u}), \mu_{I}(\hat{s}));$$

$$\forall\hat{u}, \hat{s} \in \tilde{U}, \eta \epsilon [0, 1].$$

Definition 7 [23]: An intuitionistic fuzzy set \tilde{I} is said to be concave set for the non-membership function if it satisfy the following condition:

$$\nu_{I}(\hat{u})(\eta \hat{u} + (1 - \eta)\hat{s}) \geq \max(\nu_{I}(\hat{u}), \nu_{I}(\hat{s}));$$

$$\forall\hat{u}, \hat{s} \in \tilde{U}, \eta \epsilon [0, 1].$$

A. GENERALIZED INTUITIONISTIC FUZZY NUMBER

Definition 8 [35]: A generalized intuitionistic fuzzy number

$$\tilde{T} = <(s_{1}, s_{2}, s_{3}, s_{4}; v_{A}); (t_{1}, t_{2}, t_{3}, t_{4}; v_{B})>, $$

is said to be generalized trapezoidal intuitionistic fuzzy number (GTIFN) (as shown in Figure 1) if its membership and non-membership functions are defined as follows:

$$\mu_{I}(\hat{u}) = \begin{cases}
\frac{\hat{u} - s_{1}}{s_{2} - s_{1}}, & s_{1} \leq \hat{u} \leq s_{2}, \\
\frac{\hat{u} - s_{2}}{s_{3} - s_{2}}, & s_{2} \leq \hat{u} \leq s_{3}, \\
\frac{\hat{u} - s_{3}}{s_{4} - s_{3}}, & s_{3} \leq \hat{u} \leq s_{4}, \\
0, & \text{otherwise},
\end{cases}$$

$$\nu_{I}(\hat{u}) = \begin{cases}
\frac{(\hat{u} - t_{1}) + v_{B}(t_{2} - t_{1})}{t_{2} - t_{1}}, & t_{1} \leq \hat{u} \leq t_{2}, \\
\frac{(\hat{u} - t_{2}) + v_{B}(t_{3} - t_{2})}{t_{3} - t_{2}}, & t_{2} \leq \hat{u} \leq t_{3}, \\
\frac{(\hat{u} - t_{3}) + v_{B}(t_{4} - t_{3})}{t_{4} - t_{3}}, & t_{3} \leq \hat{u} \leq t_{4}, \\
1, & \text{otherwise},
\end{cases}$$

where $t_{1} \leq s_{1} \leq t_{2} \leq s_{2} \leq s_{3} \leq t_{3} \leq s_{4} \leq t_{4}, 0 \leq v_{A}, v_{B} \leq 1$.

Definition 9 [36], [37]: (α, β)–cut set of a generalized trapezoidal intuitionistic fuzzy number $\tilde{T} = <(s_{1}, s_{2}, s_{3}, s_{4}; v_{A}); (t_{1}, t_{2}, t_{3}, t_{4}; v_{B})>$ is a crisp subset of \tilde{U} which is defined as:

$$\tilde{T}(\alpha, \beta) = \{(\hat{u}, \mu_{I}(\hat{u}), \nu_{I}(\hat{u})) : \hat{u} \epsilon U, \mu_{I}(\hat{u}) \geq \alpha, \nu_{I}(\hat{u}) \geq \beta\}$$

$$= [{\tilde{T}_{1}(\alpha), \tilde{T}_{2}(\alpha)}; [{\tilde{T}_{1}(\beta), \tilde{T}_{2}(\beta)}]],$$

where $\alpha + \beta < 1, \alpha \epsilon [0, v_{A}]$ and $\beta \epsilon [v_{B}, 1]$.

Figure 1: Shows membership and non-membership function of generalized trapezoidal intuitionistic fuzzy number.

B. ARITHMETIC OPERATIONS ON GTIFNS

Definition 10 [37], [38]: Let $\tilde{T}_{1} = <(s_{1}, s_{2}, s_{3}, s_{4}; v_{A}); (t_{1}, t_{2}, t_{3}, t_{4}; v_{B})>$ and $\tilde{T}_{2} = <(u_{1}, u_{2}, u_{3}, u_{4}; v_{B}); (v_{1}, v_{2}, v_{3}, v_{4}; v_{A})>$ be two GTIFNs and σ be a real number. Then

$$\tilde{T}_{1} + \tilde{T}_{2} = <(s_{1} + u_{1}, s_{2} + u_{2}, s_{3} + u_{3}, s_{4} + u_{4}; \min\{v_{A}, v_{B}\}); (t_{1} + v_{1}, t_{2} + v_{2}, t_{3} + v_{3}, t_{4} + v_{4}; \max\{v_{A}, v_{B}\})>.$$

$$\tilde{T}_{1} - \tilde{T}_{2} = <(s_{1} - u_{1}, s_{2} - u_{2}, s_{3} - u_{3}, s_{4} - u_{4}; \min\{v_{A}, v_{B}\}); (t_{1} - v_{1}, t_{2} - v_{2}, t_{3} - v_{3}, t_{4} - v_{4}; \max\{v_{A}, v_{B}\})>.$$
III. THE GENERALIZED MODIFIED ADOMIAN DECOMPOSITION METHOD

Let us consider the system of intuitionistic fuzzy differential equations with linear differential operator as follows:

\[
\begin{align*}
L\dot{x}(t) + R\dot{y}(t) + N(t, \dot{x}(t), \dot{y}(t)) &= g(t), \\
L\dot{y}(t) + R\dot{x}(t) + N(t, \dot{x}(t), \dot{y}(t)) &= h(t),
\end{align*}
\]

(1)

where \(L \) is the highest order linear differential operator, \(R \) is the remaining part of the linear differential operator, \(N \) may be linear or nonlinear function of \(t, \dot{x}(t) \) and \(\dot{y}(t) \). Taking \((\alpha, \beta)\)-cut of (1), we get, (2), as shown at the bottom of the page.

From (2), we obtain the following equations:

(3)

\[
\begin{align*}
L_{x_1}(t, \alpha) + R_{x_1}(t, \alpha) + N_1(t, x_1(t, \alpha)) &= g_1(t, \alpha), \\
L_{y_1}(t, \alpha) + R_{y_1}(t, \alpha) + N_1(t, x_1(t, \alpha)) &= h_1(t, \alpha),
\end{align*}
\]

(4)

\[
\begin{align*}
L_{x_2}(t, \alpha) + R_{x_2}(t, \alpha) + N_2(t, x_2(t, \alpha)) &= g_2(t, \alpha), \\
L_{y_2}(t, \alpha) + R_{y_2}(t, \alpha) + N_2(t, x_2(t, \alpha)) &= h_2(t, \alpha),
\end{align*}
\]

(5)

\[
\begin{align*}
L_{x_1}(t, \beta) + R_{x_1}(t, \beta) + N_1(t, x_1(t, \beta)) &= g_1(t, \beta), \\
L_{y_1}(t, \beta) + R_{y_1}(t, \beta) + N_1(t, x_1(t, \beta)) &= h_1(t, \beta).
\end{align*}
\]
where,

\[
\begin{align*}
\Phi_i(t, \alpha) &= L \phi_i(t, \alpha) = 0, i = 1, 2 \\
\Phi_i(t, \beta) &= L \Phi_i(t, \beta) = 0, i = 1, 2 \\
\Psi_i(t, \alpha) &= L \psi_i(t, \alpha) = 0, i = 1, 2 \\
\Psi_i(t, \beta) &= L \Psi_i(t, \beta) = 0, i = 1, 2
\end{align*}
\]
According to the GMADM the recursive relation for the (15), (16), (17) and (18), is as follows:

\[
\begin{aligned}
\sum_{n=0}^{\infty} x_{1n}(t, \beta) &= \Psi_1(t, \beta) - L \left(R \sum_{n=0}^{\infty} x_{1n}(t, \beta) \right) \\
-L \left(R \sum_{n=0}^{\infty} y_{1n}(t, \beta) \right) &= L \left(N_1(t, \sum_{n=0}^{\infty} x_{1n}(t, \beta)) + L \left(g_1(t, \beta) \right) \right)
\end{aligned}
\]

\[
\begin{aligned}
\sum_{n=0}^{\infty} y_{1n}(t, \beta) &= \Phi_1(t, \beta) - L \left(R \sum_{n=0}^{\infty} x_{1n}(t, \beta) \right) \\
-L \left(R \sum_{n=0}^{\infty} y_{1n}(t, \beta) \right) &= L \left(N_1(t, \sum_{n=0}^{\infty} x_{1n}(t, \beta)) + L \left(h_1(t, \beta) \right) \right)
\end{aligned}
\]

\[
\begin{aligned}
\sum_{n=0}^{\infty} y_{2n}(t, \beta) &= \Phi_2(t, \beta) - L \left(R \sum_{n=0}^{\infty} x_{2n}(t, \beta) \right) \\
-L \left(R \sum_{n=0}^{\infty} y_{2n}(t, \beta) \right) &= L \left(N_2(t, \sum_{n=0}^{\infty} x_{2n}(t, \beta)) + L \left(g_2(t, \beta) \right) \right)
\end{aligned}
\]

\[
\begin{aligned}
\sum_{n=0}^{\infty} x_{2n}(t, \beta) &= \Psi_2(t, \beta) - L \left(R \sum_{n=0}^{\infty} x_{2n}(t, \beta) \right) \\
-L \left(R \sum_{n=0}^{\infty} y_{2n}(t, \beta) \right) &= L \left(N_2(t, \sum_{n=0}^{\infty} x_{2n}(t, \beta)) + L \left(h_2(t, \beta) \right) \right)
\end{aligned}
\]

\[
\begin{aligned}
\sum_{n=0}^{\infty} x_{1n}(t, \alpha) &= \Psi_1(t, \alpha), \\
\sum_{n=0}^{\infty} y_{1n}(t, \alpha) &= \Phi_1(t, \alpha), \\
\sum_{n=0}^{\infty} x_{11}(t, \alpha) &= L \left(g_1(t, \alpha) \right) - L \left(R x_{10}(t, \alpha) \right) \\
-L \left(R y_{10}(t, \alpha) \right) &= L \left(N_1(t, \sum_{n=0}^{\infty} x_{1n}(t, \alpha), y_{10}(t, \alpha)) \right) \\
\sum_{n=0}^{\infty} y_{1n}(t, \alpha) &= L \left(h_1(t, \alpha) \right) - L \left(R y_{10}(t, \alpha) \right) \\
-L \left(R y_{10}(t, \alpha) \right) &= L \left(N_1(t, \sum_{n=0}^{\infty} x_{1n}(t, \alpha), y_{10}(t, \alpha)) \right)
\end{aligned}
\]

\[
\begin{aligned}
\sum_{n=0}^{\infty} x_{1k+1}(t, \alpha) &= L \left(x_{1k}(t, \alpha) \right) - L \left(R x_{1k}(t, \alpha) \right) \\
-L \left(R y_{1k}(t, \alpha) \right) &= L \left(N_1(t, \sum_{n=0}^{\infty} x_{1n}(t, \alpha), y_{1k}(t, \alpha)) \right) \\
\sum_{n=0}^{\infty} y_{1k}(t, \alpha) &= L \left(h_{1k}(t, \alpha) \right) - L \left(R y_{1k}(t, \alpha) \right) \\
-L \left(R y_{1k}(t, \alpha) \right) &= L \left(N_1(t, \sum_{n=0}^{\infty} x_{1n}(t, \alpha), y_{1k}(t, \alpha)) \right)
\end{aligned}
\]
The nth term approximation to the solution is defined as follows:
\[
\begin{align*}
\psi_{1n}(t, \alpha) &= \sum_{i=0}^{n-1} \chi_1(t, \alpha), \\
\phi_{1n}(t, \alpha) &= \sum_{i=0}^{n-1} \gamma_1(t, \alpha), \\
\psi_{2n}(t, \alpha) &= \sum_{i=0}^{n-1} \chi_2(t, \alpha), \\
\phi_{2n}(t, \alpha) &= \sum_{i=0}^{n-1} \gamma_2(t, \alpha), \\
\psi_{1n}(t, \beta) &= \sum_{i=0}^{n-1} \chi_1(t, \beta), \\
\phi_{1n}(t, \beta) &= \sum_{i=0}^{n-1} \gamma_1(t, \beta), \\
\psi_{2n}(t, \beta) &= \sum_{i=0}^{n-1} \chi_2(t, \beta), \\
\phi_{2n}(t, \beta) &= \sum_{i=0}^{n-1} \gamma_2(t, \beta).
\end{align*}
\]

Hence,
\[
\begin{align*}
\lim_{{n \to \infty}} (\psi_{1n}(t, \alpha), \lim_{{n \to \infty}} \phi_{1n}(t, \alpha)) &= (\chi_1(t, \alpha), \gamma_1(t, \alpha)), \\
\lim_{{n \to \infty}} (\psi_{2n}(t, \alpha), \lim_{{n \to \infty}} \phi_{2n}(t, \alpha)) &= (\chi_2(t, \alpha), \gamma_2(t, \alpha)), \\
\lim_{{n \to \infty}} (\psi_{1n}(t, \beta), \lim_{{n \to \infty}} \phi_{1n}(t, \beta)) &= (\chi_1(t, \beta), \gamma_1(t, \beta)), \\
\lim_{{n \to \infty}} (\psi_{2n}(t, \beta), \lim_{{n \to \infty}} \phi_{2n}(t, \beta)) &= (\chi_2(t, \beta), \gamma_2(t, \beta)).
\end{align*}
\]

Raza et al. [39], Ray [40], Zo’bi et al. [41], and many others discuss the convergence of the ADM or Decomposition method and GMADM.

A. STABILITY OF GMADM
When the solution produced by a technique is unaffected by small changes in the inputs and parameters and when it is expected that changes in the parameters carried on by impacts in equations and conditions, the method is said to be stable. By giving examples and analyzing the stability of the GMADM in this study, we suggested contrasting the GMADM with other existing methods i.e., ADM and Taylor series method (TSM).

B. APPLICATIONS
Example 1 Brine Tanks Problem [42], [43]: Two tanks A and B are connected by pipes. Tank A contains 100 gal of brine and tank B contains 200 gal of brine. Through one pipe solution is pumped from first tank to the second at 30 gal/min. Through the other solution is pumped at the rate of 10 gal/min from the second tank to the first, and the brine in tank B flows out at 20 gal/min. If \(x(t) \) and \(y(t) \) denotes the amount of salt in tanks A and B respectively, then what will be the salt content in each tank at any time \(t \). It is to be noted that at time \(t = 0 \) there is \(\langle 98, 99, 100, 101, 0.7 \rangle \) lb salt in tank A and \(\langle 50, 51, 52, 53; 0.7 \rangle \) lb in tank B.

The system of intuitionistic fuzzy differential equation related to above problem is as follows:
\[
\begin{align*}
d\psi_1(t, \alpha) &= \frac{\psi_1(t, \alpha)}{20} - \frac{\psi_2(t, \alpha)}{10}, \\
d\psi_2(t, \alpha) &= \frac{\psi_2(t, \alpha)}{10} - \frac{\psi_1(t, \alpha)}{20}.
\end{align*}
\]
with initial conditions,
\[
\begin{align*}
\psi(0) &= \langle 98, 99, 100, 101, 0.7 \rangle, \\
\psi(0) &= \langle 50, 51, 52, 53, 0.7 \rangle.
\end{align*}
\]

By taking \(\alpha, \beta \)-cut of (24) and (24), we obtain the following equations:
\[
\begin{align*}
\psi_1(t, \alpha) &= \frac{\psi_1(t, \alpha)}{20} - \frac{\psi_2(t, \alpha)}{10}, \\
\psi_2(t, \alpha) &= \frac{\psi_2(t, \alpha)}{10} - \frac{\psi_1(t, \alpha)}{20}.
\end{align*}
\]

Here \(L = \frac{d}{dt} \) and by taking \(L^{-1} \) on both sides of (25), (26), (27) and (28), and using the initial conditions we obtain;
\[
\begin{align*}
\psi_1(t, \alpha) &= \int_0^t \psi_1(u, \alpha) + 0.150 \psi_2(u, \alpha) + 0.05 \psi_1(u, \alpha) \, du, \\
\psi_2(t, \alpha) &= \int_0^t \psi_2(u, \alpha) + 0.15 \psi_1(u, \alpha) + 0.05 \psi_2(u, \alpha) \, du, \\
\psi_1(t, \beta) &= \int_0^t \psi_1(u, \beta) + 0.15 \psi_2(u, \beta) + 0.05 \psi_1(u, \beta) \, du, \\
\psi_2(t, \beta) &= \int_0^t \psi_2(u, \beta) + 0.15 \psi_1(u, \beta) + 0.05 \psi_2(u, \beta) \, du.
\end{align*}
\]
Now by using GMADM the solution of (29), (30), (31) and (32), can be expressed as;

\[
\begin{align*}
\dot{x}_{10}(t, \alpha) &= 1.429\alpha + 98, \\
\dot{y}_{10}(t, \alpha) &= 1.429\alpha + 50, \\
\dot{x}_1(t, \alpha) &= -0.357250\alpha t - 26.90t, \\
\dot{y}_1(t, \alpha) &= 0.214350\alpha t + 21.90t, \\
\dot{x}_{1k+1}(t, \alpha) &= \int_0^t (-0.30x_1(u, \alpha) + 0.05\dot{x}_{1k}(u, \alpha), du, k \geq 1, \\
\dot{y}_{1k+1}(t, \alpha) &= \int_0^t (-0.15y_1(u, \alpha) + 0.30\dot{x}_{1k}(u, \alpha), du, k \geq 1, \\
\dot{x}_{20}(t, \alpha) &= -1.429\alpha + 101, \\
\dot{y}_{20}(t, \alpha) &= -1.429\alpha + 50, \\
\dot{x}_2(t, \alpha) &= 0.357250\alpha t - 27.65t, \\
\dot{y}_2(t, \alpha) &= -0.214350\alpha t + 22.35t, \\
\dot{x}_{2k+1}(t, \alpha) &= \int_0^t (-0.30x_2(u, \alpha) + 0.05\dot{x}_{2k}(u, \alpha), du, k \geq 1, \\
\dot{y}_{2k+1}(t, \alpha) &= \int_0^t (-0.15y_2(u, \alpha) + 0.30\dot{x}_{2k}(u, \alpha), du, k \geq 1.
\end{align*}
\]

(33)

By solving (33), (34), (35) and (36), we get the approximate solution after four iterations as follows:

\[
\begin{align*}
\hat{x}_1(t, \alpha), \hat{y}_1(t, \alpha)) &= (1.429\alpha + 98 - 0.357250\alpha t - 26.90t + 0.0589462500r^2 + 4.5825000000r^2 \\
&- 0.00705568750000r^3 - 0.5528750000r^3 + 0.0006463992188r^4 + 0.05074218750r^4, \\
&1.429\alpha + 50 + 0.2143500000r t + 21.90000000t - 0.069663750000r^2 - 5.6775000000r^2 + 0.009377812500r^3 + 0.7421250000r^3 \\
&- 0.000880445312r^4 - 0.0692953125r^4), \\
&\hat{x}_2(t, \alpha), \hat{y}_2(t, \alpha)) = (-1.429\alpha + 101 + 0.357250\alpha t - 27.65t - 0.058946250000r^2 + 4.7062500000r^2 \\
&+ 0.00705568750000r^3 - 0.567847500000r^3 + 0.0006463992188r^4 + 0.05074218750r^4, \\
&- 1.429\alpha + 53 - 0.214350000000r t + 22.35000000t + 0.069663750000r^2 - 5.8237500000r^2 \\
&- 0.009377812500r^3 + 0.7618125000r^3 + 0.000880445312r^4 - 0.07114453125r^4), \\
\hat{x}_1(t, \beta), \hat{y}_1(t, \beta)) &= (99 - 2.5\beta - 27.15t + 0.6250\beta t + 4.62375000r^2 - 0.103125000000r^2 \\
&+ 0.5578125000000r^3 + 0.0123437500000r^3 + 0.05119453125r^4 - 0.0011308593750r^4 \\
&+ 0.51 - 2.5\beta + 22.05t - 0.3750\beta t - 5.7262500000r^2 + 0.121875000000\beta t^2 \\
&+ 0.7486875000000r^3 - 0.0164062500000r^3 - 0.069911718750r^4 + 0.0015410156250r^4), \\
\hat{x}_2(t, \beta), \hat{y}_2(t, \beta)) &= (2.5\beta + 99.5 + 0.6250\beta t - 27.2750t + 0.103125000000r^2 + 4.644375000000r^2 \\
&+ 0.0123437500000r^3 - 0.560281250000r^3 + 0.0011308593750r^4 + 0.0514020703124r^4, \\
&+ 2.5\beta + 51.5 + 0.3750\beta t - 22.1250t + 0.1218750000000r^2 - 5.75062500000000r^2 \\
&+ 0.1640625000000r^3 + 0.7519687500000r^3 - 0.0015410156250r^4 - 0.07021992188r^4). \\
\end{align*}
\]

(34) (35) (36)

In Table 1, \(\hat{x}_1(t, \alpha), \hat{x}_3(t, \alpha), \hat{y}_1(t, \alpha)\) and \(\hat{y}_2(t, \alpha)\) represents approximate solution of the membership functions of the Example1 for \(\alpha \in [0, 0.7]\) and \(\hat{x}_1(t, \beta), \hat{x}_2(t, \beta), \hat{y}_1(t, \beta)\) and \(\hat{y}_2(t, \beta)\) represents approximate solution of non-membership function of the Example1 for \(\beta \in [0.2, 1.0]\).

The following is the mathematical and exact solution to Example 1 using the classical method, as shown in Figure 2(a,b) and Table 2:

\[
\begin{align*}
\hat{x}_1(t, \alpha), \hat{y}_1(t, \alpha)) &= (-\frac{1}{34000}(-17 + \sqrt{17})t(92000 + 1429\alpha \\
&- 6000\sqrt{17}e^{\frac{-9+\sqrt{17}t}{1429\alpha}} + \frac{1}{34000}(17 + \sqrt{17})t(92000 + 1429\alpha \\
&+ 6000\sqrt{17}e^{\frac{9+\sqrt{17}t}{1429\alpha}}), \\
\end{align*}
\]

(37)
behavior and is more stable than the ADM and TSM, respectively.

Technique GMADM to determine the approximate solution of the system residual error in column 3, and CPU time required by the numerical technique.

Illustrates the exact solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 3 for $t=1$.

Illustrates the approximation to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 1 for $t=1$.

\[x(t) = \frac{1}{68000}(-17 + \sqrt{17})(92000 + 1429\alpha) \]

\[- 6000\sqrt{17}e^{\frac{1}{3}(9+\sqrt{17})} \]

\[\times \sqrt{17} - \frac{1}{68000}(17 + \sqrt{17})(92000 + 1429\alpha) + 6000\sqrt{17}e^{-\frac{1}{3}(9+\sqrt{17})} \]

\[\times \sqrt{17} - \frac{3}{68000}(-17 + \sqrt{17})(92000 + 1429\alpha) - 6000\sqrt{17}e^{\frac{1}{3}(9+\sqrt{17})} \]

\[+ \frac{3}{68000}(17 + \sqrt{17})(92000 + 1429\alpha) + 6000\sqrt{17}e^{-\frac{1}{3}(9+\sqrt{17})} \]

\[(\hat{x}_1(t, \alpha), \hat{y}_1(t, \alpha)) \]

\[= \left(\frac{1}{66000}(-33 + \sqrt{33})(-98000 + 1429\alpha) + 3000\sqrt{33}e^{\frac{1}{6}(9+\sqrt{33})} \right) \]

\[- \frac{1}{66000}(33 + \sqrt{33})(-98000 + 1429\alpha) - 3000\sqrt{33}e^{-\frac{1}{6}(9+\sqrt{33})} \],

\[\frac{1}{132000}(-33 + \sqrt{33})(-98000 + 1429\alpha) + 3000\sqrt{33}e^{\frac{1}{6}(9+\sqrt{33})} \]

\[x(t) = \frac{1}{132000}(33 + \sqrt{33})(-98000 + 1429\alpha) \]

\[- 3000\sqrt{33}e^{\frac{1}{6}(9+\sqrt{33})} - \frac{1}{44000}(-33 + \sqrt{33})(-98000 + 1429\alpha) + 3000\sqrt{33}e^{\frac{1}{6}(9+\sqrt{33})} \]

\[- \frac{1}{44000}(33 + \sqrt{33})(-98000 + 1429\alpha) - 3000\sqrt{33}e^{-\frac{1}{6}(9+\sqrt{33})} \],

\[(\hat{x}_1(t, \beta), \hat{y}_1(t, \beta)) \]

\[= \left(\frac{1}{132}(-33 + \sqrt{33})(-192 + 5\beta + 6\sqrt{33})e^{\frac{1}{6}(9+\sqrt{33})} \right) \]

\[- \frac{1}{132}(33 + \sqrt{33})(-192 + 5\beta - 6\sqrt{33})e^{-\frac{1}{6}(9+\sqrt{33})} \],

\[\frac{1}{264}(-33 + \sqrt{33})(-192 + 5\beta + 6\sqrt{33})e^{\frac{1}{6}(9+\sqrt{33})} \]

\[+ \frac{1}{264}(33 + \sqrt{33})(-192 + 5\beta - 6\sqrt{33})e^{-\frac{1}{6}(9+\sqrt{33})} \]

\[- \frac{1}{88}(33 + \sqrt{33})(-192 + 5\beta - 6\sqrt{33})e^{-\frac{1}{6}(9+\sqrt{33})} \]

\[(\hat{x}_2(t, \beta), \hat{y}_2(t, \alpha)) \]

\[= \left(\frac{1}{132}(-33 + \sqrt{33})(193 + 5\beta - 6\sqrt{33})e^{\frac{1}{6}(9+\sqrt{33})} \right) \]

\[+ \frac{1}{132}(33 + \sqrt{33})(193 + 5\beta + 6\sqrt{33})e^{-\frac{1}{6}(9+\sqrt{33})} \],

\[\frac{1}{264}(-33 + \sqrt{33})(193 + 5\beta - 6\sqrt{33})e^{\frac{1}{6}(9+\sqrt{33})} \]

\[+ \frac{1}{264}(33 + \sqrt{33})(193 + 5\beta + 6\sqrt{33})e^{-\frac{1}{6}(9+\sqrt{33})} \]

\[- \frac{1}{88}(33 + \sqrt{33})(193 + 5\beta - 6\sqrt{33})e^{-\frac{1}{6}(9+\sqrt{33})} \].
Table 2. \(\dot{x}_1(t, \alpha), \dot{x}_2(t, \alpha), \dot{y}_1(t, \alpha) \) and \(\dot{y}_2(t, \alpha) \) represents exact solution of the membership functions of the Example 1 for \(\alpha \in [0, 0.7] \) and \(\ddot{x}_1(t, \beta), \ddot{x}_2(t, \beta), \ddot{y}_1(t, \beta) \) and \(\ddot{y}_2(t, \beta) \) represents exact solution of non-membership function of the Example 1 for \(\beta \in [0.2, 1.0] \).

Example 2 Coupled Oscillators: Consider a mechanical system [44], [45], [46], [47] constituting of two masses \(m_1 = 1 \text{ Kg} \) and \(m_2 = 1 \text{ Kg} \) that are free to slide over a friction less horizontal surface. The masses are attached to one another, and to two rigid walls, with the help of three springs. The spring constants for this system are \(k_1 = 1 \text{Nm}^{-1}, k_2 = 2 \text{Nm}^{-1} \) and \(k_3 = 1 \text{Nm}^{-1} \). The instantaneous state of the system is conveniently specified by the \(\dot{x}(t) \) and \(\dot{y}(t) \) respectively. Thus, the equations of motions of two masses are as follows:

\[
\begin{align*}
\frac{d^2\dot{x}(t)}{dt^2} &= -k_1\dot{x} - k_2(\dot{x} - \dot{y}), \\
\frac{d^2\dot{y}(t)}{dt^2} &= -k_3\dot{y} - k_2(\dot{y} - \dot{x}).
\end{align*}
\]

(37)

Using the given data, we get:

\[
\begin{align*}
\frac{d^2\dot{x}(t)}{dt^2} &= 2\ddot{x} - 3\dot{x}, \\
\frac{d^2\dot{y}(t)}{dt^2} &= 2\ddot{y} - 3\dot{y},
\end{align*}
\]

(38)

with initial conditions,

\[
\begin{align*}
\dot{x}(0) &= <(2, 4, 8, 15; 0.6); (1, 4, 8, 18; 0.3)> , \\
\dot{x}'(0) &= <(2, 5, 8, 10; 0.6)(1, 5, 8, 12; 0.3)> , \\
\dot{y}(0) &= <(8, 9, 10, 11; 0.6)(7, 9, 10, 12; 0.3)> , \\
\dot{y}'(0) &= <(11, 12, 13, 14; 0.6); (10, 12, 13, 15; 0.3)> ,
\end{align*}
\]

(39)

By taking \((\alpha, \beta)\)-cut of (38), (39), we get the following equations:

\[
\begin{align*}
\frac{d^2\dddot{x}(t, \alpha)}{dt^2} &= 2\dddot{x} - 3\ddot{x}, \\
\dddot{x}_1(0, \alpha) &= 3.33\dddot{x} + 2, \dddot{x}_1 (0, \alpha) = 5\dddot{x} + 2, \\
\frac{d^2\dddot{y}(t, \alpha)}{dt^2} &= 2\dddot{y} - 3\ddot{y}, \\
\dddot{y}_1(0, \alpha) &= 1.67\dddot{y} + 8, \dddot{y}_1 (0, \alpha) = 1.67\dddot{y} + 11.
\end{align*}
\]

(40)

\[
\begin{align*}
\frac{d^2\dddot{x}(t, \alpha)}{dt^2} &= 2\dddot{x} - 3\ddot{x}, \\
\dddot{x}_2(0, \alpha) &= 15 - 11.67\dddot{x}, \dddot{x}_2 (0, \alpha) = 10 - 3.33\dddot{x}, \\
\frac{d^2\dddot{y}(t, \alpha)}{dt^2} &= 2\dddot{y} - 3\ddot{y}, \\
\dddot{y}_2(0, \alpha) &= -1.67\dddot{y} + 11, \dddot{y}_2 (0, \alpha) = -1.67\dddot{y} + 14.
\end{align*}
\]

(41)

Here \(L = \frac{d^2}{dt^2} \) and by taking \(L^{-1} = \int \int \int \int \) on both sides of (40), (41), (42) and (40), and using the initial conditions we obtain;

\[
\begin{align*}
\dot{x}_1(t, \alpha) &= \int_0^t (3\dot{x}_1(u, \alpha)(-t + u) + 2\dot{x}_1(u, \alpha)(t - u))du \\
&+ 2 + 5\alpha t + 3.33\alpha + 2t, \\
\dot{y}_1(t, \alpha) &= \int_0^t (2\dot{x}_1(u, \alpha)(t - u) + 3\dot{x}_1(u, \alpha)(-t + u))du \\
&+ 8 + 1.67\alpha t + 1.67\alpha + 11t.
\end{align*}
\]

(44)

Figure 2-3: Shows exact solution of the system of generalized trapezoidal intuitionistic fuzzy initial value problem used
FIGURE 4. Exact solution of $f_1^k (x, \alpha) \hat{y}_1^k (t, \alpha)$ of generalized trapezoidal intuitionistic fuzzy number.

FIGURE 5. Exact solution of $f_2^k (x, \alpha) \hat{y}_2^k (t, \alpha)$ of generalized trapezoidal intuitionistic fuzzy number.

FIGURE 6. Exact solution of $f_1^k (x, \beta) \hat{y}_1^k (t, \beta)$ of generalized trapezoidal intuitionistic fuzzy number.

FIGURE 7. Exact solution of $f_2^k (x, \beta) \hat{y}_2^k (t, \beta)$ of generalized trapezoidal intuitionistic fuzzy number.

in example 1.

$$
\begin{align*}
\dot{x}_2(t, \alpha) &= \int_0^t (3\dot{x}_2(u, \alpha)(-t + u) + 2\dot{y}_2(u, \alpha)(t - u))du \\
&\quad + 15 - 3.33\alpha t - 11.67\alpha + 10t, \\
\dot{y}_2(t, \alpha) &= \int_0^t (2\dot{x}_2(u, \alpha)(-t + u) + 3\dot{y}_2(u, \alpha)(t - u))du \\
&\quad + 11 - 1.67\alpha t - 1.67\alpha + 14t, \\
\dot{x}_1(t, \alpha) &= \int_0^t (3\dot{x}_1(u, \alpha)(-t + u) + 2\dot{y}_1(u, \alpha)(t - u))du \\
&\quad + 5.29 - 0.85\beta t + 6.71r - 4.29\beta, \\
\dot{y}_1(t, \alpha) &= \int_0^t (2\dot{x}_1(u, \alpha)(-t + u) + 3\dot{y}_1(u, \alpha)(t - u))du \\
&\quad + 9 - 2.86\beta t - 2.86\beta + 12, \\
\dot{x}_2(t, \beta) &= \int_0^t (3\dot{x}_2(u, \beta)(-t + u) + 2\dot{y}_2(u, \beta)(t - u))du \\
&\quad + 3.71 + 5.71\beta t + 6.29r + 14.29\beta, \\
\dot{y}_2(t, \beta) &= \int_0^t (2\dot{x}_2(u, \beta)(-t + u) + 3\dot{y}_2(u, \beta)(t - u))du \\
&\quad + 9.14 + 2.86\beta t + 12.14r + 2.86\beta.
\end{align*}
$$

FIGURES 3-7: Displays the membership and non-membership functions, as well as the exact and approximate solutions, for the generalized trapezoidal intuitionistic fuzzy initial value problem used in example 2.

Now by using GMADM the solution of (44), (45), (46) and (47), can be expressed as;

$$
\begin{align*}
\dot{x}_1(t, \alpha) &= 2 + t(5\alpha + 2) + 3.33\alpha, \\
\dot{y}_1(t, \alpha) &= 8 + t(1.67\alpha + 11) + 1.67\alpha, \\
\dot{x}_1(t, \alpha) &= -1.943333334\alpha t^3 + 2.666666667t^3 \\
&\quad + 5.000000000r^2 - 3.325000000\alpha t^2, \\
\dot{y}_1(t, \alpha) &= 2.498333334\alpha t^3 - 4.166666668t^3 \\
&\quad - 8.00000000r^2 + 4.155000000\alpha t^2, \\
\dot{x}_{1k+1}(t, \alpha) &= \int_0^t (3\dot{x}_{1k}(u, \alpha)(-t + u) \\
&\quad + 2\dot{y}_{1k}(u, \alpha)(t - u))du, k \geq 1, \\
\dot{y}_{1k+1}(t, \alpha) &= \int_0^t (2\dot{x}_{1k}(u, \alpha)(-t + u) \\
&\quad + 3\dot{y}_{1k}(u, \alpha)(t - u))du, k \geq 1.
\end{align*}
$$
\[
\begin{align*}
\dot{x}_2(t, \alpha) &= 15 + t(-3.33\alpha + 10) - 11.67\alpha, \\
\dot{y}_2(t, \alpha) &= 11 + t(-1.67\alpha + 14) - 1.67\alpha, \\
\dot{x}_2(t, \alpha) &= 1.108333333\alpha^3 - 0.333333333\alpha^3 \\
&- 150.0000000t^2 + 15.83500000\alpha^2, \\
\dot{y}_2(t, \alpha) &= -1.38500000\alpha^3 - 0.333333333\alpha^3 \\
&+ 13.50000000t^2 - 20.83500000\alpha^2, \\
\dot{x}_{2+n}(t, \alpha) &= \int_0^t (3\dot{x}_2(u, \alpha)(-t + u) \\
&+ 2\dot{y}_2(u, \alpha)(t - u) du, k \geq 1, \\
\dot{y}_{2+n}(t, \alpha) &= \int_0^t (2\dot{x}_2(u, \alpha)(t - u) \\
&+ 3\dot{y}_2(u, \alpha)(-t + u) du, k \geq 1.
\end{align*}
\]

(49)

\[
\begin{align*}
\dot{x}_1(t, \beta) &= 5.29 + t(-0.85\beta + 6.71) - 4.29\beta, \\
\dot{y}_1(t, \beta) &= 9 + t(-2.86\beta + 12) - 2.86\beta, \\
\dot{x}_1(t, \beta) &= -0.528333333\beta^3 + 0.645000000\beta^3 \\
&+ 1.065500000\beta^2 + 3.57500000\beta^2, \\
\dot{y}_1(t, \beta) &= 0.863333334\beta^3 - 1.526667676\beta^3 \\
&- 2.920000000\beta^2 - 4.29000000\beta^2, \\
\dot{x}_{1+n}(t, \beta) &= \int_0^t (2\dot{x}_1(u, \beta)(-t - u) \\
&+ 3\dot{y}_1(u, \beta)(-t + u) du, k \geq 1, \\
\dot{y}_{1+n}(t, \beta) &= \int_0^t (2\dot{x}_1(u, \beta)(t - u) \\
&+ 3\dot{y}_1(u, \beta)(t - u) du, k \geq 1.
\end{align*}
\]

(50)

\[
\begin{align*}
\dot{x}_2(t, \beta) &= 3.71 + t(5.71\beta + 6.29) + 14.29\beta, \\
\dot{y}_2(t, \beta) &= 9.14 + t(2.86\beta + 12.14) + 2.86\beta, \\
\dot{x}_2(t, \beta) &= -1.901667667\beta^3 + 0.901667667\beta^3 \\
&+ 3.575000000\beta^2 - 18.5750000\beta^2, \\
\dot{y}_2(t, \beta) &= 2.376666666\beta^3 - 1.876666667\beta^3 \\
&- 6.290000000\beta^2 + 24.2900000\beta^2, \\
\dot{x}_{2+n}(t, \beta) &= \int_0^t (3\dot{x}_2(u, \beta)(-t + u) \\
&+ 2\dot{y}_2(u, \beta)(t - u) du, k \geq 1, \\
\dot{y}_{2+n}(t, \beta) &= \int_0^t (2\dot{x}_2(u, \beta)(t - u) \\
&+ 3\dot{y}_2(u, \beta)(-t + u) du, k \geq 1.
\end{align*}
\]

(51)

By solving (48), (49), (50) and (51), we get the approximate solution after four iterations as follows:

\[
\begin{align*}
\tilde{x}_1(t, \alpha), \tilde{y}_1(t, \alpha) &= (2 + 5\alpha t + 2t + 3.33\alpha - 1.943333333\alpha^3 \\
&+ 2.66.666667\alpha^3 + 5.000000000\alpha^3 - 3.325000000\alpha^2 \\
&+ 0.541333334\alpha^3 - 0.816666667\alpha^3 - 2.853333330\alpha^4 \\
&+ 1.523749999\alpha^4 - 0.0750198413\alpha^7 \\
&+ 0.11349206357 + 0.5027777777\alpha^6 - 0.295513888\alpha^6 \\
&+ 0.00607264110\alpha^9 - 0.00918761024\alpha^9 - 0.0523313492\alpha^8 \\
&+ 0.0307552083\alpha^8, \\
&+ 8.167\alpha + 11 t + 1.67\alpha + 2.498333333\alpha^3 - 4.1666666668\alpha^3 \\
&- 0.3047500000\alpha^5 + 0.0166666662\alpha^5 + 0.1250000004\alpha^4 \\
&- 7.431250000\alpha^4 + 0.0422162699\alpha^7, \\
&- 0.001984126997 - 0.9930555547 + 1.442263887\alpha^6 \\
&- 0.00341724537\alpha^6 + 0.00159324529 + 0.1033482144\alpha^8 \\
&- 0.150104911\alpha^8, \\
&11 - 1.67\alpha + 14 t - 1.67\alpha - 1.385000000\alpha^3 \\
&- 0.333333334\alpha^3 + 13.50000000\alpha^3 - 20.83500000\alpha^2 \\
&+ 0.429416676\alpha^5 - 0.01666666682\alpha^5 + 7.20833333\alpha^4 \\
&+ 10.48708333\alpha^4 - 0.0596964286\alpha^7, \\
&+ 0.00277777778\alpha^7 + 1.501166667\alpha^5 - 0.23954176\alpha^5 + 0.00483269953\alpha^9 \\
&+ 0.0002259700189 - 0.146155754\alpha^8 \\
&+ 0.212280011\alpha^9), \\
\tilde{x}_2(t, \alpha), \tilde{y}_2(t, \alpha) &= (5.29 - 85\beta t + 6.71 t + 4.29\beta - 0.528333333\beta^3 \\
&+ 0.645000000\beta^3 + 1.065500000\beta^2 + 3.575000000\beta^2 \\
&+ 0.165583333\beta^5 - 0.249416672\beta^5 - 0.7529166667\beta^4 \\
&- 1.608749999\beta^4 + 0.0230257937\beta^7 \\
&+ 0.0348630952\beta^7 + 0.1476249998\beta^6 + 0.3118194444\beta^6 \\
&+ 0.00186405974\beta^7 - 0.0028227788\beta^9 - 0.0153687996\beta^8 \\
&- 0.0324516369\beta^8, \\
&9 - 2.86\beta + 12 t - 2.86\beta + 0.86333333\beta^5 \\
&- 1.526666667\beta^3) \\
\end{align*}
\]
In Table 3, \(\hat{x}_1(t, \alpha), \hat{\dot{x}}_2(t, \alpha), \hat{y}_1(t, \alpha) \) and \(\hat{y}_2(t, \alpha) \) represents analytical solution of the membership functions of the Example1 for \(\alpha \in [0, 0.6] \) and \(\hat{x}_1(t, \beta), \hat{\dot{x}}_2(t, \beta), \hat{y}_1(t, \beta) \) and \(\hat{y}_2(t, \beta) \) represents analytical solution of non-membership function of the Example2 for \(\beta \in [0.3, 1.0] \).

The following is the mathematical and exact solution to Example 2 using the classical method, as shown in Figure 4(a-d) and Table 4:

\[
\begin{align*}
\hat{x}_1(t, \alpha), \hat{y}_1(t, \alpha) & = \left(\frac{667}{200} \alpha + \frac{13}{2} \right) \sin(t) + \left(5 + \frac{5}{2} \alpha \right) \cos(t) \\
& + \frac{9}{1000} \sqrt{5}(-100 + 37\alpha)
\end{align*}
\]

\[
\begin{align*}
\hat{\dot{x}}_2(t, \alpha), \hat{\ddot{y}}_2(t, \alpha) & = (3.71 + 5.71\beta t + 6.29\beta t + 14.29\beta + 1.901666667\beta t^3) \\
& + 0.901666667\beta t^3 - 3.57500000r^2 - 18.57500000\beta t^2 \\
& + 0.522916667\beta t^5 - 0.322916667\beta t^5 - 1.94208333t^3 \\
& + 8.69208333\beta t^4 - 0.072438492\beta t^7 + 0.045075397\beta t^7 \\
& + 0.3784861118^6 - 1.686819440\beta t^6 \\
& + 0.005863183\beta t^9 \\
& - 0.00364801036^8 - 0.0393960814t^8 \\
& + 0.175557695\beta t^8, \\
& 9.14 + 2.86\beta t + 12.14t + 2.86t + 2.376666667\beta t^3 \\
& - 1.876666667t^5 - 6.2900000r^2 + 24.29000000\beta t^2 \\
& - 0.736833334\beta t^5 + 0.4618333335 + 2.76416667t^4 \\
& - 12.26416667\beta t^4 + 0.1024325397\beta t^7 \\
& - 0.06374206357 \\
& - 0.535361111^6 + 2.38536111^6 \beta t^6 \\
& - 0.000829238317^8 \\
& + 0.00155911596^8 + 0.0557147819t^8 \\
& - 0.248274306^8.
\end{align*}
\]

In Table 3, \(\hat{x}_1(t, \alpha), \hat{x}_2(t, \alpha), \hat{y}_1(t, \alpha), \) and \(\hat{y}_2(t, \alpha) \) represents analytical solution of the membership functions of the Example1 for \(\alpha \in [0, 0.6] \) and \(\hat{x}_1(t, \beta), \hat{x}_2(t, \beta), \hat{y}_1(t, \beta) \) and \(\hat{y}_2(t, \beta) \) represents analytical solution of non-membership function of the Example2 for \(\beta \in [0.3, 1.0] \).

Example 3: Consider the first order non-homogenous system of intuitionistic fuzzy differential equation as follows:

\[
\begin{align*}
\frac{d^2 x}{dt^2} & = 2x(t) + 3y(t) - 7, \\
\frac{d^2 y}{dt^2} & = -x(t) - 2y(t) + 5.
\end{align*}
\]
TABLE 4. Illustrates the approximate solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 2 for t=1.

<table>
<thead>
<tr>
<th>α</th>
<th>2 (t, α)</th>
<th>3 (t, α)</th>
<th>4 (t, α)</th>
<th>5 (t, α)</th>
<th>6 (t, α)</th>
<th>7 (t, α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.004</td>
<td>10.87</td>
<td>17.84</td>
<td>22.20</td>
<td>1.740</td>
<td>11.29</td>
</tr>
<tr>
<td>0.5</td>
<td>5.779</td>
<td>12.58</td>
<td>15.45</td>
<td>24.89</td>
<td>0.5</td>
<td>6.993</td>
</tr>
<tr>
<td>0.5</td>
<td>3.862</td>
<td>13.14</td>
<td>15.14</td>
<td>21.74</td>
<td>0.8</td>
<td>5.552</td>
</tr>
<tr>
<td>0.5</td>
<td>3.530</td>
<td>14.51</td>
<td>16.54</td>
<td>21.18</td>
<td>0.7</td>
<td>5.184</td>
</tr>
<tr>
<td>0.5</td>
<td>4.834</td>
<td>15.45</td>
<td>16.54</td>
<td>24.89</td>
<td>0.5</td>
<td>5.330</td>
</tr>
<tr>
<td>0.5</td>
<td>7.222</td>
<td>15.40</td>
<td>17.37</td>
<td>22.28</td>
<td>1.9</td>
<td>9.492</td>
</tr>
</tbody>
</table>

TABLE 5. Illustrates the exact solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 2 for t=1.

<table>
<thead>
<tr>
<th>α</th>
<th>2 (t, α)</th>
<th>3 (t, α)</th>
<th>4 (t, α)</th>
<th>5 (t, α)</th>
<th>6 (t, α)</th>
<th>7 (t, α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.582</td>
<td>10.87</td>
<td>17.84</td>
<td>22.20</td>
<td>1.740</td>
<td>11.29</td>
</tr>
<tr>
<td>0.5</td>
<td>5.779</td>
<td>12.58</td>
<td>15.45</td>
<td>24.89</td>
<td>0.5</td>
<td>6.993</td>
</tr>
<tr>
<td>0.5</td>
<td>3.862</td>
<td>13.14</td>
<td>15.14</td>
<td>21.74</td>
<td>0.8</td>
<td>5.552</td>
</tr>
<tr>
<td>0.5</td>
<td>3.530</td>
<td>14.51</td>
<td>16.54</td>
<td>21.18</td>
<td>0.7</td>
<td>5.184</td>
</tr>
<tr>
<td>0.5</td>
<td>4.834</td>
<td>15.45</td>
<td>16.54</td>
<td>24.89</td>
<td>0.5</td>
<td>5.330</td>
</tr>
<tr>
<td>0.5</td>
<td>7.222</td>
<td>15.40</td>
<td>17.37</td>
<td>22.28</td>
<td>1.9</td>
<td>9.492</td>
</tr>
</tbody>
</table>

TABLE 6. Illustrates the approximate solution iterations in column 2, residual error in column 3, and CPU time required by the numerical technique GMADM to determine the approximate solution of the system of generalized fuzzy intuitionistic differential equations used in Example 2 in column 4. Whenever the error of all methods is taken into account, we can conclude that the GMADM has a better convergence behavior and is more stable than the ADM and TSM, respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GMADM</th>
<th>ADM</th>
<th>TSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
</tr>
<tr>
<td>GMADM</td>
<td>0.38</td>
<td>0.01</td>
<td>0.35</td>
</tr>
<tr>
<td>ADM</td>
<td>0</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>TSM</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
</tr>
</tbody>
</table>

With initial conditions

\[
\begin{align*}
\hat{x}(0) &= \langle 2, 4, 8, 15; 0.6 \rangle, \\
\hat{y}(0) &= \langle 2, 5, 8, 10; 0.6 \rangle, \\
\end{align*}
\]

By taking \((\alpha, \beta)-cuts\) of (52) and (53), we get,

\[
\begin{align*}
\frac{d\hat{x}_1(t, \alpha)}{dt} &= 2\hat{x}_1(t, \alpha) + 3\hat{y}_1(t, \alpha) - 7, \\
\hat{x}_1(0, \alpha) &= 3.33\alpha + 2, \\
\frac{d\hat{y}_1(t, \alpha)}{dt} &= -\hat{x}_1(t, \alpha) - 2\hat{y}_1(t, \alpha) + 5, \\
\hat{y}_1(0, \alpha) &= 5\alpha + 2, \\
\frac{d\hat{x}_2(t, \alpha)}{dt} &= 2\hat{x}_2(t, \alpha) + 3\hat{y}_2(t, \alpha) - 7, \\
\hat{x}_2(0, \alpha) &= -11.67\alpha + 15, \\
\frac{d\hat{y}_2(t, \alpha)}{dt} &= -\hat{x}_2(t, \alpha) - 2\hat{y}_2(t, \alpha) + 5, \\
\hat{y}_2(0, \alpha) &= -3.33\alpha + 10, \\
\frac{d\hat{x}_1(t, \beta)}{dt} &= 2\hat{x}_1(t, \beta) + 3\hat{y}_1(t, \beta) - 7, \\
\hat{x}_1(0, \beta) &= -4.29\beta + 5.29, \\
\frac{d\hat{y}_1(t, \beta)}{dt} &= -\hat{x}_1(t, \beta) - 2\hat{y}_1(t, \beta) + 5, \\
\hat{y}_1(0, \beta) &= -0.85\beta + 6.71, \\
\frac{d\hat{x}_2(t, \beta)}{dt} &= 2\hat{x}_2(t, \beta) + 3\hat{y}_2(t, \beta) - 7, \\
\hat{x}_2(0, \beta) &= 14.29\beta + 3.71, \\
\frac{d\hat{y}_2(t, \beta)}{dt} &= -\hat{x}_2(t, \beta) - 2\hat{y}_2(t, \beta) + 5, \\
\hat{y}_2(0, \beta) &= 5.71\beta + 6.29.
\end{align*}
\]

Here \(L = \frac{d}{dt}\) and by taking \(L^{-1}(\cdot) = \int \frac{d}{dt} (\cdot) dt\) on both sides of (54), (55), (56) and (57), and using the initial conditions we obtain:

\[
\begin{align*}
\hat{x}_1(t, \alpha) &= \int \left(2\hat{x}_1(u, \alpha) + 3\hat{y}_1(u, \alpha)\right) du + 3.33\alpha + 2 - 7t, \\
\hat{y}_1(t, \alpha) &= \int \left(-\hat{x}_1(u, \alpha) - 2\hat{y}_1(u, \alpha)\right) du + 5\alpha + 2 + 5t, \\
\hat{x}_2(t, \alpha) &= \int \left(2\hat{x}_2(u, \alpha) + 3\hat{y}_2(u, \alpha)\right) du - 11.67\alpha + 15 - 7t, \\
\hat{y}_2(t, \alpha) &= \int \left(-\hat{x}_2(u, \alpha) - 2\hat{y}_2(u, \alpha)\right) du - 3.33\alpha + 10 + 5t, \\
\hat{x}_1(t, \beta) &= \int \left(2\hat{x}_1(u, \beta) + 3\hat{y}_1(u, \beta)\right) du - 4.29\beta + 5.29, \\
\hat{y}_1(t, \beta) &= \int \left(-\hat{x}_1(u, \beta) - 2\hat{y}_1(u, \beta)\right) du - 0.85\beta + 6.71, \\
\hat{x}_2(t, \beta) &= \int \left(2\hat{x}_2(u, \beta) + 3\hat{y}_2(u, \beta)\right) du + 14.29\beta + 3.71, \\
\hat{y}_2(t, \beta) &= \int \left(-\hat{x}_2(u, \beta) - 2\hat{y}_2(u, \beta)\right) du + 5.71\beta + 6.29.
\end{align*}
\]
Now by using GMADM we get;

\[
\begin{align*}
\dot{x}_{10}(t, \alpha) &= 3.33\alpha + 2, \\
\dot{y}_{10}(t, \alpha) &= 5\alpha + 2, \\
\dot{x}_{11}(t, \alpha) &= 21.6600000\alpha + 3\alpha, \\
\dot{y}_{11}(t, \alpha) &= -13.3300000\alpha + 3t, \\
\dot{x}_{1k+1}(t, \alpha) &= \int_0^t (2x_{1k}(u, \alpha) + 3y_{1k}(u, \alpha))du, \ k \geq 1, \\
\dot{y}_{1k+1}(t, \alpha) &= \int_0^t (-x_{1k}(u, \alpha) - 2y_{1k}(u, \alpha))du, \ k \geq 1.
\end{align*}
\]
(62)

\[
\begin{align*}
\dot{x}_{20}(t, \alpha) &= -11.67\alpha + 15, \\
\dot{y}_{20}(t, \alpha) &= -3.33\alpha + 10, \\
\dot{x}_{21}(t, \alpha) &= -33.3300000\alpha + 53t, \\
\dot{y}_{21}(t, \alpha) &= 18.3300000\alpha - 30t, \\
\dot{x}_{2k+1}(t, \alpha) &= \int_0^t (2x_{2k}(u, \alpha) + 3y_{2k}(u, \alpha))du, \ k \geq 1, \\
\dot{y}_{2k+1}(t, \alpha) &= \int_0^t (-x_{2k}(u, \alpha) - 2y_{2k}(u, \alpha))du, \ k \geq 1.
\end{align*}
\]
(63)

\[
\begin{align*}
\dot{x}_{10}(t, \beta) &= 5.29 - 4.29\beta, \\
\dot{y}_{10}(t, \beta) &= 6.71 - 0.85\beta, \\
\dot{x}_{11}(t, \beta) &= 23.7100000t - 11.1300000\beta t, \\
\dot{y}_{11}(t, \beta) &= -13.7100000t + 5.99000000\beta t, \\
\dot{x}_{1k+1}(t, \beta) &= \int_0^t (2x_{1k}(u, \alpha) + 3y_{1k}(u, \alpha))du, \ k \geq 1, \\
\dot{y}_{1k+1}(t, \beta) &= \int_0^t (-x_{1k}(u, \alpha) - 2y_{1k}(u, \alpha))du, \ k \geq 1.
\end{align*}
\]
(64)

\[
\begin{align*}
\dot{x}_{20}(t, \beta) &= 3.71 + 14.29\beta, \\
\dot{y}_{20}(t, \beta) &= 6.29 + 5.71\beta, \\
\dot{x}_{21}(t, \beta) &= 19.2900000t + 45.7100000\beta t, \\
\dot{y}_{21}(t, \beta) &= -11.2900000t - 25.7100000\beta t, \\
\dot{x}_{2k+1}(t, \beta) &= \int_0^t (2x_{2k}(u, \alpha) + 3y_{2k}(u, \alpha))du, \ k \geq 1, \\
\dot{y}_{2k+1}(t, \beta) &= \int_0^t (-x_{2k}(u, \alpha) - 2y_{2k}(u, \alpha))du, \ k \geq 1.
\end{align*}
\]
(65)

Figures 8-11: Displays the membership and non-membership functions, as well as the exact and approximative solutions, for the generalised trapezoidal intuitionistic fuzzy initial value problem used in example 3.
By solving the (62), (63), (64) and (65), we get the approximate solution after three iteration as follows:

\[(\hat{x}_1(t, \alpha), \hat{y}_1(t, \alpha))\]

\[= (3.33\alpha + 2 + 3t + 21.66000000\alpha t + 1.500000000\alpha^2 + 1.665000000\alpha^2 + 0.500000000\alpha^3 + 3.610000000\alpha^4 + 0.125000000\alpha^4 + 0.138750000\alpha^4 + 5\alpha + 2 - t - 13.33000000\alpha t + 2.500000000\alpha^2 - 0.500000000\alpha^3 - 0.166666666\alpha^3 - 2.221666666\alpha^3 - 0.041666667\alpha^4 + 0.2083333329\alpha^4),\]

\[(\hat{x}_2(t, \alpha), \hat{y}_2(t, \alpha))\]

\[= (-11.67\alpha + 15 + 53t - 33.33000000\alpha t + 8.00000000\alpha^2 - 5.835000000\alpha^2 + 8.833333330\alpha^3 - 5.554999998\alpha^4 + 0.6666666650\alpha^4 - 0.4862499990\alpha^4, - 3.33\alpha + 10 - 30t + 18.33000000\alpha t - 1.665000000\alpha^2 + 3.50000000\alpha^3 - 5.000000000\alpha^3 + 3.055000000\alpha^3 + 0.2916666675\alpha^4 - 138750000\alpha^4),\]

\[(\hat{x}_1(t, \beta), \hat{y}_1(t, \beta))\]

\[= (-4.29\beta + 5.29 + 23.71000000\beta - 11.13000000\beta t + 3.1450000000\beta t^2 - 2.1450000000\beta t^2 + 3.951666666\beta t^3 - 1.854999999\beta t^3 + 0.2620833324\beta t^4 - 0.1787499999\beta t^4, - 0.85\beta + 6.71 - 13.71000000\beta + 5.990000000\beta t - 0.4250000000\beta t^2 + 1.855000000\beta t^2 - 2.284999999\beta t^3 + 0.9983333329\beta t^3 + 0.1545833333\beta t^4 - 0.0354166666\beta t^4),\]

\[(\hat{x}_2(t, \beta), \hat{y}_2(t, \beta))\]

\[= (14.29\beta + 3.71 + 19.29000000\beta + 45.71000000\beta t + 2.35500000\beta t^2 + 7.145000000\beta t^2 + 3.214999999\beta t^3 + 7.618333330\beta t^3 + 0.1962499999\beta t^4 + 0.5954166665\beta t^4, 5.71\beta + 6.29 - 11.29000000\beta - 25.71000000\beta t + 2.8550000000\beta t^2 + 1.6450000000\beta t^2 - 1.881666666\beta t^3 - 4.2849999980\beta t^3 + 0.1370833333\beta t^4 + 0.2379166666\beta t^4).\]

The following is the mathematical and exact solution to Example 3 using the classical method, as shown in Figure 4(a-d) and Table 6:

\[\{\hat{x}_1(t, \alpha) = -\frac{1833}{200}\alpha e^{-t} + (3 + \frac{2499}{200}\alpha)e^{-t} - 1, \]

\[\hat{y}_1(t, \alpha) = \frac{1833}{200}\alpha e^{-t} - \frac{1}{3}(3 + \frac{2499}{200}\alpha)e^{-t} + 1, \]

\[\{\hat{x}_2(t, \alpha) = (\frac{69}{2} - \frac{45}{2}\alpha)e^{-t} + (-\frac{37}{2} + \frac{1083}{100}\alpha)e^{-t}, \]

\[\hat{y}_2(t, \alpha) = -\frac{37}{2} + \frac{1083}{100}\alpha e^{-t} - \frac{1}{3}(\frac{69}{2} - \frac{45}{2}\alpha e^{-t} + 3), \]

\[\{\hat{x}_1(t, \beta) = (\frac{871}{100} + \frac{171}{50}\beta)e^{-t} + (15 - \frac{771}{100}\beta)e^{-t} - 1, \]

\[\hat{y}_1(t, \beta) = -(\frac{871}{100} + \frac{171}{50}\beta)e^{-t} - \frac{1}{3}(15 - \frac{771}{100}\beta e^{-t}) + 3, \]

\[\{\hat{x}_2(t, \beta) = (12 + 30\beta)e^{-t} + (-\frac{729}{100} + \frac{1571}{100}\beta)e^{-t} - 1, \]

\[\hat{y}_2(t, \beta) = -(\frac{729}{100} + \frac{1571}{100}\beta)e^{-t} - \frac{1}{3}(12 + 30\beta e^{-t}) + 3, \]

IV. RESULTS AND DISCUSSION

We discuss how the computing efficiency, stability, and residual error robustness of the proposed modified technique, GMADM, outperforms the ADM and TSM approaches.

- Tables 1 to 9 illustrate how GMADM, a recently created approach, is more reliable and consistent than ADM and TSM. While solving a system of fuzzy intuitionistic differential equations, it is observed that GMADM converges more quickly and accurately than ADM and TSM.

- Tables 3, 6, and 9 clearly demonstrate that GMADM is superior to ADM and TSM in terms of iterations, residual error, and CPU time.

- Figures 2-11 compare the numerical simulation of our recently modified family GMADM to a precise solution of the generalized trapezoidal intuitionistic fuzzy initial value problem used in Example 1-3 respectively.

- Figures 2-3, 4-11 illustrate the precise and approximate solutions for the membership and non-membership functions of the generalized trapezoidal intuitionistic fuzzy...
TABLE 7. Illustrates the approximation to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 3 for t=1.

<table>
<thead>
<tr>
<th>α</th>
<th>f̃(1, α)</th>
<th>g̃(1, α)</th>
<th>h̃(1, α)</th>
<th>̃(1, α)</th>
<th>̃(1, α)</th>
<th>̃(1, α)</th>
<th>̃(1, α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>0.2</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>0.3</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
</tbody>
</table>

TABLE 8. Illustrates the exact solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 3 for t=1.

<table>
<thead>
<tr>
<th>α</th>
<th>f̃(1, α)</th>
<th>g̃(1, α)</th>
<th>h̃(1, α)</th>
<th>̃(1, α)</th>
<th>̃(1, α)</th>
<th>̃(1, α)</th>
<th>̃(1, α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>0.2</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>0.3</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
</tbody>
</table>

TABLE 9. Illustrates the approximate solution iterations in column 2, residual error in column 3, and CPU time required by the numerical technique GMADM to determine the approximate solution of the system of generalized fuzzy intuitionistic differential equations used in Example 3 in column 4. Whenever the error of all methods is taken into account, we can conclude that the GMADM has a better convergence behavior and is more stable than the ADM and TSM, respectively.

<table>
<thead>
<tr>
<th>α</th>
<th>f̃(1, α)</th>
<th>g̃(1, α)</th>
<th>h̃(1, α)</th>
<th>̃(1, α)</th>
<th>̃(1, α)</th>
<th>̃(1, α)</th>
<th>̃(1, α)</th>
<th>CPU Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.00</td>
</tr>
<tr>
<td>0.2</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.00</td>
</tr>
<tr>
<td>0.3</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.00</td>
</tr>
</tbody>
</table>

V. CONCLUSION

In this work, Generalized Modified Adomian Decomposition Method have been utilized for computing the approximate solution of the linear system of generalized trapezoidal intuitionistic fuzzy initial value problems. We used the initial conditions as generalized trapezoidal intuitionistic fuzzy numbers. We have applied this procedure to brine tank problems and coupled oscillators. Moreover, by comparing the approximate results with exact solution, we have shown that this method is more reliable. Future studies will therefore focus on the solution of systems of higher order generalized trapezoidal intuitionistic fuzzy system of differential equations as well as a system of nonlinear first order differential equations and their application [48], [49], [50], [51], [52], [53] in a more generalized fuzzy environment utilizing GMADM.

COMPETING INTERESTS

The authors confirm that there is no competing interests between them.

REFERENCES

NASREEN KAUSAR received the Ph.D. degree in mathematics from Quaid-i-Azam University, Islamabad, Pakistan. She is currently an Associate Professor of mathematics with Yildiz Technical University, Istanbul, Turkey. Her research interests include the numerical analysis and numerical solutions of the ordinary differential equations (ODEs), partial differential equations (PDEs), Volterra integral equations, as well as associative and commutative, nonassociative and noncommutative fuzzy algebraic structures and their applications.

KHULUD ALAYYASH received the B.Sc. degree (Hons.) in mathematics from King Khaled University, Saudi Arabia, the M.Sc. degree in applied computation and bio-mathematics from Heriot-Watt University, U.K., and the Ph.D. degree in mathematics of solid mechanics (multiscale modeling, limit states analysis, optimization, finite-element modeling, and structural analysis) from Cardiff University, U.K. She is currently a Treasurer and a member of the Society for Industrial and Applied Mathematics (SIAM) Chapter, Cardiff University (build cooperation between mathematics and the worlds of science and technology through our publications, research, and community). She is also an Assistant Professor.

MOHAMMED M. AL-SHAMIRI received the Ph.D. degree in geometric topological algebra from Menoufia University, Menoufia, Egypt, in 2008. He is currently an Associate Professor of mathematics with King Khalid University, Saudi Arabia. He is also an Associate Professor with Ibb University, Yemen. His research interests include topological spaces, topological geometry, fuzzy topology, graph and knot and fuzzy graph and fuzzy knot, geometrical transformations (folding, retraction, and deformation retract), fuzzy group, fuzzy ring, fuzzy module, fuzzy field, and fuzzy decision support systems.

NAYYAB ARIF thesis work focused on analytical techniques for solving generalized trapezoidal intuitionistic fuzzy initial value problems. She is about to enroll in the Ph.D. degree. Her research interests include fuzzy set theory and its applications. She researches analytical methods which solve fuzzy initial value problems.

RASHAD ISMAIL received the Ph.D. degree in scientific computing from Assiut University, Egypt, in 2011. He is currently an Assistant Professor with King Khalid University, Saudi Arabia. He is also an Assistant Professor of scientific computing with Ibb University, Yemen. His research interests include graph theory and its applications, graph domination, meta-heuristics, data mining, computer networks, fuzzy, fuzzy graph, and fuzzy decision support systems.

* * *

VOLUME 11, 2023