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Machine learning (ML) algorithms are powerful tools that are increasingly being
used for sepsis biomarker discovery in RNA-Seq data. RNA-Seq datasets contain
multiple sources and types of noise (operator, technical and non-systematic) that
may bias ML classification. Normalisation and independent gene filtering
approaches described in RNA-Seq workflows account for some of this
variability and are typically only targeted at differential expression analysis
rather than ML applications. Pre-processing normalisation steps significantly
reduce the number of variables in the data and thereby increase the power of
statistical testing, but can potentially discard valuable and insightful classification
features. A systematic assessment of applying transcript level filtering on the
robustness and stability of ML based RNA-seq classification remains to be fully
explored. In this report we examine the impact of filtering out low count
transcripts and those with influential outliers read counts on downstream ML
analysis for sepsis biomarker discovery using elastic net regularised logistic
regression, L1-reguarlised support vector machines and random forests. We
demonstrate that applying a systematic objective strategy for removal of
uninformative and potentially biasing biomarkers representing up to 60% of
transcripts in different sample size datasets, including two illustrative neonatal
sepsis cohorts, leads to substantial improvements in classification performance,
higher stability of the resulting gene signatures, and better agreement with
previously reported sepsis biomarkers. We also demonstrate that the
performance uplift from gene filtering depends on the ML classifier chosen,
with L1-regularlised support vector machines showing the greatest
performance improvements with our experimental data.
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1 Introduction

Supervised machine learning (ML) analysis of gene expression
data is a widely used AI approach to derive informative gene subsets
with potential utility as diagnostic and prognostic clinical
biomarkers (Liu et al., 2014; Lin et al., 2017; Zhang et al., 2021).
These ML based feature selection algorithms have the power to both
eliminate redundant genes, and identify relevant genes that both
discriminate between clinical conditions of interest, and that
generalise over the relevant patient populations (Mahendran
et al., 2020). These techniques are referred to as ML gene
selection or simply gene selection throughout this work. To date,
the majority of validated sepsis biomarkers have been derived from
microarray gene expression data (Smith et al., 2014; McHugh et al.,
2015; Sweeney et al., 2015). In recent years RNA-Seq has largely
replaced microarray as the preferred technology for generating gene
expression data, given the higher resolution and decreasing cost of
sequencing (Wang et al., 2009; Stark et al., 2019). The combination
of ML gene selection with richer RNA-Seq data presents the
opportunity to discover previously unidentified sepsis biomarkers.
ML classification algorithms are however highly sensitive to any
feature data characteristic, regardless of scale, that may differ
between experimental groups, and will exploit these data
characteristic differences in gene selection. Systematically adding
noise to feature data has been shown to significantly degrade
classification performance across a range of ML classification
algorithms (Zhu and Wu, 2004; Hasan and Chu, 2022). It is
therefore desirable to minimise this interference to ensure
patterns detected have biological relevancy. To date the impact of
applying independent filtering and pre-processing strategies to
eliminate noise on the performance of ML approaches to
biomarker discovery with RNA-Seq data has not been fully
investigated.

Here we consider two sources of noise inherent in RNA-Seq data
that may negatively impact ML gene selection. Firstly low read
counts. Genes with consistently low read count values across all
replicates may be technical or biological stochastic artefacts such as
the detection of a transcript from a gene that is not uniformly active
in a heterogeneous cell population or as the result of a
transcriptional error (Wagner et al., 2013). Below some count
threshold, genes with low read counts are subject to greater
dispersion (variability) with greater false negatives (zero inflation)
and false positives (outliers) that are not representative of true
biological differences related to the condition of interest. The
filtering out of low read count genes from RNA-Seq data in
differential expression analyses is reported to improve detection
of differentially expressed genes by reducing the impact of multiple
testing corrections (Bourgon et al., 2010). A wide variety of
approaches to filtering low count genes have been proposed, the
most common being maximum-based filters, where genes with a
maximum normalised count over all samples below a threshold t are
filtered out (Rau et al., 2013). At a lower threshold t, the number of
genes retained after filtering is expected to be more variable between
samples, given differences in low count noise between samples. As t
increases, the number of genes retained is expected to converge as
the read counts increasingly represent the true biological signal,
which is more consistent across samples (Koch et al., 2018). To avoid
setting arbitrary thresholds, multiple authors have proposed

approaches to setting the filter threshold based on the data. Rau
et al. (2013) determine the optimal threshold based on maximising
the similarity of expression between samples. Love et al. (2014)
implement gene filtering in the R package DESeq2 to maximise the
number of genes found to be significantly differentially expressed
based on a user-specified target false discovery rate (FDR). Deyneko
et al. (2022) derive a sample specific threshold by separately
modelling the random (low count noise) and true biological
signal, and subtracting the low count noise component from the
reads of each sample. Zehetmayer et al. (2022) propose an adaptive
approach, testing the impact of multiple filters and selecting the filter
that maximises the power of a hypothesis test in the given data set. In
all these approaches, the goal of independent gene filtering is to
reduce the impact of multiple testing correction in gene by gene
hypothesis testing. In a multivariate supervised learning setting, it is
well known that features may have significant effects in combination
despite having weak effects individually (Guyon and Elisseeff, 2003).
This raises the question of whether and how low count filtering
should be performed. Filtering out genes based on arbitrary
thresholds risks discarding valuable biomarkers that may have
discriminate power in combination with other genes and provide
useful insights into underlying biology.

A second source of noise are influential outlier read counts.
Relatively high read counts occurring in only a very small number
of samples relative to the size of each patient group are unlikely to be
representative of the general population and a result of biological
heterogeneity and technical effects. These gene valuesmay bias feature
selection algorithms as they discriminate between examples in a
training set, leading to model overfitting. Such influential outliers
may be the result of natural variation between individuals or theymay
have been introduced during sample preparation. cDNA libraries
require PCR amplification prior to sequencing to achieve sufficient
sequence depth. This clonal amplification by PCR is stochastic in
nature; different fragments may be amplified with different
probabilities. This leaves the possibility of outlier read counts
having resulted from bias introduced by amplification, rather than
biological differences between samples (Fu et al., 2018; Stark et al.,
2019). As with low count genes, in the context of differential
expression analyses, hypothesis testing based on the negative
binomial distribution, extreme outlier read counts can have a
disproportionate effect on the results, increasing false positives and
false negatives, and inflating the observed association between
particular genes and the condition of interest (Mangiola et al.,
2021). Multiple approaches to identify and remove outliers have
been proposed in this context (Love et al., 2014; Brechtmann et al.,
2018; Mangiola et al., 2021).

Despite significant work in the area of differential expression
analysis, to our knowledge, there is a lack of analysis of the impact of
gene filtering on downstream ML analysis, specifically in gene
selection for biomarker discovery. Although multiple software
pipelines have been developed to aid researchers in conducting
this type of analysis using high-throughput sequence data (Chiesa
et al., 2018; Goksuluk et al., 2019; Dag et al., 2022), gene filtering
features are limited to removing low count and low variance genes
and typically require users to provide their own arbitrary thresholds.
Previous authors provide little justification for the use of these filters,
nor do they provide recommended thresholds or guidance on how
these might be adjusted to the ML algorithm being employed.
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Evaluation of the impact of gene filtering in ML gene selection
requires a success measure equivalent to the number of significant
genes identified by a series of hypothesis tests in the differential
expression analysis setting. In the task of biomarker discovery, the
chosen set of genes effectively form an hypothesis on the underlying
biological mechanisms of disease. The ability of the selected genes to
discriminate between disease states is of primary importance if the
biomarkers are to be translated into a clinical setting. Perhaps
equally important to their predictive power is the stability of the
chosen gene set in the event of changes to the training dataset
(Jurman et al., 2008; Sechidis et al., 2019). An unstable gene selection
procedure can be thought of as one where small changes to the
training data result in large changes to the chosen gene set (Nogueira
et al., 2018). We propose therefore that the appropriate way to
evaluate the impact of gene filtering is to measure the relative
classification performance of a derived gene set and the stability
of the gene set to perturbation of the training data with and without
gene filtering employed. A stability measure quantifies the similarity
of a group of gene sets, often giving a value between zero and one,
where zero implies a random choice of genes in each set, and one
implies identical sets. A wide variety of stability measures have been
proposed, and a comprehensive review is provided by Bommert et al.
(2017) and Nogueira et al. (2018). Where existing biomarkers have
been validated, as in the case of sepsis, an additional measure is the
level of agreement of a new gene set with existing validated
biomarkers.

In this article, we examine the impact of gene filtering on the
performance and stability of three common ML algorithms for
sepsis biomarker discovery using bulk RNA-Seq data. The
motivation of this article is to assess the need to perform
independent gene filtering in preparation for a ML analysis, the
implications of not doing so, and the impact of gene filtering on the
downstream classification performance and stability to changes in
experimental data. We provide practical guidelines on the gene
filtering steps needed in ML analysis of RNA-Seq data absent in the
existing literature. The rest of this article is organised as follows: In
the Materials and Methods section we summarise the data
processing pipeline, the datasets used and the nature of the gene
filters andML classifiers applied. The Results and Discussion section
demonstrates the impact of gene filtering on feature selection and
the classification performance of the resulting gene sets, as well as
their stability, and agreement with previously validated sepsis
biomarkers. Finally, the Conclusion summarises the rationale for
gene filtering prior to ML gene selection and outlines areas for future
investigation.

2 Materials and methods

This section introduces the datasets used in this work and
provides a brief theoretical background to the gene filter methods
and supervised ML approaches employed.

2.1 Data processing pipeline overview

A schematic overview of the data processing and analysis
pipeline used in this work is depicted in Figure 1. A detailed

description of each stage of the pipeline is provided in the
following sections.

2.2 Test datasets

The impact of gene filtering on ML performance is
demonstrated using three experimental bulk RNA-Seq datasets.
To the best of our knowledge, there are a limited number of
RNA-Seq datasets profiling sepsis patients, and those that exist
contain a small number of samples. We therefore conduct our
analysis using two relatively small cohorts of neonatal infants
containing sepsis cases, supplemented by a publicly available
dataset of inflammatory bowel disease patients containing a far
larger number of samples, to assess generality as well as increase
confidence in the results.

2.2.1 Inflammatory bowel disease (“IBD”) dataset
The IBD data is taken from the recent study by Nowak et al.

(2022) who deposited 590 pediatric and adult patient samples in the
EMBL-EBI ArrayExpress database (E-MTAB-11349). The data used
in this work include the raw count data from 434 patients recruited
at six gastrointestinal clinics across Europe between 2012 and 2016,
with 167 patients diagnosed with ulcerative colitis and 267 controls.
49% of the patients are female and they range in age from 3 to 79.
Details of the sequencing whole-blood RNA for this cohort using the
Ion Torrent sequencing platform are given by Nowak et al. (2022).

2.2.2 Neonatal sepsis datasets
The first neonatal sepsis dataset (referred to as Sepsis 1 below)

derives from a 2020 study by Ng et al. (2020) of 18 very preterm
neonatal infants, deposited in the NCBI GEO omnibus gene
expression database (GSE138712). Infants are classified based on a
positive blood culture and elevated C-reactive protein concentrations
as having confirmed late onset sepsis (n = 5), clinical late onset sepsis
(n = 4) or no late onset sepsis (n = 9). Suspicion of sepsis in premature
infants has a low threshold and there is a good possibility that they will
not have sepsis. For the purposes of this work we have tested this
assumption using neonatal sepsis biomarkers described by Smith et al.
(2014), hereafter referred to as the “Sep3” gene signature. Accordingly,
all clinical late onset sepsis cases are considered to have no late onset
sepsis, with the exception of a single sample, classified as confirmed
sepsis based on clear discrimination fromPCA analysis using neonatal
sepsis biomarkers and illustrated in Supplementary Figure S1. The
retention of the clinical late onset sepsis group and allocation between
confirmed and no sepsis is further justified by the need maintain the
sample size and class balance to aid the performance of ML
classification algorithms in what is already a very small dataset.
Details of the sequencing whole-blood RNA procedure are
provided by Ng et al. (2020).

The second sepsis dataset (referred to as Sepsis 2 below) derives
from a cohort of 45 very preterm infants recruited from the neonatal
intensive care unit of King Edward Memorial Hospital, Perth,
Australia, a sub-study of The PROTECT Trial (Simmer et al.,
2016), a pragmatic randomised placebo-controlled clinical trial
evaluating the effectiveness of intravenous pentoxifylline for
improving long-term outcomes in preterm infants with late onset
sepsis or necrotising enterocolitis. The PROTECT study was approved
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by the institutional Human Research Ethics Committee at King
Edward Memorial Hospital, Perth, Australia (RGS0000002684).
Written, informed consent was obtained by the Principal
Investigator or delegate from the parent(s) prior to study
participation. Infants with suspected late onset sepsis (> 72 hours
after birth) were enrolled in the sub-study between 2016 and 2019.12 of
the 45 infants were classified as having confirmed late onset sepsis in
the event of a positive blood culture and the causative pathogen
identified, two or more serial CRP measurements of > 20 mg/L
within 72 h of blood culture and having been treated with
antibiotics for five or more consecutive days. The remaining
33 infants are classified as no late onset sepsis, with negative blood
culture, all CRP measurements below 20 mg/L and not more than
3 days of treatment with antibiotics. A peripheral whole blood sample
was taken near the time of blood culture sampling for suspected late
onset sepsis and prior to administration of study treatment. RNA was
stabilised in PAX and stored at −80C until extraction. Total RNA
quality and quantity was assessed using Agilent 4,200 TapeStation and
a High Sensitivity RNA kit (Agilent Technologies). 75–100 ng of Total
RNA with a RIN value > 7 was depleted of ribosomal RNA using the
NEBNext® Globin and rRNA Depletion Kit (Human/Mouse/Rat)
(New England BioLabs, NEB) and the sequencing libraries were
prepared using the NEB® Ultra™ II Directional RNA Library Prep
Kit for Illumina® (NEB). The steps included RNA fragmentation and
priming, first strand cDNA synthesis, 2nd strand cDNA synthesis,
adenylation of 3′ ends, adapter ligation, PCR amplification (16-cycles)
and validation. The manufacturer’s instructions were followed. The
libraries were validated using the Agilent 4,200 TapeStation and a
DNA1000 tape (Agilent Technologies) to ascertain the insert size, and
the CLARIOstar® (BMG Labtech) was used to perform the
fluorometric quantitation. Following validation, the libraries were
normalized to 3nM, pooled together and sequenced using a 100-
base paired-end (2 × 100bp PE) dual index read format on the
Illumina® NovaSeq™6000 according to the manufacturer’s
instructions. Paired-end reads from Illumina sequencing were
trimmed with Trim Galore (Babraham Bioinformatics Group,
2019a) and assessed for quality using FastQC (Babraham
Bioinformatics Group, 2019b), using default parameters. Reads were
mapped to the human GRCh38 reference genome using STAR (Dobin
et al., 2013) and counts were assigned to transcripts using
featureCounts (Liao et al., 2014) with the GRCh38.96 Ensembl gene
build GTF. Both the reference genome and GTF were downloaded
from the Ensembl FTP site (Ensembl, 2021).

2.3 Between sample normalisation

Raw read counts for each dataset are scaled using the median-of-
ratios method described by Anders and Huber (2010) (often referred to
as “normalisation” in bioinformatics literature) to account for
systematic differences between samples resulting from technical
factors, namely sequence depth (total number of aligned reads) and
sample composition (relative proportion of transcripts for a given
number of reads). These normalised read counts allow comparison
of the relative expression level for each gene between samples. Filtering
to identify genes with relatively low and extreme outlier read count
genes is conducted using these normalised counts as described below.

2.4 Gene filtering

To demonstrate the impact of filtering low count and influential
outlier genes on feature selection in a supervised ML setting, we
apply two widely used filtering methods to each datasets. For the
remainder of this work, the term gene is used as a shorthand to refer
to an RNA transcript with a unique EBI Ensembl or NCBI RefSeq
accession number; the level at which filtering is implemented.

2.4.1 Low count genes
To filter out low expression genes, we apply the data-based

maximum filter approach proposed by Rau et al. (2013) and
demonstrated to be superior to other maximum based filters for
filtering out low count noise in a differential expression analysis
setting. This approach derives a filter threshold t that maximises the
similarity between samples using the Jaccard index (Jaccard, 1901).
The vector of read counts for all genes in a given sample j with
experimental condition c ( j ) is given by sj. sj is binarised for a given
threshold t (sj > t is 1, otherwise 0). The Jaccard similarity index
between the binary vectors for each pair of samples j and j′ from the
same experimental condition (c ( j ) = c ( j ′)) is given by Eq. 1.

JS sj, sj′( ) � sj ⋂ sj′
sj ⋃ sj′

(1)

The optimum threshold t* is defined as the threshold that
maximises the similarity between samples, corresponding to the
maximum average Jaccard index over all pairs in each experimental
condition, as in Eq. 2.

FIGURE 1
Data processing and analysis pipeline.
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t* � argmax
t

mean JS sj, sj′( ): j< j′ and c j( ) � c j′( ){ } (2)

2.4.2 Influential outlier genes
To identify sample gene pairs with influential outlier read

counts, we implement the approach used in DESeq2 (Love et al.,
2014) that uses Cook’s distance (Cook, 1977a). Briefly, Cook’s
distance is a measure of influential points in a generalised linear
regression model (GLM). In the context of the negative binomial
distribution most frequently used to model RNA-Seq count data,
Cook’s distance is given by Eq. 3, where Rij is the Pearson residual of
sample j, a measure of the extent to which an observed value differs
from the predicted value in the model; hii is the leverage of each
count, which can be thought of as the weighted distance the values of
the independent variables vary from the mean, τ is an over
dispersion parameter that is set to 1 in the GLM, and p is the
number of parameters. The Cook’s distanceDij is the scaled distance
that the coefficient vector βi of the GLM for gene i would change if
the sample j were removed and the model refit. Counts with larger
values of Dij therefore have a greater influence on the model
parameters.

Dij �
R2
ij

τp

hjj

1 − hjj( )2 (3)

Influential outliers are defined by transforming the values of Dij

to points on the F (p, m − p) distribution where the p is the number
of model parameters andm is the number of samples, and defining a
threshold by an arbitrary quantile q (Cook, 1977b). In this work q is
set to 0.95, and a gene is filtered out if an influential outlier read
count is present in one or more samples.

Following filtering, the filtered genes are removed from the raw
count data and the raw counts are re-normalised by the median-of-
ratios method.

2.5 Feature engineering

The skewed and heteroskedastic nature of RNA-Seq count data
means that certain machine learning algorithms, in particular those
such as support vector machines employing distance based measures,
may be disproportionately influenced by the genes with the highest
mean counts, due to the larger variance (absolute distances) between
samples. To overcome this potential issue, the median-ratio scaled
data is further pre-processed with the variance stabilising
transformation described by Love et al. (2014) to reduce both the
skewness and the mean-variance relationship and scaled to values
between 0 and 1 to ensure all genes are on a comparable scale.

2.6 Gene selection with supervised machine
learning

Gene selection is performed using supervised ML classification
algorithms with embedded feature selection and computationally
efficient implementations in R, henceforth referred to as classifiers
or models interchangeably. The overall scheme for model training is
illustrated in Figure 2.

2.6.1 Choice of machine learning classifiers
The classifiers selected are elastic net regularised logistic

regression (eNet) (Zou and Hastie, 2005; Friedman et al., 2010),
L1 regularised Support Vector Machines using the LIBLINEAR
library (L1-SVM) (Fan et al., 2008) and Random Forest (RF)
(Breiman, 2001). These methods are chosen for several reasons.
Firstly because they are widely known and frequently used in gene
selection applications (Mahendran et al., 2020). Secondly because each
of these ML methods applies fundamentally different principles to fit
the data, including linear (eNet, L1-SVM) and non-linear (RF)
models, allowing us to investigate whether gene filtering
approaches are applicable over a diverse set of ML approaches.
Thirdly and perhaps most importantly because feature selection is
embedded within these three methods. eNet and L1-SVM implicitly
perform feature selection as a result of the L1 penalty shrinking the
coefficients of the least important features to zero during the
optimisation. In the case of Random Forest, the relative
importance of features can be calculated following model training,
and features ranked by importance. Other machine learning
approaches without this property of embedded feature selection
would require either a gene selection filter method to be applied
prior to training the classifier, or a wrapper method such as recursive
feature elimination (Guyon et al., 2002) to be applied during model
training. Both these alternatives are deemed to complicate the analysis
unnecessarily, and in the case of recursively searching for an optimum
feature set, to increase the computational complexity so as tomake the
analysis impractical given the high dimensionality of the datasets.

2.6.2 Model training and gene selection
The procedure used to train each classifier and extract a gene set is

illustrated in the central panel of Figure 2. The eNet and L1-SVM
models are trained with a range of values of their respective
regularisation hyperparameters in a k-fold cross validation scheme
(k = 10 for the IBD dataset and ‘leave-one-out’ for the sepsis datasets) to
provide a validation set for classification performance evaluation.
Hyperparameter values are selected to yield a gene set of similar size
for eachmodel, targeting 30 genes for the IBD and Sepsis 2 datasets and
10 genes for the Sepsis 1 dataset, given the smaller number of samples in
this case. Fixing the model hyperparameters to yield gene sets of a
similar size is important to ensure gene set stability measures are
broadly comparable between the models. A final model is trained
on the full dataset, without cross validation, using the selected
hyperparameter values, and the set of selected genes identified. The
model predictions on the cross validation set at the chosen
hyperparameter values are used to evaluate the classification
performance1.

The RF classifier is implemented with fixed hyperparameters
(1,000 trees and

��
p

√
randomly selected genes per tree, where p is the

total number of genes in the training set). Feature importance based
on maximum decrease in Gini coefficient is used to manually select

1 Given the same cross validation scheme is used to both select the
hyperparameter values that provide the desired number of genes and
to evaluate classification performance, it is acknowledged the
performance estimate is biased as a result, however given the low
sample sizes of the Neonatal Sepsis datasets, a hold out test set is
deemed impractical
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the most discriminative genes with respect to the target condition
(Bommert et al., 2020). The top 30 genes by feature importance are
selected for the IBD and Sepsis 2 datasets, and the top 10 are selected
for the Sepsis 1 dataset. A final model is retrained on the full dataset
using only the selected features, and the predictions on the out-of-
bag samples used to evaluate classification performance.

2.7 Performance evaluation

2.7.1 Classification performance measurement
Classification performance is evaluated using the F1 score

(Chinchor, 1992), a widely used metric for evaluating ML
classification performance, in particular where the two
experimental groups under consideration are of different sizes, as
is the case here. F1 score is the harmonic mean of the Sensitivity (also
known as Recall) and Positive Predictive Value (PPV, also known as
Precision), as defined in Eq. 4, and gives a value in the range 0–1.

F1 � 2 · Sensitivity · PPV
Sensitivity + PPV

(4)

A baseline F1 score can be derived by assuming that a ‘dumb’
classifier predicts all patients to be the positive class (e.g., sepsis), in
which case the F1 score simplifies to 2p/(p + 1), where p is the
probability of a positive example in a given dataset.

2.7.2 Feature stability measurement
To estimate gene set stability with and without gene filtering,

training and gene selection was repeated on M 90% random
stratified sub-samples of the unfiltered and filtered data (with
M = 100), producing gene sets k1, k1, . . . ,kM in each case.

In the context of transcriptomic biomarker discovery, given the
high level of correlation between features, two feature sets may contain
different genes that are however correlated as a result of related
biological function. Feature selection algorithms may only select one
of a number of correlated features, and therefore if these correlations are
not taken into account, stability may be underestimated (Sechidis et al.,
2019). The recently reported stability measure by Sechidis et al. (2019)
was considered for this work, however was found to be computationally
expensive to compute using our very high dimensional datasets. Thus,

gene set stability over the M gene sets is calculated using the measure
proposed by Zucknick et al. (2008) that meets the majority of desirable
properties of a stability measure (Nogueira et al., 2018; Bommert, 2020),
takes into account the correlation between genes in the dataset and is
bounded between 0 and 1, aiding comparisons between datasets. The
Zucknick stability over M gene sets is the mean pairwise correlation-
extended Jaccard index between set Vi and Vj, defined in Equation 5.
The intersection term is supplemented by a correlation factor C(Vi, Vj)
defined as the mean absolute correlation R(x,y) of all genes selected in Vi

with all genes selected in Vj but not in Vi. R(x,y) is thresholded on
parameter τ = 0.5, to avoid computing the effect of a large number of
weak correlations.

Φ̂ Z( ) � 2
M M − 1( ) ∑M−1

i�1
∑M
j�i+1

|Vi ∩ Vj| + C Vi, Vj( ) + C Vj, Vi( )
|Vi ∪ Vj|

C Vk, Vl( ) � 1
|Vl| ∑

x,y( )∈Vkx Vl\Vk( )
1(R x,y( ) > τ)

∣∣∣∣R x,y( )
∣∣∣∣

1(R x,y( ) > τ) � 1, if R x,y( ) > τ
0, otherwise

{
(5)

3 Results and discussion

The experimental results describe how gene filtering impacts the
classification performance and stability of the gene sets selected by
the three supervised ML approaches (eNet, L1-SVM and RF), and
evaluates the biological relevance of the resulting sepsis biomarkers
in the context of previously validated gene signatures.

3.1 Filtered genes

The derived low counts maximum filter thresholds for the IBD,
Sepsis 1 and Sepsis 2 datasets were calculated as t* = 13, t* = 11, and
t* = 60 respectively. The corresponding number of genes filtered out
by the low counts, influential outlier and combined low counts and
influential outlier filters are given in Table 1. The notable differences
in the original number of genes reflects the different sequencing
depths and technologies used for these cohorts.

FIGURE 2
Gene selection performance and stability evaluation.
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The three datasets illustrate the potential variability in the
proportion of genes that may be removed by filtering. The Sepsis
1 and Sepsis 2 datasets have a higher proportion of genes with low
counts with 53% and 63% of the genes removed by the low counts filter
respectively, compared with only 19% for the IBD dataset. The IBD
dataset has a proportionally higher number of genes with influential
outlier values, with 7% of genes removed by the outlier filter.

3.2 Gene Selection Frequency of low count
and outlier genes

Figures 3, 4, 5 show the frequency of selection of all genes over
M = 100 sub-samples of the three unfiltered datasets for each of the
three ML gene selection approaches. In each plot, a bar on the
horizontal axis represents a gene ID that is selected at least once over
all sub-samples. The vertical axis gives the frequency that each gene
is selected over 100 sub-samples. Genes selected by classifiers in the
unfiltered dataset that would have passed both filters are labelled in

red (Retained), selected genes that would have been filtered out by
applying a low counts filter are labelled in green (Low Count), while
those that would have been filtered out by the outlier filter are
labelled in blue (Outlier).

It is striking that low count genes are selected in all datasets and
by all classifiers, with the exception of RF with the IBD dataset. In
both of the sepsis datasets, the majority of L1-SVM gene selections
are low count genes, and low count genes represent the most
frequently selected gene in the by eNet in the Sepsis 1 dataset
and by L1-SVM in the Sepsis 2 dataset. RF appears to be the most
robust to low count genes across all datasets. Influential outlier genes
are also selected by the eNet and RF classifiers in both of the sepsis
datasets, albeit at a lower frequency compared with low count genes
likely due to the small number of genes identified as containing
outlier read counts. These results clearly illustrate how, without
prior filtering out of low count and influential outlier genes, ML gene
selection is at risk of actively selecting non-informative and biasing
genes that happen to be statistically useful in classifying the training
examples, and as illustrated here, these non-informative genes can
dominate the resultant patterns. This highlights the need for a
considered and objective approach to filtering prior to
conducting ML analysis.

3.3 Performance impact of gene filters

Table 2 outlines the F1 scores achieved on classifying the
validation set (eNet and L1-SVM) or out-of-bag samples (RF)
without filtering, with each filter applied independently and with
the combined filters. The F1 scores for the L1-SVM and RF models
are a mean value over ten repeated measures, and the mean and
standard deviation are given, along with p-values of a t-test of mean
F1 score for filtered vs. unfiltered cases, with the null hypothesis of
equal means. The baseline F1 scores achieved by a dumb model
predicting all examples as positive are 0.56 for IBD, 0.50 for Sepsis 1,
0.42 for Sepsis 2.

All three classifiers achieve significantly higher than baseline
performance on the IBD dataset, and classification performance is
significantly improved by both the low counts and outlier filters. The
performance scores for the Sepsis 1 dataset should be treated with
some caution, given the small number of examples, with only

TABLE 1 Filtered genes.

Original Retained Filtered % filtered

IBD

Low Count 22,656 18,278 4,378 19

Outlier 22,656 21,052 1,604 7

Low Count + Outlier 22,656 16,674 5,982 26

Sepsis 1

Low Count 28,325 13,361 14,964 53

Outlier 28,325 28,111 214 1

Low Count + Outlier 28,325 13,173 15,152 54

Sepsis 2

Low Count 55,574 20,606 34,968 63

Outlier 55,574 54,942 632 1

Low Count + Outlier 55,574 20,176 35,398 64

FIGURE 3
Gene selection frequency: IBD
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6 infants in the sepsis group. However, despite the eNet and L1-SVM
models failing to perform better than the baseline in the unfiltered
data, filtering again appears to improve performance. RF
performance appears unchanged by gene filtering. Nevertheless, it
can be said that removing over 50% of the genes in the Sepsis
1 dataset has not detrimentally impacted RF performance (all
p-values are much greater than 0.05). Similarly, in the Sepsis
2 dataset, all models achieve above baseline performance, and the
performance of eNet and L1-SVM is significantly improved by low
count filtering and not negatively impacted by outlier filtering.
Again RF performance is not significantly impacted by filtering.
These results are consistent with previous studies on the impact of
noise in feature data on machine learning classification
performance. Zhu and Wu (2004) and Hasan and Chu (2022)
both demonstrate that ML classification performance is
materially improved by systematic removal of noise in feature
data. By removing non-informative and biasing genes, the risk
that such genes are used to construct a model is reduced,
resulting in models that are better able to generalise to unseen
patient data. In short, gene filtering reduces the risk of overfitting.

The consistent performance improvements across all three
datasets using the eNet and L1-SVM models also indicate that
gene filtering strategies are relevant to datasets with very different

sample sizes (n = 434 for IBD compared with n = 18 for Sepsis 1),
including datasets with very small sample sizes.

Comparing the performance of the three classifiers, in the
Sepsis 1 and Sepsis 2 datasets, where 50%–60% of genes are
removed by the low counts filter, RF achieves significantly better
classification performance than eNet and L1-SVM, in particular
where no filtering is applied. This result is consistent with the
findings of (Hasan and Chu, 2022) that RF achieves relatively
higher classification performance than a range of other classifiers
in the presence of high levels of feature noise over a range of
datasets.

One point of caution in interpreting these results: although the
dimensionality of the datasets have been significantly reduced by
gene filtering, and classification performance is improved on the
validation set in the majority of cases, the F1 scores should be
interpreted in relative terms only. The risk remains that these
classifiers are somewhat over fit to these relatively small datasets,
and further work is required using a larger number of samples to
characterise the true classification performance on new data.

A similar picture is seen in relation to gene set stability as
outlined in Table 3.

For the L1-SVM and RF classifiers, feature set stability is shown
increase in all three datasets when genes are filtered prior to model

FIGURE 4
Gene selection frequency: Sepsis 1.

FIGURE 5
Gene selection frequency: Sepsis 2.
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TABLE 2 Gene filter impact on classification performance.

eNET L1-SVM RF

Filter F1 Mean F1 Sd p-value Mean F1 Sd p-value

IBD

None 0.885 0.703 0.005 — 0.703 0.007 —

Low Count 0.891 0.728 0.005 < 0.001 0.724 0.011 < 0.001

Outlier 0.895 0.725 0.002 < 0.001 0.718 0.008 < 0.001

Low Count + Outlier 0.898 0.735 0.002 < 0.001 0.718 0.010 0.0014

Sepsis 1

None 0.500 0.286 0.000 — 0.982 0.038 —

Low Count 0.667 0.800 0.000 — 1.000 0.000 0.168

Outlier 0.500 0.286 0.000 — 0.992 0.029 0.556

Low Count + Outlier 0.667 0.800 0.000 — 0.973 0.044 0.628

Sepsis 2

None 0.762 0.671 0.071 — 0.944 0.021 —

Low Count 0.818 0.731 0.011 0.026 0.949 0.017 0.580

Outlier 0.762 0.709 0.036 0.154 0.949 0.017 0.580

Low Count + Outlier 0.870 0.734 0.015 0.021 0.957 0.000 0.082

The bold values are the highest scoring filter for each dataset.

TABLE 3 Gene filter impact on feature stability.

eNET L1-SVM RF

Filter Avg. No. Selected Stability Avg. No. Selected Stability Avg. No. Selected Stability

IBD

None 27.8 0.470 35.6 0.491 30 0.835

Low Count 27.9 0.474 24.7 0.545 30 0.841

Outlier 27.9 0.449 28.4 0.559 30 0.833

Low Count + Outlier 27.7 0.458 25.0 0.548 30 0.839

Sepsis 1

None 11.6 0.581 6.400 0.479 10 0.410

Low Count 9.7 0.548 5.646 0.549 10 0.462

Outlier 9.7 0.583 6.121 0.510 10 0.430

Low Count + Outlier 9.7 0.547 5.485 0.544 10 0.485

Sepsis 2

None 27.6 0.369 26.8 0.278 30 0.552

Low Count 25.3 0.426 22.7 0.392 30 0.588

Outlier 27.2 0.377 27.8 0.268 30 0.562

Low Count + Outlier 25.0 0.424 21.9 0.382 30 0.603

The bold values are the highest scoring filter for each dataset.
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training. This is particularly clear for the low counts filter. The
stability of the genes selected by eNet show conflicting results, with
stability decreasing with the application of the outlier filter in the
IBD dataset, and with the application of the low count filter in the
Sepsis 1 dataset. The overall trend however is that filtering out
uninformative genes results in gene sets that are less sensitive to
changes in the data, and therefore likely to be more generalisable to
new patient populations.

Beyond the improvements to classification performance and
feature stability, filtering to remove uninformative and
potentially biasing genes has reduced the dimensionality of
the dataset. This has the further benefits of reducing data
storage requirements and leading to a simpler optimisation
of the model parameters, reducing the computational time
required for analysis.

3.4 Correspondence with known sepsis
biomarkers

A final evaluation of the impact of gene filtering is to determine
the consistency of the genes identified by ML gene selection with
known biomarkers for sepsis. Here, we compare the top 20 most
frequently selected genes over the 100 random sub-samples of the
Sepsis 2 dataset to each of three validated transcriptomic biomarker
signatures. The signatures used are the Sep3 signature identified by
Smith et al. (2014), the 12 gene signature used to compute the
“Sepsis Meta Score” (SMS) reported by Sweeney et al. (2015) and the
19 gene “Extended Signature” used to derive the quantitative sepsis
response signature (SRSq) reported by Cano-Gamez et al. (2022). A
preliminary check is performed to determine whether any of the
genes in these signatures are filtered out by applying the low count
and outlier filters to the datasets. All genes are retained in the filtered
dataset, with the exception of MMP9, removed on the basis of an
outlier read count.

Given the small sample sizes and imbalanced nature of the
neonatal sepsis datasets, any significance or inference from these
investigations with regard new biomarkers cannot be made.
However, the correlation between the biomarkers identified
before and after gene filtering with validated sepsis biomarkers
provides a proxy for biological relevance of the selected genes,
and how this is impacted by gene filtering. The Pearson
correlation coefficient between all pairs of genes in the
normalised and unfiltered data set is calculated. The mean
correlation between the top 20 genes identified by each classifier
using unfiltered and filtered data, and the genes in the three
signatures is calculated for each classifier gene signature pair. The

results are shown in Table 4, and heat maps illustrating the
individual correlations are provided Supplementary Figures S2—S4.

Both the eNet and L1-SVM classifiers select genes that are more
highly correlated with the three known sepsis biomarker signatures
after gene filtering; the difference is marginal for eNet but notably
different for L1-SVM. These results are consistent with the above
observation that the eNet and L1-SVM classifiers selected a
significant proportion of uninformative low count genes when
applied to the unfiltered dataset. Gene filtering improved
classification performance, the stability of the selected genes, and
the correlation of the selected genes with known biomarkers. In the
case of RF, the average correlations of the identified genes with
known biomarkers are lower after gene filtering, consistent with the
observations above RF is more robust to low count genes in
particular, and material improvements in performance are not
observed when gene filtering is applied.

4 Conclusion

Biological data is noisy. RNA-Seq count data contains multiple
sources of technical and biological noise that can bias ML
classification algorithms used in biomarker discovery, resulting in
misleading conclusions. In this short study, we have empirically
demonstrated the value of independent filtering of genes in RNA-
Seq data sets prior to ML gene selection. We have shown that three
popular ML algorithms used for gene selection, eNet, L1-SVM, and
RF all selected low count and influential outlier genes without filtering
first being applied in a range of experimental datasets. We have also
demonstrated that gene filtering can improve the classification
performance and stability of the resulting gene signature, despite
eliminating over 50% of the initial variables. In the case of L1-SVM,
we have demonstrated that classification performance is especially
improved by employing a low counts filter. Filtering out unnecessary
genes brings the additional benefit of working with smaller data sets,
reducing computational time and data storage requirements. We also
find in the data sets analysed in this study that RF is more robust with
small sample sizes to the presence of low counts genes, although this
requires further validation to assess generality. In the light of these
findings, we offer a number of guidelines on gene filtering to
researchers using ML for sepsis biomarker discovery using RNA-
Seq data.

1. The performance of gene selection models is very likely to be
improved by removing technical and biological stochastic noise
from RNA-Seq data, such as very low and outlier read counts. A
systematic objective approach should be adopted to filter

TABLE 4 Mean correlation between genes identified and known sepsis biomarker signatures.

Gene signature Sep3 Sepsis meta score SRSq-extended

Filter eNet L1-SVM RF eNet L1-SVM RF eNet L1-SVM RF

None 0.319 0.279 0.432 0.404 0.351 0.52 0.270 0.232 0.336

Low Count + Outlier 0.340 0.322 0.415 0.408 0.397 0.51 0.276 0.294 0.326

Difference 0.021 0.043 (0.017) 0.004 0.046 (0.010) 0.006 0.062 (0.010)
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transcripts to remove such effects, identifying as best as possible
the boundary between noise and true biological signal in
preference to applying arbitrary thresholds.

2. Include feature set stability in the evaluation metrics for any
biomarker discovery analysis. Use stability improvements as well
as classification performance to refine gene filtering thresholds
and approaches.

3. Compare genes that are filtered out with validated biomarkers for
the condition of interest and use this to sense check filter
thresholds.

4. In noisy datasets, and where gene filtering appears to remove
potentially relevant biomarkers, employ classifiers such as
Random Forest, more likely to be robust to the noise in the data

A number of areas are identified for further work. Firstly, this
work only considers a single approach for low count gene filtering
and influential outlier detection. Multiple other methodologies
exist in the literature, and further work is needed to evaluate their
impact on ML classification performance, and how best to set a
filter threshold in the context of ML gene selection analysis.
Secondly, the impact of additional filters, whether to reduce
other sources of technical noise and bias beyond low and
outlier counts, and gene filters based on biological criteria
should be investigated for their impact on ML performance.
Thirdly, the work should be extended to a broader range of
ML classifiers and datasets to be able to draw firmer
conclusions on the level of gene filtering required for a specific
class of classifier. Finally, in the case of sepsis biomarker
discovery, a broader patient population is required for analysis
to be able to confidently declare novel discriminate biomarkers
for sepsis using the approaches described here.
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