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The sensitivity of current searches for gravitational-wave bursts is limited by non-Gaussian, nonsta-
tionary noise transients which are common in real detectors. Existing techniques for detecting
gravitational-wave bursts assume the output of the detector network to be the sum of a stationary
Gaussian noise process and a gravitational-wave signal. These techniques often fail in the presence of
noise nonstationarities by incorrectly identifying such transients as possible gravitational-wave bursts.
Furthermore, consistency tests currently used to try to eliminate these noise transients are not applicable to
general networks of detectors with different orientations and noise spectra. In order to address this
problem we introduce a fully coherent consistency test that is robust against noise nonstationarities and
allows one to distinguish between gravitational-wave bursts and noise transients in general detector
networks. This technique does not require any a priori knowledge of the putative burst waveform.
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I. INTRODUCTION

Gravitational-wave bursts (GWBs) are among the most
exciting classes of signals that large-scale, broadband in-
terferometric gravitational-wave observatories [1–4] will
attempt to detect. Potential sources of GWBs include
merging compact objects [5–13], core-collapse supernovae
[14–18], and gamma-ray burst engines [19]; see [20] for an
overview.

A common feature of many GWB-emitting systems is
that the signals they produce have not yet been accurately
modeled. These signals often depend on complicated (and
interesting) physics, such as dynamical gravity and the
equation of state of matter at nuclear densities. While
this makes GWBs an especially attractive target for study,
our lack of knowledge also limits the sensitivity of searches
for GWBs. In particular, real detectors exhibit non-
Gaussian, nonstationary noise ‘‘glitches.’’ Current GWB
detection schemes assume the detector output to consist of
stationary Gaussian background noise plus (possibly) a
transient GWB; noise glitches which sometimes occur in
coincidence in multiple detectors are found by these de-
tection schemes and falsely appear as candidate GWBs. In
matched-filter searches, where the signal waveform is
assumed to be known a priori, the �2 of the fit of the
predicted waveform to the data can be used to eliminate
noise glitches; see for example [21,22]. For GWBs, how-
ever, current source models are not sufficiently accurate to
permit such a comparison. Without a robust means of
distinguishing GWBs from noise glitches, reducing the
false alarm rate requires raising the search detection

thresholds, thereby limiting the sensitivity to real, weak
GWBs. Consistency tests that can distinguish between
GWBs and noise glitches would allow us to avoid this
sensitivity loss. Furthermore, the ability to eliminate ter-
restrial noise and establish the astrophysical origin of a
signal will be valuable for making a confident first detec-
tion of gravitational waves.

To combat noise glitches, recent GWB searches by the
LIGO Scientific Collaboration [23,24] have introduced
consistency tests that are designed to accept true GWBs
while rejecting noise glitches. The first is a cross correla-
tion test based on Pearson’s r statistic [25]. For each a
candidate signal, the data from the detectors are whitened,
and the correlations between each detector pair are com-
puted. The candidate signal is considered a possible GWB
if a certain measure of the combined signficance of the
correlations exceeds a threshold. Since the r-statistic test is
insensitive to the overall amplitude of the transients in the
different detectors, a second test then compares the signal
amplitude as measured by the two co-aligned LIGO-
Hanford detectors (which should see the same amplitude
for a GWB).

These consistency tests have been shown to be effective
at reducing the false alarm rate in the LIGO detector net-
work with little loss in detection efficiency. However, they
also have significant weaknesses that limit their applica-
bility to more general networks. For example, thresholding
on cross correlations effectively assumes that any GWB
signal has only a single independent polarization.
Furthermore, the r-statistic test does not take into account
differences in the antenna response of detectors in the
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network, or differences in the detector noise spectra.
Similarly, the amplitude consistency test is only effective
for the co-aligned detectors at Hanford, so that amplitude
information from the Livingston detector is not used. In
essence, these tests are based on the assumption that one
can ignore differences in orientation (antenna response)
and noise levels between detectors in a network. As a
consequence, these tests have not been applied in GWB
searches with more general networks, such as the LIGO-
TAMA network [26], and are fundamentally unable to
make the most effective use of the new global network of
gravitational-wave observatories.

In this article we introduce a new consistency test for
discriminating GWBs from noise glitches in networks of
gravitational-wave detectors. This test is fully coherent in
that it combines data (using both amplitude and phase)
from multiple detectors, taking into account the time de-
lays and antenna responses appropriate for the source sky
position, the noise spectra of the detectors, and the two-
polarization nature of GWBs. It is based on the principles
of coherent network analysis for GWBs and takes full
advantage of the global detector network.

In order to gain insight into our consistency test, it is
useful to review briefly some basic concepts behind coher-
ent network analysis for GWBs. Coherent analysis of data
from a network of detectors spaced across the globe in-
herently provides much more information about the gravi-
tational wave and its source than can be obtained from co-
located and co-aligned detectors. With a network of three
or more interferometers, for instance, one has in principle
sufficient information for good signal-to-noise ratios
(SNRs) to infer the direction to the source. This informa-
tion could be crucial for corroborating a detection with
electromagnetic observations (optical, x ray, or radio) and
extracting the maximum scientific information from a
gravitational-wave signal. Such a network also has enough
information to reconstruct the two independent polariza-
tion amplitudes of the wave. This is possible because three
interferometers provide three independent measures of the
gravitational wave (which are functions of time) and two
independent time delays. If we consider the geometrical
plane passing through the three sites of the interferometers,
the two independent time delays jointly identify two pos-
sible points in the sky where the signal could have come
from that are mirror images of each other with respect to
this plane; see Fig. 1. Since the detector antenna patterns
are not symmetric with respect to this plane, it is further
possible to resolve this two-fold ambiguity by properly
accounting for the antenna pattern asymmetry in the analy-
sis of the data. Once the sky position has been determined it
is straightforward to make a minimum variance estimate of
the two-polarization waveform of the GWB as linear com-
binations of the detector data streams. The extraction of
this information from the combined responses of the indi-
vidual detectors of the network is called the ‘‘solution of
the inverse problem’’ in gravitational-wave astronomy.

The inverse problem for gravitational-wave bursts with a
network of three wide-band, widely separated detectors
was first solved by Gürsel and Tinto [27]. Their technique,
which is referred to in recent literature as the null-stream
method, relies on the observation that a gravitational-wave
burst present in the data of a network of three wide-band
detectors must satisfy a unique closure condition. Gürsel
and Tinto studied a two-parameter family of linear combi-
nations of the three data sets, in which the two parameters
correspond to the two angular coordinates of the hypothe-
sized sky location of the source. They showed that when
the two parameters coincide with the true location of the
source then the gravitational-wave burst is cancelled pre-
cisely in the linear combination. This point is located by
applying a least-squares minimization (i.e., a �2 test) to the
linear combination. In [27] it was also shown that this
condition holds regardless of the time dependence of the
two-polarization waveform of the burst. This remarkable
result makes this method very powerful for solving the
inverse problem since it does not require a priori knowl-
edge of the burst waveforms.

Flanagan and Hughes [6] and later Anderson, Brady,
Creighton, and Flanagan [28] generalized the Gürsel-Tinto
coherent analysis using a maximum-likelihood formula-
tion and showed how coherent techniques could be used for
signal detection as well as the inverse problem. Several
extensions of the maximum-likelihood approach for GWB

FIG. 1 (color online). Geometry of the network and travel
times spent by a GWB to propagate across a three-detector
network (detectors H, L, and V). The locus of constant time
delay between two detectors form a ring on the sky concentric
about the baseline between the two sites. For three detectors,
these rings may intersect in two locations. One is the true source
direction, S, while the other (S0) is its mirror image with respect
to the geometrical plane passing through the three sites. This
two-fold ambiguity can be resolved by further considering the
amplitudes of the responses. For four or more detectors there is a
unique intersection point of all of the rings.
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detection have been proposed recently by Klimenko,
Mohanty, Rakhmanov, and Mitselmakher [29–32]. Other
coherent detection algorithms have been proposed by
Sylvestre [33] and by Arnaud et al. [34]; these methods
form a coherent sum of the data from different detectors
weighted so as to maximize signal energy.

As pointed out in [35–37], the null-stream method could
also be used for discriminating gravitational-wave bursts
from noise-triggered fluctuations affecting the data of the
detectors. Put simply, uncorrelated noise glitches should
not cancel in the null stream. In principle, therefore, they
can be vetoed by setting a threshold on the maximum
allowable �2 value. In practice, however, a �2 veto test is
vulnerable to effects that prevent precise cancellation of
strong GWBs, such as calibration errors. It also can be
ineffective for weak glitches, for which there are often sky
positions which yield �2 � 1 per degree of freedom even
though the glitches are uncorrelated. A �2 threshold which
is high enough to pass a GWB with poor data calibration
may also pass a weak glitch. A �2 threshold which is low
enough to reject the glitch may also reject the GWB.

In this paper we propose a modified null-stream-based
technique for discriminating GWBs from noise glitches.
This test compares the energy in the null stream to that
expected if the transients in the detectors are uncorrelated.
This second energy measure, which we call the incoherent
energy, provides an effective measure of the significance of
the �2 test and renders it robust against both calibration
uncertainties and weak glitches. Like the Gürsel-Tinto
analysis for determining the source direction, our null-
stream consistency test does not require any a priori
knowledge of the GWB (or glitch) waveforms.
Furthermore, while this test is based on the principles of
coherent network analysis, it can be applied to candidate
GWBs detected by any scheme, whether coherent or
incoherent.

Our paper is organized as follows. In Sec. II we show
that there exists a very general and elegant procedure for
deriving the null stream for an arbitrary number of detec-
tors with colored noise. We then address the issue that the
null-stream �2 alone can not reliably distinguish between a
gravitational-wave burst and noise-generated glitches. This
is done by introducing a complementary energy measure,
the incoherent energy, and demonstrating that GWBs and
glitches separate in the two-dimensional space of null and
incoherent energies. This allows us to identify and hence
veto noise-generated events.

In Sec. III we discuss the results of the numerical
simulation of our statistical test applied to the LIGO-
Virgo 3-detector network. We assume the three interfer-
ometers to be working at the LIGO design sensitivity and
quantify the ability of our method to distinguish true
GWBs from coincident noise glitches. Although our nu-
merical implementation is not optimized for the signals
under consideration, it indicates that gravitational-wave

bursts observed in each detector with SNRs of about 10–
20 can reliably be distinguished from noise glitches of
similar energy, and that a significant improvement over
the statistics based on the null-stream �2 alone is achieved.
Our conclusions and future work plans are presented in
Sec. IV.

II. ANALYSIS

Three or more detectors provide redundant measure-
ments of the two polarization components h�, h� of a
gravitational wave. It is therefore possible to construct
linear combinations of the data streams that do not contain
any gravitational-wave component, i.e., that consist only of
detector noise. In this section we derive these linear com-
binations, known as ‘‘null streams,’’ for networks contain-
ing an arbitrary number of detectors whose noises are
different and colored. This derivation is a generalization
of the method used by Gürsel and Tinto [27] to solve the
inverse problem. It is equivalent to the maximum-
likelihood formulation of Flanagan and Hughes [6].

A. Conventions

The conventions used for the notation in this report are
described in Table I.

For a plane [38] gravitational-wave incident from a
direction �̂s, the strain h�;� at the position ~r� is related
to that at some (arbitrary) reference position ~r0 by

 h�;��t� �t���̂s�; ~r�� � h�;��t; ~r0�; (1)

where the time-delay �t���̂s� is given by

 �t���̂s� �
1

c
� ~r0 � ~r�� 	 �̂s: (2)

We can therefore compare the gravitational-wave signals
measured by detectors at different locations by shifting the
time-series data from each detector according to (2), pro-
vided we know the sky location of the source.

The time-series signal produced in detector � at ~r� is
 

d��t� �t���̂s�� � F�� ��̂s�h��t� � F
�
� ��̂s�h��t�

� n��t��t���̂s��: (3)

Here n� is the stationary strain-equivalent background
noise of detector �, and F�� , F�� are the antenna response
functions [27] for detector � for the sky position �̂s of the
gravitational-wave source. For brevity, we write h�;��t� �
h�;��t; ~r0�.

B. Null-stream construction

Let us assume for the moment that we know the direc-
tion �̂s to the source. Then we can time-shift the data from
each detector as in (3), and drop explicit references to the
time delays �t� and the sky position. Transforming to the
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Fourier domain, Eq. (3) becomes

 

~d ��f� � F�� ~h��f� � F�� ~h��f� � ~n��f�: (4)

The Fourier transform and its inverse are defined by

 

~d ��f� �
Z �1
�1

d��t�e�2�iftdt;

d��t� �
Z �1
�1

~d��f�e2�iftdf:
(5)

The one-sided strain noise power spectral density S��f� of
the stationary noise n� is given by

 h~n��f�~n
��f
0�i �

1

2
�����f� f0�S��f�: (6)

For present detectors, S��f� is a strongly varying function
of frequency. Since it will prove convenient to work with
white-noise data, without loss of generality we divide the
strain data at each frequency by the estimated amplitude
spectrum

�����������������
S��f�=2

p
of the corresponding detector noise.

The whitened data ~dw� is then given by

 

~d w��f� �
~d��f������������������
S��f�=2

p
� F�w� ~h��f� � F�w� ~h��f� � ~nw��f�; (7)

where the nw��t� are unit Gaussian noise processes and
F�;�w� are the noise-weighted antenna responses

 F�;�w� ��̂s; f� �
F�;�� ��̂s������������������
S��f�=2

p : (8)

The F�;�w� contain all of the information on the detector
sensitivities, both as functions of frequency and source sky
position.

For a network of D detectors, Eq. (7) can be written in
the equivalent matrix form

 

~dw1
~dw2

..

.

~dwD

2
66664

3
77775 �

F�w1 F�w1

F�w2 F�w2

..

. ..
.

F�wD F�wD

2
66664

3
77775 ~h�

~h�

" #
�

~nw1

~nw2

..

.

~nwD

2
66664

3
77775; (9)

or

 

~d w � Fw
~h� ~nw; (10)

where we use boldface to denote vectors and matrices.
Here

 

~h �
~h�
~h�

" #
; (11)

and the matrix Fw is defined as

 F w��̂s; f� � �F�w F�w � �

F�w1 F�w1
F�w2 F�w2

..

. ..
.

F�wD F�wD

266664
377775: (12)

This form makes it clear that, regardless of the functional
form of ~h�;�, the gravitational-wave burst can only con-
tribute to the network output along the directions F�w and
F�w . The construction of null streams is thus obvious: we
simply project the data ~d orthogonally to these directions.
Formally, we select a new orthonormal Cartesian coordi-
nate basis ei for the space of ~d in which vectors eD�1 and
eD span F�w and F�w . The remaining basis vectors
e1; . . . ; eD�2 are then orthogonal to F�w and F�w ,

 F�w 	 ei � 0 � F�w 	 ei i 2 f1; . . . ; D� 2g: (13)

We say that the ei�1;...;D�2 form an orthonormal basis for
the null space of Fw

T [39], hence the term ‘‘null-stream
formalism.’’ We then construct a �D� 2� �D matrix A
whose rows are the components of this orthonormal basis,

 A ��̂s; f� �

eT1
..
.

eTD�2

2664
3775: (14)

TABLE I. Notation conventions for commonly used quantities in this paper.

D Number of detectors in the network
�, � 2 �1; . . . ; D� Index specifying detector
X (Boldface) a vector or matrix on the space of detectors
XT Matrix transpose of X
N Number of data samples from each detector being analyzed
j, k 2 �0; . . . ; N � 1� Index specifying time or frequency sample
h�, h� ‘‘Plus’’ and ‘‘cross’’ polarization waveforms of the gravitational wave
�̂s Sky position of the gravitational-wave source
�̂ Trial sky position
d, n, F Data, noise, and antenna responses in strain
dw, nw, Fw Noise-weighted (whitened) data, noise, and antenna responses
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By construction A is orthogonal to F�w and F�w , so

 AFw � 0: (15)

We obtain the null streams ~z by applyingA to the network
data vector:

 

~z � A~dw � AFw
~h�A~nw � A~nw: (16)

The two independent strain components ~h�;� are canceled
out as a consequence of the definition (13) of the null
space, making each ~z� a null stream.

For example, the three-detector case considered by
Gürsel and Tinto [27] is particularly simple. In this case
the matrix A is equal to

 A �
F�w � F

�
w

jF�w � F
�
w j
: (17)

This is illustrated schematically in Fig. 2. In the general
case A can be obtained via singular value decomposition
[40] or by explicitly constructing the associated projection
operator (see [32] or Appendix B for details).

Note that A is a function of the sky position [through
F�;�� ��̂s�] and frequency [through S��f�]. The GWB will
only be cancelled when A is evaluated for the correct
source location, since generally

 A ��̂; f�Fw��̂
0; f� � 0: (18)

In the next subsection we will discuss how to deal with the
case where the source location is not known.

In the preceding discussion we have assumed implicitly
that F�w and F�w are independent. In the general case the
number of independent null streams is D� r, where r is
the number of independent columns of F, i.e.

 r � rank�Fw�: (19)

There are two cases:
(1) If at least one detector in the network has a different

alignment from the others then F�w and F�w are
independent and rank�Fw� � 2. In this case there
areD� 2 null streams, and the method is applicable
to networks of D  3 detectors.

(2) If all detectors in the network are aligned then F�w /
F�w and rank�Fw� � 1. In this case there are D� 1
null streams, and the method is applicable to net-
works ofD  2 detectors. Although in this paper we
will concentrate on case 1, i.e. three or more non-
aligned interferometers, we emphasize that our
method works also with aligned detectors.

C. Null-stream analysis

Since the ei are orthonormal by construction, it follows
that

 AAT � I�D�2���D�2�: (20)

This implies that for a GWB each null-stream ~z� is a
Gaussian random process of unit variance and is uncorre-
lated with ~z�, for all � � �. This is the main advantage of
the null-stream formalism over incoherent techniques: the
noise distribution of the projected network data is known a
priori, regardless of the form of, h�;�, under the assump-
tion that a GWB from a particular direction is present. This
allows us to perform statistically significant tests of the
network data, in particular, to test the hypothesis that a
GWB from a given direction is present.

Since data from gravitational-wave detectors are
sampled and digitized, in what follows we will consistently
use discrete notation in our analysis of the statistics of the
null stream. Our conventions for discretely sampled data
are as follows: the Fourier transform pair becomes

 ~x�k� �
XN�1

j�0

x�j�e�i2�jk=N; x�j� �
1

N

XN�1

k�0

~x�k�ei2�jk=N;

(21)

where N is the number of data points in the time domain.
Denoting the sampling rate by fs, we can convert from
continuous to discrete notation using x�t� ! x�j�, ~x�f� !
f�1
s ~x�k�,

R
dt! f�1

s
P
j,
R
df ! fsN

�1P
k, ��t� t

0� !

fs�jj0 , and ��f� f0� ! Nf�1
s �kk0 . For example, the one-

sided strain noise power spectrum S��k� is

 h~n
��k�~n��k0�i �
N
2
����kk0S��k�: (22)

We will whiten the data by applying a zero-phase whiten-
ing filter [41,42], and our normalization convention for
whitened data is

 h~n
w��k�~nw��k
0�i � ����kk0 : (23)

F
D

Fw

wd

2 dimensional
column space

of

Az

F+

F +

~

~

w

w

wnull space of
−2 dimensional

FIG. 2. Geometry of the null-stream construction for the 3-
detector case. The null stream is obtained by projecting the data
along the vector A, which is orthogonal to F�w and F�w . For D
nonaligned detectors A has D� 2 dimensions.
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The energy in the null streams is

 Enull �
XD�r
��1

XN�1

k�0

j~z��k�j2: (24)

Using (20) and (23) it follows that at the true source
position 2Enull is �2 distributed with 2N�D� r� degrees
of freedom. In this case the expectation value of the null
energy and its variance are both N�D� r�.

Although our considerations so far have assumed the sky
position �̂s of the GWB source to be known a priori, in
practice this may not be the case. Since we know that at the
correct source location the null energy will not contain any
contribution from the signal, a straightforward procedure is
to scan over a grid of sky positions in search of the
minimum of the null energy. Gürsel and Tinto [27] used
time-delay estimates to limit their search to two possible
regions of the sky (the regions around points S and S0 in
Fig. 1). This approach is not applicable when the timing
uncertainty is of the same order as the light travel time
along the shortest baseline between detectors in the net-
work, thus necessitating an all-sky search. (For example,
for the LIGO-Virgo network we consider, the shortest
baseline is 10 ms. The timing uncertainty for each detector
in a recent GWB search [23] was ��2; 5� ms systematic
plus 3 ms statistical. An all-sky scan would be required for
coherent testing of events from this search.) Since the
numerical analysis in [27] implies that the characteristic
angular width of the minimum of the null energy in a
neighborhood of the source location for a GWB with a
central frequency of about 100 Hz is equal to approxi-
mately 10�2 steradian for high SNRs, it follows that an all-
sky search should be performed over a sky grid containing
at least 4�=10�2 resolvable directions. (Our numerical
tests use a conservatively oversampling grid of 104 points.)
In either case, for each trial direction one postulates the
presence of a gravitational-wave signal, forms a linear
combination of the detectors that is orthogonal to a GWB
from that postulated direction, and �2-tests this null stream
for excess energy. If there exists a particular direction for
which there is no excess energy in the null stream, the data
is regarded as consistent with the hypothesis that the
transient is a gravitational-wave burst incoming from the
inferred direction. If, on the other hand, Enull is inconsistent
with a �2 distribution, then one rejects the hypothesis that
the transient is a GWB incoming from that direction. The
best estimate of the source direction is taken as the direc-
tion with minimum �2.

Although the null-stream method does not require
knowledge of the two GWB waveforms for its implemen-
tation, once the source location �̂s has been identified it is
straightforward to reconstruct h�;� from the data them-
selves [27] (if the detectors are all aligned then only one of
the polarizations can be reconstructed.) For completeness,
the minimum-variance estimate of the two waveforms for a
network containing an arbitrary number of nonaligned

detectors is given in Appendix A; see also, for example,
[32].

The null-stream combination of the data from a three-
detector network and the resulting �2 test were first derived
(in a different way) by Gürsel and Tinto [27] for detectors
whose noises are white. They also implemented a near-
optimal filtering procedure to account for colored noise.
Our approach builds on this by generalizing and simplify-
ing the derivation of the null-stream and waveform recon-
struction to networks containing an arbitrary number of
detectors with different colored noises. One can also show
that our geometrical null-stream construction procedure is
formally equivalent to the maximum-likelihood analysis
originally presented in [6]; see [32].

D. Distinguishing GWBs from noise transients

The numerical analysis performed by Gürsel and Tinto
in [27] was not aimed at checking whether the null energy
estimator could distinguish GWBs from noise-induced
glitches. In fact, an analysis based purely on the null stream
runs into difficulty when applied to data containing noise
transients. Strong uncorrelated glitches generally will not
cancel in the null-stream combination because they are not
correlated in amplitude and phase in a way consistent with
a GWB, implying a �2 > 1 per degree of freedom.
However, a null-stream analysis of a real GWB may also
produce �2 > 1 per degree of freedom, due to imperfect
cancellation of the GWB in the null stream. This may
happen for various reasons, such as the use of a discrete
sky grid, inaccurate calibration of the data, or imperfect
whitening of nonstationary data. Thus, an analysis based
purely on the null stream would be forced to either reject
both glitches and GWBs or accept both. Further, counter to
one’s intuition, this problem could get worse with stronger
signals.

Glitches can also fool a null-stream analysis in 3-
detector networks when the transient is weak in at least
one detector. This is because the nonobservation of a signal
by one detector � is always consistent with a GWB inci-
dent from a direction and polarization to which the detector
responses F�w� and F�w� are sufficiently small. For sky
positions with F�w� � F�w� � 0, the null-stream projection
matrix A reduces to

 A �� ! ������; F�w�; F�w� ! 0: (25)

That is, the null stream for this sky position reduces to the
detector in which there is no transient. This gives a �2 per
degree of freedom of order unity regardless of whether the
transient in the other two detectors is due to a GWB or
noise. (Equivalently, when only two detectors observe a
signal, it is always possible to find h�;� that fit the output
of these two detectors.) Thus double-coincident glitches
will always pass a �2 test for certain areas on the sky. And
while networks containing four or more detectors will be
less affected by this problem [43] because the size of the
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region of the sky producing two or more simultaneous,
below-threshold responses is smaller than that for a single
response, it will not be null.

In what follows we propose a simple way to make null-
stream analyses robust against glitches by comparing the
amount of energy in the null streams to that expected if the
transients are uncorrelated. Let us consider how the null-
stream energy Enull depends on the individual detector data
streams dw�. By defining the matrix

 Q � ATA; (26)

we may write (24) in the convenient form

 Enull��̂� �
XN�1

k�0

XD
��1

XD
��1

~d
w��k�Q���k; �̂�~dw��k� (27)

 

�
XN�1

k�0

~d
w1 . . . ~d
wD
h i

Q11 Q12 . . . Q1D

Q21 Q22 Q2D

..

. ..
.

QD1 QD2 . . . QDD

26666664

37777775

�

~dw1

~dw2

..

.

~dwD

2
66666664

3
77777775: (28)

Note that the null energy contains contributions from both
cross correlation (~d
w� ~dw�) and autocorrelation (~d
w� ~dw�)
terms. If the signals in the various detectors are indepen-
dent (as one might expect for noise glitches), then the
expectation value of the cross correlation terms in (28)
will be small compared to that of the autocorrelation terms.
In this case the expectation value of Enull is just the sum of
the diagonal terms in (28):

 mean �Enull��̂�� !
XN�1

k�0

XD
��1

Q���k; �̂�j~dw��k�j
2: (29)

Here the mean is an ensemble average over noise instan-
tiations. This observation motivates the use of a new en-
ergy measure, the incoherent energy Einc, defined as the
autocorrelation contribution to the null energy:

 Einc��̂� �
XN�1

k�0

XD
��1

Q���k; �̂�j~dw��k�j
2: (30)

If the transient signals in the various detectors are not
correlated, then we expect the following approximate
equality to hold:

 mean �Enull� ’ mean�Einc�: (31)

If instead the signals in the detectors are due to a GWB,
then at the correct sky location the GWB contributions

cancel in the null energy, and the following inequality
should hold:

 mean �Enull�<mean�Einc�: (32)

Thus, a distinguishing feature of a GWB is that a signifi-
cant fraction of the energy in the individual detector data
streams is cancelled in the null stream.

In our simulations we test two simple measures of the
degree to which Enull and Einc show the behavior expected
of a GWB. These are the quantities Enull � Einc and
�Enull � Einc�=Einc � Enull=Einc � 1, which represent, re-
spectively, the amount of ‘‘correlated energy’’ and the ratio
of correlated energy to ‘‘uncorrelated energy’’ in the data.
For reference, we will also test Enull alone.

An example is shown in Fig. 3. This figure shows the
incoherent energy versus null energy for a GWB and a
glitch of the same amplitude, evaluated for approximately
104 uniformly distributed sky locations (see Sec. III for
details). We note that for both the GWB and the glitch there
are sky positions for which the null energy is approxi-
mately 1 per degree of freedom, so that the null energy
alone does not distinguish this glitch and GWB. However,
glitches and GWBs scatter differently in terms of the two
energy measures Enull and Einc. This suggests a modified
procedure for distinguishing GWBs from glitches: scan
over the sky and look for directions for which Enull is
significantly smaller than Einc. If there exists a sky direc-
tion for which Enull is sufficiently small compared to Einc,
we conclude that the transient is consistent with a GWB. If
instead there is no direction for which Enull is sufficiently
small compared to Einc, we conclude that the transient is
not a GWB.

Strong GWBs that are not precisely cancelled in the null
stream (due to calibration errors, for example) and have
Enull >N�D� r� will still pass this test because Enull <
Einc. Double-coincident glitches will fail even though
Enull ’ N�D� r� because they have Enull ’ Einc. Put an-
other way, the incoherent energy provides a natural cutoff
in the significance of a �2 per degree of freedom measure-
ment. Intuitively, if the null stream cancels out some large
fraction of the excess incoherent energy, then we expect the
event to be a gravitational wave, even if �2 > 1 per degree
of freedom. The failure to cancel a significant portion of
the incoherent energy will eliminate glitches even if �2 ’ 1
per degree of freedom.

To get more insight into the behavior and usefulness of
these energy measures, let us consider in more detail their
expectation values over noise instantiations. Allowing for
the case in which the transient is not a GWB, we write

 

~d w��k� � ~nw��k� � ~gw��k�; (33)

where gw� denotes the noise-weighted transient as seen in
detector �. For example, if the transient is a GWB from the
direction �̂s, and the tested sky position is �̂, then
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 ~g w��k� �
F�� �k; �̂s�~h��k� � F

�
� �k; �̂s�~h��k����������������

N
2 S��k�

q
� ei2�fsk=N��t���̂���t���̂s��: (34)

The phase term accounts for time-shifting based on the
incorrect sky location �̂ instead of the true but unknown
sky location �̂s.

For simplicity, let us restrict ourselves to the case of
detectors with equal noise spectra, for which Q is inde-
pendent of frequency. Then the noise-weighted transient
signal gw� appears in the null and incoherent energies in
the combination

 �2
�� �

XN�1

k�0

~g
w��k�~gw��k� �
XN�1

k�0

~g
��k�~g��k�

N
2

�����������������������
S��k�S��k�

q ; (35)

which is the noise-weighted cross correlation of the signals
in detectors � and �. The diagonal terms are

 �2
�� �

XN�1

k�0

j~gw��k�j2 �
XN�1

k�0

j~g��k�j
2

N
2 S��k�

$ 2
Z 1
�1

df
j~g��f�j

2

S��f�
: (36)

This autocorrelation term is simply the squared signal-to-
noise ratio of an optimal matched filter for the transient in
detector �, as indicated by the second line of (36).

As an example, let us consider the special case of a
linearly polarized GWB (e.g., with h� � 0), with trial sky
position �̂ and true source position �̂s. In this case the

cross SNR is equal to

 �2
�� !

2

N

XN�1

k�0

F�� �k; �̂s�F
�
� �k; �̂s� �

j~h��k�j2�����������������������
S��k�S��k�

q
� cos�����̂; �̂s� (37)

(only the real part of �2
�� contributes to the energies),

where the phase error is

 

�����̂; �̂s� � 2�
fsk
N
��t���̂� ��t���̂s� � �t���̂�

� �t���̂s��: (38)

The cross SNR �2
�� for � � � is typically of the same

order of magnitude as �2
��, but it is positive or negative

depending on the timing error between pairs of detectors.
As we test different positions on the sky, the timing errors
change and the GWB contributions from the different
detectors move in and out of phase. This will produce
interference fringes in maps of Enull, Enull � Einc, and
Enull=Einc. The location and spacing of these fringes are
determined by the dominant frequency of the signal, the
true sky position of the source, and the detector geometries
and relative locations.

In terms of the SNRs (35) and (36), the expectation
values of the lowest moments of Enull, Einc, and Enull �
Einc are

 mean �Enull� � N�D� r� �
XD
��1

XD
��1

Q���2
��; (39)
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FIG. 3 (color online). Scatter plot of the null and incoherent energies for a simulated GWB (left) and a simulated glitch (right) seen
in a network consisting of the LIGO-Hanford and LIGO-Livingston 4 km detectors and Virgo. In both cases the signal was scaled to
rms SNR of 20 over the three detectors. Each point represents one trial sky position; approximately 104 sky positions in a uniform grid
were tested. The waveforms and detector network used are discussed in detail in Sec. III. The GWB and glitch signals have the same
signal-to-noise ratios and time delays in the individual detectors and so are indistinguishable to incoherent tests. Note that for both the
GWB and the glitch there are sky positions for which the null energy is consistent with noise [Enull ’ N�D� r� � 60 for these
simulations]. However, for the GWB there are also sky positions with Enull � Einc (points above the diagonal); these are due to the fact
that the GWB signal is correlated between the detectors. The glitch signal does not access this portion of the �Enull; Einc� space. This
observation is the basis of our consistency test; we scan over the sky and look for directions where Enull <Einc. The true source
location is indicated by the circle on the GWB plot. Also shown on the GWB plot are the tested sky positions which have the smallest
values of Enull � Einc, Enull=Einc, and Enull. The sky maps for these same simulations are shown in Fig. 4.
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 var �Enull� � N�D� r� � 2
XD
��1

XD
��1

Q���
2
��; (40)

 mean �Einc� � N�D� r� �
XD
��1

Q���
2
��; (41)

 var �Einc� � N
XD
��1

Q2
�� � 2

XD
��1

Q2
���2

��; (42)

 mean �Enull � Einc� �
XD
��1

XD
��1

�1� ����Q���2
��; (43)

and
 

var�Enull � Einc� � N
XD
��1

XD
��1

�1� ����Q2
��

� 2
XD
��1

XD
��1

XD
��1

�1� ����

� �1� ����Q��Q���2
��: (44)

We note that the signal enters Einc only through its SNR
�2
�� in the individual detectors; Einc does not depend on the

structure of the transient signal. As a result, variations in
Einc reflect variations in the network sensitivity due to
noise-weighted geometrical factors (the Q) and do not
contain significant information on the signal. By contrast,
Enull � Einc contains only cross terms and shows the inter-
ference of the signals measured by the different detectors.

For example, Fig. 4 shows half-sky maps of Enull, Einc

and Enull=Einc [note that Enull=Einc � �Enull � Einc�=Einc �
1] for the same GWB and glitch signals used in Fig. 3. The
null energy maps for the GWB and the glitch are very
similar. The GWB and glitch are constructed to have the
same relative time delays and SNRs in the various detec-
tors; as a result, their incoherent energy maps are virtually
identical. Removing this signal-independent structure from
the null energy makes the signal-dependent structure in the
sky maps clearer. In particular, the plot of Enull=Einc for the
GWB shows sharp interference fringes orthogonal to the
Hanford-Livingston and Livingston-Virgo baselines (the
signal was strongest in Livingston and Virgo in this simu-
lation). The sky location of the GWB signal lies on one of
the two intersection points of these interference fringes, so
they can be used to locate the source. Such sharp features
are not present in the corresponding sky map for the glitch,
since the glitch waveforms are not strongly correlated.

We note from (39)–(44) that fractional fluctuations in
the energies scale as N�1=2 for weak signals. Since the
signal-dependent structure scales as �2

��, the basic limit of
purely local measurements of sky maps scales as
�2
��=N

1=2. This is the same scaling as in excess-power
searches [28]. Also, we note that if we restrict our analysis

to a frequency range f � kfs=N 2 �fmin; fmax�, then N in
(39)–(44) becomes the number of frequency bins actually
summed over, and �2 (35) and (36) is to be computed over
the same (positive) frequency range. Combining the above,
we are able to estimate the signal-to-noise ratio at which
the method should become effective. For our simulations
we use the three-site Hanford-Livingston-Virgo network,
for which D� r � 1. We restrict to positive frequencies,
and use N � 60 frequency bins. At the true source direc-
tion on the sky the difference between the incoherent and
null energies has a mean value of approximately 1=2�2

rms,
where RMS refers to the average over the three detectors,
and the factor of 1=2 arises of the restriction f > 0. The
variance of the measurement is approximately 2N. For the
difference to be statistically significant we therefore need
�2

rms > few� �8N�1=2. So, one expects the method to be
effective for approximately �rms > 10.

Finally, we point out that in the high SNR limit the
minimum of the null energy Enull occurs at the source
location [27], which is useful for solving the inverse prob-
lem for bursts. The incoherent energy Einc is not an extre-
mum at the source location, so measures like Enull=Einc and
Enull � Einc cannot directly resolve the source location. As
noted above, however, the clearer signal-dependent struc-
ture in Enull � Einc and Enull=Einc compared to Enull may be
useful for this purpose. In any case, our consistency test
can improve the detection confidence of a gravitational-
wave burst and should be regarded as an essential first step
in solving the inverse problem.

E. Sensitivity of the method to data calibration

The derivation of the null-stream combinations de-
scribed in Sec II B assumed the data from the interferome-
ters to be perfectly calibrated. This means that properly
modeled transfer functions of the interferometer responses
are applied to the raw data in order to obtain strain mea-
surements. In practice, however, the parameters describing
these transfer functions are known with finite accuracy, in
turn preventing the null-stream combinations from exactly
cancelling the GWB signal at the correct source location.
In order to quantify the effect on our method we should
note that the magnitude of the residual signal in the null-
stream combinations will be proportional to the accuracy
by which the calibration parameters are known. For the
LIGO detectors, the calibration parameters are known to
better than 10% [44]. Preliminary studies indicate our
consistency test is robust against calibration errors of this
size; these effects will be studied in more detail in a future
article.

F. Implementation

Our null-stream-based analysis has been implemented
as a publicly available MATLAB package, XPIPELINE [45].
For a specific detector network and event time, XPIPELINE

reads the appropriate data from frame files [46] (the stan-
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dard format for storing data from gravitational-wave de-
tectors), optionally injects GWB signals and/or glitches,
whitens the data, computes the null-stream coefficient
matrix A for each specified sky direction and frequency,
computes the time shifts for each direction, steps through
data in overlapping blocks of user-specified duration, time-
shifts the data to the nearest sample, Fourier transforms it,
completes the time shift with a phase rotation, forms the
null stream in the frequency domain, sums the power in
user-specified frequency bands, and records the null and
incoherent energies for each time-frequency band and
direction. XPIPELINE runs in approximately 1=100 real

time. For example, the analysis of the 104 simulated events
used to produce Figs. 6–11 took approximately 16 h on 4
Intel Pentium 4, 2.66 GHz computers. This makes our null-
stream-based consistency test feasible as a follow-up test in
GWB searches.

III. SIMULATIONS

A. Network and signal types

To test the efficacy of our statistical test in discriminat-
ing GWBs from noise glitches in the �Enull; Einc� space, we

FIG. 4 (color). Sample sky hemisphere maps, normalized to E=�N�D� r��, for the same GWB and glitch signals used in Fig. 3. The
plots on the left are for a GWB with rms SNR of 20 in the three detectors. Those on the right are for a glitch with the same relative time
delays and signal energies in each detector as the GWB. (Note that these two events are indistinguishable to an incoherent analysis.)
The network consists of the LIGO-Hanford (H) and LIGO-Livingston (L) 4 km detectors and Virgo (V). The null energy map (top)
shows interference fringes due to the transient signal, as well as structure due to the network geometry. They are very similar for the
GWB and the glitch. The incoherent energy map (middle) is constructed from the autocorrelations of the individual detector data
streams and reflects variations in the network sensitivity over the sky. It is virtually identical for the GWB and the glitch because the
two events have the same relative time delays and SNRs. Dividing out the incoherent energy from the null energy (bottom) removes
this structure associated with the network geometry, making the signal-dependent structure clearer. The GWB hemisphere map shows
sharp interference fringes (blue and red rings)where the time delays along the H–L, L–V, and H–V baselines match those of the source
location; this is a realization of the sketch in Fig. 1. There is little of such structure in the glitch hemisphere map. The source location in
each map is marked by a circle.
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need to select a detector network, a population of GWBs,
and a population of glitches.

We elect to simulate a network consisting of the LIGO-
Hanford and LIGO-Livingston 4 km interferometers (‘‘H’’
and ‘‘L’’) and a third identical instrument at the Virgo site
(‘‘V’’). For the sake of simplicity we neglect both the
Hanford 2 km interferometer and the differences between
the LIGO and Virgo design sensitivities. The locations ~r�
and orientations (which determine F�, F�) of the inter-
ferometers are taken from [28,47]. The calibrated station-
ary background noise n��j� for H and L are taken from a
standard 24 h reference simulation [48]. The background
noise for V is taken from the Hanford simulation with a 2 s
time shift, which is much larger than the time scales of the
signals used in this analysis.

The next step is to select the GWB and glitch wave-
forms. To simulate a glitch, we need three waveforms (one
for each detector) that are not strongly correlated. To
simulate GWBs we wish to use waveforms that are moti-
vated by astrophysical considerations. Our consistency test
is ultimately based on the fact that for a GWB the signal
seen in each detector is correlated in a particular way,
whereas for a glitch the signals generally will not be
correlated. In order to show that our test does not rely on
any fundamental difference between ‘‘typical’’ GWB
waveforms and typical glitch waveforms, we elect to use
the same set of waveforms for simulating GWBs and
glitches. We select three representative waveforms from
the Dimmelmeier-Font-Mueller (‘‘DFM’’) catalog [15] of
type II core-collapse supernovae. Specifically, we choose
the A1B3G3 ‘‘regular collapse’’ waveform, the A1B3G5
‘‘rapid collapse’’ waveform, and the A3B4G2 ‘‘multiple
bounce’’ waveform. Figure 5 shows the time series and
power spectra of these waveforms. As we shall see below,
these three waveforms have moderately low but nonzero
cross correlations.

To simulate a gravitational-wave signal, one of the three
waveforms is randomly selected and added into the data
stream from each interferometer, with time delays and

scaling appropriate for some choice of polarization angle
and location on the sky. To simulate a glitch we follow the
same procedure, except that a different waveform is se-
lected for each detector. The scaling and time delays
proceed as for a GWB. This population of glitches has
the property that it would pass any incoherent test, as the
arrival times, power distribution, and even frequency bands
are consistent with those of true gravitational-wave signals.
We stress that, though not a realistic glitch population, this
provides us with examples of the kind of pathological
glitches that cannot be dismissed by per-detector methods.

B. Analysis parameters

The main tunable parameters in our analysis are the time
and frequency bands and the sky positions to test. Ideally
the integration time and frequency band should be matched
to the signal being tested, to maximize the signal-to-noise
ratios �2

�� and minimize the background noise contribution
N�D� r�. We choose an integration length of 1=16 s,
which is the smallest power of 2 larger than the durations
of the three sample waveforms tested. We overlap consecu-
tive data segments by 50% to minimize the loss of signal-
to-noise when a signal overlaps the edge of a data segment.
We use a single frequency band [49] of [64 1024] Hz. The
upper frequency limit is set by the highest frequency at
which our target signals have significant power compared
to the noise curve; see Fig. 5. The lower limit is set at 64 Hz
because the actual noise level in current detectors is larger
than the design noise below this cutoff [50].

Once the locations of the detectors and the upper bound
on frequencies involved in the analysis are known, a set of
directions f�̂g covering the sky may be produced. Both the
projection matrix Q (26) and the time delays �t� (2) vary
with angle, but the effect of �t� on the cross correlation
terms occurs on a smaller angular scale for most of the sky.
A simple criteria then is to cover the sky with a maximum
angular mismatch defined by the longest detector baseline
and the maximum frequency. As with all template place-
ment problems we have some freedom in how to produce
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FIG. 5 (color online). Dimmelmeier—Font—Mueller waveforms used to simulate GWBs and glitches in our analysis. Left plot:
time-series waveforms scaled to SNR � 100 for optimal orientation. (The linear trend present in the original waveforms has been
removed.) Right plot: spectra with a 1 Hz resolution; shown for comparison is the LIGO design noise curve used for both LIGO and
Virgo detectors.
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this set and chose a somewhat suboptimal but simple set of
directions—a grid of approximately 104 points uniformly
distributed in � and 	 sin�.

C. Waveform normalization

The DFM waveforms are linearly polarized, which
means that the two polarizations are linearly dependent
and so can be written in the form

 h��t� � cos�2 s�h�t�; (45)

 h��t� � sin�2 s�h�t�; (46)

where  s is the polarization angle. As a result, the strain
signal g� in detector � is

 g��t� � �F�� ��̂s� cos2 s � F�� ��̂s� sin2 s�h�t�: (47)

These waveforms are detrended and normalized against the
interferometer noise curve so that �2

�� � 1 (36) for opti-
mal orientation [the case F�� cos2 s � F

�
� sin2 s � 1, so

that g��t� � h�t�]; i.e., we define the normalization of h�t�
so that

 

XN�1

k�0

j~h�k�j2
N
2 S�k�

� 1: (48)

(Recall that our detectors have identical noise spectra, so
S��k� � S��k� � S�k�.) The cross correlations (35) of the
waveforms depend on their relative time or phase shift;
with this normalization the maximum cross correlations
over all shifts for co-aligned detectors are

 max �f�
2
��g �

� 0:58 �A1B3G3� A1B3G5�
0:26 �A1B3G3� A3B4G2�
0:50 �A1B3G5� A3B4G2�

: (49)

For comparison, typical cross correlation values for
Gaussian noise in our time-frequency band are 0.15–0.2.

To simulate a gravitational-wave signal, one of the three
waveforms A1B3G3, A1B3G5, or A3B4G2 is randomly
selected. An isotropically distributed random sky direction
�̂s and a uniformly distributed polarization angle  s are
chosen. For each detector �, the discrete catalog waveform
h�t� is time-shifted by �t���̂s� (2) and resampled to match
n��j�. The waveform is then scaled by the antenna re-
sponse as in (47) to give g�.

To characterize the efficacy of our consistency test as a
function of the signal strength, we choose to simulate
populations of candidates with the same measured signal-
to-noise ratios; i.e., the signals are scaled so as to deliver a
fixed total SNR to the network. This simulates candidates
near a detection threshold, rather than (for example) a
physical population of standard candles. With the normal-
ization (48) and (47) one finds

 

1

D

XD
��1

�2
�� �

1

D

XD
��1

XN�1

k�0

jg��k�j
2

N
2 S�k�

�
1

D

XD
��1

�F�� ��̂s� cos2 s � F�� ��̂s� sin2 s�2:

(50)

To fix the SNR in the detectors to some rms value �rms, we
apply the further normalization

 g��t� !
g��t��rms������������������������������������������������������������������������������������������

1
D

PD
��1�F

�
� ��̂s� cos2 s � F

�
� ��̂s� sin2 s�

2
q :

(51)

With this scaling we find

 

����������������������
1

D

XD
��1

�2
��

vuut � �rms: (52)

To simulate a population of glitches, the same process
was followed with the sole exception that a different DFM
waveform was selected for each detector. We applied the
same scaling and time delays as for a GWB. This popula-
tion of glitches has the property that it would pass any
incoherent test, as its arrival times and power distribution
are consistent with those of true gravitational-wave signals.
We reiterate that, though not a realistic glitch population,
this provides us with examples of the kind of pathological
glitches that cannot be dismissed by per-detector methods.

D. Analysis procedure

After the signal has been added to the background noise,
the data are whitened to produce dw��j�. The whitening
algorithm is trained on a 16 s block of data that does not
include the signal. With a known set of trial sky positions
f�̂g and measured power spectra S��f�, Q can be com-
puted for each direction and resolvable frequency.

For each direction on the sky, overlapping segments of
data are considered sequentially, the length of the segments
depending on the time scales of the signal under consid-
eration (here chosen as 1=16 s). To perform the time shifts,
the segments are extracted from the closest integer samples
in the time domain and then transformed to the Fourier
domain where the remaining part of the time shift is
performed by applying phase shifts. The null and incoher-
ent energies are then computed and recorded for that
direction on the sky.

For each simulation we select the two directions for
which the transient shows the most correlation according
to two different criteria, as well as the direction with the
minimum null energy:

(1) min�Enull=Einc�: Measures the angular distance
away from the diagonal in a scatter plot of Einc vs
Enull (see Fig. 3). Physically it represents the largest
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fraction of energy cancelled in forming the null
stream.

(2) min�Enull � Einc�: Measures the linear distance
away from the diagonal in a scatter plot of Einc vs
Enull (see Fig. 3). Physically it represents the largest
amount of energy cancelled in forming the null
stream.

(3) min�Enull�: Calculated for comparison against the
other two statistics and for estimating the sky
location.

Figures 6–8 show scatter plots of Einc vs Enull for the sky
locations picked by these three criteria for a population of
104 simulated signals. The signal population consists of
103 GWBs and 103 glitches at each of five different signal-
to-noise ratios, �rms � 5, 10, 20, 50, 100. We make inde-
pendent random draws for sky position and polarization for
each GWB or glitch tested.

Note that there is a significant difference in the distri-
butions of signals and glitches using any of the measures
min�Enull � Einc�, min�Enull=Einc�, or min�Enull�. For both
GWBs and glitches there are directions on the sky for

which the null energy is low. However, for glitches these
occur exclusively at low incoherent energies. For signals
there exist directions with low null energy at larger inco-
herent energies. This restriction is strongest when measur-
ing correlations using min�Enull=Einc� (Fig. 6). For
min�Enull � Einc� (Fig. 7) there are a small but noticeable
fraction of GWBs that overlap the glitch population and so
are indistinguishable from glitches. When using min�Enull�
only (Fig. 8) a significant fraction of the glitches have a sky
location with low null energy and overlap the population of
weak GWBs.

As the SNR increases, the populations become distinct.
We can see this also in Figs. 9–11, which show the
receiver-operator characteristic (ROC) curves for the per-
formance of our various statistics in discriminating the two
populations. These curves show the fraction of GWBs that
pass the consistency test versus the fraction of glitches that
pass, at fixed SNR. At total energies corresponding to
�rms � 10–20 or greater we can detect most of a population
of gravitational waves and reject essentially all of a popu-
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FIG. 6 (color online). Scatter plot of the null and incoherent
energies for the most correlated direction on the sky, defined as
the direction of min�Enull=Einc� (i.e., the upper left limit of
Fig. 3), for glitches and GWBs of various signal-to-noise ratios.
Note that as the signal-to-noise ratio increases (higher Einc) the
GWB and glitch distributions separate, with the GWBs remain-
ing at relatively low null energies and the glitches having
comparable null and incoherent energies. The clumping is due
to the 5 distinct rms SNRs used in our simulations: 5, 10, 20, 50,
100. The null energies for some of the GWB simulations are
greater than that expected (60) from the number of degrees of
freedom because we are selecting sky positions from the mini-
mum of Enull=Einc, not from the minimum of Enull.

10
2

10
3

10
4

10
2

10
3

10
4

Null energy

In
co

h
er

en
t 

en
er

g
y

GWB (same waveform)
Glitch (inconsistent waveforms)

FIG. 7 (color online). Scatter plot of the null and incoherent
energies for the most correlated direction on the sky, defined as
the direction of min�Enull � Einc� (i.e., the upper left limit of
Fig. 3), for glitches and GWBs of various signal-to-noise ratios.
Note that as the signal-to-noise ratio increases (higher Einc) the
GWB and glitch distributions separate, with the GWBs remain-
ing at relatively low null energies and the glitches having
comparable null and incoherent energies. The clumping into
horizontal bands is due to the five distinct rms SNRs used in
our simulations: 5, 10, 20, 50, 100. The null energies for many of
the GWB simulations are greater than that expected (60) from
the number of degrees of freedom because we are selecting sky
positions from the minimum of Enull � Einc, not from the mini-
mum of Enull.
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FIG. 10 (color online). ROC for min�Enull � Einc� as a statistic
for distinguishing GWBs from noise glitches. The ROC curve
value is given by the fraction of GWBs (true acceptance) and
glitches (false acceptance) of given rms SNR falling to the left of
a line of constant Enull � Einc in Fig. 7. The rapid rise of the
curves at low false acceptance is indicative of the ability of the
method to confidently distinguish a significant portion of GWB
signals from the glitch population. This is not as powerful a
statistic as min�Enull=Einc� (see Fig. 9).
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FIG. 8 (color online). Scatter plot of the null and incoherent
energies for the best-fit direction on the sky, defined as the
direction of min�Enull� (i.e., the left-most point in Fig. 3) for
glitches and GWBs of various signal-to-noise ratios. Note that as
the signal-to-noise ratio increases (higher Einc) the GWB and
glitch distributions separate, with the GWBs remaining at rela-
tively low null energies and the glitches having comparable null
and incoherent energies. The clumping is due to the 5 distinct
rms SNRs used in our simulations: 5, 10, 20, 50, 100. Note that a
large fraction of the glitch signals produce low null energies for
some sky positions. This means that GWBs and glitches are not
distinguishable using only the null energy.
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FIG. 9 (color online). ROC plot
for min�Enull=Einc� as a statistic
for distinguishing GWBs from
noise glitches. The ROC curve
value is given by the fraction of
GWBs (true acceptance) and
glitches (false acceptance) of
given rms SNR falling to the
left of a line of constant
Enull=Einc (a diagonal line) in
Fig. 6. The rapid rise of the
curves at low false acceptance is
indicative of the ability of the
method to confidently distinguish
a significant portion of GWB sig-
nals from the glitch population.
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lation of semicorrelated glitches. The rejected gravitational
waves are those that are weak in at least one detector, or
equivalently produce little correlation. An SNR of�10–20
is comparable to the level at which current LIGO burst
detection algorithms have a detection efficiency of 50% or
greater [24]. Furthermore, glitches of this size are common
in real detectors, indicating that our test will in fact be
useful with present detector networks.

For �rms � 5 or lower, the glitch and GWB populations
are not distinct. This is because the null stream enforces
waveform consistency only when there is excess energy to
suppress.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article we have introduced an extension of the
Gürsel-Tinto null-stream technique that allows one to
make robust tests to distinguish between GWB signals
and coincident noise glitches. This technique is based on
comparing the energy in the null stream to that expected if
the signals in the various detectors are uncorrelated and
does not require any a priori knowledge of the GWB or
glitch waveforms. We applied this technique to the case of

the LIGO-Virgo 3-detector network at design sensitivity
and quantified the ability of three different measures of
correlation to distinguish true GWBs from coincident noise
glitches. For the best-performing measure, the ratio of null
energy to incoherent energy, we found that gravitational-
wave bursts of SNR 10–20 or greater can be distinguished
from glitches of comparable SNRs that are injected in the
data with the same time delays but are different in the three
detectors’ data. For example, with the GWB and glitch
populations tested, we found that 90% of glitches can be
rejected while accepting 94% of SNR 20 GWBs and 76%
of SNR 10 GWBs. Furthermore, we stress that the glitch
population tested was pathological in the sense that they
were constructed to have time delays and amplitudes con-
sistent with a GWB. Hence, the performance of the con-
sistency test may be even better with real detector data.
This consistency test is therefore a promising technique for
rejecting noise coincidences and increasing detection con-
fidence in GWB searches.

The development of coherent analysis techniques for
GWB detection is still at an early stage, and much further
research can be done. In this section we briefly outline
some of the directions of current and future work. These
can be divided roughly into applications of the existing
consistency test to more general networks and signals and
extensions and improvements to the algorithm.

We will systematically study a larger variety of wave-
forms than the small set considered in the paper. These
should include two-polarization GWBs. (The supernova
waveforms used here are linearly polarized.) This wider
set may include various supernova catalogs [14–16] and
approximate waveforms for black-hole binary coalescence
(see for example [7–11]). The latter are particularly im-
portant, since it is quite plausible that black-hole binaries
will be the first transient signals to be detected. Preliminary
tests with Lazarus black-hole merger waveforms [51] in-
dicate that our test is as effective as for the linearly polar-
ized waveforms tested here.

Another near-term goal is to apply our modified null-
stream test to other networks, such as those with four and
five detectors. A fourth nonaligned detector will reduce the
fraction of sky over which only two detectors have signifi-
cant sensitivity [43], increasing the strength of the test. An
additional aligned detector, such as the two-kilometer de-
tector at LIGO-Hanford, would also provide a second null
stream without extra sky coverage. Lazzarini et al. [52]
have demonstrated how the output of the two LIGO-
Hanford detectors can be combined to form a single pseu-
dodetector with greater sensitivity than either. The differ-
ence between the detector outputs is also a null stream,
effectively a detector with zero antenna response, which
can be employed in our consistency test. This is a computa-
tionally cheap test since the H1–H2 null stream is inde-
pendent of the sky position, providing the basis of a simple
hierarchical analysis scheme.
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FIG. 11 (color online). ROC plot for min�Enull� as a statistic
for distinguishing GWBs from noise glitches. The ROC curve
value is given by the fraction of GWBs (true acceptance) and
glitches (false acceptance) of given rms SNR falling to the left of
a line of constant Enull (a vertical line) in Fig. 8. The lower slope
of the curves at low acceptance is due to the fact that many
glitches have sky positions for which the null energy is small,
even when the SNR of the glitch is high. The null energy alone is
therefore not very effective for confidently distinguishing GWBs
from noise glitches. While one could chose a threshold that
varies with Einc to get better performance, min�Enull� is still not
as powerful a statistic as min�Enull=Einc�.
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We also plan to test the power of our consistency test on
real data, with real noise transients. We should note that the
artificial noise coincidences studied in this work are patho-
logical in the sense that they are injected with time delays
and amplitude responses consistent with actual sky posi-
tions and waveforms that are identical (in individual de-
tectors) to GWBs. Although we would not expect noise in
actual detectors to be so pathological, it is important to
characterize the robustness of our technique for real data,
and this was the motivation for our implementation.

Another important aspect of real data is that their cali-
bration could be inaccurate, implying an imperfect cancel-
lation of the GWB by the null stream. We will study
quantitatively the effects of realistic calibration errors on
the effectiveness of the null-stream technique (see also the
study by Ajith et al. [53]).

A first improvement is to optimize the algorithm for
implementing our test. An optimal identification of the
integration time and frequency band over which the null
and incoherent energies are calculated will improve the
effectiveness of the test by minimizing the amount of noise
included.

An important augmentation of the coherent analysis is
improved techniques for determining the sky location of
the source. Current efforts estimate the sky position as the
extremum in a sky map of the null stream or some like-
lihood statistic [27,29]. For example, Gürsel and Tinto [27]
demonstrated that locating the minimum of the null energy
allows one to determine the direction to the source of a
kilohertz GWB with high accuracy for typical SNRs of
�40–60 (converted to our �rms). However, as we have
seen, sky maps exhibit structure which is a combination
of the network geometry and the signal waveform. For
example, linearly polarized signals produce interference
fringes in the sky map. These fringes appear as rings of
fixed time delay with respect to the various detector base-
lines. A global analysis which takes account of this struc-
ture could in principle average over local noise fluctuations
in the sky map to achieve an improved pointing accuracy
for weaker signals.

We will further investigate Bayesian interpretations and
formulations of the null-stream technique and compare the
effectiveness of this approach against the procedure pre-
sented in this work. We will also investigate the possibility
of incorporating additional tests such as distribution-free
(nonparametric) correlation tests. These could prove valu-
able when analyzing real data since they enforce known
statistics even when the noise in the data follows an arbi-
trary noise distribution function.
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APPENDIX A: MINIMUM-VARIANCE WAVEFORM
RECONSTRUCTION

In this section we derive explicit expressions for the two
amplitude components of the wave, h� and h�, as opti-
mally reconstructed as linear combinations of the detector
data. This is a generalization of the technique used by
Gürsel and Tinto [27] and was first derived by Flanagan
and Hughes [6]. We will follow the very elegant derivation
by Rakhmanov [32].

We will work exclusively in the Fourier domain. For
notational convenience, we will drop explicit references to
the frequency and sky position and also drop the tildes used
to denote Fourier domain quantities. We will also assume
that the whitened data streams have been time-shifted
before these combinations are constructed and will simply
write, for example, dw� for ~dw��fi�ei2�fi�t���;	�.

Our goal is to construct the linear combination of the
dw� which is the best fit to the unknown h� and h� in the
least-squares sense. That is, we seek

 ĥ �
ĥ�
ĥ�

" #
(A1)

such that

 0 �
d
dhT
�dw � Fwh�

T�dw � Fwh�

��������h�ĥ: (A2)

(Note that since we use whitened data, the least-squares fit
is also the maximum-likelihood fit in the presence of
Gaussian noise.) The solution is

 ĥ � F�1
MPdw; (A3)

where

 F�1
MP � �Fw

TFw�
�1Fw

T: (A4)

As pointed out by Rakhmanov [32], the waveform recon-
struction matrix F�1

MP is the pseudoinverse or Moore-
Penrose inverse of the antenna response matrix F:

 F�1
MPF � I2�2: (A5)

It is worth noting the explict form of the reconstructed
waveforms in terms of F�w and F�w . Denoting the inner
products of these vectors with each other by
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�
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 F�� � F
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�
w ; (A7)

 F�� � F
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�
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we have

 

ĥ�
ĥ�

" #
�

1

F��F�� � F��
2

F�� �F��
�F�� F��

� �

�
F�w 	 dw

F�w 	 dw

� �
: (A9)

Note that the weighting of a particular detector d� vanishes
if F�w� � 0 � F�w�, which occurs if detector d� has no
sensitivity to the sky location being considered (F�� � 0 �
F�� ) or if it is much noisier than the other detectors (S� !
1). In these cases, the expression (A9) at that frequency
and sky position reduces to that for the network that does
not include detector �.

See Rakhmanov [32] for a discussion of singularities in
waveform reconstruction due to rank-deficiency of Fw and
the use of Tikhonov regularization to avoid such problems.
Rakhmanov’s expressions correspond to ours with the
replacement F�;�� ! F�;�w� , i.e., replacing the antenna re-
sponses by the noise-weighted antenna responses.

APPENDIX B: NULL-STREAM PROJECTION
OPERATOR

Using the results of the previous appendix, it is trivial to
write down an explicit expression for the projection opera-
tor that acts on the network data vector to produce null
streams. This projection operator projects the data orthog-
onally to F�w and F�w . Using the Moore-Penrose inverse
F�1

MP (A5) of the antenna response matrix F, we see im-
mediately that

 P NS � I� FwF
�1
MP (B1)

projects the data orthogonally to F�w and F�w . If F�w / F�w
(e.g., for co-aligned detectors) then the projection operator
simplifies to

 PNS � I�
F�wF

�T

w

F��
: (B2)

Note that these projection operators map the
D-dimensional data vector into another D-dimensional
vector rather than a �D� r�-dimensional vector; however,
they only span a �D� r�-dimensional space. The explicit
construction ofA (14) eliminates the extra dimensions and
directly yields D� r null streams.
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