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Summary 

 

Foetal brain development is a critical period for future brain function where highly 

dynamic gene expression patterns give rise to the cellular diversity and complexity 

of the human brain. As a consequence, this is also likely to be an important period 

of vulnerability for neurodevelopmental and neuropsychiatric disorders. microRNAs 

(miRNAs) are a class of small noncoding RNA molecules with a prominent role in 

shaping and fine-tuning gene expression. In this thesis, I have used small-RNA 

sequencing to evaluate how variation in miRNA expression in 2nd trimester foetal 

brain might contribute to risk for neuropsychiatric disorders. I detected 1449 

miRNAs in 2nd trimester foetal brain (corresponding to 55% of all known miRNAs) 

and assessed the effects of sex and gestational age on miRNA expression. 

Combining these data with genome-wide genotyping, I performed an eQTL analysis 

and identified 30 miRNAs where expression is associated with common genetic 

variation (miR-eQTLs) at FDR < 0.05. Finally, I related the identified miR-eQTLs to 

neuropsychiatric disorders and other brain traits using summary data-based 

Mendelian randomization. I identified 3 miRNAs for which eQTL are pleiotropically, 

and potentially causally associated with psychiatric traits. The A-allele of 

rs112622797 and the A-allele of rs12880925 were associated with higher miR-6840-

5p and miR-4707-3p expression respectively, and both alleles were associated with 

decreased adult brain volume. The C-allele of rs174561 was associated with 

increased miR-1908-5p expression and increased risk for bipolar disorder, increased 

irritability, and increased sleep duration. Predicted gene targets of miR-1908-5p 

were also found to be enriched for genetic association with bipolar disorder. 

Further dissecting this association may translate to more effective treatments and a 

better quality of life for affected individuals. 
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1 Chapter 1 – General Introduction 
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1.1 microRNAs 

MicroRNAs (miRNAs) are a class of conserved small noncoding RNA 

molecules, 19 - 25 nucleotide in length, with a crucial role in the 

post-transcriptional regulation of gene expression by targeting specific 

mRNAs for degradation or translation repression (Bartel, 2004). Moreover, 

some miRNAs also have essential roles in transcriptional gene silencing (Kim 

et al., 2008) and mRNA-specific upregulation (Valinezhad et al., 2014). 

Through their actions, miRNAs shape and fine-tune the transcriptome with 

downstream effects on the proteome and, consequently, on developmental 

and cellular processes (Baek et al., 2008). 

1.1.1 miRNA nomenclature 

All published miRNA sequences from all available species are currently 

annotated and publicly available in the miRbase database. The most recent 

miRbase release (V22.1) contains hairpin precursor miRNAs and mature 

miRNAs from 271 species, including 1917 hairpin precursor miRNAs and 

2654 mature miRNA sequences for humans (Kozomara et al., 2019). 

miRNA nomenclature (Figure 1.1) follows a convention set out by Griffith – 

Jones and colleagues (Ambros et al., 2003), where the term "miR" refers to a 

mature miRNA species which is named numerically in order of discovery with 

the notable exemption of let-7 (lethal target 7) and lin (abnormal cell lineage) 

miRNAs. These miRNA families were named after the phenotype under 

study before this convention was implemented (Reinhart et al., 2000; Lee et 

al., 1993). miRNA names usually have a three-letter prefix which denotes its 

organism of origin. For instance, hsa-miR-9 stands for human miRNA 9, 

where hsa stands for Homo Sapiens. In contrast, mmu-miR-9 stands for its 
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homologue in mouse, where mmu stands for Mus Musculus. Some miRNA 

species derive from the same common ancestor and constitute a family of 

miRNAs, where they usually have similar physiological functions and similar 

sequences. miRNAs from the same family have a letter suffix added to their 

name. For example, miR-30a and miR-30b are members of the same miRNA 

family (miR-30). In addition, miRNAs encoded in several genomic locations, 

such as miR-30c-1 and miR-30c-2, have a numerical suffix added after the 

family suffix. Finally, a 3p or 5p suffix is added to denote if the mature miRNA 

is derived from the 3' arm or the 5' arm of the same miRNA precursor, as 

both can be biologically active – for instance, miR-30-c-1-3p and 

miR-30c-1-5p. 

Figure 1.1 - Overview of miRNA nomenclature. 

Schematic of miRNA nomenclature rules and example of a miRNA hairpin structure – mir-30c-1 

obtained from miRbase (https://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000736) 

that, once processed, will give rise to 2 mature miRNAs – miR-30c-1-5p originating from the 5’ 

arm and miR-30c-1-3p originating from the 3p arm. Created with Biorender.com 

https://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000736
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1.1.2 miRNA biogenesis 

 

1.1.2.1 miRNA gene location and miRNA gene transcription 

Most human miRNAs are located in clusters in the genome, which can 

localize to intergenic, intronic or exonic genomic regions. In most cases, 

miRNAs are transcribed into long primary miRNAs (pri-miRNAs) by RNA 

polymerase II and, in rare cases, by RNA polymerase III (Lee et al., 2004; 

Borchert et al., 2006; Ramalingam et al., 2014). 

miRNAs can be transcribed either as individual miRNAs or as part of a 

cluster in which a much larger polycistronic transcript containing multiple 

miRNAs is transcribed (Tanzer & Stadler, 2004; Hertel et al., 2006) and, as a 

consequence, can be co-regulated and co-expressed (Altuvia et al., 2005; 

Kim et al., 2009). 

Nearly half of all known human miRNA genes are intergenic and are 

transcribed from their own miRNA promoters by RNA polymerase II (Lee et 

al., 2004; Schanen & Li, 2011; Ha & Kim, 2014; de Rie et al., 2017). A 

notable exception is a cluster of intergenic miRNAs located interspersed 

among repetitive Alu elements on chromosome 19, which is transcribed by 

RNA polymerase III (Borchert et al., 2006). The only other miRNAs 

transcribed by RNA polymerase III originate from a handful of viruses, such 

as the murid herpesvirus 4 (MuHV4) and the bovine leukaemia virus (BLV) 

(Bogerd et al., 2010; Kincaid et al., 2012). The other half of human miRNA 

genes are intragenic, located within host genes, and transcribed by RNA 

polymerase II. Most intragenic miRNAs are located within introns, and only a 

small number are located in exons of protein-coding genes. The pri-miRNA 

of intronic miRNAs is its host gene's heterogeneous nuclear RNA (hnRNA) 

(Kim & Kim, 2007). Intronic miRNAs can either be processed from the introns 

of their host transcription units and have the same expression pattern as their 

respective host gene as well as sharing common regulatory mechanisms, 



5 

 

including promoters (Lee et al., 2004; Rodriguez et al., 2004; Baskerville & 

Bartel, 2005), or be transcribed and regulated as independent transcription 

units that do not show concordance in expression patterns with their host 

gene (Wang et al., 2009a; Radfar et al., 2011; Ramalingam et al., 2014) and 

have been shown to have their own promoters independent of their host 

gene. 

Moreover, alternative splicing has been shown to play a role in uncoupling 

the expression amongst clustered miRNAs and between miRNAs and their 

host genes (Ramalingam et al., 2014). The biogenesis of miRNAs can be 

classified into canonical and non-canonical pathways. An overview of both 

these pathways are depicted in Figure 1.2 (canonical pathway) and Figure 

1.4 (non-canonical pathway).  
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Figure 1.2 - Overview of the canonical pathway of miRNA biogenesis. 

miRNAs are transcribed by RNA polymerase II and are either post- or co-transcriptionally 

processed by the nuclear microprocessor complex, consisting of Drosha and a DiGeorge critical 

region 8 (DGCR8) dimer. The microprocessor cleaves pri-miRNAs in the nucleus leading to the 

release of the pre-miRNA that has a characteristic 3'-OH 2nt overhang. This motif is recognized 

by Exportin-5 which binds to pre-miRNAs and, coupled with Ran-GTP, mediates the export of 

pre-miRNAs to the cytoplasm. In the cytoplasm, the terminal loop of pre-miRNAs is cleaved by 

Dicer and its co-factor trans-activation responsive RNA binding protein (TRBP), originating a 

miRNA duplex intermediary. Dicer, TRBP and an Argonaute (AGO) protein form the RISC loading 

complex (RLC), which mediates the loading of one strand of the miRNA duplex to the AGO 

protein, forming the RNA-induced silencing complex (RISC). Subsequently, RISC is stabilized by 

HSP90 and co-chaperones leading to a mature RISC which scans mRNAs for complementarity 

with the miRNA seed region. Adapted from: Treiber et al., 2018. Created with Biorender.com 
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1.1.2.2 Canonical Pathway of miRNA Biogenesis 

1.1.2.2.1 Pri–miRNA processing by the microprocessor complex 

The majority of human miRNAs are processed through the canonical 

pathway. In this pathway, pri-miRNAs are processed into precursor miRNAs 

(pre-miRNAs) post- or co-transcriptionally by the nuclear microprocessor 

complex (Conrad et al., 2014; Suzuki et al., 2017; Louloupi et al., 2017). This 

complex is composed of the RNA binding protein DGCR8 (DiGeorge critical 

region 8, or Pasha – partner of Drosha) and the ribonuclease III enzyme 

Drosha (Lee et al., 2003; Denli et al., 2004; Gregory et al., 2004; Han et al., 

2004; Ha & Kim, 2014; Nguyen et al., 2015; Kwon et al., 2016). Cryo-EM 

studies determined that the core of the microprocessor complex is composed 

of a closely packed DGCR8 dimer that interacts with the basal region of 

Drosha and the terminal pri-miRNA loop (Partin et al., 2020; Jin et al., 2020). 

Other proteins like helicases, certain splicing factors, and heterogeneous 

nuclear ribonucleoproteins (hnRNPs) can interact with the microprocessor 

complex, modulating miRNA biogenesis (Denli et al., 2004; Gregory et al., 

2004; Guil & Caceres, 2007; Trabucchi et al., 2009; Creugny et al., 2018; 

Kwon et al., 2020).  

DGCR8 is a double-stranded RNA binding protein that acts as an anchor 

for Drosha via its' C-terminus (Han et al., 2006) and is essential for 

Drosha-dependent miRNA biogenesis (Wang et al., 2007). Moreover, 

DGCR8 is able to recognize several regulatory motifs within the pri-miRNA 

sequence, improving both the efficiency and the accuracy of pri-miRNA 

processing (Figure 1.3). For example, DGCR8 recognizes and binds to the 

apical UGU motif of pri-miRNAs through an RNA-binding heme domain 

(Rhed) (Partin et al., 2017; Dang et al., 2020), which is thought to guide 

Drosha towards the basal junction and prevent abortive pri-miRNA cleavages 

(Nguyen et al., 2015; Herbert et al., 2016). 



8 

Recent studies have demonstrated that the microprocessor complex exists 

as a heterotrimer even before pri-miRNA recognition and binding (Nguyen et 

al., 2015; Herbert et al., 2016), and that both the apical and basal junctions of 

the pri-miRNA cooperatively coordinate Drosha's cleavage site (Ma et al., 

2012; Burke et al., 2014). 

Within the microprocessor complex, Drosha surrounds the basal segment 

of the pri-miRNA and binds to pri-miRNAs at the ssRNA-dsRNA junction 

(Nguyen et al., 2015; Kwon et al., 2016). This binding positions the Drosha 

cut site 11bp from the basal junction of the pri-miRNA hairpin stem and acts 

as a "molecular ruler" (Nguyen et al., 2015). Subsequently, Drosha cleaves 

the pri-miRNA via intramolecular dimerization of its RNAse III domains 

(RIIIDa cleaves the 3' strand and RIIIDb domain cleaves the 5' strand), 

leading to the release of a ~ 65 - 70 nucleotide pre-miRNA (Landthaler et al., 

2004; Ha & Kim, 2014; Nguyen et al., 2015) that contains a characteristic  

2nt 3' overhang (Lee  al., 2003; Han et al., 2004; Zhang et al., 2004). 

Whilst a small number of non-miRNA transcripts containing hairpins can 

be processed by the canonical pathway (Karginov et al., 2010; Macias et al., 

2012; Kim et al., 2017), the vast majority are not processed by this pathway. 

The microprocessor complex is able to specifically recognize and bind to 

pri-miRNAs, as opposed to other secondary structures present in transcripts, 

and several studies, described below, have elucidated the mechanisms 

behind this process. 

1.1.2.2.2 Pri-miRNA structure and regulatory motifs that allow and 

enhance pri-miRNA processing 

Pri-miRNAs have characteristic secondary structures consisting of a 

hairpin or stem-loop (also known as the apex) flanked by a long ssRNA 

sequence on both sides (also known as the basal junction) (Auyeung et al., 

2013). This structure, along with the presence of several regulatory motifs, 
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allows pri-miRNAs to be recognized and distinguished from other 

hairpin-containing transcripts by the microprocessor complex and be 

subsequently processed. Several studies have reported that efficient 

processing of pri-miRNAs by the microprocessor requires a specific 

stem-loop length (Han et al., 2006; Nguyen et al., 2015; Fang & Bartel, 2015; 

Roden et al., 2017) with an optimal stem length of 36 ± 3 nt, equivalent to 3 

helical turns (Roden et al., 2017). In addition, a pri-miRNA apical loop ≥ 10 nt 

is thought to allow efficient processing (Ma et al., 2013) up to a maximum of 

15 nt (Zeng et al., 2005; Zhang & Zeng, 2010). A single-stranded flanking 

sequence longer than 9 nt on either side of the pri-miRNA hairpin has also 

been shown to be required for its processing (Zeng & Cullen, 2005), as well 

as bulge-enriched and bulge-depleted regions within the hairpin (Sperber et 

al.,2014; Roden et al., 2017). 

Pri-miRNAs also contain several primary sequence regulatory motifs that 

guide and enhance their processing (Figure 1.3). In humans, nearly 79% of 

pri-miRNAs contain either a basal UG motif, a UGU/UGUG motif in their 

terminal loop or a 3' CNNC motif (Auyeung et al., 2013). The basal UG and 

terminal UGU/UGUG motifs have been shown to increase pri-miRNA 

processing (Auyeung et al., 2013; Nguyen et al., 2015), which has been 

proposed to enhance the processing of hairpins with non-optimal lengths 

(Fang & Bartel, 2005). The CNNC motif is associated with SRp20/SRSF3 

and DDX17 binding (Auyeung et al., 2013; Mori et al., 2014) and is enriched 

in and selectively enhances the processing of optimal length pri-miRNAs 

(Roden et al., 2017). 

More recently, Alarcon and colleagues (2015a, b) demonstrated that 

methylation of a subset of pri-miRNAs by methyltransferase-like 3 (METTL3), 

originating an N6-methyl-adenosine mark in GGAC motifs, is a critical 

post-transcriptional modification for pri-miRNA recognition. 

N6-methyl-adenosine are recognized by hnRNPA2B1, which recruits the 

microprocessor complex via interaction with DGCR8 and promotes 

pri-miRNA processing (Alarcon et al. 2015a, b). 
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Figure 1.3 – Overview of the structure of pri-miRNA and regulatory motifs that 

enhance miRNA processing by the microprocessor complex.  

Pri-miRNAs are capped and polyadenylated (Lee et al., 2004; Cai et al., 2004). Several regulatory 

sequence motifs involved in pri-miRNA recognition have been described in humans. The basal 

UG motif located at positions -14 and -13 from the 5' Drosha cleavage site has been found 

present in 24% of miRNAs tested. Drosha interacts with the UG motif strengthening the binding 

of Drosha to the ssRNA-dsRNA junction, leading to enhanced pri-miRNA processing and ensuring 

accuracy (Nguyen et al., 2015; Auyeung et al., 2013). The apical UGUG motif was found to be 

present in 20% of miRNAs. The DGCR8 dimer binds to this motif with the help of hemin via the 

Rhed domain, leading to the correct positioning of Drosha at the basal junction (Nguyen et al., 

2015; Nguyen et al., 2018; Auyeung et al., 2013; Partin et al., 2017). The 3' CNNC motif was 

found present in 30% of miRNAs. The distance between the CNNC motif and the basal junction is 

vital for pri-miRNA processing (Roden et al., 2017). This motif is found ∼17–18 nt downstream 

from 3p mature miRNA and is associated with SRp20/SRSF3 binding, which recruits Drosha to 

the basal junction enhancing Microprocessor activity (Auyeung et al., 2013; Mori et al., 2014; 

Fernandez et al., 2017; Kim et al., 2018). The mismatched GHG motif (where H can be any 

nucleotide other than G) is located 7-9 nucleotides from the basal junction on the 3' arm. Drosha 
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interacts with this motif via its dsRNA-binding domain to precisely find pri-miRNA cleavage sites 

(Fang & Bartel, 2015; Kwon et al., 2019). Given that ∼20% of human microRNAs lack any of 

these sequence motifs, it is plausible that there are other regulatory motifs yet to be discovered. 

In addition, many pri-miRNAs possess alternative Drosha cleavage sites and the mechanisms 

governing the choice of cleavage sites by Drosha, and possible motifs that influence that choice 

are poorly understood (Li, S. et al., 2020). Adapted from: Fang & Bartel, 2015. Created with 

Biorender.com 

1.1.2.2.3 Pre-miRNA export from the nucleus 

Pre-miRNAs are exported to the cytoplasm through the nuclear envelope 

by Exportin-5, a Ran-GTP-dependent RNA binding protein (Yi et al., 2003; 

Bohnsack et al., 2004). The 2nt 3' overhang is required for Exportin-5  

to be able to recognize the pre-miRNA (Zheng & Cullen, 2004), which is 

transported as an exportin 5 – Ran-GTP – pre-miRNA complex (Yi et al., 

2003; Bohnsack et al., 2004). Once in the cytoplasm, the Ran-GTP is 

hydrolyzed leading to the release of both Ran and the pre-miRNA, which will 

be subsequently processed into mature miRNA (Bohnsack et al., 2004). 

1.1.2.2.4  Pre-miRNA processing by Dicer 

Once in the cytoplasm, pre-miRNAs are further processed by Dicer. Dicer 

is an L-shaped RNase III endonuclease with the ability to recognize the 3' 

overhang of pre-miRNAs, but it can also recognize the 5' end in some 

instances (Zhang et al., 2004; Lau et al., 2009; Park et al., 2011; Taylor et 

al., 2013; Liu et al., 2018). The 3' 2nt overhang of the pre-miRNA is anchored 

in Dicer's PAZ domain (Tian et al., 2014), and the double-stranded hairpin 

structure aids the binding between Dicer and the pre-miRNA (Tsutsumi et al., 

2011; Feng et al., 2012). Dicer-associated proteins such as TRBP 

(transactivation-response (TAR) RNA binding protein) are bound to another 
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Dicer domain (DexD/H-box helicase domain) and act as a co-factor for Dicer, 

regulating its dicing activity as well as substrate selection and pre-miRNA 

cleavage site (Chendrimada et al., 2005; Lee et al., 2006b; Du et al., 2008; 

Daniels et al., 2009; Lee & Doudna, 2012; Wilson et al., 2015). This region 

has also been shown to interact with pre-miRNA terminal loops (Liu et al., 

2018), which may have implications in terms of allosteric effects by different 

terminal loop lengths on Dicer's activity. Dicer's cleavage site also depends 

on pre-miRNA structure (Gu et al., 2012). Dicer cleaves pre-miRNAs 

between 21-25 nt from the base, removing the terminal loop (Bernstein et al., 

2001; Feng et al., 2012; Denli et al., 2004; Okada et al., 2009) and creating a 

mature miRNA duplex (Zhang et al., 2004).  

 

1.1.2.2.5 RISC assembly 

The miRNA duplex is loaded to an Argonaute (AGO) protein (AGO1 - 4 in 

humans) to form the RNA-induced silencing complex (RISC), which 

represses target gene expression (Bernstein et al., 2001; Schwarz et al., 

2003; for review, see: Nakanishi, 2016; Iwakawa & Tomari, 2022). The RISC-

loading complex (RLC) is the essential structure required for loading miRNA 

duplexes into RISC and consists of Dicer, AGO2 and TRBP. Following pre-

miRNA cleavage by Dicer, the miRNA duplex is released. Subsequently, the 

duplex is rebound by Dicer in another position (Noland et al., 2011). TRBP is 

a dsRNA binding protein that acts as a strand asymmetry sensor 

(Chendrimada et al., 2005) and orientates the miRNA duplex within Dicer so 

it can be loaded onto an AGO protein in an ATP-dependent manner (Tomari 

et al., 2004; Nakanishi, 2016). TRBP has also been shown to recruit AGO2 

to load the RNA duplex generated by Dicer (Gregory et al., 2005). The 

Hsc70/HSP90 chaperone machinery is required to keep AGO proteins in an 

open conformation until the miRNA duplex is loaded (Johnston et al., 2010; 

Iwasaki et al., 2010), which leads to the unwinding of the duplex.  
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miRNA duplexes have directionality - a 3p or 5p suffix designates miRNAs 

derived from the 3′ end and 5' end, respectively. Both strands can be loaded 

into AGO and form a functional RISC complex, and strand selection is a 

tightly regulated process. The fraction of 3p or 5p strand RISC complexes 

varies significantly for each miRNA depending on cell type, developmental 

stage, and cellular context (including several diseases) and ranges from 

equal amounts to predominantly one form (for review, see: Meijer et al., 

2014). Generally, the strand with lower thermodynamic stability at its 5' - end 

(weakest binding) between the 5p and the 3p strand, or the strand with an 

uracil 5'-end and an excess of purines is preferentially loaded into the AGO 

and becomes the guide strand (Khvorova et al., 2003). The choice of strand 

can also be affected by the type of AGO present, as the PAZ and MID 

domains of AGO3 have been shown to specifically enhance the passenger 

strand expression and activity of let-7a in comparison with let-7a processed 

by AGO1, AGO2 or AGO4, independent of the 5′-end thermodynamic 

stability (Winter & Diederichs, 2013). The unloaded strand, also known as the 

passenger strand, is usually degraded by several mechanisms, depending 

on the degree of complementarity between the duplex (Schwarz et al., 2003; 

Khvorova et al., 2003; Ha & Kim, 2014). It is also possible for both the 

passenger and the guide strand to co-accumulate as a miRNA pair and 

target different sets of mRNAs separately (Ro et al., 2007). Moreover, a 

study in C. elegans demonstrated that the presence or absence of specific 

target mRNAs protected their cognate miRNA from degradation, culminating 

in specific miRNA passenger strand accumulation, which suggests mRNAs 

and miRNAs can mutually regulate each other (Chatterjee et al., 2011). 

 

1.1.2.3 Non-canonical miRNA Biogenesis Pathways 

Several non-canonical miRNA biogenesis pathways have been described. 

These can be grouped into Drosha/DGCR8-independent and 

Dicer-independent pathways (Figure 1.4).  
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Figure 1.4 – Non-canonical miRNA biogenesis pathways - Drosha independent 

pathway and Dicer independent pathway.  

Drosha independent pathway - MiRtrons are processed by the Drosha independent pathway and 

are spliced out by the spliceosome, which originates an intron lariat. The intron lariat is 

subsequently debranched by the lariat debranching enzyme (DBR1). If a mirtron is 3' or 5' tailed, 

it also undergoes trimming. Once exported via exportin-5, miRtron-derived pre-miRNAs are 

cleaved by Dicer and its co-factor TRBP, leading to the formation of a miRNA duplex. Dicer 

independent pathway – miR-451 is processed through the Dicer-independent pathway. After 

being processed by the microprocessor complex, the pre-miRNA is too small to be recognized by 

Dicer (~ 40 nt). In the cytoplasm, the entire miR-451 pre-miRNA is loaded into AGO2, which 
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cleaves half of the passenger strand (3’ arm) via AGO2-mediated slicing (Yang et al., 2010). This 

cleavage is followed by 3’-5’ trimming of the remainder of the passenger strand by polyA-

specific ribonuclease (PARN) (Yoda et al., 2013). Adapted from: Yang & Lai, 2011; Miyoshi et al., 

2010. Created with Biorender.com 

1.1.2.3.1 Drosha/DGCR8-independent pathway 

Pre-miRNAs generated by the Drosha/DGCR8-independent pathway are 

similar to other Dicer substrates, for example, miRtrons (short introns) which 

are produced by excision of small mRNA introns (~56nt) by the spliceosome 

(Ruby et al., 2007; Okamura et al., 2007; Berezikov et al., 2007). Splicing 

leads to the formation of an intron lariat, creating a stable hairpin with a 

shorter stem than canonical pri-miRNAs (Westholm & Lai, 2011). Due to 

being shorter hairpins, mirtron-derived pri-miRNAs cannot be processed by 

Drosha/DGCR8 and are instead debranched by the lariat debranching 

enzyme (DBR1) (Okamura et al., 2007; Ruby et al., 2007) and subsequently 

exported to the nucleus for further processing. 

Moreover, 7-methylguanosine (m7G)-capped pre-miRNAs are also 

processed by the Drosha/DGCR8- independent pathway. These pre-miRNAs 

are directly transcribed by RNA pol II, bypassing cleavage by Drosha and are 

exported to the cytoplasm through exportin-1. After Dicer cleavage, the 

presence of the m7G cap prevents the 5p miRNA from being loaded into 

AGO, which creates a strong 3p strand bias (Xie et al., 2013). 

1.1.2.3.2 Dicer-independent pathway 

Drosha processes pri-miRNAs generated by the Dicer-independent 

pathway from endogenous short hairpin RNA (shRNA) transcripts (Yang et 

al., 2010). The originating pre-miRNAs are too small to be Dicer substrates, 
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and the entire pre-miRNA is loaded into AGO2 (Yang et al., 2010). AGO2 

has an intrinsic endonuclease ability, and these pre-miRNAs undergo 

AGO2-dependent slicing of the 3p strand, leading to the formation of a 30nt 

intermediary, followed by 3′-5′ trimming of the 3p strand (Cheloufi et al., 

2010; Yoda et al., 2013). This process is promoted by the activity of the 

eukaryotic translation initiation factor (EIF1A), another component of RISC 

(Yi et al., 2015). The only miRNA known to be processed by this pathway is 

miR-451, a miRNA essential for erythropoiesis (Dore et al., 2008), which is 

processed by the Dicer-independent pathway due to its pre-miRNA structure 

being so short that it cannot be recognized by Dicer (Cheloufi et al., 2010). 

 

1.1.3 miRNAs target recognition  

 

miRNAs were originally thought to predominantly bind to the 3′-UTR of 

their mRNA targets (Bartel, 2009). Plant miRNAs require extensive 

complementarity with their targets (Rhoades et al., 2002). In contrast, in 

animals, complementarity between the 5' proximal "seed region" (nucleotides 

2 to 7) of the miRNA and its target is sufficient for RISC mRNA recognition 

and binding through Watson-Crick base pairing (Lewis et al., 2003; Bartel, 

2009). Currently, there are 2654 mature miRNAs in humans annotated in 

miRbase v22.1, and over 45,000 miRNA response elements (MRE) have 

been found in the 3'-UTR of more than 60% of all coding genes, suggesting 

that miRNAs regulate the majority of genes (Friedman et al., 2009). 

Interestingly, isomiRs can contain untemplated post-transcriptional 

modifications within their seed region, which may increase the number of 

coding genes regulated by miRNAs (Guo & Chen, 2014).  

A microarray study has demonstrated that some miRNAs that are 

preferentially expressed in the brain (miR-124) and muscle (miR-1) can 

moderately downregulate hundreds of mRNA targets in cell culture (Lim et 
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al., 2005). In most cases, miRNAs fine-tune gene expression and have mild 

to moderate effects (Lewis et al., 2003), often repressing the expression of 

target mRNAs by < 20% (Baek et al., 2008; Selbach et al., 2008).  

mRNAs can have multiple target sites and be regulated cooperatively 

(Krek et al., 2005; Friedman & Burgue, 2014) by multiple miRNAs in a 

log-additive manner (Grimson et al., 2007). This phenomenon is prominent in 

the brain, as neuronal mRNAs possess longer 3'-UTRs and an increased 

density of miRNA response elements (Cacchiarelli et al., 2008; Barbash et 

al., 2014). Some mRNAs have multiple target sites for the same miRNA 

species and can be regulated by multiple copies of the same miRNA (Lee et 

al., 1993; Reinhart et al., 2000; Mayr et al., 2007). A small number of mRNAs 

(7% of genes with MREs) have more than one conserved site for the same 

miRNA family, whereas the majority of mRNAs (72% of genes with MREs) 

have target sites for multiple independent miRNA families (Friedman et al., 

2009). In addition, miRNAs located in the same polycistronic cluster are 

usually coexpressed and have either overlapping predicted targets or target 

members of the same pathway (Tsang et al., 2010). A recent study by 

Cherone and colleagues (2019) has demonstrated that specific genetically 

independent brain-enriched miRNAs can act together to cooperatively 

repress mRNA targets robustly by 5-10 fold (Cherone et al., 2019). These 

phenomena make validating miRNA targets difficult (Alvarez-Saavedra & 

Horvitz, 2010). 

 

1.1.4 miRNA target prediction 

 

An absence of high-throughput methods for miRNA target identification 

and the complexity of validating miRNA targets lead to the development of 

several algorithms that predict miRNA target sites (Lewis et al., 2003; 

Kiriakidou et al., 2004; John et al., 2004; Krek et al., 2005). 
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Because target sites were thought to be predominantly located in the 

3’-UTR (Bartel et al., 2009), these algorithms initially only mined miRNA 

target sequences in the 3’-UTR of mRNAs by identifying evolutionarily 

conserved sites with complementarity to miRNA seed regions (a 7nt match) 

(Lewis et al., 2003; Lewis et al.,2005; Rajewsky, 2006). This view 

predominated, despite several studies providing evidence of widespread 

miRNA binding to mRNA protein coding sequence (CDS) (Easow et al., 

2007; Hausser et al., 2013; Liu et al., 2015), miRNA binding to individual 

5’-UTR and CDS (Easow et al., 2007; Forman et al., 2008; Lytle et al., 2007; 

Orom et al., 2008; Tay et al., 2008; Qin et al., 2010) and even miRNA binding 

to promoters (Place et al., 2008). Several more recent studies have indicated 

that both this view and miRNA target predictions are, at best, an incomplete 

picture. Chi and colleagues (2009) generated interaction maps for the 20 

most abundant mouse brain miRNAs, including miR-124, by HITS-CLIP 

(high-throughput sequencing of RNA isolated by crosslinking and 

immunoprecipitation). This method allows for the sequencing of mRNA 

segments bound to AGO by using UV to crosslink proteins with RNA, 

followed by immunoprecipitation of AGO proteins and cDNA sequencing. The 

authors reported that 27% of mRNAs bound to AGO had no predicted seed 

match among the top 20 most abundantly expressed miRNAs (Chi et al., 

2009). Subsequently, Hafner and colleagues (2010) modified this method 

(PAR-CLIP) in HEK293 cells to perform a transcriptome-wide survey of the 

binding sites of several RNA binding proteins, including AGO1-4. The 

authors reported that most miRNA binding sites were present within exonic 

regions (84%). Of these, only 46% of binding sites were located in the 

3’-UTR of mRNA targets, with 50% of binding sites in the CDS and 4% in the 

5’- UTR (Hafner et al., 2010). Inhibition of the top 25 most abundantly 

expressed miRNAs in these cells had a negligible effect on the expression of 

mRNAs with miRNA binding sites present exclusively in their CDS (Hafner et 

al., 2010), which suggests CDS miRNA binding sites help fine-tune mRNA 

expression. These findings were subsequently validated by crosslinking 

ligation and Sequencing of Hybrids (CLASH), where similar findings were 

reported (Helwak et al., 2013). Helwak and colleagues (2013) also reported 

that 18% of miRNA-mRNA pairs did not bind via the seed region located in 
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the 5’ end and displayed Watson-Crick base pairing at the 3’ end instead. 

This finding suggests that some miRNAs do not pair through the seed region 

and that the initial algorithms developed to predict miRNA targets were 

incomplete. 

Several studies proposed that miRNA binding to these non-canonical 

binding sites led to mRNA repression (Chi et al., 2012; Loeb et al., 2012; 

Helwak et al., 2013; Grosswendt et al., 2014). However, a subsequent 

meta-analysis demonstrated that this is not the case, suggesting that most 

miRNA-binding functional sites are canonical (Agarwal et al., 2015). 

Direct assays of miRNA-target interactions based on CLIP methods have 

led to the development of improved miRNA target prediction algorithms (Liu 

et al., 2013; Erhard et al., 2013) and bioinformatic tools that include CDS and 

5’-UTR binding regions have been developed (Reczko et al., 2012; Dweep & 

Gretz, 2015; Riolo et al., 2021). Moreover, analysis of miRNA-mRNA 

interactions derived from the CLASH method has been employed to develop 

and improve TargetScan (Agarwal et al., 2015; McGeary et al., 2019). 

TargetScan is the current state-of-the-art sequence-based miRNA target 

prediction tool (Riffo-Campos et al., 2016), outperforming other miRNA 

target-predicting tools (Kern et al., 2021). 

TargetScan predicts miRNA targets by searching for an exact match 

between the seed region of a miRNA and 8mer, 7mer, and 6mer sites in the 

3’-UTR of its potential targets (Agarwal et al., 2015; McGeary et al., 2019; 

Riolo et al., 2021) (Figure 1.5). Additional predictive features associated with 

target repression, such as seed-pairing stability, target site abundance and 

conservation and presence of 3’ compensatory pairing, are taken into 

consideration, and potential miRNA targets are ranked based on the 

predicted efficacy of targeting, which is computed into context ++ scores 

(Agarwal et al., 2015; McGeary et al., 2019). 
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Figure 1.5  – Types of miRNA response element sites in mRNA 3’-UTR 

employed by TargetScan to predict miRNA targets in order of repressive 

efficacy from less repressive (6mer site) to more repressive (8mer site).  

6mer site: Perfect match position 2–7 (the seed), the least stringent; 7mer-A1 site: Perfect 

match from nucleotide 2 to nucleotide 7 (the seed) with an A opposite position 1; 7mer-m8 site: 

Perfect match from nucleotide 2 to nucleotide 8 (the seed + position 8) without the adenosine 

“A” opposite position 1; 8mer site - perfect match from 2-8 nt of the mature miRNA (seed + 

position 8), with an adenosine “A” in mRNA opposite position 1, the most stringent (Friedman et 

al., 2009). The presence of adenosine opposite position 1 facilitates target recognition within 

AGO2 (Schirle et al., 2014) and enhances miRNA repression (Nielsen et al., 2007). Red mRNA 

sequence - mRNA positions that determine the type of site (8mer, 7mer, 6mer). Blue miRNA 

sequence (N) – miRNA positions with perfect Watson-Crick complementarity to target. Blue 

numbers – nucleotide positions that determine the type of site. Adapted from: Riolo et al., 2021. 

Created with Biorender.com 
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1.1.5 Primate specific miRNAs 

 

Novel miRNA genes can arise by multiple mechanisms (for review, see: 

Lu et al., 2008; Berezikov, 2011), such as duplication of an existing miRNA 

gene which subsequently gains a new function (Hertel et al., 2006; Ruby et 

al., 2007; Lu et al., 2008), mutations in the seed region (Lu et al., 2008) or 

antisense transcription of an existing miRNA gene (Tyler et al., 2008). 

Additionally, introns can give rise to unstructured transcripts that may 

gradually evolve and form hairpin structures identifiable by the 

microprocessor complex, originating a new miRNA gene (Berezikov et al., 

2011). This event commonly occurs in species-specific miRNAs 

(Campo-Paysaa et al., 2011). Moreover, transposable elements, as well as 

snoRNAs and tRNAs, can originate transcripts that may also give rise to 

miRNA-like hairpin structures identifiable by the microprocessor complex, 

originating new miRNA genes (Berezikov et al., 2011; Smalheiser & Torvik, 

2005; Hertel et al., 2006; Yuan et al., 2011). 

Phylogenetic analysis of 1433 miRNAs expressed in humans indicates 

that a large proportion of these miRNAs (53%) originated in primates, with 

28% of these first arising in the hominid lineage (Iwama et al., 2013). The 

emergence of primate- and human-specific miRNAs is likely to have had an 

essential role in shaping gene networks involved in brain size expansion and 

the increased complexity and sophistication observed in primate and human 

brains (Arcila et al., 2014; Prodromidou & Matsas, 2019). In the developing 

brain, over 100 primate-specific miRNAs and 14 human-specific miRNAs 

have been identified (Berezikov, 2011; Hu et al., 2012), the majority of which 

are involved in neuronal progenitor proliferation, generation of neurons, brain 

function and cognition (Nowakowski et al., 2013; Arcila et al., 2014; 

Nowakowski et al., 2018; Prodromidou & Matsas, 2019). 
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1.1.6 miRNAs function: post-transcriptional gene 

regulation 

 

Post-transcriptional gene silencing (PTGS) by RISC can occur through 

repression of translation, sequential degradation or direct target mRNA 

cleavage by a catalytically active AGO2 protein (Lee et al., 1993; Rhoades et 

al., 2002; Llave et al., 2002; Bartel, 2004; Bushati & Cohen, 2007). Moreover, 

the biological outcome of miRNA-mediated PTGS can be altered by factors 

contributing to the strength of the miRNA:mRNA binding and the repressive 

effect of the target site (Carroll et al., 2014). 

AGO2-mediated RNA cleavage occurs when there is perfect 

complementarity between the miRNA and the mRNA target. This mechanism 

commonly occurs in plants (Llave et al., 2002), but there is evidence of at 

least one case of AGO2 - mediated cleavage occurring in humans between 

miR-196 and its target HOXB8 (Yekta et al., 2004). In mammals, studies 

have reported that sequential degradation of mRNA targets accounts for the 

majority (66 – 90%) of miRNA-mediated PTGS (Guo et al., 2010; Eichhorn et 

al., 2014), with translational repression contributing only a small proportion 

(10 – 25 %) of the overall repression (Hendrickson et al., 2009; Guo et al., 

2010).  

 

1.1.6.1 miRNA mediated mRNA destabilization and mRNA 

degradation 

miRNA-mediated mRNA destabilization and mRNA degradation are the 

primary means of miRNA PTGS in mammals (Guo et al., 2010; Eichhorn et 

al., 2014). Sequential degradation of mRNA involves mRNA destabilization 

through a two-step deadenylation process, 5’ - decapping and 5’ - 3’ target 

mRNA degradation (Eulalio et al., 2009). For mRNA degradation to occur, 
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RISC binds to the 3’-UTR of target mRNAs which leads to AGO recruiting 

scaffold protein glycine-tryptophan protein of 182 KDa (GW182) (Rehwinkel 

et al., 2005). GW182 then recruits the PAN2-PAN3 (PolyA-specific Nuclease 

subunit) complex and guides it to the poly-A tail of the target mRNA, where 

the PAN2 subunit performs an initial deadenylation of the target mRNA 

(Braun et al., 2011). In the second step of this process, a complex formed 

between a 3’-5’ exonuclease (CCR4a) and a scaffolding protein (NOT1) 

removes the remainder of the Poly(A) tail. Following this, GW182 sequesters 

the target mRNA in processing-bodies (P-bodies) and the mRNA 5’ cap is 

removed by the decapping protein 2 (DCP2) followed by destabilized mRNA 

degradation by exoribonuclease 1 (XRN1) (Eystathioy et al., 2003; Andrei et 

al., 2005; Jakymiw et al., 2005; Liu et al., 2005; Sen & Blau, 2005). Target 

mRNA sequestration is a dynamic occurrence, and sequestered mRNAs are 

released from P-bodies and translated when cells are under stress 

(Bhattacharyya et al., 2006). 

 

1.1.6.2 miRNA mediated translational repression  

Most studies on translational repression of endogenous mRNAs support 

the notion that miRNAs repress translation primarily by blocking the initiation 

of translation (Pillai et al., 2005; Humphreys et al., 2005; Hendrickson et al., 

2009; Eichhorn et al., 2014). 

RISC can block the initiation of translation via interaction with translation 

initiation factor eIF4e (Humpfreys et al., 2005; Richter & Sonenberg, 2005; 

Mathonnet et al., 2007; Wakiyama et al., 2007; Chen & Gao, 2017), which is 

part of the eukaryotic initiation complex eIF4F. This blocking will prevent the 

eIF4F complex from recruiting the ribosomal 40S subunit and forming a 43S 

pre-initiation complex (Richter & Sonenberg, 2005; Ricci et al., 2013; Fukaya 

et al., 2014). Moreover, GW182 proteins are crucial for translation repression 

and interact with PABP (poly(A)-binding protein) to recruit several auxiliary 

proteins such as PAN2-PAN3 and CCR4:NOT deadenylases along with 
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Dcp1:Dcp2 decapping complexes to inhibit the initiation of translation 

(Behm-Ansmant et al., 2006; Braun et al., 2011; Fabian et al., 2009; 

Kuzuoglu-Ozturk et al., 2012; Huntzinger et al., 2013; Mathys et al., 2014).  

The mechanisms behind translational repression have not been fully 

elucidated. miRNAs and their targets have been observed to associate with 

polysomes in sucrose sedimentation gradients. This observation led to 

post-initiation translational repression mechanisms being proposed (Maroney 

et al., 2006; Petersen et al., 2006), such as inhibition of elongation, 

co-translational degradation and premature termination of translation (for 

review, see: Filipowicz et al., 2008). These proposed mechanisms have 

caveats. For instance, the notion that miRNAs inhibit elongation is mainly 

derived from studies using reporter constructs and artificial systems, which 

usually do not behave like endogenous mRNAs (Eichhorn et al., 2014). 

In contrast, several studies support the notion that repression of 

translation is functionally linked to mRNA destabilization and decay 

(Hendrickson et al., 2009; Bazzini et al., 2012; Tat et al., 2016). It has been 

suggested that miRNA-mediated PTGS occurs in a “two-hit model”, with 

translational repression being the first hit leading to an immediate stop in 

translation, followed by mRNA destabilization and degradation, which would 

complete mRNA silencing (Zdanowicz et al., 2009; Bazzini et al., 2012; 

Djuranovic et al., 2012; Bethune et al., 2012). This model is consistent with 

observations that translational repression occurs quite rapidly but has a weak 

effect on mRNA silencing (Eichhorn et al., 2014).   

 

1.1.6.3 Non-canonical miRNA functions 

1.1.6.3.1 Nuclear miRNA functions 

Several components of the miRNA RISC machinery have been detected in 

the nucleus, including AGO, Dicer and GW182 (Hwang et al., 2007; Ohrt et 
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al., 2008; Tan et al., 2009; Sinkkonen et al., 2010; Till et al., 2007; Ahlenstiel 

et al., 2012; Nishi et al., 2013). Moreover, several studies have reported the 

presence of specific AGO-loaded miRNAs in the nuclei of animal cells (Politz 

et al., 2009; Hwang et al., 2007; Kim et al., 2008; Foldes-Papp et al., 2009), 

which have been found by some (but not all) studies to form complexes with 

RNAi factors (Ohrt et al., 2008; Khudayberdiev et al., 2013; Gagnon et al., 

2014). In neural stem cells, a substantial number of miRNAs have been 

found in the nucleus, with some miRNAs being enriched in the nucleus 

(Jeffries et al., 2011). Specific miRNAs are enriched in the nuclei (or nucleoli) 

of several cancer lines (Park et al., 2010; Li et al., 2013), myoblasts (Politz et 

al., 2009) and post-mitotic neurons (Khudayberdiev et al., 2013). These 

observations suggested novel non-canonical miRNA functions. 

The mechanisms of mature miRNA transport into the nucleus have not 

been fully elucidated. However, it is thought that mature miRNAs are loaded 

into AGO in the cytoplasm and can shuttle in and out of the 

nucleus via importin-8 and exportin-1, where they accumulate depending on 

the presence of a target (Castanotto et al., 2009; Weinmann et al., 2009). A 

3′ hexanucleotide regulatory motif (AGUGUU) has been shown to direct 

miR-29b to the nucleus in HeLa cells (Hwang et al., 2007). However, this 

motif is not conserved between other nuclear miRNAs (Hwang et al., 2007; 

Jeffries et al., 2011). In the nucleus, miRNAs have been found to regulate 

gene expression through multiple mechanisms. These include AGO2-

mediated cleavage of circular antisense transcripts, leading to a decrease in 

mRNA levels (Hansen et al., 2011), cleavage of long non-coding RNAs 

(Leucci et al., 2013) or binding to other pri-miRNAs and preventing their 

processing (Tang et al., 2012). Moreover, several miRNAs can bind to 

complementary promoters of target genes to regulate gene expression at the 

transcriptional level: either inducing gene expression by competing with 

promoter-binding repressors (Place et al., 2008) or repressing gene 

expression by implementing silent–state histone modifications such as an 

increase in promoter H3K27me3, linked to heterochromatin formation (Kim et 

al., 2008; Tan et al., 2009; Benhamed et al., 2012).  
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1.1.6.3.2 miRNA mediated translation activation 

In some cases, such as in quiescent cells, miRNAs can promote the 

translation of specific mRNAs via the formation of a micro-ribonucleoprotein 

(microRNP) complex with Fragile X mental retardation related protein 1 

(FXR1) (Vasudevan et al., 2007; Vasudevan & Steitz, 2007; Lin et al., 2011; 

Truesdell et al., 2012; Valinezhad et al., 2014). GW182 is downregulated in 

the G0 state, which results in the absence of interaction between GW182 

and AGO2. As a consequence, AGO2 is then free to interact with FXR1, 

which eventually results in miRNA upregulation of translation of target 

mRNAs (Yang et al., 2004; Vasudevan et al., 2007). 

 

1.1.7 Regulation of miRNA biogenesis  

 

miRNA biogenesis is tightly regulated both spatially and temporally (Lee et 

al., 2016) by cofactor proteins, RNA precursors, and post-translational 

modifications (PTMs) (Lee et al., 2006; Heale et al., 2009; Lee & Doudna, 

2012; Heo et al., 2012). miRNAs are also extensively regulated by RNA 

binding proteins (RBPs) such as lin-28 homologue A (LIN28A) and hnRNPA1 

(for review, see: Ha & Kim, 2014; Treiber et al., 2019) and by long 

non-coding RNAs (Krol et al., 2015; Jiang et al., 2017). 

PTMs of miRNA biogenesis machinery, such as phosphorylation, 

ubiquitylation and SUMOylation of DGCR8, Drosha, TRBP and AGO, can 

remodel miRNA activity following an external stimulus (for review, see: 

Treiber et al., 2019). For instance, DGCR8 is heavily phosphorylated by 

mitogenic MAPKs, which increases the activity of the microprocessor and 

results in increased biogenesis of miRNAs with a pro-growth profile (Herbert 

et al., 2013). TRBP is also phosphorylated by ERK and S6K, which increases 

the stability of the TRBP-Dicer complex and stimulates mature miRNA 
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production (Paroo et al., 2009; Warner et al., 2016). In contrast, 

phosphorylation of Dicer by ERK has been shown to switch-off Dicer activity 

and is a requirement for embryonic gene expression transition from oocytes 

in C.elegans (Drake et al., 2014). 

1.1.8 miRNA turnover 

The expression level of miRNAs is regulated not only by their biogenesis 

but also by their degradation. Association with AGO proteins is critical to 

miRNA function and increases the stability of mature miRNAs, thereby 

regulating their abundance (Grishock et al., 2001; Diederichs & Haber, 2007; 

Winter & Diederichs, 2011). While miRNAs are remarkably stable and 

possess a decay period ten times longer than mRNAs (Gantier et al., 2011), 

they also decay in response to different cellular cues. miRNA turnover is 

significant during development, where the expression of miRNAs changes 

quickly as cell types convert (Ruegger & Grosshans, 2012). Target mRNAs 

have been shown to promote post-transcriptional miRNA modifications that 

control the rate of miRNA decay (Baccarini et al., 2011; Marcinowski et al., 

2012). In neurons, miRNA decay periods are more variable than in other 

cells (Krol et al., 2010) and can be modulated by several physiological 

stimuli, including blocking glutamate receptors (Krol et al., 2010; Kocerha et 

al., 2009) and synaptic stimulation (Wibrand et al., 2010), which hints at the 

role miRNAs have in neuronal function. 
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1.2 microRNAs in brain development and function 

1.2.1 Foetal brain development 

Human brain development starts during the third post-conceptional week 

(PCW) with the folding and fusion of ectoderm to form the neural tube 

(Ladher & Schoenwold, 2005) and continues into early adulthood through a 

series of accurately organized processes, which include the differentiation, 

migration, and maturation of diverse cell types, and the formation and 

refinement of functional neuronal circuits which underlie the mechanisms 

behind dramatic structural changes (Hofman, 2012; Workman et al., 2013; 

Taverna et al., 2014; Prodromidou & Matsas, 2019). 

The formation of the forebrain, the midbrain, and the hindbrain vesicles 

from the neural tube and subsequent formation of the telencephalon 

(cerebral cortex) vesicle and the diencephalon (thalamus, hypothalamus, and 

other structures) vesicle from the forebrain vesicle (Rash & Grove, 2006; 

Rhinn et al., 2006) is accompanied by a series of highly complex and 

dynamic sequences of temporally overlapping cellular events (Tau & 

Peterson, 2010). 

1.2.1.1 Neuron formation 

The human cortex consists of billions of neurons and glia that emerge 

from a monolayer of uniform proliferating neuroepithelial cells (NECs) 

populating the neural tube (Bayer & Altman, 1991; Bayer & Altman, 2005; 

Namba & Hunter, 2017). NECs become apical radial glia cells (aRGCs), 

which are the primary type of neural progenitor cells (NPCs) of the 
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telencephalon and are located in the ventricular zone (VZ), marking the 

beginning of cortical neurogenesis (Silbereis et al., 2016). Radial glia are 

embryonic neural stem cells and will give rise to the lineages of all neuronal 

and glial cells, depending on their location within a matrix of different 

molecular gradients in the ventricular zone layer (Noctor et al., 2001; 

Anthony et al., 2004; Kowalczyk et al., 2009). Radial glia start by increasing 

their pool size through symmetric divisions in the ventricular zone that lines 

the cerebral ventricles (Hatten, 1993; Kornack & Rakic, 1995; Rakic, 1995; 

Rakic, 2000; Kriegstein & Götz , 2003; Rash & Grove, 2006; Ghashghaei et 

al., 2007; Bystron et al., 2008). As their proliferative potential decreases, they 

can divide asymmetrically to generate one radial glia which will remain 

anchored and either a neuron or a basal progenitor cell (Kowalczyk et al., 

2009; Chen & Walsh, 2002; Kingsbury et al., 2003; Miyata et al., 2001; 

Noctor et al., 2001; Liu & Rao, 2004; Wonders & Anderson, 2006). Basal 

progenitor cells delaminate and start accumulating on the basal side of the 

VZ, giving rise to the subventricular zone (SVZ) (Noctor et al., 2001; 

Haubensak et al., 2004), which rapidly expands; leading to the exponential 

production of a large number of neurons (Garcia-Moreno et al., 2012; 

Betizeau et al., 2013). At the end of neurogenesis, apical radial glia switch to 

gliogenesis, giving rise to oligodendrocytes, astrocytes and ependymal cells 

(Kriegstein & Alvarez-Buylla, 2009). 

1.2.1.2  Neuron migration 

Neuronal migration occurs predominantly between PCW 12-20, is mostly 

complete by PCW 26-29, and is crucial to the formation of functional 

neuronal circuits with stereotyped connectivity patterns leading to proper 

brain function (Gupta et al., 2005; de Graaf-Peters & Hadders-Algra, 2006; 

Tau & Peterson, 2010). Newly formed immature neurons migrate radially out 

of the VZ (or SVZ) along radial glial fibres, which are protrusions of apical 

radial glia that guide neurons to the cortical plate in an “inside-out” fashion, 



30 

leading to the formation of 6 cortical layers where the first generated neurons 

are located in deeper cortical layers; and more recently formed neurons are 

located in superficial cortical layers (Sidman & Rakic, 1973; Hatten, 1993; 

Kornack & Rakic, 1995; Rakic, 1995; Takahashi et al., 1999; Rakic, 2000). 

All GABAergic neurons of the cerebral cortex are formed in another, foetal-

specific region called the ganglionic eminences and migrate parallel to the 

outer cortical surface to their final destination in the developing cortex (Van 

Eden et al., 1989; Monk et al., 2001; McManus et al., 2004). 

1.2.1.3 Synapse and neuronal circuit formation 

Once a neuron stops migrating, it begins terminal differentiation 

encompassing dendritic branching, axonal extension and branching to 

synaptic partners and the formation of dendritic spines and synaptic bouttons 

(Tau & Peterson, 2010; Fernandez et al., 2016; Prieto-Colomina et al., 2021). 

Synaptic connections occur by PCW 5 between neurons located in a 

temporary cortical layer structure called the preplate (Wood et al., 1992). 

These synaptic connections are initially transient and further refined and 

modified as neuronal circuits mature. The development of neuronal circuits 

requires the coordination of highly complex neurodevelopmental events, 

which are continuously refined and modified (Tau & Peterson, 2010). 

1.2.2 Gene expression profiles in brain development 

The complexity and cellular diversity of the human brain arise from the 

orchestration of gene expression patterns during foetal brain development 

(Silbereis et al., 2016). Several studies have shown that gene expression is 

more dynamic during foetal brain development than at any other life stage 
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(Johnson et al., 2009; Colantuoni et al., 2011; Kang et al., 2011). In addition, 

significant regional differences in gene expression patterns in the developing 

neocortex have been identified (Johnson et al., 2009; Miller et al., 2014; 

Pleitikos et al., 2014). Foetal brain gene expression patterns are driven by 

genetic factors during the first six months of foetal development (Kang et al., 

2011; Pletikos et al., 2014; Bakken et al., 2016), with environmental factors 

having a bigger influence in the last phases of foetal brain development, as 

well as, early postnatal brain development (Pletikos et al., 2014). Proper brain 

development and function rely on the tight balance between self-

amplification, self-renewal and differentiation of cortical progenitor cells 

(Taverna et al., 2014), with even minor departures from this balance and/or 

the timing of this balance producing significant differences in the cortical 

phenotype, including decreased or increased cortical thickness, surface area 

and cortical folding (Fernandez et al., 2016; Prieto-Colomina et al., 2021). 

This balance is achieved by tight spatial and temporal regulation of gene 

expression patterns mediated through several regulatory mechanisms, 

including the direct action of transcription factors which drive gene 

expression (Davuluri et al., 2008), epigenetic mechanisms such as DNA 

methylation and histone modifications (Henikoff & Matzke, 1997; Jaenisch & 

Bird, 2003; Hirabayashi & Gotoh, 2010; Maze et al., 2014; Spiers et al., 

2015) and regulatory non-coding RNAs including miRNAs (Nowakowski et 

al., 2018; Prodromidou & Matsas, 2019). 

1.2.3 Expression of miRNAs in the brain 

Nearly 50% of all known miRNAs are expressed in the mammalian brain 

(O’Carroll and Schaefer, 2013; 70% in Adlakha and Saini, 2014), and many 

miRNAs are brain-enriched (Sempere et al., 2004; Landgraf et al., 2007; 

Bartel, 2018). Moreover, miRNAs are dynamically regulated during brain 

development, and many have brain region-specific expression profiles 
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(Sempere et al., 2004; Landgraf et al., 2007; Bak et al., 2008; He et al., 2012; 

Ziats & Rennert, 2014). miRNAs are also differentially expressed in different 

subtypes of neurons, such as in glutamatergic versus GABAergic neurons or 

between subtypes of GABAergic neurons (He et al., 2012). In addition, 

several studies have demonstrated that miRNAs are enriched in dendritic 

spines, axons and synapses and possess differential expression dependent 

on neuronal compartments (Lugli et al., 2008; Natera-Naranjo et al., 2010; 

O’Carrol & Schaefer, 2013; Sasaki et al., 2013). Neuronal activity has been 

shown to regulate the expression of synaptic miRNAs (Eacker et al., 2011; 

Siegel et al., 2011; Pichardo-Casas et al., 2012). These studies strongly 

implicate miRNAs in brain development and function (Barca-Mayo & De 

Pietri-Tonelli, 2014; Rajman & Schratt, 2017; Gebert & MacRae, 2019; 

Prodromidou & Matsas, 2019; Cho et al., 2019). 

 

1.2.4 miRNAs and brain development 

 

There is a substantial body of evidence indicating that miRNAs are highly 

expressed in the brain, where they are vital in regulating processes 

pertaining to brain development and neuronal function, including 

neurogenesis, neuronal cell–type determination and migration, axonal 

pathfinding, synapse formation and neuronal circuit development, among 

others (Nowaskowski et al., 2018; for review see: Rajman & Schratt, 2017; 

Prieto – Colomina et al., 2021), by targeting regulatory molecules 

encompassing TFs, chromatin modifiers and components of signalling 

pathways (Nowaskowski et al., 2018). In the developing brain, miRNAs can 

either be master regulators of gene expression or fine-tuners, depending on 

the specific miRNA and the cellular context. miRNAs act as master 

regulators when they promote developmental transitions by repressing 

transcripts associated with the previous stage. In contrast, miRNAs act as 

fine-tuners when they act to reduce variability in the gene expression levels 
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of their targets, leading to a decreased level of noise and increased 

robustness in signalling (Schratt, 2009a; Hornstein & Shamron, 2006; Ebert 

& Sharp, 2012; Rajman & Schratt, 2017). 

 

1.2.4.1 Ablation models of miRNA biogenesis pathway in brain 

development 

Initially, the role of miRNAs in brain development was studied by their 

overall ablation by targeting critical elements of the miRNA biogenesis 

pathway. The complete knockout of Dicer in mice is embryonically lethal, with 

mice dying at embryonic day (E) 7.5 before neurulation occurs, indicating the 

importance of miRNAs in development (Bernstein et al., 2003; Murchison et 

al., 2005). Moreover, in mice, the conditional knockout of Dicer at late 

embryonic stages (> E10.5) leads to reduced neurogenesis and cell 

proliferation which translates into a smaller cortex (De Pietri Tonelli et al., 

2008), increased apoptosis, impaired neuronal migration and differentiation, 

resulting in disorganized cortical circuits (Kawase-Koga et al., 2009; 

Nowakowski et al., 2011; McKoughlin et al., 2012; Saurat et al., 2013). In 

contrast, loss of Dicer at early embryonic stages (E7.5) in the telencephalon 

leads to a severe histological disruption of its rostral-ventral organization due 

to the inhibition of miRNA let-7 (Fernandez et al., 2020). DGCR8 is exclusive 

to the miRNA biogenesis pathway, and homozygous DGCR8 knockout is 

also embryonically lethal in mice, which die at E6.5 (Wang et al., 2007; Stark 

et al., 2008), whilst heterozygous DGCR8 knockouts display abnormal 

miRNA biogenesis, accompanied by several neuronal and behavioural 

deficits (Stark et al., 2008). Moreover, the ablation of Drosha in forebrain 

neural progenitors resulted in early differentiation and loss of progenitor 

stemness (Knuckles et al., 2012), and AGO2 knockout mice display aberrant 

neural tube closure and die early during development (Liu et al., 2004). 
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1.2.4.2 Roles of miRNAs in foetal brain development 

It is important to note that because of miRNA co-targeting and cooperative 

mRNA repression discussed in section 1.1.3, individual miRNAs are often not 

essential for viability or development (Miska et al., 2007; Kutsche et al., 

2018). This effect is pronounced during brain development, where unrelated 

miRNAs act together to regulate key developmental genes, thereby 

increasing the robustness of foetal gene expression programs. For instance, 

neuronal differentiation induces the expression of miR-138 and miR-137, 

both brain-enriched miRNAs that act as a co-targetting pair of crucial 

neuronal differentiation-associated genes as well as one another and drive 

neuronal differentiation together (Cherone et al., 2019). Nonetheless, 

overexpression and inhibition studies have identified several miRNAs with 

crucial roles in brain development, some of which will be briefly discussed 

below. An overview of some of the key miRNAs involved in foetal brain 

development is provided in Table 1.1, along with their mRNA targets and the 

functional consequences of miRNA regulation where “+” denotes activation/ 

promotion of a process (in green) and “-“ denotes inhibition. Moreover, Figure 

1.6 highlights some of the miRNAs crucial to different processes of foetal 

brain development, including NPC proliferation and differentiation, 

neurogenesis, neuronal migration, neuronal maturation and gliogenesis. 
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Table 1.1, pt. I – Key miRNAs in foetal brain development. 

NSC- neural stem cell; aRGC – apical radial glia cell; IPC – intermediate progenitor cell. Adapted 

from: Prieto-Colomina et al., 2021 
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Table 1.1, pt. II – Key miRNAs in foetal brain development.  
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1.2.4.3 Roles of miRNAs in neuronal differentiation 

miR-124 and miR-9 are highly conserved miRNAs that constitute the most 

highly expressed miRNAs in the brain (Krichevsky et al., 2006; Gao, 2010; 

Han et al., 2020; Radhakrishnan & Anand, 2016) with crucial roles in 

neuronal development (Visvanathan et al., 2007; Radhakrishnan & Anand, 

2016). miR-124 is minimally expressed in NPCs, and its expression 

increases during foetal brain development and upon neuronal differentiation, 

reaching maximum levels in mature neurons (Lagos-Quintana et al., 2002; 

Deo et al., 2006; Visvanathan et al., 2007; Cheng et al.,2009). In contrast, 

miR-9 is primarily expressed in neuronal precursors where it controls NPC 

numbers (Delaloy et al., 2010; Akerblom et al., 2013; Coolen et al., 2013; 

Radhakrishnan & Anand, 2016). 

NPC maintenance depends on the Notch pathway, which promotes NPC 

self-renewal and inhibits neuronal differentiation. This pathway is initiated by 

the Notch ligand Jagged1 (Jag1) binding to the Notch transmembrane 

receptor (Louvi & Artavanis-Tsakonas, 2006; Imayoshi & Kageyama, 2011). 

miR-124 turns off the Notch pathway by suppressing Jag1, allowing neuronal 

differentiation to occur (Cheng et al., 2009; Liu et al., 2011; Jiao et al., 2017). 

Overexpression of miR-124 in HeLa cells leads to a global shift in the 

transcriptome towards brain-specific mRNA expression (Lim et al., 2005). 

This phenomenon was observed in a variety of other systems, such as 

neuronal progenitors, embryonic stem cells and fibroblasts (Krichevsky et al., 

2006; Silber et al., 2008; Xia et al., 2012; Yoo et al., 2011), demonstrating 

that miR-124 can act as a master regulator of neurogenesis. miR-124 drives 

neurogenesis by inhibiting key transcriptional repressors of neuronal-specific 

genes; specifically, miR-124 targets small C-terminal domain phosphatase 1 

(SCP1), preventing the phosphorylation and stabilization of the RE1 silencing 

transcription factor (REST) (Conaco et al., 2006; Visvanathan et al., 2007; 

Packer et al., 2008; Nesti et al., 2014). REST is an anti-neural transcriptional 

repressor, which forms a complex with its cofactors mSin3A (Grimes et al., 

2000) and CoREST (Andres et al., 1999) and binds to repressor element 1 
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(RE1) sites upstream of neuronal genes. Through this mechanism, REST 

strongly represses neuronal gene transcription via histone deacetylases 

(HDACs) and thus must be inhibited for neuronal differentiation to occur 

(Ballas et al., 2005). miR-124 also inhibits the expression of the 

polypyrimidine-tract-binding protein (PTBP1), a splicing factor that represses 

neuron-specific splicing (Makeyev et al., 2007). In undifferentiated cells, high 

levels of REST repress the expression of several miRNAs, including miR-124 

leading to a double-negative feedback loop that operates as a molecular 

switch to drive neuronal differentiation (Visvanathan et al., 2007; Cheng et 

al., 2009). PTBP1 has also been shown to block pri-miR-124-1 cleavage by 

the microprocessor leading to the inhibition of miR-124 biogenesis (Yeom et 

al., 2018), which suggests that additional miRNAs control these negative 

feedback loops by targeting REST and/or PTBP1 leading to increased 

miR-124 expression and neuronal fate specification. One such miRNA is 

miR-9, which has been shown to target CoREST in neurons (Packer et al., 

2008). miR-124, in conjunction with miR-9, regulate the switch to neuron-

specific chromatin remodelling complexes (nBAF) by downregulating the 

BAF53a subunit expressed in non-neuronal cells and NPCs, which is 

replaced by the neuron-specific subunit BAF53b (Yoo et al., 2009) and is 

required for post-mitotic events such as dendritogenesis (Wu et al., 2007).  

Several miRNAs promote neurogenesis via regulation of the Wnt pathway. 

For instance, miR-9 and let-7 downregulate the nuclear receptor TLX (Zhao 

et al., 2009; 2010; Roese-Koerner et al., 2013), an upstream activator of the 

Wnt pathway expressed in neurogenic niches in both foetal and adult brain. 

TLX prevents premature neuron differentiation and promotes NPC self-

renewal (for review, see: Islam & Zhang, 2015) and its downregulation 

inhibits proliferation and promotes neuronal differentiation. Through a 

negative feedback loop, TLX directly represses miR-9 expression (Zhao et 

al., 2009) and represses miR-137 expression via recruitment of the histone 

demethylase LSD1. In turn, when expressed, miR-137 promotes neuronal 

differentiation by targeting LSD1 (Sun et al., 2011) and preventing LSD1 from 

erasing activating H3K4me3 epigenetic marks (Yokoyama et al., 2008). 

Moreover, several miRNAs, such as let-7, miR-20a/20b, miR-23 and 
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miR-15b, downregulate cyclin D1, a downstream effector of the Wnt 

pathway, either directly (Ghosh et al., 2014) or via regulating the methylation 

status of the cyclin D1 promoter (Lv et al., 2014) thereby inhibiting cell 

proliferation.  

 

1.2.4.4 Roles of miRNAs in neuronal migration and maturation 

Neuronal migration is regulated by the coordinated action of several 

miRNAs that can promote, inhibit or protect neuronal migration along radial 

glial cells (Rajman & Schratt, 2017). Several members of the miR-379-410 

cluster, including miR-369-3p, miR-496 and miR-543, promote neuronal 

migration by downregulating N-cadherin, a neuronal adhesion molecule 

(Rago et al., 2014). In contrast, miR-134, miR-22 and miR-124 work 

cooperatively to inhibit neuronal migration by targeting doublecortin (Dcx) 

either directly (Gaughwin et al., 2011) or indirectly via members of the 

REST/CoREST transcriptional repressor complex (Volvert et al., 2014). As 

neurons migrate, they begin to polarize and convert from a multipolar 

morphology into a bipolar morphology (Noctor et al., 2004) via miR-22 and 

miR-124 regulation (Volvert et al., 2014). Once neurons reach their final 

destination, axons and dendrites start forming for neurons to establish 

functional connections. miR-9 regulates neurite outgrowth by targeting 

forkhead transcription factors 1 and 2 (Foxp1 and Foxp2) (Otaegi et al., 

2011; Clovis et al., 2012). In addition, miR-9 increases axon branching by 

locally regulating the expression of microtubule-associated protein 1b 

(Map1b) in axons (Dajas-Bailador et al., 2012). Several miRNAs modulate 

axonal branching and dendrite morphogenesis by targeting components of 

the actin-remodelling complex. miR-124 promotes axonal and dendritic 

branching by inhibiting the expression of RhoG GTPase (Franke et al., 

2012). miR-134 decreases dendritic spine size by targeting Limk1, which 

inhibits actin polymerization (Schratt et al., 2006). Moreover, miR-134 

promotes dendritic branching by targeting Pumilio2 (Pum2), a translational 
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repressor involved in dendritogenesis (Fiore et al., 2009). miR-132 promotes 

BDNF – dependent axonal branching and increases dendritic spines by 

inhibiting the expression of p250GAP, a repressor of RAC1, resulting in 

increased actin remodelling (Wayman et al., 2008; Marler et al., 2014). 

 

1.2.4.5 Roles of miRNAs in gliogenesis 

Gliogenesis is the process by which radial glia give rise to astrocyte 

precursor cells, astrocytes and oligodendrocyte precursor cells during foetal 

brain development (Molnár et al., 2019). This process is thought to occur 

sequentially and to partially overlap with neurogenesis throughout the second 

half of human foetal development (Kadhim et al., 1988; deAzevedo et al., 

2003). Recent studies have demonstrated that truncated radial glial cells 

(tRGs) originate glial progenitor cells at 18 PCW (Yang et al., 2022), which 

undergo mitosis and sharply increase in numbers after 20 PCW, suggesting 

that the neurogenesis-to-gliogenesis switch occurs at 20 PCW in human 

foetal development (Fu et al., 2021). Several studies have highlighted 

miRNAs as essential regulators of oligodendrocyte and astrocyte 

differentiation. For instance, oligodendrocyte-specific miRNAs miR-219 and 

miR-338 promote oligodendrocyte differentiation and myelination (Shin et al., 

2009; Dugas & Notterpek, 2010; Zhao et al., 2010) by repressing 

oligodendrocyte differentiation inhibitors such as platelet-derived growth 

factor alpha (PDGFRα), Hes5, Sox6, FoxJ3 and pro-neuronal genes such as 

Zfp238 (Stolt et al., 2006; Dugas & Notterpek, 2010; Wang et al., 2017). 

Moreover, several miRNAs involved in neuronal fate determination can also 

regulate glial differentiation, depending on cellular competence. For instance, 

miR-92a regulates neuronal fate determination (Bian et al., 2013) and is also 

required for astrocyte differentiation (Selvi et al., 2015). In addition, miR-23a, 

which promotes neurogenesis, also promotes oligodendrocyte differentiation 

and myelination (Lin et al., 2013).  
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Figure 1.6 – miRNAs involved in foetal brain development.  

Foetal brain development starts with the formation of the neural tube at 3 PCW (Ladher & 

Schoenwolf, 2005). Subsequently, at 5-6 PCWs, neuronal progenitors rapidly proliferate in the 

ventricular zone (VZ) that lines the cerebral ventricles (Rakic, 1978; Rakic, 1988; Rakic, 1995; 

Bystron et al., 2008). miR-25, miR-134, and miR-137 induce the proliferation of neural stem cells 

by regulating the expression of several proteins, including pluripotency factors (Nanog and Sox2) 

and cell-cycle inhibitors (p57) (Meza Sosa et al., 2014). By PCW 8, neuronal progenitors begin to 

differentiate, and radial glia can give rise to neurons (Malatesta et al., 2000; Noctor et al., 2001; 

Miller, 2002; Liu & Rao, 2004). Several miRNAs, including miR-124, miR-9 and let-7, promote 

differentiation of both radial glia and neurons by several mechanisms, including inhibiting TLX, 

which would otherwise stimulate neuronal progenitor self-renewal and cyclin D, which controls 

cell proliferation (Zhao et al., 2009). The inhibition of SCP1, BAF53a, and PTBP1, among others, 

by miR-124 leads to a shift from non-neuronal into neuronal gene expression profiles (Lang & 

Shi, 2012). Moreover, the negative feedback regulatory loops between miRNAs and their targets 

during neurogenesis allow for the spatiotemporal control of gene expression and give rise to a 

border between progenitor cell pools and differentiated neurons. After differentiation, post-

mitotic neurons migrate along radial glia cells (Rakic, 2000) in an “inside-out” manner, where 
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deeper cortical layers are formed first (Hatten, 1993; Rakic, 1978; Rakic, 1988; Rakic, 1995). This 

process peaks at 12-20 PCW and continues up to 26-29 PCW (Gupta et al., 2005) and requires a 

complex interaction between neurons and scaffolding glia (Hatten, 1999; Chao et al., 2009). 

Several miRNAs work cooperatively to regulate neuronal migration. For instance, miR-134 can 

inhibit neuronal migration by targeting doublecortin (Dcx) directly (Gaughwin et al., 2011), 

whilst miR-22 and miR-124 target Dcx by downregulating members of the CoREST/REST 

transcriptional repressor complex (Volvert et al., 2014). In contrast, several other members of 

the miR-379-410 cluster, such as miR369-3p, miR-496 and miR-543, promote neuronal migration 

by downregulating N-cadherin, a neuronal adhesion molecule (Rago et al., 2014). As neurons 

reach the end of their migration, they mature and extend dendrites and axons to other neurons 

to form synaptic connections, a process dependent on several molecular gradients. Refinement 

of synapses occurs later, starting at 20 PCW. Several miRNAs regulate these processes by 

promoting axonal branching (e.g. miR-29, miR-124 and miR-132), dendritogenesis (e.g. miR-132, 

miR-185 and miR-134), regulating spine maturation (e.g. inhibition - miR-125, miR-134, miR-138; 

promotion – miR-132) and regulating synapse development and function (e.g. miR-137) (Rajman 

& Schratt, 2017). Adapted from: Prieto-Colomina et al., 2021. Created with Biorender.com 

 

 

1.3 Role of miRNAs in neuropsychiatric disorders 

 

1.3.1 Neuropsychiatric disorders 

 

Neuropsychiatric disorders are a group of complex disorders that, despite 

lacking obvious neuropathology, can result in significantly altered affect, 

perceptions, cognition, personality and behaviour. Common examples 

include attention-deficit hyperactivity disorder (ADHD), schizophrenia (SZ), 

autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), 
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Tourette syndrome (TS), intellectual disability (ID), major depression disorder 

(MDD), bipolar disorder (BD), anxiety disorders, eating disorders, 

post-traumatic stress disorder (PTSD), Alzheimer’s disease (AD) and 

substance use disorders. These disorders are highly debilitating, leading to 

significant functional impairments, substantial morbidity and mortality, and a 

tremendous public health burden. Most neuropsychiatric disorders are 

common in the population and possess a complex, largely unknown 

aetiology. Moreover, many affected individuals frequently respond poorly to 

medication and relapse, pressing the need for new and more effective 

therapies.  

Some neuropsychiatric disorders such as ASD, ADHD, OCD, TS and ID 

are classed as neurodevelopmental disorders, and symptoms typically 

present during childhood. These disorders are associated with altered 

neurodevelopmental trajectories and a significant disruption of prenatal brain 

development is assumed. Neuropsychiatric disorders, such as SZ, BD and 

even MDD, are also thought to have a neurodevelopmental component. In 

these disorders, alterations during critical periods of brain development are 

hypothesized to predispose to the development of the condition in adulthood 

(Weinberger, 1987; Murray & Lewis, 1987; Basset et al., 2001; Walsh et al., 

2008; Scholtz & Phillips, 2009; Cristino et al., 2013; Jamuar et al., 2014; 

Silbereis et al., 2016; Wray et al., 2018; O’Brien et al., 2018; Parenti et al., 

2020; Kloiber et al., 2020; Hall et al., 2020). 
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1.3.2 The genetics of neuropsychiatric disorders 

 

1.3.2.1 Heritability of neuropsychiatric disorders – Twin and 

adoption studies 

Neuropsychiatric disorders tend to aggregate in families due to genetic 

and environmental factors. Adoption and twin studies disentangle the relative 

contribution of genetic and environmental effects on the trait by comparing 

monozygotic (identical) and dizygotic (non-identical) twins. Monozygotic 

twins are genetically identical, share the same prenatal environment, and, if 

raised together, also share a familial environment. In contrast, dizygotic twins 

share 50% of their segregating genes like other siblings, share the same 

prenatal environment and also share a familial environment. The extent to 

which monozygotic twins are more concordant for a neuropsychiatric 

disorder than dizygotic twins can be used to compute heritability, which is the 

proportion of disease liability in the population due to genetic factors 

(Merikangas & Merikangas, 2016). Once genetic factors have been 

considered, any remaining similarities between twins are due to shared 

familial environments, whilst discordance between monozygotic twins can be 

attributed to nonshared environmental influences. 

Epidemiological data from twin and adoption studies strongly argues for an 

important genetic architecture underlying neuropsychiatric disorders. These 

studies demonstrated substantial heritability for SZ (60 to 80%) (Sullivan et 

al., 2003; Hilker et al., 2018), BD (79 to 93%) (McGuffin et al., 2003; 

Kieseppa et al., 2004), ASD (83% to 90%) (Sandin et al., 2017; Tick et al., 

2016) and ADHD (74%) (Rietveld et al., 2003; Faraone & Larsson, 2019). 

The heritability of MDD is estimated to be lower, at around 37 % (Sullivan et 

al., 2000), but is increased for recurrent, early-onset, and postpartum 

depression (Kendler et al., 2007; Sullivan et al., 2000). Taken together, 
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quantitative genetic studies suggest that the aetiology of neuropsychiatric 

disorders can be elucidated using genetic approaches.  

 

1.3.2.2 Genetic architecture of neuropsychiatric disorders 

Neuropsychiatric disorders possess a complex genetic architecture and 

are highly polygenic, involving hundreds to thousands of risk variants spread 

across the genome. The frequency of a risk variant in the population is 

inversely proportional to its effect size, with high-risk variants being rarer in 

the population due negative selection (Keller & Miller, 2006; Park et al., 

2011b; Rees et al., 2011). Moreover, neuropsychiatric disorders are 

multifactorial, and thousands of genetic risk factors aggregate and interact 

with each other and with environmental risk factors such as early-life 

adversity to mediate risk (Stilo & Murray, 2019; Klei et al., 2021)  . 

Recent advances in genomics have allowed for the identification of both 

rare variants by CNV analysis and exome sequencing and common risk 

variants by GWAS in neuropsychiatric disorders. These will briefly be 

described in turn. 

 

1.3.2.3 Rare risk variants in neuropsychiatric disorders  

1.3.2.3.1 CNV analysis  

CNVs are structural rearrangements of chromosomes and can be defined 

as a segment of DNA of 1 kilobase (kb) or larger that are present in a 

genome at a variable copy number compared to a reference genome (Redon 

et al., 2006). CNVs encompass insertions, deletions and duplications that 

can span up to several dozen genes and can be analyzed using standard 
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SNP genotyping arrays. Several studies have identified rare CNVs as risk 

factors for neuropsychiatric disorders with large effect sizes (OR 2-57 for SZ) 

(Rees et al., 2014; for review, see: Rees & Kirov, 2021), particularly in SZ 

(n=12) (Marshall et al., 2017), ASD (n=15) (Sanders et al., 2015; Clements et 

al., 2017; Iakoucheva et al., 2019), ADHD (n=8) (Schneider et al., 2014; 

Gudmundsoon et al., 2019; Martin et al., 2020) and ID (n=70) (Coe et al., 

2014), and to a lesser extent in BD (Green et al., 2016) (n=1) and MDD (n=3) 

(Kendall et al., 2019). Smaller studies have also implicated CNVs in the risk 

for OCD (n=1) and TS (n=2) (McGrath et al., 2014; Gazzellone et al., 2016; 

Huang et al., 2017). Despite their large effect size, most CNVs lack 

specificity and confer risk for several psychiatric disorders and are, therefore, 

pleiotropic. CNV pleiotropy suggests a shared genetic architecture and 

aetiology between several neuropsychiatric disorders; for example, CNVs 

have highlighted a significant overlap between ASD and SZ (Kushima et al., 

2018). The majority of identified CNVs conferring risk for neuropsychiatric 

disorders encompass several genes. For example, 22q11.2 deletions lead to 

a congenital condition called velocardiofacial (VCF) or DiGeorge syndrome 

(Cancrini et al., 2014). Individuals with DiGeorge syndrome are at higher risk 

of developing SZ as adults (Murphy, Jones, and Owen 1999), as well as 

ASD, ADHD, anxiety, depression and ID (Phillip & Basset, 2011; Fabbro et 

al., 2012; Schneider et al., 2014; Fung et al., 2015; McDonald-McGinn et al., 

2015; Cascella & Muzio, 2015; Clements et al., 2017). Currently, the only 

CNV associated with neuropsychiatric disorders that disrupts a single gene 

are deletions on chromosome 2p16. These deletions disrupt NRXN1, a gene 

involved in synapse formation and synaptic plasticity, and are associated 

with TS (Huang et al., 2017), ID, SZ and ASD (Castronovo et al., 2020), 

which also suggests that synaptic dysregulation is a common feature in these 

disorders. 
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1.3.2.3.2 Exome sequencing 

Exome sequencing has allowed for rare coding variants to be studied in 

the context of neuropsychiatric disorders, and both CNV analysis and exome 

sequencing have highlighted the importance of de novo mutations in the 

aetiology of these conditions (Sanders et al., 2012; Sanders et al., 2015; 

Fromer et al., 2014). Several studies have identified rare de novo loss of 

function (LOF) mutations associated with SZ (Takata et al., 2014; Singh et 

al., 2022; Howrigan et al., 2020; Rees et al., 2020), ASD (Iossifov et al., 

2014; Sanders et al., 2015; Takata et al., 2018; Satterstrom et al., 2020), BD 

(Nishioka et al., 2021) and ID (Singh et al., 2016; Kummeling et al., 2020). 

Moreover, rare truncating mutations have also been associated with ASD, 

BD, SZ, ID and ADHD (Krumm et al., 2015; Ganna et al., 2018). 

Rare de novo heterozygous loss-of-function (LoF) mutations in the 

SETD1A gene, a histone methylase with developmental roles, are associated 

with a high risk for the development of SZ (Takata et al., 2014; Singh et al., 

2016), learning difficulties and developmental disorders (Singh et al., 2016). 

Mutations in SETD1A are also associated with early-onset epilepsy (Yu et 

al., 2019), disruption of speech development (Eising et al., 2019) and global 

developmental delay (Kummeling et al., 2020). Recently, an exome 

sequencing study encompassing 24,248 SZ patients and 97,332 controls by 

the Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA) Consortium 

reported 10 genes with ultra-rare LOF mutations that surpassed the genome-

wide significance threshold of association in SZ (Singh et al., 2022). Of note, 

despite the level of significance of the association, the proportion of patients 

carrying these variants will be extremely small.  
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1.3.2.4 Common risk variation in neuropsychiatric disorders 

1.3.2.4.1 Genome-wide association studies 

Genome-wide association studies (GWAS) are a type of case versus 

control association study using large cohorts of thousands of individuals that 

enables a systematic, hypothesis-free and unbiased population-based 

evaluation of individual DNA variants in relation to a given trait. GWAS are 

widely used to study complex diseases because they incorporate the merits 

of association (power to detect small effects) with that of linkage (no 

requirement for specific knowledge of pathogenesis). In GWAS, common 

genetic variants, mostly single nucleotide polymorphisms (SNPs, defined as 

point mutations with a population frequency of at least 1%), located 

throughout the entire genome, are tested for association with a trait or 

disease (Newton-Cheh & Hirschhorn, 2005). If a variant is more frequent in 

cases than controls, the variant is said to be associated with the disease and 

marks a region of the genome that influences risk. Associated SNPs reported 

in these studies typically have individual odds ratios (OR) < 1.2 for 

neuropsychiatric disorders (for review, see: Cichon et al., 2009). 

In order to prevent false positives, GWAS imposes a stringent statistical 

significance threshold of p < 5 x 10-8 through Bonferroni correction for 1 

million independent tests (Dudbridge & Gusnanto, 2008). This threshold 

considers both the number of SNPs tested and the linkage disequilibrium 

(LD) between SNPs. The stringent threshold of genome-wide significance, 

and the small effect sizes of the risk SNPs, mean that the statistical power to 

detect association requires very large sample sizes. The need for large 

sample sizes precipitated the creation of collaborative consortia, such as the 

Psychiatric Genomics Consortium (PGC), with the aim of uniting genetic 

researchers in order to combine genotypes from many thousands of patients 

and controls. 
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1.3.2.4.2 Current common risk loci identified by GWAS in 

neuropsychiatric disorders  

With sufficiently large sample sizes, GWAS have yielded a considerable 

number of significant results for neuropsychiatric disorders. Currently, 287 

loci have been associated with SZ at genome-wide significance, with SNPs 

estimated to account for 0.24 of SZ heritability (Trubetskoy et al., 2022). A 

recent GWAS meta-analysis preprint has identified 27 genome-wide 

significant loci in ADHD (Demontis et al., 2022). Moreover, 64 genomic loci 

have been associated with BD (Mullins et al., 2021); 75 risk loci with AD 

(Bellenguez et al., 2022), 102 loci with MDD (Howard et al., 2019), 8 risk loci 

for anorexia (Watson et al., 2019), and 5 risk loci with ASD (Grove et al., 

2019). Despite smaller samples sizes, 1 risk locus has been identified in TS 

(Yu et al., 2019), 3 risk loci have been identified in PTSD – 2 in the European 

population, and 1 in the African population (Nievergelt et al., 2019) - and 2 

risk loci have been identified in an anxiety GWAS metanalysis (Otowa et al., 

2016). In contrast, GWAS of panic disorder (Forstner et al., 2021) and OCD 

(IOCDF-GC and OCGAS, 2017) have so far failed to find genome-wide 

significant loci associated with these conditions. With regards to substance 

abuse, 29 independent loci have been reported to be associated with 

problematic drinking (Zhou et al., 2020), 18 loci with alcohol consumption 

level and alcohol use disorder (AUD) (Kranzler et al., 2019), 5 risk loci with 

nicotine dependence (Quach et al., 2020), 2 risk loci with cannabis – use 

disorder (CanUD) (Johnson et al., 2020) and 18 independent risk loci were 

found to be associated with opioid use disorder (OUD) in a recent multi-trait 

analysis GWAS (Deak et al., 2022). 
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1.3.2.4.3 Limitations of GWAS and the need for functional genomic 

studies 

GWAS studies have allowed for the systematic identification of genetic loci 

associated with neuropsychiatric disorders and other traits. However, 

because GWAS rely on linkage disequilibrium between SNPs, a shortcoming 

of this method is that the most significant risk SNP at each locus (index SNP) 

is not necessarily the causal variant. Moreover, GWAS is unable to 

distinguish the top variant signal from many other variants that are in high LD 

with it, as any of these could be the causal variant (Hormozdiari et al., 2014) 

Most (> 90%) of the top associated variants identified through GWAS are 

located in non–coding regions of the genome and are enriched in regulatory 

regions such as enhancers, promoters, silencers and insulators, which can 

be cell-type specific (Maurano et al., 2012; Kumar et al., 2012). This implies 

that most GWAS risk variants do not affect protein structure but rather affect 

gene regulation. The effect of causal risk variants on gene regulation is likely 

to be highly context-specific with regard to the tissues, cells, and 

developmental stages, depending on the disease (Hindorff et al., 2009; 

Encode Project Consortium, 2012; Eicher et al., 2015). All these limitations 

make GWAS results challenging to interpret in terms of disease biology. 

It has been demonstrated that SNPs associated with complex traits by 

GWAS, such as neuropsychiatric disorders, have a three-fold likelihood of 

being an expression quantitative locus (eQTL) (Nica et al., 2010; Nicolae et 

al., 2010; Fehrmann et al., 2011; Hernandez et al., 2012; Porcu et al., 2019) 

which is a variant associated with changes in gene expression. 

Whilst GWAS typically report the closest gene as a likely candidate, this is 

usually not the gene that is differentially regulated in association with the risk 

genotype (Musunuru et al., 2010; Zhu et al., 2016). Functional genomic 

studies are therefore required to elucidate the affected genes mediating the 

GWAS association, identify causal variants and interpret their biological 
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impact on diseases and traits (ENCODE Project Consortium, 2012; Schaid et 

al., 2018; Broekema et al.,2019). 

 

1.3.2.4.4  Gene prioritization of GWAS risk loci 

Gene prioritization aims to link disease-associated genetic variants to 

putative target genes and typically involves an eQTL study in disease 

relevant tissues and cells (Westra et al., 2013; Westra & Franke, 2014; 

Zhernakova et al., 2017; Võsa et al., 2018). In an eQTL study, genome-wide 

genotyping is combined with transcriptomic data from a given tissue to 

identify variants associated with altered gene expression (Schadt et al., 

2003; Fehrmann et al., 2011). eQTL variants can act on phenotypes by 

affecting expression of local (cis - eQTLs) or distant (trans - eQTLs) gene 

targets. Identified eQTLs can be subsequently analyzed by different 

statistical approaches to ascertain whether the eQTL affects both gene 

expression and the trait of interest in order to identify potential causal effects. 

Of note, the top eQTL variant or SNPs in high LD with the top eQTL may not 

be the same as the index SNP in the GWAS being analyzed, usually due to 

multiple causal variants at the locus in high LD affecting the gene expression 

and the trait of interest independently (Yang et al., 2012; Hormozdiari et al., 

2014; Porcu et al., 2019). Common approaches employed to identify eQTLs 

influencing complex traits and diseases are colocalization, transcriptome-

wide association studies (TWAS), and mendelian randomization (MR) (for 

review, see: Cano-Gomez & Trynka, 2020; Li & Ritchie, 2021; Walker et al., 

2022). 
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1.3.2.5 Foetal brain development and neuropsychiatric 

disorders 

As mentioned in section 1.3.1, many neuropsychiatric disorders are either 

classed as neurodevelopmental disorders or are thought to have a 

neurodevelopmental component. The majority of neurons present in the adult 

human cortex are generated between the end of 1st trimester through the 

2nd trimester of foetal development (Byston et al., 2008), making this 

developmental window a potential critical period of vulnerability. 

Human foetal brain development is complex and highly dynamic regarding 

spatial and temporal expression trajectories of individual transcripts 

(Gulsuner et al.,2013), meaning that early developmental insults that affect 

these processes would alter the brain development trajectory predisposing 

towards neural circuits dysfunction and psychiatric illness. There is a growing 

body of evidence suggesting that both rare and common risk genes for 

neurodevelopmental disorders such as SZ, ASD and ID are highly expressed 

and dynamically regulated in foetal brain development (Hill & Bray, 2012; 

Miller et al., 2014; Birnbaum et al., 2015; Li et al., 2018; Liu et al., 2018). 

These studies support the notion that foetal expression profiles are essential 

for future brain function. 

 

1.3.2.6 eQTL studies in foetal brain and risk for 

neuropsychiatric disorders  

The majority of common variation associated with risk for neuropsychiatric 

disorders is non-coding and likely to affect gene expression, and gene 

expression is highly specific to tissue, cell type and developmental period. 

These factors make eQTL analysis in foetal brain important in understanding 

how changes in gene expression patterns during prenatal brain development 

may contribute to the aetiology of these disorders. O’Brien and colleagues 
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(2018) published the first eQTL study in foetal brain, in which expression of 

28,875 genes was assayed in 120 2nd trimester samples. They identified a 

total of 1329 genes that were subject to foetal eQTLs (at FDR < 0.05) and 

found these eQTLs to be enriched among risk variants for neuropsychiatric 

disorders, including SZ, ADHD and BD (O’Brien et al., 2018). These results 

were subsequently corroborated by Walker and colleagues (2019) in a larger 

study involving 201 mid-gestation foetal brains, that identified 6546 genes 

that were subject to foetal eQTLs and 4635 genes that were subject to 

spliceQTLs (sQTLs). In addition to mRNA species, eQTL analysis can be 

extended to other RNA species, such as miRNAs. 

 

1.3.2.7 miRNAs in neuropsychiatric disorders 

Altered miRNA expression has been reported in the post-mortem brains of 

individuals with various psychiatric disorders, including substance abuse (Im 

& Kenny, 2012), MDD (Smalheiser et al., 2012), ASD (Ander et al., 2015; Wu 

et al., 2016), SZ and BD (Moreau et al., 2011). Several miRNAs have been 

reported to be differentially expressed in the dorsolateral prefrontal cortex 

(DLPFC) of people with SZ compared to controls (Santarelli et al., 2011; 

Moreau et al., 2011). The targets of these miRNAs showed enrichment for 

genes involved in axon guidance, long-term potentiation, and other 

processes associated with neuropsychiatric disorders. In addition, 59 

miRNAs were reported to be differentially expressed in the DLPFC and 

superior temporal gyrus in SZ, which targeted and down-regulated the 

expression of mRNAs coding for proteins involved in neurodevelopmental 

pathways and cell-cell signalling (Beveridge et al., 2008, 2010). Moreover, 

genes encoding miRNAs and molecules involved in miRNA post-

transcriptional gene regulation and processing are located at several 

high-confidence genomic risk loci for psychiatric disorders, consistent with an 

aetiological role of miRNAs in these conditions. These include FXR1, 

MIR548AJ2 and MIR137 at genome-wide significant risk loci for SZ (Ripke et 
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al., 2014; Duan et al., 2014; Strazisar et al., 2015). To date, published 

studies implicating miRNA in neuropsychiatric disorders have been carried 

out exclusively using adult brain tissue. Therefore, little is known about how 

the expression of miRNAs in foetal brain might contribute to risk for 

neuropsychiatric disorders. 

1.4 Aims of thesis 

The aims of this thesis are as follows: 

1) Identify miRNA expressed in human foetal brain and assess the

effects of sex and gestational age on miRNA expression (Chapter 2).

2) Map common genetic variants associated with miRNA expression in

human foetal brain (Chapter 3).

3) Test association between identified miR-eQTL and neuropsychiatric

disorders and other brain-related traits (Chapter 4).
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2 Chapter 2 - Expression of 

microRNAs in human 2nd 

trimester foetal brain and 

investigation of effects of sex 

and gestational age          
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2.1  Introduction 

 

The methods most commonly employed to profile miRNA expression are 

reverse transcription quantitative PCR (RT- qPCR), microarrays and RNA 

sequencing (RNA-Seq). RT-qPCR is a low throughput method, mainly 

employed for targeted miRNA analysis of a small number of miRNAs (Shi & 

Chiang, 2005; Mestdagh et al., 2014; Salone & Rederstorff, 2015). Due to its 

high sensitivity and specificity, this method is usually employed to verify 

results obtained by microarrays and next-generation sequencing, including 

RNA-Seq (Mestdagh et al., 2014). 

Microarrays are a high-throughput method for miRNA quantification, where 

hundreds of miRNA-specific probes are attached to fixed locations on a glass 

or polymer slide. After mature miRNA purification and reverse transcription, 

the resulting cDNA is labelled (with either biotin, fluorophores, or less 

commonly radioactive compounds). The labelled cDNA and miRNA probes 

are hybridized and scanned for signals, allowing for the relative quantification 

and normalization of miRNA expression from each probe on the slide in 

relation to a control experiment (Yin et al., 2008). Whilst microarrays can 

profile hundreds of miRNAs simultaneously, this technique does not allow 

absolute quantification, nor is it able to identify novel miRNAs as it is 

necessary to have prior knowledge of the miRNAs to be interrogated for 

probe design. Moreover, the sensitivity of microarrays is considerably lower, 

which necessitates large quantities of starting material, and its specificity can 

be compromised due to the high similarity between miRNA species.  

RNA sequencing (RNA-Seq) is a high-throughput alternative to 

microarrays that does not require a priori knowledge and allows for the 

unbiased quantification of the transcriptome (Wang et al., 2009; Ching et al., 

2014). RNA-seq is commonly employed to perform differential gene 

expression (DGE) analysis by comparing the expression of genes between 

conditions and identifying altered genes and pathways. RNA-Seq also allows 

to identify alternative splicing events (Wang et al., 2008; Pan et al., 2008; 
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Tremblay et al., 2016), perform allele-specific expression analysis (Degner et 

al., 2009), discover and annotate new transcripts (Guttman et al., 2010) and 

study the regulation of gene expression by non-coding RNAs (Djebali et al., 

2012; Li et al., 2016). Mature miRNAs are small and lack a poly(A) tail. As 

such, they are either not captured or poorly represented by standard 

RNA-Seq library preparations (Dard-Dascot et al., 2018; Stark et al., 2019) 

and require their own specific method. 

Small-RNA sequencing (Small-RNA seq) is a modification of the RNA-seq 

method that allows the sequencing of small-RNAs by use of sequential RNA 

ligation in cDNA library preparation (Hafner et al., 2008). This method 

quantifies miRNAs and detects novel miRNAs, isomiRs, and other small RNA 

species unbiasedly compared to microarrays and RT-qPCR (Dard-Dascot et 

al., 2018; Benesova et al., 2021). Small RNA sequencing has been 

successfully employed to study miRNA expression in the adult human brain 

and identify novel miRNAs (Wake et al., 2016), perform differential analysis 

between brain regions in AD (Dobricic et al., 2022), identify miRNA editing in 

Huntington’s disease (Guo et al., 2022), integrate miRNA expression with 

mRNA expression and protein levels in Parkinson’s Disease (Caldi Gomes et 

al., 2022), among others. To the best of my knowledge, the present 

investigation was the first study employing small RNA-sequencing to study 

miRNA expression in 2nd trimester foetal human brain. In this chapter, I 

describe the small RNA sequencing protocol I employed to profile miRNA 

expression in 2nd trimester foetal brain and the methods used to analyze 

small RNA-sequencing data and assess variables responsible for driving 

miRNA expression, including analyzing the effects of sex and gestational 

age. 

Sex differences have been reported in the brains of adolescents and 

adults at the morphological (Ruigrok et al., 2014; Ritchie et al., 2018), 

functional (Ingalhalikar et al., 2014), biochemical (Laakso et al., 2002), and 

behavioural levels (Zell et al., 2015; Gur & Gur, 2017). More recently, sex 

differences in foetal brain functional connectivity have been reported 

(Wheelock et al., 2019). These differences are likely to arise due to sexual 
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differentiation of the human brain caused by different gene expression 

patterns between males and females that begin during foetal development. In 

animal studies, foetal development is a crucial time for the sexual 

differentiation of the brain, which will subsequently lead to behavioural sex 

differences (Arnold, 2009). 

Recently, the Genotype-Tissue Expression (GTEx) Project reported that 

sex influences both gene expression patterns and cellular composition of 

tissues throughout the body, with 37% of all genes having sex-biased gene 

expression in at least one tissue (Oliva et al., 2020). The human genome 

differs between sexes with males possessing a Y-chromosome and an X-

chromosome, whereas females possess 2 copies of the X-chromosome. 

According to the most recent Ensembl release 108, the human X-

chromosome has approximately 1575 genes, whilst the Y-chromosome has 

approximately 203 genes (Cunningham et al., 2022). Of these, 29 genes are 

located in pseudoautosomal regions (PAR1 and PAR2) and are homologous 

between females and males (Ross et al., 2005; Monteiro et al., 2021). 

Because females have 2 copies of the X-chromosome, during early 

embryonic development, one copy of the X-chromosome in female cells is 

randomly inactivated (XCI) to balance the dosage of X-chromosome linked 

genes between sexes. However, several studies have demonstrated that at 

least 23 - 30 % of X-chromosome linked genes escape XCI to some extent 

(Balaton et al., 2015; Tukiainen et al., 2017) and therefore contribute to sex-

biased gene expression of X-chromosome linked genes (Balaton et al., 

2018). 

Sex differences in gene expression can occur by several mechanisms, 

such as gene expression of Y-chromosome linked genes, differences in 

dosage of X-chromosome genes and epigenetic mechanisms such as 

non-random X-chromosome silencing and imprinting of X-chromosome 

linked genes (Arnold, 2017). Sex hormones can regulate gene expression 

and contribute to the sex-biased expression of autosomal genes and to 

X-chromosome dependent epigenetic regulation of gene expression. Whilst

most transcription factors are not differentially expressed between males and 
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females, a recent study demonstrated significant sex differences in chromatin 

accessibility and that many transcription factors have sex-biased regulatory 

targeting patterns (Kukurba et al., 2016). 

Sex differences have also been observed in miRNA expression in gonadal 

(Mishima et al., 2008) and somatic tissues, including the brain (Morgan & 

Bale, 2012; Pak et al., 2013; Ziatts & Rennert, 2014). In neonatal mouse 

brain, 149 miRNAs have been found to be differentially expressed between 

females and males, of which 32% were regulated by a sex-chromosome 

epigenetic mechanism, and 48% were regulated by sex hormones (Morgan & 

Bale, 2012; Morgan & Bale, 2011). Ziatts and Rennert (2014) performed an 

RNA-Seq study to investigate miRNA expression patterns in human brain 

from infancy to adolescence. This study reported a total of 40 miRNAs 

differentially expressed between females and males in the prefrontal cortex 

over development, with the period of adolescence having the most 

sex-biased miRNA expression (n=26 miRNAs, 1 – upregulated in males and 

25 upregulated in females).  

The observed prevalence and presentation of several psychiatric disorders 

differ substantially by sex (Rutter et al., 2003; Zagni et al., 2016), including 

neurodevelopmental disorders such as ASD and ID (Werling & Geschwind, 

2013; Polyak et al., 2015). However, little is known regarding sex differences 

in human foetal brain and throughout human foetal brain development. 

Understanding how the foetal expression of miRNAs differs by sex in normal 

brain development may provide insight into the mechanisms underlying this 

disparity.  

Human foetal brain development is complex and highly dynamic 

concerning spatial and temporal expression trajectories of individual 

transcripts (Gulsuner et al.,2013). In fact, prenatal transcriptional changes in 

the brain occur more rapidly than at any other stage of life (Johnson et al., 

2009; Colantuoni et al., 2011; Kang et al., 2011; Jaffe et al., 2018). Recent 

studies support the notion that foetal expression profiles are important for 

future brain function and that the degree of dysfunction will be inversely 

proportional to disease onset due to the failure of compensatory mechanisms 
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(Birnbaum & Weinberger, 2017). Under this model, early developmental 

insults that affect foetal brain expression profiles are proposed to alter the 

brain development trajectory predisposing towards neural circuit dysfunction 

and neuropsychiatric disorders. There is a growing body of evidence 

suggesting that both rare and common risk genes for neurodevelopmental 

disorders such as SZ, ASD and ID are highly expressed and dynamically 

regulated in foetal brain development (Hill & Bray, 2012; Miller et al., 2014; 

Birnbaum et al., 2015; Li et al., 2016).  

Given the crucial role of miRNA in regulating processes pertaining to brain 

development and neuronal function (Rajman & Schratt, 2017; 

Prieto-Colomina et al., 2021), I sought to determine which miRNAs are 

expressed in 2nd trimester foetal brain via small-RNA sequencing and the 

potential effects of sex and gestational age. 
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2.2 Materials and Methods 

 

2.2.1 Samples 

 

Initially, a total of 148 2nd trimester human foetal brain samples were used 

(12-20 post-conception weeks [PCW]) obtained from the MRC / Wellcome 

Trust Human Developmental Biology Resource (http://www.hdbr.org/). 

Samples were derived from elective abortions due to non-medical reasons 

and possessed a normal karyotype. PennCNV (Wang et al., 2007) was 

employed to call CNVs from samples for which signal intensity data (log R 

ratio and B allele frequency) was available (n = 68), in order to assess if any 

carried known risk CNVs for neurodevelopmental disorders listed in Kendall 

et al., (2019). None of the samples where CNVs were investigated 

possessed neurodevelopmental CNVs. However, a limitation of the present 

analysis is that not all samples were able to be screened for 

neurodevelopmental CNVs for lack of signal intensity data. 

Ethical approval for use of the HDBR samples was granted by the Royal 

Free Hospital research ethics committee under reference 08/H0712/34 and 

Human Tissue Authority (HTA) material storage licence 12220. In addition, 

ethical approval for investigating genetic effects on gene expression in 

human brain was obtained from the Psychiatry, Nursing and Midwifery 

Research Ethics Subcommittee (PNM RESC/12/13 -102). Samples had been 

received as undissected frozen brain tissue. Total RNA was extracted from a 

homogenate of half a section of brain tissue from each foetus using Trizol 

(Ambion). The other half was used for genomic DNA extraction using 

standard phenol-chloroform extraction. All tissue samples were stored at –

 80C.  
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2.2.2 Total RNA extraction, processing and 

quantification 

 

Total RNA was extracted following the standard Trizol (Ambion) method. 

The purity and concentration (ng/μl) of the extracted total RNA samples was 

determined by spectrophotometry; to ensure RNA quality free from protein 

and solvent contamination, a 260/ 280 ratio ≥ 1.8 and 260/ 230 ≥ 1 was 

required. Subsequently, total RNA was DNAse treated using the TURBO 

DNA – freeTM kit (Ambion) to remove genomic DNA from the samples. RNA 

quality was accessed through an Agilent RNA 6000 Nano Kit and the Agilent 

2100 Bioanalyzer System in the form of an RNA integrity number (RIN). RNA 

concentration was accurately quantified by fluorometry using Qubit (Thermo 

Fisher Scientific). 

 

2.2.3 TruSeq Small RNA Library Preparation 

 

Small RNA libraries were constructed in accordance with Illumina 

guidelines, using 1 ug of DNAse treated total RNA. Figure 2.1 illustrates the 

TruSeq Small RNA Library preparation workflow.  
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Figure 2.1 - TruSeq Small RNA Prep workflow. 

Briefly, 1ug of DNAse treated total RNA was initially ligated with 3’ and 5’ adapters, followed by 

reverse transcription. Subsequently, the resulting cDNA was amplified by PCR using different 

PCR indexes for each sample in order to discern between them. This was followed by the 

purification of the cDNA construct by size selection using agarose gel extraction. Library quality 

was assessed using the Agilent High Sensitivity DNA kit. At this point, samples were normalized 

and stored at - 20 C (Adapted from: Illumina TruSeq Small RNA Library guidelines). 

2.2.4 Purification of cDNA construct and library quality 

control 

Small RNA libraries were purified by agarose gel extraction. This method 

allowed specific isolation of libraries with sizes between 145 -160 nucleotides 
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which contain mature miRNA generated from ~22 nt and piwi-interacting 

RNAs (piRNAs) generated from ~30 nt, as well as, small RNA fragments, 

and other regulatory small RNAs (in addition to the ligated adapters). 

Subsequently, the agarose containing the libraries of interest was dissolved, 

and the small RNA libraries were collected using the MinElute Gel Extraction 

Kit (Qiagen). Quality control of purified libraries was performed using 

Bioanalyzer and the Agilent High Sensitivity DNA kit. Small - RNA Seq 

libraries underwent a 2:1 concentration step using a vacuum concentrator 

prior to purification.  

 

2.2.5 Normalization and pooling of miRNA libraries 

 

Libraries were quantified through qPCR using NEBNext Library 

quantification kit for Illumina (New England Biolabs) and pooled together in 

equimolar amounts in batches of 20 samples. Pooled libraries were 

concentrated using a vacuum concentrator and quantified by fluorometry 

using Qubit. Subsequently, pooled libraries were normalized to a 

concentration of 2 nM using Tris-HCl 10 mM, pH 8.5. 0.1% Tween 20 was 

added to each pooled library to prevent cDNA absorption by the Eppendorf 

tube and stored at -20 C. 

 

2.2.6 Small RNA Sequencing and data pre-processing 

 

Pooled libraries were sequenced on an Illumina Hi-Seq 4000 to achieve 

approximately 15 million (M) reads per library. The resulting 50 bp single-end 

sequencing FASTQ files were processed according to a recently published 

standardized protocol for miRNA - sequencing studies (Potla et al., 2021) 
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which was adapted to my Small-RNA sequencing. Figure 2.2 explains the 

main steps of this pipeline. 

 

Figure 2.2 – Outline of the main steps of the small RNA-sequencing data pre-

processing pipeline employed in this study adapted from Potla et al.(2021).  

M - million, nt – nucleotide, MM – mismatch. Created with Biorender.com 

 

Briefly, Illumina adapters were trimmed using trimmomatic version 0.38 

(Bolger et al., 2014), followed by quality control (QC) of sequenced reads. 

FastQC version 0.11.8 was employed to create and visualize plots based on 

individual base sequence quality scores, sequence length distribution, 

individual sequence GC content, and duplicate sequences (Andrews, 2010), 
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which were subsequently aggregated by multiQC version 1.12 (Ewels et al., 

2016). Samples with less than 2M trimmed reads were eliminated (See 

section 2.2.7). Post-trimming samples that survived initial QC had an 

average of 10.36M reads, and a median of 9.2M reads. 

In order to only retain miRNAs (19–25 nt) and piwiRNAS (26–31 nt) reads, 

after trimming Illumina adapters, the trimmed reads were filtered to remove 

reads that were too short (< 16 nt) and too long (> 31 nt) using Cutadapt 

v3.2. Filtered reads were mapped using Bowtie aligner version 1.3.1 in a 

two-step approach, as documented by Potla and colleagues (2021). Firstly, 

mature miRNA sequences were downloaded from miRbase v22 (Kozomara 

et al., 2019) as FASTA files and used to create six “ebwt” Bowtie indexes. 

Filtered reads were aligned to mature miRNA sequences using Bowtie with 

stringent criteria by not allowing mismatches, using the following bowtie 

parameters:  -n 0 -l 30 --norc --best --strata -m 1. These options tell Bowtie to 

allow no mismatches in a seed of read length of 30 bp, do not align reverse-

complement reference strand and report the best hits found in a stratum of 

reads. 

Subsequently, the unaligned reads from the first alignment were aligned to 

the Bowtie indexes created from the GRCh38 reference genome allowing for 

1 mismatch between the miRNA reads and the reference genome, using the 

Bowtie parameters: -n 1 -l 30 --norc --best --strata -m 1 in order to account 

for isomiRs. Mapping quality from both alignment steps was ascertained by 

employing Qualimap 2.2.1 (Okonechnikov et al., 2016). 

SAM files originating from both alignment steps were converted into BAM 

files via Samtools version 1.9 (Li et al., 2009), and duplicates were identified 

via MarkDuplicates Picard 2.20.2 (Picard Tools). Markduplicates does not 

distinguish between PCR duplicates or biological duplicates. The removal of 

duplicates is associated with decreased power to detect differentially 

expressed genes and, as such, duplicates were not removed from the 

analysis (Parekh et al., 2016). BAM files were indexed using bamtools 2.3.0 

(Barnet et al., 2011) to allow for faster processing using the .bai index 

created. 
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Aligned reads were quantified into raw counts using samtools 1.9 idxstats 

for miRbase aligned counts (Li et al., 2009) and featurecounts for genome 

aligned counts (Liao et al., 2014) with parameters: -F GTF -t miRNA -g Name 

-O -M and using a GTF file which contains the genomic coordinates of

mature microRNAs attained from miRbase v22. Raw miRNA counts derived 

from aligning miRNA reads to miRbase and to the GRCh38 reference 

genome were merged, and miRNAs with 0 counts in more than 90% of the 

samples were eliminated. A total of 1449 miRNAs were detected. 

2.2.7 Sample QC and exclusion of samples 

Sample libraries underwent a series of QC analyses based on measures 

from FASTQC version 0.11.8 (Andrews, 2010) and MultiQC version 1.12 

(Ewels et al., 2016). Initially, I sequenced 148 samples to a depth of 15M 

reads per sample. However, there were considerable differences in the 

number of sequenced reads between samples, despite samples being 

pooled in equimolar amounts. After trimming, sample reads ranged from 0M 

reads to 66.9M reads. As a first QC pass, all samples < 2M trimmed reads 

were eliminated. A total of 14 samples were eliminated at this step, 11 of 

which had 0M trimmed reads where the sequencing had failed and 

possessed an average read length between 41 bp to 50 bp after trimming. 

The filtering step performed after trimming ensured that all the remaining 

reads were either miRNAs or piwi-RNAs. After this step, a second QC was 

performed where all samples with < 1M filtered reads were eliminated. A total 

of 15 samples were eliminated. Of the remaining 119 samples, one sample 

was eliminated due to being 26 PCW and outside the 2nd trimester age 

range of 12-20 PCW employed in this study. 

An additional 6 samples were either missing associated genotypes or 

failed genotyping QC (had anomalous heterozygosity, were missing > 0.05 of 



68 

genotyped SNPs (--geno) or had sex assignment discrepancies) and, as 

such, were eliminated from the analysis. A total of 112 samples passed QC 

and were included in this study. These samples had on average, 6.54M 

filtered reads, with a median of 5.6M filtered reads. However, 6 of these 

samples had lower sequencing depth with < 2M filtered reads (2 samples 

with 1.2M reads, 1.3M reads, 1.8M reads, and 2 samples with 1.9M reads). 

Due to power constraints, I did not perform additional sample exclusion 

based on FASTQC results. A Principal Component Analysis (PCA) of TMM 

normalized miRNA counts was performed to identify heterogeneity in miRNA 

expression between samples (Figure 2.3) using FactoMineR (Husson et al., 

2017). Subsequently, I attempted to identify outlier samples in PCA by 

employing R packages bigstatsr and bigutilsr (Privé et al.,2018; 2020), which 

have been successfully employed for outlier detection in the UK Biobank 

genotype data (Privé et al.,2020). No outlier samples were identified. 

Figure 2.3 – PCA of TMM normalized miRNA counts (log2 CPM + 1) scaled and 

centered. 
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PCA was performed using FactoMineR (Husson et al., 2017). A cut-off of more than 6 

SD from the mean was employed for outlier detection, due to this being considered the 

standard cut-off for outlier detection in previous studies (Patterson et al, 2006, Privé et 

al., 2020). No outlier samples were detected using this cut-off. Of note, assuming 

principal components (PCs) have a normal distribution, approximately 99.999% of 

samples would lie within 6 SD from the mean. 

2.2.8 Sample demographics 

The sex of the majority of the samples used in this study had been 

previously determined by karyotyping, expression of genes on the Y-

chromosome in males and heterozygosity for genetic X-chromosome 

markers in females (O’Brien et al., 2018). Of the 112 samples employed in 

this study, 51 were female, and 61 were male. Foetal age in PCW had 

previously been determined by the HDBR through foot length and knee-to-

heel length measurements. In this study, sample age ranged from 12-20 

PCW, with an average of 14.63 PCW in females and 14.90 PCW in males. 

The vast majority of samples employed in this study had been genotyped 

previously (Hannon et al., 2016; O’Brien et al., 2018). An additional 19 

samples were specifically genotyped for this study (see Chapter 3, section 

3.2.2). After genotyping, sex was empirically determined in these samples 

based on X -chromosome heterozygosity rates using the “--check-sex” flag in 

PLINK 1.9 (Purcell et al., 2007). Genotyped SNPs were employed to 

determine ancestry by Principal Component (PC) analysis using Peddy 

(Pedersen & Quilan, 2017). 
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2.2.9 Choice of normalization method 

The R package DANA (DAta-driven Normalization Assessment) was 

employed to identify the method best suited to normalize miRNA raw counts 

in my dataset between eight commonly used normalization methods – Total 

Count (TC), Upper Quantile (UQ), Median, Trimmed Mean of M-values 

(TMM), DESeq, PoissonSeq, Quantile Normalization (QN) and Remove 

Unwanted Variation (RUVg, RUVr and RUVs) (Duren et al., 2022). The 

choice of the best normalization method depends on the cc+ and the 𝚖𝚜𝚌𝚛− 

metrics, where cc+ is a ratio between 0 and 1 that quantifies the preservation 

of true biological variation; and 𝚖𝚜𝚌𝚛− is a ratio between 0 and 1 that 

quantifies the reduction of handling effects. The goal was to identify which 

normalization method was the best compromise between maximally 

removing depth variation from experimental handling (high mscr−) whilst 

preserving true biological variation (cc+ close to 1). After DANA analysis 

(Table 2.1), I decided to choose TMM normalization for my dataset, given 

that it is the method that preserves biological variation the most whilst still 

effectively correcting for handling effects, such as library size and 

composition. 

Table 2.1 – DANA  summary metrics mcrs- and cc+  for the assessment of the 

suitability of different normalization methods in my miRNA dataset. 
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2.2.10 Normalization of raw miRNA counts 

Reads were normalized using the trimmed mean of M-values (TMM) method, 

which normalizes libraries by their relative size (Robinson & Oshlack, 2010), 

and transformed into log2 (CPM + 1) using edgeR (Robinson et al., 2010) 

where CPM stands for counts per million and 1 is a prior count to avoid 

taking the log of 0. Subsequently, the distribution of samples before and after 

normalization was analyzed (Figure 2.4). As can be seen in Figure 2.4, 

comparing between samples, none appears to have an abnormal distribution. 

Initially, I had detected 1449 miRNAs, and all of these were employed in 

chapter 3 to detect cis-eQTL even in lowly expressed miRNAs. However, for 

the differential expression (DE) analysis described in this chapter, miRNAs 

with less than 1 CPM in at least 10% of samples were removed from the 

analysis. The reasoning behind this was that low-expressed miRNAs have a 

higher degree of associated noise and can decrease the sensitivity for 

detecting differentially expressed genes (DEGs). Moreover, I employed 

limma voom to detect differential expression (Law et al., 2014), which 

assumes low counts have been removed from the dataset prior to the 

analysis. After removing low-expressed miRNAs, out of the initial 1449 

miRNAs detected, 838 miRNAs were kept for DE analysis. 
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Figure 2.4 – Distribution of miRNA expression across samples before and 

after normalization. 

 

2.2.11 Sample variables 

 

Sample demographics such as sex, age (PCW) and the first 3 PCs of 

ethnicity (PC1, PC2 and PC3) were included as covariates. Moreover, 

sequencing batch, several library statistics such as average read quality, % 

Duplicates after filtering, % GC after filtering, average read length after 

filtering, total reads after filtering, % mapped reads, and 10 hidden 

confounders estimated by PEER analysis were also employed as covariates.  
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2.2.12 PEER analysis  

 

Hidden confounders affecting the expression of mature miRNAs were 

estimated through the use of probabilistic estimation of expression residuals 

(PEER; Stegle et al., 2012) after TMM normalization. Sample covariates 

were added to the PEER model, and a total of 10 PEER factors were 

estimated.  

 

2.2.13 Quantification of technical and biological 

variation by VariancePartition. 

 

The proportion of variance in miRNA expression explained by each 

confounder was quantified using the VariancePartition R package (Hoffman 

& Schadt, 2016) after TMM normalization, removal of low-expressed miRNAs 

and PEER analysis. Variation within sex, PCW, RIN, sequencing batch, 

ethnicity (PC1, PC2 and PC3), and library statistics ascertained by FASTQC 

and Qualimap (such as average read quality, % duplicates after filtering, % 

GC after filtering, average read length after filtering, total reads after filtering 

and % mapped reads), as well as the 10 PEER hidden confounders were 

examined via a linear mixed model where continuous variables were 

modelled as fixed effects and categorical variables such as sex as random 

effects. VariancePartition ascertains the effect of each variable on gene 

expression whilst accounting for all the others. This analysis was performed 

after removing low-expressed miRNAs to account for only the miRNAs 

employed in the differential expression analysis. 
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2.2.14 Assessment of correlation between variables by 

VariancePartition 

 

VariancePartition was further employed to evaluate the correlation 

between the covariates employed in this study. If two variables are highly 

correlated, VariancePartition cannot correctly estimate each variable’s 

contribution and will instead divide the contribution over multiple variables. 

This was done to interpret the results from VariancePartition correctly and to 

ascertain if any of the PEER hidden confounders were correlated with the 2 

variables I subsequently explored – sex and gestational age. Recently, it has 

been demonstrated that PEER factors encode for transcriptome diversity 

within samples (García-Nieto et al., 2022) which likely arises from varying 

proportions of different cell-types between samples (Zhabotynsky et al., 

2022). If this transcriptome diversity is secondary to the effects of sex and 

age, using PEER factors as covariates would remove part of the gene 

expression changes I wish to study. Figure 2.5 shows a correlation matrix 

between all pairs of variables employed in this study. Of note, PCW is highly 

correlated with PEER 6 (r = 0.49) and PEER 9 (r = 0.51), which suggests 

these PEER factors correct for transcriptome diversity that arises from foetal 

development progression. 
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Figure 2.5 - Results from Canonical Correlation Analysis of variables 

employed in this study using Variance Partition. 

The % of GC after filtering is highly correlated with Total mapped reads (r = 0.87). PCW is highly 

correlated with both PEER 6 (r=0.49) and PEER 9 (r=0.51), whilst sex does not seem to be highly 

correlated to any covariates 

VariancePartition analysis was repeated after the removal of correlated 

variables in order to ascertain if the proportion of variance attributed to age 

was unmasked. In addition, I introduced an interaction term between 

SexXAge to investigate if there is an interaction between sex and age in my 

dataset. 
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2.2.15 Choice of covariates for differential expression 

(DE) analysis 

 

All the covariates described in section 2.2.11 were employed in the eQTL 

study described in Chapter 3 because the FASTQTL method employed uses 

the resulting PEER residuals. However, it is not feasible to use an extensive 

number of covariates in a model for differential expression analysis due to 

the expenditure of available degrees of freedom. Moreover, collinearity 

should be avoided, and covariates should be independent. By analyzing the 

results from the VariancePartition analysis, I decided to employ the following 

criteria to choose which covariates to use in my DE analysis: 

 

1) Drop one of the covariates highly correlated with each other (> 0.8) – 

Dropped % GC  

2) Remove covariates with a correlation > 0.25 with sex and/or age – 

Dropped PEER5, PEER6, PEER9 

3) Apart from sex and age (PCW), which are the covariates whose 

effects I wished to study, remove covariates that on average explain       

< 5% of the total variance in miRNA expression – Dropped PC1, PC2 

and PC3, average read quality, % duplicates after filtering, average 

read length after filtering, total reads after filtering and % mapped 

reads, as well as PEER4 and PEER10. 

 

As such, the covariates employed to construct a simplified model for DE 

analysis were sex and age (PCW), the effects of which I wanted to 

investigate, and hidden confounders PEER1, PEER2 and PEER3.  
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2.2.16 Differential gene expression analysis  

 

Differential gene expression analysis was conducted in 112 samples that 

survived QC using limma – voom. Limma-voom was chosen for DE analysis 

because it allows for flexible model specification and adequately controls for 

FDR, as opposed to DESeq2 and edgeR, which originate a disproportionate 

amount of false positives (Li et al., 2022). Effects of sex and age on miRNA 

gene expression were assessed via a linear model using weighted least 

squares for each gene with the function lmFit, followed by empirical Bayes 

smoothing of standard errors (Smyth, 2004; Law et al., 2014). 

838 miRNAs with > 1CPM in at least 10% of samples were included in the 

differential expression analysis. Within each differential expression analysis, 

multiple comparisons were corrected by the Benjamini-Hochberg (BH) 

method (Benjamini & Hochberg, 1995) and miRNAs with a BH-adjusted 

p-value (FDR) < 0.05 were deemed significant. 

 

2.2.16.1 Sex-biased expression - design matrix  

A design matrix was created where sex was used as the group variable. 

Age (PCW), PEER1, PEER2 and PEER3 were added as covariates to the 

design matrix, as demonstrated, to control for these effects. The model was 

constructed with an intercept term and employed females as reference 

(mean-reference model). Consequently, this model will calculate the mean 

miRNA expression of the male group relative to the female group (Law et al., 

2020). 

design_matrix <- model.matrix (~ Sex + PCW + PEER1 + PEER2 + PEER3) 
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2.2.16.2 Effects of age on miRNA expression – Design matrix  

Initially, I wanted to test which miRNAs were correlated with age in PCW 

by using a regression model. For this purpose, I kept age as a continuous 

variable and created a design matrix as follows: 

 

design_matrix <- model.matrix(~PCW + Sex + PEER1 + PEER2 + PEER3) 

 

This design matrix allowed me to estimate the rate of change in each 

miRNA expression per unit increase in age (PCW). After identifying miRNAs 

that were differentially expressed with the progression of foetal brain 

development, I calculated Pearson’s correlation coefficients (r) to identify 

linear relationships between miRNA expression in differentially expressed 

miRNAs and age (PCW). Pearson’s correlation coefficients (r) were 

calculated using the cor() function in R (v. 4.1.2). 

 

2.2.17 miRNA Target prediction and GO analysis 

 

miRNA targets were retrieved from TargetScan 8.0 (McGeary et al., 2019) 

for miRNAs that were found to be differentially expressed between females 

and males. TargetScan 8.0 only reports genes with a match to the miRNA 

seed region in their 3’- UTRs and their orthologs. All predicted miRNA targets 

for each sex-biased miRNA were employed for GO analysis using ShinyGO 

v0.76.2, a graphical tool for gene-set enrichment analysis (Ge et al., 2020). 

GO analysis was restricted to GO Biological processes (BP) and GO terms 

with a minimum of 2 and a maximum of 2000 genes. In addition, GO term 
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redundancies were removed from the analysis. Enrichment p-values FDR 

corrected and FDR < 0.01 was considered significant. 

 

2.2.18 Graphical outputs 

 

Plots were created using ggplot2 (Wickham et al., 2016) unless stated 

otherwise. The PCA plot (Figure 2.3) was created with the R package 

FactoMineR (Husson et al., 2007) and ggplot2. Functions plotVarPart and 

plotPercentBars from the VariancePartition package (Hoffman & Schadt, 

2016) were employed to create VariancePartition plots (Figure 2.6, Figure 

2.7, Figure 2.8); whilst function plotCorrMatrix was employed to create the 

correlation matrix of variables (Figure 2.5). The volcano plot (Figure 2.9) was 

created using the R package Enhanced Volcano v1.8.0 (Blighe et al., 2018). 

GO analysis enrichment plot (Figure 2.10) was created with ShinyGO (Ge et 

al., 2020). Age correlation plots and plots of TMM normalized mature miRNA 

counts between female and male samples (Figure 2.11B, Figure 2.12) were 

created with ggstatsplot (Patil, 2021). 
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2.3 Results 

 

2.3.1 miRNAs detected in 2nd trimester foetal brain 

 

Small-RNA sequencing data was used to quantify mature miRNA 

expression in 112 2nd trimester foetal brain samples between 12-20 PCW. 

The abundance of individual mature miRNAs was quantified using miRNA 

human (hsa) annotation from miRbase v.22, which contains 2644 mature 

microRNAs (including miR-3p and miR-5p). After filtering miRNAs with 0 

counts in at least 90% of samples, a total of 1449 miRNAs were detected. 

This corresponds to 55% of all known miRNAs, highlighting the importance 

that miRNAs have in brain development, even if a large number of these are 

expressed at low levels. After filtering for low-expressed miRNAs (< 1 CPM in 

90% of samples), a total of 838 miRNAs were kept for downstream analysis. 

This corresponds to 32% of all known miRNAs present in miRbase v22. 

Table 2.2 contains the top 10 most highly expressed miRNAs in my small 

RNA sequencing data, their respective genomic locations (chr), their average 

expression (log2 CPM + 1) across samples and their described function in 

the literature with regards to brain development. Together these 10 miRNAs 

account for ~ 62% of the detected miRNA expression. All of these miRNAs, 

except for miR-92a-3p, were also among the top 10 expressed miRNAs in a 

recent miRNA-Seq study in prenatal mouse brain (Rahmanian et al., 2019). 
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Table 2.2 – Top 10 most highly expressed miRNAs in my small-RNA 

sequencing study involving 112 2nd trimester foetal brains (12-20 PCW). 

Chr - chromosome where miRNA gene is located. 
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2.3.2 VariancePartition of expression of miRNAs 

detected in 2nd trimester foetal brain 

 

VariancePartition allowed me to quantify the proportion of variance in 

miRNA expression explained by each covariate (Hoffman & Schadt, 2016). 

This analysis was performed after removing low-expressed miRNAs to 

account for only the miRNAs employed in the differential expression analysis. 

As can be seen in Figure 2.6, the effect of sex on miRNA expression as a 

whole is negligible after correcting for variation due to other variables, whilst 

the effect of gestational age (PCW) is small.  
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Figure 2.6 – Results from Variance Partition analysis showing major drivers of miRNA expression after removal of poorly expressed 

miRNAs (< 1 CPM in 10% of samples) in this study.  

All terms were modelled as fixed effects with the exception of sex, which was modelled as a random effect. PEER1-PEER10 are the 10 hidden confounders estimated 

through PEER analysis. When correcting for all the other variables, on average, sex accounts for 0.37% of total miRNA expression variance, whilst PCW accounts for 

1.08%, and the 3 PC components of ethnicity (PC1, PC2 and PC3) as a whole account for < 1% of total miRNA variance. 
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When correcting for all the other variables, on average, sex accounts for 

less than 1% of the variance of total miRNA expression, and gestational age 

accounts for 1.08% of the variance. The 3 PC components of ethnicity (PC1, 

PC2 and PC3) account for < 1% of the total miRNA variance. My sample 

population is an admixed population, and these results suggest that ethnicity 

does not contribute to differences in miRNA expression and as such, using 

an admixed population in my study is not a limitation for the eQTL analysis I 

will perform in chapter 3. This finding is consistent with a study by Quach and 

colleagues (2009), where mature miRNAs showed a lack of diversity in 

different human populations. 

2.3.3 Identification of miRNAs where sex, age and the 

interaction between sex and age contributed 

more to variance of miRNA expression  

Although my VariancePartition analysis indicated that sex did not 

significantly impact miRNA expression in foetal brain in general, it remained 

possible that individual miRNA show sex differences in expression. By 

performing VariancePartition analysis on individual miRNAs, I found a small 

subset of miRNAs where sex explained a larger proportion of variance in 

gene expression (Figure 2.7). For instance, miR-373-3p was identified as the 

miRNA with the highest variance attributable to sex, where sex explains ~ 

9.75% of the variability in miR-373-3p expression. 
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Figure 2.7 – Top 10 miRNAs whose expression is influenced by sex according to Variance Partition analysis of individual 

miRNAs 
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On a global level, the contribution of age for miRNA expression in 2nd 

trimester foetal brain was small. However, by performing VariancePartition 

on individual miRNAs, I identified a subset of miRNAs where age 

considerably impacts their expression. As can be seen in Figure 2.8, age is 

responsible for over 25% of the variance in the expression of both 

miR-195-3p and miR-195-5p. 

 

 

 

Figure 2.8 – Top 10 miRNAs whose expression is influenced by age (PCW) 

according to VariancePartition analysis. 

 

VariancePartition analysis on individual miRNAs identified miRNAs whose 

expression was influenced by sex and age at a higher degree. Subsequently, 

I performed differential expression analysis to investigate if these miRNAs 

were differentially expressed in terms of sex and age in 2nd trimester foetal 

brain. 
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2.3.4 Differential expression analysis between females 

and males 

 

To test if there were differentially expressed miRNAs due to sex, 

differential expression analysis was performed on 838 mature miRNAs 

between females (n=51) and males (n=61), using limma-voom. In this study, 

sample age ranged from 12-20 PCW, with an average of 14.63 PCW in 

females and 14.90 PCW in males. 

At FDR < 0.05, only miR-373-3p was found to be differentially expressed 

between female and male 2nd trimester foetal brains, with lower expression in 

males (Table 2.3, Figure 2.9). This finding is consistent with my 

VariancePartition analysis (Figure 2.7). 

Figure 2.9 – Volcano plot of sex-biased gene expression in 2nd trimester foetal 

brains.  

Adjusted P-value cut-off =0.05, log2FC cut-off = 1.  The miRNA miR-373-3p was the only miRNA 

found to be DE between female and male samples, with miR-373-3p being downregulated in 

males. 
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Table 2.3 – Results of differential expression analysis between female and 

male samples by limma-voom in 2nd trimester foetal brain, using females as 

reference.   

miRNA - miRNA ID, Chr - chromosome location, Log2FC – log2 fold change of miRNA expression 

between female and male samples, P-value – uncorrected p-value, Padj – corrected p-value by 

BH method, B - B-statistic which corresponds to the log-odds of miRNA being differentially 

expressed.  

 

 

 

miR-373-3p is located within the miR-371-3 gene cluster on chromosome 

19q13.4 and is transcribed into a polycistronic pri-miRNA which is 

subsequently processed into 3 distinct pre-miRNAs (pre-miR-371, pre-miR-

372 and pre-miR-373) (Suh et al., 2004). This miRNA is highly expressed in 

embryonic stem cells and has been shown to regulate cell proliferation 

(Tanaka et al., 2011), apoptosis (Eichelser et al., 2014; Lv et al.,2020) and 

mesendoderm differentiation (Rosa et al., 2014). 

TargetScan v8.0 (McGeary et al., 2019) predicted that miR-373-3p (and its 

miRNA family members miR-302-3p/372-3p/520-3p) can target the 3’- UTR 

of 1019 transcripts. ShinyGO (Ge et al., 2020) was employed to perform a 

GO analysis of BP terms using all of miR-373-3p predicted targets and 

restricting GO analysis to pathways with  2000 genes. At FDR < 0.01, a 

total of 111 GO terms were found enriched for miR-373-3p targets. Figure 

2.10 displays the top 20 most significant pathways. In addition to terms 

relating to transcription, “neuron differentiation” (Fenrichment=1.9, padj=1.7 x 10-

11), “generation of neurons” (Fenrichment=1.9, padj=1.3 x 10-11) and 

“neurogenesis” (Fenrichment=1.9, padj=7.9 x 10-12) were BP GO terms highly 

enriched in miR-373-5p targets.  
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. 

Figure 2.10 - Top 20 most enriched GO BP pathways of miR-373-3p predicted targets stratified by fold enrichment. 

miRNA targets obtained with TargetScanv8.0 (McGeary et al., 2019); GO analysis was performed with ShinyGO (Ge et al., 2020). 
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Taken together, the results from VariancePartition and differential 

expression analysis between female and male samples suggest that mature 

miRNAs do not contribute significantly to observed sex differences in 2nd 

trimester foetal brain. This observation is in contrast with what was found for 

mRNAs in an RNA-Seq study by our lab employing largely overlapping 

samples, where prominent sex differences in the expression of 2558 

autosomal genes, 155 genes on the X-chromosome and 43 genes on the 

Y‑chromosome were found at a false discovery rate (FDR) < 0.1 (O’Brien et 

al., 2019). 

 

2.3.5 Lack of consistency between sex differences in 

pri-miRNA expression assessed by RNA-Seq and 

mature miRNA expression assessed by 

Small-RNA Seq. 

 

A previous RNA – Seq study from our lab (O’Brien et al, 2019) found that 

the primary transcripts (pri-miRNAs) of 14 miRNAs were found to be 

differentially expressed between female and male samples at FDR < 0.05 in 

2nd trimester foetal brain (Table 2.4). Of note, the pri-miRNA for miR-373-3p 

was not amongst them.  
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Table 2.4 – Results of differential expression analysis by DESeq2 between 

female and male samples in 2nd trimester foetal brain, using females as 

reference (O’Brien et al, 2019).  

miRNA - miRNA ID, Chr - chromosome location, log2FC – log2 fold change of miRNA expression 

between female and male samples, P-value – uncorrected p-value, Padj – corrected p-value by 

FDR. 

 

 

 

MIR3682, the most significantly sex-biased pri-miRNA in the RNA-Seq 

study, had very low expression counts in this study. Its expression was below 

the cut-off of low expression of > 1 CPM in at least 10% of samples and 

consequently had been eliminated from the DE analysis. As such, depicted in 

Figure 2.11 are the side-by-side comparison of normalized counts between 

females and males of MIR873, the 2nd most significant sex-biased pri-

miRNA, which showed sex-biased expression in the RNA-Seq study 

(obtained from http://fgen.psycm.cf.ac.uk/FBSeq1/) and their corresponding 

mature miRNA normalized counts between females and males in this study.  

http://fgen.psycm.cf.ac.uk/FBSeq1/
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These findings suggest that changes in pri-miRNA expression do not 

necessarily lead to changes in expression in the corresponding mature 

miRNAs, which seem to be maintained at a reduced level of variability, 

possibly via regulation of mature miRNA biogenesis by modulation of Drosha 

and Dicer/TRBP.  
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Figure 2.11 – Comparison of pri-miRNA sex-biased effects with lack of sex-

biased effects in respective mature miRNAs.  

A - Normalized counts between females and males of MIR873 pri-miRNA showing sex biased 

expression in the RNA-Seq study at FDR < 0.05. B - Their respective mature miRNAs miR-873-3p 

and miR-873-5p normalized counts.  
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2.3.6 Effect of gestational age on mature miRNA 

expression in 2nd trimester foetal brain 

The effect of gestational age on gene expression was ascertained by 

building a linear model accounting for sex and PEER1, PEER2 and PEER3 

factors via limma-voom. Age was used as a continuous variable; by doing 

this, I wanted to ascertain if there were miRNAs that had differences in gene 

expression as age increased. At FDR < 0.05, a total of 171 miRNAs were 

found to be differentially expressed with age increase. Pearson correlations 

were subsequently calculated for these miRNAs using the expression 

residuals obtained from the linear model. Of these 171 miRNAs, 83 were 

negatively correlated with age meaning their expression decreases as time 

progresses, and 88 were positively correlated with age, meaning their 

expression increases as time progresses. Table 2.5 shows the top 20 

miRNAs that were differentially expressed with age increase. I focused on 

the top 2 differentially expressed miRNAs with age and plotted the 

correlations between miR-195-5p expression and age (positively correlated) 

and miR-219a-1-3p expression and age (negatively correlated) (Figure 2.12). 

Of note, circulating levels of miR-195-5p have been shown to be altered in 

ASD (Vasu et al., 2014; Hu et al., 2017), SZ (Wei et al., 2015) and ADHD 

(Zadehbagheri et al., 2019). Moreover, this miRNA is disrupted by an ASD- 

associated CNV (Vaishnavi et al., 2013) and has been found to be 

upregulated in the entorhinal cortex of AD patients (Dobricic et al., 2022). 
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Table 2.5 – Top 20 miRNAs that are differentially expressed with age in 2nd 

trimester foetal brain, where age was employed as a continuous variable.  

miRNA - miRNA ID, Chr - chromosome location, log2FC – log2 fold change of miRNA expression 

per timepoint (PCW), P-value – uncorrected p-value, Padj – corrected p-value by BH method, B - 

B-statistic which corresponds to the log-odds of miRNA being differentially expressed, R – 

Pearson’s correlation. 
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Figure 2.12 – Correlation of individual miRNA expression with age.  

Correlation of miR-195-5p the miRNA with the highest positive correlation with age (A) and miR-

219-a-1-3p with the highest negative correlation with age (B).  
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2.4 Discussion 

 

2.4.1 miRNAs detected in 2nd trimester foetal brain 

 

This chapter explored the expression of miRNAs in human 2nd trimester 

foetal brain (12 – 20 PCW) and the influence of sex and gestational age. 

Small RNA Sequencing was performed on bulk tissue in a collection of 112 

foetal brain samples, and 1449 miRNAs were detected after removing 

miRNAs with 0 counts in > 90% of samples. Subsequently, low-expressed 

miRNAs (< 1 CPM in at least 10% of samples) were eliminated from the 

downstream differential expression analysis, leaving 838 miRNAs. As 

previously shown in adult mouse tissues and both human and mouse 

prenatal tissues (Lagos-Quintana et al., 2002; Landgraf et al., 2007; 

Rahmanian et al., 2019), a handful of highly expressed miRNAs account for 

the majority of the detected miRNA expression, with ~62% of miRNA 

expression in my study originating from the top 10 most highly expressed 

miRNAs. 

Some of the top 10 highly expressed miRNAs identified in this study have 

a high tissue specificity index (TSI) in human adult tissues (Ludwig et al., 

2016), adult mouse tissue (Lagos-Quintana et al., 2002; Gao et al., 2011) 

and prenatal mouse tissues (Rahmanian et al.,2019). For instance, 

miR-9-5p, miR-125b-5p, and miR-92b-3p are highly brain-specific, whereas 

others such as miR-26a-5p are ubiquitously expressed at high levels across 

tissues in prenatal mouse (Rahmanian et al.,2019).  

The FANTOM5 project created a miRNA expression atlas which allowed 

the calculation of a cell-type specificity index for each miRNA by deep-

sequencing 47 mouse and 396 human samples, including 121 distinct human 

cell types (De Rie et al., 2017). By using this metric, I ascertained that the 
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majority of the miRNAs highly expressed in 2nd trimester human brain consist 

of miRNAs that are moderate to highly cell-type specific (Table 2.6). A 

notable exception are members of the let-7 family, such as miR-let7f-5p and 

miR-let7a-5p, which are ubiquitously expressed at high levels across tissues 

and cell types (McCall et al., 2017). 

 

Table 2.6 – Cell-type specificity index obtained from De Rie et al., (2017) for 

the top 10 most highly expressed miRNAs identified in this study.  

 

 

 

Lafferty and colleagues (2022) recently released a preprint 

in bioRxiv where they performed small-RNA Sequencing in 212 2nd trimester 

foetal brain samples. Using a cut-off of 10 counts across at least 10 samples, 

the authors reported detecting 621 miRNAs present in miRbase v.22 

(Lafferty et al., 2022). In my dataset, after removing low-expressed miRNAs, 

I detected all but 5% of the miRNAs detected by Lafferty and colleagues 

(2022) (Figure 2.13). My detection cut-off seems more lenient, which would 

explain why I detected a higher number of miRNAs.  
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Figure 2.13 – Venn Diagram of the miRNAs detected in my study after removal 

of low miRNA counts and the miRNAs detected in a similar study in 2nd 

trimester foetal brain (Lafferty et al., 2022, preprint). 

 

By comparing which miRNAs were more highly expressed between my 

small RNA-sequencing study and the one performed by Lafferty and 

colleagues (2022) (Table 2.7), I found that 9 out of 10 miRNAs were 

concordant between both studies. 

Table 2.7 – Top 10 most highly expressed miRNAs in the Lafferty and 

colleagues (2022) small RNA sequencing study involving 212 2nd trimester 

foetal brains.  

Mean VST – Mean variance stabilizing transformation (VST) normalized counts (log2 CPM + 1)  
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2.4.2 Sex differences in global miRNA expression in 2nd 

trimester foetal brain 

 

Both the analysis of variance in miRNA expression via variancePartition 

and the differential expression analysis by sex combining all samples aged 

12-20 PCW indicate that sex has a negligible effect on global miRNA 

expression in 2nd trimester foetal brain. At FDR < 0.05, only miR-373-3p was 

found to be differentially expressed between females and males, with a lower 

expression in males. Interestingly, this miRNA has been suggested as a 

candidate regulator of differentially expressed genes in AD, a disease that 

displays higher incidence in females (Abyadeh et al., 2022). These results 

suggest that miRNAs do not contribute significantly to sex differences in 

foetal brain development. However, there is still the possibility of sex 

differences in miRNA expression in specific cell-types that I could not detect, 

given that my analysis was performed on bulk brain tissue. Recently, a 

miRNA-Seq study reported 87 miRNAs with sex-biased expression in 

microglia derived from adult mouse brains (Kodama et al., 2020). It’s 

possible that the expression of miRNAs in human foetal microglia also differs 

substantially by sex, and that this effect was missed, due to microglia being a 

minor cell population in the developing brain (Hatori, 2022) and microglial 

density substantially decreasing due to apoptotic refinement during the 2nd 

trimester (from 12-16 PCW) of foetal brain development (Menassa et al., 

2022). Moreover, it is possible that sex differences in miRNA expression 

occur at later foetal development stages, such as during the 3rd trimester. 

The paucity of sex-biased miRNA expression in 2nd trimester foetal brain is 

surprising, given that the X-chromosome is highly enriched in miRNAs with 

approximately 6% of human miRNAs originating from the X-chromosome 

(118 miRNAs), whereas 4 miRNAs originate from the Y-chromosome (Di 

Palo et al., 2020). Moreover, at least in reproductive tissues, both oestrogen 

and progesterone can regulate the expression of key components of miRNA 

biogenesis, such as exportin-5, Dicer and AGO2, and consequently regulate 
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mature miRNA levels (Bhat-Nakshatri et al., 2009; Nothnick et al., 2010; 

Cheng et al., 2009).  

None of the 4 Y-linked miRNAs were expressed in my 2nd trimester foetal 

brain samples, which contributed to the lack of observed sex differences in 

miRNA expression. However, several of the X-linked miRNAs expressed in 

my dataset are intronic to genes that escape X-inactivation (Matarrese et al., 

2019; Di Palo et al., 2020) and, therefore, likely to also escape gene 

silencing and be differentially expressed between sexes at the pri-miRNA 

level.  

I found no evidence of differences in expression of X-linked miRNAs 

between sexes at the mature miRNA level. A possible explanation for this 

observation and for the sparsity in sex-biased miRNA expression in 2nd 

trimester foetal brain is that miRNAs can regulate hundreds of target genes, 

and their expression needs to be tightly regulated across development. If 

miRNAs varied widely between females and males throughout all of foetal 

development, they would cause widespread downstream transcriptional 

effects, creating a cascade of events that would be difficult to regulate. This 

hypothesis is consistent with the principle of “canalization” (Waddington, 

1959), where development tends to reach the same endpoint despite minor 

environmental and genetic variation. miRNAs have been suggested to act as 

agents of canalization when they dampen and fine-tune gene expression 

(Posadas & Carthew, 2014) and, as such, are a lot less amenable to sex-

biased expression. An RNA-Seq study by Ziatts and Rennert (2014) reported 

40 miRNAs with sex-biased expression over brain development between 

infancy to adolescence. However, the largest proportion of these miRNAs 

(n=26) was found in the prefrontal cortex of adolescent brains. In infancy (4 

months – 1 year), only two miRNAs were differentially expressed between 

females and males, with one miRNA upregulated in each sex. This 

observation further supports the notion that miRNAs do not contribute 

significantly to sex differences during early brain development (foetal and 

perinatal/neonatal period). 
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2.4.3 Sex differences in pri-miRNA expression do not 

correlate with changes in mature miRNA 

expression 

 

A previous RNA-seq study from our lab, employing largely the same 

samples, reported that 14 miRNA primary transcripts (pri-miRNAs) were 

found to be differentially expressed between males and females in 2nd 

trimester foetal brain at FDR < 0.05 (O’Brien et al., 2019). Notably, 

miR-373-3p was not among them. This suggests that the sex-biased 

expression of miR-373-3p I observed is not a consequence of sex 

differences in transcriptional regulation. Therefore, it is likely that sex 

differences in mature miR-373-3p levels arise from differential regulation of 

the miRNA biogenesis machinery (e.g., Drosha, Dicer/TRBP) or differential 

regulation of miRNA turnover. 

Moreover, none of the pri-miRNAs found to be differentially expressed in 

the RNA-Seq study (O’Brien et al., 2019) were differentially expressed at the 

mature miRNA level in largely the same samples. A possible explanation for 

the discrepancy with the present findings could be that miRNA expression is 

tightly regulated during the biogenesis of mature miRNAs and resists change 

within a specific range of differences in pri-miRNA expression. This would 

mean that miRNA expression would usually be “buffered” within certain limits 

to maintain stable, mature miRNA levels. Given that miRNA up- and down-

regulation is associated with multiple disorders, most notably cancer, a self-

regulatory loop of this sort is likely in place to prevent dysregulated 

expression of miRNAs. Considering both these findings, it seems that 

changes in pri-miRNA expression do not necessarily lead to changes in 

mature miRNA expression and subsequent downstream effects on miRNA 

target downregulation. This is again consistent with the role of miRNAs in 

canalization (Posadas & Carthew, 2014) and would explain the lack of sex 

differences in mature miRNA expression of miRNAs that escape X-

inactivation in 2nd trimester foetal brain. In this light, sex-biased pri-miRNA 
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expression and mature miRNA expression in 2nd trimester foetal brain can be 

seen as uncoupled from one another. 

In breast cancer cell lines, oestrogen can regulate the expression of 

several miRNAs via ERa, ERb and c-Myc at the transcriptional level 

(Castellano et al., 2009; Bhat-Nakshatri et al., 2009; Maillot et al., 2009). 

Most studies report that oestrogen treatment is associated with a global 

decrease in miRNA expression, particularly in miRNAs with guanine-rich 

apical loop precursors (Maillot et al., 2009; Cohen et al., 2017). In contrast, 

only a small subset of miRNAs was found to be upregulated (and some 

downregulated) in response to oestrogen in aging rat brain tissue (Rao et al., 

2013; Rao et al., 2015), without a corresponding change in either the pri-

miRNA or the pre-miRNA levels (Rao et al., 2015). A subsequent study by 

the same group confirmed that, at least in the aging rat brain, oestrogen 

seems to selectively regulate miRNA levels by stabilization of mature 

miRNAs instead of affecting pri-miRNA transcription or Drosha processing 

(Kim et al., 2021). It is plausible that the same occurs in foetal brain, which 

would explain why miR-373-3p is differentially expressed between sexes 

without a corresponding change in its pri-miRNA levels and why the sex 

differences in pri-miRNA expression observed by O’Brien and colleagues 

(2019) do not correlate with changes in mature miRNA levels. 

 

2.4.4 Downstream effects of Sex differences in miRNA 

expression in 2nd trimester foetal brain 

development 

 

miR-373-3p, the only miRNA with sex-biased expression identified in this 

study, possesses a small fold change between males and females with a 

1.18 log2FC difference between sexes. However, this seems to be common 

for autosomal genes (Mayne et al., 2016; Gershoni & Pietrokoski, 2017; 
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O’Brien et al., 2019) and small changes in miRNA levels will likely drive 

further differences in mRNA expression between females and males. 

This miRNA is predicted to target the 3’-UTR of 1019 transcripts, 

according to Targetscan v8.0, that are enriched for GO BP terms, including 

neuron differentiation (padj=1.7 x 10-11), generation of neurons (padj=1.3 x 

10-11) and neurogenesis (padj=7.9 x 10-12) as well as terms relating to 

transcription. miR-373-3p is downregulated in male 2nd trimester foetal brain 

samples in my dataset. This could lead to increased expression of 

miR-373-3p targets in males, potentially affecting neuronal development. 

 

2.4.5 Effects of age on miRNA expression 

 

VariancePartition analysis indicated that the effect of age on global miRNA 

expression in my 2nd trimester foetal brain samples is small. 

However, I found 171 individual miRNA that did show a correlation in 

expression with post-conceptional week, with approximately half upregulated 

and half downregulated with increasing gestational age. Examples include 

miR-22-5p, which was upregulated with age and is known to regulate 

neuronal migration and morphology (Volvert et al., 2014). In contrast, 

miR-92b was downregulated with age, has known roles in maintaining NSC 

proliferation, and is expressed at higher levels in neural progenitors than 

neurons (Nowakowski et al., 2003). Therefore, it is likely that the miRNAs 

found to be downregulated with increasing gestational age are likely to be 

more critical for neural stem cell proliferation. In contrast, the miRNAs 

upregulated with increasing gestational age are likely to be more critical for 

processes like neuronal differentiation.  

Moreover, only a subset of miRNAs likely contributes to temporal gene 

expression dynamics and the coordinated cascade of events that govern 
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foetal brain development. This hypothesis is supported by a recent study in 

mice foetal development where the expression gradients of 3 miRNAs – 

miR-128/miR-9 and let-7 were reported to be sufficient to specify neuronal 

laminar fates. A decreasing gradient of miR-128 and miR-9 is required to 

generate neurons in layer VI and layer V. In contrast, an increasing gradient 

of let-7 is necessary to generate neurons in layers IV-II (Shu et al., 2019). 

Given that the developmental window in this study was only 9 weeks, it is 

possible that gestational age effects on the expression of other miRNAs were 

missed. Also, given that this study was performed in bulk tissue, I could only 

ascertain the effects of gestational age on global miRNA expression in the 

2nd trimester foetal brain. As a consequence, cell-specific miRNA dynamics 

were missed. Moreover, it is possible that region-specific miRNA dynamics in 

important foetal brain regions such as the VZ, SVZ and CP were also 

missed.  

In chapter 3, I will perform a miR-eQTL study in 2nd trimester foetal brain 

using the small-RNA sequencing data described in this chapter with genome-

wide genotyping of these samples, controlling for the variables identified in 

this chapter. 
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3 Chapter 3: microRNA cis - eQTL 

in 2nd trimester human foetal 

brain 
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3.1 Introduction 

 

Genome-wide association studies (GWAS) have identified thousands of 

genetic variants associated with common traits and diseases (MacArthur et 

al., 2017). The majority of the most significantly associated variants reside in 

non-coding regions (intronic or intergenic) of the genome and are therefore 

assumed to alter gene regulation (gene expression or splicing) (Hindorff et 

al., 2009; Encode Project Consortium, 2012; Eicher et al., 2015). 

Gene expression levels have been shown to contribute to disease 

outcomes (Giraud et al., 2007) and are quantitative traits that can be seen as 

intermediate phenotypes (Cheung & Spielman, 2002). The variability in gene 

expression itself is a heritable trait in humans (Yan et al., 2002) and, 

therefore, amenable to association analysis (Brem et al., 2002; Schadt et al., 

2003). Variants associated with altered gene expression can be mapped on 

a genomic scale by combining genome-wide genotyping with transcriptomic 

data from a given tissue. These are commonly referred to as expression 

quantitative trait loci (eQTLs) (Schadt et al., 2003; Fehrmann et al., 2011). 

eQTL studies can help identify to which extent a variant can affect gene 

expression. These variants can act on phenotypes by affecting the 

expression of local (cis) or distant (trans) gene targets.  

The first human eQTL studies employed lymphoblastoid cell lines (LCL) 

transformed with Epstein–Barr virus (EBV) from individuals that had been 

extensively genotyped by the HapMap Consortium (Cheung et al., 2003; 

Spielman et al., 2007; Stranger et al., 2007). In this study, 888 genes were 

found to have cis-eQTLs at FDR < 0.2 (Stranger et al., 2007). 

Subsequent studies on non–transformed primary blood cells (Goring et al., 

2007; Emilsson et al., 2008) and primary tissues such as adipose tissue, liver 

and cortical brain have not only largely corroborated the previous eQTL 

studies in LCLs; but also revealed that 29–80% of the reported eQTLs are 
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tissue– and cell-specific (Myers et al., 2007; Emilsson et al., 2008; Schadt et 

al., 2008; Dimas et al., 2009; Nica et al., 2011). 

Several large–scale studies have been undertaken to catalogue human 

brain eQTLs. The Genotype-Tissue Expression (GTEx) consortium examined 

RNA sequencing from 838 donors across 49 different tissues, including 11 

distinct brain regions (GTEx Consortium, 2020). This study identified cis–

eQTLs, tissue-specific trans–eQTLs, eQTL interactions across cell types, 

and sex-biased eQTLs. GTEx detected eQTLs for 1,260 –18,795 genes per 

tissue, leading to eQTL discovery for 95% of protein-coding RNAs and > 60% 

of long non-coding RNAs. Nearly a third of the reported eQTLs were 

estimated to be active in all or almost all assayed tissues; whilst a fifth were 

estimated to be active in five or fewer tissues (GTEx Consortium, 2015; 

GTEx Consortium, 2017; GTEx Consortium, 2020). Using cell–type 

deconvolution, Kim–Hellmuth and colleagues (2020) reported that a 

substantial proportion (~ 3000) of GTEx eQTLs are actually cell–type-specific 

eQTLs. 

Recent efforts to understand altered gene expression in neuropsychiatric 

and neurogenerative diseases have employed eQTL studies to link 

disease-associated genetic variants to putative target genes. Fromer and 

colleagues performed an eQTL analysis on RNA-Seq data from the 

dorsolateral prefrontal cortex (DLPFC – Brodmann areas 9 and 46) of 279 

controls and 258 individuals with SZ (Fromer et al., 2016). The authors 

reported that 80% of the genes assayed (13,137) had cis-eQTLs at FDR 

< 0.05. eQTL SNPs (eSNPs) were depleted in intergenic regions and 

enriched in gene elements (introns, exons, UTRs) and non-coding RNAs, 

mainly within 100 kb of the transcription start and end sites. Moreover, this 

study reported that in 20 out of 108 schizophrenia GWAS risk loci (Ripke et 

al., 2014), altered expression of one or more genes in adult DLPFC could at 

least partially explain the association with schizophrenia (Fromer et al., 

2016). 

Ng and colleagues (2017) used the ROSMAP cohort to generate a 

multiomic resource combining genotyping, RNA sequencing, DNA 
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methylation and histone acetylation data from the DLPFC of 411 older adults. 

They identified 3,388 genes with eQTLs, 56,973 CG dinucleotides with 

meQTLs and 1,681 H3K9Ac peaks with haQTLs at FDR < 0.05 in DLPFC 

and reported that epigenomic features mediate the effects of SNPs on gene 

expression in 9% of cases. Moreover, the authors employed a weighted 

GWAS (wGWAS) analysis approach to published genome-wide association 

studies to discover new susceptibility loci and identified 18 new 

schizophrenia and 2 new bipolar susceptibility variants (Ng et al., 2017).  

The PsychENCODE Consortium generated a comprehensive resource of 

genomic, epigenomic and transcriptomic data from an extensive collection of 

brains (1,866 donors), including controls and individuals diagnosed with 

schizophrenia, bipolar disorder and autism. PsychEncode combined data 

from adult cortex datasets, including GTEx, the CommonMind Consortium 

(CMC), ENCODE and Roadmap, to map eQTL in the adult cerebral cortex 

(Wang et al., 2018). This allowed for the identification cis-eQTLs involving 

~33,000 eGenes (expressed genes) in the PFC at FDR < 0.05, which 

encompasses almost the total number of genes expressed in adult brain. 

A small number of eQTLs have been shown to be sex and age-dependent 

(Yao et al., 2014; Viñuela et al., 2018), and age-dependent changes in the 

variance of gene expression have been reported (Viñuela et al., 2018). 

eQTLs have also been shown to be developmental–stage specific in both 

Drosophila (Cannavo et al., 2016) and humans (O’Brien et al., 2018; Walker 

et al., 2019).  

In the first eQTL study in foetal brain, O’Brien and colleagues (2018) 

identified 1,329 eQTLs in a dataset consisting of 120 2nd trimester foetal 

brains. 79% of the observed eQTLs in foetal brains were also found in adult 

brains, with 172 genes regulated by putative foetal–specific eQTLs (O’Brien 

et al., 2018). These results were subsequently corroborated by Walker and 

colleagues (2019) in a larger dataset of 201 foetal brains, where significant 

eQTLs were highly concordant between studies (effect size correlation, 

r = 0.67). However, Walker and colleagues identified a significantly higher 

number of eQTLs (n = 6,546) due to their larger sample size. 
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eQTL analysis can be extended to other phenotypes related to gene 

expression and regulation, such as miRNAs. 

In the context of miRNAs and QTLs, there are two distinct types of QTLs, 

miRNA –binding QTLs and miRNA eQTLs. miRNA – binding QTLs are 

located within the 3’–UTR of their target transcript and affect miRNA binding, 

constituting 25% of all eQTLs in 3’– UTR in LCLs and blood cells (Liu et al., 

2012; Gamazon et al., 2012). These are enriched in several psychiatric 

disorders, namely schizophrenia, depression, bipolar disorder, and anorexia 

nervosa (Geaghan et al., 2022). In contrast, miRNA eQTLs (sequence 

variants associated with miRNA expression levels) have been less studied 

due to the limited availability of miRNA sequencing data. Most of the earlier 

miR-eQTL studies were modestly powered and reported only a small number 

of miR-eQTLs. 

The first published study to map miR-eQTLs was performed in primary 

fibroblasts from 180 European newborns of the GenCord project, where it 

was shown that out of 121 miRNAs interrogated, ~10% showed evidence for 

cis-regulatory variation (permutated P-value < 0.05; estimated FDR = 0.5) 

(Borel et al., 2011). The study also identified 18 significant trans–eQTLs for 

13 miRNAs (estimated FDR = 0.3), including a SNP (rs1522653) that was an 

eQTL for 5 different miRNAs (Borel et al., 2011). Subsequently, Parts and 

colleagues (2012) performed a miR-eQTL study using the adipose tissue 

from 131 individuals from the Multiple Tissue Human Expression Resource 

(MuTHER) cohort consisting of LCLs, skin and fat tissue of approximately 60 

twin pairs. This study reported a total of 14 eQTLs associated with the 

altered expression of 8 miRNAs at FDR < 0.05, which showed enrichment for 

variants associated with body mass index in GWAS. Half of these miR-

eQTLs were also associated with mRNA transcript levels in the same region 

(Parts et al., 2012). An additional study on adipose tissue was performed by 

Civelek and colleagues (2013) on a population of 200 male subjects that 

were part of the Metabolic Syndrome in Men (METSIM) study. This study 

identified 9 miRNAs with significant cis-eQTLs at FDR < 0.05 but found no 

evidence of trans–eQTLs on miRNA expression (Civelek et al., 2013). 
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Increasingly larger sample sizes lead to more miR-eQTLs being discovered, 

as Lappalainen and colleagues (2013) reported a large number of eQTLs in 

3,773 genes and a large number of cis-eQTLs involving 60 miRNAs at 

FDR < 0.05 in B–lymphoblastoid cell lines of 462 individuals from the 1000 

Genomes Project. 

In an effort to understand how the genetic control of miRNA expression 

changes in response to external stimuli, Siddle and colleagues (2014) 

mapped miR-eQTLs in monocyte-derived dendritic cells from 65 healthy 

individuals of European descent before and after infection with 

Mycobacterium tuberculosis. In this study, ∼40% of miRNAs were shown to 

be differentially expressed upon infection, with 3% of miRNAs being affected 

by local genetic factors. Moreover, the authors report two infection-specific 

response eQTLs for miRNAs, illustrating the impact of genotype-environment 

interactions on miRNA expression (Siddle et al., 2014). Subsequently, the 

same group surveyed 977 genome-wide miRNA sequencing profiles from 

primary human monocytes derived from 100 individuals of African descent 

and 100 individuals of European descent at the basal state and upon 

immune activation. The authors identified eQTLs associated with 122 

miRNAs at FDR < 0.05, with only a small proportion of these found in highly 

expressed miRNAs and/or miRNAs with conserved promoters. Moreover, 

most miR-eQTLs were unaffected by immune stimulation (85 % of miR-

eQTLs). In contrast, 53% of the mRNA eQTLs in the same study displayed 

context-dependent effects. These results suggest that miR-eQTLs are largely 

context-independent in monocytes (Rotival et al., 2020). 

Huan and colleagues (2015) compiled the first comprehensive genome-

wide map of miRNA eQTLs in whole blood, where they performed miR-eQTL 

mapping of 5,239 individuals from the Framingham Heart Study (FHS) and 

identified cis-eQTLs for 76 mature miRNAs at an FDR < 0.1. Of these, 49 

miRNAs (64%) were intragenic and located in exons, introns or untranslated 

regions of the host genes, and 27 (36%) were intergenic. Using family data 

from the study cohort, the authors estimated that genetic factors, on average, 

explain 11% of the variation in miRNA level under an additive model. The 
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majority of cis-eQTLs identified (58% in intragenic miRNAs and 83% in 

intergenic miRNAs) were located 5’-upstream of their associated mature 

miRNA/ primary miRNA sequence, with 49% of cis-eQTLs being located 

distally 300 – 500 kb upstream of their associated intergenic miRNA. 

Functional analysis of the cis-eQTLs identified in this study showed that a 

large proportion of these were located in regulatory elements such as CpG 

islands (2%), promoters (9%), enhancers (35%), and transcription factor (TF) 

binding regions (15%). Interestingly, this study and several others reported 

that 20% – 33% of miR-eQTLs were also associated with variation in the 

expression of their mRNA targets in immune cells (Gamazon et al., 2012; 

Lappalainen et al., 2013; Huan et al., 2015). 

Budach, Heinig and Marsico (2016) combined miRNA eQTL data from the 

Lappalainen study (2013) with epigenetic and regulatory annotations for the 

B–lymphoblastoid cell line under study from the ENCODE project (2012) and 

determined the relationship between regulatory functional elements and 

miRNA regulation. The authors showed miR–eQTL enrichment for regulatory 

regions such as promoters, enhancers, transcription factor binding sites, and 

precursor miRNAs. miRNA–only eQTLs were enriched for intronic promoters, 

confirming the existence of alternative promoters for intragenic miRNAs.  

Moreover, despite a significant overlap between miR-eQTLs and mRNA 

eQTLs of host genes, 74% of these eQTLs affected miRNA and host gene 

expression independently (Budach et al., 2016).  

Nikpay and colleagues (2019) performed an eQTL analysis of circulating 

plasma miRNAs in a sample of 710 unrelated subjects of European ancestry 

and found miR-eQTLs for 143 miRNAs, including cis-eQTLs for 60 miRNAs 

(P < 5 x 10−8). Most of the cis-eQTLs identified (62%) were located distally, 

more than 50 kb away from their associated miRNA, corroborating previous 

studies (Huan et al., 2015). Moreover, the authors denoted that cis-eQTLs 

were associated with both miRNA primary transcripts and their 

corresponding mature miRNAs (P < 0.0001). In contrast, trans–eQTLs lacked 

such an association (P = 0.7) (Nikpay et al., 2019). These results suggest 
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that, at least in plasma, cis-miR-eQTLs mainly regulate the expression of pri-

miRNAs, whilst trans-miR-eQTLs affect mature miRNA stability. 

White and colleagues (2021) performed an eQTL study between maternal 

genotypes and plasmatic miRNA levels measured during the first trimester of 

pregnancy of 369 women from the prospective pre-birth Genetics of Glucose 

Regulation in Gestation and Growth (Gen3G) cohort. The authors reported 

cis-eQTLs associated with the expression of 147 miRNAs at FDR < 0.05. 

Interestingly, despite this study mapping cis-eQTLs within 2 Mbs of mature 

miRNAs (1Mb upstream and 1 Mb downstream), roughly 33% of the miR-

eQTLs identified in this study were within 50 kb of their corresponding mature 

miRNA (White et al., 2021, preprint). 

In recent years, efforts have been made to curate associations between 

miRNAs, SNPs and human diseases into databases, namely the MiRNA 

SNP Disease Database (MSDD), the ncRNA-related eQTL database 

(ncRNA-eQTL) and the JAMIR-eQTL database. 

The MiRNA SNP Disease Database (MSDD) is a manually curated 

comprehensive database of SNPs in functional regions of miRNA regulation, 

such as mature miRNAs, promoter regions, pri–miRNAs, pre–miRNAs and 

target gene 3′–UTRs. The database has reviewed over 2000 peer-reviewed 

publications and has 525 associations among 182 miRNAs, 197 SNPs, 153 

genes and 164 human diseases (Yue et al., 2018). 

A ncRNA–related eQTL database (ncRNA–eQTL) has been developed for 

33 different cancer types (Li et al., 2020). Li and colleagues performed an 

eQTL analysis of > 8700 samples from the Cancer Genome Atlas (TCGA) 

consortium, encompassing genotyping, transcriptomics and survival data 

from patients from > 10,000 primary tumours across 33 cancer types. Most of 

the non-coding RNAs in this dataset are lncRNAs (> 40,000); however, the 

TCGA also has miRNA expression profiles. In this study, the authors 

identified 952 miRNAs with trans-eQTLs and 3,586 miRNAs with cis-eQTLs 

at FDR < 0.05 across all tissues with some cancers such as lymphoid 

neoplasm diffuse large B-cell lymphoma (DLBC) displaying only one cis-
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regulated miRNA. In contrast, thyroid cancer (THCA) had a total of 301 cis-

regulated miRNAs. Moreover, the authors reported 116 miRNA–eQTLs 

associated with patient overall survival times across 33 cancer types (FDR < 

0.05). 

The JAMiR-eQTL database is a publicly available repository of cis- and 

trans-miR-eQTLs from a study of a large (3,448 subjects) cohort of Japanese 

individuals representing different types of dementia, including Alzheimer’s 

disease, Lewy body dementia, vascular dementia and MCI. The authors 

analysed cis- and trans-eQTLs in 6 types of dementia and across all 

subjects. Cis-eQTLs were associated with 125 miRNAs in AD (n= 1,314), 1 

miRNA in Lewy body dementia (n=134), 19 miRNAs in vascular dementia 

(n=69) and 319 miRNAs in MCI (n=504) at FDR < 0.05). Moreover, 120 

miRNAs were associated with cis-eQTLs in all subjects, independent of 

dementia type (Akiyama et al., 2021). 

Sonehara and colleagues (2021) performed small RNA-sequencing of 

peripheral blood mononuclear cells (PBMCs) and whole–genome 

sequencing (WGS) of 141 Japanese individuals. This study identified 

cis-miR-eQTLs associated with the expression of 40 miRNAs at FDR < 0.2. 

Of the identified emiRNAs, 63% had not been reported previously, including 

5 miRNAs whose lead cis-miR-eQTL is monomorphic in the European 

populations. These results highlight the importance of performing miR-eQTL 

analysis in diverse populations (Sonehara et al., 2021). 

To the best of my knowledge, only three published miRNA eQTL studies 

have been performed in the human brain. Williamson et al. (2015) mapped 

miR-eQTLs using 78 adult post–mortem brains from the Stanley Medical 

Research Institute, of which 27 were from individuals with schizophrenia, 29 

were from individuals with bipolar disorder, and 22 were from control 

individuals. miR-eQTLs were detected for 32 miRNAs at FDR < 0.1, which 

were enriched for GWAS SNPs associated with SZ (empirical p=0.018) 

(Williamson et al., 2015). In a study led by Mamdani et al. (2015), the same 

group mapped miRNA eQTLs in 36 adult nucleus accumbens (NAc) of 18 

subjects with alcohol dependence and 18 controls. Despite a small sample 
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size, the authors discovered cis-eQTLs for 68 miRNAs at FDR < 0.1. More 

recently, the same group performed a gene network analysis of mRNAs and 

miRNAs from PFC and NAc of matched cases with alcohol dependence 

(n=18) and controls (n=17). As part of this study, the impact of genetic 

variants on gene expression in a disease-dependent manner was 

investigated. In the alcohol dependence mediated eQTL analysis, 4 miRNAs 

were found to be associated with cis-eQTLs in the NAc, and 7 miRNAs were 

identified in the PFC at FDR < 0.1. The authors suggest that miRNA 

expression differences between alcohol dependence cases and controls 

might be under brain region-specific genetic control, which potentially 

mediates alcohol’s effect in a brain region-specific manner (Vornholt et al., 

2020). 

The only study of miR-eQTLs in foetal development was performed using 

40 full-term pregnancy placentas. This study identified miR-eQTLs 

associated with the expression of 16 miRNAs, including 4 miRNAs that are 

differentially expressed in pre-eclampsia (Inno et al., 2021). 

Of the 2654 mature miRNAs identified in humans (Kozomara et al., 2019), 

an estimated 50-70% are expressed in the brain (O’Carroll & Schaefer, 2013; 

Fineberg et al., 2009; Adlakha & Saini, 2014). Given the role of miRNAs as 

both master regulators and fine–tuners of gene expression in brain 

development (for review, see: Rajman & Schratt, 2017; Prieto-Colomina et 

al., 2021), the present study aimed to identify common associated variants 

with miRNA expression in human foetal brain development. To my 

knowledge, this is the first miR-eQTL study to be performed in human foetal 

brain. 
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3.2 Methods 

 

3.2.1 Samples 

 

This study employed 112 2nd trimester human foetal brain samples from 

elective terminations (12–20 PCW) obtained from the MRC / Wellcome Trust 

Human Developmental Biology Resource (http://www.hdbr.org). Ethical 

approval for the HDBR was granted by the Royal Free Hospital research 

ethics committee under reference 08/H0712/34 and Human Tissue Authority 

(HTA) material storage licence 12220. In addition, ethical approval for 

assessing genetic effects on gene expression in human brain was obtained 

from the Psychiatry, Nursing and Midwifery Research Ethics Subcommittee 

(PNM RESC/12/13 -102) at King’s College London. Samples were received 

as undissected frozen brain tissue. Total RNA was extracted from a 

homogenate of half a section of brain tissue from each foetus using Trizol 

(Ambion). The other half was used for genomic DNA extraction using 

standard phenol-chloroform extraction. Foetal age was determined by the 

HDBR through foot length and knee-to-heel length measurements. Foetal 

sex had been previously determined for most samples by karyotyping, 

expression of genes on the Y-chromosome in males and heterozygosity for 

genetic X-chromosome markers in females (O’Brien et al., 2018). I 

empirically determined sex in the remaining samples based on X -

chromosome heterozygosity rates using the “--check-sex” flag in PLINK 1.9 

(Purcell et al., 2007). Figure 3.1 depicts a schematic overview of the main 

methods employed in this chapter. 

 

  

http://www.hdbr.org/
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Figure 3.1 - Schematic overview of the main methods employed in this 

chapter.  

A total of 112 samples from 2nd trimester foetal brain were employed in this study. Undissected 

frozen brain tissue from these samples was used to extract both DNA and total RNA according to 
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established protocols. Extracted DNA was used for genome-wide genotyping of ~710,000 SNPs. 

Subsequently, genotypes underwent extensive QC rounds and were imputed for additional SNPs 

using minimac3 and Eagle v2.3 phasing through the Michigan server, which was followed by 

another series of QC of the imputed SNPs and samples. A total of 6,571,705 SNPs passed QC. 

Genotyped SNPs were also employed to determine kinship and ancestry of the samples 

employed in this study. Kinship was used as a QC filter post-imputation, whilst PC1, PC2 and PC3 

derived from ancestry determination were employed as covariates for eQTL analysis. Total RNA 

was employed in this study for the generation of Small RNA - Sequencing libraries according to 

Illumina guidelines. After sequencing libraries on an Illumina Hi–Seq 4000, reads were first 

mapped to miRbase, allowing no mismatch. Unaligned reads were subsequently aligned to 

reference genome GRCH38 allowing for 1 mismatch. Raw reads from both alignments for each 

miRNA were added together. Small RNA Sequencing libraries underwent a series of QC filters 

based on sequencing depth, library size and mapping quality. Raw counts were normalized by 

the TMM method implemented in edgeR and converted into log2 cpm+1. PCA analysis of 

normalized reads was employed to identify and eliminate outliers. Normalized reads, genotyping 

PC1, PC2 and PC3, library demographics and sample-specific variables, including sex and age 

(PCW), were employed to build a linear model of miRNA expression and infer 10 hidden 

confounders in my data through PEER. Residuals of PEER analysis consisting of miRNA 

expression corrected by known and hidden confounders for the 112 samples and their 

respective genotypes converted into GRCH38 coordinates were employed in permutation 

analysis to find cis-miR-eQTLs in 2nd trimester foetal brain through FASTQTL. Created with 

BioRender.com 

3.2.2 Genotyping 

The vast majority of samples employed in this study had already been 

genotyped in previous studies by our lab (Hannon et al., 2016; O’Brien et al., 

2018). An additional 19 samples were genotyped specifically for this study 

using the Infinium OmniExpress-24 BeadChip array (Illumina), which 

genotypes approximately 710,000 SNPs. 
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3.2.2.1 Quality control and genotype imputation  

Initially, there were genotypes for 151 samples available. All these 

genotypes were subjected to strict quality control and genotype imputation. 

Pre - imputation quality control involved using PLINK v1.9 to check for 

consistency of sex assignments, as well as to inspect the subject-level 

missingness rates. The Haplotype Reference Consortium v1.1 (HRC) panel 

was used for imputation. As part of quality control, a checking tool developed 

by Will Rayner (check–bim) was employed to check for consistency of 

strand, alleles, positions, Ref/Alt assignments and frequencies between the 

genotyped SNPs and the HRC panel. A total of 8 samples with ambiguous 

sex assignments and/ or with > 5% missing markers or anomalous 

heterozygosity were eliminated. SNPs that were missing in > 5% of samples 

or had minor allele frequency less than 0.01 were removed. In addition, A/T 

and G/C SNPs with minor allele frequencies > 0.4 were also removed.  

Subsequently, the SNP strand and ref/alt assignment were updated to 

match the Haplotype Reference Consortium (HRC) version 1.1, and SNPs 

where the minor allele frequency differed by > 0.2 from the HRC version 

were removed. 143 samples were imputed for additional SNPs from the HRC 

panel using minimac3 and Eagle v2.3 phasing through the Michigan 

Imputation Server (https://imputationserver.sph.umich.edu/index.html).  

Following imputation, genotypes underwent additional QC by applying 

filters based on minor allele frequency (MAF), Hardy-Weinberg equilibrium 

(HWE), heterozygosity, SNP missingness rate and kinship. After imputation, 

5 samples were eliminated, including 3 samples that were 3rd-degree 

relatives. SNPs were initially annotated with rsID numbers from dbSNP v149 

and converted to GRCh38 coordinates using CrossMap (Zhao et al., 2014), 

using chain files from the UCSC Genome Browser 

(https://genome.ucsc.edu/). Subsequently, checkVCF 

(https://github.com/zhanxw/checkVCF) was employed to identify and remove 



120 

 

non-SNP positions, duplicate sites and loci with an imputation r2 less than 

0.8, minor allele frequency (MAF) less than 0.05, or Hardy-Weinberg 

Equilibrium (HWE) violation p-values < 1 × 10−4. In total,138 samples and 

6,571,705 SNPs passed genotyping QC filters. 

 

3.2.2.2 Ancestry determination 

Genotyped SNPs were employed not only to infer the relatedness of 

samples but also to determine ancestry. The outcome of the ancestry 

determination procedure is a set of principal components (PCs) describing 

the sample structure in terms of genetically defined populations; these PCs 

are then included as covariates when fitting the genome-wide regression 

models in an eQTL study. The brain samples employed in this study are an 

admixed population, as shown in Figure 3.2 and are representative of the 

London population. 
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Figure 3.2 – Ancestry determination of the foetal brain samples employed in 

this study.   
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Plot of Principal components (PCs) calculated using Peddy (Pedersen & Quinlan, 2017) based on 

the 1000 genomes project (1000 Genomes Project Consortium, 2015). A – PC1 and PC2 of 

ancestry determination; B – PC1 and PC3 of ancestry determination. N=151 samples. AFR - 

African; AMR - Ad mixed American; EUR - European; SAS - South Asian; UNK - Unknown. 

In order to maximize the number of samples employed in this study, foetal brain 

samples were not excluded based on ancestry. Admixed populations have complex 

population substructures that may confound eQTL analysis and need to be 

adequately controlled to prevent spurious associations (Hellwege et al., 2017; Gay 

et al., 2020). Population stratification was controlled by including the first 3 

genotype principal components (PC1, PC2 and PC3) as fixed effects in the linear 

model implemented by PEER (Steagle et al., 2012) as previously described (O’Brien 

et al., 2018). The resulting miRNA expression residuals (corrected for population 

stratification and additional known and hidden confounders) were subsequently 

employed in my miR - eQTL analysis (see: 3.2.5 – miR - eQTL discovery). 

 

3.2.3 Small–RNA sequencing 

 

As described in depth in chapter 2, Total RNA was extracted following the 

standard Trizol (Ambion) method. Subsequently, small - RNA libraries were 

generated in accordance with Illumina guidelines, using 1 ug of DNAse 

treated total RNA. Libraries were purified by agarose gel extraction, allowing 

for specific isolation of libraries with sizes between 145 - 160 nucleotides 

which contain mature miRNA generated from ~22 nt and piwi-interacting 

RNAs (piRNAs) generated from ~30 nt, as well as, small RNA fragments, 

and other regulatory small RNAs (in addition to the ligated adapters). 

Following quantification through qPCR, libraries were pooled together in 

equimolar amounts in batches of 20 samples and sequenced on an Illumina 

Hi–Seq 4000. 
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3.2.3.1 Small-RNA data processing 

50 bp single-end sequencing reads, in the form of FASTQ files, were 

pre-processed according to a recently published standardized protocol for 

miRNA - sequencing studies (Potla et al., 2021). Briefly, adapters were 

trimmed using trimmomatic (Bolger, Lohse and Usadel, 2014), followed by 

quality control (QC) of sequenced reads. FastQC and multiQC (Ewels et al., 

2016) were employed to create and visualize plots based on individual base 

sequence quality scores, sequence length distribution, individual sequence 

GC content, and duplicate sequences. Samples with low-quality sequencing 

data were eliminated.  

In order to only retain miRNAs (21–25 nt) and piwiRNAS (21–31 nt) reads, 

trimmed reads were filtered to remove reads that are too short (< 16 nt) and 

too long (> 31 nt). 

Filtered reads were mapped using the Bowtie aligner in a two-step 

approach, as documented by Potla and colleagues (2021). Firstly, reads 

were aligned to mature miRNA reads in miRbase v. 22 (Kozomara et al., 

2019) with stringent criteria by not allowing mismatches. Subsequently, the 

unaligned reads from the first alignment were aligned to the GRCh38 

reference genome allowing for 1 mismatch between the miRNA reads and 

the reference genome. Mapped reads were visualized using IGV 

(Thorvaldsdottir et al., 2013), and mapping quality was ascertained using 

Qualimap (Okonechnikov et al., 2016). Aligned reads were quantified into 

raw counts using samtools idxstats for miRbase aligned counts and 

featurecounts for genome-mapped reads (Liao et al., 2014). 
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3.2.4 Normalisation of raw miRNA counts 

Raw miRNA counts derived from aligning each miRNA to miRbase and to 

the GRCh38 reference genome were merged, and miRNAs with 0 counts in 

more than 90% of the samples were eliminated. A total of 1449 miRNAs 

were detected. Sample libraries underwent a series of QC analyses based 

on measures from FASTQC, MultiQC, and Qualimap. Of the samples that 

survived small-RNA seq QC, 112 had associated genotypes. 

Reads were normalized using the trimmed mean of M-values (TMM) 

method and transformed into log2 CPM +1 (Robinson & Oshlack, 2010) 

using edgeR. A PCA of TMM normalized counts was performed to identify 

and remove outliers. No outliers were detected (see: 2.2.7 - Sample QC and 

exclusion of samples). 

3.2.5 miR – eQTL discovery 

eQTL analyses were carried out using FastQTL (Ongen et al., 2016) in 

112 samples with both genotype and small - RNA sequencing measures that 

passed QC. TMM normalized miRNA expression measures were corrected 

for age, sex, RIN, sequencing batch, the first three principal components 

of genotype (PC1, PC2, PC3), average read quality, % duplicates after 

filtering, % GC content after filtering, average read length after filtering (bp), 

total amount of reads after filtering, % of mapped reads to miRNAs and 10 

hidden confounders estimated through PEER (Stegle et al., 2012). The 

resulting PEER miRNA expression residuals were employed to test the 

association between single nucleotide polymorphisms (SNPs) located within 

a ±500 kb window extending in both directions from the first nucleotide of the 

mature miRNA sequence for each of the miRNAs expressed in 2nd trimester 
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foetal brain (n= 1449). FDR for each eQTL was calculated by first correcting 

p-values for the number of SNPs tested per miRNA (within 500kb on either

side of the start of mature miRNA) through estimation of a beta distribution 

using a minimum of 1000 permutations (maximum 10,000 permutations), and 

then correcting these P - values for the number of miRNAs tested using 

Storey’s q-value method (Storey & Tibshirani, 2003). 

3.2.6 Power of eQTL study 

The power of an eQTL study is dependent on multiple factors, some of 

which are difficult to quantify, including effect sizes. I used the R package 

PowereQTL (Dong et al., 2021) to estimate the power of my eQTL study. To 

this end, I employed the same effect size and noise level (log standard 

deviation of 0.13) as the GTEx Consortium Power analysis (GTEx 

Consortium, 2013). I assumed a linear association between miRNA 

expression and genotype. Moreover, I incorporated a Bonferroni correction 

for the 2,608,405 cis-SNP-miRNA pairs tested in my eQTL analysis. Through 

this analysis, I could ascertain that my study is sufficiently powered to detect 

cis-miR-eQTLs with MAF > 19.37% but lacks the power to detect all of the 

miR-eQTLs with lower frequencies (Figure 3.3). For this study to be 

adequately powered to detect cis-miR-eQTLs with MAF > 5%, I would require 

a total of 410 foetal brain samples. 
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Figure 3.3 – Power of the current bulk tissue eQTL study employing 112 

samples versus power of this study if it employed 410 samples, assuming the 

same effect size and associated noise as the GTEx Consortium Power 

analysis (GTEx Consortium, 2013) and a linear association between miRNA 

expression and genotypes. 

 MAF- minor allele frequency, beta – effect size, sigma – level of noise 
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3.3 Results 

 

Using FASTQTL (Ongen et al., 2016), I investigated the associations 

between ~ 5.31M SNPs and the expression levels of 1449 miRNAs in 112 

2nd trimester brain samples. Cis-eQTL analysis was targeted to a ±500 kb 

window extending in both directions from the start of mature miRNA loci, 

annotated based on miRbase v22 (Kozomara et al., 2019). The genomic 

regions flanking the 1449 miRNAs under analysis included 1,115,053 unique 

SNPs. In total, I tested 2,608,405 cis-SNP-miRNA pairs. After permutation 

analysis, I tested if the beta-approximated permutation p-values were well 

calibrated (Figure 3.4). As can be seen in Figure 3.4, beta-approximated 

p-values are highly correlated with empirical P-values (R=1, p < 2.2 x 10-16). 

Figure 3.4  – Correlation between beta approximated p-values and empirical p-

values of eQTL analysis performed in a  500 kb window of mature miRNAs 

(Pearson’s correlation R=1, p < 2.2 x 10-16). 
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At FDR < 0.05, I identified miRNA cis-eQTLs associated with the 

expression of 30 miRNAs, all of which mapped to unique genomic locations. 

Table 3.1 lists the 30 miRNAs identified in this study, the chromosome (chr) 

where they are located, the most significant miR-eQTL identified by 

permutation analysis that is associated with miRNA expression (Top miR-

eQTL), the distance of the miR-eQTL to the start of mature miRNA, the q 

value of each association and the miRNA type (I – Intronic; N – Non-intronic). 

 

Table 3.1 – miRNAs associated with miR-eQTLs in second trimester foetal 

brain.  
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In order to visualize the genome-wide distributions of miR-eQTLs, I 

performed a Manhattan plot of all significant and non-significant miR-eQTLs 

identified in this study (Figure 3.5). As can be seen in Figure 3.5, the 

miR-eQTLs are evenly distributed throughout the genome. Interestingly, this 

study identified a miR-eQTL for hsa-miR-323b-3p, a miRNA located in the 

paternally imprinted cluster C14MC.   
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Figure 3.5 – Manhattan plot of miR-eQTL distribution throughout the genome. 

Dashed red line represents FDR < 0.05 cut off. All SNPs above the dashed line are statistically significant miR-eQTLs. 
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Using PhastCon (Siepel et al.,2005), I determined sequence conservation 

of the miRNAs with associated miR-eQTLs using the UCSC genome browser 

Table browser tool and the 100 Vertebrate Conservation group of organisms 

for comparison. PhastCon scores were dichotomized into low- and high - 

conservation using a cut-off point of 0.5. Interestingly, 90% of the identified 

miRNAs with an associated miR-eQTL are poorly conserved across 

vertebrate species (PhastCon Score < 0.5). In contrast, 3 miRNAs – 

miR-1287-5p, miR-323b-3p and miR-202-5p have PhastCon scores > 0.95 

and are highly conserved throughout vertebrates. 

70% of the miR-eQTLs identified (n = 21) were located upstream of their 

associated mature miRNA, and 83% (25 out of 30) miR-eQTLs were within 

50 kb of their corresponding mature miRNA (Figure 3.6). Only one miR-eQTL 

was located more than 100kb away from its associated mature miRNA: 

rs2140551, which was 464 kb upstream from its associated mature miRNA 

(hsa-miR-548ba) in a region that Haploreg v4 predicts to be an enhancer 

(Ward & Manolis, 2015). 

Figure 3.6 – Distance of miR-eQTLs to start of their associated mature miRNA. 

Dashed blue line – start of mature miRNA. Dashed red lines – 50 kb and -50kb from mature 

miRNA. 
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Of the identified miR-eQTLs, 6 were within 100 bp of their respective 

mature miRNA, and 4 were located either within the mature miRNA itself 

(miR-4707-3p) or within the pri-miRNA hairpin sequence (miR-323b-3p,

miR-3615 and miR-6686-5p). In order to ascertain if the association 

between genotype at rs2273626 and expression of miR-4707-3p was due 

to sequence alignment bias, I performed the same eQTL analysis in mapped 

reads that were allowed 1 mismatch during the alignment phase to both 

miRbase and genome (1MM method). As can be seen in Table 3.2, the 

q–values obtained from both alignment methods are highly similar, indicating 

that the observed miR-eQTL association is not explainable by sequence 

alignment bias. 

Table 3.2 – Comparison of q-values obtained from eQTL analysis of both 

alignment methods in eQTLs located within microRNAs identified in this 

study. 

To explore the effect of the 4 miR-eQTLs located within pri-miRNA 

sequences, I analyzed where these SNPs are located in relation to the 

structure of pri-miRNA hairpins by searching these against the miRNASNP-

v3 database (Chun–Jie et al., 2020), a database for miRNA-related SNP and 

SNP effects. The location of these miR-eQTLs in the context of the 3D 

structure of pri-miRNA hairpins is shown in Figure 3.7. 
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Figure 3.7 – Location of miR-eQTLs in the context of the 3D structure of 

miRNA hairpins identified in this study.  

Red – mature miRNA bases; Green – pri-miRNA bases not in mature miRNAs; Yellow – miR-eQTL

position. A - miR-4707 hairpin structure – Can give rise to 2 mature miRNAs: miR-4707-5p and 

miR-4707-3p identified in this study. SNP rs2273626 is located in the seed region of miR-4707-3p 

and is associated with an increase in minimum free energy G =5.6 Kcal/mol. This SNP also 

alters the seed region of miR-4707-3p and leads to changes in target post-transcriptional 

regulation. TargetScan analysis predicts this SNP leads to the gain of 3461 targets and the loss of 

857 targets. B – miR-3615 hairpin structure – Gives rise to miR-3615. SNP rs745666 is located in 

the apical loop of the miR-3615 hairpin within a regulatory structure called the pre-element. This 

SNP is associated with an increase in minimum free energy G = 1 kcal/mol. C – miR-323b 

hairpin structure – The paternally imprinted hairpin can give rise to 2 mature miRNAs: miR-323b-

5p and the identified miR-323b-3p. SNP rs56103835 modifies the regulatory basal UG motif (red 

circle) of the miR-323b hairpin and is associated with a small decrease in minimum free energy 

G = -0.3 kcal/mol. D – miR-6886 hairpin structure - Can give rise to 2 mature miRNAs: the 

miR-6886-5p identified and miR-6886-3p. SNP rs1003727 is located in the apical loop of the 

miR-6886 hairpin within a regulatory structure called the pre-element and is not associated with 

changes in minimum free energy G = 0 kcal/mol. 
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The expression of miR-4707-3p is associated with SNP rs2273626 located 

in its seed region (see Figure 3.7A). This SNP is associated with a significant 

increase in minimum free energy predicted by RNAfold (Gruber et al., 2008), 

which leads to the miR-4707 hairpin being less thermodynamically stable and 

is predicted to decrease miRNA expression. Moreover, given that this SNP is 

located in the seed region, it will also lead to altered post-transcriptional 

regulation of miR-4707-3p targets. TargetScan 8.0 (McGeary et al., 2019) 

analysis predicts that this SNP is associated with a gain in 3,461 mRNA 

targets and a loss in 857 mRNA targets. The remaining 3 miR-eQTLs are 

located in regulatory regions of their associated miRNA hairpins. The miR-

eQTLs associated with miR-3615 (Figure 3.7B) and miR-6886 (Figure 3.7D) 

are located in the apical stem-loop of their respective hairpins. The apical 

stem-loop is part of a regulatory region called the pre-element. This area is 

critical for defining miRNAs and regulating their production from primary 

transcripts by Drosha and Dicer (Zhang & Zeng, 2010). RNAfold analysis 

predicts that one of these SNPs - rs745666, associated with miR-3615 

expression, is also associated with a slight minimum free energy increase 

predicted to lead to a small change in miR-3615 expression (Figure 3.7B). 

Finally, the miR-eQTL associated with miR-323b-3p alters a conserved basal 

regulatory UG motif at the base of the miR-323b hairpin. This region marks 

the boundary of the basal junction between ssRNA and dsRNA and 

enhances pri-miRNA processing (Auyeung et al., 2013). RNAfold analysis

predicts this SNP is associated with a slight minimum free energy decrease 

( ∆G= -0.30 kcal/mol), leading to a small change in miRNA expression.

As can be seen in Table 3.1, 56% of the miRNAs with eQTLs are intronic 

(n=17). The remainder are either intergenic (n=8) or exonic miRNAs (n=5). 

There are no significant differences in q-values based on miRNA location 

(intronic versus non–intronic) (p=0.9332) (Figure 3.8). 
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Figure 3.8 – Comparison of miR-eQTL strength between miR-eQTLs 

associated with intronic miRNAs compared to those associated with non-

intronic miRNAs.  

There are no significant differences between the two groups (chi square = 0.0070, df = 1, 

p = 0.9332) 

Both intronic and exonic miRNAs are located within host genes. In this 

study, 73 % of the miRNAs with associated miR-eQTLs were found within 

host mRNAs (22 of 30 miRNAs). Table 3.3, displays miRNAs within host 

genes and their associated miR-eQTL, the strength of the association (q - 

value), name of host gene, location of miRNA within the host gene, distance 

of the miR-eQTL to the start of mature miRNA, and the start of the host gene 

TSS. 
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Table 3.3 – miRNAs associated with miR-eQTLs that are located within host 

genes. 

In order to infer if miR-eQTLs could mediate their effects on miRNA 

expression by altering host gene expression, I compared my results with an 

eQTL analysis performed by my group in a largely overlapping sample 

(O’Brien et al., 2018). Despite the vast majority of miRNAs with eQTLs 

identified in this study being located within a host-gene; the genetic signal 

associated with miRNA expression was only colocalized with host-gene 

expression in one case (Table 3.4). 
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Table 3.4 – Effects of miR-eQTLs on host-gene expression.

As can be seen, in Table 3.4, only rs2273626 - the eQTL SNP for 

miR-4707-3p - is an eQTL for its host gene (HAUS4) at P < 0.05 (not FDR 

adjusted). Therefore, most of the identified miR-eQTLs exert their effects 

independent of host gene expression. It will be interesting to check if the 

shared eQTL rs2273626 affects both the expression of miR-4707-3p and 

HAUS4 independently. 

I used Haploreg v4 (Ward & Manolis, 2015) to characterize the miR-

eQTLs in this study functionally. Interestingly, 5 of the miR-eQTLs identified 

in this study are not in high LD with other SNPs (R2 > 0.8) (Table 3.5). I 

decided to focus my analysis on these miR-eQTLs, as they are likely to be 

causal SNPs. Table 3.5 displays their functional characterization, including 

conservation score of SNP (SiPhy cons), promoter and enhancer histone 
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marks, DNase marks, association with regulatory protein binding and 

regulatory motif alterations. The identification as eQTLs in previous studies, 

as well as, in which genes these SNPs are located and their functional 

annotation according to dBSNP is also shown. 



1
3

9
 

Table 3.5 – Functional characterization of miR-eQTLs without high LD identified in this study. 

SiPhy cons – SNP conservation score. 
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As can be seen in Table 3.5, all these miR-eQTLs affect regulatory motifs 

and are present in areas of the genome that have tissue-specific histone 

marks that infer some regulatory function. Moreover, 3 of these SNPs are 

located in DNAse I hypersensitive sites, further supporting their association 

with transcriptional activity. 

Of note, SNP rs7769202 (T > C) associated with miR-5683 expression is 

also associated with enhancer histone marks in 4 tissues, including 

H3K4me1 and H3K27ac in adult brain. There was no evidence for foetal 

brain. This SNP also alters a motif in the transcription factor Nkx2 and is 

predicted to increase its binding affinity (PWM score increases from 2.4 to 

13.6), which theoretically would lead to an increased expression of 

miR-5683. 

In addition, SNP rs745666 (G > C) associated with miR-3615 expression 

is also associated with promoter histone marks in 24 tissues, including 

H3K4me3 in TSS active promoters in foetal brain (and TSS bivalent 

promoters exclusively in female foetal brain). This SNP has also been 

reported to be an eQTL for RAB37 in testis by GTEx and is predicted to 

decrease the affinity of transcription factors Evi-1 and RREB-1; whilst 

increasing the affinity of ZNF263. Interestingly, miR-3615 is located 

downstream of RAB37 and has been shown to switch host genes (switches 

co-expression partners) in different cancer types, suggesting alternative 

promoter usage (Liu et al., 2021). Of note, this SNP is located in the 

regulatory apical loop of miR-3615 itself, and it leads to a slight 

destabilization of the hairpin (Figure 3.7B). Therefore, the effect in miR-3615 

is likely mediated by affecting regulatory motifs in the miR-3615 secondary 

structure instead of affecting transcription. 

In figure 3.9, I show the genotypic association between these 5 miR-

eQTLs and the expression of their associated miRNA. As can be seen in 

Figure 3.9A, the C-allele of SNP rs7769202 is associated with a significant 

increase in the expression miR-5683 (p=9.43 x 10-11). This observation is 

consistent with the increase in Nkx2 binding affinity predicted by Haploreg V4 

(Ward & Manolis, 2015). This SNP explains 78 % of miR-5683 gene 
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expression variability (ω2p = 0.78). Another miR-eQTL that explains much of 

the variability in the expression of its associated miRNA is rs2140551 (ω2p = 

0.55). This SNP is associated with a significant increase in miR-548ba 

expression (p=3.64 x 10-9) (Figure 3.9B). The remaining miR-eQTLs with no 

LD partners identified in this study seem to explain a smaller fraction of the 

expression of their associated miRNA (Figure 3.9C and 3.9D). A similar 

phenomenon was reported by Nikpay and colleagues (2019) in plasma, 

where, on average, each miR-eQTL explained < 1% of the variation in miRNA 

levels, with a small number of miR-eQTLs explaining a larger proportion (4-

20%) of the variation in mature miRNA levels in plasma. However, this effect 

appears to be much more pronounced in foetal brain. Of note, the expression 

of miR-3161 was either absent or extremely low in homozygotes for the G–

allele at SNP rs74236456 (Figure 3.9E). 
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Figure 3.9 – Genotypic associations with miRNA expression of miR-eQTL that 

do not possess high LD.  
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The x-axis of each plot corresponds to the 3 observed SNP genotypes. The reference allele is on 

the left-hand side and alternative allele is on the right-hand side. The y-axis represents log2-cpm 

+ 1 TMM normalized miRNA expression values. The sample size (n) for each genotype is given

below the respective alleles. All p-values are adjusted by the Holm method. Only statistically 

significant associations are shown. A- Effect of SNP rs7769202 on miR-5683 expression. This SNP 

is associated with a significant increase in miR-5683 expression (p=9.43 x 10-11) with a 1.14 

log2FC in miR-5683 expression between homozygotes for the reference allele (TT) and 

heterozygotes (TC) and a 2.03 log2FC in miR-5683 expression between homozygotes for the 

reference allele (TT) and homozygotes for the alternative allele (CC). rs7769202 genotype 

explains 78 % of the variability in miR-5683 expression. B - Effect of SNP rs2140551 on miR-

548ba expression. This SNP is associated with a significant increase in miR-548ba expression 

(p=3.64 x 10-9) with a 1.25 log2FC in miR-548ba expression between homozygotes for the 

reference allele (GG) where expression is barely detectable and heterozygotes (GA) and a 1.72 

log2FC in miR-5683 expression between homozygotes for the reference allele (GG) and 

homozygotes for the alternative allele (AA). rs2140551 genotype explains 55 % of the variability 

in miR-548ba expression. C - Effect of SNP rs745666 on miR-3615 expression. This SNP is 

associated with a small but significant decrease in miR-3615 expression (p=8.54 x 10-3) with a 

-0.22 log2FC in miR-3615 expression between homozygotes for the reference allele (GG) and

heterozygotes (GC) and a -0.73 log2FC in miR-3615 expression between homozygotes for the 

reference allele (GG) and homozygotes for the alternative allele (CC). Of note several 

homozygotes for the reference allele have a negatively skewed expression of miR-3615. 

rs745666 genotype explains 13 % of the variability in miR-3615 expression. D - Effect of SNP 

rs7006762 on miR-4662a-5p expression. This SNP is associated with a significant increase in miR-

4662a-5p expression (p=7.73 x 10-3) with a 0.66 log2FC in miR-4662a-5p expression between 

homozygotes for the reference allele (CC) and heterozygotes (CG) and a 0.95 log2FC in miR-

4662a-5p expression between homozygotes for the reference allele (CC) and homozygotes for 

the alternative allele (GG). Of note several homozygotes for the reference allele have a 

negatively skewed expression of miR-4662a-5p. rs7006762 genotype explains 38 % of the 

variability in miR-4662a-5p expression. E- Effect of SNP rs74236456 on miR-3161 expression. 

This SNP seems to contribute to the activation of expression of miR-3161 at low levels, as most 

homozygotes for the reference allele (GG) have no detectable expression of miR-3161 whereas 

heterozygotes (GC) have a 0.63 log2FC change in expression in comparison with the GG 

genotype. This SNP has a MAF=0.161542 according to the 1000 genomes project, which explains 

why there are no homozygotes for the alternative allele in our sample. 
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I also show genotypic associations with miRNA expression for two 

miR-eQTLs located within the mature miRNA (rs2273626) and pri–miRNA 

(rs56103835) sequences of their associated miRNAs, given that my RNAfold 

analysis predicted SNP rs2273626 would decrease the expression of miR-

4707-3p; and SNP rs56103835 modifies the regulatory basal UG motif in the 

pri-miRNA hairpin of its associated miRNA miR-323b-3p (Figure 3.10). 

Figure 3.10 - Genotypic associations with miRNA expression of miR-eQTL 

located within miRNA hairpins.  

The x-axis of each plot corresponds to the 3 observed SNP genotypes. The reference allele is on 

the left-hand side and alternative allele is on the right-hand side. The y-axis represents log2-cpm 

+1 TMM normalized miRNA expression values. The sample size (n) for each genotype is given

below the respective alleles. All p-values are adjusted by the Holm method. Only statistically 

significant associations are shown. A - Effect of SNP rs2273626 on miR-4707-3p expression. This 

SNP is associated with a significant decrease in miR-4707-3p expression (p=4.96 x 10-21) which is 

consistent with my RNAfold analysis. rs2273626 is associated with a -0.69 log2FC in miR-4707-3p 

expression between homozygotes for the reference allele (CC) and heterozygotes (CA) and a 

-2.02 log2FC between homozygotes for the reference allele (CC) and homozygotes for the

alternative allele (AA). Homozygotes for the risk allele have very low or no expression on miR-

4707-3p. rs2273626 genotype explains 77 % of the variability in miR-4707-3p expression.  B - 
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Effect of SNP rs56103835 on miR-323b-3p expression. This SNP is associated with a small but 

significant decrease in miR-323b-3p expression (p=0.04) which is consistent with it altering a 

regulatory motif in its associated miRNA hairpin. rs56103835 is associated with -0.68 log2FC 

between homozygotes for the reference allele (TT) and heterozygotes (TC). rs56103835 

genotype explains 34 % of the variability in miR-323b-3p expression. There is no difference 

between heterozygotes (TC) and homozygotes for the alternative allele (CC) because this miRNA 

is paternally imprinted. 

As can be seen in Figure 3.10, the A-allele of SNP rs2273626 significantly 

decreases the expression of miR-4707-3p (p=4.96 x 10-21) with homozygotes 

for the A-allele having null or very low levels of miRNA expression. Despite 

this SNP being in LD with 31 other SNPs with R2 > 0.8, it is likely that 

rs2273626 is the causal variant as rs2273626 leads to a significant 

destabilization of the miR-4707-3p hairpin, providing mechanistic reasoning 

for this miR-eQTL. This SNP explains 77% of the variability in miR-4707-3p 

expression (ω2p =0.77). The C–allele of SNP rs56103835 slightly decreases 

miR-323b-3p expression (p=0.04), which is consistent with it altering a 

regulatory motif within miR-323b-3p that enhances processing. Together, 

these results indicate that there are significant miR-eQTLs in 2nd trimester 

foetal brain, most of which are located within 50 kb of their associated mature 

miRNA and independent of host gene expression. Some of the identified 

miR-eQTLs have large effect sizes and explain the majority of the variability 

in miRNA expression that is attributable to genetic effects. Moreover, I 

provide evidence that some of the miR-eQTLs identified in this study affect 

the stability and processing of mature miRNAs instead of affecting the 

transcription of primary miRNA transcripts. 
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3.4 Discussion 

This Chapter identifies common variants associated with miRNA 

expression in human foetal brain. Foetal brain development is marked by 

extremely dynamic transcription patterns where transcriptional changes 

occur more rapidly than at any other stage of life in the brain (Johnson et al., 

2009; Colantuoni et al., 2011; Kang et al., 2011; Jaffe et al., 2018) and these 

patterns are crucial for proper future brain function (Gulsuner et al.,2013). 

miRNAs are highly expressed in the brain and regulate several processes 

pertaining to brain development and neuronal function, including 

neurogenesis, neuronal cell–type determination and migration, axonal 

pathfinding, synapse formation and neuronal circuit development (for review, 

see: Rajman & Schratt, 2017; Prieto-Colomina et al., 2021). In this context, 

identifying how common variants affect miRNA expression in foetal brain and 

how this might predispose towards a neurodevelopmental disorder by 

altering a brain development trajectory is important. Moreover, the 

assessment of miR-eQTL allows us to shed light on the role of miRNA 

regulation in the brain. 

Using FASTQTL, I identified 30 miRNAs whose expression is associated 

with common genetic variation (miR-eQTLs) at FDR < 0.05. This constitutes 

~ 2% of the miRNAs under study (n= 1449). This percentage of miRNA with 

cis-regulatory genetic influences approximates that found in adipose tissue 

(Rantalainen et al., 2011; Parts et al., 2012; Civelek et al., 2013) and 

monocyte-derived dendritic cells (Siddle et al., 2014), but is lower than the 

percentage of circulating miRNAs in plasma with miR-eQTLs (7% of the 

examined miRNAs), reported by Nikpay and colleagues (2019). This 

discrepancy might be due to the large sample size of the Nikpay study 

(n=710) in comparison with the Rantalainen (n=70), Parts (n=131), Civelek 

(n=200), Siddle (n=65) and current (n=112) studies. 

My group performed an mRNA eQTL study in 2nd trimester foetal brain 

with a similar sample size (n=120) on primarily the same samples as this 
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study and identified eQTLs in 4.6% of genes investigated (O’Brien et 

al.,2018). This indicates that foetal brain miRNAs have fewer cis-eQTLs than 

mRNAs and are under less genetic control. This finding is consistent with 

several other studies (Su et al., 2011; Civelek et al., 2013; Lappalainen et al., 

2013) and might originate from miRNAs being under higher selective 

pressure than protein-coding genes, given their role in regulating gene 

expression. As evidence of this, human miRNA sequences and mature 

miRNA sequences, in particular, have shown a lack of diversity in different 

populations (Quach et al., 2009), which points to high selective pressure in 

miRNAs. Changes in miRNA expression will have significant downstream 

effects on genes regulated by that miRNA, given that ∼60% of protein-coding 

genes have at least one conserved miRNA binding site (Friedman et al., 

2009). 

None of the miRNAs associated with miR-eQTLs in this study were 

reported in any of the other miR-eQTL studies performed in adult brain tissue 

(Williamson et al., 2015; Mamdani et al., 2015; Vornholt et al., 2020). 

Interestingly, 2 were reported in the context of pregnancy – miR-323b-3p in 

the plasma of 1st trimester pregnant women (White et al., 2021) and 

miR-1269a in full–term placenta (Inno et al., 2021). Moreover, miR-1908-5p 

expression has been associated with rs174561 in plasma (Nikpay et al., 

2019), a SNP in perfect LD with the one reported in my miR- eQTL study 

(rs174544), with both SNPs having the same nominal p-value reported by 

FASTQTL in this study. Of note, this SNP (rs174561) has also been found to 

be associated with FADS1 (the host gene of miR-1908) and FADS3 

expression in adult brain (GTEx consortium, 2020), but not in foetal brain 

(O’Brien et al., 2018). 

Most of the miRNAs with eQTLs identified in this study are expressed 

either at low or moderate levels in 2nd trimester foetal brain. This is consistent 

with previous studies (Rotival et al., 2020) and may suggest that these 

miRNAs are more amenable to expression variation and under less selective 

pressure because they are expressed at lower levels and therefore are 

probably fine-tuners of gene expression, may be redundant miRNAs or, 
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involved in the regulation of pathways that will not have significant 

deleterious implications for the cell if their expression changes. In fact, 

several studies indicate that lowly expressed miRNAs tend to be species-

specific (Berezikov et al., 2006; Fahlgren et al., 2007; Lu et al., 2008) and 

that in humans, these miRNAs are under a less strong purifying selection 

than highly expressed miRNAs (Liang & Lee, 2009). 

In this study, 29 of the 30 miR-eQTLs identified were located less than 100 

kb away from the mature miRNA, with 83% (25 out of 30) of miR-eQTLs 

being within 50 kb of their corresponding mature miRNA. Only 1 miR-eQTL 

was located more than 100kb away from its mature miRNA. These results 

indicate that the majority of miR-eQTLs in foetal brain concentrate near 

miRNA genes and their transcription sites. In contrast, several miR-eQTL 

studies in other tissues have reported that the majority of identified cis-miR-

eQTLs are located further away. Huan et al. (2015) reported that 49% of their 

identified miR-eQTLs in whole blood were located 300–500kb away from 

their target miRNA (Huan et al., 2015). Nikpay et al. (2019) reported that 

62% of their identified miR-eQTLs in plasma were located > 50kb away, and 

White et al. (2021) reported that 77% of their identified miR-eQTLs in plasma 

were located > 50kb. One possible explanation for this is the possibility of 

miRNAs in foetal brain using alternative intronic promoters that are tissue 

and/or developmental stage specific. miRNAs are transcribed from intronic 

regions within a host gene or from intragenic regions (Steiman-Shimony et 

al., 2018). Intragenic miRNAs have been reported to have independent 

(mainly intronic) alternative promoters. These promoters are usually tissue-

specific, in contrast to host gene promoters which are usually ubiquitously 

expressed (Marsico et al., 2013; Budach et al., 2016). This suggests that 

miR-eQTLs may affect promoter activity in a tissue-specific fashion and that 

alternative promoters might be a source of genetic variation. 

The miR-eQTLs identified in this study seem to be evenly distributed 

throughout the genome, and I did not find evidence of a hotspot for 

miR-cis-eQTLs. This is surprising because I identified miR-eQTLs associated 

with miRNAs that are co-expressed as clusters, such as miR-323b-3p. 
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miR-323b-3p is located in a paternally imprinted cluster on chromosome 14 

(C14MC) consisting of 52 miRNAs (Morales-Prieto et al., 2013). miRNA 

clusters are usually transcribed as a single transcriptional unit (Baskerville & 

Bartel, 2005). Moreover, this miRNA, along with several miRNAs from this 

cluster, have been found to have miR-eQTLs in the plasma of women during 

the first trimester of pregnancy (White et al., 2021). Despite a large number 

of the members of this cluster being expressed in my samples, I only found a 

miR-eQTL associated with miR-323b-3p expression, which suggests this 

miR-eQTL affects miR-323b-3p exclusively, most likely by affecting 

processing by Drosha instead of affecting primary miRNA transcription. This 

hypothesis is further supported by the fact that rs56103835 associated with 

miR-323b-3p expression is actually one of the 4 miR-eQTLs identified in this 

study that is located within the pri-miRNA hairpin structure of its associated 

miRNA . 

Mature miRNAs are derived from long primary transcripts (pri–miRNAs) 

that always contain one or several RNA stem-loop hairpin secondary 

structures in which the mature miRNA resides. For the majority of miRNAs, 

pri–miRNAs are processed in the nucleus by the Microprocessor complex 

formed by Drosha and DGCR8 (Lee et al., 2003; Ha & Kim, 2014; Kwon et 

al., 2016), giving rise to precursor miRNAs (pre-miRNAs). Pre-miRNAs are 

further processed by Dicer (and TRBP) into mature miRNAs (Bernstein et al., 

2001; Ha & Kim, 2014). Several studies have identified regulatory motifs 

within the pri-miRNA hairpins that dictate processing efficiency and impact 

mature miRNA biogenesis. These include an optimal hairpin stem length of 

~36 nucleotides ± 3nt and apical loop sizes of ~10-15 nucleotides. Moreover, 

miRNA processing is enhanced by regulatory motifs (Figure 3.11), such as 

the UG motif at the base of the stem and the UGUG motif in the apical loop, 

which are recognized by the Microprocessor complex and the CNNC motif 

(below the basal junction) where accessory protein SRp20/SRSF3 binds 

(Auyeung et al., 2013; Fang & Bartel., 2015; Roden et al., 2017). 
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Figure 3.11 – Defining features of pri-miRNAs hairpins that dictate miRNA 

processing.  

Optimal miRNA processing requires a hairpin stem length of ~36 nucleotides ± 3nt and apical 

loop sizes of ~10-15 nucleotides (apical loop sizes can range from 3-23 nucleotides). Moreover, several 

regulatory motifs such as the CNNC motif and the UG motif enhance processing of mature miRNAs. 

Adapted from: Fang & Bartel, 2015. Created with Biorender.com 

SNPs that lead to changes in RNA stability might alter RNA secondary 

structure and as a consequence pri-miRNA structural motifs such as bulge 

enriched and bulge depleted areas of the hairpin, affecting pri-miRNA 

processing and leading to altered mature miRNA expression. In this study, I 

used RNAfold and predicted that miR-eQTL rs2273626 located in the seed 

region of miR-4707-3p leads to a considerable increase in minimum free 

energy ∆G =5.6 Kcal/mol within the hairpin, which will destabilize the 
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structure and be associated with a decrease in processing efficiency of the 

miR-4707-3p hairpin, leading to a decrease in mature miR-4707-3p 

expression. In the case of miR-323b-3p, SNP rs56103835 alters the 

regulatory basal UG motif of its pri-miRNA. This motif acts as a marker of the 

boundary of the basal junction that divides ssRNA and dsRNA and interacts 

with Drosha to ensure correct positioning of the microprocessor complex and 

leads to enhanced generation of pre-miRNAs (Auyeung et al., 2013; Nguyen 

et al., 2015; Jin et al., 2020). Studies have shown that mutations in the basal 

UG motif reduce the accumulation of mature miRNA (Auyeung et al., 2013). 

Therefore, this SNP will lead to a decrease in Drosha’s processing efficiency 

and, consequently, a decrease in mature miR-323b-3p levels. 

73% of the miRNAs with associated miR-eQTLs in this study were found 

within host mRNAs (22 of 30 miRNAs) in intronic and exonic regions 

Intragenic miRNAs and their host genes can share the same promoter, in 

which case the miRNA is likely to be co-expressed with the host gene (Lutter 

et al., 2010). Despite the vast majority of miRNAs with eQTLs identified in 

this study being located within a host–gene, the genetic signal associated 

with miRNA expression was only colocalized with host-gene expression in 

the case of hsa-miR-4707-3p and HAUS4. This means that most intragenic 

miRNAs do not use the host gene promoter and must use intronic promoters, 

consistent with the vast majority of miR-eQTLs in this study being < 50kb 

from the mature miRNA. This also indicates that SNPs in intronic miRNA 

promoters that affect expression of pri-miRNA hairpins will affect miRNA 

biogenesis independently from the host gene expression. It will be interesting 

to investigate whether this miR-eQTL will affect miRNA (miR-4707-3p) and 

host gene (HAUS4) expression independently (expression not correlated 

within genotypes). 

The majority of miRNAs with associated miR-eQTLs identified in this study 

are poorly conserved miRNAs in vertebrates (n=27), and most are exclusive 

to primates. Over 100 primate-specific miRNAs and 14 human-specific 

miRNAs have been identified in foetal brain (for review, see: Berezikov, 

2011), the majority regulating progenitor proliferation and neuronal 
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differentiation (Nowakowski et al., 2013, 2018; Arcila et al., 2014). miRNAs 

are crucial to shaping gene expression patterns that are suggested to 

underpin the accelerated evolution of the human brain (Berezikov E., 2011; 

Chakraborty et al., 2018; Prodromidou & Matsas, 2019) and even determine 

anatomical regions during brain development (Arcila et al., 2014; 

Nowakowski et al., 2018) and brain maturation (Ziats & Rennert, 2014). 

miRNAs mediate these effects by controlling and fine-tuning spatiotemporal 

gene expression patterns during brain development (Schratt, 2009a,b) 

despite being expressed at low levels in adult prefrontal cortex and 

cerebellum (Hu et al., 2012) and in this study in foetal brain. Therefore, it is 

possible that miR-eQTLs that affect the expression of mature human and 

primate-specific miRNAs are associated with neocortical expansion, 

cognition and neurodevelopmental and neuropsychiatric disorders. In the 

next Chapter, I will perform a PheWAS and SMR study on the identified miR-

eQTLs to ascertain if they are associated with these traits. 
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4.1 Introduction 

4.1.1 Overview 

In the previous chapter, I identified 30 miRNAs that are subject to variable 

genetic influences on their expression, in the form of cis-miR-eQTLs, in 2nd 

trimester foetal brain. Given the regulatory role of miRNAs on processes 

crucial for both brain development and function, as well as their widespread 

downstream effects on post-transcriptional gene regulation, these cis-miR-

eQTLs may be relevant to brain traits, including neuropsychiatric disorders. 

Alterations in miRNA abundance have been reported in brain tissue and 

blood from individuals with neuropsychiatric disorders (Issler & Chen, 2015; 

Kocerha et al., 2015). Moreover, genetic risk variants have been shown to 

alter miRNA expression and function (Strazisar et al., 2015; Duan et al., 

2014) and risk exposomes such as sleep deprivation alter miRNA expression 

(Davis et al., 2007; Maccani et al., 2010; Maccani & Marsit, 2011; Maccani & 

Knopik, 2012; Wang & Cui, 2012). 

Trait-associated SNPs are three times more likely to be an eQTL 

(Hernandez et al., 2012; Nica et al., 2010; Nicolae et al., 2010). For this 

study, I investigated whether my identified cis-miR-eQTLs were associated 

with neuropsychiatric disorders and neurological/cognitive phenotypes by 

screening summary data from GWAS carried out by the Psychiatric 

Genomics Consortium and the Complex Trait Genetics lab at VU University 

Amsterdam Lab. 

The Psychiatric Genomics Consortium (PGC) is a large collaborative 

international consortium that studies the genetic architecture of major 

neuropsychiatric/neurodevelopmental disorders, including attention-deficit 

hyperactivity disorder (ADHD), schizophrenia (SZ), autism spectrum disorder 
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(ASD), obsessive-compulsive disorder (OCD), Tourette syndrome (TS), 

major depressive disorder (MDD), bipolar disorder (BD), anxiety disorders, 

eating disorders, post-traumatic stress disorder (PTSD), Alzheimer’s disease 

(AD) and substance use disorders. 

The Complex Trait Genetics (CTG) Lab at VU University Amsterdam aims 

to explore the genetic architecture and gene x environment interactions of 

several brain phenotypes, including brain volume, intelligence, sensitivity to 

environmental stress and adversity (SESA), neuroticism, neuroticism 

subclusters and depression, Alzheimer’s dementia, antisocial behaviour and 

insomnia. The GWAS performed by this group often employ UK Biobank 

samples. The UK Biobank is a large prospective cohort database of 

genome-wide genotyping, biological and health data of ~ 500,000 healthy 

individuals across the UK. 

After screening both the PGC3 GWAS and the CNCR - CTG Lab GWAS 

summary data for suggestive evidence of association with miR-eQTLs, I will 

ascertain whether these associations are consistent with causality/pleiotropy 

or linkage. A common approach to identify potential causal effects of eQTLs 

is based on mendelian randomization (MR) (for review, see: Cano-Gomez & 

Trynka, 2020; Li & Ritchie, 2021; Walker et al., 2022). 

 

4.1.2 Summary data-based Mendelian randomization 

(SMR) and heterogeneity in dependent 

instruments (HEIDI) tests 

 

The Mendelian randomization (MR) method derives from epidemiological 

studies and uses genetic variation to test a causal inference between a 

modifiable exposure and disease risk (for review, see: Sanderson et al., 

2022; Walker et al., 2022). A modification of this method commonly used in 
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functional genomics uses eQTLs as a proxy for a modifiable variable 

(exposure, which in this case is gene expression) to estimate the possible 

causal relationship between gene expression and disease risk (Zhu et al, 

2016). Summary data-based Mendelian randomization (SMR; Zhu et al, 

2016) uses summary statistics from GWAS of a trait of interest and tests for 

joint associations with variants associated with gene expression (or another 

potential mediating phenotype) in a relevant tissue or cell due to a shared 

and potentially causal variant at a locus. A significant association between an 

eQTL and trait detected by the SMR test can arise either due to causal 

effects of the eQTL on the trait (the genetic variant influences gene 

expression which then influences the trait), pleiotropic effects (the genetic 

variant influences gene expression and the trait independently) or linkage 

(the genetic variant is in linkage disequilibrium with the actual causal variant, 

which might operate through different gene) (Figure 4.1).  

 

 

Figure 4.1 – Models of association between genomic variants influencing gene 

expression (eQTLs) and phenotypes (traits) 

A – Causality between a genetic variant and phenotype (trait) occurs when the genetic variant 

influences a trait via altering gene expression. B – Possible mechanisms underlying an observed 

association between a phenotype (trait) and gene expression. Adapted from: Zhu et al., 2016, 

with permission (Appendix 1).  
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SMR, in itself, is unable to disentangle a causative association from 

pleiotropy, although it has successfully identified causative associations 

between gene expression and complex traits (Zhu et al., 2016; Porcu et al., 

2019) that had been previously experimentally confirmed (e.g. SORT1 

expression and cholesterol levels [Zhu et al., 2016; Porcu et al., 2019; 

Musunuru et al., 2010]). 

An additional test, dubbed heterogeneity in dependent instruments test 

(HEIDI test), uses the top ~ 20 associated SNPs within a cis-eQTL region to 

distinguish causal/pleiotropic effects from linkage. This test assumes only 

one causal variant (affecting both gene expression and the trait of interest) in 

the cis-eQTL region. HEIDI test results with small heterogeneity test p-values 

(e.g. p < 0.05) are disregarded, as these are likely to arise due to linkage (a 

homogenous pattern indicates a single shared causal variant) (Zhu et al., 

2016). 

 

4.1.3 Multi-marker Analysis of GenoMic Annotation 

(MAGMA) 

 

As an independent test of whether an associated miRNA’s expression 

plausibly influences a trait, I will perform a Multi-marker Analysis of GenoMic 

Annotation (MAGMA) analysis of predicted miRNA targets on GWAS of the 

associated neuropsychiatric disorders and neurological/cognitive traits. 

MAGMA is a gene and gene-set analysis method that uses a multiple linear 

principal components regression approach to include the LD between 

markers in the analysis. The gene-set analysis is divided into two parts. 

Firstly, a gene analysis is performed to quantify how strongly each gene is 

associated with the trait of interest. Gene correlations, which reflect the LD 

between genes, are also estimated. These correlations are needed to 

compensate for the dependencies between genes during the gene-set 
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analysis. Secondly, the gene p-values and the gene correlation matrix are 

used to perform the gene-set analysis (de Leeuw et al., 2015). 

4.1.4 Aims of Chapter 

The aims of this Chapter are: 

1) To ascertain if any of the cis-miR-eQTLs identified in 2nd trimester 

foetal brain are additionally associated with psychiatric disorders and 

neurological / cognitive phenotypes.

2) To test whether these associations are consistent with causality /

pleiotropy or linkage.

3) To test for enrichment of trait-associated genetic variation in genes 

that are predicted targets of any miRNA that is causally /

pleiotropically associated with that trait.
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4.2 Methods 

 

4.2.1 Initial screening of PGC GWAS and CNCR - CTG 

Lab GWAS 

 

I performed an initial screening of GWAS summary statistics to see if any 

of the miR-eQTLs I identified in the previous chapter were associated with 

psychiatric disorders and neurological/cognitive phenotypes, using a p < 5 x 

10-5 as indicative of suggestive association.   

 

4.2.1.1 Initial screening of PGC GWAS  

The PGC GWAS summary statistics employed in this study were obtained 

from the PGC website repository at https://www.med.unc.edu/pgc/download-

results/, and the GWAS used in this study are indicated in Table 4.1.  

The summary statistics of the PGC AD study (Jansen et al., 2019) were 

missing the majority of the SNPs under study, so I also screened the 

summary statistics of the newest AD GWAS (Bellenguez et al., 2022) 

obtained from the GWAS catalogue 

https://www.ebi.ac.uk/gwas/studies/GCST90027158, to ascertain if any of the 

miR-eQTLs were associated with AD.  

 

 

 

https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
https://www.ebi.ac.uk/gwas/studies/GCST90027158
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Table 4.1 – Details of summary statistics and Neuropsychiatric disorders 

analysed in this study contained in the PGC repository. 

 

 

 

4.2.1.2 Initial screening of CNCR-CTG Lab GWAS  

The CNCR - CTG Lab GWAS summary statistics employed in this study 

were obtained from the CTG Lab website repository 

at https://ctg.cncr.nl/software/summary_statistics, and the GWAS employed 

in this study are indicated in Table 4.2. SNP rs7263455 (eQTL for miR-4326) 

and SNP rs745666 (eQTL for miR-3615) were absent in all of the CNCR-

CTG GWAS. 

 

https://ctg.cncr.nl/software/summary_statistics
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Table 4.2 – Details of summary statistics and Neurological / Cognitive 

traits analyzed in this study contained in the CTG Lab repository. 

4.2.1.3 PheWas scan of miR-eQTLs associated with traits in 

PGC GWAS and CNCR-CTG Lab GWAS 

Subsequently, I tested for the presence of pleiotropic effects of the 

miR-eQTLs associated with either neuropsychiatric disorders and 

brain / cognitive endophenotypes by performing a Phenome-Wide Association 

study (PheWas) nominal scan on an Atlas of GWAS summary statistics from 

the CNCR-CTG lab at https://atlas.ctglab.nl/PheWAS which contains 600 

GWAS performed on UK Biobank samples (Watanabe et al., 2019). A 

p-value cut-off of 5 x 10-5 was taken as indicative of suggestive association.

Only Neurological, Cognitive, Psychiatric and Environment – Education traits 

were considered. 

https://atlas.ctglab.nl/PheWAS
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4.2.2 Effect of miR-eQTL genotype on associated 

miRNA expression 

The structure of pri-miRNA hairpins and analysis of the effect of SNPs on 

pri-miRNA hairpin thermodynamic stability were performed by the software 

ViennaRNA RNAfold (Lorenz et al., 2011) using the default parameters in the 

miRNASNP-v3 database (http://bioinfo.life.hust.edu.cn/miRNASNP/) (Liu et 

al., 2020). The plot of the genotypic association of miR-eQTL with miRNA 

expression in 2nd trimester foetal brain was generated using the R package 

ggstatsplot (Patil, I., 2021). 

4.2.3 SMR and HEIDI analysis of miR-eQTLs associated 

with traits in PGC and CNCR-CTG Lab GWAS 

SMR and HEIDI analysis was performed with the SMR software (Zhu et 

al., 2016) using my 2nd trimester foetal brain miR-cis-eQTL data obtained by 

FASTQTL analysis that was described in the previous Chapter and summary 

statistics from the GWAS for bipolar disorder (Mullins et al., 2021), 

neuroticism-IRR (Nagel et al., 2018a), sleep duration (Jansen et al., 2019), 

intelligence (Savage et al., 2018) and brain volume metanalysis (Jansen et 

al., 2020) to test for pleiotropic association between miRNA expression and 

these traits due to a shared and potentially causal variant at the miR-eQTL 

loci. Only miR-eQTL found to be associated with a trait at p < 5 x 10-5 were 

assessed, and therefore a total of 5 separate SMR tests were performed. 

miR-eQTLs were originally annotated in build hg38, whilst SNPs from GWAS 

were annotated in build hg19. The R package rtracklayer (Lawrence, 

Gentleman, and Carey, 2009) was employed to perform a liftOver of miR-

eQTL coordinates into hg19 build using chain hg38TOHg19.over.chain. 

http://bioinfo.life.hust.edu.cn/miRNASNP/
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1000 Genomes EUR samples were used as a reference sample for 

pairwise SNP LD estimation. I employed most of the default settings of SMR, 

such as only allowing SNPs with a minor allele frequency (MAF) > 0.01, 

removing SNPs in very strong linkage disequilibrium (LD, R2 > 0.9) with the 

top associated miR-eQTL, and removing SNPs in low LD or not in LD 

R2 < 0.05) with the top associated miR-eQTL. Given that I only had 30 miR-

eQTLs to test at p < 0.05 and the exploratory nature of this study, I decided 

to relax the threshold of eQTL p-value (PeQTL < 0.05) from the default of PeQTL 

< 5.0 x 10-8 to select the top associated cis-eQTL for SMR analysis. SNPs 

with allele frequency difference > 0.2 between any pairwise data sets - LD 

reference, eQTL summary data and the GWAS summary data were 

eliminated. Heterogeneity in dependent instruments (HEIDI) test was 

performed to evaluate whether linkage with other variants can explain the 

observed association between the trait and the miR-eQTL. Rejection of the 

null hypothesis (PHEIDI < 0.05) indicates that the observed association could 

be due to two distinct genetic variants in linkage disequilibrium with each 

other. The HEIDI test was performed after removing SNPs in very strong LD 

(R2 > 0.9) or absent LD (R2 < 0.05) with the top associated miR-eQTL. 

Moreover, a threshold of PeQTL = 0.2 for the HEIDI test was employed to get 

an adequate number of SNPs along with number of cis-SNPs ≥ 3 and 

maximum eQTLs in a HEIDI test = 20. PSMR values were corrected for 

multiple testing by Bonferroni correction of the 30 miR-eQTLs analyzed and 

the 23 GWAS studies in the initial screening, totaling 690 tests. The PHEIDI 

was not corrected for multiple testing to be conservative, as only non-

significant (p > 0.05) observations are retained. 

The SMR locus and effect plots were performed using R, and the 

thresholds p-smr=1 and p-heidi=0 were employed, as suggested by the 

authors (Zhu et al., 2016). Moreover, all available SNPs were included in the 

SMR effect graphs (Figure 4.8), allowing for a visualization of the HEIDI test. 
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4.2.4 MAGMA analysis of miR-1908-5p targets with 

causal / pleiotropic associations by SMR with 

traits in PGC GWAS and CNCR-CTG Lab GWAS 

 

Predicted targets of miR-1908-5p were retrieved from TargetScan 8.0 

(McGeary et al., 2019), a miRNA target prediction tool that searches for the 

presence of conserved miRNA response elements, namely 8mer, 7mer and 

6mer sites, in the 3’-UTR of mRNAs that match the seed region of the 

specified miRNA (Lewis et al., 2005). 

Target gene names were converted into Entrez IDs using the Biomart 

package (Durinck et al., 2009). All miR-1908-5p targets predicted by 

Targetscan 8.0 were treated as a gene set. A competitive MAGMA-based 

gene-set analysis was utilized to test the association of that gene set using 

the summary statistics from the PGC GWAS and CNCR-CTG Lab GWAS, 

where a pleiotropic association with miRNA expression by SMR was 

discovered. p < 0.05 was considered significant. 

SNPs were annotated to genes based on NCBI (37.3) gene definitions 

(NCBI Resource Coordinators, 2017), and variants were mapped to a gene if 

they were located within a window of 35kb upstream and 10kb downstream 

of each gene, as previously described (Network Pathway Analysis Subgroup 

of the Psychiatric Genomics Consortium, 2015; Pardiñas et al., 2018; Sey et 

al., 2020). The European ancestry samples from the 1000 Genomes Phase 3 

data (http://www.1000genomes.org) were employed as a reference dataset 

for pairwise SNP linkage disequilibrium (LD) estimation. MAGMA accounts 

for the potentially confounding effects of gene size, number of SNPs in a 

gene and LD between markers in a generalized regression model. 

When raw genotype data are unavailable, MAGMA employs a SNP-wise 

model, combining SNP p-values into a gene test-statistic. The SNP model 

chosen for the MAGMA analysis was the multi-model. This model runs both a 

SNP-wise mean analysis which uses the sum of squared SNP Z-statistics as 

http://www.1000genomes.org/
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test statistic and a SNP-wise top SNP analysis, which uses sum of -log (SNP 

p-value) for top SNPs as statistic for each gene and combines the resulting

gene p-values into an aggregate p-value. This method gives rise to a more 

even distribution of statistical power and possesses sensitivity for a multitude 

of different genetic architectures. 

4.2.5 Gene Ontology (GO) analysis of miR-1908-5p 

targets 

All miR-1908-5p targets predicted by Targetscan were employed for Gene 

Ontology (GO) analysis using ShinyGO v0.76.2, a graphical tool for gene-set 

enrichment analysis (Ge et al., 2020). GO analysis was restricted to GO 

Biological processes (BP) and GO terms with a minimum of 2 and a 

maximum of 2000 genes. In addition, GO term redundancies were removed 

from the analysis. Enrichment p-values were FDR corrected, and FDR < 0.01 

was considered significant. 

4.2.6 MAGMA analysis of miR-1908-5p targets by GO 

terms in bipolar disorder 

Enriched GO terms of miR-1908-5p targets at FDR < 0.01 were used to 

create individual GO term gene sets. Target gene names were converted into 

Entrez IDs using the Biomart package (Durinck et al., 2009). A total of 238 

gene sets were created. A competitive MAGMA-based gene-set analysis of 

miR-1908-5p targets by GO term was utilized to test the association of each 

GO term using the summary statistics from the BD PGC GWAS (Mullins et 
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al., 2021). Multiple comparisons were corrected by FDR, and FDR < 0.05 

was considered significant.   
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4.3 Results 

4.3.1 Nominal screening of association of 2nd trimester 

foetal brain miR-eQTLs and neuropsychiatric 

disorders / brain endophenotypes: 

Initially, I performed a screen of association using GWAS summary 

statistics to see if any of the identified miR-eQTLs were associated with any 

psychiatric disorders and brain endophenotypes, using a p-value cut-off of 5 

x 10-5 as indicative of suggestive association. Tables 4.3 and 4.4 show the 

association p-values for the miR-eQTLs investigated from the available PGC 

GWAS that encompass 11 major psychiatric disorders  (attention-deficit 

hyperactivity disorder (ADHD), schizophrenia (SZ), autism spectrum disorder 

(ASD), obsessive-compulsive disorder  (OCD), Tourette Syndrome (TS), 

major depressive disorder (MDD), bipolar disorder (BD), anxiety disorders, 

eating disorders, post-traumatic stress disorder (PTSD), Alzheimer’s disease 

(AD) and substance use disorders). The summary statistics of the PGC AD 

study were missing most of the SNPs under investigation, so I also screened 

the newest AD (2022) GWAS (Bellenguez et al., 2022) to ascertain if any of 

the miR-eQTLs were associated with this condition. As can be seen in Table 

4.3, I identified a single miR-eQTL associated with psychiatric disorders at 

the p < 5 X 10-5 threshold. The SNP rs174561 associated with expression of 

miR-1908-5p in 2nd trimester foetal brain (q-value=9.28 x 10-8), is also 

significantly associated with BD (p = 1.83 x 10-11). 
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Table 4.3, pt. I – P-values of association between the ADHD (2019), SCZ (2022), ASD (2019), MDD (2019), Anorexia (2019), 

BD (2021), OCD (2018) and TS (2019) GWAS from the PGC used in this study and the SNPs (SNP ID) identified as miR-eQTLs in 

2nd trimester foetal brain and their associated miRNAs. 

 In bold – associations with p < 5 X 10-5. P-values rounded to 2 decimal places. 
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Table 4.3, pt. II – P-values of association between the ADHD (2019), SCZ (2022), ASD (2019), MDD (2019), Anorexia (2019), BD (2021), 

OCD (2018) and TS (2019) GWAS from the PGC used in this study and the SNPs (SNP ID) identified as miR-eQTLs in 2nd trimester 

foetal brain and their associated miRNAs. 
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Table 4.4, pt. I – P-values of association of the SNPs found to be miR-eQTLs in 2nd trimester foetal brain in the Cross-disorder (2019), 

PTSD (2019), Anxiety (2019), Alcohol dependence (2018), Cannabis use disorder (2020), Opioid dependence (2020) GWAS from the 

PGC used in this study and the AD (2022) GWAS.  

The AD (2019) GWAS from the PGC is not depicted as all but 3 SNPs were missing from the summary statistics. P-values rounded to 2 decimal places. 
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Table 4.4, pt. II – P-values of association of the SNPs found to be miR-eQTLs in 2
nd

 trimester foetal brain in the Cross-disorder 

(2019), PTSD (2019), Anxiety (2019), Alcohol dependence (2018), Cannabis use disorder (2020), Opioid dependence (2020) GWAS 

from the PGC used in this study and the AD (2022) GWAS.  
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As can be seen in Table 4.5, the association between miR-eQTL (for 

miR-1908-5p) rs174561 and bipolar disorder seems to be mostly driven by 

an association with bipolar disorder type I (p = 1.28 x 10-8), where the C – 

allele of rs174561 is the risk allele for BD. There is suggestive evidence that 

rs174561 is also associated with BD type II (p =0.01), but this analysis lacks 

power due to the limited sample size of BD type II cases (n = 6154). 

Table 4.5 - P-values of association of SNP rs174561 and BD subtypes in the 

BD GWAS of the PGC3.  

To check if any of the miR-eQTLs I identified were associated with brain 

and cognitive endophenotypes, I screened GWAS summary statistics from 

the CNCR - CTG Lab performed on UK Biobank samples, which encompass 

brain volume, intelligence, sensitivity to environmental stress and adversity 

(SESA), neuroticism, neuroticism subclusters and depression, and insomnia. 

As can be seen in Table 4.6, I found 2 miR-eQTLs, which have suggestive 

associations with brain volume - rs2273626 on chromosome 14 (p = 1.06 x 

10-5), which is also associated with miR-4707-3p expression, and

rs112622797 on chromosome 7 (p = 4.59 x 10-5), which is also associated 

with miR-6840-5p expression. Interestingly, SNP rs174561, which is 

Chr - chromosome, A1 – effect allele, A2 – non-effect allele, BETA – Direction of effect, 
SE- Standard error, NCAS - number of cases, NCON - number of controls.
In bold – associations with p < 5 X 10-5. P-values rounded to 2 decimal places. 
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associated with miR-1908-5p expression and shown to be associated with 

bipolar disorder (Table 4.4), is also associated with intelligence (p = 3.49 x 

10-5) (Table 4.6), sleep duration (p = 8.69 x 10-7) (Table 4.7) and the irritability

(IRR) component of neuroticism (p = 1.29 x 10-8) (Table 4.8). 
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Table 4.6, pt. I - P-values of association of the SNPs that were found to be miR-eQTLs in 2nd trimester foetal brain in the Brain 

Volume GWAS (2020), Intelligence (2018) GWAS, SESA (2020) GWAS and Neuroticism, Neuroticism subclusters (worry and 

depressed affect) and depression (2018b) GWAS of the CNCR – CTG group.  

In bold – associations with p < 5 x 10-5. P-values rounded to 2 decimal places. 
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Table 4.6, pt. II- P-values of association of the SNPs that were found to be miR-eQTLs in 2nd trimester foetal brain in the Brain 

Volume GWAS (2020), Intelligence (2018) GWAS, SESA (2020) GWAS and Neuroticism, Neuroticism subclusters (worry and 

depressed affect) and depression (2018b) GWAS of the CNCR – CTG group. 
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Table 4.7, pt. I - P-values of association of the SNPs that were found to be miR-eQTLs in 2nd trimester foetal brain with different 

sleep-related traits of the Insomnia GWAS (Jansen et al., 2019) from the CNCR – CTG lab.  

In bold – associations with p < 5 X 10-5. P-values rounded to 2 decimal places. 
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Table 4.7, pt. II - P-values of association of the SNPs that were found to be miR-eQTLs in 2nd trimester foetal brain with different 

sleep-related traits of the Insomnia GWAS (Jansen et al., 2019) from the CNCR – CTG lab.  
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Table 4.8, pt. I - P-values of association of the SNPs that were found to be miR-eQTLs in 2nd trimester foetal brain with 

components of item level analysis of Neuroticism GWAS (Nagel et al., 2018a) from the CNCR – CTG lab.  

In bold – associations with p < 5 x 10-5.  SUM – Neuroticism sum score, MOOD – Mood swings, MIS – feeling miserable, IRR - Irritability, HURT – sensitivity /hurt 

feelings, FED-UP -  fed-up feelings, NERV-FEEL – Nervous feelings, WORRY – Anxious, TENSE – Tense/ highly strung, WORR-EMB –Worried too long after 

embarrassment, SUF-NERV – suffering from nerves, LONE – loneliness, GUILT – guilty feelings. P-values rounded to 2 decimal places. 
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Table 4.8, pt. II - P-values of association of the SNPs that were found to be miR-eQTLs in 2nd trimester foetal brain with 

components of item level analysis of Neuroticism GWAS (Nagel et al., 2018a) from the CNCR – CTG lab.  
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In order to test for the presence of pleiotropic effects of the miR-eQTLs 

associated with neuropsychiatric disorders and brain / cognitive 

endophenotypes, I further performed a Phenome-Wide Association study 

(PheWas) nominal scan of SNPs rs174561, rs112622797 and rs2273626 on 

an Atlas of GWAS summary statistics from the CNCR-CTG lab involving 600 

GWAS performed on UK Biobank samples (Watanabe et al., 2019). 

As can be seen in Table 4.9 and Figure 4.1, rs174561, which is associated 

with both miR-1908-5p expression and bipolar disorder, is also associated 

with cognitive endophenotypes, such as cognitive performance (p = 7.84 x 

10-6) and verbal numerical reasoning (p = 2.08 x 10-5). This SNP has also

been associated with sleep duration in multiple studies and is also 

associated with daytime napping (p = 2.55 x 10-11). Moreover, rs174561 has 

been associated with irritability in another GWAS (p = 2.26 x 10-7) and is 

also associated with depressive symptoms in two studies. SNP 

rs112622797, which is associated with miR-6840-5p expression and brain 

volume, is also associated with educational attainment (p = 1.27 x 10-5) and 

alcohol intake frequency (p = 2.19 x 10-5), whereas SNP rs2273626, which is 

associated with brain volume and miR-4707-3p expression is significantly 

associated with educational attainment (p = 2.66 x 10-10). 
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Table 4.9 - P-values of cognitive, psychiatric and brain related PheWas of the miR-eQTLs rs174561- associated with Bipolar 

Disorder, Intelligence, Sleep duration and Neuroticsm (IRR), and miR-eQTLs rs112622797 and rs2273626 associated with Brain 

Volume.  

A1 – effect allele, A2 – non-effect allele, PMID - Pubmed ID number, N - number of samples analysed. In bold – GWAS summary stats employed in this study. 
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Figure 4.2 – Cognitive, psychiatric and educational attainment PheWas plot of 

miR-eQTLs under analysis.  

A – miR-eQTL rs174561 associated with miR-1908-5p expression. B - mir-eQTL rs112622797 

associated with miR-6840-5p expression. C – miR-eQTL rs2273626 associated with miR-4707-3p. 

Phewas plots created with GWAS Atlas database https://atlas.ctglab.nl/PheWAS (Watanabe et 

al., 2019). 

  

These results suggest that these miR-eQTLs are associated with multiple 

psychiatric, cognitive and brain phenotypes. Of note, SNP rs174561 is 

associated with bipolar disorder and several other traits, such as intelligence 

and cognitive abilities, neuroticism and sleep variables. As can be seen in 

https://atlas.ctglab.nl/PheWAS
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Table 4.10, the C allele is associated with a higher risk for BD, higher 

intelligence, higher irritability and longer sleep duration. 

Table 4.10 – Summary of association of SNP rs174561 with multiple BD and 

BD - associated trait GWAS.  

A1 – effect allele, A2 – non-effect allele, BETA – direction of effect, SE –  standard error (SE), p-

value – p-value of association and N – number of samples analysed. 

This SNP is located within the pri-miRNA hairpin sequence of miR-1908 and  

the C-allele is associated with a significant decrease in minimum free energy

(ΔG= - 3.20 kcal/mol) predicted by RNAfold (Figure 4.2); this suggests that 

the C-allele of rs174561 makes the miR-1908 pri-miRNA more stable, which is 

associated with an increase in mature miR-1908-5p expression. 
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Figure 4.3 - Location of miR-eQTL rs174561 in the context of the 3D structure 

of miRNA hairpin miR-1908 identified in this study.  

Red – mature miRNA bases; Green – pri-miRNA bases not in mature miRNAs; Yellow – miR-eQTL 

position. The miR-1908 hairpin can give rise to 2 mature miRNAs: miR-1908-5p identified in this 

study and miR-1908-3p. SNP rs174561 (T > C) is located in position 5 of the miR-1908 hairpin and 

the C-allele is associated with a decrease in minimum free energy G = -3.20 Kcal/mol. 

As can be seen in Figure 4.3, the effects of rs174561 genotype on mature 

miR-1908-5p expression in 2nd trimester foetal brain from my eQTL analysis 

support this prediction, as the C allele of rs174561 is associated with higher 

miR-1908-5p expression. 



185 

Figure 4.4 - Genotypic associations of rs174561 with miR-1908-5p expression. 

The x-axis corresponds to the 3 observed SNP genotypes. The reference allele (T) is on the left-

hand side and alternative allele (C) is on the right-hand side. The y-axis represents log2-CPM 

TMM normalized miRNA expression values. The sample size (n) for each genotype is given below 

the respective alleles. All p-values are adjusted by the Holm method. Only statistically significant 

associations are shown. 

A Welch’s ANOVA test revealed that the C- allele of rs174561 is 

significantly associated with increased miR-1908-5p expression in 2nd 

trimester foetal brain (p =1.21 x 10-4) with a 0.7 log2FC in miR-1908-5p 

expression between homozygotes for the reference allele (TT) and 

heterozygotes (TC) and a 1.35 log2FC in miR-1908-5p expression between 

homozygotes for the reference allele (TT) and homozygotes for the 

alternative allele (CC). rs173561 genotype explains 66 % of the variability in 
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mature miR-1905-5p expression within the 112 foetal brain samples 

analyzed (ω2p = 0.66), which is considered a large effect size (Cohen J., 

1988; Field, AP., 2013). 

A SNP can be associated with multiple traits either because it influences 

those traits through causality / pleiotropy or because of linkage disequilibrium 

with a causative variant. I performed summary data-based Mendelian 

randomization (SMR) and HEIDI analysis to ascertain if changes in miRNA 

expression associated with SNPs rs174561, rs112622797 and rs2273626 in 

2nd trimester foetal brain could mediate genetic risk for these conditions, by 

testing if the association between miR-eQTL rs174561 and BD, intelligence, 

sleep duration and irritability and miR-eQTLs - rs112622797 and rs2273626 

and brain volume arises due to pleiotropic effects due to a shared and 

potentially causal variant at these loci or linkage. 

4.3.2 SMR and HEIDI analysis of 2nd trimester foetal 

brain miR-eQTLs and neuropsychiatric 

disorders/brain endophenotypes: 

I only performed SMR analysis for traits with which miR-eQTLs were found 

to be associated (at p < 5 X 10-5) in the PGC / CNCR-CTG GWAS. As can be 

seen in Table 4.11, increased expression of miR-1908-5p associated with the 

C allele of rs174561 is pleiotropically associated with increased risk for 

bipolar disorder (P-SMR = 5.78 x 10-7) (Figure 4.5), increased irritability (P – 

SMR = 1.19 x 10-5), and increased sleep duration (P-SMR = 4.02 x 10-5) 

(Figure 4.6), which survive Bonferroni correction for 690 tests (30 miR-eQTLs 

and 23 GWAS screened), as well as increased intelligence (P – SMR = 2.97 

x 10-4), which does not survive Bonferroni correction for 690 tests (Figure 

4.8). With regards to brain volume, I found 2 miRNAs that were pleiotropically 

and potentially causally associated with Brain volume. The A-allele of 
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rs112622797 was associated with higher miR-6840-5p expression and 

decreased brain volume (P-SMR= 1.84 x 10-3). The G-allele of rs12880925 

was associated with lower expression of miR-4707-3p and an increase in 

brain volume (P-SMR = 2.54 x 10-4). Neither of these survived Bonferroni 

correction for 690 tests.  
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Table 4.11 – SMR and HEIDI analysis of miR-eQTL rs174561 affecting miR-1908-5p expression in Bipolar (type I + type II), 

Irritability (Neuroticism), Sleep duration and Intelligence GWAS and of miR-eQTLs rs112622797 affecting miR-6840-5p 

expression and rs12880925 affecting miR-4707-3p expression in the Brain volume GWAS meta-analysis.  

GWAS – trait analysed, top SNP – miR-eQTL SNP ID, Chr – SNP chromosome, A1 – the effect (coded) allele, A2 –  the other allele, Freq – frequency of A1 

allele (estimated from the 1000G reference samples), BETAGWAS –  effect size from GWAS,  SEGWAS  – standard error from GWAS,  PGWAS – p-value from 

GWAS, BETAeQTL – effect size from eQTL study, SEeQTL – standard error from eQTL study, PeQTL – p-value from eQTL study, BETASMR –  effect size from SMR 

analysis , SESMR  –  standard error from SMR analysis ,  PSMR –  p-value from SMR analysis, PSMR Bonferroni –  Bonferroni corrected PSMR,  PHEIDI  –  p-value from  

HEIDI test, N SNPS HEIDI  – number of SNPs used in the HEIDI test. 
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Figure 4.5 – SMR Locus plot for rs174561 in bipolar disorder (combined) in a ± 

500kb window of miR-1908-5p. The top plot constitutes the GWAS layer, 

where the grey dots represent P-values for all the SNPs associated with 

Bipolar Disorder (all samples) reported in Mullins et al., (2021) GWAS.  

The red colour represents the p-value for the probe that passed the SMR threshold of 

significance (hsa-miR-1908-5p); the solid diamond indicates that this probe passed the HEIDI 

threshold (P > 0.05).  The middle plot constitutes the eQTL layer where the red crosses represent 

p-values of the associations of SNPs with miR-1908-5p expression in a  500kb window in 2nd 

trimester foetal brain. The bottom plot shows the location of genes in the locus. Gene positions 

are in hg19. 
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As shown in Figure 4.5, miR-1908-5p passed the HEIDI test for BD, which 

signifies I cannot reject the null hypothesis that there is a single causal 

variant affecting both miR-1908-5p expression and BD risk. As such, 

miR-1908-5p should be prioritized in future functional studies. 
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Figure 4.6 – SMR Locus plot for rs174561 in a ± 500kb window of miR-1908-5p 

in irritability and sleep duration.  

A – In neuroticism (IRR). The top plot constitutes the GWAS layer, where the grey dots represent 

P-values for all the SNPs associated with the Irritability component (IRR) of the item level

analysis of neuroticism GWAS reported by Nagel et al., (2018a). The red colour represents the p-

value for the probe that passed the SMR threshold of significance (hsa - miR-1908-5p); the solid 

diamond indicates that this probe passed the HEIDI threshold (P > 0.05).  The middle plot 

constitutes the eQTL layer where the red crosses represent p-values of the associations of SNPs 

with miR-1908-5p expression in a  500kb window in 2nd trimester foetal brain. The bottom plot 

shows the location of genes in the locus. Gene positions are in hg19. B – In sleep duration. The 

top plot constitutes the GWAS layer, where the grey dots represent P-values for all the SNPs 

associated with Sleep duration in the Insomnia GWAS reported by Jansen et al., (2019); The red 

colour represents the p-value for the probe that passed the SMR threshold of significance (hsa-

miR-1908-5p); The solid diamond indicates that this probe passed the HEIDI threshold (P > 0.05).   

The middle plot constitutes the eQTL layer where the red crosses represent p-values of the 

associations of SNPs with miR-1908-5p expression in a  500kb window in 2nd trimester foetal 

brain. The bottom plot shows the location of genes in the locus. Gene positions are in hg19. 

As seen in Figure 4.6, miR-1908-5p also passed the HEIDI test in 

irritability and sleep duration, suggesting pleiotropic effects affecting not only 

BD risk but also these BD-related traits likely via a shared molecular 

mechanism. In contrast with other traits associated with miR-1908-5p 

expression, the association between expression of miR-1908-5p and 

increased intelligence seems to be driven by linkage between the eQTL and 

independent risk variants, given the HEIDI (heterogeneity in dependent 

instruments) test is significant (p < 0.05) (Figure 4.7). These results suggest 

that miR-1908-5p is pleiotropically associated with bipolar disorder risk and 

bipolar-associated traits (irritability and sleep duration). Moreover, this 

suggests miR-1908-5p is a relevant gene underlying the GWAS hit and that 

the genetic factors mediating this association and influencing bipolar disorder 

risk could exert their effects during 2nd trimester foetal brain development. 
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Figure 4.7 – SMR Locus plot for rs174561 in a ±500kb window of miR-1908-5p 

in intelligence.  

The top plot constitutes the GWAS layer, where the grey dots represent P-values for all the SNPs 

associated with the intelligence metanalysis GWAS reported by Savage et al., (2018). The red 

colour represents the p-value for the probe that passed the SMR threshold of significance; the 

hollow diamond indicates that this probe did not pass the HEIDI threshold (P > 0.05).  The 

middle plot constitutes the eQTL layer where the red crosses represent p-values of the 

associations of SNPs with miR-1908-5p expression in a  500kb window in 2nd trimester foetal 

brain. The bottom plot shows the location of genes in the locus. Gene positions are in hg19. 
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Figure 4.8 allows for a visual interpretation of the HEIDI test and to confirm 

the directionality of the effects found in my SMR analysis between 

miR-1908-5p expression and risk of BD (Figure 4.8A), irritability (Figure 

4.8B), sleep duration (Figure 4.8C) and intelligence (Figure 4.8D). As can be 

seen in figure 4.8 there are clear pleiotropic effects between miR-1908-5p 

expression and both BD and irritability. There seem to be other SNPs acting 

on sleep duration, that don’t influence miR-1908-5p expression, albeit there 

is also evidence of pleiotropic effects between miR-1908-5p expression and 

sleep duration. There is a positive correlation between higher expression of 

miR-1908-5p and increased risk for BD, increased irritability, increased sleep 

duration, and increased intelligence. The association between increased 

miR-1908-5p expression and intelligence is at least partly driven by linkage. 

Having identified miR-1908-5p as showing significantly pleiotropic 

association with bipolar disorder and other traits, I performed a Multi-marker 

Analysis of GenoMic Annotation (MAGMA) analysis on miR-1908-5p targets 

on the basis that if miR-1908-5p expression is causally related to these traits, 

the genes that miR-1908-5p regulates should also be enriched for genetic 

association with them. 

 

 



195 

 

 

Figure 4.8 – SMR Effect sizes for miR-1908-5p of SNPs used for the HEIDI test 

from BD GWAS(A) and Irritability (B), Sleep duration (C) and Intelligence (D) 

GWAS plotted against those for SNPs from the miR-eQTL in 2nd trimester 

foetal brain analysis.  

The x-axis represents miR-cis-eQTL effect sizes while the y-axis represents GWAS effect sizes. 

These plots display the correlation between the miR-eQTLs effect sizes and GWAS effect sizes. 
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The orange dashed lines represent the estimate of bxy at the top cis-eQTL. Blue circles represent 

cis-miR-eQTLs, red triangle represents to top cis-miR-eQTL (rs174561). Error bars are the 

standard errors of each SNP effect. 

4.3.3 MAGMA analysis of enrichment of miR-1908-5p 

targets in bipolar disorder, irritability and sleep 

duration. 

Initially, I retrieved predicted targets of miR-1908-5p from TargetScan 8.0 

(McGeary et al., 2019), a miRNA target prediction tool that searches for the 

presence of conserved miRNA response elements (namely 8mer, 7mer and 

6mer sites) in the 3’-UTR of mRNAs that match the seed region of the 

specified miRNA (Lewis et al., 2005). A total of 2444 predicted targets with a 

corresponding Entrez ID formed the gene set. Subsequently, a competitive 

gene-set association analysis was conducted by MAGMA using a gene 

analysis multi-SNP model in the bipolar disorder, irritability and sleep 

duration GWAS. 

Gene targets of miR-1908-5p were found to be significantly enriched for 

genetic association with bipolar disorder (p = 0.003) and sleep duration 

(p = 0.015), but not irritability (p = 0.186). 

Subsequently, I wanted to identify if there were specific biological 

pathways that drove the association of predicted miR-1908-5p targets with 

bipolar disorder. To this end, I performed a GO analysis using ShinyGO (Ge 

et al., 2020) on the 2444 miR-1908-5p predicted targets to identify GO BP 

molecular terms that are enriched. At FDR < 0.01, 238 enriched BP GO 

terms were identified. Figure 4.9 displays the top 20 most significantly 

enriched GO terms, the majority of which are related to synaptic signalling 

(p = 1.27 x 10-10 , Fold enrichment = 1.82), “neurogenesis” (p = 2.61 x 10-14 , 
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Fold enrichment = 1.63) and both negative (p = 4.4 x10-10, Fold enrichment 

=1.72) and positive regulation of transcription by RNA pol. II (p = 9.56 x 10-12 

Fold enrichment =1.69). 

Figure 4.9 – BP GO analysis of miR-1908-5p predicted targets using ShinyGo. 

A – Top 20 most significantly enriched GO BP pathways.  Fold Enrichment is defined as 

percentage of miR-1908-5p targets belonging to specific pathway, divided by the corresponding 
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percentage in the background (all protein coding genes) and indicates overrepresentation. The 

most overrepresented BP pathways of miR-1908-5p targets are synaptic transmission, regulation 

of transcription, neurogenesis and neuron differentiation. B – Correlation via hierarchical 

clustering of the top 20 most significant pathways enriched for miR-1908-5p targets. Pathways 

with large numbers of shared genes are clustered together. Size of blue solid circle represents 

enrichment FDR. 

To identify biological processes targeted by miR-1908-5p that are most 

relevant to bipolar disorder, I used the enriched GO terms to create 238 gene 

sets of miR-1908-5p targets segmented by GO term and performed a 

MAGMA analysis of these in BD. The GO BP terms of miR-1908-5p targets 

most significantly enriched for genetic association with bipolar disorder are 

displayed in Table 4.12. At FDR < 0.05, only GO terms related to the 

regulation of transport and ion, and cation transport (FDR p-value = 4.53 x 

10-2) were significantly enriched for genetic association with bipolar disorder

within miR-1908-5p targets. I also found evidence of nominal enrichment in 

several pathways related to the regulation of trans-synaptic signalling (FDR 

p-value = 5.75 x 10-2), which suggests miR-1908-5p influences risk for

bipolar disorder by altering these pathways and that both ionic transport and 

synaptic signalling are essential pathways in BD. 
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Table 4.12 – MAGMA analysis of miR-1908-5p targets by GO term in Bipolar disorder. 

N – number of genes in gene-set, BETA – regression coefficient of gene-set, BETA STD – standardized regression coefficient (dividing BETA by standard 

deviation of gene-set), SE –  standard error of BETA, p-value – uncorrected p-value of association and FDR – FDR corrected p-value. 
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4.4 Discussion 

In this Chapter, I identified 3 miRNAs whose expression levels regulated 

by cis-miR-eQTLS are pleiotropically and potentially causally associated with 

psychiatric / neurocognitive traits. 

I found evidence that both miR-eQTL rs112622797, associated with 

miR-6840-5p expression and miR-eQTL rs2273626, associated with 

miR-4707-3p expression, are associated with brain volume. I found rs174561 

to be pleiotropically associated with miR-1908-5p expression and bipolar 

disorder, irritability and sleep duration. 

SNP rs174561 accounts for 66% of the variability in the expression of 

miR-1908-5p in the 2nd trimester foetal brain samples used in this study, with 

the C-allele associated with increased expression. Increased expression of 

miR-1908-5p due to the C-allele has also been described in both HuH-7 cells 

(Beehler et al., 2021) and circulating plasma (Nikpay et al., 2019). 

The large effect size of rs174561 on miR-1908-5p expression in 2nd 

trimester foetal brain is likely caused by this SNP being located within the 

pri-miRNA hairpin structure of miR-1908 and the C - allele significantly 

increasing the stability of the pri-miRNA hairpin (∆G = -3.20 Kcal/mol) as 

predicted by RNAfold. This suggests that rs174561 affects pri-miRNA 

processing, a finding previously reported by Ghanbari and colleagues (2015) 

in the context of cardiometabolic phenotypes. Recently, the pri-miRNA of 

miR-1908 has been shown to undergo significant levels of a type of abortive 

processing, called inverse processing, where Drosha cleaves the apical loop 

of the pri-miRNA leading to no mature miRNA being produced (Kim et al., 

2021). One of the proposed reasons for this finding was a lack of a stable 

lower stem in the pri-miRNA (Kim et al., 2021). Therefore, it’s likely that 

rs174561 increases the levels of mature miR-1908-5p by impeding inverse 
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processing of the hairpin and making it easier for the microprocessor to 

distinguish the polarity of the miR-1908 pri-miRNA. 

Bipolar disorder (BD) is a common and debilitating neuropsychiatric 

disorder with a large and complex genetic component characterized by 

extreme mood swings which cycle between profound depression and mania. 

Moreover, BD displays significant heterogeneity in clinical manifestations, 

disease trajectories and pharmacological response.  

The association between rs174561 and BD is mainly driven by Bipolar 

Disorder type I (BD I), where episodes of mania predominate. Interestingly, in 

several studies, BD type I has been shown to be more heritable than Bipolar 

type II (BD II) (Parker et al., 2018; Song et al., 2018; Coleman et al., 2020). 

However, it is important to note that in the most recent BD GWAS, the 

number of BD I cases analyzed (n=23,842) was significantly higher than the 

number of BD II analyzed (n=6154), which means BD II was 

underrepresented and underpowered. Of note, I did not find any evidence of 

an association between rs174561 and SZ, even though BD and SZ have a 

substantial overlap in common genetic variation, with a genetic correlation of 

0.68 (Brainstorm Consortium, 2018) and relatives of both BD and SZ patients 

having a higher relative risk for both disorders (Lichtenstein et al., 2009). This 

means that rs174561 is located in a genomic region associated exclusively 

with BD and will contribute to biological differences between both disorders.  

rs174561 was also associated with the irritability (IRR) component of 

neuroticism and sleep duration. Neuroticism and sleep duration can be seen 

as BD - associated traits since a recent meta-analysis of 18 separate studies 

reported that individuals with BD exhibit significantly higher scores of 

neuroticism (z-value= 8.59) in comparison with control individuals 

(p < 0.0001) (Hanke et al., 2022). Moreover, sleep disturbances are quite 

common in BD, with reduced sleep duration being a hallmark symptom and a 

trigger of manic episodes (Lewis et al., 2017), and both insomnia and 

hypersomnia commonly occur during depressive episodes, which continue in 

the period between episodes (Harve et al., 2009).  
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Using the GWAS ATLAS database (Watanabe et al., 2019), I performed a 

genetic correlation between a previous BD GWAS (Ruderfer et al., 2018) 

which corresponds to the most recent BD GWAS in the GWAS ATLAS 

database and both the Irritability GWAS (Nagel et al., 2018a) and Sleep 

duration GWAS (Jansen et al., 2019) employed in this study. I found a 

positive genetic correlation between bipolar disorder and irritability and sleep 

duration (Figure 4.9), which further supports that neuroticism and sleep 

duration are BD-associated traits.  

 

Figure 4.10 – Genetic correlation of the 2018 BD GWAS (Ruderfer et al., 2018) 

with the Irritability GWAS (Nagel et al., 2018a) and Sleep duration GWAS 

(Jansen et al., 2019) employed in this study.  

Genetic correlations were performed using the GWAS ATLAS database 

(https://atlas.ctglab.nl/traitDB) (Watanabe et al., 2019). The genetic correlation (rg) between 

Bipolar disorder and Irritability is 0.118 (SE = 0.025, Z = 3.406, p-value = 6.60 x 10-4). The genetic 

correlation (rg) between Bipolar disorder and Sleep duration is 0.114 (SE = 0.029, Z = 3.884, p-

value = 1.03 x 10-4). 

 

In addition, both sleep duration and insomnia GWAS studies have 

reported a positive genetic correlation between BD and sleep duration 

(Dasthi et al., 2019; Jansen et al., 2019). More recently, it has been 

demonstrated that the genetic liability in the form of polygenic risk scores 

(PRS) to both insomnia and longer sleep duration depends on the BD 

subtype, where PRS for sleep duration was shown to be associated with BD 

I, and with an increased relative risk for BD I compared with controls, but not 

for BD II (Lewis et al., 2020). In contrast, the PRS for insomnia was 

https://atlas.ctglab.nl/traitDB
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associated with an increased relative risk for BD II compared to controls, but 

not for BD I (Lewis et al., 2020). 

I subsequently explored whether any of these 3 miR-eQTLs had 

pleiotropic effects on other neuropsychiatric neurological / cognitive 

phenotypes. To this end, I performed a Phenome-Wide Association study 

(PheWas) nominal scan of SNPs rs174561, rs112622797 and rs2273626 on 

an Atlas of GWAS summary statistics from the CNCR-CTG lab involving 600 

GWAS performed on UK Biobank samples. Interestingly, rs174561 was 

shown to be associated with cognitive performance, verbal-numerical 

reasoning and nap during the day, the latter contributing to sleep duration. 

This SNP was also associated with depressive symptoms in a multivariate 

genome-wide association meta-analysis of the well-being spectrum 

(Baselmans et al., 2019). 

Regarding the SNPs previously associated with brain volume, SNP 

rs2273626, associated with miR-4707-3p expression, is also associated with 

educational attainment, whereas SNP rs112622797, associated with miR-

6840-5p expression is associated with educational attainment and alcohol 

intake frequency. 

miR-1908-5p is located within intron 1 of fatty acid desaturase 1 (FADS1), 

and rs174561 is an eQTL for FADS1 and several other genes in adult brain 

(GTeX V8 data – GTeX consortium, 2020), suggesting that the association 

with bipolar disorder and other BD - related traits could be caused by 

variation in FADS1 expression, rather than on miR-1908-5p. This scenario is 

unlikely because, firstly, the expression of the miR-1908 pri-miRNA is not 

closely related to its host gene, FADS1 (Kuang et al., 2015). Secondly, the 

plausible mechanism of action by which rs174561 leads to an increase of 

mature miR-1908-5p is by making the miR-1908 hairpin more 

thermodynamically stable, which leads to more mature miR-1908-5p being 

produced, a mechanism independent of its host gene and any shared 

regulatory elements. Thirdly, MAGMA analysis indicated an enrichment of 

bipolar disorder genetic associations in miR-1908-5p target genes. Some of 

these miR-1908-5p targets have been validated, including genes such as 
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GRIN1, STX1A, GRM4, CLSTN1 and DLGAP4 that function in glutamatergic 

synapses (Kim et al., 2016). 

Gene targets of miR-1908-5p were found to be significantly enriched in 

bipolar disorder (p = 0.003), sleep duration (p = 0.015) but not irritability 

(p = 0.186), again providing independent evidence for a role of miR-1908-5p 

in brain traits. The lack of enrichment of miR-1908-5p in irritability might be 

caused by only a subset of targets involved in particular pathways being 

involved in irritability instead of all targets of miR-1908-5p. MAGMA gene-set 

analysis stratified by GO biological processes highlighted ion and cation 

transport and trans-synaptic signalling as three of the most enriched 

pathways of gene targets of miR-1908-5p targets in bipolar disorder, 

suggesting these pathways drive this association. Of note, both 

trans-synaptic signalling and regulation of ion transport GO pathways have 

been reported to be associated with cortical structural abnormalities in 

paediatric bipolar disorder (Lei et al., 2022). Loss of cationic homeostasis is a 

well-known feature of bipolar disorder pathophysiology and is a proposed 

mechanism for mood swings due to altered neuron resting potentials causing 

relatively depolarized neuronal membrane potentials (El-Mallakh & Wyatt, 

1995; El-Mallakh, Yff, and Gao, 2016; El-Mallakh, Gao and You, 2021). The 

mechanism of action of mood-stabilizing drugs might correct this ionic 

balance, mainly by reducing intracellular Na+ levels (El-Mallakh & Paskitti, 

2001). Therefore, it is likely that increased miR-1908-5p expression 

increases the risk for BD by decreasing the expression of genes involved in 

ionic homeostasis. In addition, trans-synaptic signalling is crucial for synapse 

formation, refinement and diversification, as well as regulating synaptic 

plasticity (Fossati et al., 2019). An excitatory and inhibitory synaptic 

imbalance has been proposed as a mechanism involved in mania (Lee et al., 

2018), and synaptic signalling genes have been found to be downregulated 

in comparison to controls in a sizeable RNA-Sequencing study in the 

amygdala and anterior cortex of bipolar patients (Zandi et al., 2022). This 

suggests that miR-1908-5p further contributes to bipolar risk via the 

downregulation of genes involved in trans-synaptic signalling. 
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Interestingly, miR-1908-5p is a primate-specific miRNA, and the risk 

variants associated with an increased miR-1908-5p expression associated 

with BD risk are active in 2nd trimester foetal brain. To the best of my 

knowledge, this is the first time this finding has been reported. It is likely that 

these variants are also active in the adult brain, where they could continue to 

influence BD risk along with irritability and sleep duration. 

miR-1908 has been shown to be abnormally expressed in several 

diseases, including cancer (for review, see: Shen et al., 2022). In the 

peripheral blood of AD patients, high levels of miR-1908-5p have been 

detected, which leads to impairment of ApoE-dependent AB clearance, which 

is associated with risk for AD (Wang et al., 2018). Interestingly, miR-1908-5p 

has been shown to be downregulated in a very small study (15 BP subjects) 

in peripheral blood in depressive episodes of female BD patients compared 

to remission (p = 0.004) (Banach et al., 2017). Moreover, the expression of 

miR-1908-5p was decreased in response to valproate, a drug commonly 

used to treat BD, in neuroprogenitor cells (NPCs) derived from dermal 

fibroblasts from a BD patient. In contrast, the opposite effect was observed in 

NPCs derived from dermal fibroblasts from a control subject (Kim et al., 

2016).  

My SMR analysis indicated that the A allele of rs112622797 is associated 

with an increase in miR-6840-5p expression and is also associated with 

decreased brain volume. In contrast, the G allele of rs12880925 is 

associated with decreased expression of miR-4707-3p and is associated with 

increased brain volume. Both these associations have PHEIDI > 0.05, 

suggesting the presence of causal/pleiotropic effects on brain volume by both 

miR-6840-5p and miR-4707-3p. It is important to note that the top SNP 

reported in my FASTQTL analysis at the miR-4707-3p locus was rs2273626, 

whereas the SNP reported by my SMR analysis was rs12880925. These 

SNPs are in high linkage disequilibrium (LD; r2 > 0.99, D’=1) according to 

Haploreg v4.1 (Ward et al., 2016) and have the same nominal p-value and 

beta in my eQTL analysis due to having the identical genotypes in my 

samples.  



206 

miR-4707-3p is located within the 5’-UTR of the HAUS4 gene. The 

miR-eQTL associated with miR-4707-3p expression (rs2273626 C > A) 

co-localizes with an eQTL for its host gene HAUS4 in 2nd trimester foetal 

brain in a largely overlapping sample where the eQTL p-value (nominal) is 

p=0.0002 (not FDR adjusted) (O’Brien et al., 2018). This SNP is located 

within the seed region of miR-4707-3p and is associated with a significant 

increase in minimum free energy (∆G =5.6 Kcal/mol) predicted by RNAfold 

(Gruber et al., 2008), which leads to the miR-4707 hairpin being less 

thermodynamically stable and is predicted to decrease miRNA expression. In 

the previous Chapter (Figure 3.10A), I showed that the rs2273626 genotype 

explains 77% of the variability in miR-4707-3p expression in 2nd trimester 

foetal brain and that the A-allele is associated with a significant decrease in 

miR-4707-3p expression, with the majority of homozygotes for the A-allele 

having low to no miR-4707-3p expression. Moreover, given that this SNP is 

located in the seed region of miR-4707-3p (which binds to the target mRNA 

sequence), the A–allele could alter post-transcriptional regulation in the 

samples where it is expressed even at considerably low levels. A preprint 

performing a miR-eQTL study in 212 mid-gestation neocortical brain samples 

recently released on bioRxiV by Lafferty and colleagues (2022) provides 

independent validation for my miR-4707-3p findings. The authors also found 

a miR-eQTL (rs4981455) for miR-4707-3p that colocalized with an eQTL for 

the host gene HAUS4, brain volume, and educational attainment. In that 

study, the alleles associated with increased expression of miR-4707-3p (and 

HAUS4) were both associated with decreased brain volume and decreased 

educational attainment (Lafferty et al., 2022). Given that the miR-eQTL of 

miR-4707-3p co-localizes with the eQTL of the host gene HAUS4, I cannot 

ascertain if the association to brain volume I found is associated solely with 

miR-4707-3p expression, particularly considering that HAUS4 has been 

shown to regulate mitotic spindle assembly and cell proliferation (Lauo et al., 

2009; Uehara et al., 2009). The study of Lafferty et al. (2022) also found a 

miR-eQTL for miR-1908-5p (rs2015950 G > A), but the authors did not follow 

up on this finding. 
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 In conclusion, I have identified 3 miR-eQTLs that are pleiotropically and 

potentially causally associated with neuropsychiatric / brain-related traits. 

Further investigation of these miRNAs and their targets may shed light on the 

biological underpinnings of these traits. The work described in this thesis 

suggests that miR-1908-5p is involved in the pathogenesis of BD and that 

the risk variants for BD are active in 2nd trimester foetal brain. Exploring the 

associations among bipolar disorder, BD-related traits and miRNA 

expression influenced by genetic risk variants can provide useful etiological 

insights, help prioritize potential causal relationships, and advance the 

understanding of its biological underpinnings. BD is associated with 

premature death due to significant comorbidities and a high risk of suicide 

(Hayes et al., 2015). Moreover, clinical heterogeneity and treatment 

response translates into this disorder being frequently misdiagnosed and 

sub-optimally treated. It is possible that disentangling the association 

between 2nd trimester foetal brain miR-1908-5p expression and bipolar 

disorder risk could translate into more effective treatments and a better 

quality of life for the affected individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

  



208 

 

 

 

 

 

 

 

 

 

 

 

5 Chapter 5 – General Discussion           
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5.1 Summary of main findings 

 

5.1.1 Detection of mature miRNA expression in 2nd 

trimester human brain  

 

The aim of this thesis was to evaluate how variation in miRNA expression 

in 2nd trimester foetal brain might contribute to risk for neuropsychiatric 

disorders. To this end, I first performed small-RNA sequencing to quantify 

mature miRNA expression in 112 2nd trimester foetal brain samples with 

gestational ages between 12-20 PCW. I detected a total of 1449 miRNAs in 

2nd trimester foetal brain, which corresponds to 55% of all known miRNAs, 

highlighting the importance of miRNAs in foetal brain development. A study 

employing high-throughput RNA sequencing bound to AGO2 via crosslinking 

immunoprecipitation (HITS-CLIP) in 9 foetal brain samples at 15 - 16.5 PCW 

and 19-20.5 PCW detected a total of 921 human miRNAs expressed in 2nd 

trimester foetal brain (Nowakowski et al., 2018). Another recent study 

performing small RNA sequencing in cortical samples from 212 samples 

found 907 miRNAs (621 miRNAs were present miRbase v22; the remainder 

were newly discovered miRNA species) (Lafferty et al., 2022, preprint). The 

larger number of miRNAs detected in my study, as opposed to Nowakowski 

et al., 2018 and Lafferty et al., 2022 is likely due to me using whole brain 

homogenates instead of cortical tissue (Lafferty et al., 2022) and having a 

less stringent cut-off for miRNA detection. 
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5.1.2 Factors influencing miRNA expression in 2nd 

trimester human brain  

 

Subsequently, I identified the main drivers of miRNA expression variation 

at the global level in 2nd trimester foetal brain. This analysis indicated that, in 

general, age and sex did not have a significant impact on miRNA expression 

in 2nd trimester foetal brain. However, when analyzed individually, I found 

evidence of sex-biased miRNA expression in a single miRNA (miR-373-3p) 

downregulated in males. This finding suggests that miRNAs do not contribute 

significantly to sex differences in foetal brain development and is consistent 

with previous studies on sex-biased miRNA expression in the neonatal brain, 

where only two miRNAs were found to be differentially expressed between 

females and males (Ziatts & Rennert, 2014). I also found 171 individual 

miRNAs that showed a correlation in expression with post-conception week, 

with approximately half upregulated and half down-regulated with increasing 

gestational age, suggesting important roles in prenatal brain development. 

 

5.1.3 cis-miR-eQTL analysis in 2nd trimester foetal 

brain 

 

The expression of the detected 1449 miRNAs, controlled for influences 

driving miRNA expression, was combined with genome-wide genotyping in 

order to map eQTLs operating on miRNAs in 2nd trimester foetal brain. I 

identified 30 miRNAs whose expression is associated with common genetic 

variation (miR-eQTLs) at FDR < 0.05, all of which mapped to unique genomic 

locations. This constitutes ~ 2% of the miRNAs under study (n = 1449) and is 

a smaller proportion than mRNA eQTLs (4.6%) identified by our group on 
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primarily the same samples (O’Brien et al.,2018), suggesting that miRNAs 

are under tighter regulatory control and negative selective pressure. 

 

5.1.4 miR-eQTL associated with neuropsychiatric 

disorders and other brain traits 

 

Finally, I related the identified miR-eQTLs to common genetic variants 

associated with neuropsychiatric and other common brain traits (Chapter 4). 

SMR and HEIDI tests were employed to ascertain if altered miRNA 

expression arising from genetic variants is pleiotropically and/or potentially 

causally associated with these traits and not the result of genetic linkage. I 

identified 3 miRNAs whose expression levels regulated by cis-miR-eQTLS 

are associated with 5 psychiatric/neurocognitive traits, namely miR-1908-5p 

with bipolar disorder, irritability, sleep duration and intelligence, and 

miR-6840-5p and miR-4707-3p with brain volume. 

My SMR analysis indicated that the C-allele of rs174561 is associated with 

increased expression of miR-1908-5p, increased risk for bipolar disorder, 

increased irritability scores and increased sleep duration even after stringent 

Bonferroni correction for 690 tests. The HEIDI test for these associations 

indicated that they were unlikely to have arisen due to linkage with other 

variants that could be operating through different genes. In contrast, the 

association of miR-1908-5p expression in 2nd trimester foetal brain with 

increased intelligence is likely to arise, at least partly due to linkage between 

rs174561 and another variant.  

As an independent test of whether miR-1908-5p expression could 

influence bipolar disorder and associated traits, I performed a MAGMA 

analysis on miR-1908-5p targets, assuming that if miR-1908-5p is associated 

with bipolar disorder, then the genes miR-1908-5p regulates will also be 



212 

 

associated with the condition. Predicted gene targets of miR-1908-5p were 

found to be significantly enriched for association with bipolar disorder, sleep 

duration and intelligence, but not irritability. This provides independent 

evidence of a causal role of miR-1908-5p expression in bipolar disorder and 

some associated traits because it tests the regulatory function of 

miR-1908-5p. To the best of my knowledge, this is the first time this finding 

has been reported. MAGMA gene-set analysis stratified by GO biological 

processes highlighted ion and cation transport and trans-synaptic signaling 

as three of the most enriched pathways of gene targets of miR-1908-5p 

targets in bipolar disorder, suggesting these pathways drive this association. 

 

 

5.2 Independent validation of miR-eQTLs in 2nd 

trimester foetal brain findings  

 

When writing this thesis, a preprint performing a miR-eQTL study in 212 

mid-gestation neocortical brain samples was released on bioRxiV by Lafferty 

and colleagues (2022). I decided to use this study as independent validation 

for my miR-eQTL analysis. The authors found 70 miRNAs whose expression 

was influenced by cis-miR-eQTLs, 59 of which are present in miRbase. The 

larger number of miR-eQTLs found in this study stems from it being better 

powered to detect eQTLs, given its larger sample size (n=212). 8 of the 

miRNAs whose expression is influenced by miR-eQTLs in 2nd trimester 

foetal brain identified in this study were also reported by Lafferty et al., 

(2022). 

In contrast, the remaining 22 miRNAs were exclusive to my study. This 

discrepancy might stem from my study using whole brain homogenates 

instead of cortical tissue, and some of the miRNAs I identified may be poorly 
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expressed in the cortex. Moreover, it is possible that some of the miRNAs I 

identified as being influenced by miR-eQTLs were below the detection cut-off 

level employed by Lafferty and colleagues (2022). Of note, this study 

validates my miR-4707-3p findings. The authors also found a miR-eQTL 

(rs4981455) for miR-4707-3p that colocalized with an eQTL for the host gene 

HAUS4, brain volume, and educational attainment. Where the alleles 

associated with increased expression of miR-4707-3p (and HAUS4) were 

both associated with decreased brain volume and decreased educational 

attainment (Lafferty et al., 2022). This study also found a miR-eQTL 

(rs2015950) for miR-1908-5p, but the authors did not follow up on this 

finding. 

 

 

5.3 Limitations of this study  

 

5.3.1 Small RNA-Sequencing method employed 

 

The method employed in this project for small RNA sequencing library 

preparation (two-adaptor ligation method) is the most commonly used 

method in small RNA sequencing studies (Benesova et al., 2021). However, 

this method is associated with ligation bias (Raabe et al., 2014) due to 

different affinities of adaptors and miRNAs caused by secondary structures 

of both species (Fuchs et al., 2015). This may cause some miRNAs to not be 

accurately detected and may confound results. There are now improved 

two-adaptor ligation methods utilizing randomized adaptors that minimize this 

bias and have better performance (Giraldez et al., 2018; Wright et al., 2019; 

for review, see: Benesova et al., 2021). Moreover, the use of unique 
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molecular identifiers (UMIs) further refines Small RNA Sequencing studies by 

mitigating PCR bias, the significance of which is only now being 

acknowledged (Fu et al., 2018; Wright et al., 2019). Recent studies 

comparing the performance of all 3 methods (the original two-adaptor ligation 

method employed in this study, the use of randomized adaptors and the use 

of UMI) have ranked the original two-adaptor ligation method as having the 

worst performance; whereas using randomized adaptors performed best 

(Herbert et al., 2020; Heinicke et al., 2020). Ideally, as future work, I would 

have repeated this study using randomized adaptors and assessed if there 

were miRNAs that I could not detect because of ligation bias. However, I am 

confident that by performing PEER corrections (Stegle et al., 2012) on my 

Small RNA Sequencing data, I was able to minimize the bias associated with 

differences in ligation affinity in the miRNAs I identified in this study. 

 

5.3.2 Statistical power of the eQTL Study 

 

In this thesis, I found 30 mature miRNAs whose expression was 

influenced by cis-miR-eQTLs in 2nd trimester foetal brain. All but one of the 

miR-eQTLs identified have global minor allele frequencies (MAF) > 5% 

(dbSNP alfa). Given that the number of samples employed is quite limited (n 

= 112), this study is underpowered to detect eQTLs with lower frequencies. 

Power analysis of my eQTL study indicates that my study is sufficiently 

powered to detect cis-miR-eQTLs with MAF > 20 %, assuming the same 

effect size (beta = 0.13) that was used by the GTeX Consortium (2013). 

Increasing the sample size will lead to more miR-eQTLs being detected in 

foetal brain, as previous studies reported a strong correlation between 

sample size and the number of eQTLs discovered (GTEx Consortium, 2017). 

This can be exemplified by the Lafferty et al., (2022) preprint, where they 

reported 70 miRNAs whose expression was influenced by miR-eQTLs in 2nd 
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trimester foetal brain employing 212 cortical samples. However, it is possible 

that identifying more miR-eQTLs operating in foetal brain will not lead to 

identifying more pleiotropic effects of miR-eQTLs on risk for neuropsychiatric 

traits, given that Lafferty et al. (2022) were unable to identify any such 

association. 

 

5.3.3 Use of Bulk brain tissue homogenates for DE and 

eQTL analysis 

 

The analyses described in this thesis were based on the sequencing of 

bulk tissue from 2nd trimester foetal brains, where miRNA expression levels 

were averaged across all cell types. Foetal brains are precious resources, 

and using available bulk frozen tissue allowed me to have enough samples 

to map miR-eQTLs operating in 2nd trimester foetal brain with high 

confidence. Consequently, cell-specific and region-specific effects at the 

eQTL and DEG levels will be diluted and possibly masked by the bulk RNA 

sequencing expression measures. As such, a caveat of this method is that I 

cannot relate the miR-eQTLs or differentially expressed genes identified to 

specific cell types or brain regions nor determine which cell types contribute 

to risk of bipolar disorder in 2nd trimester foetal brain. Further refinement of 

the brain regions and cell types in which the miR-eQTLs identified in this 

study are active is required to improve the understanding of the cellular 

context of miRNA expression in both brain development and neuropsychiatric 

disorders. A future study could employ single-cell small RNA sequencing, 

which would allow me to investigate the cellular context in which miR-eQTLs 

influence miRNA expression, study miR-eQTLs in rare cell types, and identify 

cell-type-specific DEG and cell-type-specific eQTLs not detected using bulk 

RNA – Sequencing (Kang et al., 2018; Soneson & Robinson, 2018; Potter, 

2018; van der Wijst et al., 2018, 2020). Moreover, integrating single-cell 
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small RNA sequencing with spatial transcriptomics would enable me to map 

miR- eQTLs to specific brain areas and subsets of cells. 

 

5.3.4 Predicted miRNA targets using TargetScan 

 

The extent to which miR-eQTLs influence downstream miRNA target 

expression is difficult to measure and impossible to access using only small 

RNA-Sequencing. The miRNA targets employed for GO analysis and 

MAGMA analysis in this thesis were predicted by Targetscan 8.0, which 

predicts biological targets by searching for the presence of conserved 8mer, 

7mer, and 6mer sites in the 3’-UTR of genes that match the seed region of 

each miRNA. This method has several limitations (Peterson et al., 2014; 

Riffo-Campos et al., 2016). Possibly, some of the predicted targets employed 

in this study are false positives. It is also possible that some of the predicted 

miRNA targets are not expressed in 2nd trimester foetal brain. miRNAs can 

also target genes by binding to the coding sequence (CDS) of a gene (Tay et 

al., 2008; Anneke et al., 2014), and therefore any genes targeted by miRNAs 

due to complementarity of the seed region with the CDS will have been 

missed by this analysis. Indeed, Nowakowski and colleagues (2018) 

identified miRNA–mRNA interactions in the developing brain and reported 

that 27% of AGO2 binding sites were located in the CDS on target mRNAs. 

The use of databases of validated miRNA targets has similar limitations and 

is biased in favour of miRNA:mRNA interactions assessed in assayed 

tissues. A follow-up study using miRNA transfection for miRNA upregulation 

and miRNA sponges for miRNA downregulation in appropriate cell lines 

(NSC, early neurons, late neurons, glia) could elucidate the mechanisms by 

which the miR-eQTLs identified in this study have pleiotropic effects on risk 

for neuropsychiatric disorders and other brain traits. Alternatively, I could 

identify miRNA–mRNA interactions via AGO1- 4 crosslinked 

immunoprecipitation followed by NGS in different cell types and foetal brain 
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regions, similar to the assay performed by Nowakowski and colleagues 

(2018). 

 

 

5.4 Future perspectives  

 

Apart from the future work outlined above to overcome the limitations of 

this study, there are additional interesting potential future investigations. 

Extending miR-eQTL analysis to sex chromosomes may identify sex-specific 

miR-eQTLs (Shen, Wang and Yang, 2019). Of the miRNAs with miR-eQTLs 

reported by Lafferty and colleagues (2022), 5 were located in the X-

chromosome. It is plausible that sex-specific miR-eQTLs may underlie sex-

specific genetic liability to neuropsychiatric disorders. However, a recent 

study reported that sex-specific eQTLs in whole blood do not translate to 

detectable sex-specific trait associations (Porcu et al., 2022). By performing 

an eQTL analysis at the mature miRNA level, I assessed the total effects of 

variants on the entire miRNA biogenesis process. Performing an eQTL 

analysis at the pri-miRNA level via RNA Sequencing in the same samples 

would allow me to ascertain which miR-eQTLs affect miRNA expression by 

altering the transcription of pri-miRNAs and which would affect the 

biogenesis of mature miRNAs, further refining the mechanism of action of the 

identified miR-eQTLs. 

Moreover, given the role of miRNAs in gene expression regulation, the 

identified cis-miR-eQTLs are likely trans-eQTLs for downstream miRNA 

targets. Performing a trans-eQTL analysis using the identified miR-eQTLs 

could shed light on how miR-eQTLs influence the gene expression of miRNA 

targets. However, this analysis would have a sizeable multiple-testing burden 

unless restricted to predicted mRNA targets. Small RNA sequencing also 

profiles other small RNA species, such as piwi-RNAs. Extending my analysis 
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to piwi-RNAs in 2nd trimester foetal brain may shed light on their role in brain 

development and neuropsychiatric disorders (Chavda et al., 2022)., 

Performing similar analyses in earlier and later stages of gestation would 

allow for a more comprehensive assessment of miRNA expression in brain 

development and the potential role of miR-eQTLs in brain function and 

neuropsychiatric disorders. 

 

 

5.5 Conclusion 

 

In conclusion, the work described in this thesis provide novel insights 

regarding the role of miRNAs in 2nd trimester foetal brain development and 

how variation in miRNA expression during this developmental phase might 

contribute to risk for neuropsychiatric disorders. This is the first report 

implicating miR-1908-5p expression in 2nd trimester foetal brain with risk for 

bipolar disorder and highlights the need for further investigation into the 

subject.  
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