
 Cardiff University  

School of Engineering 

 

 

 

Ph.D. Thesis 

entitled 

 

Application of Artificial Intelligence and Optimisation Techniques for 

Fault Detection and Classification in Power Transformers 

 

Presented by: Ehsan Mohamed Altayef 

Student ID:1871595 

 

Supervisor: Dr. Fatih Anayi 

Co-supervisor: Dr. Michael Packianather 

 

 

 

Cardiff 2023 

 



Application of Fault Detection in Power Transformers Using Artificial Intelligent Based on 
Optimization Techniques for Classification Purpose 

 

 

 

i 
 

 

Declaration 

This work has not been submitted in substance for any other degree or award at this or any 

other university of learning. It is not being submitted concurrently in candidature for any 

degree or other awarded. 

Signed (candidate) 

Date 

 

Statement 1 

This thesis is being submitted in partial fulfilment of the requirements for the degree of Ph.D. 

Signed (candidate) 

Date 

 

Statement 2 

This thesis is the result of my own work, except where otherwise stated. Other sources are 

acknowledged by footnote giving explicit reference. A bibliography is appended. 

Signed (candidate) 

Date 

 

Statement 3 

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-

library loan and for the title and summary to be made available to an outside organisation. 

Signed (candidate) 

Date 

 

 

 

 

 

 

 

 



Application of Fault Detection in Power Transformers Using Artificial Intelligent Based on 
Optimization Techniques for Classification Purpose 

 

 

 

ii 
 

 

Acknowledgments 

The research presented in this thesis has been carried out at the Magnetics Materials Group, 

Cardiff School of Engineering, Cardiff University. And financially supported by The Libyan 

Ministry of Education under the supervision of Dr. Fatih Anayi. I wish to express my deepest 

gratitude to them for the guidance, encouragement, patience, and support they have given me 

in the past few years and for providing the financial support, opportunity, and resources 

required in my study and completing this project. 

First and foremost, I thank ALLAH for helping me to complete this thesis.  

I appreciate the excellent guidance, dedication, and exemplary academic standards of my 

supervisor, Doctor Fatih Anayi. I appreciate his vast knowledge and skills in many areas, and 

his advice during my study, in writing papers and this thesis.  

I would like to express my deepest gratitude to my co-supervisor: Dr. Michael Packianather, 

for his guidance, encouragement, and caring and for providing me with an excellent atmosphere 

during this project. And I would also like to thank Dr. Turgut Meydan (deceased) for the time 

and effort he spent on many theoretical discussions and for the outstanding moral support, his 

smile, and the family atmosphere he created.   

Big thanks are due to many members of staff at Cardiff University for taking time out of their 

busy schedules to help and support my project during my study at Cardiff University. 

My most fantastic thanks are reserved for my family. Especially my mother and father, for their 

Doa, and unconditional love, support, and encouragement throughout the whole of my life. I 

will never forget their heart-warming support to me in tracking my progress and encouraging 

me continuously to reach my goals. 

I would like to show my gratitude to Shawqi, Shaima, and Aminah, who stood by me every 

step of the way with encouragement and support. 

 

 

 

 

 



Application of Fault Detection in Power Transformers Using Artificial Intelligent Based on 
Optimization Techniques for Classification Purpose 

 

 

 

iii 
 

 

Abstract 

The thesis reviews the core lamination faults in power transformers and the testing and 

condition monitoring methods to confirm that artificial intelligence has not yet been applied to 

diagnose the edge burr faults and the degradation of the lamination insulation fault in the power 

transformer core. Experimental tests are conducted on the transformer core to observe the 

effects of faults. A clamping system is designed to apply artificial burrs in a repeatable manner 

in the range of 0.5T to 1.8T, while insulation faults are created by removing insulation material, 

short-circuits of 2, 6, 8, and 12 laminations were considered for flux densities of 0.5, 1.0, 1.5, 

1.7, and 1.8 T. The faults were generated at different locations on the transformer core, and a 

total of 5 sites were selected. Artificial intelligence techniques are applied to investigate the 

impact of edge burr faults and insulation degradation on the total power loss in a 15 kVA three-

phase transformer core. Features are extracted from current signals and thermal images and 

used as input vectors for training and testing using KNN, SVM, and DT classifiers. The 

accuracy rate obtained from the classifiers was over 90%. A new feature extraction technique 

called the RGB technique was presented for thermal images. A hybrid model of SVM with 

BOA and PSO optimization algorithms was developed to enhance the SVM classifier. The 

results from BOA-SVM were more appropriate for current signals data, while the results from 

BOA-SVM were the same for thermal image data. The results showed that for a large number 

of laminations affected by both faults, the overall core losses were doubled. And the results 

showed a satisfactory accuracy rate for fault detection and classification. 
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CHAPTER 1: Introduction 

This chapter deals with some generalities in the field of power transformers, presenting the 

major and common types of faults. Particular interest has been carried in the lamination’s faults, 

namely edge burrs and insulation lamination degradation. 

1.1 Introduction 

Due to increased electricity consumption, and competition in the electricity market, the need 

for delivery with reliability and high quality is inevitable. In this regard, power transformers 

are considered the most critical and expensive equipment in terms of their crucial role in 

supplying power [1][2]. Power transformers play an essential role in a power network. They 

are expensive, and once damaged, their repairs are time-consuming. Thus, their successful 

operation is foremost for continuous operation and stability of the overall system. 

This equipment can sometimes be damaged for environmental reasons. Creating a defect in 

transformers reduces the reliability and power quality of the network and causes fundamental 

problems in the power system. Therefore, early detection of transformer faults should be an 

integral part of the power grid monitoring system [3]. 

Transformer-protective relays are often tested for their dependability, stability, and operation 

speed under different operating conditions. The protective relays should operate in cases of 

faults and avoid tripping the circuit breakers when there is no fault [4]. Researchers have 

proposed various techniques to improve transformer differential protection. Several studies 

have addressed the issue of accurate discrimination of different internal faults in transformers 

using intelligent systems.  

1.2 Power losses in power transformers cores 

Electrical machines, i.e., motors, generators, and transformers, are integral and vital parts of 

industry and power systems. In the design and analysis of electric machines, power loss plays 

an important role which is usually divided into three major categories: copper losses 𝑃𝑐𝑢, 

mechanical losses 𝑃𝑚𝑒 and magnetic losses 𝑃𝑐. The copper loss takes place in the electrical 

windings of the machine. Failure in mechanical systems can result from the rotation of rotating 

components or the movement of sliding components in linear machines. Eddy current loss and 

hysteresis loss are the two main causes of magnetic energy loss in transformers and other 

magnetic devices [5][6].  
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Magnetic cores are one of the main parts of electrical machines and other magnetic devices. 

The central role of the magnetic core is to concentrate the magnetic field to make the maximum 

possible magnetic coupling between the primary and secondary windings of a transformer or 

stator and the rotor of a rotating machine [7]. 

Magnetic materials are widely used in power electronic equipment, especially power 

transformers PT. The PT operates at a high frequency, typically in the kilohertz range, to 

minimize size, resulting in a significant core loss [8]. Traditionally, three approaches, including 

hysteresis models, core loss separation method, and Steinmetz equation (SE) practice, are 

mainly adopted to calculate the core loss for sinusoidal excitations, among which the SE is 

widely used for its simplicity and practicality [9]. 

Total power losses of the distribution transformers are about 2-3 % of the total electric power 

production. The total power losses in the distribution transformers can be estimated as 30 % 

copper losses PCU or load losses PL that depend on the transformer load; and 70 % core losses 

PC or no-load losses PN-L, also called magnetic losses Pm which depends on the voltage applied 

to the transformer [10][11]. 

1.3 Inter-laminar short circuit faults 

The manufacturing process of electrical machines, which includes punching/cutting, core 

assembly, and welding, induces mechanical and thermal stresses to the electrical steel sheet. 

The induced stresses cause degradation of the magnetic properties of the laminated steel sheet 

around the cutting edge and the welded region [12]-[16], which directly impacts the core losses 

of the final manufactured electrical machine. Furthermore, the mechanical stress during the 

punching process inevitably causes a burr on the cut edge of the steel. When the sheets are 

stacked and welded together to form the machine core, it can lead to the formation of an inter-

laminar short circuit fault between laminations. Since the core is subjected to a time-varying 

magnetic field during operation, circulating eddy currents are induced around the short circuit 

region. These currents create an additional localized power loss around the short circuit region, 

and if this electrical shorting covers several laminations, high currents can circulate, leading to 

a significant increase in power loss and excessive localized heating. In the absence of adequate 

cooling, this phenomenon might lead to an insulation breakdown of the machine laminations. 

Thus, it causes the potential of a complete machine failure [17]. Inter-laminar faults (ILFs) have 

major impacts on the overall performance of electrical machines and power transformers, 

among which extra power loss and hence lower efficiency could be highlighted [18]. 
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1.4 Aim and objectives of the project 

Thesis’s Aim: 

This thesis addresses the need for a comprehensive review of the core lamination faults and the 

testing and condition monitoring methods to demonstrate that artificial intelligence has not been 

applied yet to detect the Edge Burrs and the degradation of the lamination insulation faults. 

And to experimentally analyse these faults in a 15 kVA three-phase power transformer and 

diagnose these faults using AI by extracting features from current signals and thermal images. 

 

Thesis’s objectives  

1- Experimentally simulate and analyze the Edge Burrs fault and the degradation of lamination 

insulation fault in a 15 kVA three-phase power transformer and investigate their effects. 

 

2- Use artificial intelligence to diagnose the faults in the power transformer core by extracting 

features from current signals and using KNN, SVM, and DT classifiers. 

 

3- Apply the RGB technique to extract features from thermal images and diagnose faults in the 

power transformer core. 

  

4- Enhance the performance of the SVM algorithm by combining it with BOA and PSO 

optimization algorithms to develop a hybrid model of classification. 

 

1.5 Contributions  

1- Application of artificial intelligence for diagnosing Edge Burrs and lamination insulation 

faults in a 15 kVA three-phase power transformer using current signals and thermal images. 

This particular application has utilised three classification algorithms ( KNN, SVM, and DT). 

2- Development of a new method for thermal image feature extraction using the RGB 

technique. 

3- Improvement of the performance of the SVM algorithm through the application of BOA and 

PSO optimization algorithms. 

To the best of the author’s knowledge, the above three points have never been touched by  

other researchers on these particular faults. 

1.6 Research Problem 

Confirming that the artificial intelligent has not been applied to detect these faults. And The 

investigation of the effect of edge burr faults and insulation degradation on the total power loss 

in a 15 kVA three-phase transformer core. It also explores the potential impact of artificial 
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intelligence in diagnosing these faults. And to find a non-destructive, effective and efficient 

method to detect these faults and analyze their impact on the power loss of the transformer. 

1.7 Research Methodology 
 

The research methodology used in this thesis includes the following steps: 

Comprehensive Review: A comprehensive review of the literature is conducted to cover the 

up-to-date knowledge of core lamination faults and the methods for testing and condition 

monitoring for fault analysis and detection in power transformers. 

Simulation of Edge Burrs and Insulation Faults: A clamping system is designed for the 

application of artificial burrs in a wholly repeatable and reversible manner. The impact of these 

faults is investigated through the application of artificial faults and the utilization of analytical 

techniques and experimental work. 

Data Collection: The equipment for conducting the experimental tests is described, as well as 

the description of the specific faults and data acquisition. 

Fault Detection and Classification using AI: Features are extracted from current signals and 

used as input vectors for the training and testing process using KNN, SVM, and DT classifiers.  

Fault Detection using Thermal Imaging: A new feature extraction technique, the RGB 

technique, is used to diagnose faults in the power transformer core using thermal images.  

Optimization of SVM Algorithm: The performance of the SVM algorithm is improved by 

applying the particle swarm optimization (PSO) and the genetic optimization algorithm (BOA) 

to develop a hybrid model of classification.  

1.8 Thesis Structure 
 

1- Introduction 

• Background and context of the problem 

• Statement of the research question 

2- Literature Review 

• Overview of the current state of the research in core laminations faults 

3- Methodology 

• Design of the experimental setup 

• Data collection methods 

• Data analysis techniques 

3- Results and Discussion 

• Analysis of the experimental results 
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• Comparison of different classifiers 

• Comparison of results with optimization method 

4- Conclusion 

• Summary of the findings 

• Implications for future research 
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CHAPTER 2: Power transformer fault detection methods and effects of 

laminations fault 
 

This chapter covers the methods for analysing and detecting faults in power transformers and 

reviews laminations faults, in addition to how these faults are identified and confirmed. It 

investigates the benefits and challenges of established and novel approaches to detecting 

emerging faults, considering advanced methods’ range of measurement’ accuracy’ and 

reliability. It identifies which approach to detecting edge burr faults is most suitable for 

different instances of faults. The study provides valuable information for understanding and 

detecting edge burr faults by applying varied detection approaches. 

2.1 Introduction 

Power transformers form a central component of a power network, and when a transformer 

fails, this causes unexpected disruptions to operations and repair work which is costly. 

Transformers can be affected by various faults, among which is the laminations’ fault. These 

faults have been found to increase power transformer losses, as well as lead to greater eddy 

current losses within magnetic circuits. For a larger transformer core, short-circuit current may 

rise to a level where the core is damaged. 

In general, power transformer cores are constructed using thinly laminated electrical steel, 

which decreases losses in eddy current and allows for highly efficient operations [1]. The 

laminations have an inorganic coat of between 1, and 3μm thickness applied to each side, and 

this protects one lamination from directly coming into electrical contact with the next. As the 

electrical steel is punched and cut, this mechanically stresses the lamination, causing it to 

deform and degrading its magnetic characteristics [2]. The core of an electrical machine 

undergoes various processes, and these can directly affect the properties of that core. Cores can 

be mechanically damaged as they are assembled or as they are rewound or re-wedged, foreign 

bodies may be introduced during construction, and they can be affected by vibrations, heat 

exposure, arcing, and deterioration of the insulation, which separates the laminations [3][4]. As 

the steel is cut, burrs can develop on the cut edge due to mechanical shear deformation [5]. 

These faults can cause the degrading of the insulation separating each sheet, leading to the inter-

lamination of electrical shorts. Where such shorting occurs across a number of laminations, this 

can lead to a high circulating current, significantly increasing power losses and causing the core 

to overheat locally. This can then burn or melt sheets, with a risk that the machine will then fail 

completely [6][7]. The authors in [7] ran simulated computer models of a core to predict effects 
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from edge burrs, with burrs of varying size and location manufactured in the core for each 

model. More recent works have considered edge burr effects on laminated sheets in the core. 

For example, a study in [8] investigated the impact of connected edges for losses in a ring core 

sample, demonstrating that eddy current power losses rise significantly where edges in the core 

connect. The phenomenon of additional shorting between laminations occurs due to minor 

damage in the insulation at the surface of the lamination within the central region of the core. 

On the other hand, there is an extremely low stochastic probability that this type of fault will 

emerge [9]. Burrs are generated when the laminar sheets are punched, and this leads to both 

cut-edge shorting and shorting between layers. Burrs form due to the shear exerted when the 

sheet is cut using the 2-blade guillotine. When the blade in motion comes into contact with the 

metal, and it begins to turn over, the load is increased, causing the sheet to undergo fracture 

shear stress [10][11]. From here, the load is increased, creating cracking which yields a sudden 

breakthrough via ductile fracture, and burrs form [12]. The shear effect exerted alters during 

the cutting process and can be seen at the cut edge of the sheet. As the metal is the first subject 

to the force of the blade/punch, the tool clearance permits plastic deformation of the metal to 

occur, and the edge rolls over, while the more profound impact of the tool into the sheet, shear 

creates a burnished area to appear vertically across the sheet. In the last stage of the process, 

angled fracturing occurs, creating a minor burring to the cut edge. The different zones of the 

cut may be smaller or larger depending on factors such as toll clearance and sharpness. The 

results of the cutting procedure are shown in figure 2-1. 

 

Figure 2-1: Cutting procedure for lamination, with a generation of edge burr [78]. 

It is essential to have a monitoring plan in place for diagnosing faults in power transformers 

which reflects their significance, to ensure that they perform reliably and effectively over their 

lifespan [13]. 

In certain instances, when gradual degradation of insulation occurs, this can lead to short-

circuiting faults based on outside factors as described below [14]: 
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• Mechanically induced damage from assembling, rewinding, or re-wedging core 

• Foreign bodies present since assemblage 

• Vibrations, heating, arcs 

• Inter-laminar insulation deteriorates 

Where one lamination comes into contact with another, circulation of local currents is induced 

in the short circuit volume, increasing machine losses [6]. Moreover, flows of currents on the 

lamination surface are chiefly due to burrs that arise in the process of cutting the lamination. 

Often, the burr faults lead to localised contacts at the machines outside edges, offering a flow 

pathway to the eddy current induced [15]. 

2.2 Data on transformer failures 

Transformer insulation degrades in strength mechanically and dielectrically throughout its 

service life. Therefore, over time it becomes more likely to fail, and its remaining lifespan is 

reduced. The industry standard sets an average operational lifespan of around four decades for 

power transformers, after which there is an expectation of a high risk of catastrophic failures. 

Various internal and external mechanisms have an impact on the expected remaining life and 

rate of failure for transformers. Statistical information regarding factors responsible for 

transformer failures is given in figure 2- 2 [16]-[18]. 

 

Figure 2-2: Transformer failures by location 

2.3 Diagnostic testing and condition monitoring for power transformers 

Unusually for industrial equipment, the transformer contains many parts whose condition 

cannot practically be visually assessed due to being placed in an oil tank. Due to this limitation, 

various methods have been developed to indirectly evaluate transformer status via measuring 

multiple variables.   

Other(Cooling,Secondary)%

20
Core%

5

Bushing%

20

Tank%

21

OLTC%

26

Coil/Winding%

34

 Coil/Winding%

 OLTC%

 Tank%

 Bushing%

 Core%

 Other(Cooling,Secondary)%



Chapter 2: Power transformer fault detection methods and Effects of laminations fault 

 

 

 

11 
 

 

Once a power transformer has been commissioned and installed, it is expected that it will be in 

constant operation across its operational lifespan, with routine maintenance kept to a minimal 

level. Unplanned outage events and functions costs (the costs associated with unplanned outage 

events) are minimised by performing various types of testing, both regular and diagnostic, for 

the assessment of insulation and the mechanical condition of transformers. Different routine 

and diagnostic testing methods are described below, covering widely used and more complex 

approaches, with Figure 3 taxonomically representing significant diagnostic approaches to 

assessing transformer conditions. 

2.3.1 Dissolved gas analysis 

The longstanding technique known as dissolved gas analysis (DGA) is frequently applied to 

monitor power transformers [19]-[21]. However, while DGA is adequate for fault detection and 

classification, it is not generally able to locate the position of faults. Therefore, in operation, 

additional findings must be obtained to support DGA diagnosis using different approaches. The 

different DGA approaches are reviewed below. 

• Key gas analysis (KGA) makes fault diagnosis by measuring combustible gas proportions 

[22]. 

• Roger’s Ratios method (RRM) depends on gas concentration ratios in detecting and 

categorising transformer faults [22]. 

• Gas patterns method, this approach mainly uses ethylene (C2H4) and methane (CH4) 

measurements to diagnose reduced conductor-conductor connections [23].  

• The Doernenburg method uses four ratios of gas between 5 main gaseous substances, namely 

H2, CH4, C2H2, C2H4, and C2H6. This technique is used in transformer fault detection and PD 

activity [24]. 

• The Duval Triangle Method (DTM) uses a triple-axis graph in which an axis represents CH4, 

one C2H4, and one C2H2 percentage between 0 and 100% [24]-[32]. 

2.3.2 Oil quality test 

This test of the quality of the insulating oil is frequently applied to assess transformer condition 

while it is operational [33]-[36]. 
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2.3.3 Infrared thermograph test 

Rapid imaging without destructive processes can be achieved through infrared thermography 

to visualise outer surface temperatures for a transformer while it is in service [37][38]. 

2.3.4 Excitation current test 

The excitation current test is applied for the identification of ground faults, short-circuited 

turns, shorted core laminations, core de-laminations, load tap changer (LTC) issues and poor 

electrical connections [39]. 

2.3.5 Power factor/dielectric dissipation factor test 

 Applications of the dielectric dissipation factor (tan δ) test include verifying insulation 

conditions in transformer windings, oil tanks, and bushings [40]. 

2.3.6 Polarisation index measure 

The polarisation index (PI) is frequently used to identify how clean and dry the solid insulation 

of windings is, depending on insulation categories A, B and C, as well as windings parts 

[41][42]. 

2.3.7 Capacitance measure 

Through measuring capacitance, bushings condition can be assessed, and gross windings 

movement identified. The transformer’s bushings are analogous in electrical terms to several 

series capacitors [43].  

2.3.8 Measure of transfer function 

Transfer function (TF) measurement has widespread acceptance as a technique for predicting 

the moisture levels of solid insulation as well as for identifying mechanical defects such as 

deformed or displaced windings caused by short-circuit currents, being transported and 

switching impulse [44]-[46].  

2.3.9 Tap changer condition 

A transformer’s load tap changer (LTC) controls voltage irrespective of load variation. Various 

insulation materials are applied for tap changers, including fiberglass, oil, proxy resin, and 

cardboard [43][47].  

2.3.10 Cellulose paper insulation tests 

Transformers’ internal solid paper insulation contains approximately 90% cellulose, 6–7% 

hemicelluloses, and 3–4% lignin with long glucose ring chains [48][40]. 
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• CO2:CO ratio Measuring the proportion of CO2 to CO assists in assessing paper insulation’s 

integrity [43]. 

• The Furan analysis method assesses cellulose paper status within a transformer and is an 

operationally non-disruptive, post-diagnosis, non-periodic and integral approach [40][43]. 

• Degree of Polymerisation measurement (DP) offers reliable assessment for paper insulation 

conditions [49][50]. 

2.3.11 Dielectric response analysis 

Moisture levels in transformers’ oil/paper insulation materials can be assessed through 

dielectric response analysis (DRA) [51][52]. 

• The recovery voltage measurement (RVM) tool provides dielectric responses in the time 

domain for the identification of moisture levels within transformer insulation [53][54]. 

• Analysing polarisation and depolarisation current: Recently, measuring polarisation and 

depolarisation current (PDC) has emerged as a non-destructive technique for the measurement 

of moisture level and oil conductivity for composites and homogenous materials in transformer 

insulation [55][56]. 

• Frequency dielectric response (FDS) is frequently applied in the diagnosis of moisture levels 

and aging conditions for oil–paper transformer insulation [57][58]. 

• Time–frequency domain dielectric response is a technologically-advanced approach that 

draws on both the benefits of FDS and PDC to evaluate transformer insulation health [59]. 

2.3.12 Partial discharge analysis 

This involves analysing partial discharge (PD), which refers to dielectric discharges over part 

of a system of electrical insulation under intense electrical fields [60][61]. 

• Chemical detection is a fundamental approach to PD detection, which identifies chemical 

alterations to insulation materials [62]. 

• Electrical detection identifies high-frequency electrical pulses which are generated in voids 

based on significant electrical stresses over those voids [63][64]. 

• Detecting acoustic emissions, Measurement of acoustic emissions (AEs) encompasses 

measuring attenuation, amplitude, and phase delays in PD-generated acoustic signals and is 

used in identifying and locating PD [64][65]. 
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• Detecting ultrahigh frequencies, Ultrahigh-frequency (UHF) methods are used routinely and 

consistently to monitor power transformer processes [62][66]. 

• Optical detection is an advanced and recently introduced method for identifying and locating 

transformer PD [67][68]. 

• Installing a high-frequency current transformer, High-frequency current transformers 

(HFCTs), or other sensors based on inductive coupling are applied to find online PD for power 

transformers [69][70]. 

• Transfer function measure, The high-frequency transfer function (TF) of the transformer’s 

windings is applied for the assessment and location of PD sources originating in windings 

[71][72]. 

2.3.13 Leakage reactance/short-circuit impedance measure 

Measuring short-circuit impedance (SCI) involves an assessment based on the frequency and 

is long-established in the detection of deformed windings or a displaced transformer core 

[73][74].  

2.3.14 Turns ratio test 

 The transformer turns ratio (TTR) test can identify short/open circuits between turns in a single 

winding [75]. 

2.3.15 Winding resistance test 

 Winding resistance tests are applied in detecting loosened connections, stand breakages, or 

faulty contacts within LTC. Measurement of resistance is to be carried out for each tap for LTC 

contact verification [43][76]. 

2.3.16 Core-to-ground resistance test 

 Most newer transformers have an intentional connection between the core and one ground 

point via a small bushing. This is to prevent circulating current as well as to identify multiple 

grounds. Grounding systems can be damaged or loosened during transport. 

2.3.17 Sweep frequency response analysis 

 Sweep frequency response analysis (SFRA) is applied in detecting mechanical deformations 

and transformer core/windings displacement and offers accuracy, sensitivity, cost-

effectiveness, and a non-destructive approach [77]. 
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Figure 2- 3: Condition monitoring and methods of diagnosis 

 

While for 70% of the most frequent fault types, diagnosis through DGA is adequate, further 

tests are necessary to demonstrate the occurrence of a mechanical fault. In order to detect edge 

burr faults, the optimal test types are for current alteration and the use of thermal imaging to 

test temperatures. 
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2.4 Review of works on edge burr faults 

Where an edge burr is poorly situated within the transformer core stack, short-circuiting occurs 

from one lamination to the next, causing an eddy current that adds to core loss [78]. This 

happens where burrs on opposing sides of the stack create closed pathways, which permit 

further circulating eddy currents. Although the burrs might be too minor to damage the core, 

the transformer’s operation can become less efficient: especially when high flux densities are 

used [79]. 

Edge burring can arise because of a range of issues, as shown below: 

• Lamination fabrication flaws are termed burrs. 

• When electrical steel is cut and punched, edge burring can be caused, leading to 

interlaminar short-circuiting.  

• Stack sides can be mechanically damaged when they are assembled, during winding, or 

when inspected. 

• When stacks are assembled, wound, or inspected, unintended components can be left 

inside them, e.g., broken laminations, nuts, or bolts. 

• Chemicals, heat, or mechanical pressure may occur when the winding is stripped and 

rewound. 

• Rubbing of the core can occur during construction or in service. 

• Vibrations from unsecured laminations or windings. 

• Failure of the windings leads to arcing. 

Edge burr faults, causing interlaminar fault currents, represent a central potential issue for those 

producing and purchasing electrical steel. 

Moses and Aimonitois (1989) investigated the effects of edge burr faults on overall power 

losses in a single-phase transformer core by placing artificially induced burrs on the core’s edge 

figure 2-4, with a core constructed using 3% silicon iron. Measurements of power losses were 

performed at 1.3, 1.5, and 1.7 T with a 50 Hz magnetising frequency. 
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Figure 2- 4: Schematic diagram illustrating eight artificially induced burrs located within a single-

phase core [79] 

For the artificial production of edge burring, holes of 0.3 mm diameter were drilled through the 

laminations close to their edge, and the insertion of a rod or pin made of steel to the necessary 

lamination layer for the specific test. Figure 2-5 shows pins located in a sample limb. 

 

Figure 2-5: Method of producing artificial burrs [79] 

Before measuring total power losses, power was applied to transformer cores with various 

artificially induced burr configurations. The findings were then examined in comparison to a 

core without burring. Measurement was carried out for localised losses across 32 locations on 

specified laminations by applying the initial rate of rising temperature approach. A specifically 

developed thermocouple bridge controlled by a microprocessor was used in scanning a 32-

thermistor array to assess losses, with thermistors located on laminations of the core for 

measurement of power losses. The findings reveal significant rises in power losses in relation 

to the number of laminations short-circuited together, with this trend increasing with the 

number of laminations involved. The reason for this is the closed pathway linking the burrs, 

which leads to extremely elevated localised losses near burrs [80][81]. 
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Aimoniotis and Moses (1993) applied finite element software to assess induced linear steady -

state eddy currents within cores [82]. This work used an equation derived from Maxwell's 

equations to describe time-varied electromagnetic fields (1) 

∇
𝑋1

𝜇
 ∇ 𝑥 𝐴̅ =  −𝜎

𝜕𝐴̅

𝜕𝑡
+ 𝑗 ̅                                                                                                      (2-1)  

where: 

∇ is the del operator, a vector differential operator used to calculate the gradient of a scalar field 

or the curl of a vector field. X1/μ is the impedance of free space (1/μ), where μ is the 

permeability of free space. A ̅ is the magnetic vector potential. σ is the electrical conductivity 

of the material. ∂A ̅/∂t is the time derivative of the magnetic vector potential, representing the 

rate of change of A ̅ over time. And j ̅ is the current density, representing the flow of electric 

charge in a material." 

Shorting each side of laminations was conducted, with current density variations being a 

lengthy line extending slightly under the surface of lamination three within the core, running 

parallel with the surface. The findings suggest that extremely high eddy current levels were 

present where each burr was located and in that immediate area, falling at a distance of 2.5 mm 

from the burr. Eddy currents grew in strength with higher numbers of laminations being 

shorted. Additional findings from the model show that edge burr effects arise solely in cases 

where the core has burrs on each side, and where a single side only is shorted, total power losses 

are unaffected. 

Schulz et al investigated the effects of short-circuiting two magnetic sheets in a simple study 

by applying insulation faults to opposing sides of the sheets. Application of the fault to a single 

side did not influence total power losses in figure 2- 6 due to the failure of the single fault to 

create a closed pathway for current induced at right angles to vector B as a flux density 

component [83]. 

 

Figure 2- 6: a Single-sided insulation fault, and b, faults on opposing sheet [81] 
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Mazurek et al.’s study consisted of experiments to assess effects from an inter-laminar fault in 

a 3-phase, 350 kVA transformer, in which burrs were artificially created using a clamping 

instrument in lengths of 10, 15, and 20 mm to short out respective numbers of laminations of 

33, 50 and 66. Simulation of edge burrs was conducted by pressing copper tape of 8μm 

thickness to the lamination stack sides using a wooden block before applying a firm clamp 

pressure from a torque meter clamp, thus applying burrs to a limb of the core figure 2- 7[82]. 

 

Figure 2- 7:Three-phase transformer core with clamp devise [82] 

The experiment utilised copper tape, which was similar in thickness to the size of the edge 

burring found in practice. It was found that use of the clamp had no influence on total power 

losses, which were measured via a power analyser. In contrast, localised loss in the presence 

and absence of burrs was calculated using an initial rate of rising temperature [82]. 

Mazurek et al. conducted a study to address challenges in quantifying increased loss from burr 

faults at the cut edges of electrical steel laminations within transformer cores by applying 

artificially induced burrs in a 3-phase, 350 kVA, 5-packet transformer core figure 2-8. 

 

Figure 2- 8: : Experimental 350 kVA transformer core with clamp device for application of 

artificially induced burrs, thermocouples, and locations of measurement by needle probe [84] 

Measurements were taken for overall losses of the core, distributed flux density, and localised 

losses close to burr positions. The burrs’ impact on total and localised loss was calculated using 
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a modified classical equation for eddy current based on the assumption that there is a non-

negligible thickness in the burred laminated sheets compared with width [84]. 

𝑷𝒆𝒅𝒅𝒚 =
𝝅𝟐𝒇𝟐𝒅𝟐𝑩𝟐

𝟔𝝆
                                                                                                           (2-2) 

The equation represents the formula for the power loss due to eddy currents in a conductor 

where: 

P_eddy is the power loss due to eddy currents. 

π is the mathematical constant pi. 

f is the frequency of the alternating magnetic field. 

d is the thickness of the conductor. 

B is the magnetic flux density. 

ρ is the electrical resistivity of the conductor. 

6 is a constant factor." 

𝑷𝓨 =
𝟒𝝅𝟐𝒇𝟐𝑩𝒎𝒂𝒙

𝟐

𝝆
 (

𝟏

𝟑
((

𝒃

𝟐
+ 𝒅𝒃)𝟑 −

𝒃𝟑

𝟖
))                                                           (2-3) 

"The equation represents the formula for the power loss due to hysteresis in a magnetic material, 

where: 

P_Y is the power loss due to hysteresis. 

4π^2 is a constant factor. 

f is the frequency of the alternating magnetic field. 

B_max is the maximum magnetic flux density. 

ρ is the electrical resistivity of the magnetic material. 

b is the width of the magnetic material. 

d_b is the depth of the magnetic material. 

The term (1/3((b/2+d_b )^3-b^3/8)) represents the volume of the magnetic material." 

The study shows that edge burr impacts are mainly seen in proportion to the number of 

laminations with burring: for the 66-lamination burrs, there was a 13% and 100% rise in power 

losses at 1.5 T and 1.8 T, respectively. In addition, edge burrs led to more significant 

temperature increases with greater local losses. Localised power losses were seen to occur up 

to 70 mm away from the boundary of the burred area. Burrs were induced across part of a 

lamination stack on a single limb, reducing uniformity in flux distribution across the whole 

core.  
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There was a significant rise in localised losses in the core with the largest burr region covering 

66 laminations, the specific total loss increases by 13% at 1.5 T and by 100% at 1.8 T. The 

effect of increasing the number of burred laminations on the local loss in the centre of the burred 

region at core flux densities from 1.5 T to 1.8 T. Between 1.5 T and 1.7 T a square relationship 

exists between the loss and the number of laminations, but this breaks down at higher flux 

density [84]. 

It has been shown here that burr faults can lead to flux distortions for cruciform stacked cores, 

in addition to causing raised temperatures locally inside and around the area with a burr. 

Significant decreases in flux density are also seen in burred areas compared with densities for 

experimental core limbs, with other regions showing a corresponding increase in flux. There 

was little correlation linking measurements and calculations for burr impacts.  This difference 

is likely caused by oversimplifying the model for the eddy current. However, issues with 

measuring thermal loss may also be a contributing factor because heat is transferred rapidly 

close to the burr. At the same time, the artificially induced burrs investigated show significantly 

more significant adverse impacts compared to burrs occurring in practice. 

Hamzehbahmani et al. (2013) proposed a measurement system for localised power losses in 

electrical steel lamination using the initial temperature rise rate technique. Unique design and 

development of the software and hardware elements aimed for accuracy in measurements., 

before running 3 experiments for systems calibration and quantification across a broad range 

of measures. The system’s applications were shown for two instances of localised power loss: 

close to lamination bolt holes and to artificially induced lamination edge burring for 300 kVA, 

3-phase transformer cores [85].  

The experiment's findings demonstrate the system's ability to measure localised power losses 

across a broad spectrum, giving <2% uncertainty in measurement. However, care in 

interpretation is needed for areas where significant loss variation is found within a region 

measuring only a few cm. The suitability of the measurement system was shown for measuring 

localised loss surrounding lamination bolt holes and close-to-edge burrs with nonuniform loss 

distributions across a spectrum of a loss of approximately 0.4 W/kg, for which the greatest 

uncertainty level was under 2% [85]. 

The experimental findings showed the application of the measurement system for broad-

ranging localised power losses with under 2% measurement uncertainty. At the same time, 



Chapter 2: Power transformer fault detection methods and Effects of laminations fault 

 

 

 

22 
 

 

lower flux densities gave lower signal-to-noise ratios because of the small temperature increase. 

An improved adiabatic box, such as a vacuum chamber, would be preferable in such cases. 

Hamzehbahmani et al. (2014) find that edge burring can occur when electrical steel is cut and 

punched, subsequently causing short-circuiting inter-lamination. An analysis approach was 

designed based on equivalent electric circuits for eddy current paths, which could estimate the 

core’s current power loss due to this fault across broad flux density and magnetising frequency 

ranges. The work considers skin effect, nonuniform flux density distribution, non-linear B-H 

relations, and complex relative permeability as significant variables not extensively addressed 

in other works. Foundational principles related to interlaminar faults and the issues they cause 

were examined, considering their impacts on magnetic core configurations, and verification 

was conducted through finite-element approaches, with the application of a 2-D FEM model 

see figure 2-9 for equivalent configuration verification as well as visualisation of the pathways 

of eddy current traveling along the thickness of the laminations [86]. 

  

Figure 2- 9: (A) and (B)2D FEM model for distribution of eddy currents within magnetic laminations 

impacted by burrs using a 50 and 100 Hz frequency respectively of magnetisation for: (a) 2, (b) 3, and 

(c) 5 laminar sheets. [86]. 

From the FEM models and findings from analysis, the skin effect is identified as central to 

investigating eddy current power losses in magnetic cores across both higher and lower 

frequencies, in which edge burrs impact the core [86]. 

Hamzehbahmani et al., in the second of a 2-part paper (2014), generated a model of analysis 

for estimation of power losses from eddy current for magnetic cores displaying interlaminar 

faults using an analogous core configuration and eddy current circuit paths across a broad 

magnetising frequency spectrum. Artificial shorting of stacks containing 2, 3 and 4 Epstein-

size laminar layers was performed, and the additional power losses due to interlaminar faults 

were measured, supporting the analytical model see figure 2-10. Significant factors frequently 

ignored in previous studies are addressed, including skin effect, complex relative permeability, 

non-uniform flux density distribution, and nonlinear B-H relations. 
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Figure 2- 10: (a) Magnetic lamination stack. (b) Equivalent of pure resistive circuit. (c) Equivalent 

of RC equivalent circuit [87]. 

The findings show that where the magnetic core had an interlaminar fault, the skin effect was 

definitive in determining high and low-frequency magnetic properties [87].  

Eldieb et al. (2015) investigated the impacts of edge burrs for machine laminations across 

varied magnetising frequencies and setpoints. This experimental work was performed via a 

strip tester. The findings suggest that edge burr faults significantly impact the core’s magnetic 

characteristics and that the location of the edge burr and the number of laminations shorted are 

the main determinants of the eddy current induced. In addition, it was found, based on power 

loss separation, that loss from eddy currents increased significantly as the number of laminar 

layers shorted rose [15]. 

Laminated toroidal core materials are becoming more widespread across various application 

areas, with varied magnetising frequencies and power ratings figure 2- 11. 

 

Figure 2- 11:: Test sample in clamp [88]. 
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The lamination cutting procedure is a factor within increased power loss arising from interlayer 

short-circuiting through edge burrs, based on measuring specific power loss of electrical steel 

measured in 2 toroidal core specimens with different parameters. Measurement was taken at  

1.5 T across a spectrum of magnetising frequencies. In addition, the study took into account the 

effects of inter-laminar short circuits, simulating the impacts of this fault on overall power 

losses across various frequencies using artificially induced burrs. Surface flux distribution was 

also examined using the COMSOL Multi-Physics modeling program [88]. 

The findings related to specific power losses for grain-oriented electrical steel were found 

through measurements carried out for two differently sized cores to examine the effects of size 

parameters on overall power loss measurements see figure 2-12. 

 

Figure 2- 12: Dimensions for 2 toroid cores: (a) 60 *120*20 mm and toroid (b) 80*146*20 mm 

[88]. 

Concentrations of magnetic flux were examined for the surface of the two toroids via 

COMSOL, supporting the findings achieved. The study investigated impacts from inter-

lamination short-circuiting or edge burr faults. The findings show that the higher the number 

of laminations shorted, the greater the power losses[ 88]. 

Poveda-Lerma et al. (2016) examined the impacts of the magnetic core laminations for an EI 

transformer, validated using an experiment see figure 2-13 as well as 3D FEM modeling, and 

comparison to a conventional 2D model [89]. 
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Figure 2- 13:Prototype cores applied to verify experimental findings alongside the relevant 

exploratory coils. Left: 2-block magnetic core with a single E I. Right: magnetic core constructed with 

a number of E I sheet transpositions [89]. 

Based on the findings, lamination is a central factor in inter-laminar magnetic flux flows. It is 

necessary to examine this impact when designing a novel magnetic core to minimise saturation 

and loss in specific areas and minimize the use of materials [89]. 

Shah et al. (2017) identified equivalent conductivity (the electrical conductivity of a material 

that would have the same magnetic properties as the actual core material) for the EI core in the 

presence or absence of interlaminar contact via 3D FEM calculations and measures in figure 2-

14. 

    

(A) (B) (C) 

Figure 2- 14: (A) Magnetic flux density (T) for 50 Hz (healthy condition). (B) Magnetic flux 

density (T) for 50 Hz (single-limb fault). (C) Magnetic flux density (T) for 50 Hz (2-limb fault) 

[90]. 

An investigation was carried out on the impact of contact between laminations upon the core’s 

equivalent conductivities. When this fault was present in a single limb, a 2% rise in the eddy 

current loss coefficient was seen, while 2-limb interlaminar faults caused a 2.7% rise in the 

eddy current loss coefficient compared to the normal condition [90]. 

Hamzehbahmani conducted a detailed (2020) analytical study of energy loss and its 

components for stacked grain-oriented electrical steel laminations with various faults induced 
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across laminations using non-sinusoidal and sinusoidal induction figure 2-15. The study 

proposed a practical approach for monitoring magnetic core quality based on dynamic/static 

hysteresis loop measurements.  

 

Figure 2- 15:  Stacked laminations seen in perspective: (a) no interlaminar fault (Pack#1); with 

interlaminar faults, (b) Across 3 step-like points (Pack#2), (c) With 1 set-point (Pack#3), (d) With 3 

set-points (Pack#4) [91]. 

Based on the findings, interlaminar faults significantly affect core dynamic energy losses and 

performance, with minimal effect in terms of hysteresis losses. In addition, such faults cause 

greater damage with non-sinusoidal induction, meaning that in non-sinusoidal uses, there is a 

greater need to monitor magnetic cores [91]. 

Secic et al. (2019) state that each diagnostic process should lead to knowledge about the 

physical events occurring inside and surrounding a specimen. Effective diagnostics, including 

signal analysis and extracting and classifying features, should indicate the reasons for an event 

occurring at a particular time point and the potential causes of these events. Considering this, 

modelling through simulations that are descriptive of the physical process is very useful. A 

range of software can be used for simulation of this type, with continual development in this 

area, and is extremely helpful. Evolving approaches to signal-to-process can be seen within the 

acoustic signal analysis to evaluate the condition of transformers. This has allowed the 

characteristics of strongly non-stationary signals to be extracted, for example, and further 

approaches to classifying and recognising patterns will continue to be developed. However, 

currently, there is a dearth of fingerprints related to various transformers. Now used and future 

approaches to diagnosis could be made more reliable by creating a database of acoustic 

signatures for research and industry use. This would allow the performance of the various 
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approaches to be compared and those with the greatest reliability to be adopted but would 

require these groups to co-operate to achieve this [92]. 

2.5 impacts of insulation damage fault 

Electrical machine cores generally consist of laminated steel in these layers, as this design 

reduces eddy current loss to allow highly efficient operation. The layers are coated with an 

inorganic substance on each side, this thin layer is usually between 1 and 3μm in thickness, and 

this stops the layers from direct electrical interaction with each other. Degradation of the inter-

laminar insulation in the transformer core can occur from several sources, such as:  

• Aging of lamination coating.  

• Mechanical damage from external objects. 

• Overheating of laminations in the region of a winding failure [93][94]. 

Insulation degradation occurs due to displaced core steel and time factors. When the insulation 

separating laminations of power transformers breaks down, this can cause severe failures in 

large transformers and causes accidental outage, which can be costly to remedy and leads to 

financial loss. Moreover, the insulation quality in terms of materials and production, as well as 

the transformer motion and short-circuiting, can be factors in the lamination insulation 

becoming mechanically damaged [95][96][97][98].  

When electrical steel coatings are damaged in an extensive area, the laminations can touch, and 

eddy currents flow over the volume. This can be simulated, as figure 2-16 shows, displaying 

eddy currents which can occur when laminations are short-circuited [99]. It is possible to ignore 

the current where the shift occurs across double the sheet width, as it is under 10% of the 

maximal magnitude [100]. In general, vibration, arcing, and heating lead to insulation 

degradation between the sheets. These actions may result in an electrical shorting between the 

stacked laminations. Several works have been carried out to study these faults experimentally 

[84][101][102]. 

 

Figure 2- 16: 3-D numerically simulated for a basic short-circuit [7] 
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2.6 Fault detection based on machine learning.  

Machine learning was used to detect and classify transformer faults. A probabilistic Neural 

Network (PNN) was used to differentiate various operating conditions in a transformer in 

reference [103]. Artificial Neural Networks (ANN) trained with Genetic Algorithm was used 

by Balaga et al. to detect and classify faults [104]. A support Vector Machine (SVM) was used 

for the identification of different transformer winding faults (mechanical and short circuits) 

[105]. Reference [106] proposed Relevance Vector Machine (RVM) to detect and classify the 

faults and argued that RVM offers better performance than PNN and SVM. Shin et al. used a 

fuzzy-based method to overcome mal-operations and enhance conventional differential relays’ 

fault detection sensitivities. Segatto et al. [107] [108] proposed two different subroutines for 

transformer protection based on ANN. Shah et al. [109] used Discrete Wavelet Transforms 

(DWT) and SVM based differential protection. Barbosa et al. used Clarke’s transformation and 

Fuzzy logic-based technique to generate a trip signal in case of an internal fault [110]. RF 

classifier was used to discriminate internal faults and inrush [111]. DWT and ANN were used 

to detect and classify internal faults in a power transformer [112]. Wavelet-based protection 

and fault classification in a Phase Shift transformer (PST), a special transformer, was used in 

[113][114]. Ensemble-based learning was used to classify 40 internal faults in the PST, and the 

performance was compared with ANN and SVM [115]. In [116] DT based algorithms were 

used to discriminate the internal faults and other transient disturbances in an interconnected 

system with PSTs and power transformers. The applicability of seven machine learning 

algorithms with different sets of features as inputs for the detection and localization of faults 

was investigated in [117]. 

2.7 Summary 

This up-to-date (2022 published works) comprehensive review of all diagnostic testing and 

condition monitoring confirmed that artificial intelligence was not yet applied to diagnose the 

transformer core lamination faults. 

Each reviewed study investigated simulation methods of transformer core burr faults designed 

to permit the measurement of artificially induced burrs repeatably and reversibly. These burr 

approaches use methods that do not impact the core's performance: e.g., clamping systems. 

From a range of approaches and materials investigated, it was found that copper foil performs 

most reliably and repeatably in the simulation of artificial burrs, which is based both on its 
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reversibility and increased control of experimental variables, as well as being flexible enough 

to be applied across a wide range of configurations.  

This review confirms the effects of edge burr faults on power transformer core performance 

based on previously published work. While a significant alteration in the way flux density is 

distributed in a limb is seen where edge burring occurs within a limb/yoke in the transformer 

core, there is an additional and significant effect on this distribution across the entire core 

structure. It seems probable that impacts from rising overall losses linked with edge burring 

become more effective at densities of over 1.5T in the transformer core modelled based on the 

skin effect and redistributed flux density in the core’s cross-section where burrs occur. 

Moreover, edge burring of laminations leads to losses in the locality of the fault, which are over 

600 times greater than usual core losses, with the models' findings showing strong agreement 

with the measured values in the studies. Moreover, when localised losses are measured, it is 

found that the area impacted by such losses correlates with the central location of a burr fault. 

This work has reviewed diagnostic testing, and condition monitoring applied to substation 

transformers. Covering studies over an extensive period seek to determine causal factors and 

potential solutions to the problems involved in this area and to determine which factors most 

significantly affect the active lifespan and performance of power transformers.  

The review concludes that condition monitoring, diagnostics, and maintenance for transformers 

are essential, decreasing the cost of maintaining the machines and reducing the risk of serious 

adverse events. Such activities allow power transformers to remain operational for a longer 

lifespan. The studies reviewed clearly demonstrate the significant role being taken by 

developing technology in this field, including intelligent software for developing new 

approaches to diagnosis and maintenance which provide high reliability in the data produced 

and allow assessment of the equipment in use in the power network. 

Degradation of the inter-laminar insulation in the transformer core significantly affects the 

cores’ magnetic properties. As shorted lamination numbers increase, the temperatures and the 

power loss increase significantly. 
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CHAPTER 3: Lamination faults in power transformer: 

experimental setup and data acquisition  

This chapter describes all the pieces of equipment that have been used in this research to carry 

out the experimental tests. The different types of faults, specific faults, the test rig and the data 

acquisition, have also been described. Furthermore, the data collection procedure has been 

explained. It also presents the healthy and faulty signals of the power transformer to be used to 

detect the power transformer faults using the current signals and thermal images.  

3.1 Introduction:  

Power transformers are electric power systems' most expensive and strategic components [1]. 

It plays an essential role by interconnecting in every stage of the power transmission and 

distribution system[2]. The failure of a power transformer directly affects the reliability of the 

whole network[3]. Failures in transformers may cause disturbances to operating systems, 

resulting in unprepared outages and power delivery problems also can be costly [4]. Several 

works of literature have reported many power transformer failures in various electric utilities 

across the world CIGRÉ A2.37 working group[5].  

Statistics show that 70–80% of the power transformers' damages arise from internal faults. It is 

begun with a slight discharge within the tank [6]. If this phenomenon is prolongs, the discharge 

currents can damage the transformer more, accelerating the insulation breakdown and finally 

completely damaging the transformers[7][8]. Internal faults can be divided into internal short 

circuit faults and incipient internal faults [9]. External faults occur due to external short circuits 

of the power system and improper utilizing conditions such as over flux, overload, and voltage 

[10]. 

The reason for these types of faults is the insulation failure and short circuits of conductors with 

different voltages. As a general rule, there are several reasons for the faults in transformers[11]. 

The percentage of faults in different parts of the power transformers is presented in [12] and 

[13]. On the other hand, according to CIGRÉ WG A2.37 and surveys from some locomotive 

maintenance departments in China the deteriorated and damaged insulation coatings of 

lamination layers (often caused by winding inter-turn arcing faults, manufacturing defects, and 

mechanical damages due to assemblage, regular maintenance, and abnormal vibration, etc.), as 

well as edge burrs (always produced in the processes of slitting, punching, and cutting) are the 

main origins of multipoint ground faults and interlaminar faults [14][15]. 
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The cores of electrical machines are built from thin electrical steel laminations to reduce the 

eddy current loss [16]. Each lamination is coated on both sides with an inorganic coating. The 

process of punching and cutting the electrical steel causes mechanical stress, which deforms 

the sheet and deteriorates its magnetic properties[17]. Mechanical deformations shear causes 

burrs on the cut edges[18]. These burrs tend to cause insulation breakdown between the sheets 

resulting in electrical shorting between the stacked laminations. Thus it causes the potential for 

complete machine failure[19][20]. Some studies have shown a dramatic increase in the eddy 

current power loss when connecting core edges[21].  

3.4 Sample preparation and fault generation 

Faults were applied, and data were collected in multiple methods to investigate possible faults 

caused by the edge burrs, resulting in reduced power delivery, leading to the transformer’s 

failure. 

The transformer’s failure is one problem that should get much attention because the transformer 

fails to function. It would cause some issues, such as unpleasant financial outcomes. That is 

one of the main reasons for regularly checking transformer operations to avoid failure by 

establishing preliminary diagnosis through artificial intelligence. Applying faults will be 

discussed in detail in the next chapter. 

3.5 Condition monitoring scheme 

The most important phase is training because it prepares the data and trains the classification 

algorithm (train model). In contrast, the prediction phase depends on the training phase for 

predicting the new incoming data (unseen data). The specified power transformer has been 

tested to check whether it works in a healthy or faulty condition. In case of healthy conditions, 

the overall signal condition should be identified by the machine learning algorithms and keep 

the transformer running safely. However, suppose the machine learning indicates that the power 

transformer has fault in any parts. In that case, maintenance action should be taken immediately, 

and repair or change of the transformer should be done in order to prevent catastrophic issues. 

Figure 3-1 illustrates the research framework and procedure followed to reach the main goal, 

which is classifying the PT faults accurately. 
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Figure 3- 1: Condition monitoring scheme 

3.6 Test rig equipment and data collection 

A testbed has been built and located at Cardiff University, School of Engineering, and it has 

been used to perform all the experimental tests for this work figure 3- 2.  

 

Figure 3- 2: Experimental setup 

The experimental test rig in this research consists of as follows: 

3.6.1 Three-phase power transformer core 

This part describes the structures of transformer core models used in the data collection and 

investigation. And describes the procedure for the measurement of temperature and current. 
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Some of the transformer core models were assembled from three grades of electrical steel: 

conventional grain oriented (CGO), high permeability grain oriented (HGO), and laser scribed 

domain refined (LDR), using a similar procedure to the manufacturers with laminations 100 

mm wide, 0.3 mm thick and density of 7650 kg/m3. The significant differences between these 

three materials are Magnetic flux density at a magnetic field of 800 A/m, 50 Hz, and core loss. 

They have the same texture, known as Goss texture or cube-on-edge texture [22]. Norman P 

Goss developed it in 1933 [23]. The HGO material has a more prominent grain size and lower 

core loss than the CGO. The LDR was developed to reduce core loss of the HGO through 

reducing the width of magnetic domains by means of laser irradiation [24].   

Transformer cores are usually built up from a stack of grain-oriented electrical steel 

laminations. To minimise the core losses due to magnetic flux flow across the lamination grain 

orientation direction (rolling direction) at the joints, the ends of the lamination are cut at 45° to 

the rolling direction. The jointing is known as a mitred joint [25]. To stack the laminations, an 

overlap is needed. If the stack has only one step overlap (two different shapes of laminations), 

it is called a single step lap (SSL). If the stack has more than one step overlap (three or more 

different shapes of laminations), it is termed a multistep lap (MSL). There are two constructions 

of step overlap: cross step and longitudinal step as shown in Figure 3-3. 

 

Figure 3-3:The mitred joint constructions (a) Cross-step construction (b) Longitudinal step 

construction [26] 

Mitred joints can have single step lap or multistep lap. Each step can be assembled  with one 

or more laminations depending on the size and cost of the cores [27]. figure 3-4 shows 

photographs of the multi-step lap and the single step lap configuration of corner joints 
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Figure 3- 4:Examples of corner joints. (a) Single step with three laminations per layer and 6 mm of 

length overlap shift. (b) Four-step MSL joint with one lamination per layer and 6 mm overlap length 

(these are not the values used in the investigation but are included for illustration) [25]. 

Three-phase power transformer core and its specification has been illustrated in figure 3- 5and 

table 3-1. The transformer core has windows 320 mm × 120 mm build up as well as the core 

width 540mm. And height 520mm.  Primary and secondary windings were evenly wound along 

the limbs with 50 turns each of insulated copper wire, 1.5 mm2. The numbers of turns were 

calculated from Faraday’s induced voltage equation as shown in Eq.3-1. 

Number of turns = 
𝑉

4.44.  𝑓𝐵A𝑐
 turn                                                                                    (3-1) 

where (V) is induced voltage (V), (f) is the frequency (Hz), (Ac) core cross-sectional area (m2), 

and (B) is the flux density. 

The size of the conductor was calculated from the approximate apparent power per unit weight 

of the laminations, the core weight at a maximum magnetic flux density, and the approximate 

current density [26]. 

 

Figure 3- 5:Power transformer core used in the experimental work 
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Table 3- 1: Transformer specification 
Core  3-ph MSL 

Wight  115kg 

Primary turns ration 50 

Secondary turns ration  50 

Frequency  50HZ 

Width 540mm 

Height 520mm 

 

Figures 6, 7, and 8. show the dimensions of the yoke, outer limb, and middle limb of a three-

phase, three-limb transformer core with a multistep lap configuration. Identical dimensions of 

the middle layer of the yoke and outer limb of the multistep lap configuration were used for the 

single-step lap configuration. Typical dimensions of the middle limb of the single-step lap 

configuration are shown in figure 3-9. 

 

Figure 3- 6:Dimensions of the yoke of three phase three limb transformer core with multistep lap 

configuration [26] 

 

Figure 3- 7:Dimensions of the outer limb of three phase three limb transformer core with multistep 

lap configuration [26] 
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Figure 3- 8: Dimensions of the middle limb of three phase three limb transformer core with 

multistep lap configuration [26] 

 

Figure 3- 9:Dimension of the middle limb of three phase three limb transformer core with single 

step lap configuration [26] 

 3.6.2 Data acquisition 

The output data (signal) that are received from the current transformers will be connected to 

the National Instrument Data Acquisition card (NI-DAQ USB-6211, 16 AI multifunction I/O) 

figures 3-10. 

 

Figure 3- 10:National Instrument Data Acquisition card (NI DAQ USB-6211 16 AI multifunction 

I/O) 

3.6.3 LabView software  

The LabView version 2019 software has been used to save the current data as “Excel” or “csv” 

file to be used for further processing figure 3-11. 
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Figure 3- 11: LabView circuit for collecting the transformer current data 

3.6.4 Current transformer 

Figure 3-12 three current transformers have been used for core magnetising current reading 

(three phases); they are fitted to measure the input current. A power analyser was installed to 

measure the output current; the specification of the current transformer has been described in 

table 3-2. 50 Watts and 1Ω resistors have been inserted between current transformers and the 

DAQ to determine the actual individual current values by measuring voltages crossing them. 

 

Figure 3-12: current transformers 

Table 3-  2: Current transformer specification 
Attribute Value 

Current Ratio 40:5 

Maximum Cable Diameter 21mm 

Overall, Height 65mm 

Overall Width 45mm 

Overall Depth 30mm 

Minimum Temperature -30°C 

Maximum Temperature +85°C 
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3.6.5 Power analyser 

The measurement of no-load loss of the 15 kVA three phase-transformer in the project was 

made using a NORMA D6100 power analyser utilising the three-watt meter method, measuring 

all three voltages of the star-connected secondary windings, figure 3-13. 

 

Figure 3- 13: NORMA D6100 power analyser 

 3.6.6 Thermal camera 

FLIR C2 thermal camera has been used in this experiment in order to capture the thermal image 

of the healthy and faulty transformer cores. This camera has a resolution of 640× 480 pixels 

with an image frequency of 9Hz. The temperature within the range of − 10 to + 50 °C can be 

measured for an accuracy of + 2 to − 2 ℃ of reading. The Thermal camera is placed 0.8 m away 

from the transformer core. Six images for each scenario during the whole day and with a 

resolution of (80 × 60) are taken during the time intervals of 15 min for each flux density value. 

The specification of this camera has been illustrated in figure 3-14 below, and its specification 

in table 3-3. 

 

Figure 3- 14: Thermal camera 
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Table 3- 3: Thermal camera specifications 
1 Focal length 1.54 mm 

2 Size (L*W*H) 124.46*78.74*12.44 mm 

3 IR sensor 80*60 (4,800 measurement pixel) 

4 Operating temperature range -10°C to +50°C 

5 Storage temperature range -40°C to +70°C 

6 Digital camera 640*480 pixel 

7 Image frequency 9 Hz 

8 Accuracy ±2°C 

9 Thermal sensitivity < 0.10°C 

3.6.7 The clamp device 

A clamping device shown in figure 3-15 was designed to fit the experimental core described in 

this section. It consists of two wooden plates that do not affect the magnetic field, secured by 

two bolts that enable a known pressure to be applied to the copper foil on both sides of a stack 

of laminations.  

 

Figure 3-15: clamping device 

The effect of the clamps without artificial burrs applied on the total specific power loss of the 

core was nearly no effect at 1.7 and 1.8T, as shown in figure 3-16[28]. 
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Figure 3-16: Effect of the clamping device on the total specific core losses of the three-phase 

transformer [28] 

Grooves are drilled on the surface of the wooden block from the inner side opposite the iron 

core of the transformer in order to fix the conductive foil. The wooden blocks were later located 

on both sides of the stack and gradually tightened each of the four bolts in turn to ensure even 

pressure distribution. A torque value of 20 Nm on each bolt was chosen to ensure repeatable 

experimental results. A photo of the components of a single artificial burr application is shown 

in figure 3-17. The edge of the limb of the experimental transformer is shown on the left. 

 

Figure 3-17: Artificial burr setup 

The clamping device allows burrs between just two or three limitations to the experimental 

Core. A schematic of the application location is shown in figure 3-18. A burr of height HB and 

length LB is applied here to stack C of one of the transformer core limbs. 
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Figure 3- 18: Artificial burr placement and dimension labels 

The clamping device allows for the application of artificial burrs in different configurations on 

the core layout. Two clamping devices can be placed on the same limb enabling the application 

of the short circuits not opposite each other but in a shifted configuration. The possible short-

circuit placement is shown in figure 3-19, marked with red circles. 

 

Figure 3- 19: Sketch of example artificial burr clamping placement configurations 

3.6.8 Multi-functional rotary tool 

A 135W Rotary Tool has been used for removing around 400mm2 insulation material of the 

power transformer core laminations for the second fault for this thesis figure 20. 
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Figure 3- 20: Rotary Tool for laminations insulation removal 

The data collection, analytical procedure, and results obtained from the power transformer 

faults are described in the next chapter. 

3.7 Summary  

In this chapter, the proposed experimental setup of power transformer core data collection has 

been described and explained in detail. This fault-test system has been developed in the 

Wolfson Centre for Magnetics for such testing. This system helps measure different 

electromagnetic parameters and properties (i.e., voltage, current, flux density, etc.). The next 

chapter will describe the proposed feature extraction methods from the current signal and 

thermal image using LabView–MATLAB software. 
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CHAPTER 4: Lamination faults in power transformer: results 

interpretation using signal processing techniques applied to 

current signal. 

The chapter reports on collected data for a faulty power transformer core. The data is analyzed 

to detect, diagnose, and assess the severity of seeded faults. The experiment uses a 15 kVA 

three-phase power transformer and considers different scenarios, such as the affected region 

and number of short-circuited laminations. The results show that the transformer current 

increases with the number of short-circuits for both faults (edge burr and lamination insulation 

faults), which is related to the flux density and can indicate the severity of the faults. 

4.1 Introduction 

Edge burrs from cutting and punching steel and degraded lamination insulation can cause 

interlaminar short circuits in power transformer cores. Analysing these faults improves 

understanding of their impact on the transformer's reliability and performance. Power 

transformers are key components in electrical energy transmission and distribution systems. 

[1], [2]. 

Regarding their importance in the energy systems, reliable and safe operation of the 

transformers is of great significance to guarantee a long lifetime [3]. Power transformers have 

a significant impact on the cost of power transmission and distribution, and they should last 

several decades. Monitoring their condition is important. [4]– [6]. Health conditions can be 

assessed through the state of its insulation systems, such as the insulating oil [7] and that 

between windings or inter-laminations [8]. Quality control tests are necessary for testing filled 

transformers and reliable monitoring and diagnostic techniques are required to detect faults and 

avoid catastrophic failures, improving equipment reliability through an efficient predictive 

maintenance program [9], [10]. The operation status of a transformer has a direct impact on the 

safety of the power system due to its significant influence [11]. 

Power transformers can be affected by numerous issues authors in [12] analysed data on 343 

power transformer failures occurring in the voltage range of 33–400 kV. As reported in their 

work, insulation problems were the most common cause of failure, covering 36.74% of failures 

in power transformers. Among many other failures, winding, bushings, on-load tap changer, 

and core failures are the most pertinent. The core failure can be identified as a primary failure 

regarding the laminations and interlaminations issues [13].  
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Transformer cores are made of many thin electrical steel laminations to minimize eddy current 

losses and increase efficiency. The core laminations may be affected during the processes of 

building the core [14]– [16]. For instance, the process of punching and cutting the electrical 

steel can deform the sheet shape and deteriorate its magnetic properties [16]. several works 

have been carried out to study these faults experimentally (e.g., [17]– [19]). Other authors tried 

to study the impact of edge burrs and interlaminar short-circuits by computer simulations (e.g, 

[20]– [22]). Such as FEM models [15]. Iron loss models have also been proposed to help 

develop a more accurate design of high-speed motors, including the punching effects (e.g., 

[23]). 

In this thesis, experiments have been conducted to show the impact of short circuits in 

transformer laminations from edge burrs and insulation degradation. A fault-testing system has 

been developed using a 15 kVA three-phase power transformer. Different fault scenarios, such 

as affected region area and short-circuited laminations, were considered. The current at no-load 

was recorded for various flux densities (0.5 to 1.8 T). 

The following section explains the experiment setup used to study the impact of lamination 

faults in power transformers. It describes the data collection system and process. Section 4.3 

shows the process used to create edge burrs and insulation degradation faults. Results for each 

type of fault are presented and discussed in Section 4.5. A comparison between both faults is 

given and conclusions are summarized in the last section. 

4.2 Experimental setup and sample preparation 

This section explains the data collection system and process used to investigate the impact of 

lamination faults in power transformers. A fault-test system has been developed in the Cardiff 

School of Engineering for such type of testing. This system helps measure different 

electromagnetic parameters and properties (i.e., voltage, current, flux density, etc.). Figures 4-

1a and 4-1b show a photo of the experimental setup and a schematic diagram of the 

measurement system, respectively. 
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(a) Experimental setup (b) Per phase schematic diagram 

Figure 4- 1: Experimental setup and a schematic diagram for the laminations faults analysis 

In fact, the test rig consists of several components, including a three-phase power transformer 

of 15 kVA, current transformers (with shunt-resistance), and a data acquisition system 

connected to a laptop for data analyses and signal processing in LabView–MATLAB software 

environment. Clamps are designed to be used for fixation during the application of faults and a 

Rotary Tool used for removing around 400mm2 insulation material of the power transformer 

core laminations for the second fault for this work. Flux densities are calculated from the 

measured voltages and currents using the power analyser connected to the power transformer.  

It should be noted that a thermal camera is used in the experimental test, but its results are not 

within the scope of this chapter.  

It is well known that the transformer's total loss is composed of ohmic loss, iron loss and 

additional loss. According to [24], the core-loss component is usually much larger in magnitude 

than the other two components in transformers with a magnetic core. Indeed, this investigation 

mainly considers iron loss since both types of faults are directly applied to the transformer core 

(laminations). The magnitude of the iron loss is basically independent of the magnitude of the 

load, which means that the no-load loss is equal to the iron loss at the load, but it is the case at 

the nominal voltage. The no-load current measurements can express no-load loss or iron loss. 

For this reason, a transformer no-load test has been carried out by applying the nominal voltage 

(220 V) of the primary set of transformer coils when the secondary coils are open. 

As shown in this figure, the clamping device consists of two wooden plates secured by two 

plastic bolts, enabling good pressure on the copper foil on both sides of a stack of laminations, 

The pressure required for the clamping device is approximately 20 N/m. Both wood and plastic 
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are transparent to electromagnetic waves. Thus, their effects on the experimental results can be 

neglected. In fact, several works have neglected the effect of the clamping device (e.g., [17]). 

 

Figure 4-2: Clamping device used for the laminations fault fixation 

4.3 Artificial lamination faults 

Mechanical deformations shear causes burrs on the cut edges, usually followed by the process 

of punching and cutting the electrical steel, as represented in figure 4-3. These deformations 

may affect the performance of the transformer and cause power losses. In this investigation, 

two types of faults have been considered in the transformer core. These faults are the edge burrs 

and insulation deterioration between laminations, which are the most commonly appeared 

faults in transformers. The forthcoming parts explain each fault individually. 

 

Figure 4- 3: Representation of edge burrs faults in three-phase power transformer - laminations short-

circuit 

In order to study the impact of the edge burr fault, the healthy operation mode is firstly 

investigated. In this mode, voltage and current in the three phases have been recorded for 

different flux densities to guarantee satisfactory results. Flux densities of 0.5, 0.8, 1.0, 1.5, 1.7 

and 1.8 T have been considered. The measured results are re-examined three times to ensure 
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reliable and feasible quality. For instance, a whole day is allotted to take the data of each fault 

separately in order to leave the transformer core enough time to cool down. 

4.3.1 Edge burr fault 

To simulate the edge burr fault, a short-circuit has been created between laminations of the 

transformer core. According to the number of sheets in short-circuit (affected area), four 

scenarios have been selected for this type of fault. Figure 4-4 shows the four considered faults 

(From scenarios 1 to 4) and indicates the affected area of the transformer core. In the first 

scenario of the edge burr fault shown in figure4-4(a), a metal chip has been inserted to create a 

short circuit between two adjacent laminations out of 520 in the transformer core. The coverage 

area of the short circuit is 45 mm in length and 0.5 mm in thickness (i.e., 22.5 mm2), which is 

guaranteed two laminations be short-circuited at a certain location and then increase the number 

of places.  

 

Figure 4-4: Artificial edge burr lamination faults (a) scenario 1, (b) scenario 2, (c) scenario 3 and 

(d) scenario 4 
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In addition, a 9.7 mm chip is also used to increase the number of short-circuits between 

laminations up to 33. As demonstrated in figure 4-4(b), the coverage area in this scenario is 45 

mm in length and 10 mm in thickness (i.e., 450 mm2). In figure 4-4(c), 1.3 mm copper wire has 

been used to create a short-circuit between 4 laminations, covering an area of 58 mm2: 45 mm 

length and 1.3 mm thickness. The fourth scenario of faults is shown in Figure 4(d). In this 

scenario, a short-circuit between 2 laminations has been created, which covers an area of 135 

mm2 (9 mm*15 mm). 

For the edge burrs fault, the stage of collecting data was without applying any faults (Healthy) 

when the flux density was 0.5 T, -1.8 T to guarantee satisfactory results. Afterward, the faults 

were introduced by implementing faults in two and three places with different scenarios in 

many positions across the transformer core see figure 4-5. It will be explained in detail in the 

next chapter. The clamping device allows for securing burrs of various sizes to the experimental 

core. A schematic of the application location as well as the clamping device allows for the 

application of artificial burrs in several different configurations on the core layout. The possible 

short circuit placement and the locations of the faults are marked with blue circles and crosses 

to avoid any similarities in locations, as it’s expected that the behaviour of the flux on those 

locations are the same. 

 

Figure 4-5: Locations of the Edge Burrs faults 

4.3.2 Lamination insulation fault 

Thin electrical steel laminations form the cores of electrical machines to reduce the eddy current 

loss for high-efficiency operation. Each lamination is coated on both sides with an inorganic 

coating. This thin layer is usually 1 to 3 µm in thickness, used to prevent any direct electrical 

contact between laminations. Degradation of the inter-laminar insulation in the transformer 

core can occur from a number of sources, such as the aging of lamination coating, mechanical 
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damage from external objects, and/or overheating of laminations in the region of a winding 

failure. In order to study the impact of such types of lamination faults, the experiment involved 

applying these faults and then gathering data to examine the transformer state in faults from 

insulation breakdowns see figure 4-6. 

  

Figure 4-6: Experimental setup used for the laminations fault analysis 

Insulation faults have been prepared by removing the insulation on the corresponding 

laminations and putting a copper chip between them to maintain connectivity figure 4-6. 

Damaged insulation faults are created on the two opposing sides of a selected number of 

transformer core laminations. Short-circuit of 2, 6, 8, and 12 core laminations are considered 

for flux density of 0.5, 1.0, 1.5, 1.7, and 1.8 T. Damage has been generated by removing around 

40 mm2 of the insulation material by applying rotary equipment. It is worth noting that the faults 

are produced at different locations in the transformer core. Figure 4-7 shows a total of 5 sites 

on the core of the transformer have been selected as described below: 

• The central area of the middle limb 

• Joint connecting the right-hand most limb to the yoke 

• Joint connecting the central limb to the central yoke 

• Upper or lower yoke 

• Middle area of the limb on the left or right.  

 

Figure 4-7: faults applied to sites 

Limb 

Yoke 

the fault 

location

s 
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4.4 Data analysis (current signals) 

Digital signal processing has been applied to extract the signal information, as the signal is not 

helpful for recognizing the fault. 

"In this section, popular signal processing techniques are used to extract important features 

from the signal for fault classification. Not all feature extraction techniques will be utilized, 

only the one that gives the best results will be applied". Figure 4-8 shows the Data analysis 

diagram.  

 

Figure 4- 8: Data analysis diagram 

4.4.1 Data machine learning  

Machine learning heavily relies on data, using correct terminology is crucial. In ML, data is 

viewed from two perspectives: statistical and computer science. The statistical perspective 

views data as a function (f) that the algorithm tries to learn, relating input variables to the 

predicted output. In computer science, a row of data represents an entity or observation about 

it, with columns referred to as attributes and the row referred to as an instance [25]. 
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4.4.2 Feature extraction 

The differential currents used to extract the features are time-series signals which can be 

differentiated in many ways. The resemblance between time-series data points can be 

established with commonly used Euclidean distance measure or with Dynamic Time Warping 

in the case of time-series of variable length [26]. The differential currents from a distinct fault 

type can also be differentiated from the rest using first and second-order features of mean, 

standard deviation, and Skewness-Kurtosis [27]. Global characteristics of time-series described 

by classical and statistical features like trend, seasonality, periodicity, autocorrelation, 

skewness, kurtosis, nonlinearity, chaos, and self-similarity were used in [28]. Wirth et al. [29] 

further extended this approach to multivariate time-series signals. Kumar et al. [30][31] used a 

variety of time and frequency domain features to distinguish binary classes. A number of 

feature extraction techniques for current signal and thermal images have been used in this 

project. 

4.4.3 Extraction using the FFT technique 

The Fast Fourier Transform (FFT) Analyzer app allows you to perform Fourier analysis of 

simulation data and provides access to all the simulation data that are defined as structure-with-

time variables in the workspace. The app displays the spectrum as a bar graph or as a list in 

percentages relative to a base value or to the DC component of the signal[32]. 

This section extracts features from the differential currents of the 3-phases, covering some basic 

and some complex time series features like minimal, maximal, median, quantile, and average 

values. The FFT technique was applied to the measured current for healthy and faulty operation 

modes. The strongly related to the type of transformer fault features are fundamental, average, 

computed total harmonic distortion (THD) of signals extracted by the FFT technique. Figure 

4-9 shows the frequency spectrum of the current waveform in the frequency band of 0-500Hz. 

This figure is for the power transformer core faulty details. The coefficients for two and three 

place faulty transformer cores for only one scenario with the no-load condition. (Edge burrs 

current signals at 1.7T as an example). For full example see appendix 2. 
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Faulty 2 places Faulty 3 places 

Figure 4- 9: the frequency spectrum of the current waveform in the frequency band of 0-500Hz by 

the FFT technique 

4.4.4 Wavelet transforms analysis 

Wavelet transforms mathematical tools for analyzing data where features vary over different 

scales. For signals, features can be frequencies varying over time, transients, or slowly varying 

trends of signals. For images, features include edges and textures. Wavelet transforms were 

primarily created to address the limitations of the Fourier transform[33][34]. Table 4-1 

illustrates a brief comparison between the performance of continuous wavelet transform (CWT) 

and Discrete wavelets transform (DWT). 

Table 4-1: Comparison of the performance of CWT and DWT [35] 

No CWT  DWT 

1 It uses exponential scales with a base 

smaller than 2 

It uses exponential scales with the base 

equal to 2. 

2 Large computational resources are 

required to compute the CWT. 

Less computational resources are required 

to compute the DWT 

3 It is a shift-invariant It is not shift-invariant. 

4 It is highly redundant transform. It is also redundant but less than the CWT. 

5 It is an orthonormal transform. It is an orthonormal vector. 

6 The outputs are not down sample but 

not better than DWT. 

The outputs are down-sampled but better 

than CWT. 

7 The inverse of CWT could be 

implemented, but usually, the signal 

reconstruction is not perfect. 

It provides perfect signal reconstruction 

upon inversion, which means that the DWT 

of signal coefficients could be used to 

synthesise and exact the reproduction of the 

signal with numerical precision. 
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4.4.5 Plot the results of CWT (continuous wavelet transform) 

The CWT is analysed into two parameters; scaled and translated. The formula represents one 

function below (mw x, y (s)) and mother wavelet mw(s) 

𝑚𝑤𝑥,𝑤 =  
1

√|𝑥|
 𝑚𝑤 (

𝑆−𝒴

𝑥
)                                                                                                    (4-1) 

This equation appears to be a simplified form of the continuous wavelet transform (CWT) 

equation. 

The variable "x" is the translation variable, and "w" is the scale variable. These two variables 

determine the position and size of the wavelet function used in the CWT. The term "mw" 

likely represents the mother wavelet function, which is a basic waveform that is used to 

generate the wavelet functions used in the CWT. The mother wavelet function is scaled and 

translated by the variables x and w, respectively. The term "|x|" represents the absolute value 

of x, meaning it removes any negative sign and provides the magnitude only. The term "(S-

Y)/x" could represent the ratio of the difference between two signal values (S and Y) and the 

translation variable x. This term could be used to determine the local variation in the signal 

being analyzed. 

𝑚𝑤𝑥,𝑤 =  
1

√|2𝑗|
 𝑚𝑤 (2−𝑗𝑠 − 𝑘)                                                                                          (4-2) 

The variable "x" is the translation variable, and "w" is the scale variable. These two variables 

determine the position and size of the wavelet function used in the CWT. The term "mw" 

represents the mother wavelet function, which is a basic waveform that is used to generate the 

wavelet functions used in the CWT. The mother wavelet function is scaled and translated by 

the variables x and w, respectively. The term "|2^j |" represents the absolute value of 2 raised 

to the power of j, meaning it removes any negative sign and provides the magnitude only. The 

term "2^(-j) s-k" represent the ratio of the difference between the scale factor 2 raised to the 

power of negative j and a constant k, with the signal value "s". This term could be used to 

determine the local variation in the signal being analyzed. 

The same as the Fourier Transform (FT), which obtains the correlation coefficients between 

the analysed and sinusoidal one. The WT obtains the correlation coefficients between the signal 

and an orthonormal function, which is called a “wavelet function”.  The CWT allows the signals 

to be analysed through the correlation coefficients of that signals instead of using the whole 

signal information. The mathematical formula for determining CWT is shown below: 
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𝑊𝑥(𝑎, 𝑏; 𝜓) = 𝑎−
1

2 ∫ 𝑥(𝑡)𝜓̅ ∗ (
𝑡−𝑏

𝑎
) 𝑑𝑡                                                                                 (4-3) 

Where 𝑎  is the scale parameter  𝑏 is the time parameter 𝜓(𝑡)is an analysing wavelet, And 𝜓̅ is 

the complex conjugate of 𝜓 [34] 

CWT is one of the best tools available to detect signal singularity, carried out with the local 

maxima lines[31]. It has been applied for diagnosing the notched rotor [37], the CWT 

coefficient has been used as input into the Artificial Neural Network (ANN), and it has been 

investigated to show that their system has been able to detect combined faults, shaft cracks, and 

unbalance [38]. The use of CWT for diagnosis of the fault in the rotating machinery is still 

relatively rare; this is since the visual interpretation of wavelet results is often difficult. Thus, 

more efforts have been made to extract the best signal features for analysing the residual 

wavelet scalogram[39]. 

Figure 4-10 shows the results obtained using the continuous wavelet transforms (CWT) to 

analyse modulated signals. The signal's frequency is approximately 50 Hz the flux 1.7T as an 

example.  The time-frequency analysis gives new information which cannot be inferred from 

the original time series. It can be seen that the minimum magnitude pole point of the magnitude 

scalogram is around 0.55 for some faults and increases significantly to about 0.8, while in the 

healthy stage is 0.65.     

 

 

F3.3places F3.2places 

Figure 4- 10: The continuous wavelet transforms (CWT) results 

 4.4.6 Discrete wavelets transform (DWT) 

The DWT has been widely used for analysing the machine's signal (thermal image, current, and 

vibration signals) due to its excellent decorrelation property. It has been used as a transform 

stage in many modern image and video compression systems[40][41].  
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In this work, the DWT technique has been adopted for extracting the best features from the 

power transformer current signal among the various DWT techniques. 

The wavelet toolbox in MATLAB software (version R2021a) has been used for analysing the 

current signature signal. After preparing and selecting the DWT parameters, the DWT is now 

ready for analysing the power transformer core current signal for extracting the information to 

discriminate between the transformer faults. 

A one-dimensional discreet wavelet analysis tool has been used for analysing the current signal. 

The procedure for analysing these signals is as follows: 

• Import the current signals. 

• Apply the DWT to extract the signal features. 

• Save the extracted features for further processing. 

• Repeat the process for all faulty signals. 

Figure 4-11 illustrates the power transformer core faculty details coefficients based on db7 at 

five levels. It demonstrates the d1, d2, and d5 for two and three places faulty transformer core 

for only one scenario with no load condition (Edge Burrs) current signals at 1.7T as an example. 

By looking at this figure, the difference between the two and three places of faulty signals is 

obvious, and the behaviour of the current signal is completely different in the shape and range 

of the signal. Thus, the coefficients will be very strong for the classification system to 

distinguish between the power transformer core faults. The complete figures and description 

are available in appendix 4. 

  

Faulty 2 places Faulty 3 places 

Figure 4- 11: Wavelet analysis for the faulty current signal at 1.7T 
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Discrete wavelet transform is widely used in the feature extraction step because it efficiently 

works in this field, as confirmed by the results of previous studies. The most important part of 

DWT is that it uses discrete data as a scale parameter. In the DWT, the scale and the time, as 

described in the last equation above, are discretized as follows [40][42]  

𝑎 = 𝑎0
𝑚, 𝑏 =  𝑛𝑎0

𝑚𝑏0                                                                                                         (4-4) 

Where  𝑚 and 𝑛  are integers, thus the CWT function  𝜓𝑎,𝑏(𝑡) in the equation above  

converted to the DWT by the following formula: 

𝜓𝑚,𝑛(𝑡) =  𝑎0

−𝑚

2 𝜓(𝑎0
−𝑚𝑡 − 𝑛𝑏0)                                                                                       (4-5) 

The discretisation of the scale parameter and time parameter leads to the discrete  

wavelet transform, which is defined as: 

𝑤𝑥(𝑚, 𝑛; 𝜓) =  𝑎0

−𝑚

2  ∫ 𝑥 = (𝑡)𝜓 ∗ (𝑎0
−𝑚𝑡 − 𝑛𝑏0)𝑑𝑡                                                        (4-6) 

The DWT has two important approaches to discrete the signal at different scales and positions 

(resolution levels and different frequencies), which are decomposing the signal into 

approximations (A) and details (D). The approximation information could be obtained from a 

low pass filter, while the detail information could be obtained from a high pass filter, as 

explained in figure 4-12. 

   
Figure 4- 12: DWT decomposition signal to approximation and detail using filters [42] 

Figure 4-13 shows how to analyses and synthesise the signal. The input signal goes through 

two one-dimensional filters, one for a high-pass filter (H0) and one for a low-pass filter (H1). 

These filters have filtering operations and are followed by subsampling by a factor of 2. Then, 

the signal will be reconstructed by first-up sampling. After that, filtering and summing the sub-

bands will be followed[43] 
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Figure 4- 13: DWT two-channel filters [40] 

The synthesis filters F0 and F1 must be adapted for analysing the H0 and H1 filters in order to 

achieve perfect reconstruction. It is very easy to obtain the satisfying relationship between the 

2-channel filters by considering the Z-transform function. After analysis, the two sub-bands 

will be as follows[47][45]: 

1

2
 [𝐻0 (𝑍

1

2) 𝑋 (𝑍
1

2) + 𝐻0 (−𝑍
1

2) 𝑋 (−𝑍
1

2)] (4-7)         

1

2
 [𝐻1 (𝑍

1

2) 𝑋 (𝑍
1

2) + 𝐻1 (−𝑍
1

2) 𝑋 (−𝑍
1

2)]                                                                                       (4-8)  

The combination of these filters is: 

𝑋̂(𝑧) =  
1

2
[𝐹0(𝑧)𝐻0(𝑧) + 𝐹1(𝑧)𝐻1(𝑧)]𝑋(𝑧) +

1

2
[𝐹0(𝑧)𝐻0(−𝑧) + 𝐹1(𝑧)𝐻1(𝑧 −)]𝑋(−𝑧).              (4-9) 

To overcome the problem of aliasing and distortion, the following conditions  

should be considered[24][26]: 

𝐹0(𝑧) =  𝐻1(−𝑧)  and   𝐹1(𝑧) =  −𝐻0(−𝑍)                                                                            (4-10) 

The multiscale pyramid decomposition and reconstruction of an image or signal with high and 

low pass filters have been illustrated in figures 4-14 and 4-15 below. 

 

Figure 4- 14: Filter bank structure of the DWT analysis [39] 

 
Figure 4- 15: Filter bank structure of the reverse DWT synthesis [39] 
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4.4.7 Standard deviation (STD) 

For a random variable vector, A, made up of N scalar observations, the standard deviation is 

defined as: 

𝑆 = √
1

𝑁−1
 ∑ |𝐴𝑖 − 𝜇|2𝑁

𝑖=1                                                                                                      (4-11) 

where μ is the mean of A: 

µ= 
1

𝑁
 ∑ 𝐴𝑖

𝑛
𝑖=1                                                                                                                         (4-12) 

The standard deviation is the square root of the variance. Some definitions of standard deviation 

use a normalization factor of N instead of N-1, which you can specify by setting w to 1. 

4.4.8 Shannon entropy 

The Shannon entropy can measure the uncertainty of a random process. Rolling element 

machinery without failure generates a more random signal, and the machine with failure usually 

tends to have a more deterministic signal, i.e., the Shannon entropy will be different. To extract 

the periodicity in the signal. The Shannon entropy formula is as follows: 

𝐻 =  −
1

log 𝑁
 ∑ 𝑝𝑖 log 𝑝𝑖𝑖                                                                                                       (4-13) 

where N is the total number of observed events, and pi is the probability of the i event [45]. 

4.5. Results and discussions 

After applying several feature extraction techniques, FFT and STD techniques were selected to 

use in this work because they gave better results.. 

This section gives certain selected results of the experimental work. These results consist of the 

current waveform in the transformer, measured for various flux density values. Since the 

current signal obtained for 0.5 T is lower than that obtained for 1.8 T, the results are separated 

into four subfigures for better visualisation. Firstly, figure 4-16 shows the current waveforms 

for normal conditions before applying any faults to understand these faults' impact better. 

For healthy conditions of the transformer core, one can see that the flux density has an important 

effect on the magnitude and the current waveform in a no-loaded power transformer. For low 

flux density in figure 4-16a, the current is of very low magnitude in the order of 0.1 A. In the 

same flux density range, the current waveform is approximately similar to a noise signal with 

a periodical signal of lower amplitude.  
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(a) 0.5 T, 0.8 T, 1.0 T flux density (b) 1.0 T, 1.5 T, 1.7 T flux density 

  
(c) 1.7 T, 1.8 T flux density  (d)  0.5 T, 0.8 T, 1.0 T, 1.5 T, 1.7 T, 1.8 T 

flux density 

Figure 4- 16: Current waveforms under healthy conditions 

After applying several feature extraction techniques, the FFT and STD have been selected as 

parameters. They are now ready to analyse the power transformer current signal for extracting 

the information to discriminate between the transformer faults. Using Fourier analysis FFT, 

figure 4-17 illustrates an example of the frequency spectrum of the current signal for 1.7 T flux 

density as an example with multi scenarios obtained under healthy and faulty conditions. For 

full figures see appendix 2. 

From this figure, it was found that the healthy state is characterised by a low magnitude of the 

current fundamental, which is around 0.6 A. This operation state is also characterised by the 

appearance of harmonics of the order 3, 5, and 7. Other odd harmonics of higher order cannot 

be seen for lower flux densities, but a very low magnitude of the harmonic of order 9 is noticed 

for 1.7 T flux density.  
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(a) Healthy  

 
 

(b) Scenario 1, 2 places                                          (c) Scenario 1, 3 places 

  
(d) Scenario 2, 2 places (e) Scenario 2, 3 places 

Figure 4- 17: Frequency spectrum of the current signal in normal and faulty mode with 1.7 T flux 

density 

4.5.1 Edge burrs results 

The results of the first selected type of faults (i.e., edge burrs faults) have been presented in this 

part. The same type of fault has been applied in two and three different places within the 

transformer core. Figure 4-18 shows the current waveforms for the considered cases. Selected 

flux densities (i.e., 0.8 T, 1.7 T, and 1.8 T) have been shown in this figure to highlight the effect 

of the flux density on the current waveform of the transformer under edge burr faults. 

This figure shows that different shapes characterise the current waveforms obtained during 

edge burr faults compared to those obtained in the healthy operation mode. This means that 

edge burrs faults considerably affect the transformer currents, thus, the performance of the 

transformer. 
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(a) 0.8 T flux density  (b) 1.7 T flux density  

 
(c) 1.8 T flux density 

Figure 4- 18: Current waveform in transformer primary windings for edge burr faults applied in two 

and three different places 

Indeed, the current magnitude increases and harmonics become pertinent. For instance, the 

magnitude increased approximately from 0.1 to 0.2 A for a flux density of 0.5 T, corresponding 

to a rate of 100%. This rate of increase becomes more important with the increment of the flux 

density and the number of affected places within the transformer core, as shown in figure 4-19. 

This figure illustrates the magnitude of the current signals as a function of the flux density 

obtained for normal and faulty operation modes. The current has a large magnitude for all 

considered flux densities compared to the other studied cases.  

In this figure, the obtained results show a non-linear variation of the current magnitude with 

respect to the flux density. For full example see appendix 6.  
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(a) Scenario (1) 0.5 T-1.7 T flux density (b) Scenario (1) 0.5 T-1.8 T flux density 

Figure 4- 19: Magnitude of the current waveform in transformer primary windings with and without 

edge burrs faults 

Slight augmentation has been observed in the current magnitude for low flux density. The 

dramatic increase is recorded for higher values of the flux density. The highest magnitude of 

edge burr faults in three locations is typically between 0.15 and 0.82 A, while healthy 

conditions show lower values between 0.4 and 0.65 A. table 4-2 gives a brief comparison 

between the results measured with and without edge burr faults in the transformer core. The 

table shows some parameters obtained using Fourier Analysis, such as THD, average, 

fundamental, and the magnitude of the first four harmonics. 

As shown in this table 1, the edge burr faults affect the transformer currents. A remarkable 

increase of magnitude in the current fundamental as well as the first-order harmonics. Overall, 

the increase is 150 mA for the fundamental, and up to 22 mA in the harmonics shown. However, 

the THD shows a slight decrease when the faults are applied. This decrease might be justified 

by the increase of the overall magnitude of the transformer current. It should be noted that such 

a problem may be considerable. The consequences can be significant, especially if the studied 

faults happen in an oil-immersed power transformer of high capacity. For instance, the edge 

burrs faults result in an increase of the transformer current, which, in its round, can increase the 

temperature inside the transformer. This rise in temperature might affect the properties of the 

insulating oil and/or insulating paper, thus, reducing the performance of the transformer. For 

this reason, it would be better to examine the effect of such faults in high-capacity transformers. 
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Table 4- 2: Fourier Analysis parameters for an edge burr fault applied to the transformer core 

at 1.7 T Scenario 4  
 

THD (%) 

average, fundamental, and first harmonics in (A) 

average Fundamental 3 5 7 9 

healthy 16.64 0.0682 0.6149 0.0719 0.0664 0.0196 0.0024 

edge burrs 

faults 

2 places 16.12 0.0677 0.684 0.0786 0.0759 0.0198 0.0020 

3 places 16.10 0.0596 0.765 0.0895 0.0887 0.0244 0.0015 

4.5.2 Results of lamination insulation faults 

As described in the previous Section, artificial short circuits, as the second type of fault, have 

been applied between transformer core laminations by removing the insulation covering the 

laminations. Figure 4-20 shows the measured current waveforms in the transformer's primary 

windings. The results correspond to faults between 2, 6, 8, and 12 laminations for 0.5 T, 0.8 T, 

1.7 T,1.8 T flux densities as an example, as indicated in figures 4-20a: 4-20d, respectively.for 

full figures see appendix 6. It should be noted that the impact of the position of the short circuit 

applied between laminations has been investigated previously in [20]. For this reason, the same 

position of the applied faults has been considered in this investigation. 

  
(a) 0.5 T flux density (b) 0.8 T flux density 

  
(c) 1.7 T flux density (d) 1.8 T flux density 

Figure 4- 20: Current waveform in transformer primary windings for insulation degradation faults 
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From this figure, it is clear that the faults' size (number of affected laminations) has an important 

effect on the current within the transformer windings. The results show that the short circuit 

current is approximately a linear function of the number of affected laminations, as can be seen 

in figure 4-21. This figure shows the current magnitude as a function of the number of the 

affected laminations at flux density between 0.5 and 1.8 T. 

This figure shows that the current caused by the insulation damage fault is related to the number 

of laminations in the short circuit and the flux density. and, the current magnitude follows a 

non-linear function with respect to the flux density. It was found for two, six, eight and twelve 

shorted laminations that the current magnitude is extremely high at flux density of 1.8 T. 

 
Figure 4- 21: Magnitude of the current waveform in transformer primary windings with insulation 

degradation faults applied between 2, 6, 8 and 12 laminations 

Table 4-3 gives the THD, average, fundamental, and magnitude of the first four harmonics of 

the current signal for lamination insulation faults in the transformer core. When applying 

lamination insulation faults, the results show a considerable increase in the THD as well as the 

magnitude of fundamental and harmonics compared to the healthy conditions. For instance, the 

THD rises from 16.64% with 0.6 A fundamental to 50.14% THD with a fundamental of 1.11A 

for insulation faults between two laminations. This is equivalent to a 66.81% increase in the 

THD value and 45.95% in the fundamental magnitude. These rates generally increase with the 

number of affected laminations, as given in Table 4-3. In addition, the obtained results are 

considerably affected by the flux density, as shown in figure 4-21. Overall, the results 

demonstrate that the healthy operation mode can be distinguished from the faulty one in most 

proposed cases. In addition, the results associated with this type of fault are also different to 

those obtained when applying edge burrs faults. This means that fault detection and 
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classification technique can be considered in these types of faults using the current waveforms 

as information support. 

Table 4-3: Fourier Analysis parameters for lamination insulation faults applied to the transformer core 

at 1.7 T  
 

THD (%) 

average, fundamental (fd), and first harmonics in (A) 

average fd 3 5 7 9 

Lamination insulation faults 2 lamentations. 50.14 0.0612 1.113 0.0790 0.4618 0.2771 0.5676 

6 laminations. 57.85 0.0612 1.303 0.2149 0.6254 0.3531 0.0325 

8 laminations. 56.94 0.0587 1.175 0.0834 0.5499 0.3630 0.0916 

12 laminations. 54.77 0.0612 1.459 0.2626 0.6653 0.3487 0.0729 

4.6 Summary 

This investigation studied the impact of edge burrs and damaged insulation systems between 

laminations on the performance of power transformers. An experimental methodology was 

presented to simulate both laminations’ faults. A three-phase transformer was used where 

different scenarios of the faults were applied, and several flux densities were considered. 

Overall, the obtained results demonstrated that Edge burrs and insulation degradation both 

could cause flux distortion regarding the recorded current signals, which considerably affects 

the reliability of the transformer operation. 

Edge burrs and/or insulation degradation affecting the transformer core can increase the 

transformer currents. These later become important with the increase of the flux density and 

the number of short-circuited laminations. Therefore, a high current loss might be developed 

for the transformer core under faulty conditions. This can cause flux distortion in cruciform 

stacked cores and high localised heating within and outside of the affected region. 

The current change caused by the insulation damage fault is related to the number of 

laminations in the short circuit as well as to the flux density. It was found for two, six, eight, 

and twelve shorted laminations that the current magnitude is extremely high at a flux density 

of 1.8 T, increased with the number of the affected laminations. This significant increase in 

current may lead to an increase in power losses, hence, the transformer efficiency or 

engendering thermal power transformer failure. 

Such findings indicate the severity of short circuits in the transformer core, and manufacturers 

should take precautions to eliminate burrs as far as practicable, especially for transformers of 

high capacity where the consequences might be more significant. Moreover, it is noticed that 

the transformer currents are affected in different ways according to the applied faults. This 

implies that the detection and classification of faults can be achieved using these currents. 
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CHAPTER  5: Detection and classification of lamination faults in 

a 15 kVA three-phase transformer core using SVM, KNN and DT 

algorithms. 

This chapter deals with detecting and classifying two types of lamination faults (i.e., edge burr 

and lamination insulation faults) in a three-phase transformer core.  Previous experimental 

results are exploited, which are obtained by employing a 15 kVA transformer under healthy 

and faulty conditions. Different test conditions were considered, such as the flux density, 

number of affected laminations, and fault location. Indeed, the current signals were used where 

four features (Average, Fundamental, Total Harmonic Distortion (THD), and Standard 

Deviation (STD)) were extracted. Elaborating a total of 328 samples, these features are utilized 

as input vectors to train and test classification models based on support vector machine (SVM), 

k-nearest neighbours (KNN), and decision tree (DT) algorithms.  Based on the selected 

features, the results confirmed that the transformer current could be used to detect and classify 

lamination faults. An accuracy rate of more than 84% was obtained using three different 

classifiers. Such findings provided a promising step toward fault detection and classification in 

electrical transformers, helping to prevent the system and avoid other related issues such as 

increased power loss and temperature. 

5.1 Introduction 

Transformers are critical components in the power network and ensuring their safety and 

reliability is crucial for uninterrupted utility services. Researchers have analyzed the impact of 

faults in transformers to improve understanding and provide protection techniques. The studies 

aim to provide early detection of faults through consistent monitoring and diagnostic 

techniques, improving equipment reliability and operation duration. [1], [2]. 

In literature, numerous studies were carried out to investigate the impact of faults in electrical 

machines, including the power transformers, e.g., [3–6]. Other researchers focused on 

developing and improving solution techniques to prevent such faults or to increase the 

performance of the transformers, e.g., [7–10]. A couple of works aimed to detect and classify 

faults in transformers, e.g., [11–13]. For these reasons, the techniques developed help to better 

exploit electrical transformers and avoid material losses resulting from possible malfunctions. 
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A study in [8] found that an insulation problem caused 37% of power transformer failures. The 

core failure can be identified as a primary failure regarding the laminations and interlaminations 

issues [14]. 

In previous work [15], The authors investigated the effects of two types of transformer core 

faults: edge burrs and lamination insulation faults. They simulated and analyzed both faults 

using a 15 kVA three-phase power transformer, considering different scenarios such as the size 

of affected regions and number of short-circuited laminations. The study used flux densities 

ranging from 0.5 to 1.8 T. The results provide insight into the severity of short circuits in 

relation to their position in the transformer core and can be used to discuss power losses in the 

transformer core. 

Based on the results presented in [15], This chapter focuses on detecting and identifying 

lamination faults in the core of a 15 kVA electrical transformer. Under normal and faulty 

conditions, various scenarios are analyzed, including flux density, number of affected 

laminations, and number/location of faults. The measured current signals are used to extract 

features as input vectors for training and testing with SVM, KNN, and DT classifiers. The study 

used 328 samples and selected four features. 

The chapter is organized as follows: Section 5.2 details the experimental results and the signal 

processing process. Examples of the dataset is also presented and discussed. Section 5.4 starts 

with a brief description of the used classifiers, followed by the obtained results from different 

scenarios. The obtained results are presented and discussed, where a detailed example is given 

for the results of the DT algorithm. 

5.2 Pre-processing methodology and results 

This section provides the feature extraction process for detecting and classifying lamination 

faults in the transformer core. Features have been extracted using signal processing techniques 

- Fourier Analysis applied to the current signals. The obtained dataset is then treated to reduce 

the number of features, selecting those most contributing to the overall accuracy. Examples of 

the obtained results are presented and discussed in this chapter since the full details are the core 

of other work that has studied the effect of these faults in the previous chapter and [15].  
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5.2.1 Current signals 

Mechanical shear causes burrs on the cut edges, usually followed by the process of punching 

and cutting the electrical steel. Edge burrs and insulation deterioration between laminations are 

the most common faults in this type of transformer. These deformations in the core laminations 

affect the performance of the transformer and electrical machines, causing power losses as 

experimentally verified in many studies, e.g., [15–17]. Figure 5-1 illustrates two examples of 

the measured current signals under normal and faulty conditions. Full figures are available in 

appendix 6. 

  

(a) 0.5 T flux density (b) 0.8 T flux density 

  

(c) 1.7 T flux density (d) 1.8 T flux density 

Figure 5- 1: illustrates examples of the measured current signals under normal and faulty conditions 

With regard to flux density, a detailed discussion on the effect of each type of fault on the 

current waveforms can be found in the previous chapter and [15] and [18]. For a healthy mode, 

one can see that the flux density has an important effect on the magnitude and waveshape of 

the no-load current. At low flux density, the current is of incredibly low magnitude in the order 
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of 0.2 A. In the same range of flux density, the current waveform is like a noise signal 

accompanied by a periodical signal of low amplitude. 

From the current waveform, one can obviously distinguish between each operation mode of the 

transformer. The current magnitude increases with both faults of laminations.  However, the 

waveforms of the current are practically similar. This waveform approach may affect the 

classification or detection of transformer faults. Quantifying the current signals is a common 

technique to help detect and classify faults in electrical transformers or other electrical systems 

[19], [20]. For this, signal processing techniques have been applied to the current signals for 

the matter of detection and classification of the faults. 

5.2.2 Features extraction 

In order to increase the credibility of the database, several flux densities are considered, namely, 

0.5, 0.8, 1.0, 1.5, 1.7, and 1.8 T. In the first stage, the data was collected without applying any 

faults - normal conditions (Healthy operating mode). In the second stage, two types of faults 

were applied to the transformer core to form the database. A full day was allotted to take the 

data of each error separately. This is to leave the transformer core enough time to cool down. 

The studied cases are summarized in table 5- 1. 

Table 5- 1: Description of The Database 

Mode Quantity Description 

H 6 6 cases correspond to six selected flux densities 

F1 4x2x6 4 scenarios (S1, S2, S3 and S4) of artificial edge burr fault are applied in 2 and 

3 different places within the transformer core. Each fault case (a given scenario 

in 2 or 3 places) has been examined against 6 cases corresponding to the 

selected flux densities 

F2 4x6 4 scenarios of artificial lamination insulation fault are considered, where each 

fault has been examined against 6 cases corresponding to the selected flux 

densities 

H: healthy-   F1: Edge burr fault-   F2: insulation fault 

For reliable and feasible results, each test was examined many times. In order to increase the 

database furthermore and examine the obtained results, each scenario of table 5-1 has been 

repeated three times on different dates.  Data collection started in November 2020 and 

continued for five months. It should be noted that a detailed description of the experimental 

results has been presented in [15]. 

A MATLAB code tool, “FFT_Analyzer_App,” has been used to perform Fourier analysis on 

the measured results. Current signals have been used, and the frequency spectrum has been 

determined for each case of the experimental results. The feature extraction process generally 
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starts by displaying the frequency spectrum over the [0–500 Hz] frequency band. Figure 5-2 

shows an example of the frequency analysis obtained for 1.8 T flux density for healthy and 

faulty operation modes. For full example see appendix 2. 

  
(a) Healthy conditions at 1.8 T (b) Edge Burr Fault at 1.8 T 

 
(c) Lamination Insulation Fault at 1.8 T 

Figure 5- 2: Frequency spectrum of the transformer currents at 1.8 T flux density, obtained under 

healthy and faulty conditions 

As seen from this figure, the healthy operation mode can be distinguished from the faulty one 

in the proposed case. This healthy mode is characterized by the appearance of harmonics of the 

order 3rd, 5th, and 7th. Other odd harmonics appear with neglected amplitude along the 

frequency spectrum of the current signals. In terms of magnitude, the healthy mode is 

characterized by a fundamental value of about 2.7 against 3.4 in the edge burr fault. In faulty 

conditions, the magnitude and number of harmonics increase compared to healthy conditions. 

5.2.3 Feature selection 

The feature selection step is used to minimize dimensionality by excluding irrelevant features, 

and Feature selection helps improve the model performance by focusing only on the important 

variables. This step is conducted using differential evolution. For instance, the features have 

been selected based on a graphical representation to distinguish the independent features from 

the others, which are optimized into representative features. Figure 5-3 shows an example of 
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fundamental values as a function of the THD of the transformer currents under 0.5 and 1.8 T 

flux density for healthy and faulty conditions. For full figures see appendix 5. 

  

(a) Edge burr fault 0.5 T (b) Lamination insulation fault 0.5 T 

  

(c) Edge burr fault 1.8 T (d) Lamination insulation fault 1.8 T 

Figure 5- 3: Fundamental values as a function of the THD of the transformer currents under 1.7 T 

flux density for both the healthy and faulty conditions 

This figure clearly shows how THD and fundamental are different between healthy and faulty 

conditions. This means that both features can be applied to detect both types of faults of the 

power transformer core. For instance, in the obtained results for any couple of points located 

in this figure, a simple line of equation “Fundamental = α THD+β” can be used to separate 

between the two operation modes. We need to find the best pair alpha beta that do it properly. 

As shown in figure 5-4. 

 
 

Figure 5- 4: separate the dots using the fundamental equation 
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Figure 5-4 shows a second example of the distribution of the STD (A) values with respect to 

the THD of the transformer current under healthy and faulty conditions. 

The same ascertainment can be obtained from this figure.  However, a graphical method is not 

practical in the actual situation since a large number of samples is considered. For this, four 

features (fundamental, average, THD, and STD) are used in this investigation. It was found that 

the use of such features is appropriate for detection purposes. Referring to figures 5-5, the same 

ascertainment has been observed with different combinations of the four selected features. 

  

(a) Edge burr fault 0.5 T (b) Lamination insulation fault 0.5 T 

     

                  (c) Edge burr fault 1.8 T      (d) Lamination insulation fault 1.8 T 

Figure 5- 5: STD (A) values in as a function of the THD of the transformer currents under multi 

flux density for both the healthy and faulty conditions 

5.3 Dataset 

The FFT technique was applied to the measured current under both healthy and faulty 

conditions. Features are extracted from the transformer currents, and four features have been 

considered: the average value, the magnitude of the fundamental, total harmonic distortion 

(THD), and the standard deviation (STD). The average value comes from simple lone, average 

= the fundamental * magnitude / 100. Table 5-2 gives the selected features extracted from the 

current signal at 0.5 T flux density, representing a relatively low flux density. 
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Table 5- 2: Features in Normal and Faulty Condition at 0.5 T Flux Density 
State Selected Features  

average (mA) fundamental (A) THD (%) STD (A) 
H 0.0588 0.049 41.74 0.0383 
F1 S1 in 2 Places 0.0611 0.0874 28.88 0.062 

S1 in 3 Places 0.0619 0.08261 27.14 0.062 
S2 in 2 Places 0.059 0.139 16.82 0.0986 
S2 in 3 Places 0.0563 0.1342 20.33 0.0986 
S3 in 2 Places 0.0652 0.0441 57.39 0.0344 
S3 in 3 Places 0.0654 0.0404 56.64 0.0344 
S4 in 2 Places 0.0556 0.1326 19.32 0.0985 
S4 in 3 Places 0.0654 0.1369 22.84 0.0985 

F2 2 places 0.0639 0.0862 30.23 0.0653 
6 places 0.0547 0.14 17.63 0.1006 
8 places 0.0623 0.1395 19.91 0.1022 
12 places 0.0586 0.1599 15.34 0.1162 

H: healthy-   F1: Edge burr fault-    F2: insulation fault 

As shown in this table, the average values for the healthy and faulty cases are not practically 

different AT 0.5 T; the healthy is 0.0588 A, the highest point is 0.0654 A in fault 1, and the 

lowest point is 0.0556 A. These results are logical, as shown in table 5-2 due to the fact that the 

continuous component of the current signal can be neglected. Also, the results indicate that 

both types of faults do not affect the symmetry in the current signal.  Furthermore, it is clear 

that the fundamental values are practically different for the healthy and the other faults. While 

the healthy value is 0.049 A, the highest point is in fault 1, which is 0.139 A, and the lowest 

point is 0.040 A. On the other hand, the values of the total harmonic distortion (THD) are also 

not that much different; they are less than the values of fundamental features and better than 

the values of Average features. 

For a relatively high flux density of 1.7 T, table 5-3 gives the selected four features under both 

healthy and faulty conditions. 

Table 5- 3: Features in Normal and Faulty Condition At 1.7 T Flux Density 
state Selected features  

Average (mA) Fundamental (A) THD (%) STD (A) 
H 0.0682 0.6149 16.64 0.4547 

F1 S1 in 2 Places 0.067 0.654 14.73 0.4666 

S1 in 3 Places 0.0667 0.661 16.14 0.4818 

S2 in 2 Places 0.0612 0.598 16.09 0.4209 

S2 in 3 Places 0.0552 0.737 15.99 0.5313 

S3 in 2 Places 0.677 0.677 16.09 0.4809 

S3 in 3 Places 0.067 0.67 15.79 0.4812 

S4 in 2 Places 0.0677 0.684 16.12 0.4945 

S4 in 3 Places 0.0596 0.765 16.10 0.5462 

F2 2 places 0.0612 1.113 50.14 0.8939 

6 places 0.0612 1.303 57.85 1.0624 

8 places 0.0587 1.175 56.94 0.9495 

12 places 0.0612 1.459 54.77 1.1576 

H: healthy-    F1: Edge burr fault-     F2: insulation fault 
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Comparing between faulty and healthy conditions, the results are separated in this table 

compared to those obtained for relatively low flux density. In this case, the margin between the 

obtained results in healthy conditions differs from those measured when a fault is applied. 

As shown in this table 5-3, the fundamental values for the healthy and faulty cases are 

practically different AT 1.7 T; the healthy is 0.614 A, the highest point is 1.459 A in fault 2, 

and the lowest point is 1.113 A. These results are good of fault detection. 

5.4 Methods of fault detection and classification  

This section describes the methods used to detect and classify faults in the transformer core.  

The database samples used to train and test the classifiers have been presented and discussed. 

The section also provides the obtained accuracy rate of each classifier for different datasets. 

5.4.1 Classification algorithms 

For detection and classification, three classifiers have been exploited. These include SVM, 

KNN, and DT techniques. SVM techniques are usually used in classification problems, 

prediction models, and regression [21]. For the classification problems, the principle of the 

SVM is to find hyperplanes of separation between two classes yi and yj. The hyperplanes should 

be with maximum margin. Find the hyperplane solution, which means the classification 

becomes an optimization problem. The optimization solution is particularly important because 

hyperplanes represent the decision boundaries that help to distinguish two different classes 

[22]. A hyperplane is a line or a plane that separates a multidimensional space into two parts. 

In SVM, the hyperplane is used to separate the data into different classes. The hyperplane is 

chosen such that it maximizes the margin, i.e., the distance between the hyperplane and the 

closest data points of the different classes.  

The second classifier consists of the KNN algorithm. In this algorithm, the classifier's decision 

can be obtained from the vote of the KNN. The vote is based on calculated distances between 

the sampling points to the nearest neighbors of the total assigned points. Gaussian, triangular, 

and cosine are some of the typical distances used in this classifier.  It should be noted that the 

KNN technique is easy to implement and apply to any problems, including complex ones such 

as geographic information, text, images, and sound [23], [24]. The method performance 

depends on the distance type, the number of neighbors, and how the neighbors’ responses are 

combined. The results could be of inferior quality if the number of relevant attributes is low 

relative to the total number of characteristics. The distances on the irrelevant attributes will 
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drown out the proximity on the appropriate attributes. The calculations made in the 

classification phase can be very time-consuming if the number of data sets is too large. 

A visual example of KNN Imagine you have a scatter plot with points that represent different 

classes, for example red dots for class A and blue dots for class B. When a new data point 

(represented by a green dot) is added to the plot, KNN algorithm classifies this new point based 

on its K nearest neighbors (in this case, K=3). So if two of the three nearest neighbors are red 

dots (class A) and one is a blue dot (class B), the new data point would be classified as class A.  

The third classifier consists of the decision tree (DT) algorithm. This technique obtains a 

decision following the tree, starting from a root node down to a leaf node [25]. The leaf node 

comprises the classifier response. 

5.4.2 Datasets for training and testing 

The dataset for training and testing the model has been managed by considering different 

scenarios: 

1. decomposition of the dataset for training and testing. 

• Three types of decomposition of the database have been selected randomly. The 

decomposition 30-70 means that 30% of the database is reserved for the training process and 

70% for testing. The second type of decomposition is 50-50 50% of the database used for 

training, and the remaining 50% of data is exploited for testing. The last decomposition is based 

on 70% for the training phase and 30% for testing. 

• The K-Fold cross-validation strategy used to train the dataset for machine learning 

classifiers 

2. managing the detection and classification form for both fault types in different scenarios in 

order to prove the validity of experimental results and the reliability of lamination faults 

detection and classification by artificial intelligence. 

5.5 Results and discussion 

5.5.1 Fault detection based on current signals 

In this section, both types of faults have been grouped to form a separate class, representing the 

results of the faulty operation mode. And the dataset for training and testing was selected 

randomly. Therefore, a binary classification (healthy and faulty) is formulated where the aim 

is to detect the presence of faulty conditions. This process is based on the features extracted 

from the measured current. Table 5-4 gives the accuracy rate obtained using three different 
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classifiers, which is the ratio of the number of correct decisions over the total number of 

samples for each given class. As provided in the following equation. 

Accuracy rate = 
the number of correct decisions 

the total number of samples
                                                                 (5-1)                                                               

Table 5- 4: Accuracy Rate for Fault Detection Execution 
Scenario Accuracy Rate (%) 

SVM KNN DT 

70-30 94.87 97.43 96.94 

30-70 93.88 91.26 97.43 

50-50 94.61 96.15 96.92 

The obtained results show that the proposed classifiers give roughly equivalent results for the 

three proposed scenarios (data decomposition for training and testing). Overall, the accuracy 

rate is around 90%, with a maximum of 96.92%, obtained when using half of the dataset for 

the training with the DT classifier. And around 90%, with a maximum of more than 97%, was 

obtained when using 70% of the dataset for the training with the KNN classifier, which was the 

highest. In addition, approximately 90%, with an upper limit of more than 97%, was obtained 

using 30% of the dataset for training the DT classifier. This indicates that the input vectors' 

number and quality have an important impact on the detection results. And from the confusion 

matrices, one can get a general understanding of the classification process. For example, 

precision and recall can be defined for each of the classes in figure 5-5. 

SVM 70-30 SVM 30-70 SVM 50-50 

   
KNN 70-30 KNN 30-70 KNN 50-50 

   
DT 70-30 DT 30-70 DT 50-50 



Chapter 5: Detection and Classification of Lamination Faults in A 15 kVA Three-phase 

Transformer Core using SVM, KNN and DT Algorithms 

 

 

 

91 
 

 

   
Figure 5- 6: Confusion matrix obtained using training/testing scenarios for the three classifiers of 

Healthy and both Faults 

In general, the results indicated that fault detection was successful and accurate, especially 

when using 70% of the dataset for the training. The (KNN) classifier achieved the highest 

accuracy of detection. And the (DT) classifier achieved slightly lower accuracy. At the same 

time, the (SVM) classifier achieved the most insufficient accuracy. Such findings encouraged 

the direction of fault detection and classification of lamination faults in electrical transformers.  

5.5.2 Classification between both types of laminations faults 

Based on current signals, the classification between healthy and faulty conditions of both types 

of faults individually saved in one file has been considered. (The classes become a three-group 

classification). Table 5-5 provides the calculated results using the three classifiers and for three 

scenarios of the training and testing process. The results in this table show the accuracy rate of 

the three-class see eq (5-1).  

Table 5- 5: Global Accuracy Rate for Fault Classification 
Scenario  Accuracy Rate (%) 

SVM KNN DT 

70-30 92.30 97.43 97.43 

30-70 90.82 91.26 96.94 

50-50 91.53 96.15 97.69 

The results of the fault classification show that the KNN classifier outperforms the DT and 

SVM classifiers in terms of accuracy rate. The SVM classifier's accuracy rate is influenced by 

the size of the training dataset, with rates of 92.30% and 91.53% for the 70/30 and 50/50 

decomposition scenarios, respectively. On the other hand, the KNN classifier achieved an 

accuracy rate of 97% for the 70/30 training dataset and 91.26% for the 30/70 training dataset. 

The DT classifier performed the best, with accuracy rates of 97.43% for the 70/30 training 

dataset and 97.69% for the 50/50 training dataset. These results are noteworthy considering the 

random selection of the training dataset. The DT classifier produced the highest accuracy for 



Chapter 5: Detection and Classification of Lamination Faults in A 15 kVA Three-phase 

Transformer Core using SVM, KNN and DT Algorithms 

 

 

 

92 
 

 

the three-class group. The confusion matrices provide valuable insights into the classification 

process, such as precision and recall for each class figure 6. 

In conclusion, the results indicate that fault classification was successful and accurate, 

particularly when 50% of the dataset was used for training. The DT classifier achieved the 

highest accuracy, followed by the KNN classifier, while the SVM classifier showed the lowest 

accuracy. These findings demonstrate the potential for the effective detection and classification 

of lamination faults in electrical transformer cores using current signals. 

SVM 70-30 SVM 30-70 SVM 50-50 

   
KNN 70-30 KNN 30-70 KNN 50-50 

 
  

DT 70-30 DT 30-70 DT 50-50 

   
Figure 5- 7: Confusion matrix obtained using training/testing scenarios for the three classifiers of the 

insulation damage Fault 
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In general, the results indicated that the fault classification was successful and accurate, 

especially when using 50% of the dataset for the training. The (DT) classifier achieved the 

highest accuracy in faults classification. And the (KNN) classifier achieved slightly lower 

accuracy. In comparison, the (SVM) classifier achieved the lowest accuracy. Such findings 

encouraged the direction of fault detection and classification of lamination faults based on 

current signals in electrical transformers core.  

5.5.3 Results of fault detection for each fault separately 

Based on the current signals, the detection between the health and faulty conditions of each 

type of fault has been considered in this part. (The classes become a two-group classification 

for each fault). Table 5-6 provides the calculated results using the three classifiers and for three 

scenarios of the training and testing process. The findings in this table reflect the accuracy rate 

of each class for each defect, which is the ratio of the number of accurate answers to the entire 

number of samples for each offered class.  

Table 5- 6: accuracy rate for each class of faults using different classifiers and considering three 

scenarios 
 

Class 

Training - Testing 

Data 

Accuracy Rate (%) 

SVM KNN DT 

Fault 1 70-30 91.17 97.05 91.17 

30-70 82.35 91.17 85.29 

50-50 90.19 92.15 84.31 

Fault 2 70-30 88.00 96.00 96.00 

30-70 87.86 88.43 95.95 

50-50 87.77 94.44 96.66 

From this table, one can clearly see that the detection results are affected by the type of fault. 

For instance, the edge burr fault (Fault 1) shows a better result for fault detection. With SVM 

and DT classifiers, when using larger data in the training process (70% dataset for training), 

they obtained 91.71% and slightly lower when using 50% dataset for training. The obtained 

accuracy was around 97.05% when using 70% of the dataset for the training with KNN 

classifier, which was the highest, while the accuracy was around 92.15% obtained when using 

50% of the dataset for the training with the KNN classifier. This means that the Edge Burrs 

fault can be easily identified from the other faults. This result is consistent with previous 

findings reached based on the experimental findings in Chapter 4. 

In addition, the results of the second fault also show good accuracy for all the considered cases. 

With the KNN and DT classifiers, the accuracy obtained was around 96% when using 70% of 

the dataset for the training. Whereas, when 50% of the dataset for the training was used, the 
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accuracy rate was slightly lower, more than 88% and 95%, respectively. While for the SVM 

classifier accuracy obtained was 88% when using 70% of the dataset for the training and more 

than 87% when 50% of the dataset for the training was used. This means that the other faults 

can easily identify the lamination’s insulation fault. This ascertainment is in accordance with 

the conclusion made from the experimental results in chapter 4. 

Edge Burrs Fault (Fault1) 

SVM 70-30 SVM 30-70 SVM 50-50 

   

KNN 70-30 KNN 30-70 KNN 50-50 

   

DT 70-30 DT 30-70 DT 50-50 

   

Figure 5- 8: Confusion matrix obtained using training/testing scenarios for the three classifiers of 

Edge Burrs Fault 
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Insulation Damage (Fault 2) 

SVM 70-30 SVM 30-70 SVM 50-50 

   

KNN 70-30 KNN 30-70 KNN 50-50 

  

 

DT 70-30 DT 30-70 DT 50-50 

   

Figure 5- 9: Confusion matrix obtained using training/testing scenarios for the three classifiers of the 

insulation damage Fault 

The results generally indicated that the fault classification was successful and somehow 

accurate, especially when using 70% of the dataset for the training. The (KNN) classifier 

achieved the highest accuracy in faults classification. And the (DT) classifier achieved slightly 

lower accuracy. Where the (SVM) classifier achieved the lowest accuracy. The accuracy rate 

for the second fault shows a slight decrease. 

Moreover, the results show relatively different accuracy rates, especially when using 30% of 

the dataset for the training. The overall accuracy rate for fault detection of each fault is 
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satisfactory and presented in table 5-6. Such results present encouragement in the direction of 

fault identification and categorization of lamination problems in electrical transformer cores 

using current signals. 

5.5.4 Fault Classification between healthy and different faulty scenarios using a random 

dataset   

In this section, based on current signals the classification results between healthy and the 

different scenarios of each fault. Based on what was explained in the previous chapter, each 

fault has a set of scenarios. For example, the insulation damage fault was performed with 2, 6, 

8, and 12 laminations with several specified flux density values, which were 0.5, 0.8, 1.0, 1.5, 

1.7, and 1.8 T. As well as the Edge Burrs fault was investigated in several scenarios that were 

also explained in the same mentioned chapter to prove and confirm these mentioned target 

faults and their impact on the performance of the transformer core. The scenarios of each fault 

have been grouped to form a separate category, with multi-classification scenarios (healthy, 

and the scenarios of faulty 1, 2, 3, 4.) formulated where the aim is to detect and classify the 

presence of each scenario. After the satisfactory results obtained from the detection and 

classification of the two main mentioned faults, the role of detecting the fault scenarios comes 

in order to increase the tools of detecting such faults and to be focused in the future.  

With the expected results, a relatively low accuracy rate has been obtained because of the low 

amount of dataset collected for this purpose due to not being focused on since it was not the 

main objective of the research and time limitations. 

5.5.5 Edge burrs fault scenarios results  

Each type of fault has been grouped to form a separate class, with multi-classification scenarios 

(healthy and fault scenarios 1, 2, 3, 4). designed to detect and classify the existence of each 

scenario. For the scenarios results of Edge Burrs fault See table 5-7. The table provides the 

calculated results using the SVM, KNN, and DT classifiers. For three scenarios of the training 

and testing process, The outcomes in this table display the accuracy rate of multi classes see eq 

(5-1). From the confusion matrices, one can get a general understanding of the classification 

process. For example, precision and recall can be defined for each class in figure 5-9. 

Table 5- 7: The Scenarios of Edge Burs faults 
Scenarios  Accuracy Rate (%) 

SVM KNN DT 

70-30 64.70 64.70 55.88 

30-70 57.35 63.23 36.76 

50-50 54.90 70.58 60.78 
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The findings indicate that the suggested classifiers do not produce substantially identical results 

for the three specified situations (data decomposition for training and testing). Overall, the 

accuracy rate is around 60%, with a maximum of more than 64.70%, obtained when using 70 

datasets for the training with SVM and the KNN classifiers. While 60.78 % with the DT 

classifier when using 50% of the dataset for the training. Whereas the highest result is 70.58% 

when the KNN classifier is used when using half of the dataset for the training. Figure 5- 

9 shows the confusion matrices obtained using the three algorithms for the three scenarios.  

SVM 70-30 SVM 30-70 SVM 50-50 

   

KNN 70-30 KNN 30-70 KNN 50-50 

   

DT 70-30 DT 30-70 DT 50-50 

   

Figure 5- 10: Confusion matrix obtained using training/testing scenarios for the three classifiers of 

the edge burrs Fault 
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In general, the results indicated that the fault classification was somehow successful, especially 

with the KNN classifier. The KNN and SVM classifiers achieved the highest accuracy in faults 

classification when using 70% for dataset training. And the (DT) classifier achieved slightly 

lower accuracy. Such findings encouraged fault detection and classification of lamination faults 

based on current signals in an electrical transformer's core. In addition, this leads that the multi 

scenarios need more focus by increasing the number of scenarios, in data processing (feature 

extraction) by increasing the number of features, or in classification by choosing appropriate 

algorithms. 

5.5.6 Insulation damage scenarios results  

For the scenario results of laminations, and damage fault, see next table 5-8. The accuracy rate 

for many classes of this issue is shown in this table. 

Table 5- 8: The scenarios of insulation damage faults 

Scenarios  Accuracy Rate (%) 

SVM KNN DT 

70-30 64.00 80.00 72.00 

30-70 59.53 63.58 69.36 

50-50 71.11 66.66 45.55 

According to the acquired results, several recommended classifiers produced fairly equal 

outcomes for the three offered scenarios (training and testing) when using 70% of the dataset 

for the training. Overall, the accuracy rate was 80% with the KNN classifier, which was the 

highest result and 72% obtained with the DT classifier, and 64% with the SVM when using 

70% of the dataset for the training. In contrast, the accuracy rate was 71.11%, obtained when 

using 50% of the dataset for the training with the SVM classifier. And 66.66%, and 45.55% 

with the KNN and DT classifiers, respectively. This indicates that the multi-scenarios need 

more focus. From the confusion matrices, one can get a general understanding of the 

classification process. For example, precision and recall can be defined for each of the classes 

in figure 5-10.  
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SVM 70-30 SVM 30-70 SVM 50-50 

   

KNN 70-30 KNN 30-70 KNN 50-50 

   

DT 70-30 DT 30-70 DT 50-50 

   

Figure 5- 11: Confusion matrix obtained using training/testing scenarios for the three classifiers of 

the lamination insulation Fault. 

In general, the results indicated that the fault classification was successful and somehow 

accurate, especially when using 70% of the dataset for the training. The (KNN) classifier 

achieved the highest accuracy in faults classification. And the (DT) classifier achieved slightly 

lower accuracy. At the same time, the (SVM) classifier achieved the lowest accuracy. Such 

findings gave encouragement in fault classification of multi scenarios for lamination insulation 

fault in electrical transformers cores. However, large databases are required to reach higher 



Chapter 5: Detection and Classification of Lamination Faults in A 15 kVA Three-phase 

Transformer Core using SVM, KNN and DT Algorithms 

 

 

 

100 
 

 

precision, and to make more accurate classifications to provide assistance in preventing the 

electrical system from unexpected faults. 

5.6 K-fold cross-validation results 

5.6.1 Definition of k-fold cross-validation 

Cross-validation is a statistical method of evaluating and comparing learning algorithms by 

dividing data into two segments: one used to learn or train a model and the other used to validate 

the model. In typical cross-validation, the training and validation sets must cross over in 

successive rounds such that each data point has a chance of being validated against. The basic 

form of cross-validation is k-fold cross-validation. Other forms of cross-validation are special 

cases of k-fold cross-validation or involving repeated rounds of k-fold cross-validation [38]. 

Figure 5-11 shows how K-fold cross-validation works. 

 

Figure 5- 12: How does K-Fold Cross-Validation Working in Machine Learning [39] 

In this section, the proposed application is assessed based on the experimental data of the 

current signals for both faults. To verify whether the proposed model, in combination with the 

proposed feature selection techniques to select discriminative features, benefits the fault 

detection procedure, the acquired signals with the same extracted features were used as inputs 

to the classification algorithms. The selected optimal feature subsets were applied to three 

machine learning models, KNN, SVM, and DT, for classification into their respective classes. 

The classifiers are then trained using cross-validation. The training was repeated 3-fold, 5-fold, 
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and 10-fold times with cross-validation techniques to fine-tune the model and ensure 

consistency in the results. Each classifier’s performance was evaluated using its accuracy. 

5.6.2 Based on current signals fault detection results using cross-validation 

In this section, both types of faults have been grouped to form one class, representing the results 

of the faulty operation mode. And the dataset was trained by repeated 3-fold, 5-fold, and 10-

fold times with cross-validation techniques. Therefore, a binary classification (healthy and 

faulty) is formulated where the aim is to detect the presence of faulty conditions. This process 

is based on the features extracted from the measured current. Table 5-9 gives the accuracy rate 

obtained using three different classifiers: SVM, KNN, and DT. see eq (5-1).  

Table 5-9: gives the accuracy rate obtained using three different classifiers 
Fold Cross-Validation SVM KNN DT 

(3-fold) accuracy (%) 93.81 97.07 99.67 

(5-fold) accuracy (%) 94.79 97.39 99.35 

(10-fold) accuracy (%) 97.33 98.47 99.24 

The Decision tree classier (DT) gained the highest classification accuracy, which was 99.67%, 

when the model was trained with 3-fold cross-validation by applying the current signal for fault 

detection. And it was 99.24% when the model was trained with 10-fold cross-validation. 

Furthermore, when the KNN model was trained with 3-fold cross-validation, the accuracy was 

97.07%, and it was further raised to 98.47% when the model was trained with 10-fold cross-

validation using the current signal. In addition, the classification accuracy using the SVM 

classifier was 93.81% with 3 -fold and 97.33% with 10-fold cross-validation applying the 

current signals. And when using 5-fold cross-validation, the accuracy obtained was 94.79% 

with the SVM classifier, 97.39% with the KNN classifier, and 99.35% with the DT classifier. 

Overall, it can be confirmed that, as stated in table 5-9, the DT classifier achieved the highest 

accuracy by applying the current signal, which was 99.67%, using 3-fold cross-validation. 

Furthermore, when the model was trained using SVM, the lowest accuracy was achieved with 

the use of 10-fold cross-validation, which was 97.33% for the current signal. And from the 

confusion matrices, one can get a general understanding of the classification process. For 

example, precision and recall can be defined for each class in figure 5-12. 
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Fold Cross-Validation (SVM) 

3-fold 5-fold 10-fold 

   
Fold Cross-Validation (KNN) 

3-fold 5-fold 10-fold 

   
Fold Cross-Validation (KNN) 

3-fold 5-fold 10-fold 

   
Figure 5-13: confusion matrix obtained using cross-validation for the three classifiers of fault 

detection 

In general, the results indicated that the fault detection was successful and accurate, especially 

when using 10-fold cross-validation for the dataset training for most of the classifiers. The (DT) 

classifier achieved the highest accuracy in faults detection, and the (KNN) classifier achieved 

slightly lower accuracy, while the (SVM) classifier achieved the lowest accuracy. In addition, 

the 10-fold cross-validation of the dataset for the training gives the best results for most of the 

classifiers, while the 3-fold cross-validation gives fewer results accuracy for the different 

classifiers. This indicates that artificial intelligence can accurately detect and classify fault 
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detection. The study gives inspiration for identifying and categorizing lamination problems 

using current signals in the core of an electrical transformer. 

5.6.3 Classification for both types of faults using Cross-Validation 

Based on current signals, this part considers the classification between health conditions and 

both types of faults. Both types of faults have been separated to form two classes, and the 

classes become a three-group classification. Table 5-10 provides the calculated results using 

the three classifiers and 3,5, and 10-fold Cross-Validation for three training classes. The results 

in this table show the accuracy rate of the three classes together, the number of right answers 

multiplied by the total amount of samples for each class see eq (5-1).  

Table 5-10: gives the accuracy rate obtained using three different classifiers 
Fold Cross-Validation SVM KNN DT 

(3-fold) accuracy (%) 91.21 96.74 99.35 

(5-fold) accuracy (%) 91.21 97.07 99.67 

(10-fold) accuracy (%) 92.16 98.69 99.35 

 

The DT classifier shows the best result for classification using K-fold cross-validation for the 

dataset training process. which was 99.67% with 5-fold cross-validation. While 99.35% with 

the 3, and 10-fold cross-validation. The accuracy rate for KNN shows a slight decrease. Was 

96.74% with the utilization of 3-fold cross-validation. While 98.69% with the 10-fold cross-

validation. 

The overall accuracy rate for each case is presented in table 5-10. From this table, one can 

clearly see that the classification results are affected by the value of fold cross-validation. For 

instance, the results of the 10-fold show good accuracies for most of the considered classifiers 

(SVM, KNN). Moreover, the SVM shows relatively lower accuracy rates, especially when the 

fold value was 3 and 10 for the dataset training process, which was 91.21%. This means that 

each fault can be easily identified from the other. This ascertainment is in good accordance 

with the conclusion made from the experimental, the confusion matrices in figure 5- 13.  
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Fold Cross-Validation (SVM) 
3-fold 5-fold 10-fold 

   
Fold Cross-Validation (KNN) 

3-fold 5-fold 10-fold 

   
Fold Cross-Validation (DT) 

3-fold 5-fold 10-fold 

   
Figure 5- 14: confusion matrix obtained using cross-validation for the three classifiers of fault 

classification for both types. 

Generally, the accuracy rate of fault classification for both types of faults using Cross-

Validation is satisfactory. Again, the (DT) classifier achieved the highest accuracy in faults 

detection, and the (KNN) classifier achieved slightly lower accuracy, while the (SVM) 

classifier achieved the lowest accuracy. In addition, the 10-fold cross-validation of the dataset 

for the training gives the best results for most of the classifiers, while the 3-fold cross-validation 

gives fewer results accuracy for the same classifiers. This shows that fault classification may 

indeed be effectively identified and sorted using artificial intelligence. These discoveries 
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encouraged the categorization of lamination problems based on current signals in an electrical 

transformer's core. 

5.6.4 Detection of each fault separately using Cross-Validation 

In this section, the classification between health conditions and each type of fault separately 

has been considered. Every kind of fault has been separated to form one class the classes 

become a two-group classification. Table 5-11 provides the calculated results using the three 

classifiers and for three scenarios of the training and testing process. The data in this table 

displays the accuracy for every class individually, which is calculated as the proportion of the 

right selections to all samples for a certain class see eq (5-1).  

Table 5- 11: accuracy rate for each class of faults using different classifiers and considering three 

scenarios 
 

Class 

Training - Testing Data Accuracy Rate (%) 

SVM KNN DT 

Fault 1 (3-fold) accuracy (%) 82.35 95.10 84.31 

(5-fold) accuracy (%) 83.33 94.12 90.20 

(10-fold) accuracy (%) 95.24 97.62 92.86 

Fault 2 (3-fold) accuracy (%) 87.89 96.41 99.10 

(5-fold) accuracy (%) 87.89 95.07 99.55 

(10-fold) accuracy (%) 90.48 97.75 99.29 

From this table, one can clearly see that the classification results are affected by the type of 

fault and the classifiers. Each classifier is given a different result. The highest obtained accuracy 

for the first fault (Edge Burrs Fault) was around 90 %. With a maximum of 97.62 % with the 

KNN classifier when using 10-fold cross-validation for the dataset training. Whereas 92.86 % 

with the DT classifier and 95.24 % with the SVM classifier when using 10-fold cross-validation 

for the dataset training. However, the accuracy decreased relatively when using 3-fold cross-

validation for the dataset training, where 82.35 % was obtained with the SVM classifier, 95.10 

% with the KNN classifier, and 84.31% with the DT classifier.  

In addition, the highest obtained accuracy for the second fault (insulation damage fault) was 

around 99 %. With a maximum of 99.55 % with the DT classifier when using 5-Fold cross-

validation for the dataset training. And 99.10 % and 99.29 % when using 3, and 10-fold cross-

validation for the dataset training, respectively. However, the accuracy decreased relatively 

with the other classifiers when using 10-fold cross-validation for the dataset training. The 

accuracy was 97.75 % with the KNN classifier and 90.48 % with the SVM classifier. When 

using 3-fold cross-validation for the dataset training, the accuracy slightly decreases where 

96.41 % with the KNN classifier and 87.89 % with the SVM classifier. 
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Overall, the results of the second fault show better accuracies for all the considered cases, 

especially with the DT classifier. This means that the lamination’s insulation fault can be easily 

identified from the other conditions. In addition, edge burr faults also show a good result for 

fault detection with the KNN classifier. The evidence gathered from the experimental data in 

the preceding chapter is well supported by this determination. And from the confusion matrices, 

one may gain a general idea of the categorization procedure. For each of the classes, one can 

define accuracy and recall, for instance, in figures 5-14 and 5-15. 

Edge Burrs Fault (Fault 1). Fold Cross-Validation (SVM) 
3-fold 5-fold 10-fold 

   
Fold Cross-Validation (KNN) 

3-fold 5-fold 10-fold 

   
Fold Cross-Validation (DT) 

3-fold 5-fold 10-fold 

   
Figure 5- 15: Confusion matrix obtained using cross-validation for the three classifiers of fault 

classification for Edge Burrs fault (Fault 1). 
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Insulation Damage (Fault 2). Fold Cross-Validation (SVM) 

3-fold 5-fold 10-fold 

   
Fold Cross-Validation (KNN) 

3-fold 5-fold 10-fold 

   
Fold Cross-Validation (DT) 

3-fold 5-fold 10-fold 

   
Figure 5-16: Confusion matrix obtained using cross-validation for the three classifiers of fault 

classification for the insulation damage Fault (Fault 2). 

In general, the findings of the detection of each fault separately using Cross-Validation indicate 

that the proposed fault detection model can be generated using current signals and has a superior 

performance based on the accuracy results. The classification algorithms are essential for fault 

detection and classification in a detection model. The KNN classifier outperformed the DT and 

SVM classifiers in the first fault, especially when using 10-fold cross-validation, while the DT 

classifier outperformed the second fault in most cases in determining the correct class, 

especially when using 5-fold cross-validation. Additionally, applying a 10-fold cross-validation 
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strategy to train the proposed models could enhance classification accuracy with most of the 

classifiers. 

5.6.5 Fault classification between healthy and different faulty scenarios using k-fold 

cross-validation  

The classification accuracy results are presented between healthy and the different faulty 

scenarios based on the current signals of each fault. And according to what was explained in 

chapter 4, each fault has a set of scenarios. For example, the insulation damage fault was 

performed with 2, 6, 8, and 12 laminations with several specified flux density values, which 

were 0.5, 0.8, 1.0, 1.5, 1.7 and 1.8 T. As well as the Edge Burrs fault was investigated in several 

scenarios that were also explained in the same mentioned chapter in order to prove and confirm 

these mentioned target faults and their impact on the performance of the transformer core. After 

the satisfactory results obtained from the detection and classification of the two main mentioned 

faults, the role of detecting the scenarios comes in order to increase the tools and methods of 

detecting these kinds of faults and to be targeted in the future. With the expected results, a good 

accuracy rate has been obtained because of enough datasets collected for this purpose due to 

being focused on since it was the main objective of the research. 

5.6.6 Edge burrs fault  

Each fault’s scenarios have been grouped to form a multi-class (healthy and fault scenarios1, 

2, 3, 4.) formulated where the aim is to detect and classify the presence of each scenario. For 

the scenarios results of Edge burrs fault, see table 5-12. The table provides the calculated results 

using the SVM, KNN, and DT classifiers, and the training was repeated three, five, and ten 

times with cross-validation techniques to fine-tune the model and ensure consistency in the 

results for the four scenarios of the fault.  The results in this table show the percentage of right 

answers across all samples for a specific class, which is the acquired accuracy of several classes 

see eq (5-1).  

Table 5- 12: The Scenarios of Edge Burs faults 
Fold Cross-Validation SVM KNN DT 

(3-fold) accuracy (%) 54.90 62.78 50.00 

(5-fold) accuracy (%) 52.94 63.73 57.84 

(10-fold) accuracy (%) 88.10 96.43 85.71 

The obtained results show that the proposed classifiers do not give roughly equivalent results 

for the proposed scenarios (data decomposition for training and testing of the scenarios of edge 

burrs fault). Overall, when using 10-fold cross-validation of the dataset for the training, the 

accuracy rate is around 50 %, with a maximum of more than 88.10 % obtained with the SVM 



Chapter 5: Detection and Classification of Lamination Faults in A 15 kVA Three-phase 

Transformer Core using SVM, KNN and DT Algorithms 

 

 

 

109 
 

 

classifier. On the other side, around 60 % was the obtained accuracy with a maximum of more 

than 96.43 % using the KNN classifier, which was the highest result. While it was 85.71 % 

with the DT classifier. However, the accuracy decreased relatively when using 3-Fold cross-

validation for the dataset training, where the accuracy was 50.00 % with the DT classifier, 

which was the lowest result obtained. In comparison, the accuracy was 62.78 % with the KNN 

classifier and 54.90 % obtained with the SVM classifier. Therefore, one may gain a broad idea 

of the classification process from the confusion matrices. Within each of the classes, for 

instance, accuracy and recall can be defined in figure 5-16.  

SVM 3 SVM 5 SVM 10 

   
KNN 3 KNN 5 KNN 10 

   
DT 3 DT 5 DT 10 

   

Figure 5- 17: Confusion matrix obtained using training/testing scenarios for the three classifiers of 

the insulation damage Fault 
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In general, 10-Fold cross-validation of the dataset for the training gives the best results while 

the 3-Fold cross-validation gets fewer results accuracy for the different classifiers. The (KNN) 

achieved the highest classification accuracy. This indicates that the multi scenarios of the faulty 

conditions need more focus, such as collecting more data and extracting more features using 

different feature extraction techniques. 

5.6.7 Insulation damage fault results 

For the results of faulty mode scenarios of laminations and damage fault, see next table 5-13. 

The results in this table display the accuracy rate for many classes of this issue, eq (5-1).  

Table 5-  13: The scenarios of insulation damage faults 
Fold Cross-Validation SVM KNN DT 

(3-fold) accuracy (%) 63.95 74.25 90.99 

(5-fold) accuracy (%) 68.24 77.68 94.85 

(10-fold) accuracy (%) 99.29 97.86 95.71 

 

The obtained results show that some proposed classifiers gave roughly equivalent results for 

the proposed scenarios. Overall, 95 % is the average accuracy rate obtained using the DT 

classifier with a maximum of 94.85 %, obtained when using 5-fold cross-validation of the 

dataset for the training, which was the highest result, and 90.99% obtained with 3-fold cross-

validation, which is the lowest. However, with the KNN classifier, around 70% accuracy rate 

was obtained with a maximum of more than 78 % using 10-fold cross-validation and 74.25% 

obtained with 3-fold cross-validation. On the other side, 90 % was obtained with the SVM 

classifier when using 10-fold cross-validation of the dataset for the training, and 63.95% was 

obtained with 3-fold cross-validation, which is the lowest obtained result to get a general grasp 

of the categorization process, see the confusion matrices in figure 5-17. 

SVM 3 SVM 5 SVM 10 

   
KNN 3 KNN 5 KNN 10 
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DT 3 DT 5 DT 10 

   

Figure 5-18: Confusion matrix obtained using training/testing scenarios for the three classifiers of the 

insulation damage Fault 

In general, the (DT) classifier achieved the highest classification accuracy. and the (KNN) 

classifier achieved slightly lower accuracy, while the (SVM) classifier achieved the lowest 

results. And 10-fold cross-validation of the dataset for the training gives the best results, while 

the 3-fold cross-validation gives fewer results accuracy for the different classifiers. This 

indicates that the multi scenarios of lamination’s insulation fault give a better result means can 

be easily identified and can be accurately detected and classified using artificial intelligence. 

5.8 Summary 

Based on current signals. This chapter studied the detection and classification of lamination 

faults in the power transformer core. The detection and classification of two types of lamination 

faults (i.e., edge burr and lamination insulation faults) in a three-phase transformer core have 

been studied. Using the experimental results obtained using a 15 kVA transformer were 

exploited. The FFT technique feature extraction for current signals has been presented, which 

helps diagnoses faults in the power transformer core and demonstrates its impact. Ten features 

were extracted, and a graphical representation was made to distinguish the independent 

features. Five features were selected (Average, Fundamental, Total Harmonic Distortion 

(THD), and Standard Deviation (STD)). Elaborating 328 samples, the dataset is utilized as input 
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vectors to train and test classification models based on SVM, KNN, and DT algorithms. The 

dataset for training and testing the model has been managed by considering different scenarios 

to ensure that the results of the experimental work are accurate and these faults can be identified 

and classified easily by artificial intelligence. Overall, the obtained results indicated that 

transformer thermal images are an effective tool for detecting and classifying lamination faults 

in the transformer core. The following conclusions are also drawn. 

1. SVM, KNN, and DT have been used for fault diagnosis based on selected features. The 

classifiers were satisfactorily accurate when the dataset was applied randomly and with K-fold 

cross-validation. 

2. KNN and DT classifiers gave the highest accuracy rate in the detection purpose, where two 

classes were considered using a random dataset. The accuracy was up to 97.43 %. The DT 

classifier gave the highest accuracy rate of 97.69 % in the classification purpose, where three 

classes were considered using a random dataset. At the same time, the KNN classifier gave the 

highest accuracy rate of 80 % in the classification purpose where multi classes were considered 

using a random dataset. 

3. Using K-Fold cross-validation for the dataset training, the DT classifier has given the top 

accuracy rate of more than 99 % in the detection and classification purpose, where two and 

three classes were considered. Again, the DT classifier gives the top accuracy rate of around 

more than 94 % in the classification purpose where multi classes were considered using K-Fold 

cross-validation for the dataset training. 

4. It was found that the insulation lamination fault presents a good accuracy rate compared to 

other classes. Higher precision and recall were obtained for this class. 

5. The multi scenarios of the faulty conditions need more focus, such as collecting more data 

and more scenarios. 

Such findings indicated that better detection and classification results might be obtained by 

enlarging the database or by using more accurate classification algorithms. It is also suggested 

to investigate the classification using other features by employing other signal processing 

techniques. 
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CHAPTER 6: Based on the Thermal Image, Detection and 

Classification of Lamination Faults in A 15 kVA Three-Phase 

Transformer Core Using SVM, KNN, And DT Algorithms 

Diagnosing the transformer's failure is important to maintain its safe and stable operation. Early 

fault diagnosis enables to make savings related to maintenance. This chapter deals with the 

detection and classification of two types of lamination faults (i.e., edge burr and lamination 

insulation faults) in a three-phase transformer core using thermal images. In Chapter 4, the 

experimental results are exploited, which are obtained by employing a 15 kVA transformer 

under healthy and faulty conditions. Different test conditions were considered, such as the flux 

density, number of affected laminations, and fault location. The thermal images were used, and 

a new feature extraction technique for thermal images has been presented called the RGB 

technique, which helps diagnose faults in the power transformer core and demonstrates its 

impact. Eight features were extracted, and a graphical representation was made to distinguish 

the independent features from the others. Thus, enhanced fault detection and classification 

performance where four features were selected (the highest temperature value, R1, R3, and R5). 

Elaborating a total of 222 samples, these features are utilized as input vectors to train and test 

classification models based on SVM, KNN, and DT algorithms. The dataset for training and 

testing the model has been managed by considering different scenarios (1) decomposition of 

the dataset for training and testing by random selection and the K-Fold cross-validation strategy 

(2) managing the detection and classification form for both fault types to be in different 

scenarios to ensure that the results of the experimental work are accurate, and these faults can 

be identified and classified easily by artificial intelligence. Based on the selected features, the 

results confirmed that the thermal images for the power transformer core faults could be used 

for detection and classification. An accuracy rate of more than 98% was obtained using three 

different classifiers. Such findings provided a promising step toward fault detection and 

classification in electrical transformers, helping protect the system and avoid other related 

issues such as increased power loss and temperature.  

6.1 Introduction 

The quality of power transformer operation is directly related to the power system quality 

[1][2]. In addition, large power transformers constitute very expensive and vital components in 

electric power systems [3]. The reliability of power transformers dictates the safe and reliable 

performance of the entire electrical system [4]. The faults of power transformers will seriously 
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impact the safety of power grids [5]. It is necessary to pay attention to the higher reliability of 

power transformers due to possible electric system failures and their cost [6]. 

Generally, their unanticipated cut-out from the circuit can cause serious and sometimes 

irreparable damages to the system, reducing the service quality and even causing blackouts 

[7][8], and the failure of transformers without warning often causes catastrophic consequences 

on the power grid. Online monitoring of transformers has been an essential challenge for power 

engineers. Power engineers are devoted to intensifying the diagnosis of the transformer to 

discover hidden troubles timely and guarantee the normal operation of the transformer[9]. 

Usually, time periods, as well as the area of the diagnostics, may vary regarding every 

population of the transformers. It is always the decision of the owner of the fleet. Nevertheless, 

among all tests, there may be pointed a group of the most commonly applied measurements on 

the active part of the transformer that is usually mandatory according to the maintenance 

policy[10][11]. Recently, many detection techniques and monitoring methods have been 

developed for fault diagnosis of the transformer[12][13].  

The single restriction for power transformers loading is the temperature of the hottest part of 

their lamination (so-called hot-spot HS)[14]. Heat is generated due to the losses in the 

transformer, and temperature increases within the core and windings. typically, the windings 

temperatures of the dry transformers are so much higher than ambient, it is not easy to 

distinguish the internal defect using thermography before it becomes serious[8].  

The cores of electrical machines are normally built from thin electrical steel laminations to 

reduce the eddy current loss for high-efficiency operation[15]. The process of punching and 

cutting the electrical steel causes mechanical stress, which deforms the sheet and deteriorates 

its magnetic properties[16]. Mechanical deformations shear causes burrs on the cut edges[17]. 

Both faults tend to cause insulation breakdown between the sheets resulting in electrical 

shorting between the stacked laminations leading to a significant increase in power loss and 

local overheating, which may cause the burning or melting of the laminations. Thus it causes 

the potential for complete machine failure[18][19]. Studies have shown a dramatic increase in 

the eddy current power loss when connecting core edges[20]. 

Thermal images are captured by a thermo-graphic camera using infrared radiation, whereas 

normal images are captured by using visible light cameras. Visible light camera works in 

450nm to 750nm. The infrared cameras work in as maximum as 14,000 nm, i.e., 14μm. Thermal 

images generally display the amount of IR energy emitted and reflected by an object [21].  
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6.2 Related work  

Due to the different structure features, common monitoring systems, such as the oil or gas 

detection on the oil-immersed transformer, cannot be applied on cast-resin or Dry- type 

transformers. The Dry- type transformer provides the products with numerous excellent 

characteristics such as low no-load loss, oilless, anti-flaming, maintenance-free, good moisture 

and crazing resistance, etc. The Dry- type of transformer is perfectly matched to the 

requirement of inflammable and explosive sites such as commercial centre, high-tech factories, 

hospitals, underground, airports, train stations, tower buildings, industrial and mining 

enterprises, etc. Few pieces of literature focus on fault diagnosis for cast-resin or dry-type 

transformers. Sun et al. [22] proposed a sparse Bayesian temperature model for detecting the 

temperature warning range of a dry-type transformer based on historical operating data. Chen 

et al. [23] designed the rectangular sensors employed in the 11.4 kV cast-resin power 

transformer to detect the induction magnetic field caused by partial discharge (PD). 

Athikessavan et al. [24]  developed low-severity inter-turn fault detection based on a core-

leakage flux online technique under the operating conditions of dry-type transformers. 

Gockenbach et al. [25] used some fibre optic sensors fixed on the surface of the dry-type 

transformer to perceive online local overheating due to partial discharges. Lee et al. [26] 

adopted the fuzzy logic clustering (DT) method to recognize the abnormal defects pattern of 

PD occurring in epoxy resin insulators of high-voltage electrical equipment, etc. Some methods 

require operators with professional knowledge and rich experience.[27] A. Al-Musawi applies 

colour model identification, namely Hue, Saturation, and Value (HSV), to represent the hottest 

area in the thermal image to detect and correctly identify the induction motor faults and 

discriminate between the motor faults. In addition, many laminations short circuit fault 

diagnosis methods are proposed theoretically and practically, for instance, the short-circuit 

impedance (SCI) method based on the principle of short-circuit impedance measurement, the 

low-voltage impulse (LVI) method based on the principle of signal analysis, and the frequency 

response analysis (FRA) method, etc.[28][29]. 

In this thesis, experimental studies have been carried out to indicate the severity of short circuits 

in the transformer laminations due to edge burrs and insulation degradation faults. A fault-test 

system has been developed in the Magnetics Group for such testing. A 15 kVA three-phase 

power transformer has been used where different scenarios of faults have been considered, such 
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as the area of the affected regions and the number of short-circuited laminations. Of interest, 

the current at no-load has been recorded for various flux densities ranging from 0.5 to 1.8 T. 

6.3 Experimental setup and sample preparation 

This section explains the data collection system and process used to investigate the impact of 

lamination faults in power transformers. A fault-test system has been developed in the 

Magnetics Group for such testing. This system helps measure the hottest area in the transformer 

core by using thermal images. Figures 6-2a and 6-2b show a photo of the experimental setup 

and a schematic diagram of the measurement system. 

 

Figure 6-1:Experimental setup 

 

Figure 6-2: Faulty operation diagram 
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The test rig consists of several components, including a three-phase power transformer of 15 

kVA, Clamps designed to be used for the fixation during the application of faults to apply the 

Edge Burrs fault, a Rotary Tool used for removing around 400mm2 insulation material of the 

power transformer core laminations for the second fault for this work. Flux densities are 

calculated from the measured voltages and currents using the power analyser connected to the 

power transformer. A thermal camera was used during the experiment for the healthy and faulty 

transformer core was captured in order to be compared. 

The transformer core is built up from a stack of grain-oriented electrical steel laminations (i.e., 

a total of 520 laminations); this transformer is characterised by two windows cores of 320 

mm*120 mm and an outer core of 540 mm*520 mm. In addition, the primary and secondary 

windings are evenly wound along the limbs with 50 turns of insulated copper wire of 1.5 mm2 

cross-section. 

In the initial stage of the experiments, a clamping device, shown in figure 6-3, was designed to 

fit the experimental core of the transformer described in this investigation. This device helps to 

ensure good contact of the artificial burr materials with the side of the sample stacks of 

laminations. 

 

Figure 6-2: Clamping device used for the laminations fault fixation 

As shown in this figure, the clamping device consists of two wooden plates secured by two 

plastic bolts, enabling good pressure on the copper foil on both sides of a stack of laminations. 

Both wood and plastic are transparent to electromagnetic waves. Thus, their effects on the 

experimental results can be neglected. Several works have neglected the effect of the clamping 

device (e.g., [17]). 
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6.4 Artificial lamination faults 

In this investigation, two types of faults have been considered in the transformer core. These 

faults are the edge burrs and insulation deterioration between laminations, which are the most 

commonly appeared faults in transformers. The forthcoming parts explain each fault 

individually. The no-load current measurements can express no-load loss or iron loss. For this 

reason, a transformer no-load test has been carried out by applying a nominal voltage (220 V) 

of the primary set of transformer windings when the secondary windings are open. 

 In order to study the impact of both faults, the healthy operation mode is firstly investigated. 

In this mode, voltage and current in the three phases have been recorded for different flux 

densities to guarantee satisfactory results. Flux densities of 0.5, 0.8, 1.0, 1.5, 1.7 and 1.8 T have 

been considered. The measured results are re-examined three times to ensure reliable and 

feasible quality. For instance, a whole day is allotted to take the data of each fault separately to 

leave the transformer core enough time to cool down. 

6.4.1 Edge burr fault 

In order to simulate the edge burr fault, a short circuit has been created between the laminations 

of the transformer core. According to the number of sheets in short-circuit (affected area), four 

scenarios have been selected for this type of fault. See section 4.3.1.  

6.4.2 Lamination insulation fault 

Thin electrical steel laminations form the cores of electrical machines to reduce the eddy current 

loss for high-efficiency operation. Each lamination is coated on both sides with an inorganic 

coating. This thin layer is usually 1 to 3µm in thickness, used to prevent any direct electrical 

contact between laminations. Degradation of the inter-laminar insulation in the transformer 

core can occur from a number of sources, such as the ageing of lamination coating, mechanical 

damage from external objects, and/or overheating of laminations in the region of a winding 

failure. In order to study the impact of such types of lamination faults by using thermal imaging, 

the experiment involved applying these faults and then captioning the images to examine the 

transformer state in faults from insulation breakdowns. For full details, see section 4.3.2.  

6.5 The experimental results 

This section gives the results of the experimental work presented in this thesis. These results 

consist of the thermal images for the transformer, which have been taken for various values of 

flux density. FLIR C2 thermal camera is used for capturing the thermal image. Six images for 
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each scenario during the whole day and with a resolution of (80 × 60) are taken during the time 

intervals of 15 min for each flux density value. Full camera details are available in section 3.6.6. 

6.5.1 Healthy operation mode 

The analysis was done by capturing the thermal image of the healthy transformer core in order 

to be used as a reference image and later to compare it with the faulty transformer core image. 

For a better visualisation of the results. Firstly, figure 6-4 shows the thermal images for normal 

conditions before applying any faults to better understand these faults' impact. The maximum 

and minimum temperature clearly indicates the transformer core temperature profile for 

different flux densities. These values are taken as a part of the used features for the fault 

detection and classification section. 

For healthy conditions of the transformer core, one can see that the flux density has an important 

effect on the core temperature in a no-loaded power transformer. For low flux density in Figure 

6-4 (a), the temperature is of low degree in the order of 25.3 ℃ max and 19.1 ℃ min, while at 

1.8 T in figure 6-4(f), the temperature is of high degree in the order of 30.5 ℃ max and 23.3 

℃ min. 

   

(a) 0.5 T (b) 0.8 T (c) 1.0 T 

   
(d) 1.5 T (e) 1.7 T (f) 1.8 T 

Figure 6-3: Healthy operation mode results 

6.5.2 Edge burrs fault 

The thermal image results of the first selected type of faults (i.e., edge burrs faults) have been 

viewed in this part. 

The limitations are that the camera was an old version, so the images were not in high quality. 

Since the faults occur on the edges of the laminations, it was better to capture the images from 

the profiles of the transformer because those images of the faults were more precise than those 

caught on the surface of the transformer, as shown in figure (6-5). 
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Figure 6-4: The caught image on the profiles of the transformer 

This fault has been applied in different scenarios and places within the transformer core. Figures 

6-6, 6-7 and b show the thermal images for the considered scenarios. The applied flux densities 

(i.e., 0.5 T: 1.8 T) of two scenarios have been selected in these figures to highlight the effect of 

the flux density on the temperature of the transformer core under edge burr faults. 

   
0.5 T 0.8 T 1.0 T 

   

1.5 T 1.7 T 1.8 T 

Figure 6-5: Results of scenario 1 faulty operation mode of edge burrs fault at different flux 

densities. 

   
0.5 T 0.8 T 1.0 T 

   
1.5 T 1.7 T 1.8 T 

Figure 6-6: Results of scenario 4 faulty operation mode of edge burrs fault at different flux 

densities. 

Affected 

area. 
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These figures show that different temperatures recognize the thermal images obtained during 

edge burr faults compared to those obtained in the healthy operation mode. This means that 

edge burrs faults considerably affect the transformer core temperature, thus, the performance 

of the transformer. Indeed, as you can see on the top right corner the temperature increased by 

3.8°C from scenario 1 (30.7°C) to scenario 4 (34.5°C) with a flux density of 1.8 T. Meanwhile, 

with a flux density of 1.7 T, the temperature increased by 1.2°C from scenario 1 (28.9°C) to 

scenario 4 (30.1°C). This rate of increase becomes more important with the increment of the 

flux density and the number of affected laminations within the transformer core. 

The edge burrs faults increase the temperature inside the transformer. Which, in its round, can 

increase the transformer current losses. This temperature rise might affect the properties of the 

insulating oil and/or insulating paper, thus, reducing the performance of the transformer. For 

this reason, it would be better to examine the effect of such faults in high-capacity transformers. 

Overall, the obtained thermal images demonstrated that the edge burrs fault could cause the 

transformer core temperature to increase, which considerably affects the reliability of the 

transformer. And Edge burrs affecting the transformer core can increase the transformer core 

temperature. These later become important with the increase of the flux density and the number 

of short-circuited laminations.   

6.5.3 Lamination insulation faults 

As described in Section 6.4, artificial short circuits, as the second type of fault, have been 

applied between transformer core laminations by removing the insulation covering the 

laminations. Figure 6-8 shows the captured thermal images for the transformer core. The results 

correspond to faults between 2, 6, 8, and 12 laminations for 0.5 and 1.8 T flux densities, as 

indicated in figures 6-8. It should be noted that the impact of the position of the short circuit 

applied between laminations has been investigated previously using a current signal in chapter 

4. The same way and position of the applied faults have been considered in this investigation. 

The figure 6-7 shows the maximum and minimum temperature as a function of the number of 

the affected laminations at flax density of 0.5 and 1.8 T. From this figure, it is clear that the 

faults' size (number of affected laminations) has an important effect on the temperature within 

the transformer core. 
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0.5 T, 2 Laminations 0.5 T, 6 Laminations 0.5 T, 8 Laminations 0.5 T, 12 Laminations 

    
1.8 T, 2 Laminations 1.8 T, 6 Laminations 1.8 T, 8 Laminations 1.8 T, 12 Laminations 

Figure 6-7: Faulty operation mode results at 0.5 T, 1.8 T 

The results show that the temperature due to short circuit laminations is increasing based on 

the number of shorted laminations, as can be seen in the above figure.. From this figure, it is 

shown that the increasing temperature caused by the insulation damage fault is related to the 

number of the laminations in the short circuit as well as to the flux density. It was found for 

two, six, eight, and twelve shorted laminations that the temperature is extremely high at a flux 

density of 1.8 T of more than 9 ℃ for those at 0.5 T. For two shorted laminations, the 

temperature increased by more than 4 ℃ for a flux density of 0.5 T – 1.8 T. And about 6 ℃ of 

the maximum degree for six and eight shorted laminations at 0.5 T – 1.8 T flux density. 

The transformer core temperature caused by the insulation damage fault is related to the number 

of laminations in the short circuit as well as to the flux density. It was found for two, six, eight 

and twelve shorted laminations that the transformer core temperature is extremely high at a flux 

density of 1.8 T, increased with the number of the affected laminations. This significant 

increase in temperature may lead to an increase in power losses, hence, the transformer 

efficiency or power failure. 

The data from the thermal FLIR C2 camera was saved to the camera's internal memory and 

then transferred to the PC (Personal Computer) for further processing for thermal image feature 

extraction. 

6.6 Thermal images pre-processing  

This section briefly provides the thermal image feature extraction process for detecting and 

classifying lamination faults in the transformer core. Features have been extracted using the 
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RGB technique applied to the thermal images. The obtained dataset was treated to reduce the 

number of features, selecting those most contributing to the overall accuracy. The obtained 

results are presented and discussed in this section since the full details and the effect of these 

faults of this work have been studied previously.  

6.6.1 Thermal images 

Mechanical deformations shear causes burrs on the cut edges, usually followed by the process 

of punching and cutting the electrical steel. Both faults are the edge burrs and insulation 

deterioration between laminations, which are the most apparent faults in this type of 

transformer. These deformations in the core laminations affect the performance of the 

transformer and electrical machines, causing overheating, which leads to power losses, as 

experimentally verified in many studies. From the thermal image results, one can obviously 

distinguish between each operation mode of the transformer by comparing the temperature 

levels. The temperature increases with both faults of laminations. 

Quantifying the thermal images is a common technique to help the process of detection and 

classification of faults in electrical transformers or other electrical systems. However, it may 

be visually difficult to detect and classify these faults because of the similarity in the images. 

For this, the RGB technique has been applied as an image processing technique to the thermal 

image of the matter. 

6.6.2 Proposed RGB technique 

After conducting the experiments, more than 40 thermal images were collected, as shown 

previously. In order to exploit the results and extract the features, the multi-coloured images 

have been represented by images coded in RGB. Therefore, the original images have been 

divided into three sets of images. Each set represents a component of the original that 

corresponds to one of the three colours (R: red, G: green, and B: blue).  In other words, every 

colour of the thermal images will be described in the RGB technique by indicating how much 

of each of the red, green, and blue is included.  

These thermal images are digital imaging systems that are represented by a set of pixels. A 

pixel is the smallest addressable element in a raster image, so it is the smallest controllable 

element of each thermal image. The quality of the image increases with the number of pixels 

as indicated in figure 6-9. 
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Figure 6-8: Effect of the number of pixels in images 

In any given image, every pixel is characterized by a specific colour. It is well known that every 

colour can be represented by a combination of colours. In this thesis, the RGB system represents 

all the colors, as indicated in figure 6-10. 

 

Figure 6-9: combination of colours 

This means that each colour should be represented by different quantities of RED, GREEN and 

BLUE. For instance, we have the following combinations in the next tables: 

Table 6-1: The quantities of RED, GREEN, and BLUE 

RED = 1 x RED + 0 x GREEN + 0 x BLUE 

GREEN = 0 x RED + 1 x GREEN + 0 x BLUE 

BLUE = 0 x RED + 0 x GREEN + 1 x BLUE 

 

For white and black, we have, as shown in the next table 

Table 6- 2: The quantities of RED, GREEN, and BLUE for white and black 

WHITE = 1 x RED +  1 x GREEN + 1 x BLUE 

BLACK = 0 x RED +  0 x GREEN + 0 x BLUE 

These three colours represent any other pixel colour; thus, each thermal image is described by 

three matrices of numbers describing the amount of a given colour in this image. Figure 6-11 

shows a typical representation of the process. 
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Figure 6-10: A general representation of the images processing 

In the proposed model, every thermal image is represented by three independent image planes, 

one in each of the primary colours: red, green, and blue. A particular colour is done by 

specifying the amount of each primary component present. In order to identify the faulty 

conditions, the image is compared with that in a healthy condition. In this case, I compare the 

variation in the total amount of the faulty colour. Figure 6-12 shows an example of this change 

between healthy and faulty conditions.  

 
Figure 6-11: Example showing the difference between healthy and faulty conditions 

It should be noted that the amount of colour is used as a good feature for fault detection. Any 

change represents a faulty condition. Moreover, different feature combinations are introduced 

to classify the faults. The following combinations are considered. 

6.6.3 Feature extraction technique 

In the first stage, the thermal images were captured without applying any faults - normal 

conditions (Healthy operating mode). In order to increase the credibility of the database, several 

flux densities are considered, namely, 0.5, 0.8, 1.0, 1.5, 1.7, and 1.8 T. In the second stage, two 

types of faults were applied to the transformer core to form the database. A full day was allotted 

to take the data of each fault scenario separately. This is to leave the transformer core enough 
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time to cool down. The RGB technique was used for feature extraction by using MATLAB 

software. 

Figure 6-13 shows an example of the RGB technique obtained for 1.8 T flux density for healthy 

and faulty operation modes. 

Healthy Edge Burrs, Scenario 4 Insulation Damage, Scenario 4 

   
0.5 T 0.5 T 0.5 T 

   
1.7 T 1.7 T 1.7 T 

   
1.8 T 1.8 T 1.8 T 

Figure 6-12: The RGB technique obtained result 

This figure shows that the healthy operation mode can be distinguished from the faulty 

condition in the proposed case. And it can be determined that some hot areas are visible in 

coloured images, especially in green and blue ones. The feature was extracted from the images 

by RGB technique for the Edge Burrs fault with Healthy mode, and different faulty Scenarios 

are shown in the following table: 
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Table 6- 3: The Edge Burrs fault Features 
Type High 

temperature  

Low 

temperature 

R1 R2 R3 R4 R5 R6 

Healthy 

0.5 T 

25.3 19.1 46.0137 89.9712 64.0151 53.9863 10.0288 35.9849 

Scenario1 

0.5 T 

25.5 19.3 46.9059 91.0928 62.0013 53.0941 8.9072 37.9987 

Scenario2 

0.5 T 

25.8 19.7 45.2011 88.7863 66.0125 54.7989 11.2137 33.9875 

Scenario3 

0.5 T 

26 19.8 47.0905 90.8729 62.0367 52.9095 9.1271 37.9633 

Scenario4 

0.5 T 

26.3 20.1 49.0766 92.7073 58.2161 50.9234 7.2927 41.7839 

The feature was extracted from the RGB technique for the lamination insulation damage fault 

with Healthy mode, and a different number of shorted laminations is shown in the following 

table: 

Table 6- 4: The lamination insulation damage fault Features 
Type High 

temperature 

Low 

temperature 

R1 R2 R3 R4 R5 R6 

Healthy 0.5 T  25.3 19.2 50.6631 94.5368 54.8002 49.3369 5.4632 45.1998 

2Laminations 

0.5 T 

26.5 20.3 46.1925 90.6234 63.184 53.8075 9.3766 36.816 

2Laminations 

0.5 T 

26.9 20.7 47.9733 92.6712 59.3556 52.0267 7.3288 40.6444 

2Laminations 

0.5 T 

27.1 20.9 47.8445 92.3615 59.794 52.1555 7.6385 40.206 

2Laminations 

0.5 T 

27.4 21.2 54.6003 97.4751 47.9246 45.3997 2.5249 52.0754 

"To clarify, I employed different ratios to display the density of each color (from R1 to R6) 

compared to the total number of pixels, thereby presenting the relative density." 

6.6.4 Features selection 

The feature selection step minimizes dimensionality by excluding irrelevant features, and 

feature selection help improve the model performance by focusing only on the important 

variables. This step is conducted using differential evolution. For instance, the features have 

been selected based on a graphical representation to distinguish the independent features from 

the others, which are optimized into representative features. Figure 6-14 shows an example of 

selected features: (The maximum temperature values, R1, R3, and R5) as a function of the 

transformer thermal images under 0.5 T flux density for healthy and faulty conditions. Where 

the maximum temperature values is appear in the top right corner of the thermal image and the 

R1, R3 and R5 are ratios to display the density of each color. 
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The next figure, 6-14 shows the faults features and how to be selected. The target feature was 

marked with a blue circle and other features with an orange star. The feature selection was 

made by comparing each feature with the others for fault detection. 

   

   

   

   
Figure 6-13: a graphical representation for the selected features. 

As it was clear in figure 6-14, the features can be detected from each other visually and by 

using non-linear classification algorithms. However, in figure 6-15, the features are on one path 

and overlapping, which is difficult to diagnose visually and needs a linear classification 

algorithm to be detected. The excluded features are (the lower temperature values is appear in 

the below right corner of the thermal image and the R2, R4 and R6 are ratios to display the 

density of each colour. The full feature selection is available in appendix 1.  
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Figure 6-14: a graphical representation for the excluded features. 

6.7 Methods of fault detection and classification  

This section describes the methods used to detect and classify faults in the transformer core. 

The database samples used to train and test the classifiers have been presented and discussed. 

The section also provides the obtained accuracy rate of each classifier for different datasets. 

6.7.1 Classification algorithms 

For detection and classification, three classifiers have been exploited. These include SVM, 

KNN, and DT techniques. SVM techniques are usually implemented in classification problems, 

prediction models, and regression [30]. For the classification problems, the principle of the 

SVM is to find hyperplanes of separation between two classes yi and yj. The hyperplanes should 

be with maximum margin. Which means the classification becomes an optimization problem. 

The optimization solution is particularly important because hyperplanes represent the decision 

boundaries that help to distinguish two different classes [31]. 

The second classifier consists of the KNN algorithm. In this algorithm, the decision of the 

classifier can be obtained from the vote of the KNN. The vote is based on calculated distances 

between the sampling points to the nearest neighbours of the total assigned points. Gaussian, 

triangular, and cosine are some of the typical distances used in this classifier. It should be noted 

that the KNN technique is easy to implement and apply to any problems, including complex 

ones such as geographic information, text, images, and sound [32], [33]. Also, it is robust to 

noise. The introduction of new data does not require the reconstruction of a model. The class 

is assigned to an object with ease and clarity once the closest neighbours are displayed. The 
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method performance depends on the distance type, the number of neighbours, and how the 

neighbours’ responses are combined. The results could be of inferior quality if the number of 

relevant attributes is low relative to the total number of characteristics. The distances on the 

irrelevant attributes will drown out the proximity on the appropriate attributes. The calculations 

made in the classification phase can be very time-consuming if the number of data sets is too 

large. 

The third classifier consists of the decision tree (DT) algorithm. This technique obtains a 

decision following the tree, starting from a root node down to a leaf node [34]. The leaf node 

comprises the classifier response. 

6.7.2 Datasets for training and testing 

The dataset for training and testing the model has been managed by considering different 

scenarios: 

1. decomposition of the dataset for training and testing. 

-Three types of decomposition of the database have been selected randomly. The 

decomposition 30-70 means that 30% of the database is reserved for the training process and 

70% for testing. The second type of decomposition is 50-50, 50% of the database is used for 

training and the remaining of 50% of data exploited for testing. The last decomposition is based 

on 70% for the training phase and 30% for testing. 

- The K-Fold cross-validation strategy used to train the dataset for machine learning classifiers 

2. managing the detection and classification form for both fault types to be in different scenarios 

in order to prove the validity of experimental results and the reliability of lamination faults 

detection and classification by artificial intelligence. 

6.8 Results and discussion  

6.8.1 Results of fault detection based on thermal images 

In this section, both types of faults have been grouped to form a separate class, representing the 

results of the faulty operation mode. Therefore, a binary classification (healthy and faulty) is 

formulated where the aim is to detect the presence of faulty conditions. This process is based 

on the features extracted from the measured current. And the dataset for training and testing 

was selected randomly. Table 6-6 gives the accuracy rate obtained using three different 

classifiers see eq (5-1).  
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Table 6- 5: Accuracy rate for fault detection execution 
Scenario Accuracy Rate (%) 

SVM KNN DT 

70-30 91.04 98.50 95.52 

30-70 90.90 97.90 95.80 

50-50 91.34 98.07 94.23 

 

The obtained results show that the proposed classifiers give roughly equivalent results for the 

three proposed scenarios (data decomposition for training and testing). Overall, the highest 

obtained result accuracy rate is around 98%, with a maximum of 98.50%, obtained when using 

70% of the dataset for the training using the KNN classifier. And the accuracy rate is around 

90%, with a maximum of more than 91%, obtained when using 70% of the dataset for the 

training using the SVM classifier, which is the lowest obtained result. And for the DT classifier 

the accuracy rate was around 95% with a maximum of 95.80%, obtained when using 30% of 

the dataset for the training. This indicates that the number and quality of the input vectors have 

an important impact on the detection results and the classifier. The Confusion matrix of the 

obtained results is shown in figure 6-16. 

SVM 70-30 SVM 30-70 SVM 50-50 

   
KNN 70-30 KNN 30-70 KNN 50-50 

   
DT 70-30 DT 30-70 DT 50-50 



Chapter 6: Based on the Thermal Image, Detection and Classification of Lamination Faults in A 

15 kVA Three-Phase Transformer Core Using SVM, KNN And DT Algorithms 

 

 

 

134 
 

 

   
Figure 6-15: Confusion matrix obtained using training/testing scenarios for the three classifiers 

In general, the results indicated that fault detection was successful and accurate, especially 

when using 70% of the dataset for the training. The (KNN) classifier achieved the highest 

accuracy of detection. And the (DT) classifier achieved slightly lower accuracy. At the same 

time, the (SVM) classifier achieved the most insufficient accuracy. The findings reassured the 

lamination faults detection and classification in transformers.  

6.8.2 Classification between both types of laminations faults 

In this section, based on thermal images, the classification between health conditions and faulty 

conditions of both fault types in one file has been considered, and the faulty dataset has been 

separated to form two classes. (The class becomes a three-group classification). Table 6-7 

provides the calculated results using the three classifiers and for three scenarios of the training 

and testing process. The results in this table show the accuracy rate of the three-class, eq (5-1).  

Table 6-6: Accuracy rate for fault classification 
Scenario Accuracy Rate (%) 

SVM KNN DT 

70-30 79.10 97.01 89.55 

30-70 76.22 95.80 90.90 

50-50 81.73 96.15 91.34 

 

Overall, the results of the KNN classifier show a better accuracy rate than those obtained using 

the SVM and DT classifiers. Where the KNN accuracy was around 90%, the highest was 

97.01% when the dataset for training was 70%, and the lowest was 95.80% when the dataset 

for training was 30%. And for the DT classifier, the highest accuracy result was 91.34 when 

the dataset for training was 50%. While for the SVM, the accuracy result was around 80%, with 

a maximum of 81.73 when the dataset for training is 50%. In general, the results were good for 

the random selection of the training dataset. And for the three-classes group, the KNN classifier 

is the best. And from the confusion matrices, one can get a general understanding of the 

classification process figure 6-17 
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SVM 70-30 SVM 30-70 SVM 50-50 

   
KNN 70-30 KNN 30-70 KNN 50-50 

   
DT 70-30 DT 30-70 DT 50-50 

   
Figure 6-16: Confusion matrix obtained using training/testing scenarios for the three classifiers 

In general, the results indicated that the fault classification was successful and somehow 

accurate, especially when using 50% of the dataset for the training. The (KNN) classifier 

achieved the highest accuracy of faults classification, and the (DT) classifier achieved slightly 

lower accuracy, while the (SVM) classifier achieved the lowest accuracy. 

6.8.3 Results of fault detection for each fault separately 

Based on thermal images, the detection between health and faulty conditions of each type of 

fault separately has been considered in this part. The classes become a two-group classification 

for each fault. Table 6-8 provides the calculated results using the three classifiers and for three 
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scenarios of the training and testing process. The results in this table show the accuracy rate of 

each class for each fault see eq (5-1).  

Table 6-7: Accuracy rate for each class of faults using different classifiers and considering three 

scenarios 
CLASS TRAINING-

TESTING DATA 

SVM KNN DT 

Fault 1 70-30 85.00 100 92.50 

30-70 84.52 100 96,42 

50-50 85.24 100 93.44 

Fault 2 70-30 88.23 94.11 85.29 

30-70 84.93 91.78 84.93 

50-50 83.33 90.74 87.03 

 

From this table, one can clearly see that the fault detection results are affected by the type of 

fault. For instance, the results of the second fault show a better result for all the considered 

cases and classifiers. The accuracy rate is around 90% with a maximum of more than 94%, 

obtained when using 70% of the dataset for the training using the KNN classifier and relatively 

lower accuracy rates when using the SVM classifier, which was 88.23% obtained when using 

70% of the dataset for the training. At the same time, An accuracy was 85.29% obtained when 

using 70% of the dataset for the training with the DT classifier. The lamination’s insulation 

fault can be easily identified from the other conditions. This ascertainment is in accordance 

with the conclusion made from the experimental results in chapter 5. 

In addition, the first fault, which is the Edge Burr fault, provides a good classification result for 

all the considered cases but not for all classifiers. The KNN classifier gives an over-fitting 

result, while the other classifiers give good results with an accuracy rate were around 80% with 

a maximum of more than 92% obtained using the DT classifier when using 70% of the dataset 

for the training and with maximum of more than 85% using SVM classifier. Overall, it shows 

relatively lower accuracy rates than the insulation damage fault. 

Overall, for the insulation damage fault, the results of the KNN classifier show a better accuracy 

rate than those obtained using the SVM and DT classifiers. For DT, the accuracy rate is affected 

by the number of samples used to train the classifier. It is between 84% and 85% when using 

70/30 and 30/70 decomposition scenarios, respectively. And more than 94% was obtained when 

using 70% of the dataset for the training when utilizing a KNN classifier. This classifier obtains 

an accuracy rate of 90.74% for the case 50/50. 
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In contrast, the KNN classifier shows the overfitting results for the Edge Burrs fault. And the 

accuracy rate obtained using the SVM and DT classifiers were relatively close. It was around 

80%, with a maximum of 96.42% obtained when using 50% of the dataset for the training with 

the DT classifier and a maximum of 85% using the SVM classifier when using 70% of the 

dataset for the training. For better visualization, figure 6-18 shows an example of the confusion 

matrices obtained using the three algorithms for the three scenarios. 

Edge Burrs Fault (Fault 1) 

SVM 70-30 SVM 30-70 SVM 50-50 

  
 

KNN 70-30 KNN 70-30 KNN 50-50 

   
DT 70-30 DT 30-70 DT 50-50 
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Insulation Damage Fault (Fault 2) 

SVM 70-30 SVM 30-70 SVM 50-50 

   
KNN 70-30 KNN 70-30 KNN 50-50 

   
DT 70-30 DT 30-70 DT 50-50 

   
Figure 6-17: Confusion matrix obtained of each class of faults using training/testing scenarios for 

the three classifiers 

In general, the results indicated that the classification was successful, especially for the second 

fault. These results identified and classified lamination insulation problems in electrical 

transformers. However, large databases are required to reach higher precision. And more 

accurate classifications are also required to provide assistance in preventing the electrical 

system 
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6.8.4 Fault classification between healthy and different faulty scenarios using a random 

dataset   

In this section, the fault classification results utilising thermal images between healthy and the 

different scenarios of each fault are based on what was explained in chapter 4. Each fault has a 

set of scenarios. For example, the insulation damage fault was performed with 2, 6, 8, and 12 

laminations with several specified flux density values, which were 0.5, 0.8, 1.0, 1.5, 1.7, and 

1.8 T. As well as the Edge Burrs fault was investigated in several scenarios that were also 

explained in the same mentioned chapter in order to prove and confirm these mentioned target 

faults and their impact on the performance of the transformer's core. After the satisfactory 

results obtained from the detection and classification of the two main mentioned faults, the role 

of detecting the scenarios comes in order to increase the tools and methods of detection of these 

kinds of faults and to be targeted in the future. The scenarios of each fault have been grouped 

to form a separate category, with multi-classification scenarios (healthy, and the scenarios of 

faulty 1, 2, 3, 4.) formulated where the aim is to detect and classify the presence of each 

scenario.  

In general, the insulation damage fault using KNN classifier obtained a good result for different 

scenarios. However, the other obtained results were unsatisfactory because it was not focused 

on since it was not the main objective of the research.   

With the expected results, a relatively low accuracy rate has been obtained for most of the 

classifiers because of the low amount of dataset collected for this purpose due to not being 

focused on since it was not the main objective of the research and due to time limitations. 

6.8.4 Edge burrs fault scenarios results  

Each type of fault has been grouped to form a separate class, with multi-classification scenarios 

(healthy and fault scenarios 1, 2, 3, 4). For the results of Edge Burrs fault scenarios, see table 

6-9. formulated where the aim is to detect and classify the presence of each scenario. The table 

provides the calculated results using three different classifiers. For three scenarios of the 

training and testing process, The results in this table show the accuracy rate of multi classes. 

As given in eq (5-1): 

Table 6-8: The scenarios of Edge Burrs fault 
Scenario Accuracy Rate (%) 

SVM KNN DT 

70-30 72.50 100 67.50 

30-70 67.85 100 58.33 

50-50 77.04 100 75.40 
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The obtained results show that the proposed classifiers do not give roughly equivalent results 

for the three proposed scenarios (data decomposition for training and testing). Overall, the 

accuracy rate is around 70%, with a maximum of more than 77%, obtained when using the 

SVM classifier for the dataset testing the training scenarios using 50% of the dataset for the 

training. In comparison, 75.40% with the DT classifier used 50% of the dataset for the training, 

and around 67.50% used 70% of the training. In addition, an overfitting result was obtained 

using the KNN classifier for different dataset training scenarios. Figure 6-19 shows the 

confusion matrices obtained using the three algorithms for the three scenarios.  

SVM 70-30 SVM 30-70 SVM 50-50 

   
KNN 70-30 KNN 30-70 KNN 50-50 

   
DT 70-30 DT 30-70 DT 50-50 

  
 

Figure 6-18: Confusion matrix obtained using training/testing scenarios for the three classifiers. 
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In general, the results indicated that the fault classification was successful for most of the 

classifiers, especially when using 50% of the dataset for the training. The (SVM) classifier 

achieved the highest accuracy in faults classification, and the (DT) classifier achieved slightly 

lower accuracy. In comparison, the (KNN) classifier achieved an over-fitting result. Such 

findings gave encouragement in the direction of fault detection and classification of lamination 

faults based on thermal images in an electrical transformer's core. In addition, this leads that 

the multi scenarios need more focus by increasing the number of images, in data processing 

(feature extraction) by increasing the number of features, or in classification by choosing 

appropriate algorithms. 

6.8.5 Insulation damage scenarios results  

The results in this table show the accuracy rate for multi classes of this fault eq (5-1). The 

obtained results show that some proposed classifiers gave roughly equivalent results for the 

three proposed scenarios (data decomposition for training and testing). For the results of 

insulation damage and fault scenarios, see next table 6-10.   

Table 6- 9: The scenarios of insulation damage fault 
Scenario Accuracy Rate (%) 

SVM KNN DT 

70-30 82.35 94.11 79.41 

30-70 63.01 91.78 60.27 

50-50 64.81 90.74 81.48 

 

From the table, the accuracy rate is around 80%, with a maximum of more than 82.35%, 

obtained when using 70% of the dataset for the training with an SVM classifier. While the 

accuracy was around 90% with the KNN classifiers, with a maximum of 94.11% when using 

70% of the dataset for the training, which is the highest result. And the lowest accuracy result 

obtained was 79.41% using the DT classifier when using 70% of the data or the training but 

81.48% when using 50% of the data or the training.  

In general, the results indicated that the fault classification was successful and somehow 

accurate, especially when using 70% of the dataset for the training. The (KNN) classifier 

achieved the highest accuracy in fault classification. And the (SVM) classifier achieved slightly 

lower accuracy, whereas the (DT) classifier achieved the lowest accuracy. Figure 6-20 shows 

the confusion matrices.  
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SVM 70-30 SVM 30-70 SVM 50-50 

 
 

 
KNN 70-30 KNN 30-70 KNN 50-50 

   

DT 70-30 DT 30-70 DT 50-50 

   
Figure 6-19: Confusion matrix obtained using training/testing scenarios for the three classifiers 

In general, the results were satisfactory, especially for the second fault. These results 

encouraged the use of thermal imaging for fault identification and classification of lamination 

insulation problems in electrical transformer cores. This indicates that the multi scenarios need 

more focus, whether it is in laboratory experiments by increasing the number of images, or in 

data processing (feature extraction) by increasing the number of features and using different 

feature extraction techniques, or in classification by choosing appropriate algorithms. 
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6.9 K-fold cross-validation results 

6.9.1 Definition of k-fold cross-validation 

Cross-validation is a statistical method of evaluating and comparing learning algorithms by 

dividing data into two segments: one used to learn or train a model and the other used to validate 

the model. Full details are available in section 5.6.  

In this section, the proposed application is assessed based on the experimental data of the 

thermal image dataset for both faults. In order to verify whether the proposed model, combined 

with the proposed feature selection techniques to select discriminative features, benefits the 

fault detection and classification procedure, the acquired dataset with the same extracted 

features extracted by the RGB technique was used as inputs to the classification algorithms. 

The selected optimal feature subsets were applied to three machine learning models, KNN, 

SVM, and DT, for classification into their respective classes. The classifiers are then trained 

using cross-validation. The training was repeated 3-fold, 5-fold, and 10-fold times with cross-

validation techniques to fine-tune the model and ensure consistency in the results. Each 

classifier’s performance was evaluated using its accuracy. 

6.9.2 Fault detection using k-fold cross-validation based on thermal images 

In this section, both types of faults have been grouped to form one class, representing the results 

of the faulty operation mode. Therefore, a binary classification (healthy and faulty) is 

formulated where the aim is to detect the presence of faulty conditions. This process is based 

on the features extracted from the thermal images. Table 6-11 gives the accuracy rate obtained 

using three different classifiers, eq (5-1). And the dataset was trained by repeated 3-fold, 5-

fold, and 10-fold times with cross-validation techniques.  

Table 6- 10: gives the accuracy rate obtained using three different classifiers 
Fold Cross-Validation SVM KNN DT 

(3-fold) accuracy (%) 92.38 96.19 93.33 

(5-fold) accuracy (%) 91.43 98.10 92.38 

(10-fold) accuracy (%) 94.89 97.85 95.70 

It can be stated that the highest classification accuracy was gained by (KNN) classifier, with an 

accuracy rate of 97.85% obtained when the model was trained with 10-fold cross-validation for 

the dataset training by applying the thermal images datasets for fault detection. And it was 

96.19% when the model was trained with 3-fold cross-validation. Furthermore, when the DT 

model was trained with 3-fold cross-validation, the accuracy was 93.33%, and it was further 

raised to 95.70 % when the model was trained with 10-fold cross-validation using the thermal 
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images dataset. In addition, the classification accuracy using the SVM classifier was slightly 

lower, 94.89 % with 10-fold and 92.38% with 3-fold cross-validation for the dataset training. 

And for a general understanding of the classification process, see the confusion matrices in 

figure 6-21. 

Fold Cross-Validation (SVM) 

3-fold 5-fold 10-fold 

 

 

 

Fold Cross-Validation (KNN) 

3-fold 5-fold 10-fold 

 

 

 

Fold Cross-Validation (KNN) 

3-fold 5-fold 10-fold 

 

 

 

Figure 6-20: Confusion matrix obtained using cross-validation for the three classifiers of fault 

detection 

In general, it can be confirmed that, as stated in Table 6-11, the results indicated that the fault 

detection was successful and accurate, especially when using 10-fold cross-validation for the 
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dataset training. The (KNN) classifier achieved the highest accuracy in faults detection, and the 

(DT) classifier achieved slightly lower accuracy, while the (SVM) classifier achieved the 

lowest accuracy. In addition, the 10-fold cross-validation of the dataset for the training gives 

the best results, while the 3-fold cross-validation gives lower results accuracy for the different 

classifiers. This indicates that artificial intelligence can accurately detect and classify fault 

detection. These findings supported the use of thermal imaging for fault diagnosis with 

lamination insulation faults in electrical transformer cores. 

6.9.3 Classification for both types of faults using Cross-Validation 

In this part, the classification between health conditions and both types of faults has been 

considered. Both types of faults have been separated to form two classes. The classes become 

a three-group classification. In table 6-12, the calculation results using the three classifiers, with 

3,5, and 10-fold Cross-Validation for three classes of the training process, have been provided. 

The table results show the three classes' accuracy rates together, eq (5-1). 

Table 6- 11: gives the accuracy rate obtained using three different classifiers 
Fold Cross-Validation SVM KNN DT 

(3-fold) accuracy (%) 82.86 95.24 85.71 

(5-fold) accuracy (%) 84.29 96.19 86.67 

(10-fold) accuracy (%) 94.57 97.83 95.65 

From this table, one can clearly see that the classification results are affected by the value of 

fold cross-validation. For instance, the results of the 10-fold show a better accuracy for most of 

the considered classifiers. This means that each fault can be easily identified from the others. 

In addition, the KNN classifier shows a good result for classification using cross-validation for 

the dataset training process. Where the accuracy of 97.83 % was obtained with the utilization 

of 5-fold cross-validation, and 95.24% and 96.19% were obtained with the 3, and 10-fold cross-

validation, respectively, the accuracy rate for DT shows a slight decrease. Where an accuracy 

of 95.65 % obtained with the utilization of 10-fold cross-validation. And 85.71% and 86.67 

were obtained with the 5, and 3-fold cross-validation, respectively. 

Moreover, the SVM shows relatively lower accuracy rates, especially when the fold value was 

3, and 5-fold cross-validation for the dataset training process. The accuracy was 82.86 % and 

84.29 %. With 10-fold cross-validation, the accuracy was 94.57%. The overall accuracy rate 

for each case is presented in table 6-10. And from the confusion matrices one can get a general 

understanding of the classification process from the confusion matrices to figure 6-22. For 

example, precision and recall can be defined for each of the classes. 
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Fold Cross-Validation (SVM) 
3-fold 5-fold 10-fold 

 

 

 

Fold Cross-Validation (KNN) 
3-fold 5-fold 10-fold 

   

 

Fold Cross-Validation (DT) 
3-fold 5-fold 10-fold 

 

 

 

Figure 6-21: Confusion matrix obtained using cross-validation for the three classifiers of fault 

classification for both types 

The laminations fault of the power transformer core can be detected and classified using 

artificial intelligence based on thermal images. Overall, the accuracy rate of fault classification 

for both types of faults using Cross-Validation is satisfactory, and the KNN classifier obtained 

the best result. The overall accuracy of the classification algorithms that were trained with 10-

fold cross-validation was the best, indicating that the proposed model is promising for this 

application.   



Chapter 6: Based on the Thermal Image, Detection and Classification of Lamination Faults in A 

15 kVA Three-Phase Transformer Core Using SVM, KNN And DT Algorithms 

 

 

 

147 
 

 

6.9.4 Detection of each fault separately using Cross-Validation 

In this section, the classification between health conditions and each type of fault has been 

considered separately. Each type of fault has been separated to form one class the classes 

become a two-group classification. Table 6-13 provides the calculated results using the three 

classifiers and for three scenarios of the training and testing process. The table results show 

each class's accuracy rate separately, eq(5-1).  

Table 6- 12: accuracy rate for each class of faults using different classifiers and considering three 

scenarios 
 

Class 

Training - Testing Data Accuracy Rate (%) 

SVM KNN DT 

Fault 1 (3-fold) accuracy (%) 87.90 96.77 92.74 

(5-fold) accuracy (%) 87.10 100 94.35 

(10-fold) accuracy (%) 96.00 100 92.93 

Fault 2 (3-fold) accuracy (%) 85.05 91.59 84.11 

(5-fold) accuracy (%) 85.98 92.52 85.98 

(10-fold) accuracy (%) 89.41 91.76 90.70 

 

From this table, one can clearly see that the classification results are affected by the type of 

fault. For instance, the results of the second fault show a better accuracy for all the cases where 

the obtained accuracy was around 90 %. With a maximum of 91.76 % when using 10-fold 

cross-validation for the dataset training with the KNN classifier. While the accuracy result for 

the first fault (Edge Burrs) was obtained overfitting for most of the k-Fold cross-validation with 

the KNN classifier. For the other classifiers, the accuracy was around 90 % with the SVM 

classifier for both faults. Though the accuracy obtained with the DT classifier was around 90% 

for the first fault and around 80 % for the second fault, this means that the second fault 

(lamination’s insulation fault) can be easily identified from the other faults. In addition, edge 

burrs fault shows a better result for fault detection using the DT classifier than the accuracy 

rate of the SVM classifier, which shows a slight decrease in its accuracy. Moreover, the second 

fault shows a better result for fault detection using the KNN classifier than the accuracy rate of 

the SVM and DT classifiers, where it shows a slight decrease. The overall accuracy rate for 

each case is presented in table 6-13. And from the confusion matrices, one can get a general 

understanding of the classification process in figures 6-23 and 6-24. 
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Edge Burrs Fault (Fault 1).  

Fold Cross-Validation (SVM) 

3-fold 5-fold 10-fold 

 

  

Fold Cross-Validation (KNN) 

3-fold 5-fold 10-fold 

 

 

 

Fold Cross-Validation (DT) 

3-fold 5-fold 10-fold 

 

  

Figure 6- 22: confusion matrix obtained using cross-validation for the three classifiers of fault 

classification for Edge Burrs fault (Fault 1) 
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Insulation Damage (Fault 2). 

 Fold Cross-Validation (SVM) 

3-fold 5-fold 10-fold 

 

 

 

Fold Cross-Validation (KNN) 

3-fold 5-fold 10-fold 

 

 

 

Fold Cross-Validation (DT) 

3-fold 5-fold 10-fold 

   

Figure 6-23: Confusion matrix obtained using cross-validation for the three classifiers of fault 

classification for the insulation damage Fault (Fault 2). 

In general, the findings of the detection of each fault separately using Cross-Validation indicate 

that the proposed fault detection model can be generated using thermal images and has a 

superior performance based on the accuracy results. The classification algorithms are essential 

for fault detection and classification in the detection model. The KNN classifier outperformed 

the DT and SVM classifiers in the second fault, while the DT classifier outperformed the first 
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fault in most cases in determining the correct class. Additionally, applying a 10-fold cross-

validation strategy to train the proposed models could enhance classification accuracy. 

6.9.5 Fault classification between healthy and different faulty scenarios using K-Fold 

Cross-Validation   

In this section, the classification accuracy results are presented between healthy and the 

different faulty scenarios utilising the thermal images of each fault. Each fault has a set of 

scenarios based on what was explained in chapter 5. For example, the insulation damage fault 

was performed with 2, 6, 8, and 12 laminations with several specified flux density values, which 

were 0.5, 0.8, 1.0, 1.5, 1.7, and 1.8 T. Also, the Edge Burrs fault was investigated in several 

scenarios that were also explained in the same mentioned chapter to prove and confirm these 

mentioned target faults and their impact on the performance of the transformer's core. After the 

satisfactory results obtained from the detection and classification of the two main mentioned 

faults, the role of detecting the scenarios comes to increase the tools and methods of detecting 

these kinds of faults and to be targeted in the future. 

With the expected results, a relatively low accuracy rate has been obtained because of the low 

amount of dataset collected for this purpose due to not being focused on since it was not the 

main objective of the research and time limitations. 

6.9.6 Edge burrs fault results 

Each fault’s scenarios have been grouped to form multi classes (healthy and fault scenarios 1, 

2, 3, 4) formulated where the aim is to detect and classify the presence of each scenario. For 

the scenarios results of Edge burrs fault based on thermal images, see table 6-14, the table 

provides the calculated results using the SVM, KNN, and DT classifiers, and the training was 

repeated three, five, and ten times with cross-validation techniques to fine-tune the model and 

ensure consistency in the results for the four scenarios of the fault.  The results in this table 

show the accuracy rate of multi classes, eq (5-1). 

Table 6- 13: The Scenarios of Edge Burs faults 
Fold Cross-Validation SVM KNN DT 

(3-fold) accuracy (%) 58.87 96.77 66.13 

(5-fold) accuracy (%) 70.16 100 72.58 

(10-fold) accuracy (%) 90.00 100 93.00 

From the obtained results, one can see that the proposed classifiers do not give roughly 

equivalent results for the proposed scenarios (data decomposition for training and testing of the 

scenarios of edge burrs fault). Overall, the accuracy rate is around 70%, with a maximum of 
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more than 90.00 %, obtained when using a 10-fold cross-validation dataset for the training with 

the SVM classifier. On the other side, around 70% was the obtained accuracy using the DT 

classifier with a maximum of more than 93.00 % when using 10-fold cross-validation of the 

dataset for the training, which was the highest result. While overfitting was obtained with the 

KNN classifier when using most of the K-Fold cross-validation of the dataset for the training. 

The lowest result was obtained by the KNN classifier, while the highest result was obtained 

when the DT classifier was used with 10-fold cross-validation. Figure 6-25 the confusion 

matrices.  

SVM 3 SVM 5 SVM 10 

 

 

 

KNN 3 KNN 5 KNN 10 

  

 

DT 3 DT 5 DT 10 

 

  

Figure 6-24: Confusion matrix obtained using training/testing scenarios for the three classifiers of the 

insulation damage Fault 
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In general, 10-fold cross-validation of the dataset for the training gives the best results while 

the 3-fold cross-validation gets fewer accuracy results for the different classifiers. When 

training the model using the K-fold cross-validation strategy, the (DT) achieved the highest 

classification accuracy. The (SVM) classifier achieved slightly lower accuracy. in comparison, 

the (KNN) classifier achieved the over-fitting results. This indicates that the multi scenarios of 

the faulty conditions need more focus, such as collecting more data and extracting more features 

using different feature extraction techniques. 

6.9.6 Insulation damage fault results 

For the results of faulty mode scenarios of laminations damage fault based on thermal images. 

Next, table 6-15 shows this fault's accuracy rate for multi classes, eq (5-1).  

Table 6- 14: The scenarios of insulation damage faults 
Fold Cross-Validation SVM KNN DT 

(3-fold) accuracy (%) 62.62 90.65 68.22 

(5-fold) accuracy (%) 66.36 92.52 72.90 

(10-fold) accuracy (%) 72.09 90.70 87.21 

 

The obtained results show that some proposed classifiers gave roughly equivalent results for 

the proposed scenarios. Overall, 92% is the average accuracy rate obtained using the KNN 

classifier with a maximum of more than 90 %, obtained when using 10-fold cross-validation of 

the dataset for the training, which was the highest result, and with the SVM classifier around 

60% is the accuracy rate was obtained with a maximum of more than 72 % using 10-fold cross-

validation which was the lowest results obtained for this fault. On the other side, more than 87 

% with the DT classifier when using 10-fold cross-validation of the dataset for the training. 

And 68% was obtained with 3-fold cross-validation, the lowest obtained result with this 

classifier. In addition, the confusion matrices in figure 6-26 might helps better comprehend the 

identification process. 

In general, increasing the number of folds in cross-validation increases the accuracy of the 

models, as more data is used for training and validation. For example, with 10-fold cross-

validation, the accuracy is higher compared to 3-fold or 5-fold cross-validation. 

In conclusion, the results suggest that KNN is a better performing algorithm compared to SVM 

and DT, and using a larger number of folds in cross-validation can increase the accuracy of the 

models. 
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SVM 3 SVM 5 SVM 10 

 

 

 

KNN 3 KNN 5 KNN 10 

  

 

DT 3 DT 5 DT 10 

 

 

 

Figure 6-25: Confusion matrix obtained using training/testing scenarios for the three classifiers of the 

insulation damage Fault 

In general, the lamination’s insulation fault gives a better result, which means it can be easily 

identified. And 10-fold cross-validation of the dataset for the training gives the best results, 

while the 3-fold cross-validation gives fewer results accuracy for the different classifiers. When 

training the model using 10-fold cross-validation, the KNN achieved the highest classification 

accuracy, and the DT classifier achieved slightly lower accuracy. In contrast, the SVM 

classifier achieved the lowest accuracy. This indicates that the multi scenarios of faulty 

conditions can be accurately detected and classified using artificial intelligence. 
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6.10 Summary 

This chapter presented a study on the detection and classification of lamination faults in the 

power transformer core. Based on thermal images, the detection and classification of two types 

of lamination faults (i.e., edge burr and lamination insulation faults) in a three-phase 

transformer core have been studied. From Chapter 4, experimental results obtained using a 15 

kVA transformer were exploited.  A new feature extraction technique for thermal images has 

been presented called the RGB technique, which helps diagnoses faults in the power 

transformer core and demonstrates its impact. Eight features were extracted, and a graphical 

representation was made to distinguish the independent features. Four features were selected 

(the highest temperature value, R1, R3, and R5). Elaborating a total of 222 samples, these 

features are utilized as input vectors to train and test classification models based on SVM, KNN, 

and DT algorithms. The dataset for training and testing the model has been managed by 

considering different scenarios to ensure that the results of the experimental work are accurate 

and these faults can be identified and classified easily by artificial intelligence. Overall, the 

obtained results indicated that transformer thermal images are an effective tool for detecting 

and classifying lamination faults in the transformer core. The following conclusions are also 

drawn.   

1. SVM, KNN, and DT classifiers gave a good accuracy rate of around 98% in the detection 

purpose where two classes were considered when a random dataset was used and more than 

99% when 10-fold cross-validation for the dataset training was used.   

2. For the classification, a maximum accuracy rate of 98.50% was obtained using the KNN 

algorithm. It was 91.34% for SVM and 91.04% for DT classifiers. The classification process 

was also sensitive to data decomposition, especially for the DT algorithm. And for 10-fold 

cross-validation for the dataset training, 97 % accuracy has been obtained with the KNN 

classifier and 86 %, and 84 % obtained with the DT and SVM classifiers, respectively. 

3. It was found that the insulation lamination fault presented a good accuracy rate compared to 

another fault when the KNN classifier was used. Higher precision and recall were obtained for 

this fault.  

4. I Highly recommend Using a new, more advanced thermal camera to get more accurate and 

clear images 

5. For classification between healthy and different faulty scenarios, the obtained results were 

unsatisfactory because it was not focused on since it was not the main objective of the research.  
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Such findings indicated that better detection and classification results might be obtained by 

enlarging the database or using other classification algorithms. It is also suggested to investigate 

the classification using other features by employing other signal processing techniques.  
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CHAPTER 7: Optimization Techniques for Classification 

Purpose 

The demand for condition monitoring of power transformers (PT) is on the rise, driven by the 

need to maintain the reliability and performance of several critical industries. Fault detection 

in PTs, particularly in the core's lamination, is a crucial area of focus in this regard. This study 

proposes a hybrid machine learning approach for PT core fault detection, leveraging advances 

in signal processing and machine learning systems. The methodology uses current signals and 

thermal images as the key fault parameters for testing. The model was tested on datasets 

collected from laboratory experiments conducted under both healthy and faulty conditions of 

PTs with no-load conditions. The data was trained and tested using three widely used machine 

learning classifiers: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and 

Decision Tree (DT). The optimal subset of features was selected to improve the accuracy of the 

classifiers. While DT achieved the highest accuracy in fault detection, KNN performed slightly 

lower. SVM, on the other hand, showed the lowest accuracy. To address this, the study 

combined SVM with Bayesian Optimization Algorithm (BOA) and Particle Swarm 

Optimization Algorithms (PSO) to develop a hybrid classification model, which showed 

improvement in accuracy. 

7.1 Introduction 

As the power grid's capacity continues to expand, power transformers have become the main 

equipment in the power system. The excellent performance of the power transformer will 

directly affect the operation of the power grid. Any failure in the power transformer can cause 

its power to be interrupted. Thus, it is of great significance to detect potential faults in the 

transformer as soon as possible. Recently, many scholars have been committed to researching 

their diagnostic methods[1][2]. To achieve stability and safety in power grid operations, an 

accurate protection scheme is required. A power transformer must be protected by avoiding or 

reducing damage due to the high cost of maintenance[3]. Regarding their importance in the 

energy systems, reliable and safe operation of the transformers is of great significance to 

guarantee a long lifetime [4]. 

Figure 7-1 shows a flow chart illustrating the major steps of the proposed application as they 

will be applied to carry out this project. To create a large dataset, the current signal and thermal 

images are captured using specialized sensors under various operating situations. FFT, CWT, 

DWT, and RGB are used for each signal collected to retrieve the best features. It is crucial to 
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determine the right number of discriminative features, as too many features can result in too 

much noise, whereas too few can lead to a loss of information for the classifier. The 

computational complexity of classification algorithms is excessive when they use many 

features unless certain methods for reducing data dimensionality are employed before 

classification. Thus, in this research, the features have been selected based on a graphical 

representation to distinguish the independent features from the others, which are optimized into 

representative features.  

In order to detect and classify faults, the feature obtained through the feature selection process 

is inputted into three classifiers using machine learning.  The training and testing were repeated 

three times to fine-tune the model and ensure consistency in the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7- 1: Schematic diagram of the proposed methodology 

7.2 Research methodology 

This section contains three basic steps: Feature Extraction, Selection Methods, and fault 

classification process. All of them are explained in detail in previous chapters.  
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7.2.1 Dataset 

The features of current signal for two types of lamination faults (i.e., edge burr and lamination 

insulation faults) are utilized as input vectors to train and test classification models based on an 

optimized SVM classifier, elaborating a total of 328 samples of current signals and 222 samples 

of thermal images. The studied cases for both types of faults based on current signal and thermal 

images are summarized in table 7-1.  

Table 7- 1: Description of the database 
Mode Cases Description 

Normal/healthy 6 6 cases correspond to six selected flux densities 

Edge Burr Fault 4x2x6 4 scenarios (S1, S2, S3, and S4) of artificial edge burr fault are applied in 2 

and 3 different places within the transformer core. Each fault case (a given 

scenario in 2 or 3 places) has been examined against 6 cases corresponding 

to the selected flux densities 

Insulation Fault 4x6 4 scenarios of artificial edge burr fault are considered, where each fault has 

been examined against 6 cases corresponding to the selected flux densities 

 

7.2.2 Bayesian optimization algorithm (BOA): 

The optimization of hyperparameters is seen as a black box type of problem. Black box outputs 

are used for assessing findings from various viable configurations of parameters in order to 

show how the model performs in generalization. Optimization of hyper-parameters is provided 

by: 

X* = arg
X∈U 

max 𝑓 (𝑋)                                                                                                    (7-1) 

where X* is the solution that maximizes the function 𝑓(𝑋) over the set of possible values U. 

The symbol "arg max" represents the argument that maximizes the function. This equation is 

used to find the input X that results in the maximum value of the function 𝑓(𝑋). 

Essentially, BOA initially assumes f(X) as the prior distribution before applying later 

information for continual optimization of the guessing model until this model reflects real 

distribution[5][6][7][8]. 

7.2.3 Particle swarm optimization (PSO) 

PSO is inspired by the social behaviour of organisms, such as bird flocking and fish schooling, 

which was first developed by Kennedy and Eberhart [9]. The algorithm seeks to explore the 

search space by a population of individuals or particles. Each particle represents a single 

solution with a dynamically adjusted velocity according to its own experience and that of its 

neighbouring companions. And the population of particles is updated based on each particle’s 

previous best performance and the best particle in the population. This way, PSO combines 
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local search with a global search to balance exploration and exploitation. Considering a d-

dimensional search space, the i particle is represented as: 

𝑋⃗i = (xi,1, xi,2,…,xi,d),                                                                                                        (7-2) 

and its according velocity is represented as: 

 𝑉⃗⃗i = (vi,1, vi,2,…,vi,d).                                                                                                        (7-3) 

The best previous position of the particle that gives the best fitness value is represented as: 

𝑃⃗⃗i = (pi,1, pi,2,…,pi,d).                                                                                                        (7-4) 

The best particle among all the particles in the population is represented as: 

𝑃⃗⃗g = (pg,1, pg,2,…,pg,d).                                                                                                      (7-5) 

Each particle updates its position and velocity in every iteration according to the two best 

values. 

7.2.4 Support vector machine (SVM). 

The SVM is another type of classifier commonly used for classification and regression. This 

algorithm separates datasets into two categories: negative and positive. The proposed dataset is 

also trained based on statistical learning, which is expressed as a support vector [10]. Based on 

categorization information, the algorithm constructs the hyperplane. By creating a hyperplane, 

the positive and negative datasets are spaced optimally. Kernel functions may be used for 

nonlinear transformations and for SVM when a dataset has separable and non-separable 

features. Multi-feature mappings make a nonlinearly separable object linearly separable [11]. 

This has been accomplished using linear kernels, polynomial kernels, and Gaussian radial basis 

functions (RBF). 

7.3 Proposed method 

This section describes the proposed (BOA-SVM) and (PSO-SVM) method, which combines 

parameter optimization with feature selection together, in order to achieve the highest 

performance. The proposed approach is comprised of two stages. In the first stage, SVM 

parameter optimization and feature selection are dynamically conducted by implementing the 

BOA algorithm simultaneously. In the second stage, SVM parameter optimization and feature 

selection are dynamically conducted by implementing the PSO algorithm simultaneously. The 

SVM model performs the classification tasks using the optimal parameter pair and feature 

subset via a random dataset in which three database decomposition types have been selected 

randomly. The first is a decomposition of 30-70, meaning that 30% of the database is reserved 
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for the training process and 70% for testing. The second type of decomposition is 50-50, 50% 

of the database is used for training, and the remaining 50% of data is exploited for testing. The 

last decomposition is based on 70% for the training phase and 30% for testing. 

7.4 Extracted and selected features 

7.4.1 Current signals 

The FFT and Discrete Wavelet Transform techniques were applied, ten Features were extracted 

from the transformer currents, and five features were considered: the average value, the 

magnitude of the fundamental, total harmonic distortion (THD), and the standard deviation 

(STD). Table 7-2 gives the selected features extracted from the current signal at 0.5 T flux 

density, representing a relatively low flux density for both faults. The feature selection step 

minimizes dimensionality by excluding irrelevant features, and feature selection help in 

improving the model performance by focusing only on the important variables. This step is 

conducted using differential evolution. For instance, the features have been selected based on 

a graphical representation to distinguish the independent features among the others, which are 

optimized into representative features. 

Table 7-2: The selected features at 0.5 T flux density 
State Selected Features  

average (A) fundamental 

(A) 

THD (%) STD 

H 0.0588 0.049 41.74 0.0383 

F1 S1 in 2 Places 0.0611 0.0874 28.88 0.062 

S1 in 3 Places 0.0619 0.08261 27.14 0.062 

S2 in 2 Places 0.059 0.139 16.82 0.0986 

S2 in 3 Places 0.0563 0.1342 20.33 0.0986 

S3 in 2 Places 0.0652 0.0441 57.39 0.0344 

S3 in 3 Places 0.0654 0.0404 56.64 0.0344 

S4 in 2 Places 0.0556 0.1326 19.32 0.0985 

S4 in 3 Places 0.0654 0.1369 22.84 0.0985 

F2 2 places 0.0639 0.0862 30.23 0.0653 

6 places 0.0547 0.14 17.63 0.1006 

8 places 0.0623 0.1395 19.91 0.1022 

12 places 0.0586 0.1599 15.34 0.1162 

H: healthy-   F1: Edge burr fault-    F2: insulation fault 

 

7.4.2 Thermal images 

The RGB technique was used for feature extraction by using MATLAB software. Eight features 

are extracted from the transformer thermal images, and four features have been considered as 

the following vectors: the high temperature, R1, R3, and R5. Table 7-3 gives the selected features 

extracted from the thermal images at 0.5 T flux density, representing a relatively low flux 

density for both faults. The feature selection step is used to minimize dimensionality by 
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excluding irrelevant features, and Feature selection helps in improving the model performance 

by focusing only on the important variables. The features have been selected based on a 

graphical representation to distinguish the independent features among the others. 

Table 7- 3: The selected features at 1.7 T flux density 

Type state High 

temperature  
R1 R3 R5 

Healthy H 0.5 T 25.3 46.0137 64.0151 10.0288 

Edge Burrs 

Fault 

S1 0.5 T 25.5 46.9059 62.0013 8.9072 

S2 0.5 T 25.8 45.2011 66.0125 11.2137 

S3 0.5 T 26 47.0905 62.0367 9.1271 

S4 0.5 T 26.3 49.0766 58.2161 7.2927 

Insulation 

faults 

2 Laminations 26.5 46.1925 63.184 9.3766 

6 Laminations 26.9 47.9733 59.3556 7.3288 

8 Laminations 27.1 47.8445 59.794 7.6385 

12 Laminations 27.4 54.6003 47.9246 2.5249 

 

7.5 Results and discussion 

7.5.1 Results of the BOA-SVM model 

Both faults have been grouped to form a separate class, representing the results of the faulty 

operation mode. And the dataset for training and testing was selected randomly. Therefore, 

only a binary classification (healthy and faulty) is formulated where the aim is to detect the 

presence of faulty conditions because the problem becomes a three-group classification. This 

process is based on the features extracted from the measured current and captured thermal 

images. Note that the percentage amount for most datasets scenarios is different because they 

are random. Take the current signals dataset and thermal images data set by using 70% of the 

dataset for the training of the selected features as an example. The classification accuracies 

obtained by the BOA-SVM on these two data sets have been improved by 4% and 6%, 

respectively, as shown in table 7-4. 

Table 7-4: accuracy rate for fault detection execution 
Scenario Current Signals Thermal Images 

SVM BOA-SVM SVM BOA-SVM 

70-30 94.87 98.71 91.04 97.01 

30-70 93.88 94.75 90.90 97.90 

50-50 94.61 98.46 91.34 98.07 

 

As mentioned before, in these results, I attempted to assess the effectiveness of the SVM 

classifier without using optimization algorithms. Table 7-4 summarizes the results of the SVM 

and BOA-SVM for the data sets of the current signals and thermal images with selected 

features. It can be observed that the classification accuracies achieved by the developed method 

are much better than those of SVM in all of the data sets. In order to verify the effectiveness of 
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the proposed method, I show the detailed results using the run iteration thirty times and choose 

the best result for all of the data sets scenarios. As shown in figure 7-2, the developed BOA-

SVM performs significantly better than the SVM classifier in all cases examined. It reveals that 

the developed method can obtain more appropriate parameters. The better performance of the 

proposed method can be attributed to all features in the objective function. 

Overall, the results of the BOA-SVM model show a better accuracy rate than those obtained 

using the SVM classifier. For example, the BOA-SVM model accuracy was 98.71% when the 

dataset for training was 70% which was the highest obtained accuracy for the current signals, 

instead of the 94.87% obtained with the SVM classifier. And for the thermal images data, the 

accuracy rate obtained with the BOA-SVM model is 97.01%, instead of the 91.04% obtained 

with the SVM classifier.  

In general, the results indicated that the accuracy rate of the SVM classifier could be improved 

by incorporating optimization algorithms for hyperparameters to obtain a better accuracy rate 

and for better visualization. Figure 7-2 shows the results using the run iteration thirty times, 

and figure 7-3 shows an example of the confusion matrices obtained using the three algorithms 

for the three scenarios for the BOA-SVM model. 

Current Signals 

BOA-SVM 70-30 BOA-SVM 30-70 BOA-SVM 50-50 

   
Thermal Images 

BOA-SVM 70-30 BOA-SVM 30-70 BOA-SVM 50-50 

   
Figure 7- 2: The best results using the run iteration thirty times 
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Current Signals  

BOA-SVM 70-30 BOA-SVM 30-70 BOA-SVM 50-50 

  

 

Thermal Images 

BOA-SVM 70-30 BOA-SVM 30-70 BOA-SVM 50-50 

   

Figure 7-3: Confusion matrix obtained using training/testing scenarios for the (SVM-BOA) of 

Healthy and both Faults 

 

7.5.2 Results of the PSO-SVM model 

In this section, I attempted to investigate whether or not using another optimization algorithm 

may further improve the classification performance for SVM. Table 7-5 reports the accuracy 

results for SVM, BOA-SVM, and PSO-SVM for the data sets of the current signals and thermal 

images with selected features, eq (5-1). 

Table 7- 5: The accuracy results for the SVM classifier, BOA-SVM, and PSO-SVM model 
Scenarios Current Signals Thermal Images 

SVM BOA-SVM  PSO-SVM SVM BOA-SVM PSO-SVM 

70-30 94.87 98.71 94.87 91.04 97.01 97.01 

30-70 93.88 94.75 91.26 90.90 97.90 97.90 

50-50 94.61 98.46 93.07 91.34 98.07 98.07 

 

Compared with the results achieved by BOA-SVM and PSO-SVM. The obtained results by the 

PSO-SVM have not enhanced the classification accuracy. It can be observed that the 

classification accuracies for the thermal images achieved the same results for BOA-SVM in all 

cases. For example, when using 70% of the dataset for the training, the accuracy rate obtained 

was the same as 97.01% for the BOA-SVM and PSO-SVM model instead of the 91.04% 
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obtained accuracy rate with the SVM classifier. Moreover, the results obtained by the PSO-

SVM for current signals were the same and lowered even than those achieved by the SVM 

classifier without optimization. For example, when using 70% of the dataset for the training, 

the accuracy rate obtained was 94.87% with the PSO-SVM model and 94.87% obtained 

accuracy rate with the SVM classifier, which is the same. When using 50% of the dataset for 

the training, the accuracy rate obtained was 93.07% with the PSO-SVM model instead of 

94.61% obtained accuracy rate with the SVM classifier, which is lower.  

In general, compared with the PSO-SVM, the obtained results by BOA-SVM are more 

appropriate (based on the classification accuracy rates) for the current signals data, while the 

obtained results by BOA-SVM are the same (based on the classification accuracy rates) for 

thermal images data. Thus, the developed method of BOA-SVM can find better benefits as 

compared to PSO-SVM. And for better visualization, figure 7-4 shows the results of the 

accuracy rate using the run iteration of 200 times. 

Current Signals  

PSO-SVM 70-30 PSO-SVM 30-70 PSO-SVM 50-50 

 

 

 

Thermal Images 

PSO-SVM 70-30 PSO-SVM 30-70 PSO-SVM 50-50 

   

Figure 7- 4: the accuracy rate using the run iteration 200 times 
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7.6 Summary 
As mentioned before, because of the inferior performance acquired by the SVM compared with 

KNN and DT, as shown in Chapters 5, and 6, the main aim of this work is to increase the 

efficiency of the proposed method with prediction accuracy. 

Both BOA-SVM and PSO-SVM do not generate the same results and prediction accuracy on 

all of the datasets for current signals. However, they generated the same results and prediction 

accuracy on all thermal image datasets. The different results of the two methods for the current 

signals and the approximately identical accuracy of the two methods for the thermal images 

may be due to the inexact nature of the optimization process and the randomness of the data 

partitions. And as for the computational time cost, I have computed the running time spent by 

PSO-SVM and BOA-SVM on all the datasets. Note that the average running time of 200 

iterations of PSO-SVM was much less than the average running time of only 30 BOA-SVM. It 

is worth noting that only one laptop computer was used to act on this work. 

In this work, I present BOA-SVM and PSO-SVM based on parameter optimization for SVM. 

The main contribution of this method lies in the adopted objective function, which aims at 

maximizing the generalization capability of the SVM classifier. The function simultaneously 

considers the classification performance of SVM with the iterations. In addition, the proposed 

methods are implemented in one environment to examine the performance of computational 

time. Moreover, the developed method is adaptive in nature, attributed to adaptive control 

parameters. It can also explore a larger search space by introducing the mutation operators that 

overcome the premature convergence of the other optimization algorithm. In addition, in 

evaluating lamination fault detection in power transformers, the proposed method can achieve 

high prediction accuracy and compute efficiently. 

Based on empirical analysis, it can be safely concluded that the developed method can serve as 

a promising alternative tool for parameter optimization and feature selection in SVM. More 

experiments on larger databases should be done to confirm the overall superiority of the 

proposed method. 
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CHAPTER 8: Conclusions  

8.1 Conclusions 

This thesis covered an up-to-date comprehensive review of the core laminations faults and 

the testing and condition monitoring methods for analysis and detection of faults in power 

transformers. In addition, the literature review confirmed that artificial intelligence had not 

yet been applied to diagnose these faults. The thesis has investigated the impact of edge burr 

faults and the degradation of the lamination insulation on total power loss in a 15 kVA three-

phase transformer core through artificial faults. Analytical techniques and experimental 

work have been utilized to investigate the phenomenon's effect from different aspects based 

on current signals and thermal images. The equipment that has been used is described in this 

research to carry out the experimental tests. Description of the specific faults and the data 

acquisition has also been described. 

An experimental methodology was presented to simulate both laminations’ faults to 

investigate the impact on the performance of the power transformer core. Where different 

scenarios of the faults were applied, and several flux densities were considered, it was found 

that the edge burrs and insulation degradation can cause flux distortion regarding the 

recorded current signals, which considerably affects the reliability of the transformer. These 

effects can increase the transformer currents with the increase of the flux density and the 

number of short-circuited laminations.   

Firstly, for the edge burrs fault, in order to simulate the edge burr fault, a short circuit has 

been created between laminations of the transformer core. According to the number of sheets 

in short-circuit (affected area), several scenarios have been selected for this fault. Four 

scenarios have been considered with different places and affected area size of the transformer 

core with magnetized in the range of 0.5T to 1.8T. For a completely repeatable and reversible 

manner to a non-destructive method to detect these defects, a clamping system was designed 

for the application of the artificial burrs. It was observed that the transformer core was 

affected, and for a large number of laminations affected by this fault, the overall core losses 

of the three-phase 15 kVA distribution transformer were doubled.  

Secondly, for the Insulation damage fault, removing the insulation on the corresponding 

laminations to maintain connectivity has been prepared on the two opposing sides of 2, 6, 8, 

and 12 core laminations at 5 sites on the transformer core. The affected area was around 40 
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mm2 of the insulation material using rotary equipment, and the considered flux density was 

0.5, 1.0, 1.5, 1.7, and 1.8 T. The obtained results show that the insulation degradation is 

affects the transformer core. The current caused by this fault is related to the number of 

laminations in the short circuit as well as to the flux density. It was found for two, six, eight, 

and twelve shorted laminations that the current magnitude is extremely high at a flux density 

of 1.8 T. In addition, the current magnitude follows a non-linear function with respect to the 

flux density.  

In general, current loss caused by the lamination fault is related to the number of laminations 

in the short circuit and the area size, as well as to the flux density. It was found that the 

current magnitude is extremely high at a flux density of 1.8 T, increased with the number of 

affected laminations. This significant increase in current may lead to an increase in power 

losses, hence, the transformer efficiency or engendering thermal power transformer failure. 

And it is worth noting that the faults are produced at different locations in the transformer 

core. 

For the detection and classification of two types of lamination faults (i.e., edge burr and 

lamination insulation faults) in a three-phase transformer core have been provided by the 

process of feature extraction and feature selection for the detection and classification of 

lamination faults in the transformer core. The features have been extracted using signal 

processing techniques - Fourier Analysis applied to the current signals and RGB technique 

for thermal images.  

Then the features were selected based on a graphical representation to distinguish the 

independent features among the others, which are optimized into representative features, 

where four features (Average, Fundamental, Total Harmonic Distortion (THD), and 

Standard Deviation (STD)) were extracted, elaborating a total of 328 samples for the current 

signals. For thermal images, four features were selected (the highest temperature value, R1, 

R3, and R5). Elaborating a total of 222 samples. These features are utilized as input vectors 

to train and test classification models based on SVM, KNN, and DT algorithms after 

managing the dataset for training and testing the model by considering different scenarios. 

1- decomposition of the dataset for training and testing by random selection 2- the K-Fold 

cross-validation strategy. 

Based on the extracted and selected features, the results confirmed that the transformer 

lamination’s fault can be detected and classified using current signals and thermal images. 
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For the detection and classification form for both types of lamination faults based on current 

signals and thermal images, different scenarios have been implemented to prove the validity 

of experimental results and the reliability of lamination faults detection and classification by 

artificial intelligence. 

a target minimum requirement of 70  % accuracy would ensure that the classifier meets a 

high level of performance in these scenarios. 

Firstly, based on current signals, the different scenarios for detecting and classifying two 

types of lamination faults (edge burr and lamination insulation faults) in the power 

transformer core have been provided see table 8-1. The next tables are summarised the 

obtained results. 

Table 8- 1: Obtained accuracy based on current signals using K-Fold cross-validation strategy 
The scenarios for the detection and classification Highest 

accuracy 

(%)  

Classifier Lowest 

accuracy 

(%) 

Classifier 

1 Fault Detection for both types of faults has been 

grouped to form one class (two classes) 

99.67 DT 93.81 SVM 

2 Fault Classification between health conditions and 

both types of faults (three classes) 

99.67 DT 91.21 SVM 

3 Fault Detection of Edge Burrs fault (two classes) 96.08 KNN 83.02 SVM 

4 Fault Detection of lamination insulation fault (two 

classes) 

99.55 DT 87.89 SVM 

5 Fault Classification between healthy and Edge 

Burrs fault scenarios (five classes) 

66.67 KNN 50.00 DT 

6 Fault Classification between healthy and 

lamination insulation fault scenarios (five classes) 

94.85 DT 63.95 SVM 

For scenarios 1 and 2, both the highest and lowest accuracy rates are relatively high, with 

the highest accuracy rates reaching 99.67% and the lowest reaching 91.21%. This suggests 

that the classifiers are performing well in these scenarios. 

For scenarios 3 and 4, the highest accuracy rates are still relatively high (96.08% and 

99.55%, respectively), but the lowest accuracy rates are significantly lower (83.02% and 

87.89%, respectively). 

For scenarios 5 and 6, the highest and lowest accuracy rates are much lower compared to the 

previous scenarios, with the highest accuracy rates reaching only 66.67% and 94.85%, 

respectively, and the lowest accuracy rates reaching 50.00% and 63.95%, respectively. 

In conclusion, DT performed the best across all scenarios, with the highest accuracy in four 

out of six scenarios. KNN showed good performance in scenarios 3 and 5, while SVM 

performed the lowest in all scenarios except for scenario 5, where DT showed the lowest 
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accuracy. In addition, it was found that the insulation lamination fault presents a good 

accuracy rate compared to other faults.  

Secondly, the different scenarios for detecting and classifying two types of lamination faults 

(edge burr and lamination insulation faults) in power transformer core based on Thermal 

images have been provided (see table 8-2.  

Table 8-2: Obtained accuracy based on Thermal images using K-Fold cross-validation strategy 
The scenarios for the detection and classification Highest 

accuracy 

(%)  

Classifier Lowest 

accuracy 

(%) 

Classifier 

1 Fault Detection for both types of faults has been 

grouped to form one class (two classes) 

99.05 KNN 91.43 SVM 

2 Fault Classification between health conditions and 

both types of faults (three classes) 

97.12 KNN 82.86 SVM 

3 Fault Detection of Edge Burrs fault (two classes) 96.77 KNN 87.10 SVM 

4 Fault Detection of lamination insulation fault (two 

classes) 

94.23 KNN 84.11 DT 

5 Fault Classification between healthy and Edge 

Burrs fault scenarios (five classes) 

96.77 KNN 58.87 SVM 

6 Fault Classification between healthy and 

lamination insulation fault scenarios (five classes) 

94.44 KNN 62.62 SVM 

 

Again, the results indicated that the fault classification was successful for most scenarios and 

classifiers. All classifiers gave a good accuracy rate for the detection purpose where two 

classes were considered. For the classification purpose, the KNN classifier gave the best 

accuracy, while the SVM classifier gave the lower accuracy.  

Due to the (SVM) being less accurate, it was decided to enhance it for fault detection using 

a random dataset by applying an optimization method based on combining SVM with BOA 

and PSO optimisation algorithms in developing a hybrid model of classification. This 

combines parameter optimization with feature selection together in order to achieve the 

highest performance. 

Based on selected features of the current signals and thermal images, the BOA-SVM model 

can be observed that the classification accuracies achieved by the developed method are 

much better than those of SVM in all the datasets, and the obtained results by the PSO-SVM 

have not enhanced the classification accuracy. The classification accuracies for the thermal 

images have achieved the same results for BOA-SVM in all cases, and for current signals 

were the same and/or lower even than those results achieved by the SVM classifier.   

In general, the obtained results by BOA-SVM are more appropriate than PSO-SVM (based 

on the classification accuracy rates) for the current signals data, while the obtained results 
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are the same as PSO-SVM results (based on the classification accuracy rates) for thermal 

images data. 

To conclude, this work has contributed the following: 

1- Implementing artificial intelligence to extract and select features of current signals 

to diagnose two types of lamination faults (edge burr and lamination insulation faults) for a 

15 kVA three-phase power transformer. This particular application has utilised three 

classification algorithms (KNN, SVM, and DT). 

2- Using infrared image technology to diagnose the lamination faults based on thermal 

images with a new feature extraction technique. 

3- The SVM classifier has been combined with the GA and PSO optimisation 

algorithms to increase the fault's diagnosis accuracy. 

8.2 The contributions to knowledge 

The main contributions of the thesis include the application of artificial intelligence for 

diagnosing faults in a power transformer, the development of a new method for thermal 

image feature extraction using the RGB technique, and the improvement of the performance 

of the SVM algorithm through the application of optimization algorithms. 

8.3 Future works 

1- large databases are required to reach higher precision and make more accurate 

classifications to prevent the electrical system by using different sizes of the power 

transformer core. 

2- Using high frequency for data collection because it raises the core temperature for getting 

a visible thermal image and clear current signals for fault detection and classification. 

3- It is also suggested to improve the detection and classification accuracy by adding more 

features using other feature extraction techniques.  

4- For thermal images highly recommend Using a new, more advanced thermal camera to 

get more accurate and clear images 

5- The fault localisation and multi-scenarios of the faulty conditions need more focus, such 

as collecting more data and scenarios. 
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Appendix: 

Appendix 1: Thermal images and RGB technique 
https://docs.google.com/document/d/1OWvmG8N3lZwLBQOprHn1aoUeSuZFi7u/edit?usp=sharing&

ouid=112557075303142841699&rtpof=true&sd=true  

Appendix 2: FFT technique  
https://docs.google.com/document/d/1Z3A4ixIkQk2EQmIoJWjM2OywY1i3dYbw/edit?usp=sharing

&ouid=112557075303142841699&rtpof=true&sd=true  

Appendix 3: CWT technique 
https://docs.google.com/document/d/1wMIs6K7n80D4LYtrPkvKEBIZVyJIQm8/edit?usp=sharing&o

uid=112557075303142841699&rtpof=true&sd=true  

Appendix 4: DWT technique 
https://docs.google.com/document/d/1nB1vjaeXYd3Lcp0cB8i9SJ3ZH_WrmllW/edit?usp=sharing&o

uid=112557075303142841699&rtpof=true&sd 

Appendix 5: Feature selection 
https://docs.google.com/document/d/1bo96Cf0otDpAoYjjQBdpY3nh0O7L26q0/edit?usp=share_link

&ouid=112557075303142841699&rtpof=true&sd=true 

Appendix 6: Current wave 
https://docs.google.com/document/d/14U8Sum8SYg3BC4TtmKEeNBKqwGCquSS/edit?usp

=share_link&ouid=112557075303142841699&rtpof=true&sd=true  

Appendix 7: The cods  
https://drive.google.com/drive/folders/1q8eW3ZSyr_TPfi1Els6W10SuPYd6B_1O?usp=share

_link 
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