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Thesis summary

Motion artifacts are a well-known problem in MRI. They can extensively reduce image
sharpness and resolution, as well as obscure pathologic conditions, which will make the images
not suitable for clinical or research purposes. Over the years, multiple motion correction
methods have been proposed to compensate for motion artifacts in different MRI applications.
In this thesis, we investigate methods to maximize the image quality of brain MR images at
different motion regimes, with the goal of obtaining high-quality images in the case of large and
continuous motion profiles as might be expected in some children or patients with movement
disorders.
We describe a new autofocusing algorithm to correct for in-plane translations and rotations
without any previous information coming from motion tracking sources. Preliminary results
show good motion compensation for 2D translations. However, we show how rotations
cannot be accurately estimated at the present stage, which should be investigated in
future studies. We analyse the extent of the motion parameters estimation accuracy of a
navigator-based motion correction method using simulated data. The navigator relies on
GRAPPA reconstruction of the highly accelerated navigator fat-volumes to estimate the
motion parameters. Our results suggest that the fat-navigator is capable of compensating
for large range of motion, as well as for fast and slow changes in the head position. Better
correction is expected if GRAPPA weights are updated throughout the entire duration of
the scan. The fat-navigator is then compared with another tracking technique based on
structured light to track the subject’s head movements. We present the results obtained from
different motion types as well as a method to improve the motion estimation accuracy of
the navigator-based technique in the presence of extensive pitch-wise motion using a skull
masking approach.
Finally, we introduce a method to quickly develop and test motion-robust pulse sequences
using an open-source framework to acquire MR images producing low acoustic noise levels,
which make them suitable for paediatric/infant age group, where research scans are typically
conducted while the subject is sleeping.
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Thesis outline

This thesis explores methods to improve the quality of MR images of the brain to continue
achieving high resolution images in presence of motion artifacts. The chapters are organized
as follows:

• Chapter 1 gives an introduction to the basic principles of MRI acquisition and
reconstruction methods. Motion artifacts are then presented, followed by a description
of some motion detection and correction techniques.

• Chapter 2 shows the implementation and testing of an autofocusing motion correction
method to compensate for in-plane rotational and translational motion in brain MRI.

• Chapter 3 examines the motion parameters estimation accuracy of a fat
navigator-based motion correction method using simulated data.

• Chapter 4 investigates the artifacts arising from different types of head motion during
brain structural MR imaging and how well these artifacts can be compensated for using
retrospective correction based on fat navigator and markerless-based motion tracking
techniques.

• Chapter 5 uses an open-source framework to design and test different configurations of
motion-robust and acoustically optimized MR pulse sequences for infants and paediatric
brain MRI.

• Chapter 6 highlights the main conclusions and outputs of this thesis as well as
recommendations for future work.

xiii





CHAPTER1
General Introduction

1.1 Introduction to Magnetic Resonance
Imaging

1.1.1 Perturbation of the equilibrium

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality that uses magnetic
properties of hydrogen protons to acquire detailed images of living tissue. In the proximity of
an MR scanner, hydrogen atoms present in the body are affected by a strong magnetic field
B0, creating a net degree of alignment between the spins and the magnetic field over time.
The hydrogen protons will contrast the alignment induced by the magnetic field perturbation
and start rotating around the direction of the applied field. This action is called precession
and the frequency at which the protons rotate is directly proportional to the strength of the
magnetic field B0, as defined by the Larmor frequency [1]:

f = γB0 (1.1)

where γ = 42.58MHz/T is the gyromagnetic ratio for a hydrogen proton.
The interaction between protons and the magnetic field is represented by the net magnetization
vector M0, which is parallel to the magnetic field (pointing along the z-axis by convention).
To rotate the net magnetization away from its equilibrium and obtain an MR signal, a
Radiofrequency (RF) pulse is applied perpendicular to the B0 field. The RF pulse, also
referred to as B1 field, causes the net magnetization M to tip away from the z-axis by an
angle (called flip-angle) dependent on the strength and duration of B1 [2]. As the RF pulse
is switched off, the net magnetization vector M will again experience only the B0 field. The
signal coming from the hydrogen protons precessing at the Larmor frequency around the B0

vector can be detected by placing an RF coil near the region of interest.

1
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Figure 1.1.1: Left side figures show the behaviour of the spins when no magnetic field is present (no
precession). As soon as a strong magnetic field is applied (figures on the right side), the hydrogen
spins gradually align in the direction of the B0 vector, precessing at the Larmor frequency. The
interaction between the protons and the magnetic field forms the net magnetization vector M0

(thick blue arrow), measured in parts per million. Figure from [1].

1.1.2 Timing factors in MRI

As soon as the RF pulse is switched off, the time needed by the net magnetisation to
switch back to the equilibrium is generally described by two characteristic times: T1 and T2,
also known as the spin-lattice relaxation time (or longitudinal relaxation time) and spin-spin
relaxation time (or transverse relaxation time) respectively. T1 is defined as the time required
by the longitudinal component (Mz) of the magnetization to return to 63% of its initial state,
or as the time needed for 63% of the hydrogen protons to switch back to the equilibrium. On
the other hand, T2 is the time for the transverse component (Mxy) of the magnetization to
return to 37% of its initial state, or for the signal to decay of 37% after the excitation.
T1 and T2 are tissue dependent: at 1.5T, the approximate T1 values are 4000ms, 900ms and
600ms for Cerebrospinal fluid (CSF), grey and white matter respectively, while T2 is usually
much shorter, with values around 2000ms, 100ms and 80ms [3]. Changes in the magnetic
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field strength influence the T1 values [4], with the longitudinal relaxation time increasing up
to approximately 1445ms and 791ms, for grey and white matter respectively, at 3T [5]. On
the other hand, T2 values are similar for 1.5T and 3T [6]. However, the T2 times can vary due
to magnetic field inhomogeneities. This originates from susceptibility artifacts, with magnetic
field distortions appearing at boundaries of tissues with different magnetic field susceptibility
such as air and fat tissue, or around metallic and ferromagnetic objects within the body [7].
These inhomogeneities also affect the spin dephasing or free induction decay (FID), causing
the signal to decay faster compared to standard T2. The new time constant is called apparent
spin-spin relaxation or T2*.
If a second RF pulse is applied some time after the first excitation RF pulse, dephased spins
can be refocused and a stronger signal can be acquired via RF coils. This second RF pulse
is called refocusing. The time between the excitation RF pulse and the peak of the RF coil’s
induced signal (also known as spin echo) caused by the refocusing is called echo time (TE).
The time between two consecutive excitation RF pulses is called repetition time (TR). TE and
TR are two important timing factors in pulse sequence design as, together with T1 and T2,
they dictate the type of contrast (and therefore information) of the MR image. Figure 1.1.2A
compares the contrast originated by using different TR values while keeping the TE constant
at 10ms: at TRs below 750ms, the contrast between grey and white matter is enhanced
producing T1-weighted images, with bright and dark regions for tissues with short and long
T1 respectively, e.g. fat and CSF. Inversely, the contrast between tissue types is very small
at TRs above 1500ms, as there is almost no difference between the two signals. To intensify
the contrast between different tissues, the TE parameter can be changed as shown in Figure
1.1.2B: for the same TR value of 1500ms, the signal coming from the CSF is much stronger
compared to other tissue types for long TE values, while grey and white matter signals are
almost identical [8].

1.1.3 The k-space and encoding gradients

MRI data are acquired in the frequency domain, more commonly known as k-space or
Fourier-space. The k-space is where the frequency spectrum of the MR image is saved during
the acquisition. It could take the form of a two- or three-dimensional matrix, depending
on the type of acquisition. Each point in the k-space contains specific frequency and phase
information related to all pixels (or voxels) of the final image. The frequency information is
collected during the MR acquisition by applying a specific gradient magnetic field during signal
sampling called frequency-encoding gradient, which varies along one (or more) dimension
causing a change in the magnetic field strength in that direction. The precession frequency is
now additionally dependent on the gradient magnitude they are experiencing. In this way, the
signal coming from each point is localized in space, with the frequency information enclosed
among one dimension of the k-space. To obtain phase information, it is necessary to apply
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Figure 1.1.2: (A) Images show brain MR data acquired at TE = 10ms and various TR values. Plots
show changes in the signal intensity based on the TR for different tissues. (B) Images show brain
MR images acquired at TR = 1500ms and various TE values. Plots show changes in the signal
intensity based on the TE for different tissues. Figure from [8].

a second gradient magnetic field, referred to as the phase-encoding gradient, along another
dimension in space. This will influence the spins precession frequency, based on the gradient
they are experiencing, causing a certain amount of dephasing between spins which will remain
after the phase encoding gradient is turned off. This is how the difference in phase is encoded
along another dimension of k-space. In order to localize each point in space with specific
phase and frequency, multiple phase encoding gradients are applied: for each one, the same
frequency encoding gradient is carried out while sampling the signal. RF pulses and gradients
can be arranged into a pulse sequence, which is then used to acquire the MR images.
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1.1.4 K-space sampling and reconstruction

The MR signal is encoded in the k-space using different trajectories, which dictate the image
acquisition and reconstruction strategies. Most commonly, the k-space data is acquired on
a rectilinear grid, with each line in the k-space corresponding to the frequency encoding
readout for each phase encoding gradient value. This approach is known as Cartesian
sampling and it allows to reconstruct the final image by simply applying an inverse Fast Fourier
Transform (iFFT) to the data. On the other hand, this strategy requires a long acquisition
time, due to the fact that single RF pulses are necessary to acquire each line [9]. Figure 1.1.3
shows an example of T1-weighted image in the k-space acquired with Cartesian sampling and
reconstructed using the iFFT. Instead of acquiring parallel lines in k-space, it is possible to

Figure 1.1.3: T1-weighted image acquired with Cartesian sampling before (k-space) and after
(image-space) applying the iFFT.

sample it along lines going through the k-space centre, using the so called radial trajectory.
The main advantage of this technique is its lower sensitivity to motion artifacts than the
Cartesian method: as the k-space is acquired at multiple frequencies and phase directions,
phase inconsistencies due to motion are spread out in all directions rather than propagate
along the phase encoding direction [10]. Moreover, oversampling of the k-space centre can
be employed to smooth out motion artifacts due to intrinsic averaging of the subject’s gross
features [10] or for further motion correction in post-processing [11]. However, the data
requires a regridding step to fit inside a rectilinear grid before applying the iFFT.
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In single-pulse Echo Planar Imaging (EPI), the full 2D k-space is acquired using a single or
few RF pulses called shots, which further decreases the acquisition time. This technique is
particularly prone to ghosting artifacts [9], since the acquisition direction of k-space lines is
alternated. Spiral trajectories are also adopted to decrease the scanning time, where the MR
signal is acquired starting from the centre of the k-space going outward. The acquired signal
is therefore very strong at the beginning of the acquisition, improving the Contrast to Noise
Ratio (CNR). This trajectory is often used with small Field of View (FOV), to obtain more
signal from the k-space centre region and minimize blurring artifacts caused by off-resonance
spins. Figure 1.1.4 graphically shows the k-space trajectories just described. To further reduce

Figure 1.1.4: K-space trajectories for 2D pulse sequences: (a) Cartesian (for non-echo-train
sequences), (b) radial, (c) EPI and (d) spiral. Figure from [9].

the acquisition time, Partial Parallel Imaging (PPI) methods have been developed to acquire
fewer k-space lines and "fill" the missing information using coil sensitivity profiles. One of
the main PPI methods is called SENSitivity Encoding (SENSE), developed by Pruessmann et
al. [12]. The key step in SENSE reconstruction is to calculate the sensitivity maps of individual
receiver-coil channel. Each map contains the signal intensity sensitivity, which shows how the
signal acquired by each single coil depends on the position of the coil itself and where the
signal comes from. Coils’ sensitivity maps are used to solve simultaneous equations from
the individual aliased images to form the combined final image. SENSE is considered as
an "image-space-based" PPI method, as the image reconstruction (via iFFT) is performed
before the partial images merging [13]. Another parallel imaging technique that requires coils’
sensitivity maps is SiMultaneous Acquisition of Spatial Harmonics (SMASH)) [14]. Unlike
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SENSE, the data reconstruction is performed prior the iFFT: for this reason, SMASH is
considered a "k-space based" parallel imaging technique. An evolution of SMASH is the
AUTO-SMASH method [15], which does not require coils’ sensitivity maps: the weighting
factors are calculated by initially acquiring fully sampled k-space lines called Autocalibration
signal (ACS).
The Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [16] method is an
improved version of the AUTO-SMASH. As the latter, GRAPPA method does not need to use
coils’ sensitivity maps, which are not always accurately calculated. Instead, fully-sampled ACS
lines are acquired from the k-space centre prior or during the undersampled MR sequence.
Unlike AUTO-SMASH, the GRAPPA weights are calculated by using multiple acquired k-space
data to fit the ACS lines for each individual coil (see Figure 1.1.5). The weights so calculated
are then used to reconstruct the unacquired lines of each receiver channel. After reconstructing
the missing data, the full dataset can be combined using the sum-of-square function, providing
a substantial improvement in the fitting procedure and SNR value compared to SENSE and
AUTO-SMASH [16,17] .

Figure 1.1.5: Comparison between AUTO-SMASH and GRAPPA for R = 2. Each circle represents a
line in k-space for each coil of the receiver array. In AUTO-SMASH, a single line of acquired data is
used to fit an ACS line in the "Composite Data", which is usually the sum of the ACS lines acquired
in each coil. On the other hand, GRAPPA uses multiple acquired lines to fit one ACS line from a
single coil (Coil 4 in this example). Images taken from [16].
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1.1.5 Pulse Sequences

A pulse sequence is a series of events that includes RF pulses, gradients and signal acquisition
that allows the generation of the desired MR image. An example is presented in Figure 1.1.6,
where the magnetization is initially rotated of 90°, followed by a refocusing 180° pulse. A
gradient along the z-axis is applied simultaneously to the RF pulses, creating a slice-selection
gradient. A so-called rephaser gradient is applied straight after the slice-selection gradient but
with opposite polarity, to correct for phase dispersion of the transverse magnetization Mxy .
The magnetization is then dephased by applying a gradient along the x- and y- directions
at once, namely the prephaser and phase-encoding gradients, to position the kx and ky

coordinates to the desired k-space location (upper-left side in this case) before applying
the readout gradient along the x-direction, and start the k-space acquisition. The signal
is sampled using an analog-to-digital (or ADC) converter. To dephase any remaining transfer
magnetization before the subsequent RF pulse (or excitation pulse), a spoiler gradient can
be employed at the end of the sequence. Next sections will briefly introduce pulse sequences
relevant for this thesis, to provide sufficient information for the subsequent sections.

1.1.5.1 Spin Echo

Spin Echo (SE) sequences are characterized by a slice selective 90° pulse, followed by a 180°
refocusing pulse which generates the echo during which the signal is read [18]. RARE (Rapid
Acquisition with Relaxation Enhancement) [19] is an adaptation of standard SE techniques
used for fast scanning of T2-weighted images. Commercially known as fast spin echo (FSE)
or turbo spin echo (TSE), RARE uses a series of 180° refocusing pulses forming a so called
echo train: in this way, multiple k-space lines are acquired within the same TR. The number
of k-space lines collected during one single TR is called echo train length (ETL) or turbo
factor. Thanks to the 180° refocusing, RARE sequences do not suffer from susceptibility
artifacts, which can cause distortions or local signal changes due to local magnetic field
inhomogeneities; this makes them favourable to acquire images of the sinuses, skull or areas
around metallic objects. However, this can be found disadvantageous when scanning small
areas of calcification or haemorrhage [9] because of its insensitivity to magnetic susceptibility
effects.

1.1.5.2 Gradient Echo

Gradient Echo (GRE) is an alternative technique to spin-echo sequences. Instead of the
180° refocus pulse, the echo is generated by combining a prephase and a readout gradient
of opposite polarity. Moreover, the flip angle used for the excitation pulse is usually less
than 90°; in this way, a shorter TR for T1 recovery can be used, allowing faster image
acquisition [9].
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Figure 1.1.6: Schematic representation of a pulse sequence and how gradients are used to sample
the k-space. An initial 90° RF pulse is applied, followed by a refocusing 180° RF pulse after a time
equal to TE/2. A slice-selection gradient is applied along the z-axis simultaneously to the two RF
pulses. A rephaser gradient is applied straight after the first RF pulse to correct for phase dispersion.
The magnetization is then dephased by applying the prephaser (Gx ) and the phase-encoding (Gy )
gradients, moving kx and ky from the centre to the upper left corner of the k-space (red dash line).
As Gy is switched off and Gx inverted, the readout (output in the figure) of the first k-space line can
start. This is repeated for all the k-space lines (Ny ), one for each TR. The phase-encoding gradient
is changed each step, to read a different k-space line during each TR (PHy table). Figure from [1].

GRE sequences are more susceptible to magnetic field inhomogeneities compared to RARE
sequences, because of the absence of the 180° inversion pulse, making them predominately
T2*-weighted. However, this effect can be advantageously used for susceptibility weighted
imaging. GRE sequences are also widely used for angiography imaging and to acquire images
of haemorrhage, calcification and iron deposition in various tissues and lesions [9].
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1.1.5.3 MPRAGE

Inversion recovery (IR) sequences are characterized by a non-selective 180° preparatory pulse
(i.e. inversion pulse), followed by standard SE or GRE sequences [9]. The time between the
inversion and the excitation pulses is called Inversion Time (TI). This inversion pulse flips all
the spins to the opposite direction of the main magnetic field (B0 field), allowing T1-relaxation
during the TI: this way when the next excitation pulse is generated, tissues will be in different
magnetization states depending on their T1 times and the TI chosen.
MPRAGE (Magnetization Prepared RApid Gradient Echo) is a type of IR sequence,
characterized by a preparatory non-selective 180° pulse followed by a "train" of gradient
echoes [20]. MPRAGE is most commonly used to acquire 3D T1-weighted images at isotropic
resolution, applying short TEs, small flip angles α and long TRs.

1.2 Motion artifacts: detection and
correction strategies

MRI images are affected by different artifacts sources [7]:
• Sequence-related artifacts: aliasing, partial volume effects, chemical shift artifacts,

truncation artifacts, EPI ghosting.
• Hardware-related artifacts: spikes, data clipping, zippers, and other artifacts due to

external RF sources.
• Patient-related artifacts: motion artifacts, susceptibility artifacts.

On a stable MRI system in routine use, motion artifacts are typically the most common
source of MRI degradation. Motion can be divided in three categories: rigid motion or bulk
motion, elastic motion and flow [11]. Rigid motion is a 6 Degrees of Freedom (DOF) kind
of motion, described by translations and rotations along the three dimensions (x, y and z).
Elastic motion is additionally characterized by scaling and shearing along the three axes, for
a total of 12 DOF [11]. Flow motion includes CSF or blood flow and could be one- two- or
three-dimensional depending on the complexity of the structure analysed. This thesis focuses
on the motion artifacts caused by rigid head motion, therefore other sources and types of
motion will not be further described.
Rigid motion affects 2D and 3D imaging differently. When 2D images are being acquired,
motion affects only the slice being sampled during that excitation pulse, whereas motion
occurring during 3D imaging will affect the entire volume being excited by the RF pulse.
However, rigid body motion occurring within slice-selective RF pulses will influence the desired
signal, as a different slice might have been excited. This effect is commonly known as
spin-history or excitation-history effect [11, 21] and it causes inconsistencies in the k-space
being sampled or signal dropout. Incorrect phase accumulation can also cause k-space
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inconsistencies, as the spins acquire additional phase due to motion occurring during the
application of gradients. The effect of these k-space inconsistencies appears as blurring and
ghosting artifacts in the image [11]. Ghosting is a partial or complete replication of object
or structure along the phase encoding dimension, while blurring mostly affects edges and
sharp contrast areas. These motion artifacts can obscure pathologic conditions and regions
of interest [22] or lead to pathology misinterpretation [23], causing the image to be unusable
for clinical or research purposes. They can both be caused by involuntary head motion,
due to coughing, swallowing, blinking or tremor due to pre-existing neuromotor diseases
(e.g. Parkinson), or voluntary motion due to discomfort or distress, which are more likely in
less-compliant subject’s categories (e.g. paediatric group) [21]. Acoustic noise in MRI has been
shown to be another major source of stress and discomfort during MRI acquisitions, together
with scan length [24], as well as imposing a health hazard due to the noise level [25].
Motion correction methods have become increasingly important for MRI, due to their ability to
estimate the motion occurred and restore quality and resolution of the image, consequentially
reducing the scanning time and reacquisition need. Several motion compensation strategies
were proposed over the years, which can be summarised in three main categories [21]:

1. Retrospective motion correction, consisting of post-acquisition correction using motion
information collected during the scan.

2. Prospective motion correction, consisting of real-time correction by updating gradients
and RF pulses during the acquisition.

3. Autofocusing, which is a special type of retrospective motion correction method based
on estimating the best motion parameters minimizing a cost function, without any
previous knowledge of the motion occurred.

While the latter does not require extra scanning sequences or hardware, retrospective and
prospective motion correction methods rely on different strategies to estimate the motion
parameters such as MR Navigators [26], [27], [28] or head trackers [29], [30], [31].
The following sections explain the mechanisms behind retrospective, prospective motion
correction and autofocusing methods. In particular, a detailed description of a navigator-based
and markerless motion tracking approaches is given, which are relevant for the purpose of this
thesis. A introduction to acoustic noise in MRI and silent pulse sequences is proposed at
last.

1.2.1 Retrospective motion correction

Retrospective motion correction techniques use Fourier properties to correct the MR k-space
when affected by motion. If bulk motion occurs during the acquisition, the MR signal is
affected by a change in phase and magnitude. According to the Fourier shift theorem,
translations can be compensated by a phase correction δ for each point k in k-space [21].
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Equation 1.2 represents the transformation from the original corrupted S(kx , ky , kz) k-space
data matrix to the corrected S ′(kx , ky , kz):

S ′(kx , ky , kz) = S(kx , ky , kz) · e−2πi(kx δx +ky δy +kz δz ) (1.2)

where kx ,ky and kz are the coordinates of each k-space point and δx , δy and δz are the
translational motion parameters: if those are known, it is possible to compensate for the
displacement occurred along x, y and z.
Based on the property of the Fourier transform, a 2D rotation in the image domain (I), about
the centre of the image, is equivalent to a rotation in the Fourier domain (S):

I(xcosθ − ysinθ, xsinθ + ycosθ)←→ S(kxcosθ − ky sinθ, kxsinθ + kycosθ) (1.3)

This property is sometimes known as the Fourier rotation theorem [21]; therefore, the effect
of a applying a rotation matrix R is noticeable both in the phase and magnitude of the Fourier
data, while the translations vector T affect only the phase as shown in Equation 1.4, with k
being the k-space sampling trajectories vector (kx ,ky and kz) [32].

S ′(k) = S(R · k) · e2iπRkT (1.4)

Applying a rotational transformation to the k-space will lead to a k-space sampling that
does not fall into a regularly spaced Cartesian grid. This so-called pie-slice effect produces
regions with lower and higher density points. These low density regions fall below the Nyquist
sampling criterion, which violations causes the appearing of striking and ghosting artifacts
[11]. Non-uniformly-spaced samples will prohibit the use of the iFFT to convert the image
from the Fourier domain to the image domain. The Non-uniform Fast Fourier Transform
(NUFFT) can be used to compensate for this effect, with the MR signal sampled at unequally
spaced frequency. In our work, we used the Min-Max NUFFT approach from Jeffrey Fessler
(http://web.eecs.umich.edu/~fessler/code/) to achieve optimally estimation of the
sampling points in k-space [33]. This method estimates the interpolation coefficients that
minimizes the maximal approximation error of a non-uniform discrete fast Fourier transform,
providing lower approximation errors compared to conventional interpolation strategies (such
as Dirichlet, Gaussian bell, and Kaiser-Bessel interpolators) [33].

1.2.2 Prospective motion correction

The idea behind prospective motion correction is to maintain a constant FOV in relation to
the moving object. This is performed by sending the tracking data, which represent the head
position at that time, to the scanner during the acquisition. This information is then used to
adjust RF pulses and gradients to compensate for the rotational and translational motion as

http://web.eecs.umich.edu/~fessler/code/
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quickly as possible after it has occurred. In particular, the original gradient waveform g(t) is
transformed in g ′(t) as follows [34]:

g ′(t) = A(t) · g(t) (1.5)

with A(t) representing the affine transformation describing the object movement.
Figure 1.2.1 schematically shows how the phase encoding and slice-selection gradients (here as
Gy and Gz respectively) are updated to compensate for a head rotation around the yz-plane:
after adjusting the two gradients, the FOV is aligned with the new head position.
Unlike retrospective motion correction, the uncorrected image is not available for comparison,
as prospective motion correction is performed in real-time. The motion tracking data can be
sent to the scanner for update once "per excitation", "per k-space line", "per slice" or "per
volume" depending on the sequence and tracking limits [21]. Latency between the motion
parameters estimation and the scanner adjustment must be kept small, to avoid discrepancies
between the FOV update and the subject’s real head position [34].
The motion parameters can be estimated using different tracking modalities, such as optical
tracker [31], navigators [35] or markerless tracking systems [36]. It can be applied to a
wide variety of pulse sequences and are generally robust against motion artifacts as they are
not affected by Nyquist violations in presence of rotations (i.e. pie-slice effect). They also
enable the possibility of an immediate reacquisition of the most corrupted regions of k-space.
However, navigator-based prospective motion correction methods are not always compatible
with all MR sequences, because of their intrinsic need of extra time to allow the navigator
sequence. For example in case of Functional Magnetic Resonance Imaging (fMRI) sequences,
re-acquiring lines of the k-space is not always an option due to other tasks involved with the
acquisition.

1.2.3 Autofocusing

Autofocusing is a class of motion correction technique that does not rely on motion information
from navigators or external tracking systems. The rigid motion occurred is described via a
model, where the motion parameters are chosen based on an optimization strategy: a set
of motion estimates is applied to lines or groups of k-space lines based on the Fourier shift
and rotation theorems; after applying the inverse FFT, the resulting image quality is assessed
using a image quality metric as cost function, such as the image entropy [37], [38] and the
Gradient Entropy (GE) [39]. Autofocusing algorithms assume that the best motion estimates
will minimize the cost function value, resulting in a motion corrected image. However, these
methods could potentially introduce artifacts if the motion parameters are wrongly estimated
and the error propagated through the k-space [40]. Moreover, autofocusing techniques are
computationally expensive, although more time-efficient techniques were recently introduced
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Figure 1.2.1: Schematic representation of gradients update to compensate for head rotations:
initially, the frequency-encoding requires only one gradient Gz . To compensate for the head rotation
occurred on the yz-plane, both the phase-encoding (Gy ) and the frequency-encoding (Gz) gradients
are adjusted to align the FOV with the new had pose. Figure taken from [34].

by using prior information from navigators [41] or reference images [42]. Motion tracking
techniques could then be complemented by autocorrection approaches to further improve the
motion correction especially in case of large changes in the head position, compensating for
residual artifacts which might still affect the image [43].

1.2.4 Fat Navigator (FatNav)

A retrospective motion correction technique for brain MRI images has been proposed by
Gallichan et al. [44] to detect and correct non-deliberate motion in high resolution imaging.
The idea consists of apply a 3D GRE sequence combined with a three-pulse fat-selective
binomial excitation as the navigator. The natural sparsity of fat-images of the head makes
it possible to apply the GRAPPA parallel imaging technique to acquire a 2mm isotropic
resolution FatNav volume in 1152ms, using a high acceleration rate (R = 16), as shown
in Figure 1.2.2 [44]: in this way, small motions can be detected and corrected. The ACS
lines used to estimate the GRAPPA weights originate from a fully-sampled FatNav volume
acquired at the beginning of the scan. The 3D FatNav volumes acquired are co-registered



1.2. MOTION ARTIFACTS: DETECTION AND CORRECTION STRATEGIES 15

during the post-processing pipeline using the realign tool from the Statistical Parametric
Mapping (SPM) to estimate the motion parameters. In [44], image sharpness was restored

Figure 1.2.2: FatNav volume at 4mm resolution after GRAPPA reconstruction respectively, from
the left, along XY, XZ and YZ axes.

in high resolution images by including the 3D accelerated FatNav’s volumes acquisition as
part of a MP2RAGE and a TSE protocol without any extra scanning time needed, as shown
in Figure 1.2.3. The acquisition of 3D accelerated FatNav volumes can also be incorporated
as part of a MPRAGE protocol with only minimal extra scanning time needed (about 2 s
for additional GRAPPA calibration for navigators). The use of navigator-based methods

Figure 1.2.3: MP2RAGE and TSE pulse sequences with FatNavs incorporated without any extra
scanning time. Figure from [44].

such as 3D FatNavs has the advantage that no extra hardware is required, making it more
convenient to use compared to marker-based tracking methods such as the Moiré Phase
Tracking (MPT) (Metria Innovation, Milwaukee, WI). Unlike FatNav, MPT requires the use
of a marker fixed on a mouthpiece extension, which is hold in position by the subject’s upper
jaw, while a single camera acquires 86 frames/s. The two methods showed comparable results
in case of deliberate and non-deliberate motion. Moreover, both techniques could completely
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compensate for artifacts caused by slow motion, which may occur in more compliant subjects
[45].
FatNavs has also been demonstrated to be a valuable tool for motion correction in clinical
brain MRI: in Glessgen et al. [46], FatNav was tested in 40 patients with diagnosed
or suspected brain tumours on a clinical 3T scanner (MAGNETOM Skyra 3T, Siemens
Healthcare, Erlangen, Germany), resulting in visible improvements in image quality after
motion correction. Moreover, its negligible additional scanning time and no need for extra
hardware makes it suitable for motion correction with less compliant subjects. However,
prior work has so far only tested FatNavs in the presence of small non-voluntary motion: it
is expected that for large changes in the head position the GRAPPA reconstruction of the
FatNavs will be affected and this will reduce the accuracy of the estimation of the motion
parameters.

1.2.5 Tracoline (TCL)

Tracoline TCL (v3.01) is a 3D surface tracking system (TracInnovations, Bellarup, Denmark)
that allows both prospective and retrospective motion correction of Positron Emission
Tomography (PET) and MRI brain images, without using external markers: the motion
parameters are estimated by acquiring point clouds using a near Infrared light system placed
on a base unit positioned behind the MR scanner. The light is transferred via a fibre optic
cable to a vision probe, creating the point clouds by projecting near-infrared structured light.
The vision probe is attached on the MR table, with the support of an MR compatible arm.
The probe points towards the subject’s face inside the head coil and acquires ∼30 point-clouds
per minute. These point clouds are then co-registered with a reference point cloud to estimate
the motion parameters as shown in Figure 1.2.4. The camera system is connected via a fibre
optic cable to a computer in the control room, where the point clouds are visible during the
acquisition. The system is provided with a software tool for performing cross-calibration of
the reference point cloud with the patient’s head from a structural MRI scan. The camera
can fit in a Magnetom Prisma scanner (Siemens Healthcare, Erlangen, Germany) using the 20
or 64 channel head coils (Figure 1.2.5). In Frost et al. [36], the TCL camera was tested in
the presence of voluntary discrete and continuous motion. Discrete motion was performed by
changing the head position every minute starting from the centre and then moving left, down,
right, up, and returning to the centre. Continuous motion was performed with the subjects
rotating their head at 1, 4 or 6 cycles per minute. Prospective motion correction was carried
out in two different update modalities:

• Within-echo-train (within ET), where the FOV position and orientation were updated
every 6 lines of k-space (approximately every 50ms);

• Before-echo-train (before ET), in which the FOV was updated only once per TR.
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Figure 1.2.4: The reference point clouds (green) are used to register the point clouds (in grey)
continuously acquired during the scan. Figure from [36].

Figure 1.2.5: TCL camera attached to a mock Siemens scanner (ZT) positioned above a 64 channel
head coil. Image courtesy of Dr Daniel Gallichan, (CUBRIC) Cardiff University.

With prospective motion correction, the camera first acquires the head movements and turns
the information into scanner Device Coordinate System (DCS), before sending them back to
the scanner to adjust the gradients based on the tracking data. The results showed that a more
frequent update of the FOV reduces the presence of ghosting and signal loss artifacts, in case
of continuous motion, due to fewer discrepancies between k-space lines, which can be achieved
using the within-ET update. Recently, TCL prospective and retrospective motion correction
have been compared in case of discrete and continuous motion [47]. The results suggested
that prospective motion correction is generally more robust compared to retrospective in both
motion scenarios, thought to be largely because of the reduced effect of localized Nyquist
violation.

1.2.6 Acoustic noise in MRI

Acoustic noise in MRI is caused by Lorentz force, an electromagnetic force generated by the
electric current flowing through the gradient coils in presence of a large magnetic field. This
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force causes the gradient coils to deform and vibrate generating the unwanted MRI acoustic
noise. Eq. 1.6 shows that the effect of the Lorentz force vector dF applied to a gradient
coil segment dl is directly proportional to the static magnetic field B0 and the current vector
I [48].

dF = dl · (B0× I) (1.6)

These forces depend on geometry and material properties of the scanner, and its relationship
with the resulting noise can be approximated by a linear system [49]:

Ri(f ) = FT (gi(t)) · FRFi(f ) (1.7)

with Ri(f ) being the overall acoustic response of a gradient coil running waveform gi(t) and the
FRFi(f ) representing the frequency response function for each gradient coil i = x , y , z .
The acoustic noise generated by the gradient system is particularly pronounced if rapid
switching of gradient amplitude is employed [49]. EPI sequences critically rely on fast gradient
switching and rise time to acquire a single-shot image within a short time. However, this
causes sequences such as EPI to raise an acoustic safety hazard, as the noise level was shown
to exceed 130 dB(A) [50].
Reducing the acoustic noise level produced by an MR sequence become necessary to reduce
feelings of distress and anxiety which might erase during an MR scan [24]. It would also
decrease the risk of adversary events such as hearing impairment or loss, especially on subjects
frequently undergoing an MRI scan [25]. Moreover, employing attenuated acoustic noise pulse
sequence could be beneficial in clinical or research settings where infants are scanned in natural
sleep, and no sedation or anaesthesia are used [51]. Different solutions can be adopted to
decrease the noise produced during an MRI scan. Passive solutions include ear plugs, sound
dumping foams or an acoustic hood placed inside the MR-scanner tunnel [52]. Despite being
easy to apply, and not requiring any hardware or sequence modifications, passive systems do
not allow uniform protection, as well as having poorer noise attenuation at lower frequencies
or against noise transmitted through bone conduction [53]. Active solutions include noise
cancellation headphones, which have the downside that they will not always fit in the RF head
coil. Quiet MR scanners can also be adopted as noise control systems, especially with children
population. They have been shown to allow a noise reduction of around 20 dB(A) using a
non-conductive cryostat inner bore, a low-eddy-current RF coil and non-conductive passive
magnetic shims, together with constrained-layer damping and acoustic absorption materials
on the outside of the magnet cryostat and the inside of the patient tube [54].
Another approach consists of optimizing the MR pulse sequence to attenuate the acoustic
noise produced during the acquisition, which can be performed by adopting different strategies
[52,55]:

• Increase slice width in 2D acquisition.
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• Increase RF pulse length, narrowing the bandwidth (BW) or by increasing the FOV
without changing the BW.

• Reduce resolution.
• Increase TR.
• Reduce the number of slices or applying parallel imaging techniques.
• Reduce the number of b-values or diffusion directions.
• Minimise gradient switching.

This latter strategy can be achieved using the so-called Ultra-short Echo Time (UTE) or Zero
Echo Time (ZTE) pulse sequences. In UTE sequences, the RF excitation pulse is performed
right before the gradient ramp-up, with only a negligible delay time. Data acquisition
and gradient ramp-up are started simultaneously, which requires sampling of the gradient
ramp. However, this often cause image distortions due to gradient hardware delays and eddy
currents especially in case of radial sampling schemes, as the k-space centre (and therefore the
image contrast) might be impacted [56]. An improved version of UTE sequences is PETRA
(Pointwise Encoding Time Reduction with Radial Acquisition) used to acquire T1-weighted 3D
image of the brain [57]. PETRA samples the k-space data through two separates acquisition
steps. After the first inversion pulse, the centre of k-space is sampled in a Cartesian fashion,
while the outer region is collected radially after the second inversion pulse. As the gradient are
only changed slightly during each repetition, PETRA achieves outstanding low acoustic noise
compared to MPRAGE, from 87.4 dB(A) to 58.2 dB(A), as well as showing [58]. In ZTE,
the RF pulse is applied once the gradient has achieved its target magnitude (TE=0). RUFIS
(Rotating Ultra Fast Imaging Sequence) is a ZTE sequence for structural imaging, where
consecutive readout gradients are ramped straight to the expected value for data sampling,
minimising gradient switching [59] and reducing noise level to 55 dB(A) from 90 dB(A) of the
conventional sequence [60].
Additionally, it is possible to reduce the acoustic noise by allowing more time to gradually
ramping the gradients’ amplitude [52]. Noise level reduction can be achieved using the so
called soft gradient waveforms (e.g. sinusoidal or Gaussian). Unlike the typical trapezoidal
shape, soft pulse shapes limit the gradient’s frequency range below 200Hz, allowing to
significantly decrease the acoustic frequency response function of the gradient coil. This
strategy has been successfully tested in Hennel et al. [61], where three "silent" versions of
basic pulse sequences (GRE, SE and RARE) were designed by using sinusoidal gradient slopes,
maximising slope durations and minimise the number of slopes. These acoustic optimisations
allowed for noise levels as low as 40 dB(A) for GRE and SE and 60 dB(A) for RARE, obtaining
a noise reduction of around 40 dB(A) and 22 dB(A) respectively.





CHAPTER2
GRAPPA-based autofocusing
motion correction

2.1 Introduction

Autofocusing is a special case of retrospective motion correction, where the motion information
is obtained without using external trackers or navigator sequences: the motion parameters
are estimated by iteratively applying the Fourier shift and rotation theorems to the acquired
k-space until a cost function is minimized. The cost function, or focus criterion, needs to
capture some aspects of how the motion artifacts affect the image quality and should ideally
have a global minimum to describe a motion-free image. In the past years, the entropy has been
used as focus criterion to iteratively improve sharpness and resolution of MR images affected
by 2D translations and a single rotation [37] and in-plane rotations and translations [43].
Loktyushin et al. proposed a gradient based motion correction method (GradMC) to
decrease motion artifacts by using an approach that iteratively searches for the sharpest
image measuring the entropy of spatial gradient [39]. This method was successfully used on
both real and synthetic data affected by bulk motion, showing major improvements without
using any a priori knowledge of the motion parameters.
In recent years, SENSE [12] parallel imaging method has been used for autocorrection of
motion artifacts by reducing the data consistency error. This approach has been adopted
in Cordero-Grande et al. [62] were SENSE reconstruction was combined with an optimized
samples reordering: the incoherent and distributed k-space coverage allowed for an increase
motion sensitivity resolved during the image reconstruction. In Haskell et al., Convolutional
Neural Networks (CNN) have been combined with a SENSE plus forward model-based
reconstruction approach to provide a faster and more accurate motion mitigation strategy [63].
Polak et al. [64] proposed a method which uses a rapid 3D scout scan and an optimized
sequence reordering to provide accurate motion parameters estimation for each shot: the

21
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image reconstruction is performed only once when the motion parameters are estimated,
making this technique computationally fast.
Bydder et al. [27] proposed an autofocusing motion correction technique based on the SMASH
parallel imaging method [14] to compensate for 2D translational motion in MR images of the
shoulder. SMASH uses spatial harmonics to reconstruct missing k-space lines, generated
as a linear combination of coil sensitivity profiles acquired prior to the main scan: if one
of the acquired k-space lines is considered "motion free", it can be used to predict the
data in the consecutive phase-encoding step; differences between the predicted and the
"real" (or measured) lines are caused by bulk motion occurring between the two consecutive
phase-encoding steps. In Bydder et al. [27], the motion parameters were estimated by
minimising the difference between the predicted and measured k-space lines using a cost
function based on the spatial-harmonics. The motion correction was then propagated along
the k-space by comparing consecutive real and predicted lines, restoring the image quality in 2D
images of the shoulder affected by 2D translational motion generated by moving the scanner
table. This was performed without any previous knowledge of the motion that occurred, and
without increasing the scanning time: only one extra acquisition was necessary to calculate coil
sensitivity maps. Although the algorithm showed good results both in vivo and on phantom
data, its use was limited to 2D translations.
Based on the work of Bydder et al., we developed and tested a new autofocusing motion
correction algorithm based on the GRAPPA parallel imaging method [16]. Unlike SMASH,
GRAPPA does not require explicit coil sensitivity maps but uses the information encoded in
the ACS lines acquired at the beginning or during the scan to calibrate the GRAPPA weights
used to reconstruct the missing lines in the k-space. Moreover, GRAPPA works directly on the
k-space, allowing to reiterate the optimization algorithm without performing repeated Fourier
transformations to the image domain required if SENSE method would be used: the FFT is
performed only once to convert the corrected k-space in the image domain.
The algorithm was intended as a robust retrospective motion correction alternative to
compensate for in-plane translations and rotations, with the ultimate aim to extend it
to correct for 3D bulk motion. The autocorrection method could then be integrated to
navigator-based or other motion tracking techniques to compensate for the residual motion
artifacts which might still affect the image after the motion correction, as suggested in
[43].

2.2 Methods

The next section introduces the models used to describe the motion affecting our brain images,
and the mechanism of our autofocusing algorithm for a 2D case. The algorithm works entirely
in the Fourier domain: motion parameters are estimated and applied for each phase-encoding
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step. The algorithm could be easily extended to 3D, where in-plane slices are acquired during
each phase-encoding step.

2.2.1 Motion models

Translational and rotational motion can be described by the Fourier shift and rotation theorem
as showed in Section 1.2.1. After compensating for the rotational motion, a regridding
(or interpolation) step is required to regrid non-uniformly sampled data into a Cartesian
distribution, which is usually performed using the NUFFT methods [33]. However, these
methods are usually computationally expensive [65], memory demanding [66] and could
introduce errors especially in the image periphery [66], [67].
Toffoli et al. [68] introduced the idea of using three consecutive shear transformations to
approximate a 2D rotational matrix, as shown in Eq. 2.1: the advantage of using this
approximation is that no regridding step is needed, as the data is kept on the Cartesian
grid during the shear transformations [69]. Each shear can be implemented as a column- or
row-wise translation in the Fourier domain, as described in Eq. 2.2, with Fy representing the
Fourier transformation performed along the y-direction. The matrix Sy ,c displays one shear
transformation about the y-axis (Eq. 2.3): the same Fourier transformation carried out about
the x-axis and then again about the y-axis, as described in Eq. 2.1, provides a very close
approximation to a 2D rotation of an angle α [69].

R(α) = S1 × S2 × S3 =
1 − tan α

2
0 1

 1 0
sinα 1

1 − tan α
2

0 1

 (2.1)

M(Sy ,ck) = Fy{F−1
y {M(k)}e i2πcykx} (2.2)

Sy ,c =
1 − tan α

2
0 1

 (2.3)

In this study, we tested our autofocusing algorithm in the presence of translational motion,
in-plane rotations and translations, and with rotations approximated by shears in the Fourier
domain.

2.2.2 GRAPPA-based algorithm

The first phase-encoding line was considered as the initial "motion-free" head position. The
GRAPPA algorithm could then use this line to estimate the GRAPPA weights and "predict" the
second k-space line, via the GRAPPA reconstruction pipeline available from the retroMoCoBox
[70]. A GRAPPA kernel of 2x3 (2 phase encoding by three partition encoding steps) was
adopted to fit the ACS lines and estimate the GRAPPA weights. The final reconstruction
was averaged across the receive-channels. An optimization strategy was adopted to find
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the motion parameters that minimized the value of the cost function estimated between
the GRAPPA-predicted and the real phase-encoding steps. The motion parameters δ, for
translations, and α, for rotations, were initially assigned a value of δ = 0 and α = 0 at the start
of the optimization algorithm. The parameters were then applied to the real phase-encoding
step using the Fourier shift and rotation theorems for translations and rotations respectively,
producing an initial corrected version of the second phase-encoding line. The predicted and
corrected lines were compared using the Mean Squared Error (MSE) as cost function:

MSE = 1
n

n∑
i=1

(Xi + X ′i )2 (2.4)

with Xi and X ′i the values of each sample i (with n = 200)of the predicted and corrected
k-space lines respectively. Differences in the two lines (X and X ′)denoted a change in the head
position between the first and second encoding steps, and therefore the presence of motion
artifacts.
Different values of δ and α were iteratively applied to the real second phase-encoding line
until the MSE value reached its minimum; this process was performed by the MATLAB
function fminunc (Mathworks, Natick, MA) using the default option’s values: the search
for the minimum value would stop if a step smaller than the tolerance (TolX = 1e−6) was
attempted. Once found, the motion parameters that minimized the cost function were applied
to the real second phase-encoding line.
Each line corrected this way could then be used by the GRAPPA reconstruction to predict
the following k-space line, which would be compared with its corresponding real line during a
new optimization cycle. Line by line, the correction can propagate across the entire k-space.
A graphical explanation of the algorithm is given in Figure 2.2.1.

2.2.3 Experiments

The algorithm was tested on 2D and 3D MR images of the brain. We used the MNI152
T1-weighted atlas (2mm isotropic resolution) [71] as 3D volume, with 8 receive-channels
simulated using MATLAB, and the 2D image (8-channels RF coil) from the SPIRIT toolbox
[72]. The images were artificially corrupted by simulated motion profiles so that the true
motion in each case would always be known. The algorithm was initially tested only against
translational motion and then extended to in-plane translations and rotations. In particular,
the following tests were performed:

• 2D image retrospectively corrupted by 1D translational motion;
• 2D image retrospectively corrupted by 2D translational motion;
• 3D image retrospectively corrupted by 3D translational motion;
• 2D image retrospectively corrupted by in-plane translational and rotational motion;
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• 2D image retrospectively corrupted by in-plane translational and rotational motion by
shears.

The motion applied was randomly generated within a range of ±4mm of translations and ±4°
of rotations. The rough behavior of the motion parameters was generated using a "value"
version (essentially blurred white noise) of the original Perlin noise [73,74]. Translational and
rotational motion was applied to 2D data using the Fourier shift and rotation theorems, while
the retroMoCoBox was adopted to apply motion in the case of 3D volumes, as it can be used
to simulate the effect of motion, as well as for correcting it.

Figure 2.2.1: Schematic representation of the GRAPPA consistency algorithm steps: the first k-space
line (R1) is considered as the initial head position (motion-free) and used to predict the second
k-space line (R2p). The real second k-space line (R2) is compared with the predicted line (R2p) via
a cost function optimization algorithm; the motion parameters, that minimize the cost function, are
use to retrospectively correct the real second line (R2corr), which is then used to predict the next
line (R3p) in k-space. The correction is propagated to the third line of the k-space (R3) until the
entire k-space is covered.
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2.3 Results

2.3.1 1D translational motion

Figure 2.3.1 shows that the algorithm correctly compensated for the 1D translational motion
applied along the phase-encoding direction of a 2D brain image: the ringing artifact originated
by the phase shift applied in the k-space is visibly reduced after the motion correction, despite
some residual artifacts still being visible on the frontal brain area. The true and estimated
motion parameters are compared in Figure 2.3.2: the algorithm generally performed well,
creating a close match of the estimated motion parameters and the true parameters across
the majority of k-space. However, the quality of the estimates is notably reduced in the first
and last 10 lines or so of k-space. Root-Mean Square (RMS) values are reported on top of
Figure 2.3.2.To quantify the effective difference between the images before and after motion
correction, the consistency between the original and the corrupted (before correction) image
was calculated as difference between the two data in the image domain. This consistency
between "original vs corrupted" and "original vs corrected" is shown in 2.3.3. This figure
clearly demonstrates how the correction has reduced the ringing effects across the whole
image – but the strong differences remaining along the edges suggest it may perform less well
on the fat layer in this case.
As the k-space centre contains the information regarding contrast and shape of an MR image
[9], we tested whether initiating the algorithm from the central phase-encoding step would
improve the motion parameters estimation accuracy. The same set of 1D translations was
used, with zero-motion in the centre of the k-space. The algorithm accurately calculated the
motion parameters especially towards the centre of the k-space, as shown in Figure 2.3.4.
The ringing artifacts caused by the translational motion were nicely reduced after the motion
correction, as shown in Figure 2.3.5. However, the accuracy is again shown to decrease towards
the beginning and the end of the estimates’ curve. Nevertheless, initiating the autofocusing
algorithm from the central phase-encoding step resulted in a stronger correlation between the
real and the estimated parameters (MATLAB function corrcoef, r(198) = 0.69, p = 3.7e−30)
compared to when the first k-space line was used as first prediction step (r(198) = 0.63,
p = 2.61e−24). Therefore, the central phase-encoding step was used as starting point of the
autofocusing algorithm in all the following experiments.

2.3.2 2D translational motion

Good improvements were obtained in the case of 2D translational motion as shown in Figure
2.3.7, where the image sharpness is completely restored after applying the autofocusing
algorithm. Motion parameters were estimated accurately especially in the centre of the k-space
in both the x- and y-dimension, as shown in Figure 2.3.8: differences in the motion magnitude
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Figure 2.3.1: Comparison between the original (no motion), before and after motion correction
images affected by 1D translations. The autofocusing algorithm was initiated from the first phase
encoding step (first k-space line). The autocorrection visibly reduced the ringing artifacts compared
to the uncorrected image as shown in the magnified sections (red frames).

between the two motion traces arose at the beginning and towards the end of the k-space,
which causes the two RMS values to be quite different between real and estimated parameters.
The consistency test shown in Figure 2.3.9 confirmed that the motion correction algorithm
improved the image quality, with small remaining ghosting artifacts still visible.

2.3.3 3D translational motion

The algorithm is shown to improve the image sharpness in case of 3D translational motion
applied on a 3D volume as shown in Figure 2.3.10. The real and the estimated motion
parameters along the three directions have different magnitude values as outlined by the RMS,
but they are shown to follow the same motion behaviour in Figure 2.3.11. The consistency test
reported in Figure 2.3.12 shows that, despite some small improvements in the image quality,
motion artifacts are still visible especially around the skull and in the corpus callosum.
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Figure 2.3.2: Comparison between the real 1D translations applied (red line) and ones estimated
by the algorithm (blue line). The autofocusing was started from the first phase-encoding step (first
k-space line). The RMS values of the real and estimated motion parameters are reported on top of
the image. The algorithm worked well across the majority of the k-space, with a reduction in the
estimates quality around the first and last 10 k-space lines.

Figure 2.3.3: Comparison between the consistency calculated between the original and the image
corrupted by 1D translations ("original vs corrupted") and between the original and the image after
applying the autofocusing correction starting from the first k-space line ("original vs corrected").
Artifacts are clearly reduced compared to the original vs corrupted comparison.
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Figure 2.3.4: Comparison between the real 1D translations (red line) and ones estimated by the
algorithm when starting from the central phase-encoding step (blue line). The RMS values of the
real and estimated translations are reported on top of the image. The motion parameters are well
estimated in the majority of the k-space. However the estimation accuracy is shown to decrease
towards the beginning and the end of the k-space.

2.3.4 2D translational and rotational motion

The algorithm was also tested in case of in-plane translational and rotational motion applied
on 2D images using the Fourier rotation and shift theorems. Both translations and rotations
were not accurately estimated: the correction even seemed to lead to a reduction in the
image quality compared to the uncorrected image, as shown in 2.4.1. The motion parameters
estimated for translations and rotations are reported in Figure 2.4.2: the motion traces show
similar RMS values especially in case of rotational motion, but the estimated parameters are
very different from the real ones. The reduced image quality after the motion correction is
corroborated by the consistency test, with stronger differences between the original and the
corrected images compared to the original and uncorrected ones 2.4.3.
To investigate whether the correction of rotational motion failed because of the necessary
regridding step, the rotations-by-shearing method was tested, with 2D rotations approximated
by three consecutive shear transformations: this way, the interpolation step is not required, as
the shears preserve the shape of the Cartesian grid. Unlike the previous motion cases, shear
transformations had to be applied to the entire k-space, instead of the single phase encoding
step, to obtain the correct approximation: the line of interest could then be considered after
"rotating" the entire frequency matrix. The Fourier shift theorem was again used to estimate
and correct for the translational motion occurred. Clear improvements were visible in the
corrected image compared to the uncorrected one, as shown in Figure 2.4.4. However, the
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Figure 2.3.5: Comparison between the original (no motion), before and after the correction of a 1D
translational motion, when the autocorrection was initiated from the central phase-encoding step
(k-space centre). Ringing artifacts are clearly reduced after the motion correction as shown in the
magnified sections (red frames).

rotations could not be accurately estimated by the algorithm using the shears approximation.
On the other hand, translations were nicely estimated both along X and Y directions, especially
around the k-space centre, as shown in Figure 2.4.5.
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Figure 2.3.6: Comparison between the consistency calculated between the original and the image
corrupted by 1D translations ("original vs corrupted") and between the original and the image after
applying the autofocusing correction starting from the central k-space line ("original vs corrected").
The correction visibly reduced the ringing artifacts.

Figure 2.3.7: Comparison between the original (no motion), before and after the correction of
2D translations along the X and Y directions. The motion correction visibly improved the image
sharpness compared to the uncorrected one, as displayed in the magnified sections (red frames).
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Figure 2.3.8: Comparison between the real 2D translations (red line) and ones estimated by the
algorithm (blue line) along the x- and y- dimension. RMS values for real and estimated motion
parameters are reported on top of each motion trace. The algorithm estimated the motion parameters
more accurately around the centre of the k-space.

Figure 2.3.9: Comparison between the consistency calculated between the original and the image
corrupted by 2D translations ("original vs corrupted") and between the original and the image after
applying the autofocusing correction ("original vs corrected"). The latter shows less discrepancies
with the original image compared to the original vs corrupted.
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Figure 2.3.10: Comparison between the original (no motion), before and after the correction of
a 3D translations: less ringing artifacts were present after the motion correction compared to the
uncorrected image.

Figure 2.3.11: Comparison between the real 3D translation (red line) and the ones estimated by the
algorithm (blue line) along x, y and z. RMS values for the real and estimated motion parameters
are reported on top of each motion trace. Despite the difference in magnitude compared to the real
parameters, the algorithm seems to have correctly estimated the motion behaviour along the three
axis.
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Figure 2.3.12: Comparison between the consistency calculated between the original and the image
corrupted by 3D translations ("original vs corrupted") and between the original and the image after
applying the autofocusing correction ("original vs corrected"), which shows a clear reduction in
motion artifacts compared to the original vs corrupted.



2.4. DISCUSSION 35

2.4 Discussion

In this study, we developed and tested an autofocusing algorithm to compensate for bulk
motion affecting MR images of the brain: the algorithm does not use any previous knowledge
coming from navigators or external hardware to estimate the motion that occurred. The
motion parameters are estimated via a cost-function minimization strategy, where the cost
function describes the quality of the image achieved with that set of motion parameters.
The algorithm was developed based on the SMASH-based autofocusing method proposed
by Bydder et al. to compensate for 2D translational motion on 2D images of the shoulder
generated by moving the scanner table [27]. The SMASH parallel imaging technique is based
on the prior acquisition of coil sensitivities, which is influenced by the shape and number of
the receiver array as well as motion.
In our study, we adopted the GRAPPA parallel imaging technique as it has the advantage
that the coil sensitivities profiles are derived from the ACS lines obtained directly from the
acquired data. GRAPPA was used to predict lines in the k-space based on the knowledge of
the previous ones, which were considered as motion-free. The choice of the GRAPPA kernel
(2x3) made possible to estimate the translational and rotational motion only between two
consecutive k-space lines: although computationally faster, the estimation accuracy might
reduce in presence of large head rotations due to the pie-slice effect affecting multiple k-space
lines. The algorithm was firstly tested in case of 1D, 2D and 3D translational motion randomly
generated within a 4mm range, and applied using the Fourier shift theorem. The estimated
motion parameters approximated well the ground truth values in the case of 1D translations,
with clear improvements in the image quality after the applied motion correction. However,
the algorithm struggled to estimate the motion parameters accurately around the first and
last 10 lines of the k-space. We tested whether initiating our autofocusing algorithm from the
central phase-encoding line would remove this effect and increase the correlation between the
real and estimated motion parameters. The algorithm was shown to help reducing the strong
ringing artifacts originating from 2D translational motion and to increase the correlation with
the real motion parameters (from r(198) = 0.63 to r(198) = 0.69). However, the accuracy is
again shown to drop at the beginning and towards the end of the acquisition: this behaviour
was expected, as other autofocusing approaches have also found that the edges of k-space,
which have lower signal and are dominated by noise, tend to provide less reliable motion
estimates [62]. It is also possible that an error compensation parameter will improve the
estimation accuracy and reduce the risk of error propagation, which is a known problem for
autofocusing algorithms [40]. The results obtained are in line with other autofocusing motion
correction methods in the literature, especially compared to Bydder et al. (2003) [27], where
the algorithm was successfully tested on 2D translational motion. However, the magnitude of
the simulated motion applied to our images has a much higher magnitude compared to [27].
Future studies will try the algorithm in presence of less rough motion parameters, which might
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resemble real motion parameters more.
The algorithm struggled to estimate the motion parameters correctly in the case of in-plane
rotations and translations. The current implementation tries to estimate the motion
parameters by iteratively rotating the measured line until the MSE between the rotated line and
the predicted one is minimized. However, points in k-space might not be linearly sampled due
to the pie-slice effect caused by the rotational motion. Comparing the two lines is therefore
not possible as the rotated line might have points in a different location in k-space. This
problem would appear also trying to rotate the predicted line to minimise the cost-function,
as it won’t be possible to compare it with the measured line. In Cordero-Grande et al. [62],
distributed and incoherent sampling improves the motion sensitivity, provided a certain degree
of redundancy, during the reconstruction. A similar approach could be tested in our study: one
possible solution could be to apply the GRAPPA operator gridding (GROG) [75] to convert
non-Cartesian to Cartesian data.
Moreover, it is not as easy to write a simple and efficient cost function for rotations as for
translations: while translations can be expressed with a single cost function line, given by the
Fourier shift theorem, rotations need much more complicated functions, due to regridding.
Translational motion is estimated after interpolating the rotated k-space back into a Cartesian
grid: if this latter step is not performed accurately, the translations also will not be estimated
correctly, due to strong Nyquist violations.
Eddy et al. [69] showed that 2D rotations could be approximated by three consecutive shears,
without need for regridding. However, this method did not produce an accurate estimation
of rotational motion parameters either: although shears are computationally less expensive
than regridding, the current system does not seem to be able to find a global minimum
of the cost function value to precisely estimate the true motion parameters. On the other
hand, translations were well estimated, presumably as a result of this approach avoiding the
interpolation step which we suspect caused the problems in the previous experiment.
It is also possible that a different cost function would provide a better assessment of the image
quality throughout the optimization step; the GE metric showed a strong correlation with
radiographers’ scores when used for the autocorrection of MR images of the shoulder [41] and
was successfully adopted to correct for bulk motion affecting brain MR images [39]. However,
the GE value is estimated from the entire 2D slice in the image domain, unlike the proposed
autofocusing method where the cost function is minimized for each phase encoding step in the
Fourier space. To adopt this metric, it might be necessary to update the entire Fourier matrix
for each optimization cycle, causing the algorithm to be significantly more computationally
demanding.
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Figure 2.4.1: Comparison between the original (no motion), before and after the correction of
a in-plane translations and rotations: the artifacts were not successfully compensated as the
autocorrection did not estimate the motion parameters correctly.

Figure 2.4.2: Comparison between the real rotational and translational motion parameters (red line)
and the ones estimated by the algorithm (blue line). RMS values for the real and estimated motion
parameters are reported on top of each motion trace. The motion parameters were not correctly
estimated by the algorithm both in case of translations and rotations.
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Figure 2.4.3: Comparison between the consistency calculated between the original and the image
corrupted by in-plane translations and rotations ("original vs corrupted") and between the original
and the image after applying the autofocusing correction ("original vs corrected"). After motion
correction, the image shows more discrepancies with the original image than the uncorrected one
(original vs corrupted case).

Figure 2.4.4: Comparison between the original (no motion), before and after the correction of a
in-plane translations and rotations by shear transformations. The image sharpness improved after
the autocorrection, as displayed in the magnified sections (red frames).
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Figure 2.4.5: Comparison between the real 2D translations and rotations by shear transformations
(red line) and the ones estimated by the algorithm (blue line). RMS values for the real and
estimated motion parameters are reported on top of each motion trace. The algorithm estimated
the translational motion correctly around the central k-space lines. However, the rotations were not
successfully estimated using shear transformations.

Figure 2.4.6: Comparison between the consistency calculated between the original and the image
corrupted by in-plane translations and rotations by shear transformations ("original vs corrupted")
and between the original and the image after applying the autofocusing correction ("original vs
corrected"). The discrepancy with the original image decreased after the motion correction,
compared to the uncorrected image.



2.5. FURTHER COMMENT 40

2.5 Further comment
This work was performed during the early stage of my PhD. Despite showing some promising
results in presence of translational motion, the algorithm was not working as good as hoped
for in presence of rotations. Therefore, it was decided to focus on the next experimental steps
of my work, with the intention of investigate the problem more in the future.



CHAPTER3
Analysis of FatNav motion
parameters estimation accuracy in
3D brain images acquired at 3T

Based on:
Elisa Marchetto, Kevin Murphy, Daniel Gallichan, Comprehensive Analysis of FatNav
Motion Parameters Estimation Accuracy in 3D Brain Images Acquired at 3T, ISMRM 29th
Annual Meeting, 2021.
Elisa Marchetto, Kevin Murphy, Daniel Gallichan, Analysis of FatNav Motion Parameters
Estimation Accuracy in 3D Brain Image, Post Graduate Virtual Meeting 2021, 2021.

3.1 Introduction
A retrospective motion correction technique for brain MR images has been proposed by
Gallichan et al. [44] to detect and correct non-deliberate motion during high resolution
imaging. The idea consists of applying a 3D GRE sequence combined with a three-pulse
fat-selective binomial excitation as navigator. Because of the natural sparsity of fat images,
it is possible to apply the GRAPPA [16] parallel imaging technique to acquire exceptionally
highly accelerated fat-volumes as navigators (FatNavs): in this way small motion can be
detected and corrected. The acceleration factor (R) defines the amount of k-space data
collected during the FatNavs acquisition: the higher the acceleration factor, the faster the
acquisition would be. An acceleration of 4x4 (corresponding to R = 16) denotes that one
sample in k-space is acquired every 4 lines in the phase and partition encoding directions. To
reconstruct the missing lines, GRAPPA uses the ACS lines, which constitute the fully-sampled
central region of a FatNav’s volume collected prior to or during the main acquisition, with only

41
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a few seconds added to the scan total duration time [44]. An example of a FatNav volume
before and after GRAPPA reconstruction (acquired at 4mm isotropic resolution and R = 16)
is shown in Figure 3.1.1. The FatNav motion correction technique has been used to improve

Figure 3.1.1: FatNav volume at 4mm isotropic resolution acquired with an acceleration factor R =
16: before the GRAPPA reconstruction, the image obtained via the iFFT shows extensive aliasing
artifacts caused by the missing lines in k-space, which are completely removed after GRAPPA.

the image quality in MR images of the brain affected by non-deliberate motion [44], [46]
and by small deliberate motion [45]. However, GRAPPA reconstruction is not expected to
perform well on FatNav volumes in the presence of strong head position changes. This is
caused by mismatched calibration data acquired once at the start of the scan and the data
for each individual FatNav volume being reconstructed: if the head position has changed
substantially, then the GRAPPA calibration may be sub-optimal and affect the quality of the
image reconstruction. The compromised GRAPPA reconstruction is then expected to lead to
motion-parameter misestimation.
This study aims to assess FatNav accuracy in the presence of large changes in the head
position, analysing the relationship between the extent of the motion and the expected
degradation in image quality. This was performed by simulating a broad range of motion
scenarios on FatNav’ volumes previously acquired, to analyse the effect on the motion
estimation accuracy in relation to the GRAPPA reconstruction. The results were used to
derive empirical limits of the motion that FatNav can compensate to produce an artifact-free
image.
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3.2 Methods

3.2.1 Data acquisition

Five different datasets of MPRAGE brain MR images were acquired on a Prisma scanner
(Siemens Healthcare, Erlangen, Germany) at 1mm isotropic resolution, with TI/TE/TR =
1100/3.03/2410ms and FA = 8°, using a 64-channel head coil. Two of the five datasets
were acquired with deliberate motion, while the other three datasets were acquired without.
Following each MPRAGE readout, a 3D FatNav volumes at 4mm isotropic resolution was
acquired as navigator, with TE/TR = 1.43/3.4ms (TA = 0.37 s), for a total scanning time
of 5:38min.

3.2.2 B1 maps

A fully-sampled FatNav volume acquired at the beginning of the scan was used to derive
the ACS lines necessary for the FatNavs reconstruction. The ACS data was then filtered
using an anti-aliasing Tukey window and extended to the entire FOV, using the zero-filling
method. A pre-reconstructed FatNav volume was generated by applying the iFFT to the
filtered ACS data and then processed using a 3D Hamming window to remove ringing, also
known as Gibbs artifacts. B1 maps were calculated as the ratio between each coil channel’s
pre-reconstructed FatNav volume and the sum-of-squares of all channels’ volumes. The maps
were then smoothed using smoothn [76], [77] function to ensure overall smoothness of the coil
sensitivity maps (Figure 3.2.1). Figure 3.2.2 summarize all the steps performed to calculate
the B1 maps.

Figure 3.2.1: B1 field maps of one channel calculated for one dataset. Maps were calculated for
each channel of all the five datasets using the correspondent ACS lines acquired prior to the scan.
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Figure 3.2.2: Schematic summary of the steps performed to estimate the B1 maps: the ACS lines
were obtained from the fully-sampled k-space centre of a FatNav volume acquired prior the scan;
after applying an anti-aliasing Tukey filter, a low resolution FatNav volume was obtained from the
ACS lines via a iFFT. To calculate the B1 maps, the low resolution FatNav was divided by the
sum-of-squares of all channels’ coil volumes.

3.2.3 FatNav tracking accuracy

A high resolution FatNav volume was reconstructed using the GRAPPA parallel imaging
technique for each dataset (Figure 3.2.3). Different combinations of motion parameters
were applied to the high resolution FatNav volumes in the image domain, using the SPM
realign tool [78]. Rotational and translational motion parameters were generated by selecting
rotations ranging between 0 to 20° with increments of 5°, while translations were selected
from a range up to 40mm with 10mm steps. Displacement along the z-direction was also
applied in the negative sense (corresponding to movement towards the feet) as realistically
the achievable motion along the superior/inferior direction is strongly restricted due to the
presence of the head coil. Translations and rotations were considered symmetrical in all
the other dimensions. These modified FatNavs were multiplied by the B1 maps previously
calculated and undersampled using an acceleration factor R = 16 to simulate the raw data for
each coil’s channel. Each volume was then re-reconstructed using GRAPPA to simulate the
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final corrupted FatNav volume. A comparison between the modified and the corrupted FatNavs
was performed to analyse the extent of the GRAPPA corruption. A total of 225 corrupted

Figure 3.2.3: FatNav volume at 4mm resolution generated after GRAPPA reconstruction for one
dataset.

FatNav volumes were generated for each acquired dataset. Corrupted and reference FatNav’s
volumes were co-registered using SPM to obtain an estimation of the motion parameters.
This was then compared to the real motion applied to find the mis-estimation caused by
the GRAPPA inconsistency. The result was averaged between datasets for the full range of
parameters considered. The residual motion could be therefore estimated from any given true
motion using linear interpolation on the FatNav tracking accuracy data, where the residual
motion represented the apparent head motion after FatNav correction. Figure 3.2.4 shows a
schematic representation of the steps to obtain the corrupted FatNav and the residual motion
parameters forming the FatNav tracking accuracy.
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Figure 3.2.4: Schematic representation of the process performed to calculate the FatNav tracking
accuracy for 225 different combinations of motion parameters (ranged between 0-40mm translations
and 0-20° rotations). One set of 6 motion parameters were applied to the high resolution FatNav
(obtained via GRAPPA reconstruction) using SPM. The rotated FatNav was then multiplied by
the B1 maps to find the rotated volume for each coil. Each volume was then undersampled
using an acceleration factor of R = 16 (4x4) and re-reconstructed using GRAPPA to simulate the
final corrupted FatNav if head motion occurred during the scan. By co-registering the initial high
resolution volume and the corrupted FatNav it was possible to find the estimated motion parameters
if FatNavs were used. These motion parameters were compared to the real motion parameters
applied to find the residual motion (or estimation error). The same steps were repeated for all
motion traces for each dataset. The residual motion was then averaged across the three datasets to
find the FatNav tracking accuracy, from which it was possible to estimate the residual motion from
any new motion trace via linear interpolation.
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3.2.4 MPRAGE experiment

In this study, different combinations of true motion curves were randomly generated using
a "value" noise version of the original Perlin noise [73, 74]. The function used is available
in the retroMoCobox toolbox [70] and it requires the number of motion parameters to be
generated and a weighting factor. The function generates multiple arrays of numbers at
different frequency and amplitude using a cubic interpolation function and smoothed using
the weighting factor. The function then sums all these randomly generated array to produce
the final Perlin noise. In this work, we generated two different types of motion can be
generated, which we have chosen to refer to as smooth and rough motion. Rough motion
(weighting factor of 1) is generated by rapid and abrupt changes in head position, occurring
for a prolonged period, while smooth motion is characterized by slow changes in the head
position. To generate smooth motion, a weighting array of [1 3 9 27 81 243 729 2187
6561] was used, as the function gets iteratively smoothed more as the frequency increases.
Examples of motion traces for rough and smooth motion are reported in Figure 3.2.5 and
3.2.6 respectively.
96 different combinations of motion parameters were randomly generated for smooth and
rough types of motion with RMS values ranging between 0-20° and 0-40mm for rotations
and translations respectively, generating 192 combinations for each of the three datasets for
a total of 576 motion curves. Motion occurring in the centre of the k-space has more

Figure 3.2.5: Example of rough motion parameters randomly generated with RMS = 2.01mm and
RMS = 1.88° for translations and rotations respectively.

impact on the final image than motion occurring at the edges due to the different types of
information encoded in the k-space: the k-space’s centre contains low frequency information
related with the contrast and shape of the image, while edges and details are encoded in the
high spatial frequencies’ information at the k-space periphery [9]. To take this into account,
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Figure 3.2.6: Example of smooth motion parameters randomly generated with RMS = 2.25mm and
RMS = 5.53° for translations and rotations respectively.

the motion parameters were randomly generated four times for each range of motion: the
motion distribution was then expected to vary during each repetition, but with little changes
in the RMS value.
The motion parameters previously applied to the FatNav’s volumes (Figure 3.2.4) were used
as sample points for a linear interpolation function (MATLAB function griddata), and the
correspondent residual motion as sample values; by feeding the interpolation function with
the new motion parameters generated using the Perlin noise, it was possible to estimate the
expected residual motion if FatNavs were used for translations and rotations separately. The
corresponding residual motion was applied to the original MPRAGE images acquired without
voluntary motion using the retroMoCoBox toolbox [70], simulating the predicted residual
degradation in image quality that would be expected if FatNavs had been used to correct
motion of this type.

3.2.5 Image quality assessment

Image quality evaluation was initially performed using the GE metric, which has been found
by McGee et al. as the best metric for autocorrection of MR images of the shoulder, as
the metric closely correlated with observers’ evaluations [40]. In this study, the GE was
calculated as shown in Eq. 3.1: the gradient magnitude was found as the square root of the
sum-of-squares of the gradients along x and y (Gx and Gy), which were estimated using the
MATLAB function imfilter, while dx and dy represent the Prewitt operators used to calculate
the two gradients via a convolution (conv specification) step. The entropy of the gradient
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magnitude was determined using the entropy MATLAB function.

dx =
[
1 −1; 1 −1; 1 −1

]
dy = d ′x

Gx = imfilter(image, dx , "conv")
Gy = imfilter(image, dy , "conv")

G =
√
G2

x + G2
y

H = entropy(G)

(3.1)

Two observers, non-clinicians and with 15- and 3- years’ experience in brain MRI, evaluated
the 192 MPRAGE images generated for each of the three datasets, acquired without deliberate
motion, using a Graphical User Interface (GUI) created in MATLAB: the image was displayed
on the screen with no information regarding the GE value or the other observer’s evaluation;
the observer scored each image with a scale from 4 to 1, with 4 = no visible motion artifacts,
3 = some motion artifacts, 2 = strong motion artifacts and 1 = severe motion artifacts.
A graphical scheme of this process (together with an example for a set of smooth motion
parameters) is reported in Figure 3.2.7.

3.2.6 Statistical analysis

Next sections briefly describe the statistical tests performed in this study. A summary is
reported in Table 3.1, together with the MATLAB functions used.

3.2.6.1 Inter-observer variability

The inter-observer variability was measured using the Krippendorff’s Alpha coefficient [79],
which is a statistical measure developed to calculate the agreement among observers. The
function kriAlpha [80] was used in MATLAB to estimate the coefficient.

3.2.6.2 Multinomial logistic regression

A multinomial logistic regression was performed revealing how the probability of falling in
an evaluation category (4 to 1) would change based on the GE values [81]: the probability
to fall into categories representing good quality images (namely categories 4 and 3) was
expected to be inversely proportional to the GE value. The multinomial logistic regression
was performed using the mnrfit function, followed by a one-way ANOVA test (MATLAB
function anova1).
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Figure 3.2.7: Summary of the process used to test the FatNav tracking accuracy on MPRAGE
images, together with an example for a set of smooth motion parameters. A total of 192 motion
traces were generated, 96 for smooth motion and 96 for rough motion, within a range of 0-40mm
translations and 0-20° rotations. For each motion trace, the residual motion was found via linear
interpolation of the FatNav motion accuracy previously found (Figure 3.2.4). The residual motion
was then applied to the motion-free MPRAGE volume. The image quality assessment was performed
using the GE metric and evaluation from an observer using a scale between 1 to 4, with 4 denoting
no visible motion artifacts.

3.2.6.3 Linear regression between RMS and GE

The relationship between the motion occurred and the GE was investigated using the linear
model shown in Eq. 3.2: the output variable Y represented the GE, while X1, X2 described
the rotational and translation motion with their respective parameters a and b; an interaction
term was also added to the model, to describe the mutual effect that rotations and translations
(independent variables) might have on the outcome.

Y = 1 + a · X1 + b · X2 + c · X1 · X2 (3.2)
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The function fitlm was used to produce a linear regression model based on the motion
magnitude and the GE values, to find the coefficients fitting the linear model. The step
function allowed to test whether the presence of the interaction term significantly improved the
linear regression model based on the Bayesian Information Criterion (BIC) [82]: the model with
lowest BIC value was selected as best fitting model. The motion magnitude was calculated
for rotational and translational motion separately as the RMS value along each direction,
and averaged across datasets. The model was used to assess at which range of motion
the algorithm still worked correctly and find the motion threshold between each evaluation’s
category. This was performed by selecting the GE values at the interceptions between each
category boundary, found via the multinomial logistic regression previously performed. It was
possible to estimate the rotational or translational motion corresponding to the entropy value
by placing the other to zero. The level of motion corresponding to each category boundary
was evaluated twice: once assuming that the simulated motion was the true motion (i.e no
FatNav correction applied) and once assuming that the simulated motion was the residual
motion following FatNav correction. This allows a comparison of the expected increase in
motion that can be tolerated when FatNav correction is used.

3.2.6.4 Linear and non-linear regression between FD and
GE

Although the RMS of rotations and translations provides information regarding the magnitude
of the motion occurred, it cannot effectively compare the motion estimation accuracy in the
case of smooth vs rough motion, as smooth and rough motion profiles with similar RMS values
are expected to have quite a different level of impact on the amount of motion-artifacts in
the resulting image.
In this study, the Framewise Displacement (FD) was adopted as a single-value metric to
measure the head motion between consecutive volumes. It was calculated as the sum of the
absolute values of the derivatives of the six realign parameters, where rotations were estimated
as the displacement occurring on the surface of a sphere of 50mm radius [83]. The relationship
between the mean FD (averaged across the entire acquisition) and the GE was investigated
using a linear and a non-linear regression model. For the latter, a logarithmic model was chosen
due to the entropy being based on the log-function (Eq. 3.3). The information derived from
the two models was then used to estimate the FD values that correspond to the boundaries
between the 4 coarse categories from the human evaluation of the images.

Y = a + b · log(X ) (3.3)
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Summary of the statistical tests

Test Aim
Function

(MATLAB)
Inter-observer variability
(Krippendorff’s alpha)

Measure agreement among 
observers

krialpha.m

Multinomial logistic 
regression

Analyse relation between GE 
and the observers’ evaluations

mnrfit.m

One-way ANOVA
Test the model found by the 

multinomial logistic regression
anova1.m

Linear regression between 
RMS and GE

Find image quality category 
boundaries based on RMS

fitlm.m
step.m

Linear regression
between FD and GE

Find image quality category 
boundaries based on FD

fitlm.m

Non-linear regression 
between FD and GE

Find image quality category 
boundaries based on FD

fitnlm.m

Table 3.1: Summary of all statistical tests performed in this study. The aim of each test is reported,
as well as the MATLAB function used.

3.3 Results

3.3.1 GRAPPA motion robustness

Figure 3.3.1 compares FatNav volumes before (Pre-GRAPPA) and after GRAPPA
(Post-GRAPPA) "re-reconstruction" step for four different levels of motion (low, medium, high
and very high) randomly selected from the 225 different combinations of motion parameters
applied to the acquired FatNavs. Pre-GRAPPA and Post-GRAPPA images correspond
to the Rotated FatNav and the Corrupted FatNav shown in Figure 3.2.4. Parallel
imaging artifacts were found to increase for larger changes in the head position compared
to Pre-GRAPPA images, due to a more severe mismatch between the ACS lines for the
GRAPPA reconstruction and the rotated FatNavs. To analyse the relation between the
estimated (Pre-GRAPPA) and predicted (Post-GRAPPA) motion parameters, the Pearson’s
correlation coefficient was estimated using the Matlab function corrcoef. Figure 3.3.2 shows
how the estimated coefficients change based on the rotational motion along the three axis:
as expected, the correlation decreases as the motion increases.

3.3.2 Inter-observer variability

The Krippendorff’s alpha values calculated between the two observers first evaluations (sample
size of 192) were above 0.8 in all three datasets, denoting very high reliability between the
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Figure 3.3.1: Comparison between FatNav volume before and after GRAPPA "re-reconstruction",
for four different levels of motion (tables on the left), to show the effect of mismatched ACS data to
the FatNavs’ volumes: parallel imaging artifacts are shown to increase with the amount of motion.
The Pre-GRAPPA image represents the FatNav volume after applying the motion parameters using
SPM (the Rotated FatNav in Figure 3.2.4). The Pre-GRAPPA image is then multiplied by the B1

maps and undersampled using an acceleration factor R = 16. The Post-GRAPPA image is obtained
by reconstructing the undersampled volume (the Corrupted FatNav in 3.2.4).

two observers [79]. Values are reported in Table 3.2.

Krippendorff’s alpha

Dataset Alpha value

Dataset 1 0.85

Dataset 2 0.87

Dataset 3 0.90

Table 3.2: Krippendorff’s Alpha value calculated for the first observers’ evaluations: all three values
are close to 1, suggesting strong reliability.
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Figure 3.3.2: Pearson’s coefficient values between real (Pre-GRAPPA) and predicted motion
parameters (Post-GRAPPA). The color map represents the value of the correlation coefficient
changing based on the amount of rotational motion occurring: as expected, the correlation decreases
as the motion increases along the three axis.

3.3.3 Multinomial logistic regression

Figure 3.3.3 presents the results from the Multinomial logistic regression performed between
the observers’ evaluations and the image quality relative to each image. Each curve describes
the changes in probability distribution based on the GE value among categories. As the
GE value increases, the probability to fall into a category representing a low level of motion
artifacts decreases, as expected. These results were further corroborated by the one-way
ANOVA test, whose results are reported in Table 3.3.

3.3.4 Linear regression between RMS and GE

It was found that the relationship between rotational, translational motion and the gradient
entropy could be described by the linear model defined in Eq. 3.2: the use of the interaction
term resulted in a lower BIC score compared to the model without, confirming that the
interaction term provided a better fit to the data. All the statistical parameter resulting
from the linear regression test are reported in Table 3.4. The linear model was used to
estimate the rotational and translational motion corresponding to the GE value found at
categories’ interceptions via the multinomial logistic regression. Figure 3.3.4 compares the
image quality achieved by using FatNavs motion correction against no-motion correction: each
coloured region bounds the rotational and translational motion parameters range for each
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Figure 3.3.3: Multinomial Logistic Regression between image evaluations and the GE in case of
smooth and rough motion for dataset (A) 1, (B) 2 and (C) 3. All evaluations, from 1 to 4, are
plotted as blue vertical lines, while each coloured Gaussian waveform represents the probability of
falling in one of the four evaluation’s categories: category 4 (no visible artifacts) in purple, category
3 (some motion artifacts) in yellow, category 2 (strong motion artifacts) in orange and category 1
(severe motion artifacts) in black. Lower entropy values corresponded to higher category rating and,
therefore, to a better image quality.
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One-way ANOVA test

Dataset Motion type
F-value
(3,284)

p-value

Dataset 1
Smooth motion 283.06 1.89e-69

Rough motion 200.34 2.67e-58

Dataset 2
Smooth motion 563.71 3.11e-119

Rough motion 787.49 2.89e-137

Dataset 3
Smooth motion 508.73 7.37e-114

Rough motion 551.63 4.30e-188

Table 3.3: One-way ANOVA test results for dataset 1, 2 and 3: the mean value for each category is
significantly different as corroborated by the p-values. This confirms the entropy being a significant
factor on the probability of the evaluation to fall in a certain category.

Linear Regression model

Dataset Motion r-squared
F-value 
(4,92)

p-value
BIC with 

interaction 
term

BIC w/o 
interaction 

term

Dataset 1

Smooth 
motion

0.77 103.29 2.39e-29 -106.76 -102.19

Rough 
motion

0.87 215.95 1.63e-41 -168.00 -151.37

Dataset 2

Smooth 
motion

0.84 166.97 4.25e-37 -75.32 -57.59

Rough 
motion

0.80 119.34 1.33e-31 -87.97 -65.44

Dataset 3

Smooth 
motion

0.83 152.67 1.34e-35 -40.63 -32.72

Rough 
motion

0.81 137.65 6.76e-34 -84.90 -74.05

Table 3.4: Linear regression model statistical parameters for each dataset in case of smooth and
rough motion; the F-values and related p-values, as well as the r-squared values, denote that the
model selected adequately explains the data both in the case of smooth and rough motion; moreover,
models with the interaction term (between rotations and translations) exhibit a lower BIC value
compared to models without.

evaluation category with FatNav correction and without motion correction, in case of smooth
and rough motion. FatNavs is shown to correct very well for a RMS value along the three
axes of ∼3.7°/3mm and ∼2°/1.6mm for smooth and rough motion respectively (category
4 boundary), while motion parameters estimation accuracy drops above ∼5.3°/4.6mm and
∼3.7°/2.9mm (category 2 boundary). On the other hand, image quality falls much more
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quickly without motion correction, where the category 2 boundary is set at ∼3.5°/2.5mm for
smooth motion and ∼1°/0.6mm for rough motion. RMS values at each category boundary
are reported in Table 3.5, for rotational and translational motion, with and without using
FatNav motion correction: in presence of rough motion, it seems not possible to achieve a
category 4 image quality (no visible artifacts) without FatNavs.

Figure 3.3.4: Motion level at each category boundary (as average across the three datasets) for
smooth (A) and rough motion (B) in case of FatNav or without motion correction: FatNavs shows
a high tolerance to motion, whereas the image quality decreases faster for images without motion
correction.

3.3.5 Linear and non-linear regression between FD
and GE

The relation between the mean FD and GE was investigated, comparing a linear and a
logarithmic regression model. The two models are compared in Figure 3.3.5 and 3.3.6 for
smooth and rough motion respectively. In case of smooth motion (Figure 3.3.5), the results
are quite nuanced, with no model providing a clearly superior fitting compared to the other:
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Category boundaries – RMS

Category

Smooth motion Rough motion

With FatNavs
No motion 
correction

With FatNavs
No motion 
correction

Category 
4 to 3

3.18 mm 3.67° 0.87 mm 1.21° 1.55 mm 1.97° 0 mm 0°

Category 
3 to 2

4.63 mm 5.32° 2.48 mm 3.44° 2.71 mm 3.43° 0.47 mm 0.78°

Category 
2 to 1

6.81 mm 7.83° 4.94 mm 6.85° 4.10 mm 5.19° 1.67 mm 2.81°

Table 3.5: Translational and rotational RMS values at each category boundary for smooth and rough
motion if FatNav motion correction was used.

based on the r-squared value (0.91/0.88/0.87 and 0.76/0.90/0.86 for the linear and non-linear
models respectively), the linear model is shown to describe the data better than the non-linear
model in case of datasets 1 and 3. On the other hand, the non-linear model greatly improved
the data fitting compared to the linear model in all three datasets, with r-squared values
being 0.87/0.78/0.75 and 0.96/0.98/0.98 for the linear and non-linear model respectively.
This denoted that although the linear regression model could potentially describe well both
smooth and rough motion, the rough data was explained better by the non-linear model.
Linear and non-linear regression models were used to find the categories’ boundaries based
on the mean FD for smooth and rough motion respectively: if FatNavs were used, image
quality degraded to a "strong motion artifacts" level (category 2) for FD values of 0.22mm
and 0.42mm for smooth and rough motion respectively. The FD values for each category
boundary are reported in Table 3.6.
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Figure 3.3.5: Comparison between linear and non-linear regression models in case of smooth motion
for dataset (A) 1, (B) 2 and (C) 3: the linear model explained better the data in datasets 1 and 3.
Relative r-squared (r2) values are reported on each figure.
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Figure 3.3.6: Comparison between linear and non-linear regression models in case of rough motion
for dataset (A) 1, (B) 2 and (C) 3: the logarithmic model is shown to explain better the data in
all cases compared to the linear model. Moreover, the mean FD range is much larger (up to 12
for Dataset 3) compared to the FD range displayed for smooth motion (Figure 3.3.5). Relative
r-squared (r2) values are reported on each figure.
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3.4 Discussion
In this study, we assessed a simulation of the accuracy of motion parameter estimation from
FatNavs across a broad range of head motion. GRAPPA reconstruction was expected not
to work properly in case of large head position changes, because of inconsistencies between
the ACS lines and the FatNav volume being reconstructed. The effect of this mismatch is
shown in Figure 3.3.1: the Post-GRAPPA FatNav’s image quality degraded compared to the
Pre-GRAPPA volumes as the motion increases from "low" to "very high".
Two observers were asked to evaluate a total of 576 images from 1 (severe motion artifacts)
to 4 (no visible motion artifacts) using a GUI in MATLAB. The multinomial logistic regression
was performed to test the relation between the observers’ scores and the GE, and to understand
when the evaluation changed based on the entropy value. Figure 3.3.3 shows that the
probability of falling into category 4 (no visible motion artifacts) decreased as the GE value
increased, as expected. Nevertheless, the boundary between each category was found to be
better defined in case of rough motion compared to smooth motion: Figure 3.3.3 shows that
the probability does not exceed 0.5 for category 3 and 2 in Dataset 1 and for category 3 in
Dataset 3 in presence of smooth motion. However, it is very close to 1 when rough motion
affects the images. This is due to the fact that the image quality degrades much more quickly
in case of rough motion compared to smooth data, with less ambiguous cases which could be
assigned to both categories. Observers are expected to find less difficult to discern between
images with some motion artifacts (category 3) and with strong motion artifacts (category 2),
producing even a stronger agreement among evaluators. Moreover, the observers were asked
to evaluate the image based on its overall quality: in future studies, trained neuroradiologists
would be asked to assess the quality of clinical images based on the expected ability to discern
abnormality of different sizes, which is expected to lead to more accurate evaluations.
Although FatNavs were demonstrated to correct for a large scale of motion, the GRAPPA
reconstruction of the FatNavs themselves will be compromised in the presence of strong head
position changes. This may lead to a misestimation of the motion parameters. Nonetheless,
Figure 3.3.4 shows that for levels of motion (as RMS) between 3.7° and 3mm, GRAPPA
reconstruction does not affect FatNavs’ estimation accuracy: our data suggests that motion
that would be sufficient to lead to a category 2 rating (strong artifacts) can typically be
corrected with FatNavs to a level corresponding to category 4 (no noticeable artifacts).
Especially in case of rough motion, FatNav motion correction was proven to be indispensable,
as a category 4 image quality could not be achieved without motion correction (Table 3.5). If
a particular subject group is likely to move more than this, it may be necessary to adapt the
FatNavs’ acquisition to make it more robust to large motion, which is expected to be possible
if the GRAPPA weights are dynamically updated during the scan.
The relation between the mean FD and the GE was investigated by comparing how well a linear
and a non-linear regression models could fit our smooth and rough data. It was found that the
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logarithmic model could describe our rough data much better compared to the linear model, as
shown in Figure 3.3.6. This could be due to the entropy being based on the log-function. On
the other hand, both linear and non-linear models did not seem to provide an exceptionally
good fit to our smooth data: it is possible that a different model would provide a better
description of our motion traces, which would lead to a more accurate estimation of the FD
value that defines each image quality category boundary (Table 3.6). Unlike the RMS, which
averages the motion parameters across the entire scan duration, the FD metric estimates the
head position change between consecutive volumes throughout the acquisition. This made
possible to analyse the extent of the motion corruption caused by different motion types, as
the smooth and rough motion proposed in this study. As shown in Figure 3.3.6, our rough
motion parameters resulted in much higher FD values compared to smooth motion ones for
similar entropy values, with the FD increasing up to 10 in Datasets 1 and 2 and up to 12 in
Dataset 3, while it did not exceed 1.6 in case of smooth motion (Figure 3.3.5). This is due
to the fact that during rough motion, the subject is expected to perform abrupt head position
changes, which result in larger motion between consecutive volumes. Although a definition of
smooth and rough motion was given, more studies will be necessary to find a mathematical
way to describe the difference between them. It is expected that the majority of routine MRI
acquisitions are affected by smooth motion, where subjects move very slowly throughout the
acquisition; however, rough motion is expected to be performed by less compliant subjects
during MRI scans. The clear differences shown here in artifacts between the two categories
suggests that being able to distinguish between smooth and rough motion becomes important
to be able to test motion correction accuracy for different types of motion.

Category boundaries – Mean FD

Category Smooth motion Rough motion

Category 4 to 3 0.078 mm 0.24 mm

Category 3 to 2 0.22 mm 0.42 mm

Category 2 to 1 0.50 mm 1.05 mm

Table 3.6: Mean FD category boundaries after FatNav correction was applied: rough motion FD
values are shown to be higher then smooth ones, because of larger changes in head position between
volumes, which characterize that motion type.
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techniques, (in final preparation).
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techniques in presence of fast and slow motion, ISMRM 30th Annual Meeting, 2022.
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motion with two tracking techniques, Motion Detection and Correction: GatherTown Poster
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4.1 Introduction

Motion artifacts are a well-known issue in MR images [11], which might impede the
interpretation of a patient’s condition and obscure pathologies and regions of interest. To
address these problems, MRI acquisitions can be repeated, but this leads to discomfort for
the patient and increased costs for clinical or research centres [84], [85]. Methods have been
developed in MRI to estimate the motion occurred and restore sharpness and resolution to
reduce the need for reacquisition. For more details on the subject, please refer to Section 1.2
of this thesis.
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In this work, we compared the motion correction based on the 3D FatNavs [44] and
the Tracoline (TCL) markerless motion tracking system, which are described in Sections
1.2.4 and 1.2.5 respectively. We investigated which motion leads to the worst artifacts and
how well image quality can be restored with the two different motion-tracking estimates.
The aim is to understand how to achieve the best image quality in different motion scenarios,
which is clinically relevant to reduce the need for rescans. To allow a direct comparison, the
motion correction based on motion-estimates from the two tracking techniques was applied
retrospectively to the same data.

4.2 Methods

4.2.1 Image acquisition

Data were collected from a group of 9 healthy subjects on a Prisma scanner (Siemens
Healthcare, Erlangen, Germany) using a 64 channel RF coil array for signal reception.
All subjects were scanned with an MPRAGE sequence at 1mm isotropic resolution with
TI/TE/TR = 1100/3.03/2410ms and FA = 8°.
Following each readout train of the MPRAGE, a 3D FatNav navigator was acquired at 4mm
isotropic resolution (TE/TR = 1.43/3.4ms, TA = 0.37 s), acceleration factor R=16, for
a total scanning time of 5:38min. ACS lines for the FatNavs were acquired once at the
beginning of the scan to perform the GRAPPA reconstruction.
Calibration of the TCL data was performed at the end of the acquisition via the TracSuite
software (v3.0.74), which involves aligning the reference point cloud from the TCL system
to the surface of a structural MR volume of the whole head. The first MPRAGE scan from
each session, without deliberate motion, was used for this calibration procedure.

Ethical approval for this study was obtained from Cardiff University School of Psychology
Ethics Committee board. Written informed consent was obtained from all subjects before the
study.

4.2.2 Motion experiments

Subjects were asked to follow the instructions given on an MR compatible screen positioned
inside the scanner and visible via a mirror attached to the head coil. The mirror was positioned
so that the participant could clearly see the screen and the TCL camera FOV was not
affected. Instructions were coded using PsychoPy v. 30 [86] and consisted of a dot moving
in different directions on screen: participants were asked to follow the dot with their nose so
that movements could be carried out in a controlled way.
Different types of motion were conducted: stepwise, circular, pitch and “simulated realistic”
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motion, as shown in Figure 4.2.1. During stepwise motion (Figure 4.2.1A and B), the dot
moved in a “cross” shape: up, down, right, left, and along two diagonals (up-right, down-left;
up-left, down-right), changing position every 35 s. The projected dot movement was 2.5 cm
and 7.5 cm for small and large stepwise motion respectively, with an expected head motion of
1.9°and 5.6° based on the eye-screen distance of 76 cm.
Circular motion (Figure 4.2.1C) was performed similarly to Frost et al. [36], with the
participant’s head following a dot moving in circle (radius of 2.5 cm) for 1min at different
speeds: 6 cycles/minute and 4 cycles/minute. The motion was performed three times during
a single MPRAGE acquisition: at the beginning, half-way through and towards the end of the
scan, for a total of 3min of motion over 5:38min of scan time. The head was expected to
rotate of 2.9° per ¼ of the circle.
Finally, “simulated realistic” motion patterns were generated, based heuristically on an example
of existing motion traces in a non-compliant subject during an fMRI experiment, acquired
without deliberate motion, where the subject seemed to move predominantly along the x-axis
performing abrupt pitch rotations or slowly moving their head throughout the acquisition.
Therefore, we derived two other types of motion: slow diagonal motion (Figure 4.2.1D and
E) and pitch-wise motion (Figure 4.2.1F). The aim was to test the correction methods with
what we considered more “realistic” motion. In our pitch-wise (nodding) motion scenario, the
dot moved quickly down in 2 s, moved up to resting position in 15 s and stayed still for 35 s,
for a total motion time of 17 s/min. The projected dot moved vertically on the screen for
2.5 cm, 5 cm, or 7.5 cm, corresponding to small, medium, and large levels of motion, for an
expected pitch rotation of 1.9°, 3.8° and 5.6°. In our slow diagonal motion case, the subject
was moving the head slowly for 1:30min, starting from the centre along the up-right diagonal
or the down-right diagonal (projected motion of 3.5 cm and predicted motion of 1.9°). One
MPRAGE without deliberate motion was also acquired as a motion-free reference image for
each session.
We obtained a total of 11 datasets, with subjects 3 and 4 being scanned twice on different
days. We will refer to different acquisitions of the same experiment as runs. Table 4.1 details
the experiments performed by each subject, summarised here as:

• Large Stepwise (LSW) and Small Stepwise (SSW), with head motion every 35 s.
• Circular motion 6 cycles/min (C6) and Circular motion 4 cycles/min (C4), with 3min of

motion per 5:38min of total scan time.
• Small Pitch-wise (SPW), Medium Pitch-wise (MPW) and Large Pitch-wise (LPW), with

a total motion time of 17 s/min.
• Slow Diagonal Up (SDU) and Slow Diagonal Down (SDD), with 1:30min of motion per

5:38min of total scan time.
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Figure 4.2.1: Projected dot motion directions for (A) small stepwise motion (head position changing
every 35 s), (B) large stepwise motion (head position changing every 35 s), (C) circular motion (at
4 or 6 cycles/min, total head motion of 3min over 5:38min of total scan time), (D) slow diagonal
motion along the up-right diagonal (total head motion 1:30/5:38min), (E) slow diagonal motion
along the down-right diagonal (total head motion 1:30/5:38min) and (F) pitch-wise motion (head
motion 17 s/min). The dot projected movement is reported (in cm) for each motion scenario. The
predicted head motion was estimated based on the eye-to-screen distance (76 cm) as: (A) 1.9°, (B)
5.6°, (C) 2.9°, (D,E) 1.89° and (F) 1.9°, 3.8° and 5.6° for small (SPW), medium (MPW) and large
(LPW) pitch-wise motion respectively.

4.2.3 Motion quantification

The motion score is a single value motion metric used by Tisdall et al. (10) to estimate the
motion occurring during each TR. It is defined as:

score = ∆R +∆x2 +∆y 2 +∆z2 (4.1)

with ∆x2, ∆y 2 and ∆z2 being the estimated translations along x, y and z.
∆R (Eq. 4.2) is the largest displacement experienced by any point on a sphere of 64mm
radius rotated by an angle θ (Eq. 4.3).
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Subject 1 Still, Small Pitch-wise (SPW), Slow Diagonal Up (SDU), Slow Diagonal Down (SDD)

Subject 2
Still, Large Pitch-wise (LPW), Medium Pitch-wise (MPW), Circular motion 6 cycles/min (C6)

Subject 3 Still, Large Stepwise (LSW), Small Stepwise (SSW), Large Stepwise (LSW), Small Stepwise

(SSW).

Subject 4 Still, Large Stepwise (LSW), Small Stepwise (SSW), Large Stepwise (LSW), Small Stepwise

(SSW), Circular motion 4 cycles/min (C4)

Subject 5 Still, Large Stepwise (LSW), Small Stepwise (SSW), Circular motion 4 cycles/min (C4)

Subject 6 Still, Large Stepwise (LSW), Small Stepwise (SSW), Circular motion 6 cycles/min (C6)

Subject 7 Still, Circular motion 4 cycles/min (C4), Circular motion 6 cycles/min (C6)

Subject 8 Still, Circular motion 4 cycles/min (C4), Circular motion 6 cycles/min (C6)

Subject 9 Still, Circular motion 4 cycles/min (C4), Circular motion 6 cycles/min (C6)

Experiments performed for each participant

Table 4.1: Summary of the experiments performed for each subject.

∆R = 64
√
(1− cosΘ)2 + sinΘ2 (4.2)

|Θ| = |arccos 1
2 [−1 + cos(Θx)cos(Θy) + cos(Θx)cos(Θz)

+cos(Θy)cos(Θz) + sin(Θx)sin(Θy)sin(Θz)]|
(4.3)

We calculated the mean motion score from each motion estimate and used it as a single
value to represent rotational and translational motion. Moreover, we estimated the expected
motion score based on theoretical motion traces of each type of motion, and the corresponding
predicted head motion calculated from the projected dot movement.

4.2.4 Image reconstruction

The image reconstruction was performed in MATLAB using the retroMoCoBox toolbox [70].
Because the TCL data displayed high frequency noise in the original motion parameters, a
moving average filter was used to smooth out the data prior to the reconstruction with a
window size of 99 samples.

4.2.5 Image quality assessment

The image quality after the motion correction was assessed visually and using two different
mathematical metrics: the Feature Similarity Index (FSIM) [87] and the Normalized Gradient
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Squared (NGS) [41].
The FSIM was chosen as it has been shown to achieve much higher consistency with radiologist
evaluations of image quality than other metrics [88], including the commonly used Structural
Similarity Index (SSIM) [89]. The primary feature used to calculate the FSIM is the Phase
Congruency (PC), which is a robust spatial frequency-based system able to identify similarities
at the edges: Fourier components (here calculated from a magnitude-image) with high PC
values identify features with sharp changes between light and dark areas, which are what we
visually perceive as edges.
The PC for each point x of a 2D image can be mathematically described as follows:

PC(x) =
∑

j Eθj (x)
ε +∑

n
∑

j An,θj (x)
(4.4)

with Eθj (x) being the local energy along the orientation θj (with j being the orientation angle),
An,θj being the local amplitude on a scale n and ε a small positive constant.
Because the PC is contrast invariant, the gradient magnitude was added as the second factor
of this metric, defined as shown in Eq.4.5.

G =
√
G2

x + G2
y (4.5)

with x and y the two directions along which the gradient was calculated.
The FSIM requires a reference image to be computed and its value varies between 0-1, where
1 is obtained when the two images being compared are identical. Firstly, the similarity map
between the image being evaluated and a reference is calculated for the PC and the gradient
separately:

SPC = 2PC1(x) · PC2(x) + T1

PC 2
1 (x) · PC 2

2 (x) + T1
(4.6)

SG = 2G1(x) · G2(x) + T2

G2
1 (x) · G2

2 (x) + T2
(4.7)

with T1 = 0.85 and T2 = 160 as in [87]. The two similarities are then combined as:

SL(x) = SPC(x) · SG(x) (4.8)

As areas with high PC indicates sharp edges, the importance of SL is weighted using PCm(x) =
max(PC1(x),PC2(x)). The FSIM can be mathematically described as:

FSIM =
∑

xεΩ SL(x) · PCm(x)∑
xεΩ PCm(x)

(4.9)

The quality of the acquired images was also assessed with the NGS metric, which has been
found by McGee et al. as the second-best quality metric for autofocusing, correlating most
closely with observer judgments on MRI images of the shoulder [41]. NGS allows the evaluation
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of the image quality without comparing it with a reference and postulating that ideal images
should have areas of uniform brightness separated by sharp edges.
The NGS is defined as the normalized convolution between the Prewitt operator and the pixel
values gi ,j :

NGS =
∑

ij



∣∣∣∣∣∣
 1
−1

∗gi ,j

∣∣∣∣∣∣
∑

ij

∣∣∣∣∣∣
 1
−1

∗gi ,j

∣∣∣∣∣∣



2

(4.10)

It has been used by Lin et al. [90] because of its lower computational cost compared with the
GE metric, and Bazin et al. [91] chose it as a metric as expected to be more sensitive than the
entropy of gradients to limited motion. The NGS has also been successfully used by Gretsch
et al. [45] to compare the quality of images after FatNav and MPT motion correction. The
NGS value was expected to increase as the image became sharper.
Before all metrics were calculated, each 2D slice was normalized by subtracting the minimum
value and dividing by the difference between the maximum and minimum values (min-max
scaling). To estimate the FSIM metric, an extra rescale step between 0-255 was required.
Final values were estimated averaging them over the 30 central axial slices [36].

4.2.6 Improving FatNavs motion estimation

When FatNav volumes are acquired, a strong signal can be detected in the neck region as well
as around the scalp. The scalp can be expected to move reasonably rigidly with the head (and
brain), whereas the neck movement is non-rigid. The standard processing for 3D FatNavs
in the retroMoCoBox software is to use SPM [78] to perform 6-DOF rigid-body alignment
between FatNav volumes in order to generate motion estimates. If more signal is acquired in
the non-rigid neck region this will affect the quality of the motion estimates, an effect which is
particularly noticeable using the Siemens 64-channel RF coil, because it is a “head and neck”
coil with receive channels extending into the neck region.
Other navigator-based motion correction systems allow to compensate for the effect of
non-rigid body motion to the estimated parameters. PROMO (PROspective MOtion
correction) [30] uses a 2D spiral navigator (SP-Navs) and a image-based tracking technique
[92] to estimate rigid-body motion parameters. Here an Extended Kalman Filter (EKF) was
used to prevent non-rigid motion of the neck and jaw to corrupt the rigid motion parameters.
On the other hand, PACE (Prospective Acquisition CorrEction) [93] uses automatically
calculate bounding box to roughly cover the interior slices of a brain volume, therefore
removing the non-rigid neck region.
We therefore tested whether masking the non-rigid part of the head would improve the motion
parameter estimation and image quality in all our motion scenarios: we expected the mask
to be particularly beneficial in the case of strong pitch-motion, as this direction of motion is
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likely to have the largest discrepancy between head movement and apparent motion in the
neck.
To generate the mask corresponding to the parts of the scalp expected to move rigidly (and
therefore allowing exclusion of non-rigid regions), we first selected the T1-weighted (T1w)
image of one dataset acquired without deliberate motion and the corresponding first FatNav
volume. We registered the T1w and the FatNav volume using the FSL FLIRT function [94,95],
to have a 3D FatNav and an MPRAGE image in the same space. After applying BET (Brain
Extraction Tool) [96,97], we registered the T1w volume to the 1mm MNI152 standard space
brain [71]. By following the same process, a 3D FatNav for each subject could be brought
into a standard space, and then averaged using fslmaths from the FSLutils [98] to obtain
a standardised FatNav volume. ITK-SNAP [99] was used to manually define a mask in this
standard space that would exclude the neck region. When estimating the motion parameters
for each subject from the FatNavs, the first FatNav from the subject was co-registered to
the standardised FatNav volume, allowing the mask to be brought into subject-space and
incorporated as a weighting image to spm_realign (SPM) function.
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4.3 Results

4.3.1 Comparison between FatNavs and TCL
motion correction

Figure 4.3.1 summarises all the FSIM values (measured against the “still” image) for all
motion scenarios and the 3 different motion correction methods. The FSIM score improved by
applying all motion correction methods in our stepwise and slow diagonal motion scenarios. In
our small and large stepwise motion scenarios, a substantial improvement in the sharpness was
obtained by masking the non-rigid part of the head during the FatNav volumes registration,
with only small residual artifacts still visible: the use of the neck-mask for FatNavs ("FN
wMask") improved the image quality in runs 1, 2, 4, 5 and 6 for large stepwise motion and
1, 2 and 4 of small stepwise motion shown in Figure 4.3.1, compared to when no mask is
used ("FN woMask"). In Figure 4.3.2, we compare the motion parameters and MPRAGE
images obtained from the two FatNav’s tracking methods for the corresponding run 2 of
small stepwise motion, showing the clear improvements obtained by removing the neck-region
during the FatNavs registration. Moreover, the masked FatNav and the TCL corrections are
compared in Figure 4.3.3: here the top parts of the image (front regions of the brain) were
clearly made sharper by the TCL correction. However, the overall best motion correction
was obtained using the masked FatNav estimates: although some artifacts are still visible
on the top part of the image, the correction reduced the ringing artifacts on the bottom of
the image compared to the TCL method. For circular motion at 6 cycles/min, circular
motion at 4 cycles/min and small, medium and large pitch-wise motion, the outcome is
more nuanced, including some examples of cases where the motion-correction even appears
to lead to a loss of image quality (i.e. a reduction in FSIM following the application of the
motion-correction). Figure 4.3.4 illustrates an example of circular motion with the participant
performing head rotations at 4 cycles/min. The ringing artifacts visible on the uncorrected
image were successfully reduced (although not fully eliminated) by correcting using all three
motion-estimation techniques, leading to a better image quality.
For pitch-wise motion (images not shown), subjects moved at three different magnitudes for
each run, following a projected dot movement of 2.5 cm for run 1, 7.5 cm for run 2 and 5 cm
for run 3, corresponding to small, medium and large pitch-wise motion. The artifacts were
almost undetectable in run 1 (2.5 cm), as the subject movement had such low magnitude.
In run 2 (7.5 cm), TCL-based correction led to an apparent degradation of the image quality
measured by the FSIM: despite some small improvements visible on the top part of the image,
the bottom part displayed strong artifacts, probably caused by the abrupt nod motion or facial
movements that reduced the tracking accuracy. During run 3 (5 cm), ringing artifacts were
reduced by FatNavs and TCL, especially in the top part of the brain, improving the image
quality compared to the uncorrected image, as shown in Figure 4.3.1 (pitch-wise motion
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Figure 4.3.1: Comparison of FSIM values (against the reference image) of TCL-based corrected
(red), FatNav without mask ("FN woMask" in green) and with mask ("FN wMask" in purple)
corrected images obtained from the runs performed for each motion scenario. The FSIM value of
the initial uncorrected image is reported as a straight black line.
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case).
Both FatNavs and TCL performed well when applied to retrospectively correct the images
affected by slow diagonal motion across the two diagonals. One example is illustrated in Figure
4.3.5 where the motion-corrected images from both FatNavs and TCL motion estimates are
sharp and clear, with no visible residual artifacts.
When comparing between motion-estimation methods, no clearly better correction was found
for any of the motion scenarios. However, the image quality after FatNav motion correction is
shown to be very close to 1 in all runs of our non-deliberate motion acquisition (still scenario
in Figure 4.3.1), meaning perfect matching with each corresponding reference image. The
good sharpness displayed by the reference images shown in Figure 4.3.6 corroborated that
FatNav motion correction did not introduce any degradation when no-deliberate motion was
performed. On the other hand, TCL is shown to have a FSIM score as high as FatNavs in only
two cases, namely runs 9 and 10 in Figure 4.3.1, indicating that the image quality decreased
due to artifacts originated from the TCL motion compensation especially in runs 2, 3 and 11.
FatNavs and TCL motion traces for the aforementioned runs (2, 3, 9 and 10) are reported in
Figure 4.3.7 for comparison.

4.3.2 Smoothing TCL motion parameters

We chose to smooth the motion estimates from the TCL prior to performing the retrospective
motion-correction to reduce the influence of high-frequency fluctuations present in the data.
The smoothing function did not cause any image degradation, improving the image quality in
some of our motion scenarios (e.g. runs 1, 2, 3, 4 and 6 of small stepwise motion in Figure
4.3.8), compared to the non-smoothed images, based on the value measure by the FSIM
quality metric. One example for small stepwise motion (run 5 in Figure 4.3.8) is reported
in Figure 4.3.9. However, the FSIM score still resulted below the target value of 1 in our
non-deliberate motion case (still scenario) as shown in Figure 4.3.1, which was attributed to a
tracking error rather than the noise on the motion traces, because of the TCL higher motion
scores compared to FatNavs, which are reported in Figure 4.3.10.

4.3.3 Motion quantification

The mean motion score was chosen as single value measurement to evaluate the amount of
motion performed by each subject in our motion scenarios and it is estimated as the average
of the difference between consecutive head poses. A summary of all the mean motion scores
estimated for TCL and FatNav with and without mask are reported in Figure 4.3.10. One clear
observation from this figure is that the magnitude of the TCL-based motion parameters is
larger than the FatNav-based estimate in most of our experiments. It also displays how
differently the motion parameters are estimated by FatNav with and without the mask,
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especially in the case of stepwise motion. Moreover, Figure 4.3.10 shows that the motion
score found based on the motion performed by our participant was smaller compared to the
expected motion score (black horizontal line in Figure 4.3.10) estimated based on theoretical
motion traces. The estimated magnitude of the head rotation was expected to be 1.9° and
5.6° for small and large stepwise motion respectively, based on the eye to screen distance
and the projection of the dot movement on the screen. Subjects moved more than expected
while performing small stepwise motion, with a head rotation averaged across subjects of 2.8°
(±0.9) and 2.0° (±0.8) for TCL and the masked FatNav respectively. In case of large stepwise
motion, the average rotation was found as 5.1° (±3.3) and 4.4° (±3.4). The large standard
deviation obtained for large stepwise motion is due to the different range of motion across
runs: this demonstrates how different participants varied in the magnitude of motion when
performing the same motion type (in the top four graphs of Figure 4.3.10, the motion shown
on the MR projection screen was the same for all subjects for the same motion type). The
motion estimates obtained from FatNav with and without the mask for all motion types are
compared using scatter plots in Figure 4.3.11. Most of the dots lie close to the identity line (y
= x), apart from for the rotations around the x-axis. This fits our expectation that nodding
motion of the head leads to the strongest deviations from purely rigid motion within the FOV
of the FatNav.

4.3.4 Image quality assessment

Both FatNavs and TCL motion correction are shown to improve the image quality in presence
of small stepwise, circular and slow diagonal motion, reported in Figure 4.3.3, 4.3.4 and 4.3.5
respectively, with the corresponding FSIM quality metric values, which are reported for each
correction method, concurring with this observation by increasing after the motion correction.
On the other hand, the NGS values found for the same motion cases was reported to be
smaller for the corrected images compared to the uncorrected cases: this implies a reduction
in image quality, which is in contrast with simple visual inspection of the images in Figures
4.3.3, 4.3.4 and 4.3.5. More examples of this behaviour are found in Figure 4.3.12 for the
small stepwise motion scenario.
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Figure 4.3.2: (A) Comparison between reference (Ref), uncorrected (MoCo OFF), and the corrected
images (FN woMask, FN wMask) for small stepwise motion: the NGS and FSIM values are reported
for each image. (B) Motion parameters estimated by the FN woMask (left column) and the FN
wMask (right) tracking methods, with the RMS value reported on top of each motion trace for
translations (in mm) and rotations (in degrees). The motion was timed to start 20 s after the
beginning of the scan, with the head position changing every 35 s after that. The total scan duration
was 5:38min.
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Figure 4.3.3: (A) Comparison between reference (Ref), uncorrected (MoCo OFF), and the corrected
images (TCL, FN wMask) for small stepwise motion: the NGS and FSIM values are reported for
each image. (B) Motion parameters estimated by the TCL (left column) and the FN wMask (right
column) tracking methods, with the RMS value reported on top of each motion trace for translations
(in mm) and rotations (in degrees). The motion was timed to start 20 s after the beginning of the
scan, with the head position changing every 35 s after that. The total scan duration was 5:38min.
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Figure 4.3.4: (A) Comparison between reference (Ref), uncorrected (MoCo OFF), and the corrected
images (TCL, FN wMask) for circular motion (4 cycles/min): the NGS and FSIM values are reported
for each image. (B) Motion parameters estimated by the TCL (left column) and the FN wMask
(right column) tracking methods, with the RMS value reported on top of each motion trace for
translations (in mm) and rotations (in degrees). The motion was timed to start 10 s after the
beginning of the scan, continue for 1min followed by 1min without voluntary motion and repeated
other two times, for a total head motion time 3/5:38min.
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Figure 4.3.5: (A) Comparison between reference (Ref), uncorrected (MoCo OFF), and the corrected
images (TCL, FN wMask) for slow diagonal motion (SDD): the NGS and FSIM values are reported
for each image. (B) Motion parameters estimated by the TCL (left column) and the FN wMask
(right column) tracking methods, with the RMS value reported on top of each motion trace for
translations (in mm) and rotations (in degrees). The motion started 2min after the beginning of
the scan and continued for 1:30min, for a total head motion of 1:30/5:38min.
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Figure 4.3.6: Comparison of all reference volumes acquired without deliberate motion at the
beginning of each scan session. No motion correction was applied. All subjects were instructed
to stay as still as possible during the scan, which resulted in no visible motion artifacts in the
volumes acquired.



4.3. RESULTS 80

Figure 4.3.7: Comparison of FatNav and TCL motion parameters for the still motion experiments 2,
3, 9, 10 and 11 shown in Figure 4.3.6G. In runs 2, 3 and 11, the image quality seems to decrease after
TCL motion correction based on the FSIM score, while the image quality is the same as FatNavs in
runs 9 and 10.
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Figure 4.3.8: Comparison of the FSIM quality score, calculated against the reference images, in all
our motion scenarios with and without using a smoothing function (pink and green respectively)
on the TCL motion parameters prior reconstruction. The smoothed function did not cause any
degradation compared to the non-smooth case, improving the image quality in some runs of our
motion scenarios (e.g. runs 1, 2, 3, 4, and 6 of small stepwise motion). However, the FSIM score
still resulted below the target value of 1 in our non-deliberate motion case (still scenario), which
was attributed to a tracking error rather than the noise on the motion traces, because of the TCL
higher motion score compared to FatNavs (runs 2, 3, 4, 5, 6, 8, 9, and 11 in Figure 4.3.10).
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Figure 4.3.9: The effect of smoothing on the TCL-based motion estimation. Comparison between
TCL-based motion estimation before and after applying the smoothing function: (A) TCL after
smoothing (TCL smooth) shows less ringing artifact compared to the "unsmoothed" version (TCL),
which is corroborated by the improvement in the FSIM value. (B) the unfiltered parameters (thin
lines) are affected by noise, which is suppressed after filtering (thicker lines).
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Figure 4.3.10: Comparison of the motion scores estimated for each run of our motion scenarios. Each
motion score was calculated from the motion parameters measured by our three motion tracking
modalities: TCL (red), FN woMask (green) and FN wMask (purple). The expected motion score
(based on the eye-to-screen distance and the projected dot motion) is reported as a black horizontal
line. The y-axis for the still and slow diagonal motion cases was ranged differently (from 0 to 0.6mm
instead of from 0 to 3.5mm) to easily see the difference in the motion score values between tracking
techniques.
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Figure 4.3.11: Comparing motion estimates from FatNavs with and without masking. Each colour
represents one experiment performed for that type of motion across all subjects: PW (comprehensive
of small, medium and large pitch-wise motion), SDU (slow diagonal up), SDD (slow diagonal down),
C6 (circular motion at 6 cycles/min), C4 (circular motion at 4 cycles/min), LSW (large stepwise
motion) and SSW (small stepwise motion). The rotation around the x-axis (X-rot) is the only
parameter where FN woMask and FN wMask noticeably deviate in their motion estimates, as made
clear by the divergence of the plots from the line of identity.
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Figure 4.3.12: Uncorrected (MoCo OFF) and corrected images using TCL or FN wMask against
the reference image (REF) for all runs of our small stepwise (SSW) motion scenario. Image quality
metrics are reported on each image for comparison between our reference-based metric (FSIM) and
our non-reference-based: NGS values imply a reduction in image quality even if improvements are
clearly visible compared to the uncorrected image.
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4.4 Discussion

4.4.1 Comparison between FatNavs and TCL
motion correction

In this study, two tracking techniques were used to retrospectively compensate for different
types of motion: small and large stepwise motion, circular motion at 4c/min and 6c/min,
small, medium, and large pitch-wise motion and slow diagonal motion. Motion-estimates
from both tracking methods could successfully restore image quality in the case of slow
diagonal motion and small and large stepwise motion. In Frost et al. [36], stepwise motion
was performed by changing head position every 1-minute, starting from the centre then looking
up, down, left, right and back to the centre. Although in our study the head position changed
more frequently (every 35 s) and moved also along the two diagonals, both studies showed
good results in improving the image quality.
Both FatNavs and TCL methods struggled to allow the restoration of good image quality in
the case of circular motion: the FSIM-based image quality metric even decreased after TCL
motion correction in some cases despite the high sampling rate (∼30Hz) compared to FatNavs
(∼0.4Hz). This might be caused by extensive violations of the Nyquist criterion due to the
head rotations involved, which could not be compensated by the single-step NUFFT-based
retrospective reconstruction. It is possible that iterative methods for applying the motion
correction, such as autofocusing algorithms, could complement the motion tracking system
and may help to reduce some of these residual artifacts, as suggested by Atkinson et al. [43].
Prospective motion correction using the TCL camera has been successfully used to compensate
motion artifacts derived from the so-called "continuous" motion scenario [36], consisting in
circular head motion at 1, 4 and 6 cycles/minute. The same experiments have been performed
in Slipsager et al. [47], using both prospective and retrospective motion correction. However,
these studies are not directly comparable with our results, as continuous motion was performed
only for 1 minute during the centre of k-space sampling, against the 3 minutes proposed in this
study (at the beginning, centre and end of the acquisition), which might have increased the
amount of motion and therefore artifacts affecting the images. Moreover, prospective motion
correction using the estimates from the TCL tracking device has been recently demonstrated
to be more robust to motion artifacts compared to retrospective motion correction [47]:
because of the reduced local effect of Nyquist violation, prospective motion correction could
be beneficial in the case of strong head rotations, which were not fully compensated by both
FatNavs and TCL retrospective motion correction. Future studies will investigate the sampling
rate required to accurately estimate head position changes per different motion scenarios,
as our results suggested that none of the investigated motion scenarios fully exploited the
fast-sampling rate allowed by the TCL device.
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4.4.2 Improving FatNavs motion estimation

In this study, we also demonstrated that FatNavs estimation accuracy can be improved by
masking the non-rigid part of the neck especially when large pitch-wise motion is involved
(our stepwise motion scenarios): Figure 4.3.2 shows how the mask improved the quality of
the MPRAGE image especially in anterior regions of the brain.
Looking at Figure 4.3.1, we can see that, in only two experiments involving circular motion,
the FSIM measure of image quality obtained after masking was slightly lower than the original
FatNavs’ correction and the uncorrected image. However, an inspection of the three volumes
did not detect any visually perceived difference in the image quality. Another example is
shown in Figure 4.4.1: the dissimilarities in the FSIM metric values are attributed to being
due to the strong background noise arising after the motion correction. In all other cases, the
masked FatNavs provided motion estimates that gave a corrected image at least as good as
using the original FatNavs.

4.4.3 Smoothing TCL motion parameters

The TCL data displayed high frequency noise in the original motion parameters, which was
likely due to limited light conditions and thus the fluctuations in pixel intensities from the
camera images. The TCL motion parameters were therefore smoothed by using a moving
average filter, which replaces each value for the mean across the samples included in the
filter’s window (99 samples in our case). The filter was found to remove all the unwanted
high frequency fluctuations visible on the initial motion traces (Figure 4.3.9), and provided
some improvements in the tracking accuracy, as showed for all runs of circular motion in Figure
4.3.8. However, our results also suggested that the filter did not substantially affect the overall
image quality in our motion scenarios. It is possible that the use of a smoothing filter would be
more beneficial in case of strong and continuous motion throughout the acquisition, where the
noise would be the main contribution of tracking inaccuracy. In this scenario, the retrospective
motion correction has been demonstrated to be more robust against tracking noise compared
to prospective motion correction, as well as allowing for retrospective tracking compensation:
a more compelling solution would then be to combine retrospective and prospective motion
correction to achieve robustness against Nyquist violations and tracking noise [47].

4.4.4 Motion quantification

Overall, it was found that TCL-based motion estimates tended to be larger in magnitude than
FatNav-based estimates. Despite this difference, the image quality metrics estimated for TCL
and FatNavs were found overall to be quite similar, indicating that we cannot easily determine
from our data which estimates are a better representation of the “true” motion. This effect
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is most easily recognised in the small and large stepwise motion categories, where TCL shows
larger motion scores compared to FatNavs (e.g. in runs 1, 2, 3, and 5 of the small stepwise
motion in Figure 4.3.10), whereas Figure 4.3.1 shows that there is no consistent difference
between the FSIM scores of the images corrected by these motion estimates.
FatNavs motion parameters are characterized by zero-motion time point placed in the centre
of the acquisition, as it is the time point with lowest discrepancy between image with and
without motion correction. TCL motion parameters were therefore re-centred, using SPM [78]
affine transformation, at the same time point as FatNavs, to allow a comparison between the
two methods. Discrepancies in the motion estimates around that time-point will generate a
visual shift of the motion traces. This effect is noticeable in Figure 4.3.4, where TCL estimates
look shifted compared to FatNavs. However, this effect is not expected to influence neither
the motion-correction procedure nor the motion-score estimation, as the latter is based on
frame-to-frame motion. Overall, it was found that TCL-based motion estimates tended to be
larger in magnitude than FatNav-based estimates. Despite this difference, the image quality
metrics estimated for TCL and FatNavs were found overall to be quite similar, indicating that
we cannot easily determine from our data which estimates are a better representation of the
“true” motion. Figure 4.4.2 shows that for circular motion, we get a good agreement between
TCL and FatNav motion estimates for ‘X rotations’, but all other axes are less clear-cut.
We therefore suspect that the discrepancies we see here in Y and Z rotation are largely
compensated within the FOV of the TCL by the discrepancies in displacement estimates.
However, as we have no ‘gold-standard’ measure of motion for our current experimental
setup, we cannot fully determine which estimates are a better reflection of the true head
motion.

4.4.5 Background ghosting artifacts

In some cases, it was found that the motion-correction led to visibly more ghosting in the
image background than the uncorrected image, as shown in Figure 4.4.1: as the motion
correction applied is based on estimated motion parameters which might not fully reflect the
real motion occurred, discrepancies can arise in the k-space, leading to the appeared ghosting
artifacts. We believe this ghosting may also be affecting the interpretation of the FSIM metric:
the TCL correction shown in Figure 4.4.1 seemed to lead to a reduction in the image quality
based on the FSIM value, despite visible improvements in the image sharpness.
To determine the effect of background ghosting to our image quality metric, we compared the
FSIM values of all our images with and without applying a 2D background mask. This mask
was based on a threshold value which was used to create a convex hull, that contained all the
points included after the thresholding. The convex hull was slightly dilated to be sure to retain
the CSF/brain boundary. The mask was then applied to the 30 central slices of each volume
over which the FSIM was estimated. The results obtained from a Mann-Whitney U-test
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(MATLAB function ranksum) demonstrated that applying a mask to the image background
did not provide a significant difference in the FSIM values as shown in Figure 4.4.3 (U =
340.5, p = 0.78 for FatNav wMask and U = 338.5, p = 0.83 for TCL), concluding that the
ghosting in the background did not influence the quality metric chosen. As extremely strong
background noise was limited only to a few cases of circular motion, it is possible that no
significant result would emerge from a statistical test. We therefore analysed whether the
mask could potentially make a difference in only those cases where the background ghosting
was extremely strong. This was performed by firstly estimating the signal power of the
background region, which would be cut off by the head mask, as the ratio between the
sum-of-squares of the background and the overall signal. The estimated background power
and the difference between the FSIM values with and without mask were shown to correlate
significantly (MATLAB function corrcoef, r(18) = 0.5, p = 0.02), demonstrating that the
stronger the background noise the more the FSIM metric would increase if a background mask
was applied. Figure 4.4.4 compares the FSIM values after applying the background mask to
the same images previously showed in Figure 4.4.1: both FatNavs and TCL correction resulted
in an improved image quality based on the FSIM, which was not detected when the mask was
not applied.

4.4.6 Image quality assessment

In this study, we found that the FSIM reference-based metric could give a good indication of
the true image quality – generally also agreeing with subjective visual assessment. In our data,
the NGS quality metric showed an unclear behaviour in our experiments, with changes in its
scores not seeming to correlate with what visually seemed like a good improvement from the
uncorrected to the corrected image, as shown for small stepwise, circular and slow diagonal
motion cases reported on Figure 4.3.3, 4.3.4 and 4.3.5 respectively. Figure 4.4.5 compares
the values from FSIM and NGS for FatNavs with mask and TCL in case of small stepwise
motion. In all our runs, both FatNavs and TCL improved the image quality, as pointed out by
the FSIM values being higher than the uncorrected images’ ones for all tracking techniques.
This was further corroborated by a visual check of all images, which displayed a qualitatively
higher level of sharpness compared to when no motion correction was applied (Figure 4.3.12).
On the other hand, NGS value altered in the opposite way to what would be expected in
all but one run. Further studies will need to be performed to assess the correlation between
metrics used to estimate brain MR images quality and radiologist evaluations, which is still
to be considered the standard reference. Moreover, additional research is needed to evaluate
how these metrics are affected by different artifacts: our results suggest that metrics such as
the NGS may not be optimal metrics for driving automated motion-correction techniques, as
we have several examples of a visually “better” image that scores “worse” when judged by
NGS.
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Figure 4.4.1: (A) Comparison between reference (Ref), uncorrected (MoCo OFF), and the corrected
images (TCL and FN wMask) for circular motion at 4 cycles/min (FC4): the corrected images are
affected by strong background ghosting which is not present in the uncorrected image. Images in
this figure have been windowed to allow easier visualization of the ghosting rather than optimal
viewing of grey/white contrast across the brain. (B) Motion parameters are reported for TCL and
FN wMask, with the RMS value reported on top of each motion trace for translations (in mm) and
rotations (in degrees).
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Figure 4.4.2: Comparison TCL and FatNav motion parameters for all our motion scenarios across the
three axis for rotations and translations. The dots’ deviation from the diagonal indicates differences
in the motion parameters estimated by the two tracking systems, with the strongest differences
detected along the x-axis for translations and y-axis for rotations.

Figure 4.4.3: Result of two samples data Mann-Whitney U-test performed between the FSIM values
of the images without masking the background (Without mask) and masking the image background
(With mask) for FN woMask, FN wMask and TCL. The p-values for the three tests are reported on
each image.
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Figure 4.4.4: Comparison between the FSIM values of images affected by circular motion (C4),
showed in Figure 4.4.1, without (w/o background mask) and with masking the image background
(with background mask) in case of TCL, FN woMask and FN wMask motion correction and without
motion correction (MoCo OFF).
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Figure 4.4.5: Comparison of FSIM and NGS image quality metrics values for each run of small
stepwise motion estimates from TCL tracking device. Both metrics were first normalized between
0-1 and the mean value across runs of the experiment subtracted for each metric for display purposes.
The circle markers represent the image quality metric value (FSIM in green and NGS in purple) before
motion correction; the square markers indicate the metrics’ values after the TCL-based motion
correction. Both FSIM and NGS are expected to increase (arrow pointing up) if the image quality
improves.





CHAPTER5
Noise reduction in MRI: design and
test of motion-robust pulse
sequences using Pulseq.

Based on:
Elisa Marchetto, Maxim Zaitsev, Daniel Gallichan, Rapid prototyping of a motion-robust
2D Radial GRE sequence with reduced acoustic noise generation using Pulseq, ISMRM 30th
Annual Meeting, 2022.

5.1 Introduction
The major source of acoustic noise in MRI is the electric current flowing in the gradient
system: the induction effect generated by the magnetization causes Lorentz forces, which can
result in the vibration and deformation of the gradient coils generating the unwanted MR
noise. This effect has been extensively described in Section 1.2. The acoustic noise produced
during an MRI scan can contribute to patients’ discomfort and anxiety [24], but it also rises
safety concerns when fast sequences are used, such as diffusion gradient sequences, as they
reach safety limits: vulnerable patient groups as neonates and pregnant women are particularly
susceptible to this kind of hazard [53]. Moreover, it may induce hearing impairment in patients
who regularly undergo MRI examinations [25]. Various solutions are currently available to
apply acoustic noise attenuation during the MR acquisitions, which have been described in
Section 1.2.6.
Neonatal scans are often performed in natural sleep in research settings. To ensure a
undisrupted sleep during the scan, different active and passive strategies can be adopted
to reduce the acoustic noise levels. In Dean et al. [101], the slew rate and maximum gradient
magnitudes were reduced of 30% and 75% respectively, as well as changes in the pulse
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sequences to soften sharp changes of the gradients. Removable sound-insulating foam insert
was included as passive measure, which were rated to reduce the acoustic noise of 20 dB(A).
Moreover, electrodynamic headphones with ear pads were adopted, for a further reduction of
45 dB(A). These measures allowed for an overall success rate of 97% of the scans.
In this preliminary study, we adjusted gradient timings and waveforms of a radial GRE
sequence to test different strategies to reduce the acoustic noise generated when the pulse
sequence is running. Designing and testing were performed using Pulseq, which is an
open-source framework that allows rapid prototyping of pulse sequences [102]. Prospective
motion correction of voluntary motion was carried out using a markerless device tracking
communicating with the scanner via the libXPACE (eXternal Prospective Acquisition
CorrEction) framework [103], that was linked directly to a customized Pulseq interpreter.
The initial aim was to design a motion-robust and acoustically optimized sequence to acquire
a single-slice MR image of the brain. The sequence was meant to be used with paediatric
or infant age group, where research scans are typically conducted while the subject is
sleeping.

5.2 Methods

5.2.1 Pulseq

Pulseq is an open-source framework for the design and testing of MRI and Magnetic Resonance
Spectroscopy (MRS) pulse sequences [102], which allows the user to rapidly code MR
sequences both in MATLAB or Python (as PyPulseq [104]). In this study, pulse sequences
were programmed in MATLAB using Pulseq v1.4.0.
The MATLAB workflow requires the user to initially define basic system parameters such as
TR, TE and FOV. System limits (e.g. maximum gradient strength and slew rate) must also
be outlined. Sequences in Pulseq are defined as a concatenation of blocks: the user can add
RF pulses, gradients and ADC events within each block. Each element does not have to
start or end at zero at each block boundary. RF pulses and gradients can be created using
Pulseq built-in functions, with the user selecting either trapezoidal or arbitrary waveforms
(e.g. sinusoidal) and defining timing and shape of the gradients. Pulseq allows the user to
verify the raster alignment and the k-space sampling using the built-in functions checkTiming
and calculateKspace respectively. Moreover, it is possible to obtain a rough estimation of
the sequence acoustic noise via the sound function. Once the sequence is ready, the built-in
function write can be used to generate a .seq file, which can be transferred to the MR scanner.
The user can visualize and select the designed Pulseq sequence (.seq file) from the scanner
computer as shown in Figure 5.2.1 and run the sequence.
Via the libXPACE framework, the user can select to apply dummy sources of motion to the
image (Noise option), coming from a noise random generator, or previously recorded motion
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traces (File option) as shown in Figure 5.2.2. The prospective motion correction is enabled
via the MPT option, using motion traces estimated via an external tracking device (e.g. Moiré
phase tracking). The user can select the Correction Level, or correction frequency, from the
options available, which are displayed in Figure 5.2.3. The disabled option can be selected to
acquire the image without motion correction.

Figure 5.2.1: A list of the uploaded Pulseq sequence files. The user can then select the desired
sequence and run it on the scanner.

5.2.2 Pulse sequence optimization

The next sections describe the different configurations designed to acoustically optimize a
standard radial 2D GRE sequence (Original GRE).

5.2.2.1 Configuration 1: optimized trapezoidal
waveform

As the slew rate is directly proportional to the acoustic noise [105], we allowed more
time to ramp-up and ramp-down each gradient, without modifying their original trapezoidal
waveforms. The spoiler gradient (Gx) after the readout was performed by extending the
ramp-down gradient, to avoid the switching off and on of the two gradients. The slice-selection
gradient was ramped more slowly, minimizing abrupt changes in the gradient’s amplitude. Care
was also taken to temporally align all ramps that would not affect the image encoding.
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Figure 5.2.2: Correction types available via the libXPACE framework. The user can select which
source of motion estimates to use for prospective motion correction.

Figure 5.2.3: The "Correction Level" option allows the user to select the frequency of the correction.
No motion correction is performed choosing the "disabled" option. In this work, we adopted the
"per RF pulse" option when motion correction was enabled, which updates the scanner gradients
once per each TR based on the motion estimates acquired.
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5.2.2.2 Configuration 2: non-linear waveform

The original trapezoidal gradient waveforms were replaced with Gaussian-shaped ramps (soft
gradient waveform) to further acoustically optimize the sequence. The Gaussian waveforms
were used to maximize the ramps gradual ascent and descent. The gradient amplitudes
were chosen based on the known gradient area required to encode the phase and frequency
information without changing the flat-top time.

5.2.2.3 Configuration 3: improved configuration 2

The Configuration 2 sequence was further modified so that the spoiler gradient along the
z-direction would not completely ramp-down to zero before the next excitation pulse: the
spoiler gradient would slowly decrease to the same amplitude level of the next slice selection
gradient. Gradient timings were aligned so that when the spoiler gradient reached that
point, the following slice selection gradient would start. This configuration was expected
to further reduce the acoustic noise, compared to its previous configuration, because it
would avoid consecutive ramp-down and ramp-up of the spoiler and slice selection gradients
respectively.

5.2.3 Experiments

All four sequences were tested on a 3T Prisma scanner (Siemens Healthcare, Erlangen,
Germany) with TR/TE = 18.2/8ms, FA = 20°, slice thickness = 3mm and FOV = 256mm,
for a total acquisition time of TA = 10 s for a single slice. Preliminary scans were performed
with a phantom to undertake acoustic-noise measurements using the Decibel X app (SkyPaw
Co., Ltd). Decibel X is a noise meter app that allows pre-calibrated measurements via a mobile
phone. It supports different filters, including an A-Weighting filter, which turns standard dB
measurements of the sound pressure level (SPL) into dB(A), which is considered as an accurate
estimation of the apparent noise levels as perceived by the human hear. Based on the standard
IEC 61672-1:2013, the conversion dB to dB(A) can be performed by applying the weighting
function RA(f ) to the unweighted SPL:

RA(f ) =
121942f 4

(f 2 + 20.62)
√
(f 2 + 107.72)(f 2 + 737.92)(f 2 + 121942)

A(f ) = 20log10(RA(f )) + 2.00

(5.1)

The noise was recorded from a mobile phone device positioned at the entrance of the scanner
room for safety reasons. The phone was not touched or moved from its position for the entire
duration of the recording. The mean of the acoustic noise was calculated within the sequence
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running time (10 s)
The original sequence and its first optimization (Configuration 1) were tested in vivo with the
participant performing slow back-and-forth head rotation, with and without motion correction
enabled. A separate 2D slice was collected without deliberate motion as reference. The
motion parameters were estimated using the Tracoline (TCL) markerless device; the real-time
motion-tracking updates were sent to the scanner once every TR (per RF pulse option in
Figure 5.2.3) via the libXPACE framework, to allow prospective motion correction. A cross
calibration step was performed to align the tracking and the scanner coordinate system through
a semi-automatic cross calibration tool using an MPRAGE scan collected without deliberate
motion prior the main acquisition [106]. Image reconstruction was performed in MATLAB
using the Pulseq reconstruction script, which recognizes and analyse the trajectory from the
generated .seq file and performs the reconstruction.

5.3 Results

5.3.1 Configuration 1: optimized trapezoidal
waveform

Figure 5.3.1 compares the gradients along the x- and z-direction of the original GRE sequence
and of its first acoustically optimized configuration. The readout gradient (Gx) ramp-up time
was increased from 50µs to 500µs, while the spoiler gradient magnitude was significantly
reduced by extending the readout gradient area and ramped it down more slowly. The rephaser
gradient (Gz) was allowed to ramp-down more slowly (from 110µs to 610µs) and timed to
end up in zero at the beginning of the k-space readout. The spoiler gradient magnitude along
the z-direction was also greatly reduced by increasing the ramp-up and ramp-down times.
The results from the acoustic noise test performed using the Decibel X app from a mobile
phone are reported in Figure 5.3.2: the acoustically optimized Configuration 1 reduced
the averaged acoustic noise of 5 dB(A) compared to the original GRE sequence (from
68.9 dB(A) to 63.9 dB(A)). The maximum noise peak also decreased from 69.5 dB(A) to
65.3 dB(A).

5.3.2 Configuration 2: non-linear waveform

Configuration 2 was generated by substituting all the linear ramps of the acoustically optimized
Configuration 1 sequence with Gaussian waveforms. A comparison between Configuration 1
and Configuration 2 is illustrated in Figure 5.3.3: the magnitude of the rephaser and the spoiler
gradients along the z-direction were automatically reduced by using the Gaussian waveforms.
On the other hand, the amplitude of the prephaser gradient (Gx) was increased to correctly
encode the frequency information. Nevertheless, the Configuration 2 is shown to lead to
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a further acoustic noise reduction of more than 4 dB(A), from 63.9 dB(A) to 59.7 dB(A),
compared to the trapezoidal Configuration 1. The maximum noise peak also decreased from
65.3 dB(A) to 62.7 dB(A).

5.3.3 Configuration 3: improved configuration
2

A comparison between Configuration 2 and 3 is shown in Figure 5.3.5. In the Configuration 3,
the first slice selection gradient was generated starting from the second TR, to allow for the
first spoiler gradient to ramp-down to magnitude level of the following slice selection gradient.
Therefore, no ADC event was performed during the first TR. Configuration 3 provided a
reduction in the average acoustic noise level of almost 1 dB(A) compared to Configuration 2
(from 59.7 dB(A) to 58.1 dB(A)), as shown in Figure 5.3.6. Furthermore, the maximum noise
peak decreased from 62.7 dB(A) to 61.8 dB(A).

Figure 5.3.1: Comparison between the gradients along the x- and z-axis of the original GRE and
Configuration 1 (with acoustically optimized trapezoidal waveforms) sequences during one single
TR. The phase-encoding gradient (Gy ) is not displayed to simplify the comparison. The readout
gradient ramp-up time was increased, while the rephaser gradient was ramped-down more slowly
compared to its original configuration. The magnitude of both spoiler gradients (along x and z)
were substantially reduced.
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Figure 5.3.2: Comparison of the sound waves acquired from the Original GRE and Configuration 1
sequences via the Decibel X app using a mobile phone positioned at the entrance of the scanner room.
The Configuration 1 allowed for a substantial reduction in the mean noise of 5 dB(A) compared to
the Original GRE configuration. The mean value was found by averaging the values within the time
range when the sequence was running, indicated by the two black vertical lines. The spikes visible
at the beginning and at the end of the acquisition (before and after the black lines) are caused by
the noise of the scanner cooling system.

5.3.4 In-vivo tests

Figure 5.3.8 compares images acquired with and without motion correction against a reference
images for the original GRE and the Configuration 1, with reasonable image contrast obtained
for both sequences. The motion parameters measured by the tracking device during the
experiments with and without motion correction are reported in Figure 5.3.7 together with the
corresponding RMS values for translations and rotations: the results show that the participant
moved slightly more during the acquisition using the acoustically optimized sequence, both
with and without motion correction in place. Nevertheless, the prospective motion correction
worked nicely with both sequences, improving the image quality as corroborated by the FSIM
image quality score [87] reported on each image.
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Figure 5.3.3: Comparison between the optimized Configuration 1 (with trapezoidal waveforms) and
the Configuration 2 (with Gaussian waveforms). The amplitude of the prephaser gradient had to
be increased to maintain the same gradient area compared to its trapezoidal configuration. On
the other hand, the magnitude of the rephaser and spoiler gradients on the z-axis could be slightly
reduced, as the Gaussian ramps partially compensated for the area required to correctly encode the
spatial information.

Figure 5.3.4: Comparison of the sound waves measured from the Configurations 1 and 2 sequences.
Despite the prephaser gradient magnitude being higher compared to the Configuration 1 (Figure
5.3.3), using Gaussian waveforms helped reducing the average acoustic noise further, as well as the
maximum and the minimum sound peaks, compared to the trapezoidal configuration. The black
vertical lines indicate the beginning and end of each sequence.
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Figure 5.3.5: Comparison between Configurations 2 and 3: the only modification performed was
to ramp-down the spoiler gradient along the z-direction to the same magnitude of the consecutive
slice selection gradient, with the aim of reducing the acoustic noise caused by a complete gradient
ramp-down and the following slice-selection ramp-up. The gradient events performed along the
x-axis were identical for the two configurations. No ADC event was performed during the first
readout of the Configuration 3, as the first slice selection gradient was generated at the end of the
first TR.
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Figure 5.3.6: Comparison of the sound waves from the Configurations 2 and 3. Not ramping down
the spoiler gradient along the z-direction (Configuration 3) allowed for a reduction in the averaged
acoustic noise of almost 1 dB(A). The maximum noise peak also decreased from 62.7 dB(A) to
61.8 dB(A)). The black vertical lines indicate the beginning and end of the sequences.

Figure 5.3.7: Motion parameters obtained by the TCL tracking device without and with motion
correction (without MoCo and with MoCo respectively) for the original GRE sequence and its first
acoustically optimized configuration.
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Figure 5.3.8: Comparison between prospective motion corrected images (with MoCo) and without
motion correction (without MoCo) acquired using the original GRE and the acoustically optimized
Configuration 1 (with trapezoidal gradient waveforms) sequences. Motion-free scan without motion
correction is reported here as reference image. The motion correction improved the image sharpness
compared to the uncorrected images, especially in the region above the CSF as indicated by red
arrows.
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5.4 Discussion

In this study, we designed and tested different acoustically optimized configurations of a
GRE sequence using Pulseq, to reduce the acoustic noise produced by the MR sequence.
The noise measurement performed on Configuration 1 showed a noise reduction of around
5 dB(A) compared to the Original GRE sequence (Figure 5.3.2), by applying slower rising and
falling of gradients as well as optimization of spoiler gradient areas (Figure 5.3.1). A further
acoustic noise reduction was obtained by substituting the classical trapezoidal gradients’ ramps
with Gaussian waveforms (Configuration 2), as shown in Figure 5.3.3: despite the increased
prephaser magnitude, the Configuration 2 showed a decrease in the average sequence noise of
around 4 dB(A) compared to Configuration 1, due to the inherently gradual ramping attributed
to "soft" gradient waveforms, and to the reduction in the spoiler gradient magnitude along
the slice selection gradient direction (Gz). The sinusoidal waveform has been used in previous
studies to reduce the acoustic noise produced by the gradients ramps as its “soft” behaviour
allows for a reduction in the acoustic noise function range [61]. However, a direct comparison
between using a Gaussian or a sinusoidal waveform have not been performed yet, and would
be explored in future studies.
Configurations 2 and 3 are characterized by the same gradient timings and shape, with the
only difference that the spoiler gradient, applied along the z dimension, was not ramped down
to zero before the beginning of the next TR; instead, the ramp was gradually decreased to
the same gradient magnitude of the following slice selection gradient. This configuration
provided a further reduction of almost 1 dB(A) in the acoustic noise level. The maximum
peak value of the Configuration 3 decreased of around 1 dB(A) as well. On the other hand,
the minimum sound noise produced by the scanner helium cooling system was the same for all
configurations, with a value around 51 dB(A). Future study will require the use of a calibrated
MR safe equipment at the entrance of the scanner bore, where the strongest noise can be
measured [55]. Moreover, it would be preferable to also conduct the acoustic experiments
with the chiller pump temporarily switched off. The consistent results we observed with the
current hardware setup suggest that it is sufficient for obtaining indicative estimates of dB(A)
improvements with different pulse sequence modifications. The reader can find the audio files
of the original and three optimized configurations here: Audio files.
Prospective motion correction was enabled via the libXPACE framework, using the motion
parameters measured by an external tracking device. The motion parameters tracked by
the TCL device show that the motion performed by the subject has comparable magnitude,
although differing in the shape depending on at what moment of the back-and-forth head
motion the scan took place (Figure 5.3.7). For this proof-of-concept study, the motion
correction was tested successfully for one single slice acquisition: further study will investigate
the motion correction robustness in the case of multi-slice acquisitions. Even in the images
where no motion correction was applied, some fine anatomical features can still be recognized.

https://cf-my.sharepoint.com/:f:/g/personal/marchettoe1_cardiff_ac_uk/EgUGtsNYXodIicjxqyHHbrwBbOaFTS8f7QK6cUJPgHOI0g?e=97az6L
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This is attributed to the inherent robustness of radial sampling to motion, where motion
artifacts tend to be less severe than for Cartesian sampling. Nonetheless, prospectively
corrected images show substantially higher level of detail than when no motion correction
was applied.
In this study, we increased the TR of a radial GRE sequence from 15ms to 18.2ms, causing
an increase in the time required to acquire a full 2D slice (from around 9 s to 11 s). This
increase in the TR time rise a concern related to the motion sensitivity of the sequence.
However, the quiet configurations tested in this study significantly reduced the sound pressure
level produced by the three sequences, which was shown to improve the overall experience
of participants undergoing an MR scan [25], which would translate in less subject’s motion
affecting the image. Moreover, neonatal scanning are usually performed in natural sleep in
research settings: quiet sequences can then be crucial to reduce the risk of disrupted sleep
which might affect the success of the scan itself [101].
The aim of this proof of concept study was to show how to quickly design and test a
motion robust and acoustically optimized MR pulse sequence to acquire brain MR images
of infants subjects, taking advantage of the acoustic noise reduction especially when no
sedation or anaesthesia are used. The sequence was shown to be motion robust even
without the prospective motion correction enabled due to the radial sampling, which could
be advantageous compared to standard Cartesian sequences (e.g. PETRA) in case of small
movements that could still occur during neonatal sleep [101]. However, the sequence is still
at an initial prototype stage as it is currently limited to a single 2D slice acquisition. The
three configurations tested were indeed found to considerably decrease the acoustic noise of
the original sequence; however, the noise produced by the baseline GRE sequence was already
not as high as for some other commonly used sequences – but was chosen for its simplicity
in testing the approach to rapid design of motion-corrected pulse sequences. Future work will
attempt to apply the same strategies introduced in this experiment to reduce the acoustic
noise produced during the GRE train of an MPRAGE sequence, where the noise level has been
found to be around 87.4 dB(A) at 3T, measured using a microphone placed at a distance of
2.5m from the front panel of the MR imaging scanner [58].



CHAPTER6
Conclusions and future work

Motion artifacts can cause extensive degradation of MRI images, making them unsuited for
clinical or research purposes. Motion correction can help reduce the need for rescan, help
improve the scan experience for the participant as well as the image quality.
This thesis has explored different motion correction methods to maximize the image quality
of brain MR images in different motion scenarios. This chapter summarises the main outputs
of our investigation, and discusses some recommendations for future work.

6.1 Autofocusing

Autofocusing motion correction techniques do not use any previous knowledge coming from
navigators or external devices to estimate the motion that occurred during the MR acquisition:
the motion parameters are derived via a cost-function minimization strategy based on an image
quality metric.
In this study, we developed and tested an autofocusing algorithm based on the GRAPPA
parallel imaging technique; GRAPPA was used to predict one phase-encoding step in k-space
based on the knowledge of the previous one, which was considered as motion free. The
motion parameters were found by minimizing the difference between the predicted and real
phase-encoding steps, using a cost function based on the MSE. Our results suggested that our
algorithm can compensate very well for 2D translations; however, the algorithm struggled to
estimate rotational motion both using the Fourier rotation theorem and shear transformations,
despite the latter not requiring any regridding step. As the algorithm does not seem to be
able to find a global minimum, it is possible that one of the major limitations of the current
algorithm is the choice of the cost function. Future work might investigate the use of other
image quality metrics present in the literature (e.g. GE), which are estimated in the image
domain rather than the frequency domain.
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6.2 Fat navigator accuracy
FatNav motion-parameter estimation relies on GRAPPA reconstruction of the highly
accelerated navigator fat-volumes, which might be compromised by strong changes in the head
position. Data from MPRAGE brain images have been used to find the motion corresponding
to image quality boundaries and assess motion tolerance when FatNavs are used. Our results
suggested that GRAPPA reconstruction will be compromised in the case of strong head
position changes. Nevertheless, FatNavs were shown to be able to compensate for a large
range of motion both in our smooth and rough motion scenarios. Future studies could explore
the possibility of increasing FatNav robustness to strong motion artifacts by dynamically
updating the GRAPPA weights during the scan, to avoid inconsistencies with the FatNavs
during reconstruction. Although a definition of smooth and rough motion was given, future
work might investigate a mathematical way to describe the difference between them. It is
expected that the majority of routine MRI acquisitions are affected by smooth motion, where
subjects move slowly throughout the acquisition; however, rough motion is expected to be
performed by less compliant subjects during MRI scans. The clear artifact differences shown
here between the two categories suggest that being able to distinguish between smooth and
rough motion becomes important to be able to test estimation accuracy for different types of
motion.

6.3 Navigator and markerless tracking
This study investigated the artifacts arising from different types of head motion in brain MR
images and how well these artifacts can be compensated for by using retrospective correction
based on two different motion-tracking techniques: FatNavs and Tracoline systems. Both
methods could achieve good image quality in case of stepwise motion and slow changes in the
head position (namely slow diagonal motion). When using FatNavs, our results suggested that
it is beneficial to also incorporate a mask to exclude non-rigid parts of the neck to improve
the image registration step – this is especially noticeable when larger motion occurs in the
pitch-wise direction, as this emphasises the non-rigid movement. In the more extreme motion
scenarios, the retrospectively corrected images often contained noticeable residual artifacts
which we attributed to violations of the assumptions required for the retrospective correction
used. Future work may investigate the theoretical limits that will lead to an artifact-free
image after motion correction, elucidating to what extent residual artifacts can be alleviated
by more advanced reconstruction techniques or whether real-time correction may be required
when problematic motion scenarios are expected. In this study, we also showed that the
use of a reference-based metric, such as the FSIM, gives a more reliable assessment of the
image quality before and after motion correction compared to the non-reference-based metrics
used. Future studies should examine if this is caused by the metrics’ individual sensitivities to
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the different manifestations of motion-related artifacts, and how these image quality metrics
correlate with neuroradiologists’ scores.

6.4 Combine motion correction with low
acoustic noise

Three different configurations of a radial GRE-sequence were designed and tested using Pulseq,
to reduce the acoustic noise produced by the rapid switching of gradient currents. Slower rising
and falling of gradients, as well as optimization of spoiler gradient areas, resulted in 5 dB(A)
reduction of acoustic noise using the Configuration 1 compared to the original GRE sequence.
Configurations 2 and 3 allowed for a further noise reduction of around 4 dB(A) and 1 dB(A)
respectively, by replacing the classical trapezoidal gradients’ ramps with Gaussian waveforms.
The acoustic measurements were performed using the Decibel X app on a mobile phone
positioned outside the scanner room. To accurately measure the acoustic difference between
sequences, further studies should use a calibrated microphone positioned at the entrance of
the scanner bore, which is where the strongest acoustic noise is generated. Moreover, the
same strategies could be tested to reduce the acoustic noise of sequences with sharper or more
frequent variations between gradients (e.g. GRE train of an MPRAGE), which are expected
to produce more acoustic noise compared to the sequence examined in this study.
The Configuration 1 was tested in-vivo with the subject performing slow back-and-forth head
rotations. Prospective motion-correction was conducted using a markerless tracking device
that sent the motion estimates to the scanner via the libXPACE framework, incorporated
directly into Pulseq, to update gradients and RF pulses during the MR scan. The motion
correction was tested successfully for one single slice acquisition, with the corrected images
showing substantially higher image sharpness and level of detail. Further studies might
investigate the robustness of sequence and motion correction methods in the case of multi-slice
acquisition in infant subjects, taking advantage of the acoustic noise reduction especially when
no sedation or anaesthesia are used.





Final remark

This thesis focused on different aspects of the motion correction problem in MRI, and proposed
new approaches to help solving it. We started by presenting a new autofocusing motion
correction method, to help compensate for the remaining motion artifacts expected when
FatNav or the TCL retrospective motion correction are used. FatNav tracking accuracy
and robustness was then investigated on simulated data, to find theoretical limits of the
motion correction technique. Furthermore, FatNav and TCL markerless-tracking device were
compared on real data against different types of motion, showing strength and limits of the
two retrospective approaches. Finally, we showed how prospective motion correction using
the TCL device could be easily exploit during pulse sequence design using Pulseq.
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